Cache Strategies with
Best Practices

Tao Cai
Ads Serving Infra, LMS, LinkedIn

Sept 2021

Linked [}

https://askleo.askleomedia.com/wp-content/uploads/2013/11/cache-2048x1075.]

https://askleo.askleomedia.com/wp-content/uploads/2013/11/cache-2048x1075.jpg

csﬂ%n

CSGO Map de_cache

https://spawnterror.com/wp-content/uploads/2019/10/de_cache-new-csgo-counter-strike-Tibcso.j

https://spawnterror.com/wp-content/uploads/2019/10/de_cache-new-csgo-counter-strike-Tibcso.jpg

Read-through Cache Architecture

Service

Y
i

Local Cache or Remote Cache

Y

How 1O use cache
efficiently

v

A simple cache implementation

cache = new LRUCache (bmin TTL) ;

function getValue (key) {
cachedValue = cache.get (key)
1f (cachedValue == null) {
cachedValue = DB.get (key);
cache.put (key, cachedValue);
}

return cachedValue;

Time-to-live (TTL)

A production issue

We are running ads tracking system, every click event
need to validate against advertiser setting. The setting

Is stored in DB, and cache locally.

One day, our

DB crashed

after 5 minute, cache starts to expire. System can't
access settings, and stop processing ads tracking

events.

after 10 minutes, data center traffic shift happens

but a large number of events have already queued up.

Tracking
Service

local
cache

fall back

\
s =3

-

Soft-Hard-TTL

soff TTL: attempt to refresh the cache data. It refresh tails, still keep the data in the cache

hard TTL: delete the cache data

t I D
N ~ AN ~ A ~v—"

Fresh Tolerable Stall Not acceptable

\ Y
Soft TTL Hard TTL

Async Cache Refresh

e soft TTL: async refresh the data in the background
e hard TTL: remove the cold data from the cache
e Benefits:

o No need to wait for DB call.

o NO cache miss for hot dato

o Better data freshness

Initial Read query Read query Read query Read query Expire Cache
Hard TTL
Reader (Expire After Read)
\J Y Y V/ A \
Cache miss Cache value presents Cache miss > Time
(Refresh After Write) (Refresh After Write)
Cache T T T

Initial Cache Update Refresh Cache Refresh Cache

Dynamic TTL

Trade off between DB load and freshness.

e adjust the TTL based on the change frequency
o If data is often changed, use a short soft TTL
o If data is rarely updated, use a long soft TTL

o dynamic adjust the TTL based on the change frequency

e For periodical job, data may expire at the same time, ends with burst fraffic QPS

o use arandom TTL with high watermark and low watermark

Notification pipeline

send notification events 1o force cached item 1o
be updated to improve freshness.

e update the cache item with data if cache
presents

e invalid the cache item as a simple
Implementation.

If update QPS is very high, need 1o build @
change filter fo reduce the volume

Notification

\

Application

\/

Time-to-live (TTL)

1. Soft-hard-tfl 2. Async Refresh
e Infroduce a tolerable TTL e Async refresh the data in
period to builld a robust backend to reduce wait
system time.
e avoid hot cache data
Missing

e Improve data freshness

3. Dynamic TTL

e Adjust TTL based on
change frequency

e Use random TIL to fix
period cache missing

e Use notification pipeline to
build real-time cache

Cache tallback

A readl production issue

We are running an ads ranking

ads features to improve ads rankir

system, caching

g speed

Some hot feature keys are widely used almost by

at the same at all hosts.

All requests now fallbacks to DB, DB is

overloaded, respond very slow

y. the

all requests. Those hot feature keys expire almost

DB fallback

calls are fimeout, no update info the cache

More and more cache data expires, more and
more requests are fallback to DB

Boom! DB crashed, ads crashed

Hostl

Yvyy

Host2

vy vy

Host3

LA AA

» Each line presents a request

<

Cachel

S— e

e 3

Cache?2

DB

S— =

<

Cache3

——

\\
[
\

Dedup fallback calls

e |[n one host, only one request fallback to DB for the same key, the rest wait for the fallback
call finishes

dedup fallback
Cache? . o

ASyNnc cache update

® [UN

The future reader will benefr

DB fallback in an async -

‘hread, so that slow DB call could update cache successtully.

from the cache

e Set areader timeout, so that don't tail requests

Request 1 Requestl Request 2

Read Start Read Timeout Read from cache

Reader
Y Y Y
[Cache miss Cache value presents > Time
Fetching from DB

Cache

DB call start Update cache

Cache partial, empty and error result

e When it's a batch call to DB, accept the partial result, and update the local cache

e cache the empty key to reduce fallback calls

e |[f DB fallback throws error, also cache as empty result

e [orecover faster, set a shorter TTL

Cache warm up

warm up

]1. service restart 2. d new host 3. a different schema

In-memory cache is gone can't rely on local disk all cache items are invalid

often due to code release host migration

Persistent cache

e writfe cache to disk when shutdown, and load when start
o Add a TTL checker before load the cache. If the host Is down for days, the cache on the
disk could be very old
e |[f your cache warm up Is expensive, periodically flush the cache, avoid unexpected

service crash
read/write read/write X

I | unexpected failure

Service Service

~— 2 — A
Cache Cache
N— - N — -
write when shutdownl Area\d when start peridically writel Aread when start
~— —

cache rsync

e cache usually could be shared across different host

e COpy the cache from peers

| A
readjwrite read/write
- cache rsync K —_— q

w
Warmed emi; »| Empty
Cache Cache

A shared remote cache

e Use a shared remote cache it remote call overhead is acceptable.

HostA HostB

treadlwrite

schema upgrade

e pbackwards compatible
e reserve functionality to force booftstrap to fix data issues
o bug code may pollute the cache data
o force cache clean up
o during warm up, warm up by batch by batch to avoid DB overloading

cache warm up

1. cache persistence 2. share cache w/ peers 3. schema revolution
write to local disk and load it download cache from the be backwards capactable
up peers

add TTL freshness checker use a shared remote cache reserve function fo clean up

cache to fix data pollution

Cache Efficiency

local cache format

e Use memory efficiency format
o Java primifive Int : 4 bytes
o Java boxed Infeger: 16 bytes

List<Integer> = int[]
List<Double> = double[]

class MemberData {
int memberld;
boolean isPremium;

¥

List<MemberData> members;

—

class MemberDataArray {
int[] memberlIds;
boolean[] isPremiums;
. some helper functions

MemberDataArray members;

duplication objects

® Obje.C" infern . . List<Integer> emptylList = new ArraylList<>();
o point the same iImmutable object —

List<Integer> emptylList = Collections.emptylList();

Keyl . Data Keyl

Key2 o Data [> Key2 Data

Key3 o Data Key3

local cache format

e symbol table
o JSON format, lo

s of duplicate keys

Symbol Table:

. : {
o Restll implementation "memberId" : $1,
"score" : $2
}
JSON Data w/ symbol table (PSON)
Example [{ [{
"memberId" : 123, $1 : 123,
"score" : 0.05 $2 : 0.05
s }s
{ {
"memberId" : 456, $1 : 456,
"score" : 0.03 $2 : 0.03
1] 1]
size 1X 0.25Xx

remote cache schemao

e remote service RPC overhead is mainly contributed by schema

serialization/deserialization

e pIick up an efficient schema solution

Average time to encode 100,000 records in milli seconds.

e 20 warming up iteration
e Average of 20 iteration

Protocol Thrift Avro | CSV JSON (with JSON MessagePack MessagePack
Buffers (compact Jsoniter-scala) (with (jackson-module-ms | (msgpack4z)
(proto3) protocol) circe) gpack)

43.0 235.8 232.6 | 116.8 74.6 488.7 354.8 358.0

hitps://github.com/saint1991/serialization-benchmark

Sharding to Scale Up

Sharding and memory usage

divides -

‘he ful

each sk
total.

e Non-shard: C1, C2, C3, C4 In one host
e Shard: C1, C2inshardl and C3, C4Ir

shard?2

cache size is reduced 1o 25% when 4

shards

ard wi

cluster into multiple shards,
| be responsible for part of

C1,C2,C3,C4

Broker

rCl, C2, C3, C4J

hCL Cc2

C1,C2,C3,C4

Broker

|

C3, C4

]

Host1l Host2 Host3
Gl C2, 51, G2 1, E2,
C3,C4 C3,C4 €3.C4

Host4
Cl.. G2,
C3.C4

Mem Size =4

ihardl Cluster Shard?2 Clustel
Hostl Host2 Host3 Host4
Cl, G2 Cl, G2 C3,C4 C3,C4

Mem Size =2

Mem Size =2

Conclusion

o TTL
o soft-hard-ttl, async refresh, dynamic ttl, notification pipeline
e cache fallback
o dedup, async fallback, accept partial/empty/error result
e CAOChe warm up
o |local disk persistence, peer cache rsync, shared remote cache, schema revolution
e cache efficiency
o memory friendly, symbol tables
e sharding

o scalable solution iImprove the memory efficiency

Special thanks to

e Ads Serving Infra feam, LAN Growth, LAN Al team
o Yi Zhang, Aakash Dhongade, Dmitry Mikhaylov, Tianchen Yu, Sudhanshu
Garg, Daniel Liu, Shreya Bhatia, Tina Wu
e Ads Serving SRE feam
o Xiaomeng Yi, Sayantan Sengupta, Sriharsha Gondi
e Couchbase SRE feam
o Todd Hendricks, Ben Welir, Samir Tata
e Product SRE

o Brian Wilcox

Thank youl

Questions?

Tao Cal

https://www.linkedin.com/in/tao-cai-920%21a80
(please note “SRECon")

- Linked {3}

https://www.linkedin.com/in/tao-cai-92091a80/

Cache Stages

Cache stages

There are multi-stages data converting.

e cache the final output to avoid duplicated converting

e cache the mid stage result fo reduce memory footprint as a frade off CPU resource

Java onheap cache VS oftheap cache

e Offheap is skipping objects when GC
e onheap mMmay still be the best choice given
o less serialization and deserialization when read and write
o offheap access fime about 2x slower than onheap access
o G1GC helps inregion GC, reduce object scanning overhead.

cache warm up

1. cache persistence 2. share cache w/ peers 3. schema revolution
write to local disk and load it download cache from the be backwards capactable
up peers

add TTL freshness checker use a shared remote cache reserve function fo clean up

cache to fix data pollution

