
© 2021 Bloomberg Finance L.P. All rights reserved.

Latency Distributions +
Micro-benchmarks =
Insights into Kernel Hotspots
SREcon21
October 12, 2021

Danny Chen
Trading Solutions SRE Team
dchen294@bloomberg.net

mailto:dchen294@bloomberg.net

© 2021 Bloomberg Finance L.P. All rights reserved.

Biography

● UNIX performance engineer since 1980
● Worked on UNIX SVR3 and SVR4 virtual memory and demand paging
● Co-developed the first general purpose UNIX kernel tracing package
● Participated in the Performance Management Working Group - an

industry-wide performance management standards effort
● Low latency market data
● Messaging and distributed transactions management
● Enterprise systems monitoring and capacity planning
● Working to get more “engineering” back in performance engineering

○ Visibility into Loggers… (SREcon19)
○ Pardon the Interposition… (LISA19)
○ Page Reference Sampling… (SREcon20)

© 2021 Bloomberg Finance L.P. All rights reserved.

Why Large Bare Metal Boxes?

● Faster local communication
○ UNIX Domain Sockets
○ Shared Memory

● Shared local state
● Assured durability of filesystem writes
● Control over resource allocation

○ High Volume and Low Latency Market Data
○ Real-time and near real-time requirements

© 2021 Bloomberg Finance L.P. All rights reserved.

The Scale in our Department

● >400K processes across hundreds of physical machines
○ 3 different platforms/operating systems (Linux, Solaris, AIX)

● 5-8K processes on busier hosts
● >250K threads on busier hosts

© 2021 Bloomberg Finance L.P. All rights reserved.

Case #1: SysV semaphore bottleneck (AIX)

● General system slowness on one of our production machines
○ Migrating services between machines did not help

■ Start-up scripts timed out
● Narrowing down the problem

○ Many services and utilities were slow
○ Using “trace” on one utility pointed to sporadic slow sem_init

and sem_destroy times

© 2021 Bloomberg Finance L.P. All rights reserved.

Case #1: SysV semaphore bottleneck (AIX)

The micro-benchmark
 /* sema_load.c */
 for (i = 0; i < n; i++) {
 sem_init(&sem[i], 0, 10);
 sem_destroy(&sem[i]);
 }

Timings

$ time ./sema_load 3000000

real 0m8.274s
user 0m0.261s
sys 0m4.738s

Avg. Wall Avg. System Avg. User

1 8.274 4.738 0.261

2 14.264 8.575 0.269

3 16.527 9.634 0.271

4 22.363 13.472 0.275

© 2021 Bloomberg Finance L.P. All rights reserved.

Case #1: Observations and Findings

● AIX CPU measurement when hyper-threading is very misleading
● No “out of the box” metrics on SysV IPC operations

○ Sporadic slowness (depending on concurrency/contention)
○ Took days to isolate the problem down to sem_init() and sem_destroy()

operations
● sem_init() and sem_destroy() have critical regions that are protected by spin

locks
○ Good for low contention
○ Bad during high contention

© 2021 Bloomberg Finance L.P. All rights reserved.

Case #2: SysV shared memory bottleneck (Linux)

● Low-level application infrastructure code dropping messages
○ Messaging leverages a form of “zero copy” IPC using SysV

shared memory + message queues
○ What was causing “slow consumers”?

■ Application code?
■ Slow message queues?
■ Slow shared memory?

● Zeroing in on the problem
○ The “zero copy” mechanism puts out warnings when shmat()

latency exceeds a threshold

© 2021 Bloomberg Finance L.P. All rights reserved.

Case #2: SysV shared memory bottleneck (Linux RHEL 6)

The micro-benchmark
 for (i = 0; i < numloops; i++) {
 void *vaddr = shmat(shmid, NULL, 0);
 shmdt(vaddr);
 }

Timings

Avg. Wall Avg. System Avg. User

1 3.235 2.344 0.061

4 98.809 33.587 1.580

$ time ./shm_load 3000000

real 0m3.235s
user 0m0.061s
sys 0m2.344s

© 2021 Bloomberg Finance L.P. All rights reserved.

Case #2: Observations and Findings

● No “out of the box” metrics on SysV IPC operations
○ Fortunately, the sub-system has measurements of the shmat/shdt

system calls
○ With logs upon crossing some threshold

● shmat() and shmdt() have critical regions that are protected by spin locks
○ Good for low contention
○ Bad during high contention

● Different in RHEL 7
○ Worse in 7.4
○ Much better in 7.6

© 2021 Bloomberg Finance L.P. All rights reserved.

Case #3: UNIX domain socket bottleneck (Solaris)

● Critical software infrastructure experiencing timeouts on load
○ Identity management with very strict SLOs

● Narrowing down the problem
○ A key SLI for the service is token generation latency

© 2021 Bloomberg Finance L.P. All rights reserved.

An Aside: Histograms and Distributions are Useful!

● More representative of the data set
○ Most data is not “normally distributed” -> means and std dev

are not meaningful (and worse, misleading)
○ Is data bi-modal (or multi-modal)?
○ Long tails are meaningful

■ Sensitive detection of performance hiccups
○ Relatively compact storage requirements
○ Many SLAs and SLOs are stated in terms of distributions

© 2021 Bloomberg Finance L.P. All rights reserved.

~3300 usec

An Aside: A Histogram Example

© 2021 Bloomberg Finance L.P. All rights reserved.

Case #3: Early Observations

● No “out of the box” metrics on socket operations
○ Fortunately, the sub-system kept distribution metrics on key latencies
○ This allowed an exact correlation between latency blips and execution of

the netstat command
● The maximum netstat impact on latency varied widely from system to system

○ Conjecture: the level of impact was related to the number of UDS
sockets on a system
■ Netstat holds a lock for the duration of its “read-only” operation

when extracting the list of active UDS sockets

© 2021 Bloomberg Finance L.P. All rights reserved.

Case #3: UNIX domain socket bottleneck (Solaris)
The micro-benchmark #1 - testing against size
 #define MAX_TESTFDS 32*1024
 for (i = 0; i < MAX_TESTFDS; i++) {
 fd[i] = socket(AF_UNIX, SOCK_STREAM, 0);
 } pause();

Timings (sequential)
Avg. Wall (sec) Avg. System (sec) Avg. User (sec)

1 .240 .230 .011

2 .308 .298 .011

3 .371 .360 .011

4 .445 .443 .011

5 .552 .512 .011

6 .585 .573 .011

© 2021 Bloomberg Finance L.P. All rights reserved.

Case #3: Conclusions

● Solaris 11.3 is limited to a max of 256K UDS sockets
● The more UDS sockets there are, the longer it takes to create new, unbound

UDS sockets

© 2021 Bloomberg Finance L.P. All rights reserved.

Case #4: Task clone and exit bottleneck (Linux)

● Preliminary: Does task creation/deletion take longer with more threads?
○ On hosts with >250K threads, we start to see timeouts in start-up

and shutdown

© 2021 Bloomberg Finance L.P. All rights reserved.

Case #4: Task clone and exit bottleneck (Linux)

The micro-benchmark
 void *hangaround(void *args) {
 pause();
 return NULL;
 }

 int main(int argc, char *argv[]) {
 for (i = 0; i < nthreads; i++) {
 pthread_create(&tid, &attr, hangaround, NULL);
 }
 pause();
 }

© 2021 Bloomberg Finance L.P. All rights reserved.

Case #4: Task clone and exit bottleneck (Linux)
$ time (ps auxww | wc)
 2967 42706 500273

real 0m0.174s
user 0m0.038s
sys 0m0.137s

$./lotsathreads 125000 &

$ time (ps auxww | wc)
 2984 42896 487592

real 0m0.482s
user 0m0.032s
sys 0m0.450s

$./lotsathreads 125000 &

$ time (ps auxww | wc)
 3032 43784 500467

real 0m1.892s
user 0m0.026s
sys 0m1.212s

● Note the growth in system time with threads
● Similar growth in system time if we ls /proc
● Answer: processes and threads are tasks to the Linux kernel

© 2021 Bloomberg Finance L.P. All rights reserved.

Case #4: Task clone and exit bottleneck (Linux)
$ for i in {1..1}; do time (ps > /dev/null) & done
real 0m1.175s
user 0m0.015s
sys 0m1.058s

$ for i in {1..2}; do time (ps > /dev/null) & done
real 0m3.139s
user 0m0.014s
sys 0m1.360s

real 0m3.449s
user 0m0.015s
sys 0m1.753s

$ for i in {1..4}; do time (ps > /dev/null) & done
real 0m2.641s
user 0m0.011s
sys 0m1.630s

real 0m3.479s
user 0m0.014s
sys 0m1.531s

real 0m4.299s
user 0m0.015s
sys 0m1.817s

real 0m4.424s
user 0m0.011s
sys 0m1.112s

● Note the serialization around concurrent ps instances
● There doesn’t appear to be a huge spin lock that ps (/proc

access) encounters
● But ps is only reading data. Why the serialization around

concurrent reads?
○ Is it possible that /proc access might impact task

create/destroy?
○ Can task create/destroy also impact one another?

© 2021 Bloomberg Finance L.P. All rights reserved.

Summary

● Systems are not infinitely scalable
○ No OS has a monopoly on scale problems

● Latency histograms provide key visibility into spotting problems early
● Think of the kernel and the system call interface as a privileged library

○ Micro-benchmarks can help zero in on kernel hotspots
■ Complementary with kernel lock/tracing tools
■ Small, compact tests are easy to re-run
■ Be aware of “designing to the benchmark”

● Latency histograms can help compare “before and after”
behavior

© 2021 Bloomberg Finance L.P. All rights reserved.

More Summary (Plea to Kernel Folks)

● The Prime Directive of Monitoring: Non-interference
○ Design monitoring interfaces and utilities to interact as

minimally as possible with the system being monitored
○ Design the kernel to facilitate passive monitoring

● More visibility!
○ Latency histograms (as full fledged, full-time metrics) are

crucially important
■ System calls
■ Key lock acquisition and hold

● Take care in use of spin locks

© 2021 Bloomberg Finance L.P. All rights reserved.

References
• Jon Bentley’s “Performance Bugs”: https://youtu.be/89qiHoDjeDg
• The case for histograms:

— How NOT to Measure Latency (Gil Tene):
https://www.youtube.com/watch?v=lJ8ydIuPFeU

— Latency SLOs Done Right (Fred Moyer):
https://www.usenix.org/conference/srecon19americas/presentatio
n/moyer

https://youtu.be/89qiHoDjeDg
https://www.youtube.com/watch?v=lJ8ydIuPFeU
https://www.usenix.org/conference/srecon19americas/presentation/moyer
https://www.usenix.org/conference/srecon19americas/presentation/moyer

© 2021 Bloomberg Finance L.P. All rights reserved.

Thank you!
We are hiring: bloomberg.com/engineering

http://bloomberg.com/engineering

