
© 2021 Akamas • All Rights Reserved • Confidential

Automating
Performance Tuning
with Machine Learning

USENIX SRECon 21
Stefano Doni (Akamas)

© 2021 Akamas • All Rights Reserved • Confidential

Agenda

1 Why SREs should care about
system configurations

2 A new approach:
ML-driven performance tuning

3 Real-world example:
optimize Kubernetes and JVM

4 Conclusions

Stefano Doni

CTO at Akamas

15 years in performance engineering

2015 CMG Best Paper Award Winner

© 2021 Akamas • All Rights Reserved • Confidential

Why SREs should care about
system configurations

© 2021 Akamas • All Rights Reserved • Confidential

SREs care about efficiency and performance

“an SRE team is responsible for the availability, latency, performance,

efficiency, change management, monitoring, emergency response,

and capacity planning of their service(s)”

The core SRE tenets include:

● Pursuing maximum change velocity without violating SLOs

● Demand Forecasting and Capacity Planning

● Efficiency and performance

https://sre.google/books

https://sre.google/books

© 2021 Akamas • All Rights Reserved • Confidential

… and service availability

Tr
an

sa
ct

io
ns

 /
se

c

CP
U

 U
til

iz
at

io
n

0%

40%

80%

20%

60%

Utilization Workload

Mon Tue Wed
0

400

800

200

600

performance and efficiency

Baseline TPS Best TPS VUs

higher application performance and lower infrastructure cost higher transaction throughput and improved service resilience

Tuning system configuration matters...

JV
M

 reconf

© 2021 Akamas • All Rights Reserved • Confidential

… but it is getting harder and harder

Configuration Explosion Unpredictable Effects

Cache size (GB)

D
at

ab
as

e
Th

ro
ug

hp
ut

 (K
)

0 10 20 305 15 25
0

4

8

2

6

default

Av
er

ag
e

Re
le

as
e

Fr
eq

ue
nc

y

Faster Deployments

2010 20202015

1 day

3 months

1 month

properly configuring the IT stack requires
analyzing thousands of configurations

acceleration of release pace makes
manual approach infeasible/useless

effect of changes can be counterintuitive
+ default values not always appropriate

N
um

be
r

of
 C

on
fig

ur
at

io
ns

2010 20202015
0

400

800

200

600

© 2021 Akamas • All Rights Reserved • Confidential

A new approach:
ML-driven performance tuning

© 2021 Akamas • All Rights Reserved • Confidential

Full-Stack Smart Exploration

Key requirements for a new approach

Goal-oriented Fully Automated

Optimize multiple
technologies and layers

at the same time

Explore huge space of
configurations in a time
and cost-effective way

Define tailored goals
and constraints

driving the optimization

Execute the entire
optimization process

in a fully automated way

© 2021 Akamas • All Rights Reserved • Confidential

ML techniques for smart exploration

Model Based

Queuing Networks
Petri Networks

Linear Programming

Simulation Based
Random Forests

Statistical Machine Learning

Test Based
Random Search

Reinforcement Learning
Parzen Trees

© 2021 Akamas • All Rights Reserved • Confidential

ML enables automated performance tuning...

3.
Collect

KPIs

4.
Score

vs Goal (RL
reward)

System
 to be O

ptim
ized

RL Environm
ent)

2.
Apply

Workload

Adjust tunable parameters
of the system (RL Action)1.

Apply
Configuration

5. Reinforcement
Learning

Optimization Test the new parameter
configuration under load

Measure performance KPIs from
monitoring tools

OS / HW

Container / Pod

Runtime (JVM

Framework (DB

Application

Load Testing
tools

Monitoring
tools

Configuration mgmt
tools

© 2021 Akamas • All Rights Reserved • Confidential

SRE

optimal configuration

… and a new performance tuning process

constraints
SLOs)

optimization
goal

load
scenarios

3.
Collect

KPIs

4.
Score

vs Goal

1.
Apply

Configuration

2.
Apply

Workload
5. Reinforcement

Learning
Optimization

© 2021 Akamas • All Rights Reserved • Confidential

Real world example:
optimize Kubernetes and JVM

© 2021 Akamas • All Rights Reserved • Confidential

The target system: Online Boutique

● Cloud-native application by Google

made of 10 microservices

● Realistic sample web-based

e-commerce service

● Features a modern software stack

Go, Node.js, Java, Python, Redis)

● Includes a Load Generator (Locust)

to inject realistic workloads https://github.com/GoogleCloudPlatform/microservices-demo

https://github.com/GoogleCloudPlatform/microservices-demo

© 2021 Akamas • All Rights Reserved • Confidential

Use Case: optimizing cost of K8s
microservices while ensuring reliability

Challenge for SRE
How to provision the optimal resources to your application made of several

Kubernetes microservices, so that you can trust the overall service

➔ will sustain the expected target load

➔ while matching the defined Service-Level Objectives SLOs)

➔ at the minimum cost

➔ while minimizing the operational effort

➔ and matching delivery milestones

SRE

© 2021 Akamas • All Rights Reserved • Confidential

The reference architecture

Frontend

Currency Product Catalog

Recommend Check-out

EMailing Cart

Payment Shipping

Monitoring

Configuration Mgmt

Au
to

m
at

ed
 W

or
kf

lo
w

Load
Generator

275
MEASURED
KPIs

22
TUNABLE
PARAMETERS
CPU & Memory limits)

10
MICROSERVICES

Ad Redis Cart

© 2021 Akamas • All Rights Reserved • Confidential

Frontend

Currency Product Catalog

Recommend Check-out

EMailing Cart

Payment Shipping

Ad Redis Cart

The optimization goals & constraints
GOAL
MAXIMIZE frontend_boutique.istio_incoming_success_transactions / application_cost

loadgenerator_locust.locust_fail_ratio <= 2% AND
frontend_boutique.istio_incoming_response_time_90pct <= 500ms

CONSTRAINTS

© 2021 Akamas • All Rights Reserved • Confidential

Best configuration found by ML in 24H
improves cost efficiency by 77%

35 iterations
24 hours elapsed

Se
rv

ic
e

th
ro

ug
hp

ut
 /

cl
ou

d
co

st

Baseline configuration

Perf/Cost:
0.29 TPS/$/mo

Best configuration

Perf/Cost:
0.52 TPS/$/mo

77%

© 2021 Akamas • All Rights Reserved • Confidential

Best config: optimal resources
assigned to microservices

Frontend

Product Catalog

Recommend Check-out

Payment Shipping

Currency

0.6 cores

128 MB 0.6 cores

0.5 cores 1 core0.6 cores

EMailing Cart

Ad Redis Cart

● decreased CPU limits set for almost all containers
● increased CPU assigned to 2 microservices
● all these changes to achieve max cost efficiency and match SLOs

0.12 cores

635 MB 0.92 cores

0.6 cores
0.22 cores

0,99 cores 0.13cores

128 MB
203 MB

1 core
0.38 cores

0.6 cores
0.1 cores

0.45 cores

10
TOP IMPACT
PARAMETERS

Baseline

Best

© 2021 Akamas • All Rights Reserved • Confidential

Baseline vs Best: Service throughput Baseline vs Best: Service p90 response time

19%
TPS

60%
Response
Time

Best config: higher performance
& efficiency for the overall service

© 2021 Akamas • All Rights Reserved • Confidential

Use Case: maximizing service
performance & efficiency with JVM tuning

Challenge for SRE
How to ensure a reliable product launch, by properly configuring JVM options,

so that you can trust the overall service

● will sustain the expected target load

● while matching the defined Service-Level Objectives SLO

● at the minimum cost

● while minimizing the operational effort

● and staying aligned product launch milestones

SRE

© 2021 Akamas • All Rights Reserved • Confidential

The reference architecture

Frontend

Currency Product Catalog

Recommend Check-out

EMailing Cart

Payment Shipping

Monitoring

Configuration Mgmt
Au

to
m

at
ed

 W
or

kf
lo

w

Load
Generator

275
MEASURED
KPIs

32
TUNABLE
PARAMETERS
JVM options)

10
MICROSERVICES

Ad Redis Cart

© 2021 Akamas • All Rights Reserved • Confidential

Frontend

Currency Product Catalog

Recommend Check-out

EMailing Cart

Payment Shipping

Ad Redis Cart

The optimization goals & constraints
GOAL
MAXIMIZE ad.istio_incoming_success_transactions

ad.transaction_response_time <= 100ms CONSTRAINTS

© 2021 Akamas • All Rights Reserved • Confidential

Best config:
28% throughput, and meeting SLOs

Baseline configuration

Peak Throughput
matching SLO 74 TPS

Best configuration

28%
Peak Throughput
matching SLO 95 TPS

SLO breaking at 100ms

© 2021 Akamas • All Rights Reserved • Confidential

Best config: optimal JVM options

● increased max heap memory
● changed Garbage Collector type
● decreased number of Garbage

Collector threads
● adjusted heap regions & object

aging thresholds

8
TOP IMPACT PARAMETERS

BaselineBest

© 2021 Akamas • All Rights Reserved • Confidential

Conclusions

© 2021 Akamas • All Rights Reserved • Confidential

Key takeaways

Tuning modern applications for increasing their efficiency, performance and
reliability is a complex problem that represent a relevant toil for SRE teams

A new approach leveraging fully-automated ML-based optimization enables
SRE teams to ensure applications will have higher performance & reliability

Leveraging this new ML-based optimization approac, SRE teams can
reduce the operational toil and stay aligned to release milestones

Contacts

info@akamas.io

AkamasLabs@akamaslabs

Italy HQ
Via Schiaffino 11
Milan, 20158
390249517001

USA East
211 Congress Street
Boston, MA 02110
16179360212

Singapore
5 Temasek Blvd
Singapore 038985

USA West
12655 W. Jefferson Blvd
Los Angeles, CA 90066
13235240524

LinkedIn Twitter

Email

© 2021 Akamas • All Rights Reserved • Confidential

© 2021 Akamas • All Rights Reserved • Confidential

BACKUP SLIDES

