ΛΚΛΜΛS

Automating Performance Tuning with Machine Learning

USENIX SRECon 21

Stefano Doni (Akamas)

© 2021 Akamas • All Rights Reserved • Confidential

2 A new approach: ML-driven performance tuning

3 Real-world example: optimize Kubernetes and JVM

4 Conclusions

Stefano Doni

CTO at Akamas

15 years in performance engineering 2015 CMG Best Paper Award Winner

Why SREs should care about system configurations

SREs care about efficiency and performance

Edited by Betsy Beyer, Chris Jones, Jennifer Petoff & Niall Murphy

https://sre.google/books

"an **SRE team** is responsible for the availability, latency, performance, efficiency, change management, monitoring, emergency response, and capacity planning of their service(s)"

The core SRE tenets include:

- Pursuing maximum change velocity without violating SLOs
- Demand Forecasting and Capacity Planning
- Efficiency and performance

Tuning system configuration matters...

performance and efficiency

higher application performance and lower infrastructure cost

... and service availability

higher transaction throughput and improved service resilience

... but it is getting harder and harder

Configuration Explosion

Unpredictable Effects

Faster Deployments

properly configuring the IT stack requires analyzing thousands of configurations effect of changes can be counterintuitive + default values not always appropriate

acceleration of release pace makes manual approach infeasible/useless

A new approach: ML-driven performance tuning

Key requirements for a new approach

ML techniques for smart exploration

Model Based

Queuing Networks Petri Networks Linear Programming **Simulation Based**

Random Forests Statistical Machine Learning

Test Based

Random Search Reinforcement Learning Parzen Trees

© 2021 Akamas • All Rights Reserved • Confidential

ML enables automated performance tuning...

© 2021 Akamas • All Rights Reserved • Confidential

... and a new performance tuning process

Real world example: optimize Kubernetes and JVM

The target system: Online Boutique

- Cloud-native application by Google made of 10 microservices
- Realistic sample web-based
 e-commerce service
- Features a modern software stack (Go, Node.js, Java, Python, Redis)
- Includes a Load Generator (Locust) to inject realistic workloads

https://github.com/GoogleCloudPlatform/microservices-demo

© 2021 Akamas • All Rights Reserved • Confidential

Use Case: optimizing cost of K8s microservices while ensuring reliability

Challenge for SRE

How to provision the optimal resources to your application made of several **Kubernetes** microservices, so that you can trust the overall service

- → will sustain the expected target load
- → while matching the defined **Service-Level Objectives** (SLOs)
- → at the **minimum cost**
- → while minimizing the operational effort
- → and matching delivery milestones

The reference architecture

The optimization goals & constraints

Best configuration found by ML in 24H improves cost efficiency by 77%

Best config: optimal resources assigned to microservices

- decreased CPU limits set for almost all containers
- increased CPU assigned to 2 microservices
- all these changes to achieve max cost efficiency and match SLOs

Best config: higher performance & efficiency for the overall service

Use Case: maximizing service performance & efficiency with JVM tuning

Challenge for SRE

How to ensure a reliable product launch, by properly configuring JVM options, so that you can trust the overall service

- will sustain the expected target load
- while matching the defined **Service-Level Objectives** (SLO)
- at the **minimum cost**
- while minimizing the operational effort
- and staying aligned product launch milestones

The reference architecture

The optimization goals & constraints

Best config: +28% throughput, and meeting SLOs

Best config: optimal JVM options

8 TOP IMPACT PARAMETERS

Parameter 👙	Relevance 🝦	Best	Baseline
jvm ⊇ jvm_newSize ₪		550 MB (+83.3%)	300 MB
jvm jvm_GCTimeRatio		100 (+1%)	99
jvm jvm_concurrentGCThreads	_	1 threads (-87.5%)	8 threads
jvm ∋ jvm_gcType ❶	_	Parallel	61
jvm ivm_maxHeapSize ❶	_	901 MB (+252%)	256 MB
ivm_jvm_maxTenuringThreshold 0	_	6 (-60%)	15
jvm jvm_parallelGCThreads	_	3 threads (-62.5%)	8 threads
jvm ivm_survivorRatio ●	_	100 (+1,150%)	8

- increased max heap memory
- changed Garbage Collector type
- decreased number of Garbage Collector threads
- adjusted heap regions & object aging thresholds

Conclusions

Key takeaways

Tuning modern applications for increasing their efficiency, performance and reliability is a **complex problem** that represent a **relevant toil** for SRE teams

A new approach leveraging fully-automated **ML-based optimization** enables SRE teams to ensure applications will have **higher performance & reliability**

Leveraging this new **ML-based optimization** approac, SRE teams can **reduce the operational toil** and **stay aligned to release milestones**

Contacts

Italy HQ Via Schiaffino 11 Milan, 20158 +39-02-4951-7001

USA West

12655 W. Jefferson Blvd Los Angeles, CA 90066 +1-323-524-0524 **Singapore** 5 Temasek Blvd Singapore 038985

USA East

LinkedIn @akamaslabs

Email info@akamas.io WAKamas

Boston, MA 02110 +1-617-936-0212

211 Congress Street

BACKUP SLIDES

