
© 2021 Akamas • All Rights Reserved  • Confidential

Automating 
Performance Tuning 
with Machine Learning

USENIX SRECon 21
Stefano Doni (Akamas)



© 2021 Akamas • All Rights Reserved  • Confidential

Agenda

1 Why SREs should care about 
system configurations

2 A new approach: 
ML-driven performance tuning

3 Real-world example: 
optimize Kubernetes and JVM

4 Conclusions

Stefano Doni

CTO at Akamas

15 years in performance engineering

2015 CMG Best Paper Award Winner



© 2021 Akamas • All Rights Reserved  • Confidential

Why SREs should care about  
system configurations 
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SREs care about efficiency and performance

“an SRE team is responsible for the availability, latency, performance, 

efficiency, change management, monitoring, emergency response, 

and capacity planning of their service(s)”

The core SRE tenets include:

● Pursuing maximum change velocity without violating SLOs

● Demand Forecasting and Capacity Planning

● Efficiency and performance

https://sre.google/books

https://sre.google/books
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… and service availability
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… but it is getting harder and harder

Configuration Explosion Unpredictable Effects

Cache size (GB)
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properly configuring the IT stack requires 
analyzing thousands of configurations

acceleration of release pace makes 
manual approach infeasible/useless

effect of changes can be counterintuitive 
+ default values not always appropriate 
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A new approach:
ML-driven performance tuning
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Full-Stack Smart Exploration

Key requirements for a new approach

Goal-oriented Fully Automated

Optimize multiple 
technologies and layers 

at the same time 

Explore huge space of 
configurations in a time 
and cost-effective way 

Define tailored goals 
and constraints 

driving the optimization 

Execute the entire 
optimization process 

in a fully automated way
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ML techniques for smart exploration

Model Based

Queuing Networks
Petri Networks

Linear Programming

Simulation Based
Random Forests

Statistical Machine Learning

Test Based
Random Search

Reinforcement Learning
Parzen Trees
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ML enables automated performance tuning...
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configuration under load
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SRE

optimal configuration

… and a new performance tuning process

constraints 
SLOs)
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Real world example: 
optimize Kubernetes and JVM
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The target system: Online Boutique

● Cloud-native application by Google  

made of 10 microservices

● Realistic sample web-based 

e-commerce service

● Features a modern software stack 

Go, Node.js, Java, Python, Redis)

● Includes a Load Generator (Locust) 

to inject realistic workloads https://github.com/GoogleCloudPlatform/microservices-demo

https://github.com/GoogleCloudPlatform/microservices-demo
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Use Case: optimizing cost of K8s 
microservices while ensuring reliability

Challenge for SRE
How to provision the optimal resources to your application made of several 

Kubernetes microservices, so that you can trust the overall service 

➔ will sustain the expected target load

➔ while matching the defined Service-Level Objectives SLOs)

➔ at the minimum cost

➔ while minimizing the operational effort

➔ and matching delivery milestones

SRE
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The reference architecture
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Frontend

Currency Product Catalog

Recommend Check-out

EMailing Cart

Payment Shipping

Ad Redis Cart

The optimization goals & constraints
GOAL 
MAXIMIZE frontend_boutique.istio_incoming_success_transactions / application_cost

loadgenerator_locust.locust_fail_ratio <= 2% AND 
frontend_boutique.istio_incoming_response_time_90pct <= 500ms  

CONSTRAINTS 
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Best configuration found by ML in 24H
improves cost efficiency by 77%  

35 iterations 
24 hours elapsed
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Baseline configuration

Perf/Cost: 
0.29 TPS/$/mo

Best configuration

Perf/Cost:
0.52 TPS/$/mo

77%
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Best config: optimal resources 
assigned to microservices 

Frontend

Product Catalog

Recommend Check-out

Payment Shipping

Currency

0.6 cores

128 MB 0.6 cores

0.5 cores 1 core0.6 cores

EMailing Cart

Ad Redis Cart

● decreased CPU limits set for almost all containers
● increased CPU assigned to 2 microservices 
● all these changes to achieve max cost efficiency and match SLOs 
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Baseline vs Best: Service throughput Baseline vs Best: Service p90 response time

19%
TPS

60%
Response 
Time

Best config: higher performance 
& efficiency for the overall service
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Use Case: maximizing service 
performance & efficiency with JVM tuning

Challenge for SRE
How to ensure a reliable product launch, by properly configuring JVM options, 

so that you can trust the overall service 

● will sustain the expected target load

● while matching the defined Service-Level Objectives SLO

● at the minimum cost

● while minimizing the operational effort

● and staying aligned product launch milestones

SRE
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The reference architecture
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Frontend

Currency Product Catalog

Recommend Check-out

EMailing Cart

Payment Shipping

Ad Redis Cart

The optimization goals & constraints
GOAL 
MAXIMIZE ad.istio_incoming_success_transactions

ad.transaction_response_time <= 100ms  CONSTRAINTS 
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Best config: 
28% throughput, and meeting SLOs

Baseline configuration

Peak Throughput 
matching SLO 74 TPS

Best configuration

28%
Peak Throughput 
matching SLO 95 TPS 

SLO breaking at 100ms
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Best config: optimal JVM options

● increased max heap memory
● changed Garbage Collector type
● decreased number of Garbage 

Collector threads
● adjusted heap regions & object 

aging thresholds

8
TOP IMPACT PARAMETERS

BaselineBest
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Conclusions
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Key takeaways

Tuning modern applications for increasing their efficiency, performance and 
reliability is a complex problem that represent a relevant toil for SRE teams  

A new approach leveraging fully-automated ML-based optimization enables 
SRE teams to ensure applications will have higher performance & reliability 

Leveraging this new ML-based optimization approac, SRE teams can 
reduce the operational toil and stay aligned to release milestones 
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