SCYLLA.

What's the cost of a
millisecond?

Avishai Ish-Shalom (@nukemberg)

2

ScyllaDB what?

+

+

The Real-Time Big Data Database

Drop-in replacement for Apache Cassandra
and Amazon DynamoDB

10X the performance & low tail latency
Open Source, Enterprise and Cloud options
Founded by the creators of KVM hypervisor

HQs: Palo Alto, CA, USA; Herzelia, Israel;
Warsaw, Poland

SCYLLA.

N
COMCAST & Santander

O Opera % Fanatics
PSnmsuncg

SAMSUNG SDS

& Lookout Oadgear

C) FIRESYE N AppNexus
2Zillow @&

Zenly

3

SCYLLA. r = » flediaMath

S Santander
The Real-Ti
Grob
Drop-in repl
and Amazor % Fanatics
10X the per il
SAMSUNG SDS
Open Sourc
Oadgear
Founded by
_ AppNexus
HQs: Palo A
Warsaw, Po

'SUCH wow low

Zenly

The curse of latency
amplification

SCYLLA

5ms +5ms + 5ms + Tms = 16ms, right?

B ms

Sms

Serviee B

SCYLLA.

Once more, with amplification

5wms

Queue (x2)

7/

' &

7/
&
Yz

Queue (2x)

/

/ ngicé, A=

/

ms

Queue (2x)

S5ms /

Service B

Queue (2x)

Timeout + ret
300ms + 20ms

SCYLLA.

/
/
[//

Queue (1.1x)

/
£
/

"’?‘-IO msS

Oh shit

+ Every queue amplifies latency
+ Atimeout has a large penalty
+ Retry has a penalty

And it all compounds. And transactions impact each other

SCYLLA.

Queueing theo

course

SCYLLA e

Ir\comin? work

/’\

SN // %;//,/;/ S ;Qe Qenate‘.
Queue erv
o . g e
Wait time (queueu:ng) Service Time (actual work)
< >

Observed la‘te_ncc/ 2 watt Time + service time

Head of line blocking

+ When some task takes longer, service center is “blocked”

+ Other tasks in the queue are blocked by the “head of line”

+ A single slow task will cause a bunch of other tasks to wait

+ Bad news for latency high percentiles

SCYLLA.

Ir\co»v\ins, work

Waiting for service

— 00

U

)
7

Service center
Blccked

Service time Arrival rate

1.0+ 018
0.9-]
0.16+
0.8-|
0.14-
0.7
0.12+
06
g z
3 = 0.104
w® 0.5 2
2 3
[0.08-|
a 04 g
03 0.06-
0.2 0.04-
0.1-] 0.02-
%% s 10 15 20 25 30 35 40 45 50 0.00 T /Y R R ST
o0 . - ' 2 s - . SR o 1 2 3 4 5 6 1 8 9 10 1 12 13 14
Response time Req/sec

1

| k 1 ‘ | :
II IHHI""'IH”H'IW[! lFIIF I pn TH'ITII"II "”'I'lllﬂ | 'I'T'H*I""'] " TI'ITI' 1l 'FTIT F” I{I‘II‘ B ”l'l"
0 100 200 30 400 500 60 700 800 900 1,000 1,00 1200 1,300 1400 1,500 1600 1700 :l,aoo 1500 2,000 2,100 2.200 2300 2,400 2,500 2600 2,7 2,800 2,500 3,000 3,100 3,200 3,300 3,400 3,500 3,600

Capacity & Latency

+ Latency (and queue size) rises to infinity
as utilization approaches 1

+ Decent latency -> over capacity

http://queuemulator.gh.scylladb.com/

‘ @ scyLLa

100
80
60
40

20

0.0 0.2 0.4 0.6 0.8 1.0

o P
l—p

o = arrival rate / service rate = utilization

Q = Queue length

http://queuemulator.gh.scylladb.com/

Kingman formula

P Caq T Cs

EW,|~[——

+ The higher the variance, the worse the

latency/utilization curve gets
+ On both service rate and arrival rate
+ high variance = run at low utilization

Oh and btw your percentile curve is worse too*

Service distribution variance impact on latency
Latency

250f

Service distribution variance impact on latency
Latency

50 F
40f

30f

L Utilization

— p=05
p— p=0.6
— p=0.7
— p=0.8
— p=0.9

— ¢=0
— c=1
— c=2
—c=
— =

— ¢c=b

Tasks should be independent, but...

+ Shared resources have queues
+ Disks, CPUs, Thread pools, Load balancers, connection pools, DB locks, sockets...
+ Head-of-line blocking — cross task interaction

+ Slow tasks raise latency of unrelated tasks
+ Arrival spikes

+ High variance service makes this worse

+ Parallel queues are less susceptible, but are less efficient
+ Some queues will be starved — lower utilization, throughput

Executive summary

+ High utilization — high latency
+ Non-linear!
+ High variance — high latency

+ Shared queues*— higher throughput, lower latency
+ Never use unlimited queues

* For identical service centers

SCYLLA.

“oF -

TETTIPR
i g kil 3

SCYLLA

Queueing

+ Queues are everywhere

+ LB, locks, resource pools, sockets, event loop... and ofc, queues
+ Non linear rise in latency when load rises

+ Very problematic when running near capacity limits
+ Often not monitored

SCYLLA.

Timeouts

Break when something takes too long (or won't complete)

+ Timeout values often arbitrary

+ Often wayyyy too long
+ Example: HikariCP acquire () min timeout = 250ms (1)
+ Often blocking service centers/other resources

Power of ten syndrome: 100 i¢ a bogue number

SCYLLA.

Retry

If at first you don't succeed, try again!

+ But this takes even more time
+ Especially if you have long timeouts

+ How many retries?
+ Do they all have the same timeout?

SCYLLA.

Fork

Fork/Join //’ \(\

Spawn multiple parallel tasks, wait for all | V.

+ Blocked until last task is complete \\\\/ //

+ High probability of hitting at least 1 high ‘

percentile

Probability

0.9- : g;’g
— p999
08-
07+
06-
05-
0.4-
03
02-
0.1

0 50 00 150 200 250 300 350 400 450 500

SCYLLA.

Deep stack (aka The curse of microservices)

+ Every cross service call has amplification
+ And they compound: A *A *A,...
+ Need to wait for all - in sequence; Like fork/join only worse
+ Growing probability of at least one p95/failure/timeout/overload...

SCYLLA.

Combating latency
amplification

SCYLLA

Proper timeouts

For the love of god, measure!

+ Use latency percentiles/histogram to determine correct timeouts
+ failure rate <> max latency

+ Compare with failure cost (e.g. reconnect)

+ Timeouts don't have to be static!

+ E.g.timeout = Min (P999[last 5m], 300ms)
+ Lower timeout on high load

SCYLLA.

Timeout budget

+ Global latency budget for request
+ Passon request context
+ Decrement actual processing on every stage

+ Timeout = min(remaining budget, local timeout)
+ Preemptive abort: fail if not enough budget

Very useful with microservices, but needs protocol support

SCYLLA.

Budget

Work

Service 1

500ms

123ms

Service 2

377ms

72ms

Service 3

305ms

287ms

Service 4

18ms

reject

Parallel dispatch

+ Double dispatch: ask twice, wait for first answer
+ But also costs twice
+ Speculative execution: get data before you need it
+ Branch prediction: get data you might need
+ Harvest/yield: ask multiple shards, replicas; proceed with the answers
you got within the timeout

SCYLLA.

Smarter retries

+ Speculative retries: retry even without failure, wait for first answer

+ Cheaper than double dispatch, very effective
+ Your APl is idempotent, right?

+ Second retry can have shorter timeout (use the budget, Luke!)
+ Probabilistic retries: why retry if you can't succeed

SCYLLA.

Capacity/latency management

Overloaded service centers will have higher latency amplification

Limit concurrency according to Little's law

Cap queue lengths

Run slower service with lower utilization

Run high variance services with lower utilization
Backpressure, backpressure, backpressure
Implement load shedding

+ 4+ + + + + +

Circuit breakers

SCYLLA.

https://en.wikipedia.org/wiki/Little%27s_law

Reducing variance

Separate services with different latency characteristics
Complex semantics —high performance variance; Use caution
You can't do better than your backend. DB choices matter

No preemption (Node/Golang), no QoS
+ Cooperative yield

+ 4+ + +

+ Break into small tasks
+ Be minded of GC, scheduled tasks, data structure shuffles, background

tasks, etc.

SCYLLA.

Summary: what's the cost of a
millisecond?

e Much higher than you think, especially at the bottom of the stack
e High percentiles have disproportionate impact
o Forget about averages
Latency amplification is the most common reason for low utilization
Need to actively combat amplification

SCYLLA .~ Do youvrself a favor and vse a DB with a good percentile curve @ @

SCYLLA e

Thank you

e
, 5:::"
United States Israel
1900 Embarcadero Road 4 Maskit, bqumg C
Palo Alto, CA 94303 Herzelia, Israel

