
What’s the cost of a 
millisecond?
Avishai Ish-Shalom (@nukemberg)



2

About ScyllaDB

+ The Real-Time Big Data Database

+ Drop-in replacement for Apache Cassandra 
and Amazon DynamoDB

+ 10X the performance & low tail latency

+ Open Source, Enterprise and Cloud options

+ Founded by the creators of KVM hypervisor

+ HQs: Palo Alto, CA, USA; Herzelia, Israel; 
Warsaw, Poland

ScyllaDB what?



3

About ScyllaDB

+ The Real-Time Big Data Database

+ Drop-in replacement for Apache Cassandra 
and Amazon DynamoDB

+ 10X the performance & low tail latency

+ Open Source, Enterprise and Cloud options

+ Founded by the creators of KVM hypervisor

+ HQs: Palo Alto, CA, USA; Herzelia, Israel; 
Warsaw, Poland

ScyllaDB what?



The curse of latency 
amplification



5ms + 5ms + 5ms + 1ms = 16ms, right?



Once more, with amplification



+ Every queue amplifies latency
+ A timeout has a large penalty
+ Retry has a penalty

And it all compounds. And transactions impact each other

Oh sh!t



Queueing theory crash 
course





Head of line blocking
+ When some task takes longer, service center is “blocked”
+ Other tasks in the queue are blocked by the “head of line”
+ A single slow task will cause a bunch of other tasks to wait

+ Bad news for latency high percentiles





Capacity & Latency
+ Latency (and queue size) rises to infinity 

as utilization approaches 1

+ Decent latency -> over capacity

ρ = arrival rate / service rate = utilization

Q = Queue length

http://queuemulator.gh.scylladb.com/

http://queuemulator.gh.scylladb.com/


Kingman formula

+ The higher the variance, the worse the 

latency/utilization curve gets

+ On both service rate and arrival rate

+ high variance ⇒ run at low utilization

Oh and btw your percentile curve is worse too*



Tasks should be independent, but...
+ Shared resources have queues

+ Disks, CPUs, Thread pools, Load balancers, connection pools, DB locks, sockets…

+ Head-of-line blocking → cross task interaction
+ Slow tasks raise latency of unrelated tasks
+ Arrival spikes

+ High variance service makes this worse
+ Parallel queues are less susceptible, but are less efficient

+ Some queues will be starved → lower utilization, throughput



+ High utilization → high latency
+ Non-linear!

+ High variance → high latency
+ Shared queues*→ higher throughput, lower latency
+ Never use unlimited queues

* For identical service centers

Executive summary



Amplification sources



+ Queues are everywhere
+ LB, locks, resource pools, sockets, event loop… and ofc, queues

+ Non linear rise in latency when load rises
+ Very problematic when running near capacity limits

+ Often not monitored

Queueing



Break when something takes too long (or won’t complete)

+ Timeout values often arbitrary
+ Often wayyyy too long

+ Example: HikariCP acquire() min timeout = 250ms (!!!)
+ Often blocking service centers/other resources

Power of ten syndrome: 100 is a bogus number

Timeouts



If at first you don’t succeed, try again!

+ But this takes even more time
+ Especially if you have long timeouts
+ How many retries?

+ Do they all have the same timeout?

Retry



Spawn multiple parallel tasks, wait for all

+ Blocked until last task is complete
+ High probability of hitting at least 1 high 

percentile

Fork/Join



+ Every cross service call has amplification
+ And they compound: A1*A2*A3…
+ Need to wait for all - in sequence; Like fork/join only worse

+ Growing probability of at least one p95/failure/timeout/overload...

Deep stack (aka The curse of microservices)



Combating latency 
amplification



For the love of god, measure!

+ Use latency percentiles/histogram to determine correct timeouts
+ failure rate ↔ max latency

+ Compare with failure cost (e.g. reconnect)
+ Timeouts don’t have to be static!

+ E.g. timeout = Min(P999[last 5m], 300ms)
+ Lower timeout on high load

Proper timeouts



+ Global latency budget for request
+ Pass on request context

+ Decrement actual processing on every stage
+ Timeout = min(remaining budget, local timeout)
+ Preemptive abort: fail if not enough budget

Very useful with microservices, but needs protocol support

Timeout budget

Budget Work

Service 1 500ms 123ms

Service 2 377ms 72ms

Service 3 305ms 287ms

Service 4 18ms reject



+ Double dispatch: ask twice, wait for first answer
+ But also costs twice

+ Speculative execution: get data before you need it
+ Branch prediction: get data you might need
+ Harvest/yield: ask multiple shards, replicas; proceed with the answers 

you got within the timeout

Parallel dispatch



+ Speculative retries: retry even without failure, wait for first answer
+ Cheaper than double dispatch, very effective
+ Your API is idempotent, right?

+ Second retry can have shorter timeout (use the budget, Luke!)
+ Probabilistic retries: why retry if you can’t succeed

Smarter retries



Overloaded service centers will have higher latency amplification

+ Limit concurrency according to Little’s law
+ Cap queue lengths
+ Run slower service with lower utilization
+ Run high variance services with lower utilization
+ Backpressure, backpressure, backpressure
+ Implement load shedding
+ Circuit breakers

Capacity/latency management

https://en.wikipedia.org/wiki/Little%27s_law


+ Separate services with different latency characteristics
+ Complex semantics →high performance variance; Use caution
+ You can’t do better than your backend. DB choices matter
+ No preemption (Node/Golang), no QoS

+ Cooperative yield
+ Break into small tasks

+ Be minded of GC, scheduled tasks, data structure shuffles, background 
tasks, etc.

Reducing variance



Summary: what’s the cost of a 
millisecond?
● Much higher than you think, especially at the bottom of the stack
● High percentiles have disproportionate impact

○ Forget about averages
● Latency amplification is the most common reason for low utilization
● Need to actively combat amplification

Do yourself a favor and use a DB with a good percentile curve 😉😉



United States
1900 Embarcadero Road
Palo Alto, CA 94303

Israel
4 Maskit, building C
Herzelia, Israel

www.scylladb.com
@scylladb

Thank you


