
DBS | SRE CON 2021

Of Mice and
Elephants

DBS | SRE CON 2021

Koon Seng received a Masters in Electrical Engineering

from Columbia University in 1996 and a Bachelors in

Computer Science from NUS in 1991. By day, he is an

Executive Director and heads the SRE team of DBS

Middle Office.

By night, he prowls through code with his trusty pet

snake Python 3, hunting for the occasional bug. In his

past life, he spent 17 years founding and working for

various startups in the US before returning to

Singapore in 2010.

Lim Koon Seng

Speaker Introduction

Speaker Introduction

Sandeep leads the SRE team focused on learning from the
incident, containerisation, and responsible for various
SDLC tools specialising in DevOps.

Prior to this, he was managing cloud infrastructure teams
where his responsibilities were usually automation,
infrastructure architecture, and working closely with
solution architects.

He is a passionate user of open source with a strong focus
on creating quintessential solutions. He conducts
workshops to educate and spread awareness on
blameless culture "from tech incidents to biz decisions."
He is a Sci-Fi lover, with a keen interest in astronomy,
dreams of space exploration, and sailing around the world.

Sandeep Hooda

• Cluster cores grew x3 from 720 to 2.5K cores

• Cluster memory grew x3 from 7.6TB to 22TB

• Cluster storage grew x2.5 from 660TB to 888TB

• Node local disk storage supplemented by virtualised file system

backed by remote object store

• Physical nodes supplemented by virtualised data nodes

Our Fast-growing Data Lake
(circa 2017-2019)

Diving Right In…

… A silent menace lurked

But in the shadows…

60

8.15

1.91
0.052

8.73

0

10

20

30

40

50

60

70

In
 M

ill
io

n
s

File Size Histogram

< 100kb 100kb - 500kb 500kb - 1MB 1MB - 5MB > 5MB

88% of ALL files were less than 5MB and were scattered all over

the node’s local disk and virtualised file system.

One fateful dark and stormy night on May 31st 2019…

Software bug in test job which led it to write arbitrarily long paths to virtual

filesystem, resulting in 2,900 failures per minute

Firmware bug in object store appliance triggers repeated reboots

Cluster senses data node filesystem reboot triggers read-scanning to repair

Millions of small files slow down read-scanning and reduces effective

throughput of appliance to 30 – 90 MB per second

Cluster recovery stuck in limbo, waiting for read scan to complete

before HDFS can come up

A blameless recovery!

The aftermath and…

► Approach
• Copy out blocks from object store to local disks & SAN to

overcome network & seek latency of object store

• Manually recover HDFS, partition by partition, file by file

• Prioritise recovery by age of data & criticality of app

► Took a week to complete full recovery

► Focused on lessons learnt and improvements,

not on blame

Origins and Impact of Small Files

Business Factors
• Frequency of Runs/Re-runs

• Nature of source system

• Type of expected queries

• Granularity of data

• Operational considerations

Partition Strategy
• Spark partitions

• Hive partitions

File Size Distribution
• Data volume

• Data skew

• Compression factor

Cluster Performance
• Storage capacity

• Overheads

• Recoverability

App Performance
• Job latency

• Processing throughput

• Degree of parallelism

Spark PartitionsHive Partitions

SG HK ID VN AE TW SG HK ID ICC

VS

• Split data so that columns with similar value

are in same directory

• Reduces overhead of loading a large file

only to select a small subset of data

• Increases number of partitions and higher

overheads compiling Hive & Impala queries

• Potentially fragments data into directories

with small files

• Split data into smaller chunks on read so each

can be processed by a separate executor

• Possible because parquet file format allows

partial read of file by an executor

• Increases parallelism of stages so overall

batch completes faster

• Increases speed by reducing memory footprint

per executor

• Potentially fragments data into small

compressed files when saving back

(in memory)(on HDFS)

SG HK ID VN AE TW SG HK ID VN AE TW

1 HDFS block can store up to 128MB, M, and incurs 150 bytes heap
memory, B, on name node. Assuming a cluster uses 3 x replication, R,

Given a 1GB, T, dataset is broken into

• Files, F, of 128MB, heap requirement = ((1024/128)*3+1)*150 = 3.7K ≈
0.0003% overhead

• Files, F, of 1MB, heap requirement = ((1024/1)*3+1)*150 = 460K ≈
0.042% overhead

• Files, F, of 1kb, heap requirement = ((1024/(1/1024)*3+1)*150 = 471MB ≈
45% overhead

Overhead (relative to dataset size) =
𝑇

min(𝑀,𝐹)
𝑅 + 1

𝐵

𝑇
≈

𝑅𝐵

𝐹
≈

150𝑅

𝐹

Given heap size of H, max # of files in cluster =
𝐻

2𝐵𝑅
→max cluster capacity

≥
𝐻𝐹

2𝐵𝑅

Heap memory overhead increases exponentially with decreasing file size.

Cluster capacity & max file counts reduces linearly with decreasing file size.

Overheads of Small Files

SRE-ious Retrospective

SRE Way of Deep Diving

Ingestion

• Input files from sources are small

• Ingestion from Kafka

• Poor tuning practices during Ingestion

• No clear understanding of Bigdata tools

• Best Practices not followed

Transform

• Application framework such as Spark

• Poor tuning practices for partitions during

transformation

• No clear understanding of Bigdata tools

• Best Practices not followed

✓ Sqoop

✓ Spark

✓ Kafka

✓ Map-Reduce

✓ Nifi

✓ Spark

✓ Map-Reduce

✓ Delete the source files.

✓ Archive the source files.

✓ Merge the hdfs small files after “X”

number of days

✓ Purge the data based on business

policy

✓ Copy the HDFS files to S3 bucket or

other sources

This is not sustainable and not SRE...

Workflows

Small file

contributors

Actions by

Dev Teams

Govermation

Deep EngineeringLearning

Collaboration

✓ Blameless culture

✓ Engagement
✓ Sustainability

✓ Observability

✓ Architecture

✓ Chaos Engineering
✓ Awareness

✓ Best practices

✓ Certification

SRE Approach to Dimension the Problem

SRE Approach to Dimension the Problem

Govermation

Big data query analyser developed by DBS

New Hadoop SQ Plug-in Architecture

Input Lexical Processing Semantic Processing

• Cross joins

• Poor where clauses Automated

Recommendations

• Complex Queries

• Dynamic partitioning

Query Analyser in Action

SRE Approach to Dimension the Problem

Deep Engineering

2017 2021

Objectives

Engineer

resilient and

dependable

data platform

• 96% Provisioning

Improvement for

persistent workload

• On-demand

Compute in

minutes

Cost

Optimisation

• 60% batch run-

time improvement

Productivity

Improvement
Risk

Reduction

• 100% risk

reduction

Agility

• 10x read and

2.17x write

improvements

Joyful Customer

Experience

• Joyful experience

Data Platform @ Scale

Attack Category Attack details Pass/Fail

Stress conditions

CPU starvation ✔

Memory starvation ✔

High IO ✔

Filesystem Hog ✔

Component failures

Loss of VM ✔

Termination of app process ✔

Termination of DB listener ✔

Loss of DNS ✔

Hang Process ✔

Loss of LDAP ✔

Loss of Interfacing System ✔

Network conditions

Network Latency ✔

Packet Loss ✔

Kill Container ✔

Internal failures

Time drift (NTP) ✔

Certificate expiry ✔

Functional ID Expired ✔

Functional ID Lockout ✔

Metadata failures Config corruption -MariaDB ✔

A total of 281 chaos tests have been conducted.

Data Platforms

281

A total of 281 chaos tests have been conducted.

Chaos @ Scale

Our in-house chaos engineering tool, Wreckoon verified our deep

engineering efforts could withstand different destructive and possible

real-world scenarios.

Optimal Spark Partitioning

Before After

• Directly writing tables back to HDFS after

computation may result in many small files

• Parquet compression makes this worse

• Instead, we randomly write 10% of data to

estimate final file size

• Then, we repartition to minimise small files

before writing to HDFS

Memory

HDFS

SRE Approach to Dimension the Problem

Collaboration

Building Ethos with Engineers to Track and Manage

Monitoring of small files & queries

Monitoring of High IO jobs and queries

Burndown chart tracking

SRE Approach to Dimension the Problem

Learning and Development

Continuous Learning and Certifications

Forward Looking

Long Term

How the new version of Hadoop (CDP) solves small file problems by

implementing a new file system – Ozone (03FS)

Object Store optimised for big data, scales to billions of objects of all sizes. Key advantage of

Ozone is that it segregates namespace and block space management.

• Current state with data stored

in HDFS.

• Enable Ozone in separate data

nodes.

• Policy-based migration to

Ozone.

• This will be warm storage.

• Policy-based migration to S3 from

Ozone.

• This will be cold storage.

• Enable erasure coding.

H
D

F
S

 (
H

O
T

)

O
z
o

n
e

 (
W

a
rm

)

S
3

 (
C

o
ld

)

Cleversafe (S3)

H
D

F
S

 (
H

O
T

)

O
z
o

n
e

 (
W

a
rm

)

HDFS + Ozone

A

B C

D

Phase 1 Phase 2

Phase 3
Enable erasure coding.

HDFS

A

B

C

D

Enabled Apps Can Leverage on Ozone and

Seamless Archive in S3

Apps can leverage on policy such as temperature or business date to move data from hot to warm,

and eventually to cold to manage the storage better.

Key Takeaways

The presence of small files is not only one big boulder of a problem

3

2

1

4

5

There are some fundamental engineering concerns which we need to resolve in

the SRE way

We need to implement technology interventions to reduce risks

The implementation of trainings for users increases awareness and adoption of

best practices

Future tackling with experiments and adopting new solutions like Ozone

