
Trustworthy graceful
degradation

Failure tolerance across service boundaries

Daniel Rodgers-Pryor
CTO @ Stile Education

Stile Education

Used by ⅓ of Australian Science Students (Years 7-10)

13 engineers and growing! Join us:
stileeducation.com/who-we-are/engineering-at-stile/

http://stileeducation.com/who-we-are/engineering-at-stile/

A Highly Available Web Service

Simple, elegant, effective

Who works with a service like this?

...or really does it look more like this?

Does your service work when all of
those other things are down?

Story: How problems can happen

● MySQL is our primary database for core services

● Mongo was used a secondary database for less critical services

● Core services were supposed to work without it

Oops.

Root cause

● Mongo went down

● Some of our core services depended on non core services

● Those non-core services depended on Mongo

Postmortems and Action Items to the rescue!

Establish the root cause.

Fix the immediate issues.

Remind all of our engineers that they’re
not supposed to depend on Mongo in
core services.

And we’re done!

That’ll fix it.

But then it happens again

Mongo is down, and this time, Stile seems… really slow?

But we fixed the coupling, and we reminded everyone not to do it again!
How could it break? What’s going on.

...it’s the frontend.

And it’s not just error handling: timeouts matter too.

Root cause

It’s easy to fail ungracefully

● Accidental dependencies between services

● Coupling through workflows in the frontend

● Buggy/broken error handling code

● Conditional coupling

● Rare (unhandled) error states:

○ Bad DNS caching

○ Database node failover

○ Very slow responses

1. Failing gracefully: Understand all of the
possible error modes

● Application specific errors (eg. database too-many-connections error,
authorization error etc.)

● TCP connection errors

● TCP timeout ← this one is easy to forget!

2. Failing gracefully: Retry what you can

● HTTP 503 (service unavailable) — probably a good idea to retry

○ Can be service specific: Eg. S3 misuses HTTP 503 to mean SLOW DOWN

● One node down in a cluster? Mark it down, pick another and retry

○ Don’t retry connecting to down nodes on every request

■ You might storm them with connections and make it hard to recover

■ You’ll definitely slow down your ability to serve requests

○ Set a timeout for retrying connections to the node

● HTTP 4xx (client errors) — retrying probably won’t help (and might hurt if it’s HTTP 429)

● Timeout? Probably not a good idea to retry:

○ The service might slow because it’s overloaded, so retrying will make it worse

○ Resource exhaustion: if a downstream service is taking too long to respond, then lots of your request-handler
threads/processes will be tied up waiting for a response: don’t make the problem worse!

○ If you’ve already hit a timeout, then your downstream client might be about to time out waiting for your response

Log a detailed error and return 503 (Service Unavailable) to the client. Make it easy to see where
the error occurred and what it was rather than leaving a trail of silent timeouts.

Expect your clients to retry if they need to.

3. Failing gracefully: …and fail helpfully where
you can’t

3. Failing gracefully: It’s not you, it’s me

Returning 503 and letting clients retry is a great way to work around
host-specific problems.
But you don’t want to keep accepting traffic and returning errors.

If a process can’t service any requests — especially critical ones — then
maybe it’s time to give up.

This can help if the problem is isolated to the process or host. Eg.

● Bad NIC

● Bad DNS cache

● Bad persistent connection state

● Corrupted memory

3. Failing gracefully: It’s not you, it’s me

If the errors are isolated to unimportant downstream services and aren’t affecting
high-priority requests, then obviously this doesn’t apply.

If critical errors persist across restarts, then your startup health checks should
stop you from accepting more traffic (and ideally cause the possibly-broken
instance to be replaced)

4. Failing gracefully: First do no harm

Don’t make it worse by retrying, reconnecting and restarting!

Retrying and reconnecting can amplify traffic to overloaded services.

Restarting can cause a storm of reconnection attempts, and can starve your load
balancer of healthy backend targets.

4. Failing gracefully: First do no harm

If there’s obviously poisoned connection state or memory corruption (eg.
SEGFAULT), then crash and crash fast.

For everything else: coordinate restarts. Report as unhealthy and have your
orchestrator restart a limited number of services at a time.

Consider two kinds of healthcheck:

● For the load balancer: Can I accept requests?

● For the orchestrator: Should I be restarted?

That was a lot of competing requirements to deal with! But even if we handle
every error perfectly, that’s not enough.

These errors are each so rare that there will be months or years between each
occurrence.

How can you be confident that it still works when you need it?

And even that isn’t enough

When fixing the problem isn’t enough

Many of you are thinking: Chaos engineering can help here!

But there’s an even more powerful tool, one that let’s developers find, fix and learn
from their mistakes without the SRE team ever hearing about it.

You already have the solution: CI

You can test (pretty much) all of this in your CI pipeline, run it for every change,
and avoid nasty coupling from reaching prod.

1. Unit test your service clients

2. Integration test your minimum viable system

You need to know what your key workflows are and have a test suite for them,
ideally an integration test suite which includes the frontend.

We use a suite of smoke tests that we built to run on each deploy.

But take whatever kind of service integration tests you’ve got running on CI, and
run them with no unnecessary dependencies.

Now instead of conversations like this

You get to have conversations like this

And quickly find the source of the problem

3. Chaos Testing

If you think you don’t need a service, try shutting it down. In prod. Right now.

Make rare failures common enough that you’ll have confidence dealing with them

Chaos testing is great for auto-healing systems where you expect to handle the failure without disruption:
● Kill a process
● Kill a box
● Kill an AZ
● Kill a whole region

Expect it to be replaced, and expect your load balancers to route around the problem in the meantime.

If your strategy for handling a failure is graceful-degradation, then the decision is tricker.

You expect — even in the best case — to degrade the user experience. This can be a good way to spend your
spare SLO headroom, but you don’t want to stop testing your infrastructure when you hit your SLO limits: you
want to invest more!

3. Chaos Testing: Limitations

4. Advanced Technique: Request ‘Cursing’

How to get the benefits of chaos testing optional dependencies without actually
degrading the experience for your users.

Build a system for flagging individual requests with Eg. ‘pretend that mongo is
down’

4. Request Cursing: Implementation

Then have your driver/client code pretend that they are down for those request!

4. Request Cursing: The Result

4. Request Cursing: The Result

Request Cursing: Use Cases - Manual Testing

Teach your client to curse all requests it sends, then browse around and see what
the actual user experience is like when your downstream service is down.

Request Cursing: Use Cases - CI

If it’s a pain to actually break or run without some dependencies in CI (eg. you use
shared, persistent testing infrastructure), then you can instead configure your test
client to curse it’s requests and get a similar effect.

Don’t forget to also test that your services can start without optional
dependencies through!

Can also be used to simulate rare failure modes (eg. TCP timeout, obscure
application-level errors) which can’t be reliably generated by the real service
during tests.

You don’t just need to curse an isolated service like a single database. Example:

● We annotate all internal and external API methods with SLO-level metadata

○ We use this to shed load by dropping non-critical requests when needed

○ Also for granular monitoring of API uptime and responsiveness

Request Cursing:
Use Cases - Test More Abstract ‘Services’

● But how do we know that those SLO labels are accurate? Cursing!

Eg. X-Stile-Curse-Slo-L3-Requests: true

● Just like with testing single services, we can:

○ Manually test how the whole system will behave with selective load-shedding
enabled

○ Block merges in CI if critical (SLO L1) workflows don’t succeed when all L2 and L3
APIs are shedding requests

Request Cursing:
Use Cases - Test More Abstract ‘Services’

Request Cursing:
Implementation Considerations

● Propagate your request local data to downstream services to fully see the
impacts

● Set an expiry on the curse (so that async jobs will eventually succeed and not
leave the system in an inconsistent state forever)

● Consider restricting access to
avoid exposing more surface
area to an attacker

Summary

● Consider all of the dependencies of your system, not just the core ones

● Consider all of the ways that they can fail, and handle them

● Unit test your error handling

● Integration test your system without optional dependencies

● Integration test the user experience of complex failure modes

● Use chaos engineering and request cursing to check that it keeps working in
production

Stile: We’re Hiring!

stileeducation.com/who-we-are/engineering-at-stile

We're a small, diverse, tight-knit team with a mission to radically improve
mainstream science education at schools. By creating world-class science
lessons, coupled with intuitive tools that allow teachers to take advantage of the
latest pedagogies, we’re already helping hundreds of thousands students in
Australia get excited about science every week.

Stile is already used in 1 out of 3 Australian schools, and over the next few years,
we're striving to perfect our product and bring our lessons to the rest of the world.
This is an opportunity to have a big influence on education from within a small,
high impact team.

jointheteam@stileeducation.com

https://stileeducation.com/who-we-are/engineering-at-stile

