
Theo Klein (pikle@google.com) / SRECon EMEA / Oct. 25th, 2022

Hunting for Risky
Dependencies

mailto:pikle@google.com

Geo Data SRE & Zero Outages

Google Pay

GFE GPay

GPay user:
View Purchase

Google Maps
(Geo)

Backends

GFE: Google Front End (load balancer)

Desired Reliability Attributes:
● Many 9s of Availability
● Low Latency
● Accessible globally
● Suitable data

Google Pay

Geo Data

GFE GPay
Backend

Moderation
System

Canonical
Store

Serving
Layer

A B C

GPay user

Correct dependency (not used):

Risky Dependency (used):

GFE: Google Front End (load balancer)
Actual Reliability Attributes:
● Few 9s of Availability
● Replicated in USA only
● Unaware of dependency

Google Business Profile (GBP) → Google Pay

Geo Data

GBP Moderation
System

Canonical
Store

Serving
Layer

A B C

GFE

GPay

GPay User:
Transaction History

Merchant User:
Update a business listing

GFE: Google Front End (load balancer)
GBP: Google Business Profile

What Should Be on the Critical Path?

Geo Data

AFE 1 Moderation
System

Canonical
Store

Serving
Layer

A B C

AFE 2

Bolded / Red: Not on the end-user path
Dashed Arrow: Asynchronous flow

GFE: Google Front End (load balancer)
AFE: Application Front End

GFE

How Isolated Are We Really? ��

Moderation Storage Errors
Geo Data

GFE GBP Moderation
System

Canonical
Store

Serving
Layer

A B C
🔥Merchant

Major Outage in GBP!
Geo Data

GFE GBP Moderation
System

Canonical
Store

Serving
Layer

A B C
🔥Merchant

🔥🔥🔥🔥

Why does this happen?

RPC Tree

…

…

…

…

Dev Visibility

…

…

…

…

Finding these Risks ��

In Theory:

In Practice: Horizontal Monitoring

Google
A

C

D

E

Originator: GFE
Caller: GFE
Service: A

Originator: GFE
Caller: A

Service: C

Originator: GFE
Caller: C

Service: D

Originator: GFE
Caller: D

Service: E

B

Originator: B
Caller: B

Service: E
Originator: B

Caller: null
Service: B

Data lake
Externally-visible Edges:
GFE→ A, A → C, C → D, D → E

Originator: GFE
Caller: GFE
Service: A

Originator: GFE
Caller: A

Service: C

Originator: GFE
Caller: C

Service: D

Originator: GFE
Caller: D

Service: E

Originator: B
Caller: B

Service: E

Originator: B
Caller: null
Service: B

GFE

Grey: Originator inside Google
Green: Originator outside Google

store metadata SQL: filter by
originator = "GFE"

Integrate
OpenTelemetry

In Practice: Horizontal Monitoring

Google

A

C

D

E

B

Externally-visible Edges:
GFE→ A, A → C, C → D, D → E

GFE

Hand-curated Intents
External: Internal:
A B
C E

D

Risky Dependencies:
C→ D, D → E

Service owners state whether their
service intends to be internal or

external.

Audit results

Filter by backends that
intend to be internal-only

D

E

B

Fixing these risks ��

Migrate Make Optional Deprecate

A

B C

A

B

A

B

Results

To Recap

Internal backends should
not be on the critical path
for end users.

1. Invariant

These backends often
become risky dependencies
when service complexity
increases.

2. Problem

We can find and fix these
risky dependencies with
OpenTelemetry and
engineering work.

3. Solution

Questions? Comments?
pikle@google.com

Appendix

Additional Resources

● OpenTelemetry: https://opentelemetry.io/

● OpenTelemetry + Google Cloud: https://cloud.google.com/learn/what-is-opentelemetry

● Baggage: https://opentelemetry.io/docs/concepts/signals/baggage/

https://opentelemetry.io/
https://cloud.google.com/learn/what-is-opentelemetry
https://opentelemetry.io/docs/concepts/signals/baggage/

