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Hunting for Risky 
Dependencies
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Geo Data SRE & Zero Outages



Google Pay

GFE GPay

GPay user: 
View Purchase

Google Maps 
(Geo) 

Backends

GFE: Google Front End (load balancer)

Desired Reliability Attributes:
● Many 9s of Availability
● Low Latency
● Accessible globally 
● Suitable data



Google Pay
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GFE GPay 
Backend
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Correct dependency (not used):

Risky Dependency (used):

GFE: Google Front End (load balancer)
Actual Reliability Attributes:
● Few 9s of Availability
● Replicated in USA only
● Unaware of dependency



Google Business Profile (GBP) → Google Pay

Geo Data

GBP Moderation 
System
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GFE

GPay

GPay User:
Transaction History

Merchant User:
Update a business listing

GFE: Google Front End (load balancer)
GBP: Google Business Profile



What Should Be on the Critical Path?

Geo Data

AFE 1 Moderation 
System
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AFE 2

Bolded / Red: Not on the end-user path
Dashed Arrow: Asynchronous flow

GFE: Google Front End (load balancer)
AFE: Application Front End

GFE



How Isolated Are We Really? ��



Moderation Storage Errors
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Major Outage in GBP!
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Why does this happen?
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Finding these Risks ��



In Theory:



In Practice: Horizontal Monitoring

Google
A
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Service: A

Originator: GFE
Caller: A

Service: C
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Service: D

Originator: GFE
Caller: D

Service: E

B

Originator: B
Caller: B

Service: E
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Caller: null
Service: B

Data lake
Externally-visible Edges: 
GFE→ A, A → C, C → D, D → E

Originator: GFE
Caller: GFE
Service: A
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Caller: A
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Grey: Originator inside Google
Green: Originator outside Google

store metadata SQL: filter by 
originator = "GFE"

Integrate 
OpenTelemetry



In Practice: Horizontal Monitoring

Google

A

C

D

E
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Externally-visible Edges: 
GFE→ A, A → C, C → D, D → E

GFE

Hand-curated Intents 
External: Internal:
A B
C E

D

Risky Dependencies:
C→ D, D → E

Service owners state whether their 
service intends to be internal or 

external.

Audit results

Filter by backends that 
intend to be internal-only

D

E

B



Fixing these risks �� 
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To Recap

Internal backends should 
not be on the critical path 
for end users.

1. Invariant

These backends often 
become risky dependencies 
when service complexity 
increases.

2. Problem

We can find and fix these 
risky dependencies with 
OpenTelemetry and 
engineering work.

3. Solution

Questions? Comments?  
pikle@google.com



Appendix



Additional Resources

● OpenTelemetry: https://opentelemetry.io/

● OpenTelemetry + Google Cloud: https://cloud.google.com/learn/what-is-opentelemetry

● Baggage: https://opentelemetry.io/docs/concepts/signals/baggage/

https://opentelemetry.io/
https://cloud.google.com/learn/what-is-opentelemetry
https://opentelemetry.io/docs/concepts/signals/baggage/

