Google

Going from 30 to
30 million SLOs

Alex Palcuie

sre.google

‘ Site Reliability Engineering

https://sre.google/

1AM
Insert VM

Google Compute
Engine (GCE)

Quota

Sure, operation-123456

Google Compute
Engine (GCE)

Is operation-123456 ready?

Google Compute
Engine (GCE)

—>

Google Compute
Engine (GCE)

A

A

@ Ssite Reliability Engineering

Compute

Storage

Networking

k _—_——_'_’_‘_,/
@ site Reliability Engineering

GCE Control Plane

Resources

Google

Instance
Instance Group Manager
Disk

Snapshot
Image
Autoscaler
Network
Subnetwork
Address
Forwarding Rule
Firewall

Methods

Insert

Get
« List
« Aggregated List
« Delete

Patch

‘ Site Reliability Engineering

s,

Google Cloud

Service Level Indicator (SLI)

Service Level Objective (SLO)

Service Level Agreement (SLA)

target availability = good requests / total requests

99.95% = 9,995 good requests / 10,000 requests

‘ Site Reliability Engineering

Latency SLOs "tricks"

P90 compute.instances.get <= 10 seconds

Request Latency

No Seconds Percentile
1 1 P10
2 2 P20
3 3 P30
4 4 P40
5 5 P50
6 6 P60
7 7 P70
8 8 P80
9 9 P90

@ Ssite Reliability Engineering

Latency SLOs "tricks"

Request
No

Google

© 0 N o o b WODN -

Latency

Seconds Percentile

© 0 N o o b~ WODN -

P10
P20
P30
P40
P50
P60
P70
P80
P90

P90 compute.instances.get <= 10 seconds

4

(0,1]

(1,3]

(3,71

(7,15]

‘ Site Reliability Engineering

Latency SLOs "tricks"

Request
No

Google

© 0 N o o b WODN -

Latency

Seconds Percentile

0 N OO oA WODN -~

-
=Y

P10
P20
P30
P40
P50
P60
P70
P80
P90

P90 compute.instances.get <= 10 seconds

4

(0,1]

(1,3]

(3,71

(7,15]

‘ Site Reliability Engineering

target = fast requests / total requests

fast request is a request within target latency

For P90 set target to 90%

@ Ssite Reliability Engineerin

Latency SLOs "tricks"

P90 compute.instances.get <= 10 seconds

Request Latency Request Latency
No Seconds Percentile No Seconds Percentile
1 1 P10 1 1 P10
2 2 P20 2 2 P20
3 3 P30 3 3 P30
4 4 P40 4 4 P40
5 5 P50 5 5 P50
6 6 P60 6 6 P60
7 7 P70 7 7 P70
8 8 P80 8 8 P80
9 14 P90 9 9 P90
8 /9 = 88% "availability" 9 /9 =100% "availability"

@ site Reliability Engineering

Latency SLO tricks

API Latency
compute.instances.get
compute.instances.get
compute.instances.get
compute.instances.list
compute.instances.insert
compute.instances.insert
compute.instances.get
compute.instances.get
compute.instances.get

compute.instances.get

25
55
40

NRSX RN/ S

API Target P90

compute.instances.get 10s
compute.instances.list 30s
compute.instances.insert 60s

9 /10 = 90% "availability"

@ site Reliability Engineering

The original ~30 SLOs

us-central1
availability
typical latency
tail latency

europe-west1
availability
typical latency
tail latency

asia-east1
availability
typical latency
tail latency

us-central1-a
availability
typical latency
tail latency

europe-west1-a
availability
typical latency
tail latency

asia-east1-a
availability
typical latency
tail latency

us-central1-b
availability
typical latency
tail latency

europe-west1-b
availability
typical latency
tail latency

asia-east1-b
availability
typical latency
tail latency

us-central1-c
availability
typical latency
tail latency

europe-west1-c
availability
typical latency
tail latency

asia-east1-c
availability
typical latency
tail latency

@ site Reliability Engineering

API

SLO

compute.instanceGroupManagers.listManagedinstances availability

compute.instanceGroupManagers.listManagedinstances tail_latency

compute.instanceGroupManagers.listManagedinstances typical_latency

compute.instanceGroupManagers.list
compute.instanceGroupManagers.list
compute.instanceGroupManagers.list
compute.instances.list
compute.instances.list
compute.instances.list
compute.disks.list

compute.disks.list

compute.disks.list
compute.instanceGroupManagers.get

compute.instanceGroupManagers.get

availability
tail_latency
typical_latency
availability
tail_latency
typical_latency
availability
tail_latency
typical_latency
availability

tail_latency

e-l|eJjuad-sn

g-1|es3uad-sn

J-L|eJjuad-sn

J-1|eJ3Ud2-sN

q-l3sea-sn

J-L)sea-sn

pP-lLises-sn

g-11sem-adoina

o-l3sam-adouna

p-l11sem-adoina

e-11S9Mm-sn

g-1359M-sn

J-L1som-sn

e-pysam-adoina

q-pisam-adouna

2-pisam-adouna

e-plsea-sn

q-fisea-sn

9-pisea-sn

e-gisam-adoina

q-gisam-adouna

2-gisam-adouna

® @
B T
IR RS
J =

- EEEEEE
@ % 0o n 0o 0 o
TR = = S =+
o T 6 & & & b

@ site Reliability Engineering

GCE Complexity Growth

C\ N

2016 2021
43 Resources « 81 Resources
97 APl methods « 423 APl methods
O regions - 33 regions
20 zones « 06 zones

- o

|

They are huge. They are like a giant which lumbers around while
you are a gnat. You are nothing to them.

This becomes obvious when talking about some problem you
experienced at the hands of their system. The whole time, their
dashboard stayed green because from their point of view, they
had tremendous availability. We're talking 99.999% here! Totally
leqit!

Rachel Kroll
https://rachelbythebay.com/w/2019/07/15/giant/

»”

@ Ssite Reliability Engineering

https://rachelbythebay.com/w/2019/07/15/giant/

l Meanwhile, you were having a really bad day. Nothing was
working. Your business was in shambles. Your customers were
at your throat yelling for action, and all you could do is point at
the vendor. What happened?

Well, this is the point where you find out that their "99.999%"
availability is for their entire system. They see that, and they're
good. It's not a problem! Everything is fine.

You are the bug on the windscreen of the locomotive. The train
has no idea you were ever there.

"y

Rachel Kroll
https://rachelbythebay.com/w/2019/07/15/giant/

@ Ssite Reliability Engineering

https://rachelbythebay.com/w/2019/07/15/giant/

[

A

A

Your nines are not my nines (rachelbythebay.com)
424 points by zdw on July 16, 2019 | hide | past | favorite | 129 comments

altmind on July 16, 2019 | next [-]
Million times this.

Its shocking how "elevated rate of errors for specific endpoint” in your cloud
provider status page is actually amplified to be a soft-outage of your product
when your writes to disk never return, your databases returning inconsistent
data or your orchestration taking some drastic measures for the failing health
check.

When you have a lot of components in your cloud mix, failure of one
stage(network->balancing->quering->rendering->persistence) bring everything
down.

if 10 of your cloud services each have a reliability of 99.999, all together the
reliability is not 99.999.

cloud providers can claim mountain-high availablity whereas users will never get
their apps running with advertised reliability for now there is multiple
subcomponents that can fail.

»”

@ Ssite Reliability Engineering

Fl
i olo o S
[R TR T) 5 5 5 ® © o :="
2 0 o 2 2@ g2 2geae o 0 0 0 o o -1 222
FefbccsiSScssssiSssss555553 vy ¥y 88 3533
6o aleg 2858720988809 % cves w8882l ey e a
sLo g§8382282¢9 8% £22 2822284808 e ;2228882208088 2208
API Method SLO Target T 32200903338 Q 2000z s 2 888 3333535238222 L82L 33 3 3
Type S 8 8 8 32 2 @ 0 6 2 2 %200 0 R FT RO 3 o “ v o3 3 0 0008 «=25858555%582°8238 3
SIFE & salalglglglinIZielgialiElsaelalalnalTERaleleeeeR RNIZIEZEZE 2228
&6_6_..B'ﬂB-'af...he'ngbaﬂd‘nuumnnnéﬁ-aﬂgﬁ»nnmu‘oguﬂ ol P e - =Y 31
il el B ol e el i v B I3 Z|3/3/2 28|18 |0|e|e (DY |8
T o o ® T 0 ® T 0o 0 T o ol o Bl ool e o 224 LR RS
FRE RS =
5
http compute.instances.getSerialPortOutput availability .
http compute.instances.getSerialPortOutput tail_latency
http compute.instances.getSerialPortOutput typical_latency
http compute.machineTypes.get availability
http compute.machineTypes.get tail_latency
http compute.machineTypes.get typical_latency
http compute.disks.getlamPolicy availability
http compute.disks.getlamPolicy tail_latency
http compute.disks.getlamPolicy typical_latency
http compute.instances.getGuestAttributes availability
http compute.instances.getGuestAttributes tail_latency
http compute.i getG ibutes typical_latency
http compute.| KEr i ips.listNetwor its ilabili
http compute.networl i ips.listNetwor 1t tail_latency
http compute.| KEr i Jps.listNetwor its typical_latency

operation compute.instances.delete

operation compute.instances.delete

availability
typical_latency

http compute.autoscalers.list availability
http compute.autoscalers.list tail_latency
http compute.autoscalers.list typical_latency
P compute.i Ips. availability
compute.i 1p: typical_latency
http compute.instances.delete availability
http compute.instances.delete tail_latency
http compute.instances.delete typical_latency
http compute. kEndpoil ips.at its ilability
http compute.| i Ips.at its tail_latency
http compute.| i ups.at 1ts typical_latency
P! compute.| i Ips.atf its ilability
compute.| KEr i ips.at 1ts typical_latency

operation compute.instances.insert

http
http
http
http

Google

compute.i

compute.i

compute.i

compute.machineTypes.list

availability_n1
availability
tail_latency
typical_latency
availability

| | | []] EEEn [|] [] | [| | i | [1]
IIIIIIIIIIIIIIIIIIII.IIIIIIIIIIIIIIIIIIIIIIII
‘ Site Reliability Engineering

99.95% reliability

10,000 requests
20,000 requests
40,000 requests

1,000 requests

S}
10
20

1

errors
errors
errors

error

Target

The rule of 5 errors

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

10

100

Requests

Requests
10
20
50

1000

100
200
500
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

10000

Actual
errors

50.00%
25.00%
10.00%
5.00%
2.50%
1.00%
0.50%
0.25%
0.17%
0.13%
0.10%
0.08%
0.07%
0.06%
0.06%
0.05%

Target

50.00%
75.00%
90.00%
95.00%
97.50%
99.00%
99.50%
99.75%
99.83%
99.88%
99.90%
99.92%
99.93%
99.94%
99.94%
99.95%

Errors Success

5

15
45
95
195
495
995
1995
2995
3995
4995
5995
6995
7995
8995

[BEN¢) BRSNS NRING) RERNG) BRENS) BEENG) BING) BRGNS NRNNG) RRNNG) BRNS) BEENG) BN

9995

@ site Reliability Engineering

Projects Out of SLO £

Google

Time

‘ Site Reliability Engineering

Materialize Defintion

-« &
Frontend Latency Histogram

S -
Sa A/

Aggregate Latency Histogram

Per-method SLO

Backend Latency Histogram

- T \;77"""'\‘,\\;
/ \\ ~
'
First Stage Frontend SLI
T
/
| 4 h|

Second Stage Frontend SLI Backend SLI

S

Per-project SLI

<\

Per-project SLO Per-scope SLI

Per-scope SLO Count of projects SLO per scope

\ kﬁmwwhmm \”ﬂm
\‘ ==

Per-project SLO with issues

@ site Reliability Engineering

Worst SLOs for which we burnt the budget and we don't have a bug

Scope Scope Name Api Method Slo Type Slo Target Ratio Of Window Bad Total Out Of Slo SLO Link
Type SloUsed Length Requests Requests Projects
Days

region us-centrall compute.regioninstances.recommendLocations http availability 2.18 30 18,000 16,000,000 502 Drilldown...
zone us-central1-a compute.instances.insert operation availability_n1 4.02 30 110,000 40,000,000 323 Drilldown...
global global compute.projects.setCommonlinstanceMetadata http availability 1.08 30 7,000 13,000,000 312 Drilldown...
global global compute.networks.addPeering http availability 1.14 30 10,000 16,000,000 303 Drilldown...
zone us-central1-f compute.instances.getShieldedVmldentity http availability 1.29 30 10,000 12,000,000 288 Drilldown...
region us-west1 compute.regioninstanceGroupManagers.insert http availability 1.45 30 2,000 2,800,000 175 Drilldown...

@ Ssite Reliability Engineering

Worst SLOs for which we are still in budget, but a lot of projects are not

Scope
Type
zone
zone
zone
region
zone

global

Scope Name Api Method

us-central1-a
us-central1-b
us-central1-a
us-central1

us-central1-a

global

compute.instanceGroupManagers.get
compute.instances.insert
compute.instances.get
compute.addresses.insert
compute.instanceGroupManagers.list

compute.autoscalers.aggregatedList

Slo Type

http
operation
http
http
http
http

Slo Target Ratio Of Window Bad Total Out Of Slo SLO Link
SloUsed Length Requests Requests Projects
Days
availability 0.21 30 1,400 2,000,000 289 Drilldown...
availability_n1 0.15 30 4,000 23,000,000 286 Drilldown...
availability 0.18 30 40,000,000 100,000,000 219 Drilldown...
availability 0.46 30 10,000,000 30,000,000 204 Drilldown...
availability 0.17 30 1,000,000 100,000,000 204 Drilldown...
availability 0.16 30 4,000 2,000,000,000 180 Drilldown...

@ Ssite Reliability Engineering

Worst offending bugs

804 204726573 compute.instances.getGuestAttributes availability 120
198 187519918 compute.disks.insert http availability 120
184 185914369 compute.instances.attachDisk http availability 120
136 174667773 compute.forwardingRules.insert http availability 40
131 185914369 compute.instances.detachDisk http availability 120

Google ‘ Site Reliability Engineering

Thank you!

‘ Site Reliability Engineering

