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Service Level Indicator (SLI)

Service Level Objective (SLO)

Service Level Agreement (SLA)




target availability = good requests / total requests

99.95% = 9,995 good requests / 10,000 requests
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Latency SLOs "tricks"

P90 compute.instances.get <= 10 seconds

Request Latency

No Seconds Percentile
1 1 P10
2 2 P20
3 3 P30
4 4 P40
5 5 P50
6 6 P60
7 7 P70
8 8 P80
9 9 P90
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Latency SLOs "tricks"
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target = fast requests / total requests

fast request is a request within target latency

For P90 set target to 90%
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Latency SLOs "tricks"

P90 compute.instances.get <= 10 seconds

Request Latency Request Latency
No Seconds Percentile No Seconds Percentile
1 1 P10 1 1 P10
2 2 P20 2 2 P20
3 3 P30 3 3 P30
4 4 P40 4 4 P40
5 5 P50 5 5 P50
6 6 P60 6 6 P60
7 7 P70 7 7 P70
8 8 P80 8 8 P80
9 14 P90 9 9 P90
8 /9 = 88% "availability" 9 /9 =100% "availability"
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Latency SLO tricks

API Latency
compute.instances.get
compute.instances.get
compute.instances.get
compute.instances.list
compute.instances.insert
compute.instances.insert
compute.instances.get
compute.instances.get
compute.instances.get

compute.instances.get

25
55
40

NRSX RN/ S

API Target P90

compute.instances.get 10s
compute.instances.list 30s
compute.instances.insert 60s

9 /10 = 90% "availability"
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The original ~30 SLOs

us-central1
availability
typical latency
tail latency

europe-west1
availability
typical latency
tail latency

asia-east1
availability
typical latency
tail latency

us-central1-a
availability
typical latency
tail latency

europe-west1-a
availability
typical latency
tail latency

asia-east1-a
availability
typical latency
tail latency

us-central1-b
availability
typical latency
tail latency

europe-west1-b
availability
typical latency
tail latency

asia-east1-b
availability
typical latency
tail latency

us-central1-c
availability
typical latency
tail latency

europe-west1-c
availability
typical latency
tail latency

asia-east1-c
availability
typical latency
tail latency
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API

SLO

compute.instanceGroupManagers.listManagedinstances availability

compute.instanceGroupManagers.listManagedinstances tail_latency

compute.instanceGroupManagers.listManagedinstances typical_latency

compute.instanceGroupManagers.list
compute.instanceGroupManagers.list
compute.instanceGroupManagers.list
compute.instances.list
compute.instances.list
compute.instances.list
compute.disks.list

compute.disks.list

compute.disks.list
compute.instanceGroupManagers.get

compute.instanceGroupManagers.get

availability
tail_latency
typical_latency
availability
tail_latency
typical_latency
availability
tail_latency
typical_latency
availability

tail_latency
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GCE Complexity Growth

C\ N

2016 2021
43 Resources « 81 Resources
97 APl methods « 423 APl methods
O regions - 33 regions
20 zones « 06 zones

- o



|

They are huge. They are like a giant which lumbers around while
you are a gnat. You are nothing to them.

This becomes obvious when talking about some problem you
experienced at the hands of their system. The whole time, their
dashboard stayed green because from their point of view, they
had tremendous availability. We're talking 99.999% here! Totally
leqit!

Rachel Kroll
https://rachelbythebay.com/w/2019/07/15/giant/
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l Meanwhile, you were having a really bad day. Nothing was
working. Your business was in shambles. Your customers were
at your throat yelling for action, and all you could do is point at
the vendor. What happened?

Well, this is the point where you find out that their "99.999%"
availability is for their entire system. They see that, and they're
good. It's not a problem! Everything is fine.

You are the bug on the windscreen of the locomotive. The train
has no idea you were ever there.

"y

Rachel Kroll
https://rachelbythebay.com/w/2019/07/15/giant/
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Your nines are not my nines (rachelbythebay.com)
424 points by zdw on July 16, 2019 | hide | past | favorite | 129 comments

altmind on July 16, 2019 | next [-]
Million times this.

Its shocking how "elevated rate of errors for specific endpoint” in your cloud
provider status page is actually amplified to be a soft-outage of your product
when your writes to disk never return, your databases returning inconsistent
data or your orchestration taking some drastic measures for the failing health
check.

When you have a lot of components in your cloud mix, failure of one
stage(network->balancing->quering->rendering->persistence) bring everything
down.

if 10 of your cloud services each have a reliability of 99.999, all together the
reliability is not 99.999.

cloud providers can claim mountain-high availablity whereas users will never get
their apps running with advertised reliability for now there is multiple
subcomponents that can fail.

»”
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http compute.instances.getSerialPortOutput availability .
http compute.instances.getSerialPortOutput tail_latency
http compute.instances.getSerialPortOutput typical_latency
http compute.machineTypes.get availability
http compute.machineTypes.get tail_latency
http compute.machineTypes.get typical_latency
http compute.disks.getlamPolicy availability
http compute.disks.getlamPolicy tail_latency
http compute.disks.getlamPolicy typical_latency
http compute.instances.getGuestAttributes availability
http compute.instances.getGuestAttributes tail_latency
http compute.i getG ibutes typical_latency
http compute.| KEr i ips.listNetwor its ilabili
http compute.networl i ips.listNetwor 1t tail_latency
http compute.| KEr i Jps.listNetwor its typical_latency

operation compute.instances.delete

operation compute.instances.delete

availability
typical_latency

http compute.autoscalers.list availability
http compute.autoscalers.list tail_latency
http compute.autoscalers.list typical_latency
P compute.i Ips. availability
compute.i 1p: typical_latency
http compute.instances.delete availability
http compute.instances.delete tail_latency
http compute.instances.delete typical_latency
http compute. kEndpoil ips.at its ilability
http compute.| i Ips.at its  tail_latency
http compute.| i ups.at 1ts  typical_latency
P! compute.| i Ips.atf its ilability
compute.| KEr i ips.at 1ts  typical_latency

operation compute.instances.insert

http
http
http
http

Google

compute.i

compute.i

compute.i

compute.machineTypes.list

availability_n1
availability
tail_latency
typical_latency
availability
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99.95% reliability

10,000 requests
20,000 requests
40,000 requests

1,000 requests
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Target

The rule of 5 errors
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Projects Out of SLO £

Google

Time
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Materialize Defintion
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Per-project SLO with issues
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Worst SLOs for which we burnt the budget and we don't have a bug

Scope  Scope Name Api Method Slo Type Slo Target Ratio Of Window Bad Total Out Of Slo SLO Link
Type SloUsed Length Requests Requests Projects
Days

region us-centrall  compute.regioninstances.recommendLocations http availability 2.18 30 18,000 16,000,000 502 Drilldown...
zone us-central1-a compute.instances.insert operation availability_n1 4.02 30 110,000 40,000,000 323 Drilldown...
global global compute.projects.setCommonlinstanceMetadata http availability 1.08 30 7,000 13,000,000 312 Drilldown...
global global compute.networks.addPeering http availability 1.14 30 10,000 16,000,000 303 Drilldown...
zone us-central1-f compute.instances.getShieldedVmldentity http availability 1.29 30 10,000 12,000,000 288 Drilldown...
region us-west1 compute.regioninstanceGroupManagers.insert  http availability 1.45 30 2,000 2,800,000 175 Drilldown...

@ Ssite Reliability Engineering



Worst SLOs for which we are still in budget, but a lot of projects are not

Scope
Type
zone
zone
zone
region
zone

global

Scope Name Api Method

us-central1-a
us-central1-b
us-central1-a
us-central1

us-central1-a

global

compute.instanceGroupManagers.get
compute.instances.insert
compute.instances.get
compute.addresses.insert
compute.instanceGroupManagers.list

compute.autoscalers.aggregatedList

Slo Type

http
operation
http
http
http
http

Slo Target Ratio Of Window Bad Total Out Of Slo SLO Link
SloUsed Length Requests Requests Projects
Days
availability 0.21 30 1,400 2,000,000 289 Drilldown...
availability_n1 0.15 30 4,000 23,000,000 286 Drilldown...
availability 0.18 30 40,000,000 100,000,000 219 Drilldown...
availability 0.46 30 10,000,000 30,000,000 204 Drilldown...
availability 0.17 30 1,000,000 100,000,000 204 Drilldown...
availability 0.16 30 4,000 2,000,000,000 180 Drilldown...
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Worst offending bugs

804 204726573 compute.instances.getGuestAttributes availability 120
198 187519918 compute.disks.insert http availability 120
184 185914369 compute.instances.attachDisk http availability 120
136 174667773 compute.forwardingRules.insert http availability 40
131 185914369 compute.instances.detachDisk http availability 120
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Thank you!
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