
Deep Dive:

Azure Resource 

Manager Outage

Brendan Burns

Benjamin Pannell



Summary of Impact

Azure Resource Manager (ARM) is the 

central Control Plane API gateway for 

Azure.

It is an integral part of our customer 

experience and provides critical 

functionality including governance, access 

control, caching, and a single global 

management endpoint.

35 hrs 3%
Duration of impact

Requests impacted 

globally

Nature of Impact
A subset of Microsoft Azure customers experienced timeouts and 

failures for long-running management operations.

This had knock-on impact for other internal services which rely on 

Azure Resource Manager to provide functionality.

Scope of Impact
Primary impact in West US, West US 2, South Central US, North 

Europe, West Europe, East Asia, and Southeast Asia regions. 

Marginal impact in other regions globally.



Who are we? Brendan Burns

CVP, Azure OSS and Cloud Native

Co-founder of the Kubernetes open-source project, and 

CVP in charge of Microsoft Azure APIs, governance and 

management, as well as the Azure Kubernetes Service 

and cloud-native open source. I’ve built and run high-

scale, mission-critical distributed systems for more than a 

decade.

Benjamin Pannell

Tech Lead, Azure Control Plane SRE

I’ve spent the last 4 years working as an SRE at Microsoft, 

supporting critical control plane services and helping to 

grow (and being supported by) an exceptional team of 

engineers. Previously, I’ve worked as an SRE on a global 

gaming platform, and as the lead software engineer on 

an agricultural vehicle tracking product.



What to expect

This is the full incident review used 

by internal teams to learn from this 

outage.

We’re going to share information 

with you in the order it became 

visible to us.

We’ll include relevant context about the 

system in blocks like this.

We’ll call out factors which exacerbated 

the incident in blocks like this.



Before the Outage

What you need to know about the system and 

the run-up to this outage.



System Architecture

Azure Resource Manager is 

effectively a “Web-Queue-Worker” 

service.

Storage

Web Tier

Customers

Worker Tier

We operate with fully redundant 

infrastructure in every Azure region.

And we use a fully-connected 

topology to provide resiliency to 

regional failures of any component.

We conduct deployments in phased 

batches over an 8-day period.

West US East US 2 East US
Updated Updated Updated



0

We introduced a change to improve support for 

automated new-region buildout, targeting a legacy 

job type.

The change was introduced with feature flags which 

relied on a new configuration system used elsewhere 

in the codebase.

…and the full end-to-end test suite passed, including 

the new tests to cover this change.

A transitive test dependency included files required for 

this code to function, however these were not present in 

the final deployment artifacts.

Updating a legacy component



The rollout timeline

This delay meant that the engineers 

responsible for the change had lost 

context on the risks by the time it rolled 

out.

The deployment process continued without 

any observable issues for the next week.

Change Introduced
10th December

Rollout Started
6th January - Canary

7th - Low Traffic

Azure teams pause feature rollouts to 

help reduce outages for both our 

engineers and customers during the 

December holiday period.

10th - Medium Traffic

11th – High Traffic

12th – Rest of World 1

Exposure

December Holiday Period



First signs of trouble

How we detected, and then responded, when 

things first started deviating from our expected 

baseline.



Worker redundancy

Storage

Worker Tier

Azure services often pair regions to provide 

resiliency in the face of regional failures. ARM 

natively supports this pairing at the worker 

layer, employing job-stealing for active-active 

redundancy.

Business needs have necessitated groupings 

of three or four regions in some cases.

West US East US 2 East US

Updated Updated

West US and East US are the first set of large 

paired regions to be updated in our release 

sequence.



Initial detection

Storage

Worker Tier

Azure services use synthetic monitoring to 

continuously test common user flows in 

production environments and report on 

unexpected failures.

West US East US 2 East US

Updated Updated

We responded by tracing the execution of the 

failed requests through our system.

We use an internal version of Azure Monitor 

Logs for this and maintain 3 months of logs 

(~40PB) with the ability to execute complex 

queries against them in seconds.



Downstream Failures

Significant increase in HTTP 404s from a 

downstream service responsible for Network 

resources.

These caused failures for long-running 

customer operations.

Worker Tier

West US East US 2 East US

Network RP

HTTP 404 Error Rate (by region)

These were the result of cache eviction for 

status metadata and a symptom of the true 

problem, rather than the cause.

ARM acts as an API-gateway for many 

backend services called “Resource Providers” 

(RPs) which expose different types of Azure 

resources to customers.



Looking for Oddities

We observed an increase in job duration in 

impacted regions, matching the symptoms reported 

by customers.

This correlated with a jump to ~100% CPU on our 

vNext workers, and an increase in “pulse” failures.
Job Duration

Normal

Failing

Job Queue

Workers

CPU Load

Legacy

vNext

Legacy vNext

“Pulsing” involves re-schedule jobs for 

immediate execution, bypassing the queue, to 

improve performance. It will only occur if the 

worker has available capacity (CPU and work 

slots).

Pulse Failures

Legacy

vNext

vNext is an ongoing effort to modernize our 

hosting platform to improve long-term 

stability and supportability.



Blame the New Thing

We decided that the likely cause was the 

vNext workers, which had experienced 

problems previously, and decided to remove 

these.

We observed the expected drop in CPU and 

job duration, which matched our expectations.

Job Duration

Normal

Failing

Job Queue

Workers

CPU Load

Legacy

vNext

Legacy vNext

Pulse Failures

Legacy

vNext

Removing the vNext workers removed the 

only workers that were truly healthy, 

exacerbating the true impact.



Simultaneous Change

To offset the loss of capacity caused by 

removing our vNext workers, we decided to 

scale up our Legacy workers to compensate.

These workers immediately started processing 

a significant number of jobs and we observed 

long running operations completing 

successfully again.

Job Queue

Workers

Legacy vNext

Making two changes simultaneously made it 

harder for engineers to determine which had 

the positive impact.

Job Execution Rate

Old

New
Scale Up

Job Duration

Normal

Failing

With job duration falling and operations 

succeeding, we determined that the issue was 

mitigated.



Responding to a situation which continued to 

deteriorate.

Expanding impact



The timeline so-far

Initial mitigation steps were taken ~7h30 

after initial detection.

Initial Detection
11:51 UTC

Initial Mitigation Steps
19:18 UTC

16:00 UTC – Shift Handover

16:02 UTC – Rest of World 2 rollout starts

00:00 UTC – Telemetry Appears Healthy14th

In the background, our automated 

deployment system continued to rollout 

the latest release to the second half of 

the world, since all previous regions were 

reporting healthy telemetry.

7
h

3
0

4
h

Over the next 4 hours, engineers monitored 

increasingly “healthy” looking telemetry, 

declaring mitigation at ~00:00 UTC.



Ctrl+C; Ctrl+V

An hour later, we started to receive reports 

of issues in other regions.

These workers were not required to meet 

our capacity needs, and the previous 

improvement supported their removal.

Shortly thereafter, engineers started to 

spot a correlation between operation 

failure rates and the latest code release.

This correlation only manifested after the 

second half of the world was updated.

01:59 UTC – Rest of World 2 rollout completes

1
4
th

01:10 UTC – Reports of issues in other regions

All vNext Workers Removed
02:10 UTC

03:00 UTC – Correlation between failures

and new code identified

We immediately applied the same 

mitigation globally – removing vNext

workers.



Rolling Back

We decided to rollback to the previous 

release.

When performing rollbacks, we follow a 

phased rollout process to avoid making a 

bad situation worse.

To minimize customer impact, we opted to 

rollback the most heavily impacted regions 

in the first batch of rollouts.

1
4
th

Rollback Started
03:34 UTC

03:00 UTC – Correlation between failures

and new code identified

Our engineers believed that given the 

extended time the previous release had 

been running, it was highly unlikely to 

worsen the situation in these badly 

impacted regions.

06:00 UTC – Targeted rollback completed

Most customer impact mitigated

Rollback Completed
18:00 UTC – All customer impact mitigated



Deciphering a complex failure mode through 

delegation of responsibility.

Investigation



Creating Space

Mitigating an incident and 

investigating the cause are distinct 

responsibilities.

We delegated responsibility for the 

investigation to Azure Control Plane 

SRE, while the on-call engineers 

focused on mitigation.

This allowed our investigators to 

focus on understanding the system’s 

state and developing hypotheses.



Why West US first?

Storage

Worker Tier

West US East US 2 East US

Updated Updated

Our rollout batches cause West US and 

East US to be updated in the first half of 

the Rest of World rollout.

If the workers in these regions weren’t 

processing jobs, we would see impact 

only in West US (because East US 2 

would provide redundancy for East US).

We operate paired regions in our test 

and canary environments, however traffic 

in these environments was low enough 

that it didn’t trigger the bug.



Where are the errors?

Our engineers had spent 24hrs+ 

looking for errors which correlated 

with the failures we were seeing and 

had found nothing significant.

We performed statistical analysis 

against our logs and identified an 

extremely low-volume event which 

had seen a 100x increase, recording 

crashes in our workers.

These crashes accounted for ~1% of the 

fleet, far below the levels required to 

impact our capacity and only appeared 

hours after the first recorded impact.

General Errors

99.99%

Crashes

0.01%

Worker Crashes

Old Code

New Code



Why the delay?

The error causing the crash happened 

hours after a worker started.

It was thrown within the context of a 

job, which usually catches exceptions 

and marks the job as failed.

Our engineers were dubious that this 

was the cause, but worker crashes 

matched the observed impact perfectly 

(we’d just need far more of them than we 

were seeing).



The Failure Mode



The Code Change

LegacyJob.cs

public class LegacyJob {
// New config system
static IConfigProvider configProvider

= new ConfigProvider("config");

public DoWork() {
if (FeatureFlag.IsEnabled) {

// Use the configProvider
} else {

// Use the legacy approach
}

}
}

The use of a static initializer caused 

the exception to be thrown when 

referencing the job type at runtime.

The use of Reflection to initialize 

the job type caused the underlying 

exception to be wrapped.

The exception was thrown in the 

initialization logic, before the feature 

flags were evaluated. This resulted in 

customer impact even though the 

intended change was disabled.

TypeInitializationException

DirectoryNotFoundException



The Job Worker

TypeInitializationExceptions are fatal 

errors which should immediately 

crash the process.

The orchestrator will restart the 

process and return it to a healthy 

state.

JobWorker.cs

public async Task RunJobsAsync() {

while (true) {

try {

var job = await GetJobToRunAsync();

await job.RunAsync();

} catch (Exception ex) if (!ex.IsFatal()) {

// Report the error and continue

this.logger.LogError(ex);

}

}

}

Classifying the exception as a fatal failure 

prevented any logging, hiding its 

occurrence from operators. It also 

caused the job slot to be terminated, 

instead of handling this as a general 

issue with the job.



The Work Dispatcher

We use .NET’s Async functionality 

to spawn and manage a constant 

number of job workers for the 

lifecycle of the process.

WorkDispatcher.cs

public async Task RunDispatcherAsync() {
var workerTasks = new List<Task>();
for (var i = 0; i < numberOfWorkers; i++) {
workerTasks.Add(
new JobWorker().RunJobsAsync());

}

// Wait for all workers to finish
// processing before exiting.
await Task.WhenAll(workerTasks);

}

Task.WhenAll will only raise an 

exception once all tasks have finished 

executing. This buffered the fatal failures 

for hours before they were allowed to 

crash.

We used Task.WhenAll to 

subscribe to these worker tasks and 

catch any exceptions thrown by 

them.

A
ct

iv
e
 T

a
sk

s

Time

Live Dead

Exceptions

RevealedFirst Exception



How this failed

When this legacy job type was executed, 

it would poison a single job processing 

slot on the worker.

Time

Available Job Slots

Critical Capacity

Worker Crash

Workers start with ~1500 slots, and this 

job accounts for ~0.05% of executions.

The initial probability that a slot hits this 

issue is ~75%...

…the terminal probability is ~0.05%, 

greatly extending the tail.



How we’re improving



Key Repairs #1 Reducing Transitive Test Dependencies

 This helps reduce the differences between our test and production 

environments.

Reduce Reliance on Static Initializers

 Moving exception handling into constructors and/or other runtime 

code avoids exceptions being raised to IsFatal inadvertently and allows 

us to better degrade.

Improve visibility into uneven workloads

 We lacked good visibility into the shifts in work distribution which 

highlighted a problem in the first impacted regions, slowing our triage 

time.

 Encoding our system invariants (fair work distribution) into our 

monitors allows for significantly better sensitivity to unexpected shifts.



Key Repairs #2 Extended cache expiry for operation state

 Ensuring that this metadata is available for the duration of the valid job 

execution time ensures that future delays are less likely to result in 

failures for customers.

Improve visibility into queue pickup delays

 The lack of visibility into these delays contributed to us mis-identifying 

our vNext workers as the cause of the impact.

 Improvements in this space will allow us to better identify capacity-

related problems in future.

Don’t rely on Task.WhenAll for job orchestration

 We have switched to a hybrid Task.WhenAny and Task.WhenAll

approach to ensure that exceptions are handled in a timely manner.

 We have audited our other services to identify similar risks and apply 

similar mitigations.



Closing thoughts



“Outage severity cannot be 

exclusively measured in SLO 

impact.”
This outage represented a significant risk to our customers
…but it had an order of magnitude less impact on our SLOs than previous outages.



“You’re incentivized to 

optimize for your common 

failure modes.”
This outage was a novel and unexpected failure
…and our standard telemetry and processes were not equipped to deal with it.



“Complex systems run in 

degraded mode.”

- Richard I. Cook, MD

Our system operated for 8+ years with these latent defects
…and selection pressure eventually resulted in the perfect storm.



Thank you


