Dissecting the humble
LSM Tree and SSTable

Suhail Patel | @suhailpatel | https://suhailpatel.com

SRECon EMEA 2022

https://suhailpatel.com

Wait, this is SRECon?

A core understanding of the data structures that
powers stateful applications we operate helps us

make better decisions

2 @suhailpatel | SRECon EMEA 2022

Suhail Patel
Staff Engineer at Monzo
@suhailpatel

@suhailpatel | SRECon EMEA 2022

Current account

£2,410.60

Banking
made easy

Spend, save and manage your money, all in
one place. Open a full UK bank account from
your phone, for free.

B Thames Water

James Bradshaw

Deliveroo

BEST
BRITISH
BANK

WINNER 2022

- Open aMonzo account [Banic.

~~ 1 Awards

Liability Disclaimer

| absolve myself of all responsibility if you use the

example code shown and you lose your data or have an incident

https://gist.github.com/suhailpatel/331{fa65t434a9743dfb1db893931361

5 @suhailpatel | SRECon EMEA 2022

https://gist.github.com/suhailpatel/331ffa65f434a9743dfb1db893931361

= A

S = w'y =] N B’y

JEPSEN

Analyses | Talks | Consistency | Services | Ethics

Analyses

Since 2013, Jepsen has analyzed over two dozen databases, coordination services, and queues—
and we’ve found replica divergence, data loss, stale reads, read skew, lock conflicts, and much
more. Here’s every analysis we’ve published.

Aerospike 2015-05-04 354
2018-03-07 3.99.0.3
Cassandra 2013-09-24 200
Chronos 2015-08-10 240
CockroachDB 2017-02-16 beta-20160829
Crate 2016-06-28 0.54.9
Dgraph 2018-08-23 10.2
2020-04-30 1.1.1
Elasticsearch 2014-06-15 1.10
2015-04-27 150
etcd 2014-06-09 04.1
2020-01-30 343
FaunaDB 2019-03-05 254
Hazelcast 2017-10-06 383
Kafka 2013-09-24 0.8 beta
MariaDB Galera 2015-09-01 100
MongoDB 2013-05-18 24.3
2015-04-20 2.6.7
2017-02-07 3.4.000rc3
2018-10-23 3.64
2020-05-15 4.2.6
NuoDB 2013-09-23 1.2
Percona XtraDB Cluster 2015-09-04 5.6.25
PostgreSQL 2020-06-12 12.3
RabbitMQ 2014-06-06 330
Radix DLT 2022-02-05 1.0-beta.35.1
Redis 2013-05-18 2.6.13
2013-12-10 AIT

https://jepsen.io

B-Tree

f'l'\
=] =

/--\

~
/.J.\

@suhailpatel | SRECon EMEA 2022

Searching within a B-Tree

. .\
- > . h
- - ////IIIIII

o1 100

99

9 @suhailpatel | SRECon EMEA 2022

B-Trees are used in many index implementations

@suhailpatel | SRECon EMEA 2022

14

22

16

26

Inserting within a B-Tree

34

23

24

|

56

58

11

~

82

81

ol

99

/I

nn

100

@suhailpatel | SRECon EMEA 2022

14

22

16

26

Inserting within a B-Tree

34

23

24

|

56

58

12

~

82

81

99

100

@suhailpatel | SRECon EMEA 2022

Rebalancing

14

22

16

26

34

75

23

24

56

58

13

-
S

99

! \

100

@suhailpatel | SRECon EMEA 2022

I S ==

= Computer Management

=] File Action View Window Help

& - @M 2

—Q Computer Management (Local)
= i@ System Tools
+ |g)] Event Viewer

. Shared Folders
Local Users and Groups

R

Device Manager

(& @ Srvices and Applications

<

Performance Logs and Alert:

?

Yolume Session Status File System

Defragmenting. ..

Capacity
11,99 GB

Free Space % Free Space

Estimated disk usage before defragmentation:

Estimated disk usage after defragmentation:

ar 'Cviu" = [')j'fi_l Sament Pause

Stop

B Fragmented files Wl Contiguous files [Unmovable files [Free space

(C:) Defragmenting... 1% Compacting Files

"

iy Start T Administrative Tools L) Computer Management

15

@suhailpatel | SRECon EMEA 2022

Random & Sequential I/O

L
8
s
= : . S
L Comparing Random and Sequential Access in Disk and Memory
Random, disk 316 values/sec
Sequential, disk 53.2M values/sec
Random, SSD 1924 values/sec
Sequential, SSD 42 2M values/sec
Rand om, memory 36.7M values/sec
Sequential, memory 358.2M values/sec
- | - 1 =k - I L =
10 100 1000 10t 10° 10° 107 10°

Note; Disk tests were carried out on a freshly booted machine [a Windows 2003 server with 64-GB RAM and

eight 15 000-RPM SAS disks in RAIDS configuration) to eliminate the effect of operating-system disk caching.
SSD testused a latest-generation Intel high-performance SATA SSD,

Source: The Pathologies of Big Data by Adam Jacobs (2009)
https://queue.acm.org/detail.cfm?id=1563874

16 @suhailpatel | SRECon EMEA 2022

Event based data

Aarti D'Cruz

PERSONAL

Currentaccount £2,410.40

[
m Bills £625.00

,;.'»i\ »E'-;.r — .
| 4B House Deposit

Bought a coffee =
Paid the rent

YOUR ACCOUNT P L

)
v Earn interest on yo 5355 EEDD DDDD DDDD

Start saving in a few taps
EXP
Manage your overd END D]1 / E E &

You currently have £100
ou currently have S A M F A R S A N I mastercard.

Create a Pot
0% interest and instant a

Put some money in a pot

A

Hol

me

17 @suhailpatel | SRECon EMEA 2022

Log-Structured Merge-Tree (LSM Tree)

Make inserting data really efficient by leveraging
sequential disk operations rather than lots

of random disk operations

18 @suhailpatel | SRECon EMEA 2022

Database systems built on the LSM Tree

/\
N

l A
N\

BigTable

cassandra

" RocksDB

19 @suhailpatel | SRECon EMEA 2022

Inserting items

memtable 34 75 14 22 26

writes over time

20 @suhailpatel | SRECon EMEA 2022

@dataclass

class Item(object):
key: str
value: str

class SRECon2022Database(object):
memtable = []

def insert(self, key: str, value: str):
self.memtable.append(Item(key=key, value=value))

21 @suhailpatel | SRECon EMEA 2022

Inserting items

memtable 34 75 14 22 26

writes over time

22 @suhailpatel | SRECon EMEA 2022

Inserting items

memtable 34 75 14 22 26 92 83

writes over time

23 @suhailpatel | SRECon EMEA 2022

Inserting items

memtable 34 75 14 22 26 92 83 2 V4 90

sstable file 2

writes over time

24 @suhailpatel | SRECon EMEA 2022

@dataclass

class Item(object):
key: str
value: str

def sort_key(self):
return (self.key)

def to_line(self) — str:
return f"{self.key}\n"

25 @suhailpatel | SRECon EMEA 2022

class SRECon2022Database(object):
memtable, sstables = [], []

def insert(self, key: str, value: str):
if len(self.memtable) = 5:
self.flush()
self.memtable.append(Item(key=key, value=value))

def flush(self):
filename = f”fancy-{int(time.time_ns())}-sstable.db”

with open(filename, "a") as +:
for item in sorted(self.memtable, key=lambda x: x.sort_key()):

f.write(item.to_1line())
f.write('\n"')

self.memtable = []
self.sstables.append(filename)

26 @suhailpatel | SRECon EMEA 2022

Deleting an item

memtable 34 75 14 22 26 92 83 2 V4 90

sstable file 2 2 7/ . 90 92

writes over time

27 @suhailpatel | SRECon EMEA 2022

Deleting an item

memtable 34 75 14 22 26 92 83 2 V4 90

sstable file 2

writes over time

28 @suhailpatel | SRECon EMEA 2022

Deleting an item

3

memtable 34 75 14 22 26 92 83 2 V4 90 100 3 17

sstable file 2

n

sstable file 3

writes over time

29 @suhailpatel | SRECon EMEA 2022

Deleting an item

3

memtable 34 75 14 22 26 92 83 2 V4 90 100 3 17

T+3 | T+4 | T+5 | T+1 T+2

sstable file 2 2 7/ 83 90 92

T+ 8 T+ 9 T+7 T+ 10 T+ 6

lagey’

83

sstable file 3 3 17

T+ 12 T+ 14 T+ 13

LI o

writes over time

30 @suhailpatel | SRECon EMEA 2022

31 @suhailpatel | SRECon EMEA 2022

Updating an item

memtable 34 75 14 22 26 92 83 2 V4 90

sstable file 2

writes over time

32 @suhailpatel | SRECon EMEA 2022

class SRECon2022Database(object):

def insert(self, key: str, value: str):
if len(self.memtable) = 5:

self.flush()
self.memtable.append(Item(key=key, value=value, timestamp=time.time_ns()))

def update(self, key: str, new_value: str):
self.insert(key, new_value)

def delete(self, key: str):
if len(self.memtable) = 5:
self.flush()
self.memtable.append(Item(key=key, timestamp=time.time_ns(), is_deleted=True))

33 @suhailpatel | SRECon EMEA 2022

Searching for an item

memtable 34 75 14 22 26 92 83 2 V4 90

<€ >

binary search

sstable file 2 83 90 92

binary search

writes over time

34 @suhailpatel | SRECon EMEA 2022

Searching for an item

memtable 34 75 14 22 26 92 83 2 V4 90

search

<€ >

binary search

sstable file 2 83 90 92

binary search

writes over time

35 @suhailpatel | SRECon EMEA 2022

class SRECon2022Database(object):

def search_in_sstable(self, sstable, key) — List[Item]:
records = []

with open(sstable) as f:
for line in f.readlines():

if not line.strip():
continue

item = Item.from_line(line.strip())
if item.key == key:

records.append(item)

return records

36 @suhailpatel | SRECon EMEA 2022

class SRECon2022Database(object):

def search(self, key) — Optional[Item]:
records = []

Read from our SSTables and find any that match this particular key
for sstable in self.sstables:
records.extend(self.search_in_sstable(sstable, key))

Read from our Memtable and find any that match this particular key
records.extend(filter(lambda x: x.key == key, self.memtable))

Sort by timestamp ascending pick the most recent record (last timestamp wins)
records = sorted(records, key=lambda x: x.timestamp)

Apply some logic to see what we return:
- If we found no matches, return nothing
— If our last item was a deletion event, return nothing
- Otherwise, return the most recent result
if not records:
return None
elif records[-1].is_deleted:
return None
else:
return records[-1]

37 @suhailpatel | SRECon EMEA 2022

Avoid looking in unnecessary files

memtable 34 75 14 22 26 92 83 2 V4 90

search

sstable file 2 83 90 92

binary search

writes over time

38 @suhailpatel | SRECon EMEA 2022

Bloom filters

A probabilistic data structure that can be used to
determine whether an item is potentially in a set or

definitely not in a set

39 @suhailpatel | SRECon EMEA 2022

Bloom filters

bit array

40 @suhailpatel | SRECon EMEA 2022

Bloom filters

01011010

AN
o 5N o RN - BN -

bit array

41 @suhailpatel | SRECon EMEA 2022

Bloom filters

00000111

RN

o BN - NN

bit array

42 @suhailpatel | SRECon EMEA 2022

Is an item in the set?

bit array

is | 7560 in the set? = definitely not

11111111

43 @suhailpatel | SRECon EMEA 2022

Is an item in the set?

bit array

is in the set? = possibly yes

00000010

44 @suhailpatel | SRECon EMEA 2022

Is an item in the set?

bit array

is in the set? = possibly yes

01010011

45 @suhailpatel | SRECon EMEA 2022

Bloom filters to the rescue

memtable 34 75 14 22 26 92 83 2 V4 90

search

sstable file 2 83 90 92

binary search

writes over time

46 @suhailpatel | SRECon EMEA 2022

Compacting data together

sstable file 2
C)
I
I
I
I
I
I
I
I
v

sstable file 9000

writes over time

47 @suhailpatel | SRECon EMEA 2022

Compacting data together

sstable file 2
C)

sstable file 3
C)

sstable file 9001 -
compacted

48 @suhailpatel | SRECon EMEA 2022

Compacting data together

HEEEN
HEEEN

)

sstable file 9001 -
compacted

49 @suhailpatel | SRECon EMEA 2022

Compaction strategies

® Size Tiered - Aim to merge together SSTables of a similar size into larger
SSTable files

® Levelled - Aim to group SSTables in a way that keys are not spread across

multiple files, making reads more efficient

® Time Window - Aim to group data that has a similar timestamp within a

particular time window

50 @suhailpatel | SRECon EMEA 2022

& C @ sqlite.org/src4/doc/trunk/www/Ilsmusr.wiki H @B @

2. Using LSM in Applications

LSM is not currently built or distributed independently. Instead, it is part of the SQLite4 library. To use LSM in an application, the application links against libsqlite4 and includes the header file "Ism.h" in any files that access the LSM API.

Pointer to build instructions for sqlite4

3. Basic Usage

3.1. Opening and Closing Database Connections

Opening a connection to a database is a two-step process. The Ism_new(), function is used to create a new database handle, and the Ism_open() function is used to connect an existing database handle to a database on disk. This is because some
database connection properties may only be configured before the database is opened. In that case, one or more calls to the Ism_config() method are made between the calls to Ism_new() and Ism_open().

The functions are defined as follows:

int 1lsm new(lsm _env *env, lsm _db **pDb);
int lsm open(lsm db *db, const char *zFile);

Like most Ism_xxx() functions that return type int (the exception is Ism csr valid()), both of the above return LSM_OK (0) if successful, or an LSM error code otherwise. The first argument to Ism_new() may be passed either a pointer to a database
environment object or NULL. Almost all applications should pass NULL. A database environment object allows the application to supply custom implementations of the various operating system calls that LSM uses to read and write files, allocate heap
memory, and coordinate between multiple application threads and processes. This is normally only required if LSM is being used on a platform that is not supported by default. Passing NULL instructs the library to use the default implementations of
all these things. The second argument to Ism_new() is an output variable. Assuming the call is successful, *pDb is set to point to the new database handle before returning.

The first argument passed to Ism_open() must be an existing database handle. The second is the name of the database file to connect to. Once Ism_open() has been successfully called on a database handle, it can not be called again on the same
handle. Attempting to do so is an LSM_MISUSE error.

For example, to create a new handle and connect it to database "test.db" on disk:

int rc;
l1sm db *db;

/* Allocate a new database handle */
rc = lsm new(0, &db);
if(rc!=LSM OK) exit(1l);

/* Connect the database handle to database "test.db" */

rc = lsm open(db, "test.db");
if(rc!=LSM OK) exit(l);

A database connection can be closed using the Ism_close() function. Calling Ism_close() disconnects from the database (assuming Ism_open() has been successfully called) and deletes the handle itself. Attempting to use a database handle after it
has been passed to Ism_close() results in undefined behaviour (likely a segfault).

rc = 1lsm close(db);

It is important that Ism_close() is called to close all database handles created with Ism_new(), particularly if the connection has written to the database. If an application writes to the database and then exits without closing its database connection,
then subsequent clients may have to run "database recovery" when they open the database, slowing down the Ism_open() call. Additionally, not matching each successful Ism_new() call with a call to Ism_close() is a resource leak.

Counter-intuitively, an Ism_close() call may fail. In this case the database handle is not closed, so if the application exits it invites the "database recovery" performance problem mentioned above. The usual reason for an Ism_close() call failing is that
the database handle has been used to create database cursors that have not been closed. Unless all database cursors are closed before Ism_close() is called, it fails with an LSM_BUSY error and the database handle is not closed.

1 3.2. Writing to a Database

What did we cover?

® The choice of data structure matters, understand the relationship between

hardware and software

52 @suhailpatel | SRECon EMEA 2022

What did we cover?

® The choice of data structure matters, understand the relationship between

hardware and software

® LSM Trees and SSTables can be simple, and for many programming

languages, you don’t need to re-implement from scratch

53 @suhailpatel | SRECon EMEA 2022

What did we cover?

® The choice of data structure matters, understand the relationship between

hardware and software

® LSM Trees and SSTables can be simple, and for many programming

languages, you don’t need to re-implement from scratch

® You can add optimisations like bloom filters and compaction and tune these

based on resource consumption prioritisation

54 @suhailpatel | SRECon EMEA 2022

Dissecting the humble LSM Tree and SSTable

S

monzo

Thank you!

Suhail Patel | @suhailpatel | https://suhailpatel.com

Earn interest on yo
Start saving in a few taps

)
5355 2200 0000 0000

SAM FARSANI mastercard.

You currently h
‘ Home)

SRECon EMEA 2022

https://suhailpatel.com

