
© 2022 Bloomberg Finance L.P. All rights reserved.

Caching Entire Systems
without Invalidation

SREcon EMEA 2022
October 27, 2022

Peter Sperl
Engineering Manager, Structured Products

© 2022 Bloomberg Finance L.P. All rights reserved.

Hello

This is a talk about distributed systems architecture

“What could SRE be?”

Product
Managers

Feature
Developers

Feature Pressure

Time Pressure
The

Product
+Features

+Tech Debt

Product
Managers

Feature
Developers

Feature Pressure

Time Pressure
The

Product
+Features

+Tech Debt

SREs

SLIs
+Performance

+Reliability

-Tech Debt

Product
Managers

Feature
Developers

Feature Pressure

Time Pressure
The

Product
+Features

+Tech Debt

SREs

SLIs
+Performance

+Reliability

-Tech Debt

SLIs

Product
Managers

Feature
Developers

Feature Pressure

Time Pressure
The

Product
+Features

+Tech Debt

SREs

SLIs
+Performance

+Reliability

-Tech Debt

Being decoupled from this

edge is what defines SRE
(according to me)

SLIs

I’m here to show you how to design and build

truly stateless systems

A stateless component always returns the

same output for a given input

Statelessness

Testability

Cacheability

Rapid Iteration

Reliability

Performance

Scalability

Cost Reduction

Caching Entire Systems without Invalidation

Caching Entire Systems without Invalidation

Topic #1

Topic #2

© 2022 Bloomberg Finance L.P. All rights reserved.

Caching without Invalidation

"There are 2 hard problems in computer science:

cache invalidation and naming things."

– Phil Karlton

days_old(username)

Client Today’s date

User DB

days_old(user)

cach
e

Client Today’s date

User DB

days_old(user)

Whenever the date changes, this
cache needs to be cleared.

cach
e

Client Today’s date

User DB

days_old(user)

cach
e

Whenever a user’s birthday is updated,
this cache needs to be partially cleared.

Client Today’s date

User DB

days_old(user)

cach
e

User Update
ServiceUpdate

birthday

Date Change
cron job

"The only good cache invalidation strategy is

no strategy."

– Me, maybe

Client Today’s date

User DB

days_old(user)

cach
e

days_old
(date_born, date_now)

Immutable Zone

Gathering State

Client Today’s date

User DB

days_old(user)

cach
e

days_old
(date_born, date_now)

Cache Lifetime Invalidation Strategy

days_old(date_born, date_now) Forever None

days_old(date_born) Until tomorrow TTL

days_old(username) Until birthday changes Active & TTL

Cache

days_old(1982-09-06, 2022-10-27) = 14,661

days_old
(date_born, date_now)

Cache

days_old(6/9/82, 27/10/22) = 14,661

days_old
(date_born, date_now)

What happens if I change
my birthday?

Cache

days_old(6/9/82, 27/10/22) = 14,661

days_old(1/9/82, 27/10/22) = 14,666
days_old

(date_born, date_now)

Old birthday is still in cache

New entry with new birthday

Cache

days_old(pete) = 14,661

days_old(username)

Cache

days_old(pete) = 14,661

days_old(username)

What happens if I change
my birthday?

Cache

days_old(pete) = 14,661

days_old(username)

This is now wrong!
It should be 14,666

Cache

days_old(pete) = 14,661

days_old(pete) = 14,666

days_old(username)

We need to erase the old entry first
to allow the new value to be written

Cache

days_old(6/9/82) = 14,661
(expires at midnight)

days_old(1/9/82) = 14,666
(expires at midnight)

days_old(date_born)

True statelessness reduces total complexity

Any cache invalidation is bad

Interface design drives caching characteristics (among other things)

Stateful interfaces can be converted into stateless ones internally

Factor systems into stateful and stateless layers

© 2022 Bloomberg Finance L.P. All rights reserved.

Caching Entire Systems

Big Databases

✔ Small Databases Resolve early into explicit values, replicate to scale

✔ Wall Time Resolve early into explicit time or date

Software Versions

External Systems

Client 1
DB Access

Service

API
Application

Service

Business Logic
Service

UI
Application

Service
Client 2

Big DB

Immutable ZoneGathering State

Client 1
DB Access

Service

API
Application

Service

Business Logic
Service

UI
Application

Service
Client 2

Big DB

How can we make access to a large, constantly changing

database, stateless?

How can we make access to a large, constantly changing

database, stateless?

The timestamped data pattern

-or-

The snapshot pattern

Entity timestamp some_data more_data

A 1

B 1

B 2

B 3

B 5

Step 1
get_most_recent_timestamp(B) = 5

Step 2
get_data(B, 5) = some_data

This is immutable!

Step 1: Stateful call to get timestamp

select max(timestamp) from table where entity="B"

Step 2: Stateless call to get data using said timestamp

select data from table where entity="B" and timestamp <= 24

Entity timestamp URL

A 1 datastore.com/3fds80mvdy

B 2 datastore.com/7xdf8kasnw

B 1 datastore.com/cjw92kscnsq

Stateful Relational Table Immutable Document Storage

Immutable Document Storage
Canonical
Database

Snapshot
Service

URL to
Immutable document

Immutable ZoneGathering State

Client 1
DB Access

Service

API
Application

Service

Business Logic
Service

UI
Application

Service
Client 2

Big DB

Immutable ZoneGathering State

Client
DB Access

Service
Application

Service
Business Logic

Service Big DB

Immutable ZoneGathering State

Client
DB Access

Service
Application

Service
Business Logic

Service Big DB

Resolves stateful entity, like “IBM”, into
the URL of an immutable document
(db://reports/IBM/4UhJ8gF)

Timestamp
DB

Immutable ZoneGathering State

Client
DB Access

Service
Application

Service
Business Logic

Service Big DB

Timestamp
DB

1. “Show me IBM’s
analyst reports.”

2. get_analysis(IBM)

3. get_most_recent_url(IBM, now)
= db://IBM/4UhJ8gF

4. get_analysis(db://IBM/4UhJ8gF)

5. db://IBM/4UhJ8gF

Immutable ZoneGathering State

Client
DB Access

Service
Application

Service
Business Logic

Service Big DB

Timestamp
DB

cach
e

cach
e

Benefits of Timestamped Data Storage

Database reads can be cached as well as any service call that depends on it

Point-in-time access is trivially supported

Batch jobs can freeze the timestamp to ensure consistency, while updates
continue unaffected

Rollbacks can be performed with a system-wide cap on timestamp

Timed releases are just future-dated timestamps

✔ Big Slow Databases Use the timestamped data or snapshot pattern

✔ Small Databases Resolve early into explicit values, replicate to scale

✔ Wall Time Resolve early into explicit time or date

Software Versions

 ? External Systems Resolve early, use the snapshot pattern, or give up

Immutable ZoneGathering State

Client
DB Access

Service
Application

Service

Business
Logic

Service
Big DB

Timestamp
DB

cach
e

cach
e

What if you deploy a new version of
this service that changes the output?

Cache

biz_logic(url) = X

biz_logic(url)

Cache

biz_logic(url) = X biz_logic(url)=X

biz_logic(url)=Y

service v1

service v2

Cache

hash(v1, biz_logic(url)) = X

hash(v2, biz_logic(url)) = Y

biz_logic(url)=X

biz_logic(url)=Y

service v1

service v2

Immutable ZoneGathering State

Client
DB Access

Service
Application

Service

Business Logic
Service

New Version
Big DB

Timestamp
DB

cach
e

cach
e

This cache still
works!

This cache is “cleared” by
the new service version

✔ Big Slow Databases Use the timestamped data or snapshot pattern

✔ Small Databases Resolve early into explicit values, replicate to scale

✔ Wall Time Resolve early into explicit time or date

✔ Software Versions Include in cache key

 ? External Systems Resolve early, use the snapshot pattern, or give up

Immutable ZoneGathering State

Client DB Access
Service

Application
Service

Business Logic
Service Big DB

Timestamp
DB

cach
e

cach
e

User Settings

✔ Big Slow Databases Use the timestamped data or snapshot pattern

✔ Small Databases Resolve early into explicit values, replicate to scale

✔ Wall Time Resolve early into explicit time or date

✔ Software Versions Include in cache key

 ? External Systems Resolve early, use the snapshot pattern, or give up

✖ Write-Heavy DBs Resolve early, use TTL caching, or give up

© 2022 Bloomberg Finance L.P. All rights reserved.

True statelessness reduces total complexity

Any cache invalidation should be a non-starter

Interface design drives caching characteristics (among other things)

Stateful interfaces can be converted into stateless ones internally

Factor systems into stateful and stateless layers

Make low-level components stateless and chain upwards

Key generation is the right place to account for state

We are hiring: bloomberg.com/engineering

http://bloomberg.com/engineering

