
Better JVM Observability
With No Code Changes

Tyler Benson
Observability Veteran, ServiceNow

2

3

44

In distributed systems, observability is
the ability to collect data about
program execution, internal states of
modules, and the communication
between components.

https://en.wikipedia.org/wiki/Observability_(software)

5

OpenTelemetry
A collection of standards, conventions,
tools, APIs, and SDKs for observability

•Tracing
•Metrics
•Logging
•More in progress

6

7

8

9

Supported libraries, frameworks,
application servers, and JVMs

(oh my!)

https://github.com/open-telemetry/opentelemetry-java
-instrumentation/blob/main/docs/supported-libraries.md

Aspect Oriented Programming
Advice and pointcuts

11

 public void attendSREcon() {

 System.out.println("Hello Singapore!");

 }

12

 advice passportCheck() {

 if(!hasPassport()) {

 throw new IllegalAccessException();

 }

 }

AOP - Advice

13

 pointcut before(attendSREcon()) {

 passportCheck();

 }

AOP - Join Point or Pointcut

14

 public void attendSREcon() {

 if(!hasPassport()) {

 throw new IllegalAccessException();

 }

 System.out.println("Hello Singapore!");

 }

AOP - Applied

15

Generic Method Advice

•Method Name
•Method execution duration
• Thrown exception details
•Environmental Attributes
•Parent Span

https://unsplash.com/photos/rzCi3mD-6ho

16

Defining the Pointcut
Annotation:

• Requires code change
• Evolves with the class
• Preferred if edits are ok

@WithSpan

Configuration
• No code change needed
• Can break if class/method name is

changed without updating config

System property:
otel.instrumentation.methods.include

Environment variable:
OTEL_INSTRUMENTATION_METHODS_INCLUDE

my.package.MyClass1[method1,method2]
;my.package.MyClass2[method3]

17

Introducing:
Flashlight

https://unsplash.com/photos/GewlrE-mkk4

18

Available on Github

https://github.com/lightstep/flashlight-java

Latest release download:
https://github.com/lightstep/flashlight-java/releases/latest/
download/flashlight.jar

https://github.com/lightstep/flashlight-java
https://github.com/lightstep/flashlight-java/releases/latest/download/flashlight.jar
https://github.com/lightstep/flashlight-java/releases/latest/download/flashlight.jar

19

20

21

22

23

Heuristics

● Methods with locking/synchronization

24

Heuristics

● Methods with locking/synchronization
● Methods with networking client calls (http, database, etc)

25

Heuristics

● Methods with locking/synchronization
● Methods with networking client calls (http, database, etc)
● Large/complex methods

○ Many method calls
○ High branching logic

26

Heuristics

● Methods with locking/synchronization
● Methods with networking client calls (http, database, etc)
● Large/complex methods

○ Many method calls
○ High branching logic

● What other generic heuristics can you think of?

Come talk to me after with your ideas.

27

Ideal
Candidates

What to consider
when instrumenting

methods

● Span value diminishes with
over-use. Span limits per
trace should be in the
hundreds, not thousands.

28

● Target distinct methods in
business specific classes.
(Avoid overlap with
javaagent)

Ideal
Candidates

What to consider
when instrumenting

methods

29

● Focus on filling large gaps
with useful detail that will help
clarify application execution
flow.

Ideal
Candidates

What to consider
when instrumenting

methods

30

● Identify methods that help
differentiate uncommon or
important code flows

Ideal
Candidates

What to consider
when instrumenting

methods

31

● Add Span attributes for
important business
classifications using
○ @SpanAttribute
○ Manual instrumentation
○ OTel Javaagent Extension

Ideal
Candidates

What to consider
when instrumenting

methods

32

● Valuable Business Attributes
○ Account name/id
○ User name/id
○ Product plan level

(free vs enterprise)
○ Feature Flags State

Ideal
Candidates

What to consider
when instrumenting

methods

33

● Don’t duplicate instrumentation
already available.

● Don’t instrument everything… be
conservative depending on risk
tolerance and validation
procedures.

● Especially don’t instrument hot
methods in a tight loop.

● (Consider performance testing.)

Avoid
Instrumenting

https://unsplash.com/photos/dV9ZfzLxaQ4

34

Next Level: OpenTelemetry Javaagent Extension

● Customize OpenTelemetry Javaagent
settings programmatically

● Provide custom samplers, exporters,
propagators, etc

● Add additional custom
instrumentation

https://github.com/open-telemetry/open
telemetry-java-instrumentation/blob/main
/examples/extension/README.md

https://unsplash.com/photos/_-P6_UdYxuc

https://github.com/open-telemetry/opentelemetry-java-instrumentation/blob/main/examples/extension/README.md
https://github.com/open-telemetry/opentelemetry-java-instrumentation/blob/main/examples/extension/README.md
https://github.com/open-telemetry/opentelemetry-java-instrumentation/blob/main/examples/extension/README.md

35

Next Level: AOP Frameworks

● Spring AOP
● AspectJ
● Byte Buddy (used internally

by OTel Javaagent)

https://unsplash.com/photos/kqBzDbiVV40

36

Next Level:
Complementary tools

•Async Profiler
•Java Flight Recorder
•eBPF

https://unsplash.com/photos/G2ifDHnHZ6Y

Q&A
https://github.com/lightstep/flashlight-java

https://unsplash.com/photos/SEMpiy1Csek

