Towards Zero Carbon

Implementing Sustainable Battery Lifecycle Management in Data Centers

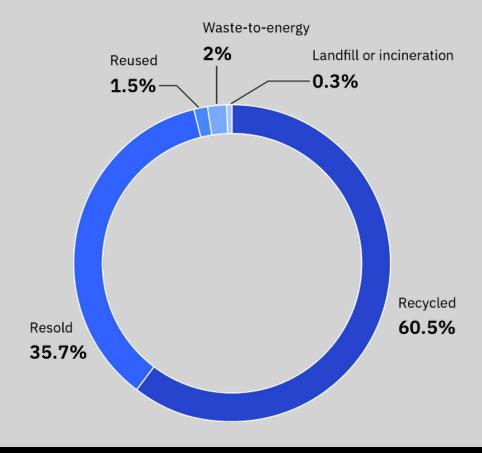
David Cesarano, Fanjing Meng

David Cesarano Solutions Architect IBM Client Engineering cesarano@ibm.com

Fanjing Meng (Meg) STSM & CTO China Systems Lab mengfj@cn.ibm.com

Agenda

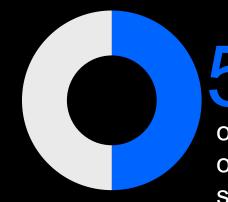
- Business and Technical Challenges
- Sustainable Data Center
- Asset and Waste Management
- Proof-of-Concept in IBM Data Center
- Health and Maintenance Demo
- Future Direction and Take-aways

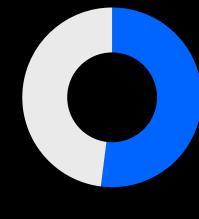


Product end-of-life management

0.3%

Amount (by weight) of the more than 18,000 metric tons of end-of-life products and product waste processed worldwide that was sent to landfill or incineration operations for disposal in 2021, far exceeding IBM's corporate goal of sending 3% or less


2021 product end-of-life processing methods



GHG Emissions reduction

Data centers are energy intensive and account for 1-3% of worldwide electricity use - equivalent to the emissions of over 26 million homes¹

50% of surveyed organizations seek more energy efficient products and services

of surveyed organizations seek products that use more recyclable and biodegradable materials and packaging

Sustainability isn't just about compliance, it's a strategic business imperative

74%

consider Environmental, Social, and Governance (ESG) factors to be very important to the enterprise value of their company¹ will only partner with or buy from companies that have communicated a commitment to sustainability²

50%

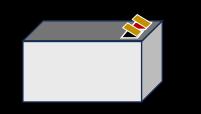
73%

of surveyed organizations have set a net-zero goal with an average target date of 2044³

Data Centre Energy use Singapore

Approximately 7% or 3.4 TWh of energy was being consumed in 2020 due to increased digitalization, an increase of 1.7% from 2019 consumption of 2.75 TWh

Terminology


Data Centre

Battery String

Towards Zero Carbon: Implementing Sustainable Battery Lifecycle Management in Data Centers

VRLA Battery (Jar) (Valve Regulated Lead Acid)

Uninterruptable Power Supply (UPS)

LiIon (Lithium Ion)

	Designated Facility Name and Site Address VEDILIA BS TERCENTICAL SOLUTEONS, LLCC. Pacility Phone: HeALTMONTY, TX: 77705				U.S. EPA ID Number			
ł	98.	9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number,		10. Containers		12. Unit	13. Waste Codes	
l	HM	and Packing Group (if any))	No.	Туре	Quantity	WL/Vol.		
	x	1. UN2800, BATTERIES, WET, NON-SPILLABLE, ELECTRIC STORADE, (LEAD ACID BATTERIES - UNIVERSAL WASTE), S	Marine Providence			NONE		
GENERATOR			5	CF	3062	P		UNIVJOPH
	x	2 NASO77, HAZARDOUS WASTE SOLID, P. O.E. (CRUSERD)		DF	47	P	D009	
		NASOT, HAZARDOUS WASTE, SOLD, LO.S., (ORISISED) FLUORENCENT LAMPS WITH MERCURY, S. III, RO (DOOS)	1					CRSQ3198
İ		3. FLUORESCENT LAMPS, LEED, FOR RECYCLING,					NONE	
		(FLOORESCENT, BOLLES)	9	DF	1398	p		LINEV320B
		4. FLUORESCENT LAMPS, USED, FOR RECYCLING			1		NONE	
			3	DF	263	F		UNIV319E

Certificate of Proper Disposal or Manifest (Recycle/Grave/Death) **Business and Technical Challenges**

General Challenges

Job Scheduling and Prioritization

- When, who and what
- Why

Vendor Management

- Shipping/Hauling
- Support

Sustainability Objectives

GHG, Waste, and others

Enterprise

Asset Management

- Equipment/Comp.
- Supply room

Business and Technical Challenges

Data Center Redundancy (Power)

Battery Lifecycle Management

Asset Management

Waste Management

Proactive Monitoring & Maintenance

Problem and Change management

Warranty, Support Contracts and Consumables

Alerted or ad-hoc

Safe handling and storage of hazardous materials

Processes and Procedures

Pressure Points & Imperatives Sustainable Operations in Data Centers

Pressure Points

Reliability and Uptime of interconnected and critical Facilities and IT equipment assets

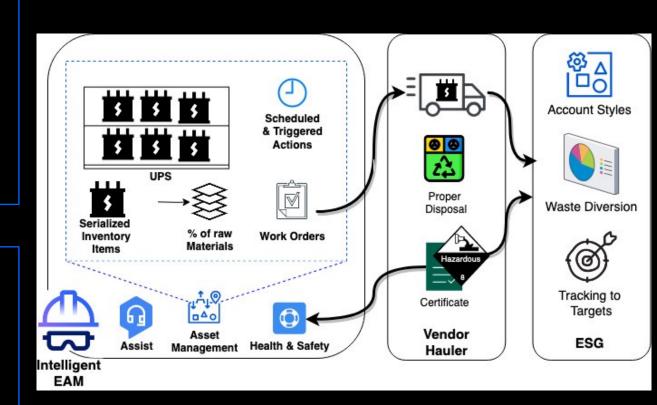
Sustainability Impact of energy, water, and hazardous waste intensive assets and operations

Capex and Opex Requirements to handle growing data center workload and demand

Imperatives

Ensure Critical Asset Availability and Performance

Increase Operational Efficiency and Productivity


Reduce Operating Costs and Complexity

φ 4 Extend Economic Life of Assets and Equipment

Contribute to Achieving Sustainability Targets

Lifecycle of Components

Assembly

Raw material extraction and assembly includes the energy consumption and emissions associated with the use of the raw material, the transportation of hardware to manufacturing sites, and the assembly of hardware in manufacturing

Transportation

The energy consumption and emissions associated with transporting equipment from manufacturing to a client's data center

Use

The energy consumption and emissions from the electricity used to run the equipment, as well as providing cooling and power conditioning

End-of-life

The end-of-life energy consumption and carbon emissions associated with landfilling and recycling

Regulations vary per Geo.

Lead Acid: 99%

Lithium-ion: 65-95%

Towards Zero Carbon: Implementing Sustainable Battery Lifecycle Management in Data Centers

Sources:

- Lithium Ion Battery Recycling Review of the current methods and Global Developments.: cas.org CAS Insights (American Chemical Society) September 22, 2022
- Canadian Renewable Energy Association: Sustainable Energy White paper, April 2021

Waste Management

Best Practices

Trackability/Auditability:

Reportable Traceable, and Auditable Completed Bill of Waste (Certificate of Proper Disposal, Grave, death certificate....)

Life-cycle Assessment:

ISO 14040 and ISO 14044 - Provide to customers and obtained from vendors

Full Material Disclosure (FMD):

IPC-1752D or IEC 62474, As ways to quantify improvement

Towards Zero Carbon: Implementing Sustainable Battery Lifecycle Management in Data Centers

How to be Successful

Electrical Distribution (Efficiency)

- <u>2N UPS config</u> and avg. UPS utilization = 89%
- Software/Hardware to Reduce Redundancy

Facilities Management

- Water (if used for battery cooling and not on a closed loop system)
- Standardized processes procedures/vendors

Supply Chain and Vendor Management


- Clear guidance for current and future vendors
- Standards, such as transparency.

Asset Management

- Life-cycle of assets •
- Hazardous/Non-Hazardous ullet

P-F Curve Technical Challenges

P, at the top left represents the point at which component failure or degradation begins. If the degradation goes undetected or uncorrected, it continues to degrade until full system failure occurs,. The period-of-time between P and F, is called the "P-F Interval". This is the window of opportunity during which inspection can detect pending failure and resolution can occur with corrective action.

Technical Challenges

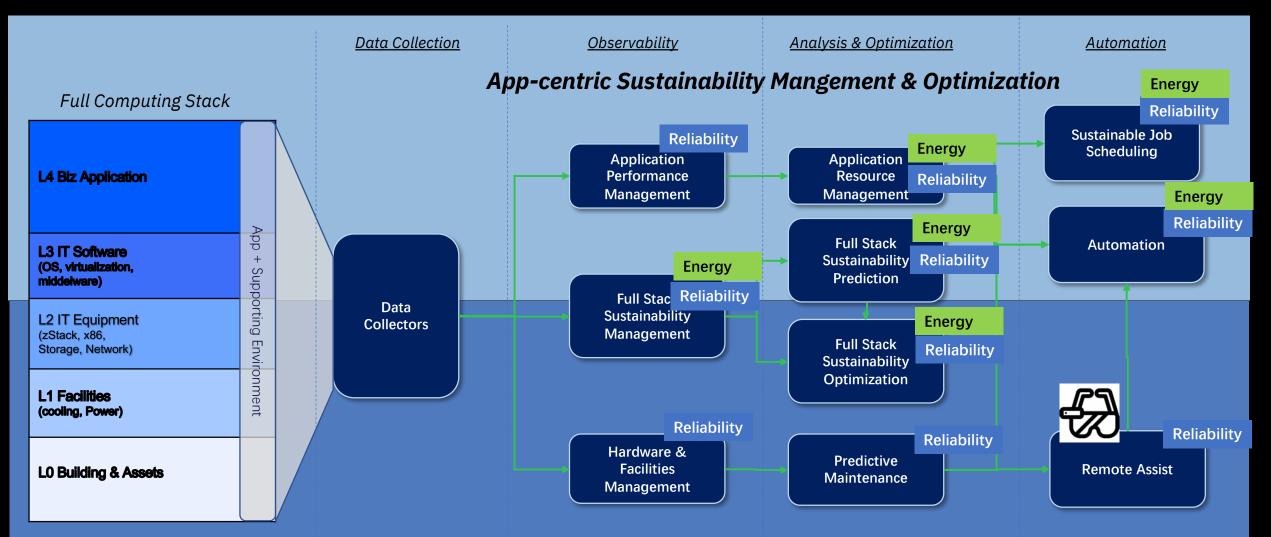
Site Resiliency Challenges (UPS)

UPS batteries are crucial for providing a stable power supply, but due to their widespread deployment, safety incidents are a persistent challenge.

Current battery replacement standards highly rely on internal resistance, which lacks an in-depth analysis of internal resistance changes and intelligent quantification of battery health status.

- Monitor each jar vs system as a whole?
- What is my MTBF?

Technical Solutions


Site Resiliency Solutions (UPS)

- A New Hybrid Replacement Criteria based on Internal resistance and charging/discharging cycle count.
- Insight of internal resistance based on analysis of multiple factors such as voltage, temperature, and charge/discharge rates.
- This enables fine-grained battery management, effectively prevents potential issues, and reduces replacement costs.

Full-Stack Sustainability Optimization Overview

Data Center Sustainability Management & Optimization

Reliability

Energy

POC Architecture

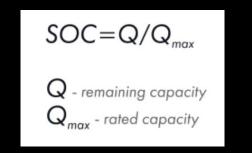
Overview of POC

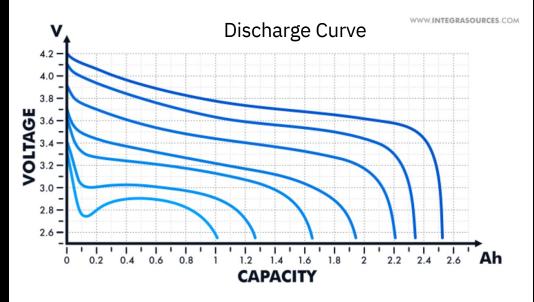
Ingest Data to Asset Monitor	Dashboard	Health and Predict	Assist	Automation
Query	Comparative Analysis	Cooling system, storage and server	Insights for the repairing	Systems Integration
Energy consumption Battery (jar) performance	Comparison battery metrics at different times	Health monitoring	Diagnosis	Process and Procures
	Comparison of battery data for the applications	Predict Maintenance	Remote collaborate	Hands off Keyboard

Key Metrics (KPI) and Modeling

Max Score = 48 Health = Score*100/Max Score Customize Score = SOC & SOH

Factors	Weight	Maximum Score
Overall Inspection	1	4
Float Voltage	2	4*2 = 8
Inner resistance	4	5*4= 20
Temperature	1	4
Discharge test	3	4*3 = 12


Impact Factors for Battery Health


Impact factor	Influences	Sample value	Collection
temperature	Most batteries have an optimum temperature range beyond which performance degradation, brownout, and even premature failure of the battery's internal structure can result.	Lead acid: 20°C - 25°C	meter reading
cycle number	Each time the battery discharges and re-charges due to utility power failure or some other power loss event, it loses a percentage of its capacity. Once the battery reaches its maximum number of discharge and recharge cycles, the battery will fail and must be replaced. The depth of discharge is also harmful to UPS batteries. If the depth of discharge frequently exceeds more than 80% the number of cycles (discharge-charge) the battery can withstand is greatly reduced.	The manufacturer specifies, i.e. 500	discharge and recharge recording
voltage	If the float voltage is too high, it will accelerate the corrosion of the positive side of the battery. If the float voltage is too low, the battery will slowly discharge. When an already fully charged battery is subjected to float voltage for long periods of time, it may result in the steady degradation of the positive which can substantially reduce battery life.	i.e. 10V - 14V	meter reading
resistance	The internal resistance increases with the aging of battery, causing battery capacity attenuation, the higher the likelihood that it will need to be replaced.	when its resistance reaches $5m\Omega$ is suggested to be detached from system	meter reading
capacity	usually displaying a slow degradation of capacity until they reach 80 percent of their initial rating, followed by a comparatively rapid failure.	80% capacity is the threshold point where the battery is considered to be the End of Life (EOL) and after which the batteries rapidly fails.	Discharge Testing recording
battery age	The electrochemical nature of UPS batteries causes them to lose the ability to store and deliver power slowly over time. Even with appropriate storage, usage, and maintenance, batteries still require replacement.	i.e. over battery design life 5 years	recording
ASIA S	Towards Zero Carbon: Implementing Sustainable Battery Lifecycle Management in Data Centers		2023 IBM Corporation

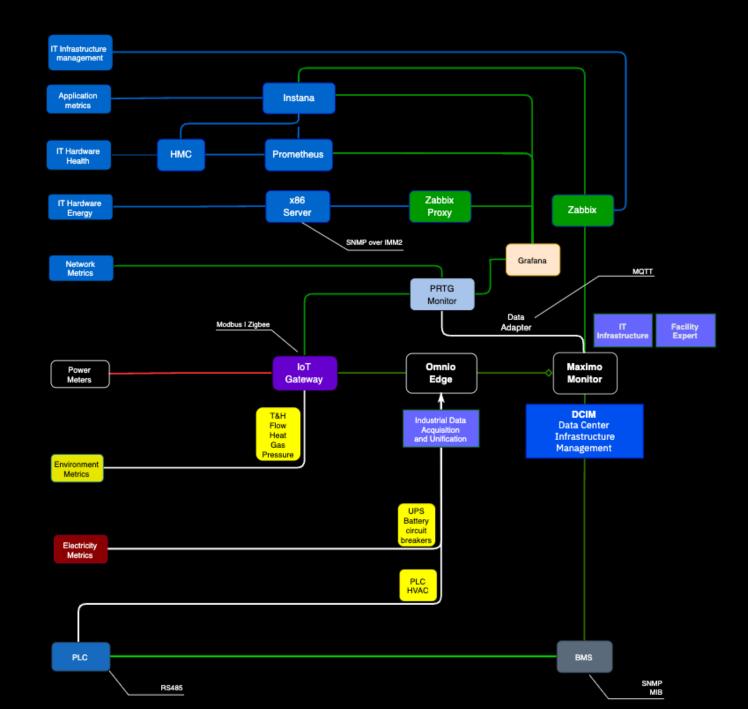
KPIs for Battery Health Prediction

- SOC : State-of-Charge

- To show the amount of electric charge left in the battery
- Impact factors: battery chemistry, voltage, current, capacity, impedance, charging/discharging rate, temperature
- Can be calculated with Open Circuit Voltage (OCV) Method based on Discharge Curve
- SOH : State-of-Health
- To show the health of the battery
- Impact factors: battery age, cycle number, capacity, internal resistance, energy throughput, temperature, selfdischarge rate, voltage

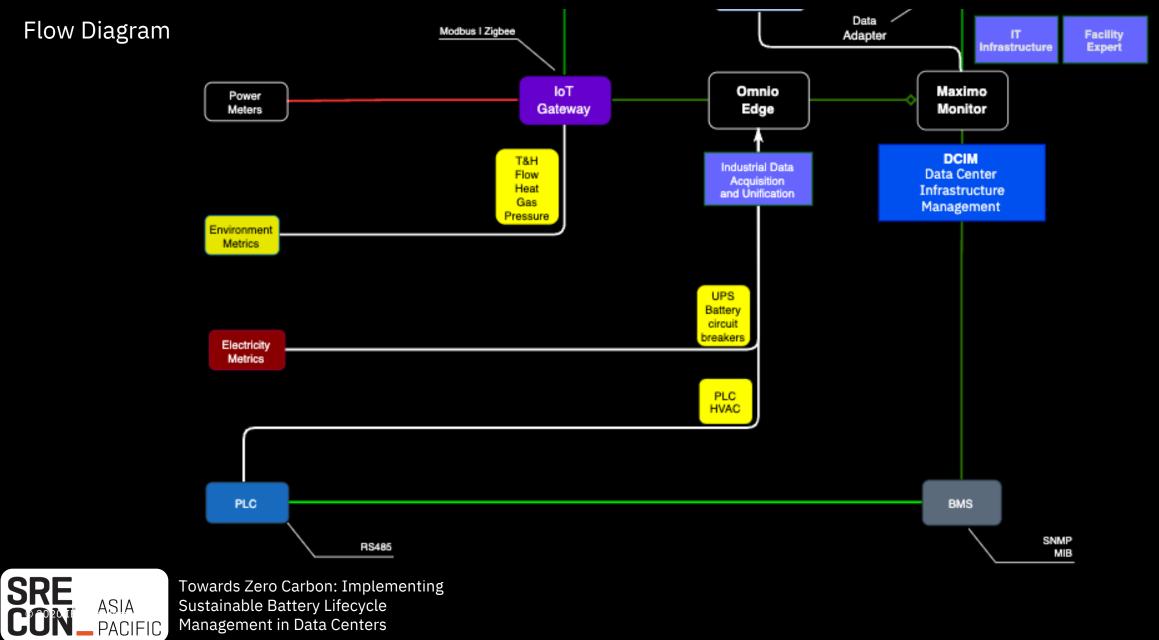
Discharge curves or variations in the remaining capacity to the opencircuit voltage of a Li-ion battery

Source: Andrey Solovev and Anna Petrova, Battery Management System (BMS): Effective Ways to Measure State-of-Charge and State-of-Health, https://www.integrasources.com/blog/battery-management-system-bms-state-charge-and-state-health/

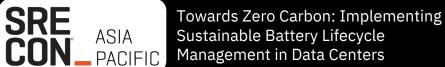


Towards Zero Carbon: Implementing Sustainable Battery Lifecycle Management in Data Centers

2023 IBM Corporation


Architecture

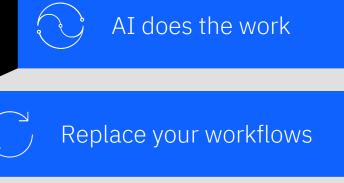
Flow Diagram



Architecture

Demo

Demo



Emerging Technologies

Waste and Asset Management

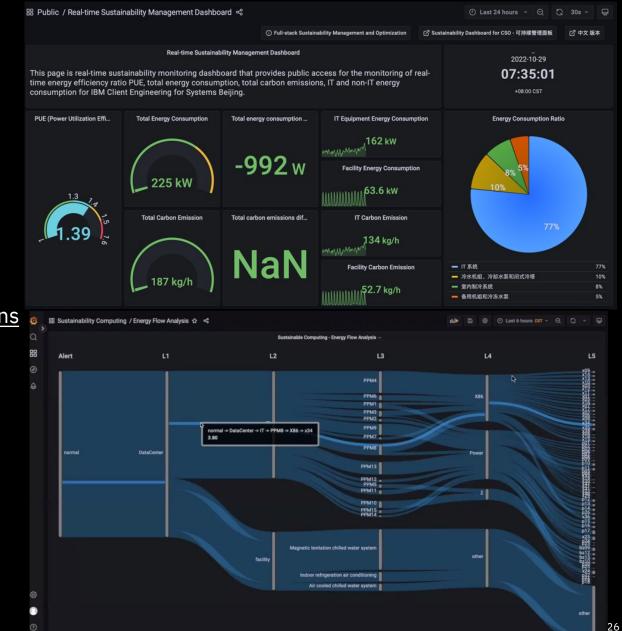
The path to maturity and beyond:

- Improved Sensors and Monitoring Solutions
- Asset failure predictability using AI and ML
- Generative AI and foundation models
- Automation and Integration
- Self-Healing
- Break down the silos

Automate your workflows

Add AI to your applications

Collect, organize, grow data


Emerging Technologies

GHG Tracking

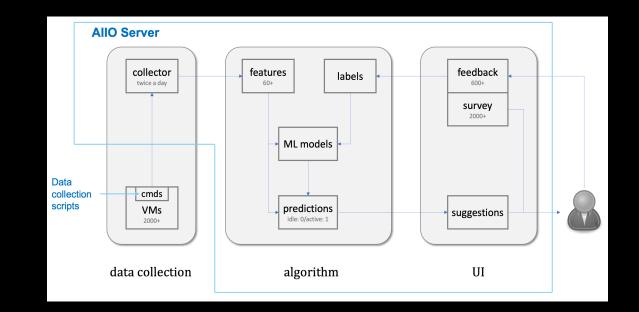
Carbon Tracking and Dashboards:

https://www.opencompute.org/projects/sustainability https://github.com/Green-Software-Foundation/sci https://www.cloudcarbonfootprint.org/docs/embodied-emissions

https://ibm.biz/fsso-en or https://ibm.biz/fsso-cn https://github.com/ambitus/sustainability-grafana-dashboard

Thank You !

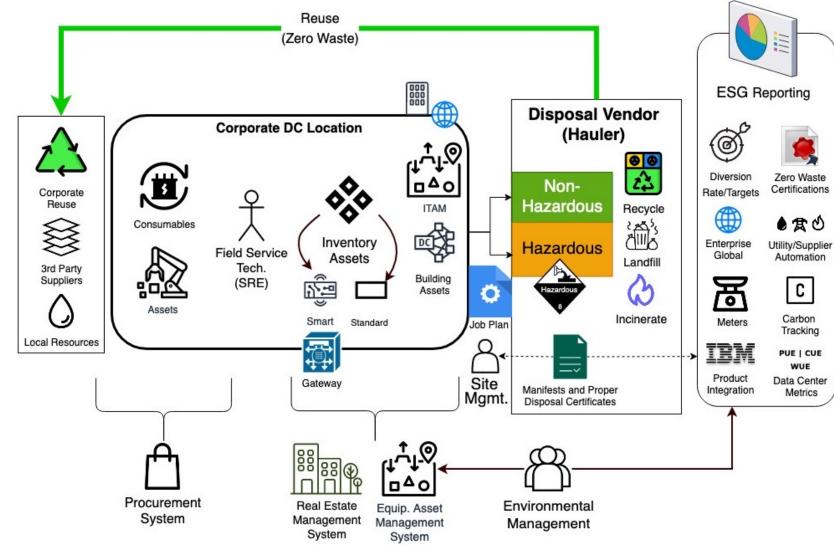
Any questions or comments, please contact Meg (<u>mengfj@cn.ibm.com</u>) and David (<u>cesarano@ibm.com</u>) !



Emerging Technologies

Waste and Asset Management

The path to maturity and beyond:


- Improved Sensors and Monitoring Solutions
- Asset failure predictability using AI and ML
- Use of Foundational Models and Training
- Automation and Integration
- Self-Healing
- Break down the silos

Data Center Asset Management

Content & Patterns

GHG Managing and Reporting Scope 1, 2, 3 for Data Centers

Scope 1: Direct Emissions

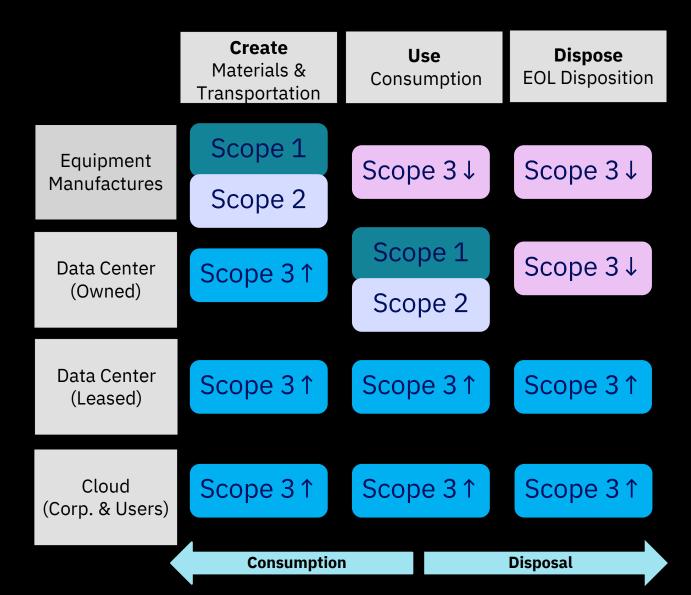
• Operations, such as heating, cooling and power generation. This includes combustion of fossil fuels

Scope 2: Indirect Emissions

• Purchased GHG such as Utilities

Scope 3: Indirect Emissions

Upstream and Downstream Activates


Net-Zero Guidance and Policy (Over 3k)

• EU Fit for 55, Australia's LTERP, 14th Five-Year Plan, COP26, Singapore Green Plan 2030

Strategies to decrease Scope 1 and 2:

- Reduce consumption and energy conservation (STAR, GPP, SmartWay
- Power Purchase Agreements (PPA)
- Carbon Offsets
- Optimize Transportation: Ocean, Rail, Ground, Air

