
Do Not Thrash the Node.js Event Loop
@matteocollina | Co-Founder & CTO

8 years as a consultant focused
on Node.js

Matteo Collina
CO-FOUNDER & CTO, Platformatic

Node.js Technical Steering
Committee member

Board member OpenJS
Foundation

Created Fastify
and Pino

Subscribe to my newsletter
at https://nodeland.dev.

https://nodeland.dev.

17 Billions Downloads / Year

80M

60M

40M

20M

Downloads per Day

D
ow

n
lo

ad
s

Jan
2022

Feb
2022

Mar
2022

Apr
2022

May
2022

Jun
2022

Jul
2022

Aug
2022

Sep
2022

Oct
2022

Nov
2022

Dec
2022

Jan
2023

Date

73.7M

Node.js is event loop based

I/O Event Queue

Kernel and Operating System

User JavaScript and
C++ executes here

Node.js is event loop based

JavaScript

C++

Event Loop Event Loop

The Node.js process
accepts new I/O

The Node.js process
accepts new I/O

No asynchronous I/O happening

The “normal” flow of HTTP requests in Node.js
CAN YOU SPOT THE PROBLEM?

The Processing time of composing
one requests is composed by:

2 Synchronous Processing + 1
Asynchronous wait.

HTTP requests coming in

HTTP responses going out Synchronous Processing

Database
querying

Idle wait / available
for other requests

Synchronous Processing

Do you like math?

Response time = 2 SP + 1 AS

Example:
- 10 ms of synchronous processing time
- 10 ms of I/O wait

Total response time: 30 ms.

Total number of request serviceable in 1 second by 1 CPU:

1000 ms / (10 ms * 2) = 50

(The processing time does not count)

Denial of Service
Attack ahead.

What happens if they all
arrive at the same time?

3 requests arrives at the same time.

What’s the total response
time of the last one?

HTTP requests coming in

HTTP responses going out

Synchronous Processing

Do you like math?

Response time = 2 SP + 1 AS
3 requests arrives at the same time

Example:
- 10 ms of synchronous processing time
- 10 ms of I/O wait

Total response time of 1st request: 30 ms.
Total response time of 2nd request: 50 ms.
Total response time of 3nd request: 70 ms.

Response Time x = SPx *2 + ASx + (SPx-1 *2)

In our example, total number of request serviceable in 1 second by 1 CPU:

1000 ms / (10 ms * 2) = 50

(The processing time does not count)

What happens if we got more than that number?

Do you like math?

10.50

10.40

10.30

10.20

10.10

10.00

9.90

9.80

9.70

9.60

9.50
200 10 15 4025 30 35 6045 50 555

Response Time (sync: 20, async: 10, rps: 50)

200 10 15 4025 30 35 6045 50 555

Response Time (sync: 20, async: 10, rps: 51)

1400

1200

1000

800

600

400

200

0

200 10 15 4025 30 35 6045 50 555

Response Time (sync: 20, async: 10, rps: 100)

70.000

60.000

50.000

40.000

30.000

20.000

10.000

0

Isn’t scaling on CPU usage enough?

You can have > 100% CPU
utilization and still have
capacity left.

The actual event loop

close callbacks

check

poll

Idle, prepare

Pending callbacks

timers

Incoming:
Connections, data, etc.

Event loop delay
https://github.com/mcollina/loopbench/blob/master/loopbench.js

The event loop delay measures the
effects after the problem already
happened. It’s good at mitigating
incidents but not at preventing them.

If you didn’t check out Node.js
in the last few years,
I have some news…

…Node.js is
multithreaded!

 e5

A linearized model for the Event Loop
Source: https://nodesource.com/blog/event-loop-utilization-nodejs/

(1)

(2)

L1 L2 L3 L4

e1 e2 e3 e4

e2 e3e1 e2

e3

e4 e4 e5

Event Loop Utilization

It’s the cumulative duration of time the event loop has been both idle and active as a high resolution
milliseconds timer. We can use it to know if the there is “spare” capacity in the event loop!

Example using @fastify/under-pressure

HTTP requests coming in

HTTP responses going out

Synchronous Processing

Database

Event Loop Utilization is at 0.98, start dropping requests
return a HTTP status code 503

Event Loop
Utilization is at 0.98

Demo Time!
May the demo gods be with me

Do not block the event loop!

Deduplicating asynchronous calls

HTTP requests coming in

HTTP responses going out

Synchronous Processing

Database

The call to the database is deduplicated
using async-cache-dedupe

The future of backend
development. Now.

A C

Enter Platformatic
We are helping developers get rid of the undifferentiated

heavy lifting of building Node.js applications

B

Thanks
Try our open-source tools at platformatic.dev

@platformatic @matteocollina

