
Symptom-based alerting for machine learning

Dublin, 10.10.2023

2

Why sit through this talk

▪ You are a backend engineer or SRE

▪ want to monitor a machine learning service

▪ with easy, existing tooling

▪ detect quality issues not covered by backend monitoring

TODO: monitor LLMs

3

HEY, I AM LINA WEICHBRODT

▪ Machine Learning Consultant and

Freelancer with clients working mostly

with startups

▪ Ex Lead Machine Learning Engineer @DKB

and Senior Research Engineer @Zalando

▪ Ran >30 machine learning models in production:

Recommender Systems, Personalization, NLP in

Customer Service, Finance, Travel

4

Agenda

sdfdsf

Add ML
Monitoring

Implement Backend Monitoring

Use simple tooling

5

Agenda

sdfdsf

Add ML
Monitoring

Implement Backend Monitoring

Use simple tooling

6

Use the four golden signals

Latency: the time it takes to serve a request

Traffic: the total number of requests

Errors: the number of requests that fail

Saturation: the load on your network and servers

→ we focus on symptoms, meaning end-user pain, not causes

7

Monitoring in practice: Live Dashboards

• Show dashboard
• Review during indicdent
• Review weekly for operational review

• Show alerts
• If alert, pager or fix during business hours

8

Monitoring in practice: Get notified if a metric is too low or high
Example with AWS Cloudwatch (many vendors offer this needed functionality)

9

Logging: Write out warnings and caught errors
Filter and analyze errors and warnings

▪ More sophisticated brother of print(“this should not happen”)

10

Is traditional software monitoring enough for machine learning
services?

📫 Picture: Complexity of ML, compare to Software Products

− As a result, I recommend ML only for high value use cases or central processes

− Exception: you are building trust in ML in your organization, so you start with a small project

Google paper „ML Test Score“ shows the higher complexity

https://research.google/pubs/pub45742/

11

Silent failures causes huge commercial impact

Examples of silent failure I personally experienced:
▪ Input data changes

▪ Input for fraud model changed from sec to msec

▪ External service we used for data enrichment migrated to other technology, data loss

▪ Aggressive post-processing filters applied

▪ Field used for filtering was filled 80%, drifted to 20%

▪ Filter “on sale” articles -> fewer articles during non-sale season

▪ Bugs in our own code e.g. get last 10 orders vs last 10 bought articles

▪ Model is automatically trained and released, but model is worse

▪ Tensorflow version not pinned, we got a faulty version

▪ Client changes the way the product works without telling us, e.g. product is now used by not
logged in users

12

Silent failures causes huge commercial impact

Examples of silent failure I personally experienced:
▪ Input data changes

▪ Input for fraud model changed from sec to msec

▪ External service we used for data enrichment migrated to other technology, data loss

▪ Aggressive post-processing filters applied

▪ Field used for filtering was filled 80%, drifted to 20%

▪ Filter “on sale” articles -> fewer articles during non-sale season

▪ Bugs in our own code e.g. get last 10 orders vs last 10 bought articles

▪ Model is automatically trained and released, but model is worse

▪ Tensorflow version not pinned, we got a faulty version

▪ Client changes the way the product works without telling us, e.g. product is now used by not
logged in users

Permanent, silent loss.

Bigger $$ impact than most
model improvements

13

Agenda

sdfdsf

Add ML
Monitoring

Implement Backend Monitoring

Implementation
and Tooling

14

What to alert on

Alerting should be both hard failure–centric and human-centric.

Distributed Systems Observability e-Book, Chapter 2: Monitoring and Observability

Keep alerting simple, alert on symptoms. Aim to have as few alerts as
possible, by alerting on symptoms that are associated with end-user
pain rather than trying to catch every possible way that pain could be
caused.

Prometheus Best Practices, https://prometheus.io/docs/practices/alerting/

15

Transfer Symptom-based Alerting to Machine Learning

Idea from SRE: we focus on symptoms, meaning end-user pain, not
causes

→ Try to translate this to a machine learning service

16

A typical Sequence of a Machine Learning Request

Call
Model

Post-
process
with rules

Request
Payload Record User

Reaction

Add Data (e.g.
user history,
article data, ..)

User Impact

Return
response

→ End-User-Pain is best detected in later steps, prioritize
monitoring efforts on outputs
→ Problem: A lot of machine learning monitoring currently
focused on inputs and data, not outputs 😱😱😱

17

Symptom based Monitoring: Prioritize backwards from Output

Call
Model

Post-
process
with rules

Request
Payload Record User

Reaction

Add Data (e.g.
user history,
article data, ..)

User Impact

Return
response

Calculated
Features

Offline: training data

Model
Prediction,
Quality
Heuristics

Service
Response
(after post-
processing)

Priority 1

Evaluation
metrics in
production,
Stakeholder
Concerns

18

Monitoring Priority 1: Evaluation Metrics in Production

Backend Developers:
sdf

 “ What are evaluation metrics?”
 → quality metrics used in training, e.g.

Accuracy, precision/recall etc

Data Scientist:
s

“I can monitor my evaluation
metrics in production??”

19

Monitoring Priority 1: Evaluation Metrics in
Production
Answer: You can if you get ground truth result
 close in time, e.g. Food delivery knows
 the true delivery time after ~1h → calculate

evaluation metrics like mean error

Common problems:
▪ Unknown result e.g. if a user is rejected because of a high fraud probability,

we don‘t know if we made an error
▪ Delayed result, e.g. if we predict the delivery time for a package we know the

true delivery time days later
▪ Filter bubble effect, e.g. algorithm decides what to show the customer.

Unseen options cannot be evaluated

20

Monitoring Priority 1: Evaluation Metrics in Production

Implementation:

▪ Store prediction and true value

▪ Calculate the metrics used during model training, e.g. batch job and
or create an endpoint to receive a feedback call

▪ Add metrics to dashboard and create an alert

21

Real-Time Dashboard: Evaluation Metrics in Production

22

Monitoring Priority 1: Stakeholder Fear Signals

Monitor what the stakeholders want to avoid
▪ Machine Learning Applications need trust → ask stakeholders for their

worst-case scenarios, e.g. service makes wrong decision, is uncertain,
doesn’t answer

▪ Put these fears into metrics to make sure you would detect these scenarios
▪ Add metrics to dashboard and alert

Example from a Loan Rejection Project:
▪ Fear: unfairly reject applications → alert on precision <95%
▪ Fear: Make application slow → alert on p95 speed <x msec

23

Symptom based monitoring: prioritize backwards from output

Call
Model

Post-
process
with rules

Request
Payload Record User

Reaction

Add Data (e.g.
user history,
article data, ..)

User Impact

Return
response

Calculated
Features

Offline: training data

Model
Prediction,
Quality
Heuristics

Service
Response
(after post-
processing)

Priority 2

Evaluation
metrics in
production,
Stakeholder
Concerns

24

Insight: A lot of Machine Learning Monitoring is done without the
evaluation metrics

▪ Measured to evaluate model quality,
e.g. precision, recall, NDCG, …

▪ To calculate evaluation metrics we
compare the prediction against
outcome in production

▪ Often not available or not available
close in time

▪ Measured in order detect a problem,
not to capture model quality

▪ Detection Metrics are easier to
implement

 Metrics for monitoring
Machine Learning

Models

Metrics to evaluate
Machine Learning

Models

25

Monitoring Priority 2: Service response distribution

Monitor the service response (after postprocessing rules)

Example outputs:
▪ classification: fraud/not fraud, things in an image (often with a prediction score)
▪ regression: forecasting (number)
▪ recommendations items (often with score)
▪ LLM summarization: text
 …

 → monitor those outputs or metrics based on these outputs

26

Monitoring Priority 2: Response distribution

Monitor the response distribution
▪ good „catch all“ technique, needed if you cannot calculate evaluation metrics in

production or if there is a delay between prediction and outcome
▪ Able to detect smaller changes compared to monitoring user reactions (more data,

less noisy)
▪ Detect slow or sudden shifts of response distribution
▪ Often easy to do (just one or few outputs), real-time
▪ The importance of a change is more clear compared to input monitoring (an input field

change might not be relevant to the output)

→ Rule Based Distance Metrics: Median, Quantiles, Share of empty/insufficient
outputs
→ Statistical distance metrics: Kolmogorov-Smirnov Statistic, D1 Distance, Population
Stability Index

27

Monitoring Priority 2: Response distribution
Example distribution distance metric: D1

Source: Google Paper: Data Validation for Machine Learning 2019

→ Sum of Distances of Probability
Density Functions

28

Monitoring Priority 2: Response Heuristic Quality Metrics

Heuristic Quality Metrics based on the service response:
▪ Create use-case-specific, human understandable quality indicators, e.g. heuristic for

a „really good“ or „bad“ response and common sense heuristics
▪ The metric doesn’t have to be a great quality indicator, just go down if quality goes

down (do not aim to measure objective quality!)
▪ E.g.
▪ Common-Sense-Metric for a personalized algorithm: Share of personalized

responses
▪ Metric for bad responses: Share of empty responses/fallback responses
▪ Common-Sense-Metric for a personalized home page ranking: What is the rank of a

user‘s most used carousel?

29

Symptom based monitoring: prioritize backwards from output

Call
Model

Post-
process
with rules

Request
Payload Record User

Reaction

Add Data (e.g.
user history,
article data, ..)

User Impact

Return
response

Calculated
Features

Offline: training data

Model
Prediction,
Quality
Heuristics

Service
Response
(after post-
processing)

Priority 3

Evaluation
metrics in
production,
Stakeholder
Concerns

30

Monitoring Priority 3: Input and Feature Data distribution

Monitoring Input and feature distribution
▪ Compare the serving distribution over time: a sudden shift indicates a

problem
▪ Good for root cause analysis of an output oriented alert

→ same metrics as in priority 2

Exception, Prio 1: Compare difference between training and serving or train on
features you logged (Google Rules of Machine Learning, Rule #29), there are
always differences!

31

Agenda

sdfdsf

Add ML
Monitoring

Implement Backend Monitoring

Implementation
and Tooling

32

Do I need an ML Ops Monitoring Tool?

“We introduced a machine learning observability tool and now we get
several alerts per week that an input field’s distribution changed. The
reasons are mostly upstream business changes or unexplained
changes in the input data. We did not take any action on the alerts.”
Source: Data scientist at leading lending company

 ML observability tools do not prioritize and solve ML monitoring:
▪ What are your requirements
▪ Who is addressing and owning alerts, can they debug inputs, model,

outputs? (SRE, data scientists?)
▪ Clear data ownership and how to prioritize data issues?

33

Start simple, re-evaluate later

Pure Data Science Product,
starting from scratch or
very advanced product

→ evaluate full featured
machine learning platforms

Your company offers services for
monitoring and alerting, only some
of your services are machine
learning services

→ start with existing tools for metric
collection and alerting, e.g.
Prometheus, Grafana, a job
scheduler

34

Machine Learning Monitoring: Use your existing stack

Advantages of using existing monitoring and alerting stack:

▪ No new tool(s) needed
▪ Immediate start
▪ Usually sufficient (unless you do a lot of ML debugging)
▪ Integration with other metrics on same dashboard
▪ Find out which metrics matter and if you need more visibility
▪ Time for team and org to grow into data and ml ops responsibility

35

Monitoring: Example Implementation

▪ Add metrics to your inference code:

▪ For complicated calculations: log response to storage e.g. s3, run a script every 10
mins to calculate (raw) metric components

▪ Create a dashboard and create alerts

36

Takeaways

▪ Monitor golden signals + add machine learning monitoring

▪ Prioritize monitoring output metrics (user impact!) like response
monitoring and if available evaluation metrics in production

▪ You often don’t need a new tool, use the tools you already have and
add a few metrics

37

Talk to me

 I am available for Consulting and Networking.

 Join the ML Ops Slack Channel to talk to others
 working on Machine Learning in production.

https://join.slack.com/t/mlops-community/shared_invite/zt-10jopsclv-sny902l2GOFdElU2blfACg

