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Hypothetical Example: Trigger
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Hypothetical Example: Amplification
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Hypothetical Example: Amplification
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Hypothetical Example: Metastable Failure
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Hypothetical Example: Getting out of Metastable
Failure
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Metastable Failure Life-cycle
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Being Metastable is OK

Three pillars of being
Metastable:

1. understanding the
environments,
algorithms, and
workloads.

2. trigger-resistant
design

3. protection of
vulnerable
components
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“Knowledge is Power”

With knowledge, we can avoid “expectation failures”



Understanding Environments

Expectation failures arise from a mismatch between the
environment’s capabilities and the system’s needs.



Case Study: Cloud Latency
Cloud is complicated – shared resources, “noisy neighbor
syndrome,” etc.

Knowing how well a cloud performs is crucial for configuring
systems to run in the cloud.

Let’s look at communication latency between nodes
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Case Study: Cloud Latency Example

Would you expect spikes 3, 000× over the median latency?



Case Study: Cloud Latency Example

Would you expect lots of variation and 20-minute cycles?



Case Study: Cloud Latency Example

Would you expect very high tail latency?



Latency Expectations Mismatch

A system with expectations for low latency may work better in
cloud #1 than cloud #2



Understanding Algorithms



Case Study: State Machine Replication

State Machine Replication (SMR) is a very common class of
algorithms used in storage and configuration systems.

Some algorithms perform well under networks with unreliable
latency

And some expend resources when bad communication timing
throws them off the “common case”



Case Study: SMR – MultiPaxos & Rabia

The difference in performance is due to environment expectations
in Rabia – it needs timely delivery of messages to nodes!



Case Study: Transactions

In the common case, most concurrent transactions have no
contention

Tx1
Tx2

Txn
...

But what if we have a “hot” shared object or key?

Transaction aborts and/or lock contention
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Understanding Workloads

Sometimes we can pick or configure algorithms (next section!)
to match the environment better.

But in other cases, like transactions, we may be out of luck.

So we need to understand workload behaviors that may cause
algorithms/systems to “trigger.”



Case Study: Coordinated Clients

1. A database works perfectly fine

2. Some code at the client side of the application runs on the
timer once a day

3. On all active clients at the same time

4. This code runs an expensive transaction

5. A database stops working
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Trigger Resistance

While we cannot avoid triggers, we
may be able to design systems to
tolerate some common triggers better.



Step 1: Avoiding Expectation Mismatches

This one is pretty straightforward – if we know
what to expect from the environment,

algorithms, and workloads, we can avoid many
expectation mismatches.

Example – aggressive timeouts and flaky
network.
▶ timeouts may cause false positives on failure

detectors
− > systems undergo unnecessary recoveries
− > expend resources that could have been
used for useful work



Step 1: Avoiding Expectation Mismatches

This one is pretty straightforward – if we know
what to expect from the environment,

algorithms, and workloads, we can avoid many
expectation mismatches.

Example – aggressive timeouts and flaky
network.
▶ timeouts may cause false positives on failure

detectors
− > systems undergo unnecessary recoveries
− > expend resources that could have been
used for useful work



Step 2: Designing for Practical Fault-Tolerance

Many algorithms are designed for fault-tolerance

Many are designed by academics...

“algorithmic fault-tolerance” – a system that can safely
tolerate failures, but cannot keep up with the load.

0 10 20 30 40 50
Elapsed time (s)

0

5000

10000

15000

20000

P5
0 

La
te

nc
y(

m
s)

Mencius skip 1000

0 10 20 30 40 50
Elapsed time (s)

0

2000

4000

6000

8000

10000

12000

14000

16000

Th
ro

ug
hp

ut
(re

qu
es

ts
/s

)

Mencius skip 1000



Step 2: Designing for Practical Fault-Tolerance

Many algorithms are designed for fault-tolerance

Many are designed by academics...

“algorithmic fault-tolerance” – a system that can safely
tolerate failures, but cannot keep up with the load.

0 10 20 30 40 50
Elapsed time (s)

0

5000

10000

15000

20000

P5
0 

La
te

nc
y(

m
s)

Mencius skip 1000

0 10 20 30 40 50
Elapsed time (s)

0

2000

4000

6000

8000

10000

12000

14000

16000

Th
ro

ug
hp

ut
(re

qu
es

ts
/s

)

Mencius skip 1000



Step 2: Designing for Practical Fault-Tolerance

Many algorithms are designed for fault-tolerance

Many are designed by academics...

“algorithmic fault-tolerance” – a system that can safely
tolerate failures, but cannot keep up with the load.

0 10 20 30 40 50
Elapsed time (s)

0

5000

10000

15000

20000

P5
0 

La
te

nc
y(

m
s)

Mencius skip 1000

0 10 20 30 40 50
Elapsed time (s)

0

2000

4000

6000

8000

10000

12000

14000

16000

Th
ro

ug
hp

ut
(re

qu
es

ts
/s

)

Mencius skip 1000



Step 3: Avoiding Overoptimizations on Common Path

Common path
(i.e., 90% of

requests)

Exception
path (i.e., 10%

of requests)

Under some conditions
(often workload-related),
systems may shift to the
“exception” path more
frequently



Step 3: Avoiding Overoptimizations on Common Path
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Exception
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systems may shift to the
“exception” path more
frequently



Step 4: Workload Engineering

Workloads can impact the algorithms and systems
Minimizing this impact may require workload engineering –
designing applications to avoid creating “bad workload”
situations for algorithms.
▶ A lot of workload engineering focuses on avoiding “hot” keys or

objects in parts of systems that do transactional work.
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Trigger Resistance is not Enough

Despite the trigger-resistant design, triggers can still develop
into metastable failures

Some components of complex systems are more vulnerable
▶ We can protect them from failing (at the expense of user experience)
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Stateful Components are Vulnerable

It is harder to quickly scale stateful components compared to
stateless services.



Some Simple Service-Oriented System
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Stateful Component get Overloaded
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Overload Propagates Downstream

Service 1 Service 2

DB



Increasing Danger of Metastable Failures

Service 1 Service 2
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loop?



Service Tend to be more Complex
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Load-Shedding
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Stateful Component Load Decreases
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But what to Load-shed?
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And when to Load-shed?
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Summary

It is OK to be Metastable vulnerable
Minimize the risks of a metastable failure
▶ By protecting vulnerable components
▶ By practicing trigger-resistant design
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