


- SRE Resilience

- YouTuhe:
@otherpeoplescomputer

- Twitter/X: @coolblknerd




2021






SRE

Infra Tooling O11y Security Reliability










Postmortems/RCAs










high

Where we Wh
wanted to | ere we
be. .. = ' actually
Networked Communal were
Sociability ‘
Fragmented | Mercenary
low | >
low high

Solidarity






Dealing with the leftovers...















How the “Building” Went Wrong






It’'s Go Time

s

=y




Pli

elastic-cloud-dev

asticclouddev ____________
elastic-staging
elastic-production

Socketmode Reliabc

us-centra

Reliabot
us-centrall-a

Reliabot
us-centrall-f

Redis

Services

Slack
Event

Configuration

Platform Core SRE Architecture

Logger

4. If the request contains a registered
action, then Reliabot passes the
request to the workflow mapped to the
action.

1. An event comes in
across the socket to
Reliabot.

2. The event gets
converted into a Request
object where the services,
config, and logger are
injected into the object .

3. Checkout, checks if
the request has a
registered action.

A

5. The request passes through
each task, where the task
executes before it passes the
request to the next task.

6. Upon completion of
a workflow, Reliabot
returns the user a
success message and
logs the workflow.










Code frequency over the history of elastic/Reliabot




Oct 3,2021-Mar 9, 2024

Contributions: Commits v

Contributions to main, excluding merge commits

2022

April

%
B
o 267 commits 67,986 ++

/1/
o

34 commits







‘-ﬁ

_ What we




New

Old Problem
Problem
New SlOW Moderate
Tool
Old Moderate | Fast

Tool







The Pivot












herelnd
yoars.










2023



Al

21

22
23
24
25
26
ZT
28
29
30

File Edit View Insert Format
Q Menus © e & F 100% ~
v | & D
A B8
E].Dascription

1 Slack Incident Creation
2 Incident Tracking

3 Slack Channel Creation

4 Teams Setup
5 Slack Channel Archive
6 Pagerduty "who is on call" integration
7 Pagerduty services sync
8 Current Incident Roles Tracking
9 Slack Message Timeline Entry
10 Open Incident View
11 Incident Summary
12 Send incident data to Elasticsearch

13 Send Pagerduty Pages from IM Tool/Slack
14 Set Severity of an Incident

15 Prompt for actions

16 Set impact start and end time

17 Track action items generated as a result of an incident

18 Calculate Severity of an Incident
19 Hide irrelevant/automated timeline entries

20 Automatically Add Slack Teams to Incidents
21 Tie Slack Teams to Services

22 Includes Runbooks or similar

23 Run Postmortems

24 Post Updates

25 StatusPage Integration

26 GitHub Integration

27 Jira Integration

28 Custom Fields

29 Adjustable "Required" Fields on Incident Opening/Clost

$

%

Incident Management Tooling Criteria « m &
Data Tools Extensions Help

.0_ .00
o

-

c

Priority
Critical
Critical

Critical

Critical
Critical
Low
Critical
Medium
Critical
Critical
High
Low

Low
Critical
Medium
High
Low
Medium
Medium

Critical
Medium
Medium
Critical
Medium
High
High
High
Medium
High

123

Defaul...

D

As A(n)...
User
User

User

User
User
User
User
Stakeholder
User
Stakeholder
Stakeholder
Stakeholder

User
User
User
User
User
Stakeholder
Stakeholder

User
User
User
User
User
User
User
User
User
Stakeholder

4

4

4

4

v

-0+ @z 5= A H clepcAr
E

| want...

An Incident to be created from a slack command

An Incident to be tracked with easily data in real-ti

A Slack channel to be created with a custom naming convention related to the incident

To be able to create a team/preset group of users to invite to an incident

A slack channel to be when the inci is

To be able to check who is on call for a service in pagerduty

The tool to be able to sync/use the PagerDuty list of Services and Escalations

To be able to track the current incident roles (IE: Commander, Responders)

To be able to save a slack message as a timeline entry, as well as update the timeline from Slack
To be able to view a list of all open incidents and their current status

To be able to view a concise, up to date incident summary

To be able to see our incident data visualized in Kibana alongside other potential datasources

To be able to page users during the start of an incident
To be able to declare the severity of an incident (e.g. Major/Critical)
To be able to see a checklist every X minutes after an incident starts

To be able to set the start and end times of the actual incident if they differ from when the incident is created/close
To be able to record action items that can ideally be generated as GH or Jira tickets during the incident

To be able to get a suggested severity of an incident based on the service and impact
To be able to hide timeline entries that are automated or irrelevant

To be able to automatically add Slack Teams to incidents

To be able to tie a Slack team to a Service (most likely imported from PD)
To trigger runbooks

To automatically be prompted for post-mortems and have them set up

To have updates pushed to certain channels (IE: Slack and Email)

To have StatusPage Integration

To have GitHub Integration

To have Jira Integration

To be able to add custom fields

To be able to adjust the required fields when an incident is opened or closed

O 8 a-

B3 Share ~ @

So that...

| can trigger an incident easily within Slack
| can view the progress of the incident up to this point

We have a central point for discussing an incident

| don't have to manually invite users individually

Manual toil of closing incident channels is eliminated

| don't need to open pagerduty to check this

PagerDuty can be our source of truth for Services

1 know who to talk to about current incident status

| can manage my incident from within Slack

| don't need to ping people to find out what incidents are ongoing
| don't need to ping people to find out what state an incident is in
| can see historic information about incidents

We can make sure the SRE on-call is aware when an incident is declared

Invested stakeholders are aware of the degree of impact and incident responders know what ¢
| know what my responsibilities are during an incident

We can have accurate reporting data of how long our incidents are taking

We can make sure to assign follow up items

There is consistency in how we calculate severity

| can have a more concise timeline that is easy to view, understand and share

| don't have to manually invite users individually

We don't have to manually invite a team based on the service

We can Return to Service faster without needing to review external documentation
Postmortems are handled as part of the Incident Tooling

We don't have to duplicate work by manually sending out updates to multiple channels.
We can manage StatusPage within the Tooling

We can link GitHub for both causes (code changes) and resolutions (Action Items)

We can link Jira tickets for action items

We can capture Elastic-specific data that is important to us.

We can ensure the data we need is captured, and not optional.






3= roOotly






Understand what kind of
road youre paving.










Accept your reality
pefore trying to build a
NEW ONE







Thank you for your time!



