
● Mikey Dickerson
Layer Aleph LLC
Seattle, Washington
mikey@layeraleph.com

SRECon 2024: March 20, 2024
San Francisco, CA

Teaching Site Reliability Engineering
as a Computer Science Elective

DALL-E: a mountain climber on the side of a
towering pagoda made of jenga blocks,
digital art

Mikey
● B.A.: Math, Pomona College
● Unix systems administrator, Pomona College

2002-06
● "Site Reliability Manager," Google 2006-14
● Administrator of U.S. Digital Service, 2014-17
● Consulting as Layer Aleph LLC since 2017,

doing "crisis engineering"?

Motivation
Mikey observes:

New grad hires struggle with the jump to
workplace expectations (self-sufficiency)

New grads are best prepared to write new code on
a new green-field project with minimal
dependencies

They rarely get this job

seen on linkedin, 30 minutes ago

Motivation
State of many CS departments:

Many more students in CS. Now usually the largest major in
this self-regarded liberal arts college. (40-50 out of a class of
400.)

College has worked to shift the student body to more
lower-income, first-generation, and underrepresented groups.

Identity crisis in higher education.

● Don't want to be vocational training
● Don't want to exclusively serve trust fund babies
● ????

Course design: two parallel sequences
Practicum

Teams of 4 or 5

Run through a series of ~weekly
assignments ("milestones") that start
with a git repository and end with a
reasonable facsimile of a
customer-facing production service

Reading

Well-studied systems disasters:
Challenger, Three Mile Island, Air
France 447

Sensemaking, from Karl Weick &co.

Systems safety from Nancy Leveson

Host institution
Pomona College

Claremont, CA

4-year liberal arts college, student
body around 1600

No relation

Practicum sequence
00 Get an AWS account, set up a VM, ssh

01 Install postgres, import the starter data,
answer some questions with SQL.

02 Install tomcat, python, and the webapp
and service process

03 Make the above actually work together
(difficulty spike)

04 Set up APM-style instrumentation

05 Set up an oncall rotation with pagerduty
etc

06 Show improvement over week 05
availability under synthetic load of about
100 rpm (confidence improves)

07 Show 90% availability (+side activity)

08 Solve a synthetic outage and write a
postmortem

09 Rearchitect and scale up to withstand a 15
minute load test of 10,000 rpm

10 Deploy changes with CI/CD, sometimes
containers

EC2 virtual machine: xen pvm (probably)

Amazon hardware

Operating system: Linux / AL2, Ubuntu, ...

JVM

tomcat

fakeflickr war

postgresql

pkeep

python2

tmux

certbot

iam

ssh

Primary
Oncall

New RelicAlert manager

Secondary
Oncall

Alert manager
scheduler and

escalator

jmeter-east jmeter-cen jmeter-west

logs collectionpostprocessing

DNS~weekly report

as of
week
05

Course design: Non-prescriptive problem solving
Intention is to address the mindset

They start at "if the step by step
instructions do not work exactly as
written, I am stuck"

Need to get to "I can solve this problem
with the assortment of tools and
capabilities that I have, even though all
of them are imperfect."

Strategy is to remove a lot of the
scaffolding

Goal statements try to be concrete and
clear (eg "site responds with HTTP 200
over 99% of the time")

Instructions are generally only in the
form of hints and pointers to published
documentation

Course design: Planned surprises
Intention is to build resilience and
adaptability

see for instance the work of John
Allspaw, Richard Cook, DD Woods re:
"adaptive capacity"

A successful complex system has
computers doing all the rote tasks and
humans handling the unpredictable
challenges.

Strategy is to change requirements,
violate assumptions about the course.

See Ray Dawson 2000, "Twenty Dirty
Tricks"

Nuclear reactor
sensemaking game

Course design: Unplanned surprises
Tools in everyday use don't have the safety margin
to which students are accustomed

In Year 1, one group did an "rm -rf /" on their server
VM in week 4, obliterating their first month of
work.

Afterwards they created backups and version
control

Hole Hawg:
see "In the beginning
was the command line"
by Neal Stephenson

In Year 2, one group destroyed their serving VM
image and backups in week 8, with confused
application of package upgrades

This would have been an excellent time to
introduce containers

Reading and discussion sequence
Goals:

● encourage systems thinking
● build resilience
● (light) awareness of the effects of technology

on the world

Disasters of a specific complex-systems nature:

● Mann Gulch wildfire
● Air France 447
● Chernobyl / Three Mile Island
● Therac-25

Theory drawn from two main sources:

"Sensemaking" by Karl Weick et al.

"Systems Safety" by Nancy Leveson et al.

Reactions and results
17 students enrolled in 2021

33 in 2022

31 in 2024

24 women, 19 from underrepresented groups

Three drops, two incompletes (so far)

Grades tightly clustered around B+/A-

Qualitative open-form feedback (2021/2022):

11 said "best" or "favorite" class ever, or tied for
best/favorite class ever

6 said "increased problem-solving confidence," 5 of
these were women

Negative comments were about workload (all
would prefer less), and balance of time spent on
various topics (no clear trend)

Behind-the-scenes work for instructor
Challenging to keep up with
fast-mutating AWS and SaaS services

Challenging to troubleshoot oddball
corners of system behavior that you
would have never gotten into on your
own

Must build and operate the synthetic
load testing, availability monitoring,
etc. (this must be at least an order more
reliable than the students!)

Watch closely for problematic team
dynamics

Stereotypical gender roles present
immediately

Aside: DevOps or SRE?
SRE: Google 2003, The SRE Book 2016

DevOps: 2009, more of a deliberate
coordinated push ("DevOpsDays")

Practical differences are few, I don't
think they matter for our purposes

DevOps tends to start with "how can
we make our programmers more
productive"

SRE tends to start with "how can we
make this system more reliable"

One perspective: SRE is "intolerance of
poorly performing systems" plus
"intolerance of rote repetition in human
work"

Future is uncertain
Materials available on request, but:

Instructors that can teach this are rarely
found in academia

Host institutions usually require
academic credentials

Probably running the last class at
Pomona right now

Hope to gather data from first two
cohorts at 3-5 years post-graduation

Could be adapted for corporate or
government settings?

Questions

