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Large systems are built with clean abstractions

leader

follower

follower
a distributed service

pid2

pid3

pid1

1. Abstract away the messy code 
into uniform “nodes”/processes 

2. Model assorted 
interactions as 

clean messages 
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pid1

But software in practice is not “clean” 

pid1

Background tasks

I/O workers

Protocol related workers

Local operators

Request workers

233 live threads

4
What appears “alive” may be experiencing serious issues 



Rise of gray failures

A component appears to be working but is broken
- Occur across software and hardware stack

- A wide variety of subtle symptoms and root causes
• e.g., exception, zombie thread, thrashing, flaky I/O, random packet loss, silent corruption

Huang et al., HotOS ‘17

Gunawi et al., FAST ‘18

Hochschild et al., HotOS ‘21
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Case 1: Distributed storage service

Extent Nodes (EN)

Stream 
Manager

EN1 EN2 EN3 EN4 EN5 …

Front End Front End Front End

low free blocks

EN1,EN2,EN3 
healthy
EN3 is 
down

EN2,EN3,EN4 
healthy
EN3 is 
down
EN3 is 

broken

crash

write

reboot
remove

re-replication,
fragmentation
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Case 2: Distributed coordination service

Follower Follower Follower FollowerLeader

Heartbeat Heartbeat

Propose

Ack

Commit

Propose

Ack

Commit

CREATE

CREATE

WRITE

READ

[zk: leader(CONNECTED)] ruok

ZooKeeper cluster

No leader re-election was triggered!

imok

client
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Failure root cause

Leader

Request
Processor Serialize Heartbeat

Stuck due to transient network issue
synchronized (node) {

output.writeString(path, "path");
output.writeRecord(node, "node");

}
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https://www.usenix.org/conference/srecon16/program/presentation/nadolny

https://www.usenix.org/conference/srecon16/program/presentation/nadolny


The many faces of gray failure

A performance issue.

A Heisenbug, sometimes it occurs and sometimes it does not.

The system is failing slowly, e.g., memory leak.

An increasing number of transient errors in the system, which 
results in reduced system capacity.

……
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System Core

System

An abstract model

Observer

Reactor

App1 App2 App3

probe

report

• distributed storage system
• IaaS platform
• data center network
• search engine
• … 

web app analytics user/operator

…Appn

system2

Note: these are logical entities

Fault-tolerant
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Key trait of gray failure: differential observability

observations

System Core

System

Observer

Reactor

App1 App2 App3

probe

report

Appn

web app analytics operatorsystem2

A Fault-tolerant

[HotOS  ‘17]
different entities come into different conclusions 

about whether a system is working or not

All apps deem 
system good

Appi deems 
system bad

observer deems 
system good
observer deems 
system bad

gray 
failure!

❷❶

❸ ❹

crash
healthy or w/ 

latent fault

fault tolerance at play

observations
≠
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Take-away principles:

1. Close the observation gap
• Nines/heartbeats are not enough 
• Multi-dimensional signals 

observations

System CoreObserver

Reactor

App1 App2 App3

probe

report

Appn

web app analytics operatorsystem2

observations
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Take-away principles:

1. Close the observation gap
2. Approximate application view

• Infeasible to eliminate differential observability 
due to multi-tenancy and modularity constraints

• Use approximate measurements
observations

System CoreObserver

Reactor

App1 App2 App3

probe

report

Appn

web app analytics operatorsystem2

observations
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Take-away principles:

1. Close the observation gap
2. Approximate application view
3. Leverage the power of scale

• Individual component only has a partial view
• Break isolated observations
• Address “blame game” observations

System CoreObserver

Reactor

App1 App2 App3

probe

report

Appn

web app analytics operatorsystem2

observations
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Take-away principles:

1. Close the observation gap
2. Approximate application view
3. Leverage the power of scale
4. Harness the temporal patterns

• Evolution of gray failures over time
observations

System CoreObserver

Reactor

App1 App2 App3

probe

report

Appn

web app analytics operatorsystem2

observations
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System approach to address 
gray failures
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Provider

Manager

Failure
Detector

Requester

Control Path

Data Path

Insight: detect what the requesters see  

Requester

Requester

Monitoring 
Service

heartb
eat

process_id

CPU usage

Mem Usage

Max Latency

…
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A new approach: in-situ observers

Any system component can directly act 
as an in-situ observer 

- during its execution, gather evidence about 
other components in situ 

void syncWithLeader(long newLeaderZxid) { 
   try {
        deserializeSnapshot(leaderIs); 
        String sig = leaderIs.read("signature");
        if (!sig.equals("BenWasHere")) 
            throw new IOException("Bad signature"); 
        } else { 
            LOG.error("Unexpected leader packet."); 
            System.exit(13); 
        } 
    catch (IOException e) { 
        LOG.warn("Exception sync with leader", e); 
        sock.close(); 
    }
}

FollowerLeader

Challenge: modularity principle
- a component has incentives to handle 

others’ errors, but may not for reporting

- need automated method to capture 
observations from existing code
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Panorama: capturing system observability
...
void func() {

try {
sync(t);

} catch (RemoteError e) {
LOG.error(e);
retry();

}
}
...

Software

Static analysis

instrumentation

[OSDI ’18]

In-situ observer

...
void func() {
try {
sync(t);

} catch (RemoteError e) {
    report_observation(t, e);

LOG.error(e);
retry();

}
}
...

+

+

+

§ A tool to convert a program into an observer

§ Uniform observation abstractions

§ A generic failure detection service for any 
component to participate

ObserverContext Subject

SubmitReport(subject, 
observation, context)

Component A

Panorama instance

Component B

Online

exchange 
observations

rpc
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Convert component into in-situ observer

Goal: find instructions in a program that can potentially 
provide error evidence about other programs

Challenge: such instructions are scattered in the source code

identify the observer and 
the subject

Step 2
extract observation 

point (ob-point)

Step 3Step 1
locate boundary-crossing 

calls (ob-boundary)

Program analysis to systematically instrument observation hooks
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Detecting the ZooKeeper gray failure

client view

failure starts failure clears
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Latency overhead to observers
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Report ReportAsync Judge Propagate

114.6 μs 0.36 μs 109.0 μs 776.3 μs

local RPC library call RPC

main overhead perceived 
by the in-situ observer



Case Studies: How Microsoft 
Azure Core AIOps Applies the 

Differential Observability Model

4 case studies to demonstrate the 4 principles in differential 
observability model  
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AIOps for Azure Core Infra Quality & Customer 
Experience

Quality & Customer experience related AIOps projects in Compute

AI for Systems
- VM Pre-provisioning: Prediction + optimization) WWW ’23, IJCAI ‘20
- Host resilience [Deep Learning + Multi-bandit] OSDI '20
- Disk/Memory Failure Prediction [Deep Learning + Assembly Tree] OSDI ’22
- Spot VM Harvest optimization  [Prediction + optimization] AAAI ‘21
- ….

AI for DevOps: Regression prevention and monitoring
- Safe Deployment and Change Management NSDI ’20, ICSE ‘23
- Anomaly Detection + Correlation KDD ‘21
- Host health governance [Anomaly Detection + Correlation] OSDI ’22
- Pre-production: Graph theory-based experiment design + A/B comparison
- ….

AI for Customers
- LLM and Chatbot
- Self-Help Recommendation Systems
- …

Customers

Engineering

Services

Integrating AI into how we build 
and operate Azure

AI
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Apply Differential Observability Model in Azure: 
From Data to Actions

25

Data
• Service
• System
• DevOps process

Insights
• Detect
• Diagnose
• Predict
• Optimize

Actions
• Mitigate/Resolve
• Avert future pain
• Optimize resource allocation
• Improve architecture & process
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Heterogenous systems 
in hyperscale bring 
complexity in detection

• Microsoft Azure has 62 + 
regions and 200+ 
datacenters globally

• Complex interactions 
between agents in 
different cloud levels

• Need careful design on 
applying differential 
observability model in 
hyper-scale system
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Azure Resource manager 

Compute resource 
provider

Regional network 
manager

USLB

Tenant 
Manager

Datacenter 
Manager

Nwk service 
Manager

Cluster Directory

Service
SLB

Tenant Manager 
Agent

Datacenter 
Manager Agent Network Agent Load balancer 

Agent

NRP is pass-
through

RNM gets info 
from TM

RNM makes 
network object 
updates

NSM pushes 
CA:PA mappings 
to RDS

CDS pulls 
from RDS

SLB finds its 
VIP ranges 
from USLB

SLBHP is 
configured 
with SLB 
endpoint

LBProgrammingNetwork 
Programming

NMAgent pulls 
from CDS

Allocate Network 
Resources

Send goal stateSend goal stateSend goal state

Global

Regional

Cluster

Node

Network resource 
provider

Regional Directory 
Service

Host/Guest OS

Azure Kubernetes Service Azure OpenAI Services Virtual Machines ….

Request 
Network 
Resources

Workloads
Web services, IOT, ML,

Microservices, Serverless…



Closing the Observation Gap

Case Study 1: Applying Closing Observation Gap Principle in 
Guest and Host Insights Analysis
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Closing the Observation Gap: Incorporating 
Guest VM Insights into Host Infra Monitoring

• Traditional monitoring in cloud provider is usually 
heavily focusing on infra side.

• Service Owner is responsible for service monitoring 
(e.g. Cassandra service has long read/write delay)

• Blame game between service Issue and host Issue

q Time to mitigate for customer support tickets
q Time to recover SLI/SLO regressions
q Hard to ensure zero workload impacts on infra 

changes
q Hard to meet the diverse workload SLI/SLO 

requirements



Closing the Observation Gap: Incorporating Guest Insights into 
Host Health Assessment and Diagnosis
• Empower workload owners to report the guest impacts: Azure Impact Reporting REST API | Microsoft Learn
• Run mission critical synthetics workload to understand the workload patterns

Host Failures Correlation Engines Change Correlation  Management System

Node Issue Mitigations Stop bad rollouts

Data

Detect and 
Insights

actions

Synthetics Internal External

Customer Impact Reporting

Impact enrichment and Cleanup 

Report Impacts Send back Diagnosis

https://learn.microsoft.com/en-us/rest/api/impact/?view=rest-impact-2023-02-01-preview


Approximate 
Application view

Case Study 2: Applying Approximate Application View 
Principle to Approximate Guest Impacts with Host Impacts

33



Approximating Customer Impacts based on host impact 
measurement.
Guest Insights data may not always be available
• Compliance and security issues
• High resource consumption for collection certain telemetries  

Guest

Host

Host Impactful deployment 
cause network freeze 

[Measurable in dev team]

Service Read/write timeout

34

Approximating 
Customer impacts from 

host measurement



Harnessing temporal 
patterns

Case Study 3: Applying Harnessing Temporal Patterns 
Principle in Memory Leak Detection
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Memory leak is notorious in cloud and cause gray failures

36

code 
changes

OS kernel

…

…
service processes

device drivers

host software components

performance 
degradation

host reboot

VM allocations 
denied



Challenges of leak detection in cloud 

Noisy signals from environment
- many different workloads in the cloud with dynamic characteristics
- easily incur false positives 

Slow leaks in long-running services
- memory leaks often last over days or weeks
- need to identify gradual changes

Large profiling data volumes
- need to analyze >10 TB memory usage data daily

37



Why is leak detection still challenging in cloud?

Extensive work in memory leak detection
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Practice 1: static approach
- statically analyze the source code
- no runtime overhead

Limitations
- inaccurate and not scalable to large 

systems

Practice 2: dynamic approach
- instrument programs and track the 

object lifetime at runtime
- more accurate

Limitations
- intrusive and high overhead

Hard trade-offs among accuracy, overhead, and scalability



RESIN: exploiting temporal patterns

Insight 1:
- separate detection and pinpointing 

problems
- decompose detection to multi-stages

Insight 2:
- a centralized approach for all components
- leverage temporal patterns at scale to 

improve accuracy

Achieve high accuracy, scalability, and 
low overhead

39

[OSDI  ‘22]

lightweight 
detection

Zoom-in
+

in-depth 
inspections

RESIN



Bucket-based pivot 
analysis

Individual proc. 
analysis Reference builder

Pattern-based 
snapshot collector

Snapshot analysis

detection diagnosis mitigation

...

leaking alert

Impact-minimized
decision maker

diagnosis report

Overview of RESIN
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Bucket-based pivot analysis

Each bucket is a collection of hosts with memory usage in a same range
- bucketization is done per component
- e.g., 50MB-bucket includes hosts running firewall services with usage 50MB-100MB

Insight: monitor trend of bucket size instead of individual component usage
- robust to tolerate noises due to workload effect (challenge 1) 
- scalable to large clusters with massive hosts (challenge 3) 

41

Time
stamp ImageName Cluster NodeId PID Private

Usage …

t1 firewall.exe NorthUS-1da 9das-sax1 254 2,334,720

t1 firewall.exe NorthUS-9lp 9das-yq0c 979 90,413,12
0

t1 firewall.exe Asia-b2 o1oz-bg75 1375 170,341,3
11

t1 … …

50 MB 100 MB 200 MB 2 GB

…t1

buckets of firewall.exe



Bucket-based pivot analysis

Run anomaly detection against time series of bucket size
- data points that exceed the μ + 3σ 1 of the baseline data are anomaly

42

…

… … … …

… … … …

…

…

alerting bucket!

[1] mean and standard deviation of the distribution

50 MB 100 MB 200 MB 2 GB

baseline

test μ μ+3σ
per-bucket normal 
distribution
model

t1

t2

t3

outlier means the 
component is leaking!



Second-stage detection: live heap snapshots

RESIN diagnoses leaks by capturing heap snapshot traces
- wait for leak allocation happens again to trigger completion
- differentiate snapshots before and after memory leak allocation

43

tracing start

Alloc
Addr

Stack
Id Size RefCount

0x80000 1 64 2

Alloc
Addr

Stack
Id Size RefCount

0x80000 1 64 2
0x90000 1 128 1

Alloc
Addr

Stack
Id Size RefCount

0x80000 1 64 2

0x90000 1 128 1

0xf0000 2 32 2

leak



RESIN deployment status and scale

Running in Azure production since late 2018
- cover millions of hosts
- detect leaks for 600+ host processes
- detect leaks for 800+ kernel pool tags
- the detection engine analyzes more than 10 TB memory usage data daily
- the diagnosis module collects 56 traces on average daily
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How effective is RESIN?

VM reboots reduced by 41x
- average number of reboots per 100,000 hosts per day due to low memory

VM allocation errors reduced by 10x
- ratio of erroneous VM allocation requests due to low memory

45* data is normalized



Leveraging the power of 
scale

Case Study 4: Safe Deployment

46



Why is safe deployment challenging?

Azure Resource manager

Compute resource 
provider

Regional network 
manager USLB

Tenant 
Manager

Datacenter 
Manager

Nework service 
Manager

Cluster Directory
Service SLB

Tenant Manager 
Agent

Datacenter 
Manager Agent Network Agent Load balancer 

Agent

Global

Regional

Cluster

Node

Network resource 
provider

Regional Directory 
Service

Host/Guest OS

Operation 
failures/timeout

OS Crash, Node 
Reboot, Agent Crash
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Existing practice: pre-qualification test and safe 
deployment policy

• Gradual rollout 
• Manual go/nogo decision after baking at each step needed

Stage/Test Pilot/HW 
Diversity

Light 
Region

Medium 
Region

Heavy 
Region

B1 B2 B3 Bn

Canary

A1 A2 A3 An

Different Hardware SKU, HostOS 
version, BIOS, workload and etc.
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Cluster/Component 
Level Watchdog

Cluster/Component 
Level Watchdog

Cluster/Component 
Level Watchdog

Rollout is stopped at cluster level with failures observed from over x nodes

Existing practice: local watchdog

• Threshold-based anomaly detection model
• Cannot detect global issues that are minor in each cluster but severe across the 

fleet
• Cannot detect latent failures
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Cluster/Component 
Level Watchdog

Cluster/Component 
Level Watchdog

Cluster/Component 
Level Watchdog

• Threshold-based anomaly detection at cluster level
• Cannot detect issues that are minor in each cluster but severe across the fleet
• Cannot detect latent failures
• If multiple rollouts happened at the same time, it will randomly blame

Existing practice: local watchdog
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Design Goals

Pre-Qualification Test

Safe Deployment 
Policy

• Take advantage of the differential observations 
across large scale of the cloud system
• A deployment of an agent take weeks to go over the 

regions cluster by clusters
• Different agents landed on a cluster at different time

• Make go/nogo decision recommendations for 
auto-stop and reduce the baking time

Global and Intelligent 
Watchdog

Local Watchdog
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• Blamed Component
• Fault Signature

Binary decision + 
supporting evidence

Feature extraction

Decision process: Assess the 
customer impacts of the blamed 
components and failures

Ensemble 
Voting

Anomaly 
Detection

Spatial & Temporal 
Correlation

• All failure events
• All update events

Exponential 
Decaying

Correlation process: Identify 
which rollouts are suspicious

Overview of the Model
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[Gandalf: NSDI  ‘20]



Percentage of 
issues detected in 
each 
environment. 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Stage Canary Pilot Prod
Pe

rc
en

ta
ge

 o
f I

nc
id

en
ts
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Open challenges: hyperscale

Cascading effect and 
heterogeneity

• Complex 
dependencies 
across many layers

• Different VM types, 
h/w SKUs, s/w 
versions, workloads, 
etc. à different 
baselines of normal 
behavior 

Right logs at right 
time

• Identify the right 
telemetry for 
logging

• Large volume of 
data across 
millions of VMs

• Various logging 
conventions in 
different h/w and 
s/w components

Preventive 
measure

• Prevent gray 
failures 

• Risk management 
and change 
management

• Integrate 
differential 
observation model 
in testing

Noisy neighbors in 
shared tenant

• Identify the noisy 
neighbors

• Issue isolation
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Conclusions

Key trait of gray failures is differential observability

No single silver bullet

Four principles
- Close the observation gap
- Approximate application view
- Leverage the power of scale
- Harness the temporal patterns

Require both system and data-driven approaches ryanph@umich.edu
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