
@@export_scripts@@

Queues and You:
System Performance
and Queueing Theory

Jeff Poole

Vivint Smart Home / NRG Energy

@@export_scripts@@

AKA
How an engineer can

learn something useful
in business school

@@export_scripts@@

Who am I?

Jeff Poole

Twitter/X
LinkedIn

@_JeffPoole

linkedin.com/in/jeffpoole0

Background:

Hobbies:

hardware (FPGAs)–

software (Java, Python, Go)–

operations (Kubernetes, datacenters, networking)–

cycling–

skiing–

collecting certifications–

proposing talks on topics I don't understand–

I currently manage teams that write
our core back-end software
functionality and manage our
infrastructure at Vivint.

https://twitter.com/_JeffPoole
https://www.linkedin.com/in/jeffpoole0

@@export_scripts@@

Why The Focus?

@@export_scripts@@

Queueing
Theory

@@export_scripts@@

Queueing
Theory

Queueing theory is

all about the

behavior of work

getting done, when

work may have to

wait (be queued)

before getting

processed.

@@export_scripts@@

Queueing Theory

Photo by on carlos aranda Unsplash

https://unsplash.com/@carlosaranda?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/white-sedan-on-road-during-daytime-QMjCzOGeglA?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

@@export_scripts@@

Queueing Theory

Photo by Tima Miroshnichenko

https://www.pexels.com/photo/people-working-in-call-center-office-5453824/

@@export_scripts@@

Queueing Theory

' ' by TSA Thomas Hawk

https://www.flickr.com/photos/51035555243@N01/24534168108
https://www.flickr.com/photos/51035555243@N01

@@export_scripts@@

@@export_scripts@@

Queueing Theory

What Is Linux Load Average?

Linux load average is a metric

that shows the number of tasks

currently executed by the CPU

and tasks waiting in the queue. 1

from 1. https://phoenixnap.com/kb/linux-average-load

file:///Users/jeff.poole/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fn1
https://phoenixnap.com/kb/linux-average-load
file:///Users/jeff.poole/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fnr1

@@export_scripts@@

Queueing Theory

iostat output

Device r/s w/s rkB/s wkB/s

rrqm/s wrqm/s %rrqm %wrqm r_await

w_await aqu-sz rareq-sz wareq-sz svctm

%util

sda 1.84 16.69 45.12 230.12

1.08 21.73 37.02 56.55 26.12

3.06 0.02 24.52 13.78 0.80

1.48

sdb 167.74 32.02 2061.01

575.14 0.39 0.90 0.23 2.73

0.14 1.58 0.05 12.29 17.96

0.12 2.47

rqm/s (and rrqm/s and wrqm/s)
The number of I/O requests merged per
second that were queued to the device.

await (and r_await and w_await)
The average time (in milliseconds) for I/O
requests issued to the device to be served.
This includes the time spent by the
requests in queue and the time spent
servicing them.

aqu-sz

The average queue length of the requests
that were issued to the device.

%util

Percentage of elapsed time during which
I/O requests were issued to the device
(bandwidth utilization for the device).
Device saturation occurs when this value
is close to 100% for devices serving
requests serially.

@@export_scripts@@

Queueing
Theory Basics

@@export_scripts@@

Queueing Theory
Basics

@@export_scripts@@

Queueing Theory
Basics

@@export_scripts@@

Queueing Theory
Basics

@@export_scripts@@

Queueing Theory
Basics

@@export_scripts@@

Queueing Theory
Basics

@@export_scripts@@

Queueing Theory
Basics

@@export_scripts@@

Little's Law - two forms

If you want to find the relationship between queue length and residence time:

If you want to find the relationship between utilization and service time:

Average Queue Length = Average Arrival Rate ∗ Average Residence Time

Q = λR

Utilization = Average Arrival Rate ∗ Average Service Time

ρ = λS

@@export_scripts@@

Capacity and
Utilization

@@export_scripts@@

A Simple Model - 80% utilization

(link to gif)

http://jeffpoole.net/SREConNA2024/out-frm_1000_800_false_false.gif

@@export_scripts@@

Oh no, variability in arrivals!

(link to gif)

http://jeffpoole.net/SREConNA2024/out-frm_500_400_true_false-accel.gif

@@export_scripts@@

Let's try variable service time!

(link to gif)

http://jeffpoole.net/SREConNA2024/out-frm_500_400_false_true-accel.gif

@@export_scripts@@

Variable service AND arrival time!

(link to gif)

http://jeffpoole.net/SREConNA2024/frames_500_400_true_true_accel.gif

@@export_scripts@@

Variability in either
arrival time OR in service
time can cause queueing

in a system that has
enough capacity for the

work
...and most systems have variability

in both.

@@export_scripts@@

Equation for time in queue for a single resource

Note: Coefficient of Variation (CV) of a distribution is the standard deviation divided by the mean

().

Time in Queue = Service Time ∗ ∗(
1 − Utilization

Utilization) (
2

CV + CVarrivals
2

service
2)

W = S ∗ ∗(
1 − ρ

ρ) (
2

CV + CV
arrival

2
service
2)

CV = σ/μ

@@export_scripts@@

Equation for time in queue for a single resource

Note: Coefficient of Variation (CV) of a distribution is the standard deviation divided by the mean (

).

Time in Queue = Service Time ∗ ∗

How busy

(
1 − Utilization

Utilization)
How variable

(
2

CV + CVarrivals
2

service
2)

W = S ∗ ∗

How busy

(
1 − ρ

ρ)
How variable

(
2

CV + CV
arrival

2
service
2)

CV = σ/μ

@@export_scripts@@

Equation for time in queue (NO variability)

No variability

Time in Queue = Service Time ∗ ∗(
1 − Utilization

Utilization) =(
2

0 + 02 2) 0

W = S ∗ ∗(
1 − ρ

ρ) =(
2

0 + 02 2) 0

→CV = 0→ time in queue (W) = 0

@@export_scripts@@

Equation for time in queue (exponential
distributions)

Exponential distribution

Time in Queue = Service Time ∗ (
1 − Utilization

Utilization)

W = S ∗ (
1 − ρ

ρ)

→CV = 1→
time in queue (W) = S ∗ 1−ρ

ρ

@@export_scripts@@

How does
utilization affect

latency?

@@export_scripts@@

@@export_scripts@@

@@export_scripts@@

@@export_scripts@@

Guideline: Every time the
idle time gets cut in half,
the expected residence

time doubles.
When the idle time went from 50% to 25%

(utilization went from 50% to 75%), the expected

residence time went from 2 times the service time

to 4 times the service time.

@@export_scripts@@

@@export_scripts@@

@@export_scripts@@

Guideline for estimating 80th,
90th, and 95th percentiles

Percentile Formula from Mean

80% Residence time ∗
3

5 Mean residence time

90% Residence time ∗
3

7
Mean residence time

95% Residence time ∗
3

9
Mean residence time

@@export_scripts@@

@@export_scripts@@

@@export_scripts@@

@@export_scripts@@

Looking at our earlier

data for 80% utilization

and variable arrival and

service times

The chart on top

predicts an average wait

time of 4X service time

and a 95% wait time of

14X service time

The chart on the bottom

looks pretty close (~4X

and ~13X)

@@export_scripts@@

Quick reference table

Utilization Mean residence time 95% residence time

0% 1S 1S

50% 2S 6S

75% 4S 12S

90% 10S 30S

@@export_scripts@@

One queue per
server or one
queue for ALL
servers?

Which is better?

@@export_scripts@@

Two queues, two servers

There is no need to simulate two servers,

each with their own queue.

We can just use our data from before for

a single server/queue pair and pretend

there were two of them

@@export_scripts@@

One queue, two servers

(link to gif)

http://jeffpoole.net/SREConNA2024/frames_2s_250_400_true_true_accel.gif

@@export_scripts@@

Multiple servers (approximate formula)

 - average waiting time

 - average service time

 - number of servers

 - utilization

W = ∗

m

S
∗

How busy

(
1 − ρ

ρ
−12(m+1))

How variable

(
2

CV + CV
arrival

2
service
2)

W

S

m

ρ

@@export_scripts@@

Multiple servers (approximate formula)

For servers:

For one server:

m

W = ∗

m

S
∗

How busy

(
1 − ρ

ρ
−12(m+1))

How variable

(
2

CV + CV
arrival

2
service
2)

W = S ∗ ∗

How busy

(
1 − ρ

ρ)
How variable

(
2

CV + CV
arrival

2
service
2)

@@export_scripts@@

Multiple servers (approximate formula)

For servers:

For one server:

m

W = ∗

m

S

How busy

(
1 − ρ

ρ
−12(m+1))

W = S ∗

How busy

(
1 − ρ

ρ)

@@export_scripts@@

Multiple servers

@@export_scripts@@

Practical
Applications

@@export_scripts@@

Practical Applications
Disclaimer: Just about everything

practical is an approximation.

@@export_scripts@@

uWSGI Behind a Load Balancer

Each uWSGI process runs several Python

processes and has it's own internal

request queue

@@export_scripts@@

uWSGI Behind a Load Balancer

How many uWSGI instances should be run,

versus how many processes run behind

each?

@@export_scripts@@

Load averages, CPU usage, and latency

Remember this?

Think of the bottom axis as your % busy CPU. You can be "only"

using 80% of your CPU, and still see latency climbing. If you

approach 100%, latency goes to infinity (not good).

Guideline: Stay below 80% CPU usage. Lower if you are latency

sensitive. <50% if you are VERY latency sensitive.

@@export_scripts@@

This database server looks neat

@@export_scripts@@

This database server looks neat

@@export_scripts@@

This database server looks neat

@@export_scripts@@

Prometheus queries used (MongoDB exporter)

Average query latency

sum(rate(mongodb_ss_opLatencies_latency{op_type="reads"}[1m])) by

(instance) /

sum(rate(mongodb_ss_opLatencies_ops{op_type="reads"}[1m])) by

(instance)

Query rate

sum(rate(mongodb_ss_opLatencies_ops{op_type="reads"}[1m])) by

(instance)

CPU Utilization

1-(sum(rate(mongodb_sys_cpu_idle_ms[1m])) by (instance) /

(1000*sum(mongodb_sys_cpu_num_cpus) by (instance)))

@@export_scripts@@

Other approaches

You can build a full queueing model of

your system.

This is what does– PDQ

Neil Gunther has a book on this

"All models are wrong, but

some are useful"

–

http://www.perfdynamics.com/Tools/PDQ.html

@@export_scripts@@

Other approaches

You can try to model your system with the Universal Scaling Law

Originally developed by...Neil Gunther. He also has a book on

this.

–

Accounts for the fact that most systems have some non-

parallelizable work that prevents them from scaling linearly

(Amdahl's Law - in the equation) and there is often some

coordination penalty that can make the system get slower if you

scale it past a certain point (in the equation). is the

throughput at a given load, .

–

α

β X(N)
N

X(N) =
1 + α(N − 1) + βN(N − 1)

γN

@@export_scripts@@

Guideline Summary

Every time the idle time gets cut
in half, the expected residence
time doubles.

Stay below 80% CPU usage.
Lower if you are latency
sensitive. <50% if you are VERY
latency sensitive.

Increasing variability makes the
utilization/latency graph get
worse faster. More servers off
one queue makes it stay good
longer.

Guidelines for residence time from utilization

in a single-server system with exponential

arrival and service time

Utilization Mean residence time 95% residence time

0% 1S 1S

50% 2S 6S

75% 4S 12S

90% 10S 30S

Guideline for estimating 80th, 90th, and 95th

percentiles

Percentile Formula from Mean

80% Residence time ∗
3

5 Mean residence time

90% Residence time ∗
3

7 Mean residence time

95% Residence time ∗
3

9 Mean residence time

@@export_scripts@@

Other resources
Book: - Neil J. Gunther

Book: - Neil J. Gunther

Performance Dynamics -

Analyzing Computer System Performance with Perl::PDQ

Guerrilla Capacity Planning

perfdynamics.com

Talk: -

Eban Freeman - USENIX LISA17

Talk: - Baron Schwartz -

USENIX LISA17

Queueing Theory in Practice: Performance Modeling for the Working Engineer

Scalability Is Quantifiable: The Universal Scalability Law

http://www.perfdynamics.com/iBook/ppa_new.html
http://www.perfdynamics.com/iBook/gcap.html
http://www.perfdynamics.com/
https://www.usenix.org/conference/lisa17/conference-program/presentation/freeman
https://www.usenix.org/conference/lisa17/conference-program/presentation/schwartz

