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Abstract

Online sales of counterfeit or unauthorized products
drive a robust underground advertising industry that in-
cludes email spam, “black hat” search engine optimiza-
tion, forum abuse and so on. Virtually everyone has en-
countered enticements to purchase drugs, prescription-
free, from an online “Canadian Pharmacy.” However,
even though such sites are clearly economically moti-
vated, the shape of the underlying business enterprise
is not well understood precisely because it is “under-
ground.” In this paper we exploit a rare opportunity to
view three such organizations—the GlavMed, Spamlt
and RX-Promotion pharmaceutical affiliate programs—
from the inside. Using “ground truth” data sets includ-
ing four years of raw transaction logs covering over $185
million in sales, we provide an in-depth empirical anal-
ysis of worldwide consumer demand, the key role of in-
dependent third-party advertisers, and a detailed cost ac-
counting of the overall business model.

1 Introduction

Much like the legitimate Internet economy, advertising
is a major driver for the “underground” criminal econ-
omy as well. For all their variety, spam, search-engine
abuse, forum spam and social spam—as well as the bot-
nets, fast-flux networks and other technical infrastruc-
ture that enable these activities—are all simply low-cost
advertising platforms that monetize latent consumer de-
mand. Consequently, an emerging research agenda has
developed around understanding the economic structure
of these businesses, both to understand the scope and
drivers for the problem [8, 9, 13], as well as to help pri-
oritize interventions [14, 15]. Unfortunately, while clever
inference and estimation techniques can illuminate a few
of the key questions, much remains unclear. This is be-
cause, as a rule, there is little “ground truth” data in the
field for either validating such results or to provide finer-
grained analytics that can be obtained via inference.
This paper provides a rare counter-point to this rule.
Under a variety of serendipitous circumstances (largely

*Department of Computer Science and Engineering

University of California, San Diego
iKrebsOnSecurily. com

driven by competition between criminal organizations),
a broad corpus of ground truth data has become avail-
able. In particular, in this paper we analyze the content
and implications of low-level databases and transactional
metadata describing years of activity at the GlavMed,
Spamlt and RX-Promotion pharmaceutical affiliate pro-
grams. By examining hundreds of thousands of orders,
comprising a settled revenue totaling over US$185M,
we are able to provide comprehensive documentation on
three key aspects of underground advertising activity:

Customers. We provide detailed analysis on the con-
sumer demand for Internet-advertised counterfeit phar-
maceuticals, covering customer demographics, product
selection (including an examination of drug abuse as a
driver), reorder rates and market saturation.

Advertisers. We quantitatively detail the role of third-
party affiliate advertisers (both email/forum spammers
and SEO-based advertisers), the dynamics of their labor
market, their ability to drive revenue and the distribution
of their commission income. This analysis includes the
operators of many of the best-known botnets including
MegaD, Grum, Rustock and Storm, and we document in-
dividual advertisers generating over $10M in sales.

Sponsors. We derive an empirical revenue and cost
model, including both direct costs (sales commissions,
supply, payment processing) and indirect costs (hosting,
domain registration, program advertisements). We also
provide insight and validation about the most significant
overheads for the operators of such programs.

This is an unusual research paper. We introduce no
new artifact, we develop no new inference technique,
we deploy no new measurement infrastructure. We do
none of these things because we don’t need to; we
have the actual data sets that we would otherwise try
to measure, infer or estimate. Thus, while there are sig-
nificant methodological challenges that we must over-
come (mainly around the forensic reverse engineering
of database schemas and their semantics), ultimately the
contribution of this paper is in its results. However, we
believe these are both unique and significant, with impli-
cations for best addressing this variety of Internet abuse.

USENIX Association
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2 Background

Abusive Internet advertising has existed virtually as long
as the Internet itself. In addition to well-defined adver-
tising channels such as sponsored search [11, 12], rogue
advertisers make use of a broad range of vectors to at-
tract customer traffic including email spam [1, 6, 14, 17],
search engine manipulation [7, 13, 23], forums and blog
spam [19, 24] as well as online social networks [4, 22].
Due to pressure against these tactics, few legitimate mer-
chants will engage such advertisers and thus rogue adver-
tising and rogue products tend to go hand in hand. For
example, in one recent report on email spam, Syman-
tec estimated that 80% of all such messages shilled for
“prescription-free” pharmaceuticals [21].

However, the structure of this activity has changed sig-
nificantly over the last decade. In particular, market spe-
cialization has largely eliminated the independent “soup-
to-nuts” advertiser who previously handled the entirety
of the sale process [16]. Instead the rise of the affil-
iate program, or “partnerka”, model has separated the
role of the advertiser, paid on commission to attract cus-
tomer traffic, from the sponsor who in turn handles Web
site design, payment processing, customer service and
fulfillment [18]. This evolution is not unique to abu-
sive advertising; indeed, large legitimate merchants such
as Amazon also sponsor affiliate programs as a means
of advertising. However, it has been deeply internalized
within the underground ecosystem including the pay-per-
install [3], FakeAV [20], pornography [25], pharmaceuti-
cals [2], herbal supplements [14], replica [14] and coun-
terfeit software markets [9], among others.

Counterfeit pharmaceuticals represent a typical ex-
ample. Here a range of sponsoring affiliate programs
provide drugstore storefronts, drug fulfillment (typically
via drop shipping from India), payment processing, cus-
tomer service and so on. Independent advertisers, or af-
filiates, in turn promote the program (e.g., by using bot-
nets to send spam email or manipulating search engine
results) and are paid a commission on each sale that re-
sults from a click on one of their ads. Commissions range
from 30%—-40% of gross revenue, typically paid via a
quasi-anonymous online money transfer service such as
WebMoney or Liberty Reserve.

This business model has two key advantages for the
advertiser: focus and mobility. Without needing to at-
tend to issues such as Web site design, payment pro-
cessing, customer service, fulfillment and so on, the ad-
vertiser is free to focus single-mindedly on the task of
attracting customer traffic to these sites. Indeed, this
functional specialization has supported the creation of
ever more sophisticated botnets for email delivery or
“black hat” search engine optimization, and many of the
largest botnets are directly involved in advertising the
programs in this paper (Rustock, MegaD, Grum, Cut-

wail, Storm, Waledac and others). The second advantage
of this model, mobility, is that the loosely coupled nature
of their relationship with affiliate programs allows an ad-
vertiser to switch programs at will (or even support mul-
tiple programs at once). This low “switching cost” pro-
vides bargaining power for the effective advertiser (in-
deed, we witness high-sales advertisers able to use this
threat to drive higher commissions). More importantly,
it reduces an advertiser’s exposure to business continuity
risk. If a particular affiliate program should shut down,
advertisers can still monetize their investments (e.g., in a
botnet) by advertising for a different sponsor.

However, the benefits of this separation are strong for
the sponsoring affiliate program as well. By outsourcing
advertising they free themselves from direct exposure to
the criminal risks associated with large-scale advertising
enterprises (e.g., mass compromise of computers and on-
line accounts). Second, because advertisers are paid on a
commission basis, they also outsource “innovation risk”.
Program sponsors need not predict the best way to at-
tract customer traffic at a given point in time. Instead
hundreds of advertisers innovate independently; if many
of them fail, so be it. Since advertisers are only paid com-
missions on successful sales, a sponsor will only end up
paying for effective advertising strategies and need not
distinguish among strategies a priori.

Against this background, online pharmaceutical sales
is one of the oldest and largest affiliate program markets.
This market supports tens of affiliate programs and, as
we will see, thousands of independent advertisers (affili-
ates) and hundreds of thousands of customers. However,
while the mechanics of this business model are well-
described in recent work [2, 14, 18], the dynamics of
the actors and the underlying constants that define the
cost structure (and hence the vulnerabilities in the busi-
ness) are not well understood at all. Indeed, even simple
questions such as “How big is sales turnover?” are imper-
fectly understood. For example, Kanich et al. used one
method to estimate that the combined turnover across
seven leading pharmacy programs (constituting two-
thirds of affiliate brands advertised in spam) is roughly
86,000 orders per month [9]. However, Leontiadis et al.
use a different technique to arrive at a much larger esti-
mate suggesting over 640,000 orders per month [13].

In this paper, we answer this and many other such
questions precisely by focusing in depth on three phar-
maceutical affiliate programs: GlavMed, Spamlt and
RX-Promotion. These organizations have been in busi-
ness for five years or more. Together, they represent
many tens of storefront “brands” (including the ubiqui-
tous “Canadian Pharmacy”) and, according to the data
from our prior measurement studies, these programs
have been advertised in over a third of all spam email
messages [14].

2 21st USENIX Security Symposium
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3 Authenticity and Ethics

Our use of “found data” creates two new concerns that
we address here: authenticity and ethics.

First, it is useful to provide some rough context con-
cerning the circumstances leading to the release of these
data sets. As explained in the previous section, GlavMed
and RX-Promotion are both long-operating pharmaceu-
tical affiliate programs based in Russia. However, for a
variety of reasons, enmity developed between owners in
each program, revealed anecdotally through “sniping” on
underground forums, claims of denial-of-service attacks
and ultimately to the hacking of each other’s infrastruc-
ture sites. Perhaps inspired by the “online leak” meme,
popularized recently by Wikileaks and others, elements
of these two organizations (or parties sympathetic to
their positions) gained access to information about each
other’s operations and then made portions of this data
available: sometimes publishing very broadly on under-
ground forums and file-sharing sites, and other times dis-
tributing to a variety of journalists, e-crime researchers,
law enforcement agencies as well as a broad range of un-
derground actors.

Through these channels we obtained access to three
transactional data sets: the complete dump, covering four
years, of the GlavMed and Spamlt back-end database
(comprising transactions, payments and so on) and
a year of more restricted transactional data for the
RX-Promotion program. We also received two metadata
corpuses: detailed archived chat logs from the program
operator for sites operated by GlavMed and Spamlt, as
well as financial data concerning the revenue and cost
structure for the RX-Promotion program. For further
context and back-story about this data, we refer readers
to the “Pharma Wars” series by Brian Krebs [10].

3.1 Authenticity

Given that we did not gather the information ourselves
and the adversarial nature by which the data became
available, an obvious question is how to evaluate its accu-
racy and authenticity: how do we know that our sources
did not fake the data?

While we cannot establish clear provenance beyond
all possible doubt, we observe a range of strong sup-
porting evidence. First, we observe that the data sets are
large and detailed (over 2M sales records, with over 140
linked tables, coupled with several GB of related meta-
data). These attributes do not entirely discount the pos-
sibility that they could be grossly fraudulent, but it sug-
gests that the costs of creating such a forgery would be
significant.

Second, we consider questions of internal and cross-
consistency. The transactional data sets have complex
schemas (covering orders, potentially many payment

transactions per order, commissions to advertisers, sub-
sequent payouts, and so on) and we find direct concor-
dances between the different elements (e.g., if we sum
the settled sales for a particular affiliate it typically re-
lates directly to the size of the payout to that affiliate).
We also find concordances berween the transactional data
and the metadata. For example, we found multiple chat
logs directing a GlavMed/Spamlt employee to make a
payment to a particular affiliate that is then matched by
an identical payout record in the associated transactional
database. Similarly, the monthly revenue for shipped
products for RX-Promotion is consistent with the set-
tled revenue from its payment processor in the same pe-
riod. Finally, during the period covered by all three trans-
actional data sets we had placed multiple product or-
ders from each of the associated programs [9, 14]. We
find each and every one of our orders in the appropriate
database with the correct data.

While this evidence cannot comprehensively prove the
absence of fraud,' given the strong concordances and the
absence of any evidence supporting the forgery hypoth-
esis, we believe the greater likelihood is that these data
sets are authentic and accurate. We proceed with this as-
sumption going forward.

3.2 Ethics

The other fundamental issue concerns the ethics of us-
ing data that was, in all likelihood, gathered via illegal
means. Here there are two kinds of questions. The first
is a high-level question concerning whether the nature of
how the data was originally gathered should prima facie
proscribe all subsequent uses of it. This question is not
new and it manifests in a range of fields. For example,
should a political scientist be proscribed from analyzing
the contents of the Pentagon papers (or the more contem-
porary Wikileaks data) in reasoning about U.S. foreign
policy? Similarly, should researchers avoid using widely
publicized stolen password data (e.g., from the Anony-
mous/Lulzsec leaks) when studying the strength of user-
selected passwords? We justify our own choice to take
such steps by reasoning about harm.

We observe that this data is already broadly available
and the knowledge of its existence, its association with
the GlavMed, Spamlt and RX-Promotion organizations,
and some of the over-arching contents (e.g., total rev-
enue, etc.) have already been widely and publicly docu-
mented. Consequently, we cannot create any new harm
simply through association with these entities or repeat-
ing these findings.

To manage any remaining harms we institute a number

!For example, while we believe comprehensive forgery would have
been cost prohibitive given the size and richness of these data sets, a
forger might have selectively altered only certain records and updated
dependent schemas to be consistent.
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Program Period Affiliates Customers  Billed orders  Revenue
GlavMed Jan 2007 — Apr 2010 1,759 584,199 699,516 $81m
Spamlt Jun 2007 — Apr 2010 535,365 704,169 $92Mm
RX-Promotion  Oct 2009 — Dec 2010 59,769 — 69,446 71,294 $12m

Table 1: Summary of the affiliate program data used in the analysis. Orders are rounded to the nearest thousand, revenue to the
nearest million U.S. Dollars. Affiliates and customers are listed after de-duplication and billed orders and revenue reflect only those
orders whose payment transactions completed (both processes are described in Section 4.1).

of controls in our work focused on the individual stake-
holders. First and foremost, and in accordance with our
institution’s human subjects review process, we protect
customer confidentiality since, of all parties described in
the data, they are most vulnerable. To this end, we com-
mitted to modify the raw data sets to anonymize person-
ally identifiable customer data such as their name, ad-
dress and the PAN component of their credit card in-
formation (though in a way that we are able to asso-
ciate multiple orders from the same customer). For the
remaining stakeholders, program employees, affiliates,
suppliers and payment processors, we use a similar stan-
dard in publishing our work. In each of these cases the
persons or organizations operate using handles or code
names that are not clearly identifiable (e.g., “brainstorm”
or “gl”) without the use of additional data sources. In
some cases (e.g., payment processors, suppliers) we have
become aware of the likely true names of these orga-
nizations (typically through reading the metadata) but
we restrict ourselves to using these non-identifiable code
names since the true names do not enhance our analysis.
We do not name program employees and we typically
discuss affiliates in aggregate, with an exception being
the top affiliates whom we distinguish in this paper using
only their online handles.

4 Derived Data

Using “found data” also introduces a range of method-
ological challenges, ranging from reverse engineering
schemas to resolving ambiguities in the data. In this sec-
tion we describe the data sets (summarized in Table 1)
and explain how we derived the additional contextual re-
lations used in our analysis.

4.1 GlavMed and Spamlt

The first two data sets are PostgresSQL database dumps
of the operational databases for the GlavMed and SpamIt
programs, including all schemas, data, and trigger func-
tions, but no other code external to the database. The
GlavMed database begins November 2005 and ends
early May 2010, of which we use the period spanning
all of 2007-2009 and the first four months of 2010.2

2Since our goal is accuracy and not completeness, we purposely ex-
clude the first 14 months of the data set because it is both “poisoned”

GlavMed and Spamlt are sister programs run by the same
organization and, indeed, both use the same database
schema. In fact, it appears that Spamlt was “forked”
from the GlavMed database on June 19, 2007: all records
before that date are identical in both databases, while
records after that date are distinct. Leaked chat logs
of the program operators suggest that this split was
related to the owner’s contemporaneous acquisition of
Spamdot .biz, a popular closed spammer forum of that
period. In part through this forum, the Spamlt program
nominally catered to a select group of affiliates relying on
email and other forms of spam, while GlavMed remained
open to a broader range of advertisers who primarily ad-
vertised via search engine optimization techniques.’

A detailed description of the data and its associated
schema, consisting of over 140 tables in each database,
is outside the scope of this paper. However, we perform
most of our analysis using five tables: shop_sales de-
scribing each order, shop_transactions recording at-
tempts to bill (or refund) the order via a payment service
provider, shop_customers recording customer infor-
mation, shop_affiliates recording information about
each affiliate, and shop_affiliates_income_2 record-
ing affiliate commissions for each sale. We also relied on
instant message chat logs of the operators of GlavMed
and Spamlt to aid our understanding and validate our hy-
potheses about the meaning and use of various tables.

However, the GlavMed and Spamlt databases are fun-
damentally operational in nature, and not naturally de-
signed for the kind of broad analysis that are the goal
of this paper. Thus, we now describe the additional data
processing required to produce necessary relations (e.g.,
such as identifying unique customers).

4.1.1 Customers

In an ideal world, each customer record would represent
a unique customer and include accurate demographic in-
formation for our analysis (age, sex, and either country
or U.S. ZIP code). The reality, hardly unique to our data
set, is less obliging: In addition to many test accounts

with transactions for other kinds of products, including $500K in
counterfeit software sales, and makes inconsistent use of the database
schemas that become standard in the later portion of the date range.

3This distinction is not absolute, however; domains advertised by
GlavMed affiliates have appeared in email spam.
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used by the store operators, a large number of customer
records are generated by irate users venting their frustra-
tion with the deluge of spam advertising the program.*
Thus, for the purpose of this study, we consider only
customers who have successfully placed an order (more
specifically, those whose credit card or other payment
mechanism was successfully billed, as described later),
which reduces the number of customer records by 21%
in the GlavMed data set (from 875,457 to 690,590) and
39% in the Spamlt data set (from 1,145,521 to 693,319),
the latter clearly attracting more abuse.

De-duplication. An additional problem is that, unless
the customer uses a previously assigned customer num-
ber to explicitly log in, each repeat order would result in
a new customer record. To identify repeat customers, we
de-duplicate the remaining customer records by coalesc-
ing those whose name, billing address and email address
are identical, reducing the number of unique customers
to 584,199 in GlavMed and 535,365 in Spamlt. For ad-
dress matching, we used the common Visa/MasterCard
Address Verification System (AVS) predicate, which re-
lies on street number and ZIP code only. Both names and
email address matches were case insensitive, and we al-
lowed first and last names to be transposed.

Demographics. Our analysis relies on customer demo-
graphic data consisting of the customer’s country or U.S.
ZIP code, as well as their self-reported age and sex. The
country and ZIP code are necessary for proper order ful-
fillment, and therefore are generally reliable. However,
customers optionally provide age and sex data when or-
dering, so it is not always present and it is subject to
misreporting. Only 41% of GlavMed orders and 38% of
Spamlt orders included this information, and we cannot
validate it since customers could easily dissemble. In-
deed, we found that a larger than expected number of
users reported birth dates of January 1, February 2, and
so on (these being some of the easiest dates to report via
the interface). However, these anomalies are a small mi-
nority and we proceed under the assumption that the data
is generally correct (eliminating these cases does not sub-
stantively change the results reported in Section 5.1.3).

4.1.2 Affiliates

As with customers, affiliate records also require de-
duplication. However, here the duplication is not a mere
artifact of the interface, but is frequently an intentional
action. Affiliates frequently register under multiple iden-
tities, either to modulate their perceived earnings (affili-
ate programs commonly provide “top” lists showing the
affiliates with the highest earned commissions) or to gain

4This frustration was well captured by the many regular expres-
sions in the operators’ customer blacklist, e.g., (. *)SP(A+)M(.*) and
(.*)F(U+)CK(.%).

access to additional referral commissions that are pro-
vided on sales generated by new affiliates referred into
the program.®> To address these issues, we de-duplicate
affiliates as follows. For all affiliates with over $200 in
revenue we link those who share an email address, ICQ
number® or “identified commission payments”. We con-
sidered a commission payment to be identified if it rep-
resents over 75% of an affiliate’s revenue and includes
unique payment account information (such as a Web-
Money, Fethard Finance, or ePassporte account or an
identified GlavMed payment card). The notion of identi-
fied payments was necessary to avoid incorrectly associ-
ating affiliates who use the commission payments system
to pay third parties (e.g., by asking for small payouts to
a third-party WebMoney purse).

4.1.3 Transaction Outcomes

In the GlavMed and Spamlt data sets, each customer
sales record in turn drives the creation of one or more
transaction records which reflect an attempt to transfer
money to or from a customer (as identified by a credit
card or Automated Clearing House (ACH) identifier) via
a third-party payment service provider. When a trans-
action is successful the response_status field in this
record is zero (we validated these semantics by exam-
ining both raw payment processing error messages and
associated SQL triggers in the databases).

However, for a host of reasons transactions are fre-
quently declined. Indeed, over 25% of all transaction at-
tempts decline in both the GlavMed and Spamlt data sets.
In these cases, new transactions may be generated, pos-
sibly using different payment service providers. In some
cases, large order amounts are billed into two smaller
transactions. Overall, 91% of sales are able to complete
a payment transaction.

Finally, a transaction may be refunded, either par-
tially or fully. An additional complexity arises from cur-
rency conversion because customer payments are inter-
nally valued in U.S. Dollars, but can arrive in Euros,
Pounds and several other currencies. When refunds ar-
rive in native currency, we locate the original transaction
and calculate the dollar refund value on a pro-rated ba-
sis against the original value in the native currency. All
revenue numbers reported in the analysis refer to the total
amount billed, before any refunds against the transaction.
Refunds are shown separately in Table 3.

Note that having this ground truth data allows us to
calibrate biases in previous methods for estimating rev-
enue. In particular, we revisit our “purchase pair” tech-

5 As an incentive to attract affiliates, program sponsors will typically
offer their affiliates a 5% commission on the future sales of any new
affiliate they bring into the program.

SICQ is one of the oldest widely-deployed IM chat systems, and is
very popular in Russia and CIS states.
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nique that infers order turnover via customer order num-
ber advancement and then conservatively estimates the
average order size to gauge overall revenue [9]. Across
four years, we find that a significant number of order
numbers never appear in the database due to either fil-
tering for customer fraud or shopping cart abandonment
(between 13-28% for Spamlt and 7-17% for GlavMed).
The lower number of absent orders for GlavMed is likely
because the search engine vector used by its affiliates
generates less antipathy among consumers. In both cases,
8—12% of the orders that do appear in the database are
ultimately declined and do not ship. Consequently, true
turnover is between 8% (low of GlavMed) and 35% (high
of Spamlt) less than predicted by the “purchase pair”
technique. However, since the average successful order
size is between $115 (GlavMed) and $135 (Spamlt),
revenue estimates basd on an average sale of $100 are
roughly in-line with true revenue (within 6% overall for
GlavMed and 13% overall for Spamlt).

4.2 RX-Promotion

Our third data set concerning transactions from the
RX-Promotion program is far more limited. It only cov-
ers a single year of data from January to December of
2010, consisting of a single extracted view summarizing
each sale during the period made by U.S. customers. In
addition, roughly one week of data is missing (around
the last week of April 2010). Consequently, this trans-
actional data will strictly understate the turnover from
RX-Promotion.’

Each sales record includes information about the cus-
tomer (name only), the status of the order, its contents,
the total price as well the amount paid to the supplier,
shipper and the affiliate who generated the sale. Our anal-
ysis includes only orders with the status value “shipped”,
which make up 77% of all sales records (“declined” was
the next largest category at 14%).

Since the RX-Promotion data set does not include
crisp customer identifiers, we use two approximations for
identifying multiple orders belonging to the same cus-
tomer. The conservative approximation of 69,446 cus-
tomers only links sales records together if a customer
explicitly logs into the site using a previously assigned
customer ID. However, we note that this measure strictly
overestimates the number of customers since many users
prefer to place subsequent orders by entering in their in-
formation again. Alternatively, one can group customers
that share the same first and last name (normalized for

7Based on our measurements of both the GlavMed and Spamlt data
sets, our own previous study of the Eva Pharmacy program [9], and in-
ference from the RX-Promotion metadata, we are confident that U.S.
customers represent between 75% and 85% of total turnover. In ad-
dition, the missing week of data from April should cause our data to
underestimate annual orders by an additional 2%.

—— GlavMed
94 ---- Spamlt
8 4 RX-Promotion

Orders per week (thousands)

T T 1
2009 2010 2011

T
2007 2008

Figure 1: Weekly sales volume for each of the programs.

capitalization), resulting in 59,769 customers. This ap-
proach will accurately capture multiple orders from the
same user, but at the expense of potentially aliasing users
who happen to share the same first and last names. Thus,
the true number of unique customers is likely between
the two estimates, but to avoid aliasing issues we use the
larger conservative estimate in our analyses.

Finally, we also make use of seven months of over-
lapping metadata that includes detailed spreadsheets ac-
counting for month-by-month costs and cash flow. This
data does not have any of the previous limitations and
captures the financial performance of the program pre-
cisely and in its entirety.

5 Analysis

Using these data sets, we now provide a detailed assess-
ment of the affiliate program business model. From the
standpoint of the program sponsor, we consider four key
aspects of the business enterprise in turn: customers, af-
filiate advertisers, costs and payment processing.

5.1 Customers

Neither online pharmacies nor their advertisers generate
capital on their own. These activities thrive only because
they exploit latent customer demand for the products on
offer. It is this customer purchasing that drives the entire
ecosystem and thus this is where we begin: how many
purchases, for what, by whom and, perhaps, why?
Overall, as shown in Table 1, 584,199 unique cus-
tomers placed orders via GlavMed during the measure-
ment period and 535,365 placed orders via Spamlt; of
these approximately 130K appear in both. RX-Promotion
is a smaller program and covers a shorter time period,
with somewhere between 59,769 and 69,446 distinct cus-
tomers placing orders. In turn these customers gener-
ated almost 1.5M orders, varying from week to week as
shown in Figure 1. Note that the spike in May 2007 for
GlavMed is an artifact corresponding to the short period
after GlavMed had purchased Spamlt, but before they
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Figure 2: Cumulative number of new customers.

had forked the databases in June 2007 (Section 4.1). Af-
ter the fork, GlavMed has very steady growth in orders
until mid-2009, even surpassing Spamlt, and then starts
to decline. Orders to Spamlt plateau for 2008-2009, sim-
ilarly declining in mid-2009.8 RX-Promotion order vol-
umes are considerably more dynamic, for reasons we
will explain later, with totals varying between 1-2 thou-
sand per week across the year of data.

5.1.1 First-time Customers

However, these million plus customers and their pur-
chases do not necessarily constitute the entirety of this
market, but only the portion that has been serviced to
date by these particular programs. This raises the ques-
tion: How saturated is the market for counterfeit pharma-
ceuticals? To evaluate this, Figure 2 shows the cumula-
tive number of unique customers seen in each program
per week over the measurement period. Thus, changes in
slope indicate changes in the rate of new customer ac-
quisition. From these trends it is clear that that the affil-
iate programs are attracting new customers at a steady
rate over time, and that the market does not appear
to be saturating at all. In particular, sister programs
GlavMed and Spamlt attract new customers at nearly the
same rate (3,367/week and 3,569/week on average) while
RX-Promotion, a smaller program, attracts customers at
a slower, but still constant rate (1,429/week on average).
The stability of this growth over time provides some ex-
planation for why spammers continue to blast email in-
discriminately to all Internet users over time: they are
still mining a rich vein of latent customer demand.

8This decline undoubtedly has many roots including increasing
pressure that mounted on Spamlt due to its high visibility (e.g., the
principal owner of Spamlt was identified by Russian Newsweek as the
World’s Biggest Spammer), shutdowns of large botnets operating as af-
filiates (e.g., the MegaD botnet, which we observed spamming for sites
associated with Spamlt affiliate “docent”, ceased operating in Novem-
ber of 2009), and inter-program competition (e.g., starting in 2010,
we see a roughly 15% reduction in the number of active affiliates in
the Spamlt program and we witness one large affiliate, “anonymouse”,
leaving Spamlt and moving to RX-Promotion during this period).

5.1.2 Repeat Customers

New customers, however, are not the whole story. The
graphs in Figure 3 show total program revenue per week
broken down into two components: revenues from first-
time customers and revenue from repeat orders from ex-
isting customers. What we see is that repeat orders are an
important part of the business, constituting 27% and 38%
of average program revenue for GlavMed and Spamlt,
respectively. For RX-Promotion revenue from repeat or-
ders is between 9% and 23% of overall revenue.

Overall, revenue from repeat customers steadily in-
creases over the years for GlavMed and Spamlt, and
holds steady even when orders and overall revenue de-
cline in mid-2009. The situation is more dynamic for
RX-Promotion with a pronounced dip in program rev-
enue in the middle of 2010 that impacts new and repeat
customers both. This dip corresponds to the period when
RX-Promotion lost its payment processing services for
scheduled drugs.® Indeed, if we only consider the period
after August 2nd, repeat order revenue averages between
12% and 32%.

This data highlights a counterpoint to the conventional
wisdom that online pharmacies are pure scams: simply
taking credit cards and either never providing goods or
providing goods of no quality. Were this hypothesis true,
we would not expect to see repeat purchases—clear signs
of customer satisfaction—in such numbers. Anecdotally,
we have placed several hundred such orders ourselves
and, while we cannot speak to the quality of the products
we received, we have almost always received a product
in return for our payment [9, 14].

5.1.3 Product Demand

Beyond measuring overall demand, we are particularly
interested in determining what makes up this demand:
which drugs are being purchased, and does this provide
clues about why this market is preferred.

In an effort to reach all customer niches, each of the
programs carries thousands of products. To reason about
this multitude of drugs, we classified the bulk of the
products into broad categories based on our best assess-
ment (necessarily subjective) of the drug’s use: erectile
dysfunction, pain/inflammation, male enhancement (not
ED), mental health, sleep, obesity and other.

Using this classification, customer demand for spe-
cific kinds of drugs in the different programs is striking.
As with the previous time series graphs, Figure 4 shows
weekly revenue for the three affiliate programs over time,

9 Associated metadata suggests that RX-Promotion’s payment ser-
vice provider (PSP) had arranged for merchant accounts at an Icelandic
bank to be used for RX-Promotion controlled drug payments. However,
on May 10th 2010, a complaint by Visa caused the bank to shut down
these accounts and thus processing for controlled substances was cur-
tailed until August 2nd when the PSP established new accounts for this
purpose with Azeri banks.
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Figure 4: Weekly order revenue shown by drug type.

but here each of the top five revenue-earning drug cat-
egories is colored distinctly. For GlavMed and Spamlt,
the jokes about spam are spot on: “erectile dysfunction”
(ED) purchases dominate their revenue. Customers do
purchase other notable drugs, but they represent a small
fraction of revenue over time for these programs.

In contrast, revenue from pain/inflammation or-
ders matches revenue from ED in RX-Promotion.
RX-Promotion has a markedly different formulary from
GlavMed and Spamlt, prominently offering products
that GlavMed and Spamlt do not sell. Specifically,
these include scheduled drugs for pain (Oxycodone, Hy-
drocodone, Vicodin, etc.), mental health (Adderal, Ri-
talin, etc.), and sleep (Valium, etc.), all of which have
high abuse potential.'?

These examples suggest that there may in fact be a
range of distinct reasons why different drugs are popu-
lar via this medium. Table 2 summarizes order volume
and program revenue for different groups of drugs sold to
customers by the three affiliate programs. Here we merge
our original set of categories into three groups that cor-
respond to different customer motivations for purchas-
ing drugs. The first group includes erectile dysfunction
(ED), male enhancement, and related products (includ-
ing fakes such as “Herbal Viagra”). These drugs, some-

10The Controlled Substances Act in the U.S. defines five drug
“schedules”, or classifications, according to various criteria such as po-
tential for abuse. Scheduled drugs require prescriptions and have heavy
financial and/or criminal penalties for illegal sale.

times called “lifestyle” drugs, do not address chronic or
acute illness. While they are relatively easy to obtain
under prescription, seekers may prefer the online chan-
nel for reasons of embarrassment or price.!! The sec-
ond group includes drugs that have the potential to be
seriously abused, and includes addictive drugs such as
opiates, depressants, stimulants, etc. For many of these
drugs, customers run substantial legal risk in purchasing
them without prescription, and presumably run this risk
because of a strong desire or need. The third group in-
cludes drugs for treating chronic or acute illnesses. Since
these drugs carry no strong abuse risk, nor represent a
clear cause for social discomfort, we presume that their
purchase is motivated by economics: lower direct drug
costs (which can be substantial) and the absence of indi-
rect costs (for a doctor’s visit). In each category, the table
also lists the top categories or specific products.
Reflecting Figure 4, the ED group dominates items
ordered and revenue to the program, particularly for
GlavMed and SpamlIt. For RX-Promotion, though, drugs
with the potential for abuse are high-revenue or-
ders. Although they comprise just 14% of orders for

"'The per-item drug price offered by such programs is frequently
less than 20% of that offered by legitimate retailers. For example, the
median price for 10 tablets of 100mg Sildenafil Citrate was $42.57 on
GlavMed and $23.40 at RX-Promotion. By contrast, according to data
at drugs. com, legitimate brand Viagra in the same amount sells for
$193.99. Note that these prices do not account for shipping, which can
add $15 to $30 per order.
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GlavMed Spamlt RX-Promotion
Product Orders Revenue Orders Revenue Orders Revenue
ED and Related 580K (73%) $55M (75%) 670K (79%) $70M (82%) 58K (72%) $5.3M (51%)
Viagra 300K (38%) $28M (38%) 290K (34%) $31M (36%) 33K (41%) $2.7M (27%)
Cialis 180K (23%) $19M (26%) 190K (22%) $23M (27%) 18K (22%) $1.9M (19%)
Combo Packs 49K (6.1%) $3.9M (5.4%) 110K (14%) $8.4M (9.8%) 5100 (6.4%) $350K (3.4%)
Levitra 32K (4.1%) $3.2M (4.4%) 35K (4.2%) $3.9M (4.5%) 1200 (1.5%) $150K (1.5%)
Abuse Potential 48K (6.1%) $4.5M (6.1%) 64K (7.6%) $6.2M (7.3%) 11K (14%) $3.3m (32%)
Painkillers 29K (3.7%) $2.4M (3.3%) 53K (6.3%) $4.7mM (5.5%) 10K (13%) $3.0M (29%)
Opiates — — — — 8000 (10%) $2.7Mm (26%)
Soma/Ultram/Tramadol 20K (2.5%) $1.8M (2.4%) 46K (5.5%) $4.1M (4.8%) 1000 (1.3%) $150K (1.5%)
Chronic Conditions 120K (15%) $9.5M (13%) 64K (7.6%) $5.2M (6.1%) 8500 (11%) $1.3mM (13%)
Mental Health 23K 2.9%) $2.1M (2.9%) 16K (1.9%) $1.4Mm (1.7%) 6000 (7.4%) $1.1Mm (11%)
Antibiotics 25K (3.2%) $2.1M (2.9%) 16K (1.9%) $1.4M (1.6%) 1300 (1.6%) $97K (0.9%)
Heart and Related 12K (1.5%) $770K (1.1%) 9700 (1.2%) $630K (0.7%) 390 (0.5%) $35K (0.3%)
Uncategorized 48K (6.0%) $4.0M (5.5%) 47K (5.6%) $3.9M (4.6%) 2400 (3.0%) $430K (4.2%)

Table 2: Product popularity in each of the three programs. Product groupings and categories are in italics; individual brands are
without italics. Opiates are a further subcategory of Painkillers, and include Oxycodone, Hydrocodone, Vicodin, and Percocet.
Note, this table only describes revenue from drugs and does not capture shipping charges, which are orthogonal to drug popularity.

RX-Promotion, they account for nearly a third of pro-
gram revenue, with the Schedule-II opiates—only avail-
able at RX-Promotion—accounting for a quarter of rev-
enue. Indeed, during the period when RX-Promotion had
working credit card processing for controlled meds, sales
of Schedule II, III and IV drugs produced 48% of all rev-
enue! The fact that such drugs are over-represented in re-
peat orders as well (roughly 50% more prevalent in both
RX-Promotion and, for drugs like Soma and Tramdol, in
Spamlt) reinforces the hypothesis that abuse may be a
substantial driver for this component of demand.

5.1.4 Demographics

Although ED drugs account for the majority of business
for affiliate programs, focusing on the remaining prod-
ucts reveals remarkably pronounced age and sex trends
among customers.

Focusing on customers reporting age and sex infor-
mation, Figure 5 shows the percentage of all items or-
dered as a function of age, sex, and detailed product cat-
egory for GlavMed and Spamlt (excluding ED products,
as they would overwhelm the graph). The left half of
each graph shows results for women, and the right half
shows results for men. The y-axis is the self-reported age
of customers, and the x-axis is the percent of all items
these customers ordered. For each age the graphs show
stacked horizontal bars, with segments for the top ten
non-ED product categories.

Both age and sex purchasing patterns emerge from
this visualization. For example, male GlavMed cus-
tomers in Figure 5(a) purchase male pattern baldness
products (peaking between ages 20-30) and male en-
hancement products (peak 45-50), while women pre-
dominantly purchase obesity (peak 40-45) and reproduc-

tive health products (peak 25-30).12 Mental health and
pain/inflammation products are roughly equally popular
for men and women, with an older age bias for men.

In contrast to GlavMed, just a few categories predomi-
nate for Spamlt in Figure 5(b): pain/inflammation, infec-
tion, and mental health for both men and women, male
enhancement for men. Other categories more popular in
GlavMed, such as acne and male pattern baldness, are
smaller. One explanation is that the differences in prod-
uct popularity correlates with the vector used to adver-
tise the different affiliate programs. Since GlavMed is
more likely to be involved in search engine optimiza-
tion (SEO) oriented advertising, they have an opportu-
nity to target narrower markets (e.g., by manipulating
search results for keywords correlated with specific prod-
uct categories). By contrast, spam is an indiscriminate
advertising medium and customers clicking on spam-
advertised links are predominantly taken to storefronts
advertising ED products. Thus, for these customers to
buy other products would require additional initiative to
search within the site.

5.1.5 Geography

While both affiliate programs are located in Russia, most
of their customers are not. Based on customer ship-
ping addresses, we can determine that, across GlavMed
and Spamlt programs, customers from the United States
dominate at 75% of orders, with Canada, Australia, and
populous countries in Western Europe following in sin-
gle digits. Emphatically, Western money fuels these af-

21nterestingly, male customers also purchase the estrogen drug Clo-
mid, which we have come to understand may be explained by body
builders who commonly abuse the drug to counter some of the side-
effects of steroids.
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Figure 5: Items purchased separated into product category and customer age. The left half of each graph show orders from women,
and the right half shows orders from men. Customers restricted to those who self-report age and sex.

filiate programs with the U.S., Europe, Canada and Aus-
tralia constituting 97% of all orders, consistent with the
breakdown previously observed in [9].13

5.2 Affiliates

While customer purchasing drives the online pharmaceu-
tical ecosystem, affiliates are the ones who attract and
deliver the customers—and their money—to the online
pharmacies. Affiliates operate by commission, receiving
a significant fraction (typically 30-40%) of each cus-
tomer purchase that reflects the substantial risk they as-
sume in their aggressive advertising activities. Next we
analyze the role affiliates play in making online pharma-
ceutical programs successful as a business.

As discussed in Section 4.1.1, we merge separate ac-
counts in the GlavMed and Spamlt databases that belong
to the same affiliate. After account merging, during the
2007-2010 measurement period 1,037 affiliates were ac-
tive in GlavMed and 305 in Spamlt. Lacking detailed ac-
count profile information in RX-Promotion, we consider
each account a separate affiliate. With this assumption,
during the smaller one-year period for RX-Promotion
415 affiliates were active.

5.2.1 Program Revenue

GlavMed and RX-Promotion are open affiliate programs,
and as such they actively advertise and recruit new affil-
iates to join their programs (with the public advertising
focused on SEO-based advertising vectors). Spamlt, on

13This previous study also identified substantive differences in the
make-up of drugs purchased in the U.S. vs. other Western countries
(with U.S. customers driving a disproportionate fraction of demand for
non-ED meds). While we still observe this pattern in the SpamlIt data
(with the fraction of non-ED meds in U.S. customer orders being 3.8 x
larger than for Europe and Canada), it is absent in GlavMed customers,
suggesting that the advertising vector plays a key role in this effect.

100%
90% GlavMed

80% Spamlt

70%+ RX Promotion
60%

50%

Revenue

40%-
30%
20%-
10%fozzzzzzzzzzos o

0%+

0.1% 0.5% 1% 5% 10% 25% 50% 100%

Affiliate percentile rank

Figure 6: Distribution of affiliate contributions to total program
revenue for each program.

the other hand, is a closed program—focused specifically
on email spam—where affiliates join by invitation (Sec-
tion 4.1). These models influence the kinds of affiliates
in a program, the impact they have on generating revenue
for a program, as well as the commissions they earn.
Although the programs contain hundreds to thousands
of affiliates, most affiliates contribute little to the over-
all revenue of the programs. Figure 6 shows the CDFs
of affiliate contributions to total program revenue for the
three affiliate programs. The x-axis is the percent of af-
filiates, sorted from highest to lowest revenue they gen-
erate for the program, and the y-axis is the percent of
total program revenue. The graph shows that just 10% of
the highest-revenue affiliates account for 75-90% of total
program revenue across the three affiliate programs; for
GlavMed and RX-Promotion in particular, the remaining
90% of affiliates bring in just 10—15% of total revenue.
In the end, the most important affiliates for a program
are just a small fraction of all affiliates. From a business
perspective, programs can focus their attention and en-
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Figure 7: Cumulative contribution of new affiliates over time to
the three-year total program revenue. Each week adds the con-
tribution to total program revenue made by the new affiliates
that appear that week.

ergy on the top performing affiliates. Alternatively, from
an intervention perspective, undermining the activities of
just a handful of affiliates would have a considerable af-
fect on a program’s bottom line: undermining the top 3—
10 affiliates would impact 25-40% of program revenue.

Moreover, there is evidence that these high-revenue
affiliates are not simply lucky, but represent the best-
established and experienced advertisers. Figure 7 shows
that it is the oldest affiliates who contribute most to
weekly program revenue on an ongoing basis. For both
programs, the curves show the cumulative contribution
to total program revenue over time for new affiliates.
For the new affiliates that appear each week, we incre-
ment a running sum with the total revenue those affili-
ates generate for the program—revenue generated from
the moment they join until the end of the measurement
period. For instance, the affiliates that generate revenue
in the first week account for nearly 10% of all rev-
enue for the entire three years of business. The dashed
lines show the contributions to total revenue by affiliates
that have joined on year intervals, emphasizing that the
older affiliates are important for generating revenue over
time. Affiliates that joined before 2008 contributed 69%
GlavMed and 54% of Spamlt total program revenue as
of April 2010. In contrast, affiliates that joined in 2009
and 2010 contributed less than 10% of that total.

5.2.2 Affiliate Commissions

Since only a small fraction of affiliates account for much
of the business, many affiliates earn small commissions.
Indeed, the median annualized affiliate commissions for
GlavMed, Spamlt, and RX-Promotion are just $292,
$3,320, and $428, respectively. This skew dovetails with
suggestions that spam-based advertising may be a labor
“lemon market” [5]. On the other hand, the most success-
ful affiliates are able to derive substantial income through
their advertising. Indeed, the top five affiliates were able

RX Promotion
0.3
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Figure 8: Distribution of affiliate commissions in each program.

to earn over $1M for themselves in a twelve-month pe-
riod (and a dozen exceeded $500K).'* Virtually all of
these earnings result from sales commissions with only
a minor share deriving from referral commissions (i.e.,
referral commissions are not a major source of income).

Figure 8 reveals a more nuanced picture of affiliate
commissions. For each program, the graph shows a PDF
of annualized commissions across all affiliates: the x-axis
is the annualized commission earned by an affiliate, and
the y-axis is the fraction of all affiliates that earned a
given commission. We calculate the commission for an
affiliate using the total customer sales linked to the af-
filiate multiplied by the commission rate of the affiliate,
plus any referral commissions. Sales commission rates
range from 15-45%, with 30—40% being the most com-
mon (generally high-revenue affiliates receive the high-
est commission rates).!> The “dots” on the PDFs denote
the median annualized commissions for that program.

For the open programs GlavMed and RX-Promotion,
the majority of affiliates earn very low annualized com-
missions. The peaks of the PDFs range between $20-
$200 a year for GlavMed, and $20-$2,000 a year for
RX-Promotion. The closed program Spamlt, however,
shows a bimodal distribution, with a mass of “poor” af-
filiates earning small commissions (mode around $500)
and another mass of “rich” affiliates earning large com-
missions (mode around $30,000), but still with many af-
filiates earning over $100,000 a year.

As another perspective, on an ongoing basis the ac-
tive affiliates in Spamlt, a closed program, each gen-
erate three times more revenue than active affiliates in
GlavMed and RX-Promotion, both open programs. Fig-

14Note that Figure 8 does not involve extrapolating, but is based on
taking the best four consecutive quarter’s earnings for each affiliate and
thus gains accuracy at the potential expense of right-censoring.

5Note that not all programs reward commissions uniformly over all
drugs. For example, RX-Promotion typically discounts commissions
by 10% on controlled drugs, so an affiliate receiving 40% on the sale
of Viagra may only receive 30% on the sale of Oxycodone.
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ure 9 shows the average weekly revenue generated by
active affiliates. For each week, we total the revenue
generated by the affiliates that were active in attracting
customers that week, and divide by the number of ac-
tive affiliates. This metric is surprisingly stable over time
and strongly correlates with the nature of the affiliate
program. In both GlavMed and RX-Promotion, the av-
erage weekly revenue per affiliate is around $2,000. In
Spamlt, though, the average weekly revenue per affili-
ate ranges between $5,000-$7,000. Open programs fo-
cus on increasing the total number of affiliates, but the
vast majority have little impact on total revenue. Instead,
by focusing on quality affiliates, the closed nature of the
Spamlt program is much more effective at attracting pro-
ductive affiliates and avoiding unproductive ones.

Focusing only on these most productive affiliates, we
would intuitively expect them to also be the operators of
the largest spamming botnets. However, even a cursory
examination of the data shows that there is considerable
more complexity at work. For example, while the oper-
ators of the prodigious Rustock botnet (cosmaZk, bird,
and advl) indeed receive large commission payments
(over $1.9M), botnet operators do not appear to dominate
the top earners. Indeed, two of the largest botnet opera-
tors, docent (operator of MegaD) and severa (operator of
Storm and Waledac) only received modest payments of
$308K and $169K, respectively, for directly advertising
Spamlt sites. '

There are a number of potential reasons for these re-
sults. First, we are only privy to sales for these par-
ticular affiliate programs and thus, if a botnet devotes
much of its resources to another program, those earnings
are outside our analysis. Moreover, while some botnets
are largely monopolized by their owners, in many other
cases the botnets are rented to provide service for third

16We identify botnet operators through metadata, documented more
fully in the many articles in the “PharmaWars” series [10], and corrob-
orated based on which affiliates receive money for domains known to
be advertised via particular botnets.

parties. For example, the second most profitable affili-
ate, scorrp2, earned close to $3M while advertising do-
mains that we witnessed emerging from a range of bot-
nets including MegaD, Cutwail and Xarvester. Adding to
the confusion, in a number of cases botnet code is sold
between parties and, thus, what some researchers may
identify as a single botnet may in fact reflect multiple
distinct infrastructures. Finally, we also note spamming
is not the only profitable advertising vector. Indeed, the
largest overall earner, webplanet, appears to have earned
$4.6M using Web-based advertising instead. Fully unrav-
eling the complexities of these relationships and why cer-
tain affiliates are more successful than others remains an
open question.

5.3 Costs

Affiliate programs operate a complex business. As such,
they have a range of costs and overheads to cover and
only a fraction of their revenue translates to profit. Using
a combination of transactional and metadata, we next re-
construct both direct and indirect costs for the programs.
We also explore in more detail the cost structure of ful-
fillment (drug markup and shipping).

5.3.1 Direct Costs and Gross Margin

Direct costs are costs attributable to individual sales.
While advertising is normally considered an indirect
cost, affiliate programs pay for advertising as a direct
cost of a sale, so we consider affiliate commissions to
be a direct cost in this context. In addition, direct costs
include the supplier costs for the products themselves,
shipping them to customers, the fees charged by banks
and credit card processors for processing customer credit
card transactions, and customer refunds.

However, of these quantities only commissions are
completely unambiguously encoded across all transac-
tional data sets; RX-Promotion also includes a measure
of the supplier cost and a field indicating the type of ship-
ping (from which the shipping cost can be reverse engi-
neered). The situation with GlavMed and Spamlt is more
complex. Starting on August 8, 2008 both databases in-
clude fine-grained information about shipping and sup-
ply cost for each order. For periods before this, we are
forced to extrapolate. Refunds can be calculated directly
in the SpamlIt and GlavMed data sets; for RX-Promotion,
we infer refunds based on orders with a cancelled sta-
tus. Finally, processing charges can vary among pay-
ment processors, currencies, card brands and over time.
However, in examining a large number of recorded fees
(found in the chatlogs) over the full period these fees
range between 7-12% in practice, so as an approxima-
tion we use 10%.

Putting this data together, Table 3 itemizes the gross
revenue and direct cost breakdown for GlavMed and
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GlavMed & Spamlt

2007 2008

RX-Promotion

2009 2010 2010

$27.3M
$17.2M (63.1%)
$7.9M (28.9%)

$60.1M
$42.9M (71.4%)
$23.0M (38.3%)

Gross revenue
Direct costs
Commissions

Suppliers (goods)* $1.9M (7%) $4.3M (7.2%)
Suppliers (shipping)”?  $3.1M (11.4%) $7.6M (12.6%)
Processing® $2.7M (10%) $6.0M (10%)

Refunds
Gross margin

$1.6M (5.9%)
$10.1M (36.9%)

$2.0M (3.3%)
$17.2M (28.6%)

$67.7m

$45.6M (67.3%)

$24.9M (36.8%)
$42M (6.2%)
$7.8M (11.5%)
$6.8M (10%)
$1.9M (2.8%)

$22.1M (32.7%)

$18.0M

$12.1M (67.1%)
$6.6M (36.7%)
$1.IM (6.1%)
$2.1M (11.7%)
$1.8M (10%)
$0.5M (2.6%)
$5.9M (32.9%)

$12.8Mm

$9.9M (77.1%)
$3.9M (30.2%)
$1.0M (7.6%)
$1.5M (11.5%)
$1.3M (10%)
$1.0M (7.8%)
$29M (22.9%)

@ Average supplier costs used to estimate missing supplier costs for 35% of goods.
b Average shipping costs used to estimate missing shipping costs for 60% of orders.

¢ Processor costs range between 7% and 11% of sales revenue.

Table 3: Gross revenue, direct costs and resulting gross margin for the GlavMed and Spamlt programs combined.

Spamlt (combined) and RX-Promotion on a yearly ba-
sis. Not surprisingly (given average affiliate commissions
of 30—40%) direct costs consume the majority of rev-
enue. Note that, due to holdback charges, the gross mar-
gin number likely overstates cash flow by around 10%,
and may in fact overstate revenue as well (if holdback
charges are not released). Payment processors comport-
ing with “high risk” merchants such as these univer-
sally hold back a portion of net proceeds to handle fu-
ture chargebacks and fines. From examining the logs,
a 10% holdback of up to 180 days is common and, in
reviewing discussions about holdbacks, the operators of
GlavMed/Spamlt routinely operate under the assumption
that this money may never be made available.

5.3.2 Indirect Costs and Net Revenue

Indirect costs are costs that are not generally attributable
to individual sales. For online pharmacies, indirect costs
are incurred for marketing (i.e., advertising the affiliate
program on popular blogs and forums to attract new affil-
iates), for IT (i.e., registering domains for affiliates to use
in URLs that link to storefront pages, as well as server
and hosting costs), for administrative costs (i.e., staff
salaries), customer service, bank fines and “lobbying”.
By also calculating indirect costs, we can then estimate a
program’s net profit—its proverbial “bottom line.”

However, indirect costs are difficult to extract from
transaction data since they are necessarily indirect. Thus,
for this analysis we focus in particular on RX-Promotion
for which we have highly detailed metadata comprising
the raw monthly balance sheets (in spreadsheet form)
for seven months of revenue. The full spreadsheet is too
large to reproduce here, but we have extracted the equiv-
alent direct costs that we calculated from transactional
data in Table 3, and aggregated indirect costs in key ar-
eas. We summarize the resulting balance sheet in Table 4,
reflecting seven months of revenue between March and
September in 2010.

The direct costs taken from the balance sheet data
are highly similar to the transactional equivalents, dif-

RX-Promotion
March — September 2010

$7.8M
$5.5M (70.8%)

Gross revenue
Direct costs

Commissions $3M (38.1%)
Suppliers? $1.4Mm (17.6%)
Processing $1M (13.2%)
Other direct $148.3k (1.9%)
Indirect costs $1004K (12.8%)
Administrative $197k (2.5%)
Customer service $124K (1.6%)
Fines $107k (1.4%)
IT expenses $202K (2.6%)
Domains $114K (1.5%)

$66K (0.8%)
$315K (4%)

Servers, hosting
Selling expenses

Marketing $105k (1.3%)
Lobbying $157Kk (2%)
Other indirect $134K (1.7%)
Net revenue $1.3M (16.3%)

4 Costs of goods and shipping are combined.

Table 4: Balance sheet for RX-Promotion detailing
indirect costs.

fering primarily due to differences in the make-up of
commission tiers during this seven-month period and the
greater precision available for payment processing over-
heads. Overall indirect costs represent almost 13% of
gross, split among a range of different overheads. Note
that the $157K lobbying charge is concentrated in two
large payments which may be related to conflict between
RX-Promotion and GlavMed/Spamlt. Overall, the net
revenue for this period—the profit returned to the affil-
iate program owners—is just 16.3% of gross revenue.
This value is not uniform from month to month, how-
ever. For example, during the period when processing
for controlled drugs was lost, RX-Promotion simultane-
ously lost revenue, incurred large fines, and had to pay
greater average commissions (since the commissions for
controlled drugs were discounted 10%) leading to a net
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loss for at least one month. By contrast, during the very
best month (September) net revenue exceeds 30%.

We do not have equivalent indirect cost data for
GlavMed or Spamlt, but we are able to infer a subset
of these overheads. The operators used a special affiliate
(affiliate_id value 20) to manage the working capital
of each. The Affiliate 20 account received referral com-
missions from all affiliates who did not have a referring
affiliate designated explicitly. During the measurement
period, Affiliate 20 earned $2.7M. Operating expendi-
tures, as well as some affiliate payouts, were deducted
from this account.

Starting May 2009, the comment field of each pay-
out began including a short description of the payment.
A payment for a banner advertisement (recruiting affili-
ates), for example, would be listed as described as “ban-
ner GM - gofuckbiz.com”. Although free-form, the com-
ment text typically used a small number of phrases. Us-
ing a manually generated list of regular expressions, we
identified several indirect costs during the period from
May 2009 to April 2010. These costs include marketing
($153K, 0.2% of revenue), domain purchasing ($511K,
0.8% of revenue) and servers/hosting ($247K, 0.4% of
revenue). Interestingly, it appears that marketing and
servers/hosting are similar costs between the two pro-
grams (suggesting they are largely fixed costs) but do-
main purchasing appears to track revenue (presumably
since greater advertising volume requires more domain
turnover due to blacklisting).

Finally, we also have anecdotal data in the form of
chat logs between the lead operator and the owner of
GlavMed/Spamlt. These logs state that overall net rev-
enue fluctuated between 10% and 20%, agreeing struc-
turally with the RX-Promotion data.

Thus, we believe that 10-20% is likely to reflect a typ-
ical net revenue for successful pharmaceutical programs.
While this is smaller on an earnings-per-sale basis than
the commissions awarded to individual affiliates, it is
a more profitable enterprise when the affiliate program
is successful. For example, the largest Spamlt affiliate
might make $2M in a year, but in that same year the pro-
gram itself is likely to clear over $10M in profit.

5.3.3 Markup

After commissions, supply costs for the programs are
one of the largest expenses. Using the categories from
Figure 2, ED contains by far the most popular products
purchased, and also has the highest markups of more than
15 to 20 times the supply cost. The average markup of
Viagra in GlavMed and Spamlt, for instance, translates
to a customer price 25 times cost. Markups in the Abuse
and Chronic categories are considerably smaller, ranging
between 5-8 times supply cost. Interestingly, the ship-
ping cost is a loss leader for GlavMed/Spamlt since they

charge a flat fee per order (orders with more than one
item result in supplier shipping costs higher than col-
lected shipping fees) and offer free shipping for orders
over $200. In fact, for the orders for which we have fine-
grained product and shipping cost data, the supplier costs
of delivering the drugs (8.5M) actually exceeded the costs
of the drugs delivered.

5.4 Payment Processing

Finally, affiliate programs must arrange for reliable pro-
cessing of customer payments. In a sense, obtaining re-
liable payment processing services may be the most im-
portant function of the affiliate program, since it is the
only mechanism by which all other efforts can be mone-
tized. Previously, our group identified that a small num-
ber of banks were critical to virtually all online pharma-
ceutical sales [14]. However, the means by which those
banks were accessed has never been well documented.

In fact, in the “high-risk” payment market, merchant
processing is frequently handled by independent Pay-
ment Service Providers (PSPs) who manage the rela-
tionships with acquiring banks and provide Web-based
payment gateway services to clients.!” While users of
these services may have a contractual relationship with
the bank, in other cases PSPs may “front” their own
merchant accounts on behalf of their clients (a form of
identity laundering called “factoring” and typically dis-
allowed by card association rules). Merchants in turn can
mitigate some of their own risk by working with multi-
ple providers; this strategy not only provides redundancy,
but each provider may place limits on transaction vol-
umes (e.g., to fit within the underwriting risk limits on
their overall merchant portfolio) and may have different
services they are willing to offer (e.g., MC, Visa, Amex,
eCheck, etc.) for different product categories (e.g., herbal
vs. prescription vs. controlled drugs).

In the case of RX-Promotion the affiliate program en-
joyed a partnership with a large ISO/PSP and thus this
entity handled virtually all of their processing needs.
GlavMed and Spamlt, by contrast, did not work with
any single provider, but no less that twenty-one distinct
providers over the lifetime of our data sets. However,
these providers differ considerably in what services they
are used for, the volume of transactions they are able to
handle and how long-lived they are. In fact, almost half
of these providers are never used to process significant
transaction volumes (mostly likely due to risk controls).

Ilustrating this point, Figure 10 graphs the transaction
volume of GlavMed/Spamlt handled by different pay-
ment service providers over time. The y-axis identifies

7We use the term “payment service provider” here in a generic
sense, and the organizations involved may be some combination of
proper PSPs, account brokers, merchant servicers, ISO/MSPs with
third-party servicers, etc.
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Figure 10: Payment transactions over time by payment ser-
vice provider. The colored volume of each circle corresponds
to the transaction volume in a month for a particular terminal
(color indicating payment method), with terminals grouped by
providers.

the top nine providers (using a designator taken directly
from the database or an abbreviation thereof) while the
remaining providers are aggregated together under the
ellipsis. Each circle in the graph represents the number
of transactions processed via a particular ferminal in a
month, with terminals belonging to a particular provider
grouped together based on time of first use.'® In any
given circle, the color red indicates MasterCard transac-
tions, blue is for Visa, yellow for other credit cards (pri-
marily Amex), and green for eCheck.

There are a number of striking observations one can
draw from this figure. First is the clear dominance of
Visa processing. Aggregating across both GlavMed and
Spamlt, Visa transactions represent almost 67% of all
revenue, followed by MasterCard with 23% and Amer-
ican Express with 6% (with the remainder concentrated
in eCheck transactions through the ACH system). While
part of this discrepancy is likely due to demand—Visa
is the most popular payment card brand—this difference
also reflects a supply issue as well. For reasons not en-
tirely clear, it has traditionally been far easier for online
pharmaceutical programs to obtain payment processing
services for Visa than for MasterCard or Amex. Indeed,

18 A terminal is effectively an interface point for sending payment
transactions, corresponding to a particular merchant account. Note that
while some terminals are for general purpose use, others service a par-
ticular function such as providing a compatible base currency (e.g., the
terminal named “It-euro-visa” provides European Visa transactions) or
handling rebills (e.g., “gl-rebill-m”).

we find that during periods in which MasterCard pro-
cessing was available, Visa/MasterCard revenue percent-
ages stabilized at around 63%/30%, respectively, for both
GlavMed and Spamlt.

Second, a relatively small number of payment service
providers dominate the transaction volume (in particu-
lar GL, LT and LV). Together these three providers are
responsible for 84% of all revenue for GlavMed and
Spamlt. Many of the other providers are active for very
short lifetimes, and with very low volumes, before they
are either abandoned or, more typically, they are unwill-
ing to continue business with the program operators.

Finally, there are also clear patterns indicative of prob-
lems with particular providers over time. For example,
for each terminal a sudden drop in volume and rise in de-
clines (not shown) is typically a precursor to that termi-
nal being abandoned. Some of these cases clearly reflect
changes in long-term business relationships: in March
of 2008, for instance, there is a clear transition mov-
ing the largest volume of Visa processing between LV
and LT; similarly, American Express processing moves
from AFF to SN during the same period. In the last five
months of 2010 it appears that GlavMed/Spamlt experi-
enced significant setbacks in processing capability, with
LT processing only minor volumes (forcing them to push
a higher volume of transactions through GL). These find-
ings provide additional support and context for our pre-
vious findings that the financial aspect of the counter-
feit pharmaceutical ecosystem is among the most fragile
components [14].

6 Conclusion

This paper provides an unprecedented view inside the
economics of modern pharmaceutical affiliate programs:
an enterprise that ultimately capitalizes a wide array
of infrastructure services including botnets, malware,
bullet-proof hosting and so on. Among the results of
this work, we have shown that the customer market
is large and far from fully tapped, with repeat orders
playing a key role in mature programs. We have also
seen that a small number of big affiliates can dominate
the revenue equation and that disrupting these partic-
ular affiliates would have disproportionate damage on
the whole program. Finally, even very large programs
such as GlavMed/Spamlt depend on a handful of pay-
ment service providers to reliably monetize their activ-
ities, reinforcing the observation that financial services
are a “weak point” in the value chain. Surprisingly, while
affiliate programs can drive substantial sales, their costs
are significant and ultimately net revenues are modest,
typically under just 20% of sales. This finding again sug-
gests that such organizations are fragile to economic dis-
ruptions of even a modest scale.
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Abstract

Traditional spam detection systems either rely on con-
tent analysis to detect spam emails, or attempt to detect
spammers before they send a message, (i.e., they rely
on the origin of the message). In this paper, we intro-
duce a third approach: we present a system for filtering
spam that takes into account 7ow messages are sent by
spammers. More precisely, we focus on the email de-
livery mechanism, and analyze the communication at the
SMTP protocol level.

We introduce two complementary techniques as con-
crete instances of our new approach. First, we leverage
the insight that different mail clients (and bots) imple-
ment the SMTP protocol in slightly different ways. We
automatically learn these SMTP dialects and use them
to detect bots during an SMTP transaction. Empiri-
cal results demonstrate that this technique is successful
in identifying (and rejecting) bots that attempt to send
emails. Second, we observe that spammers also take into
account server feedback (for example to detect and re-
move non-existent recipients from email address lists).
We can take advantage of this observation by returning
fake information, thereby poisoning the server feedback
on which the spammers rely. The results of our experi-
ments show that by sending misleading information to a
spammer, it is possible to prevent recipients from receiv-
ing subsequent spam emails from that same spammer.

1 Introduction

Email spam, or unsolicited bulk email, is one of the ma-
jor open security problems of the Internet. Accounting
for more than 77% of the overall world-wide email traf-
fic [21], spam is annoying for users who receive emails
they did not request, and it is damaging for users who
fall for scams and other attacks. Also, spam wastes re-
sources on SMTP servers, which have to process a sig-
nificant amount of unwanted emails [41].

A lucrative business has emerged around email spam,
and recent studies estimate that large affiliate cam-

paigns generate between $400K and $1M revenue per
month [20].

Nowadays, about 85% of world-wide spam traffic is
sent by botnets [40]. Botnets are networks of compro-
mised computers that act under the control of a single
entity, known as the botmaster. During recent years, a
wealth of research has been performed to mitigate both
spam and botnets [18,22,29,31,33,34,50].

Existing spam detection systems fall into two main
categories. The first category focuses on the content of
an email. By identifying features of an email’s content,
one can classify it as spam or ham (i.e., a benign email
message) [16,27,35]. The second category focuses on
the origin of an email [17,43]. By analyzing distinctive
features about the sender of an email (e.g., the IP address
or autonomous system from which the email is sent, or
the geographical distance between the sender and the re-
cipient), one can assess whether an email is likely spam,
without looking at the email content.

While existing approaches reduce spam, they also suf-
fer from limitations. For instance, running content anal-
ysis on every received email is not always feasible for
high-volume servers [41]. In addition, such content anal-
ysis systems can be evaded [25,28]. Similarly, origin-
based techniques have coverage problems in practice.
Previous work showed how IP blacklisting, a popular
origin-based technique [3], misses a large fraction of the
IP addresses that are actually sending spam [32,37].

In this paper, we propose a novel, third approach to
fight spam. Instead of looking at the content of mes-
sages (what) or their origins (who), we analyze the way
in which emails are sent (how). More precisely, we focus
on the email delivery mechanism. That is, we look at the
communication between the sender of an email and the
receiving mail server at the SMTP protocol level. Our
approach can be used in addition to traditional spam de-
fense mechanisms. We introduce two complementary
techniques as concrete instances of our new approach:
SMTP dialects and Server feedback manipulation.

USENIX Association
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SMTP dialects. This technique leverages the observa-
tion that different email clients (and bots) implement the
SMTP protocol in slightly different ways. These de-
viations occur at various levels, and range from differ-
ences in the case of protocol keywords, to differences in
the syntax of individual messages, to the way in which
messages are parsed. We refer to deviations from the
strict SMTP specification (as defined in the correspond-
ing RFCs) as SMTP dialects. As with human language
dialects, the listener (the server) typically understands
what the speaker (a legitimate email client or a bot) is
saying. This is because SMTP servers, similar to many
other Internet services, follow Postel’s law, which states:
“Be liberal in what you accept, and conservative in what
you send.”

We introduce a model that represents SMTP dialects
as state machines, and we present an algorithm that
learns dialects for different email clients (and their re-
spective email engines). Our algorithm uses both pas-
sive observation and active probing to efficiently gener-
ate models that can distinguish between different email
engines. Unlike previous work on service and protocol
fingerprinting, our models are stateful. This is impor-
tant, because it is almost never enough to inspect a single
message to be able to identify a specific dialect.

Leveraging our models, we implement a decision pro-
cedure that can, based on the observation of an SMTP
transaction, determine the sender’s dialect. This is use-
ful, as it allows an email server to terminate the con-
nection with a client when this client is recognized as a
spambot. The connection can be dropped before any con-
tent is transmitted, which saves computational resources
at the server. Moreover, the identification of a sender’s
dialect allows analysts to group bots of the same family,
or track the evolution of spam engines within a single
malware family.

Server feedback manipulation. The SMTP protocol
is used by a client to send a message to the server. Dur-
ing this transaction, the client receives from the server
information related to the delivery process. One impor-
tant piece of information is whether the intended recipi-
ent exists or not. The performance of a spam campaign
can improve significantly when a botmaster takes into
account server feedback. In particular, it is beneficial
for spammers to remove non-existent recipient addresses
from their email lists. This prevents a spammer from
sending useless messages during subsequent campaigns.
Indeed, previous research has shown that certain bots re-
port the error codes received from email servers back to
their command and control nodes [22, 38].

To exploit the way in which botnets currently lever-
age server feedback, it is possible to manipulate the re-
sponses from the mail server to a bot. In particular, when

a mail server identifies the sender as a bot, instead of
dropping the connection, the server could simply reply
that the recipient address does not exist. To identify a bot,
one can either use traditional origin-based approaches or
leverage the SMTP dialects proposed in this paper. When
the server feedback is poisoned in this fashion, spammers
have to decide between two options. One possibility is to
continue to consider server feedback and, as a result, re-
move valid email addresses from their email list. This
reduces the spam emails that these users will receive in
the future. Alternatively, spammers can decide to distrust
and discard any server feedback. This reduces the effec-
tiveness of future campaigns since emails will be sent to
non-existent users.

Our experimental results demonstrate that our tech-
niques are successful in identifying (and rejecting) bots
that attempt to send unwanted emails. Moreover, we
show that we can successfully poison spam campaigns
and prevent recipients from receiving subsequent emails
from certain spammers. However, we recognize that
spam is an adversarial activity and an arms race. Thus,
a successful deployment of our approach might prompt
spammers to adapt. We discuss possible paths for spam-
mers to evolve, and we argue that such evolution comes
at a cost in terms of performance and flexibility.

To summarize, the paper makes the following main con-
tributions:

* We introduce a novel approach to detect and mit-
igate spam emails. This approach focuses on the
email delivery mechanism — the SMTP communi-
cation between the email client and the email server.
It is complementary to traditional techniques that
operate either on the message origin or on the mes-
sage content.

* We introduce the concept of SMTP dialects as one
concrete instance of our approach. Dialects capture
small variations in the ways in which clients imple-
ment the SMTP protocol. This allows us to distin-
guish between legitimate email clients and spam-
bots. We designed and implemented a technique to
automatically learn the SMTP dialects of both legit-
imate email clients and spambots.

e We implemented our approach in a tool, called
B@bel. Our experimental results demonstrate that
B@bel is able to correctly identify spambots in a
real-world scenario.

* We study how the feedback provided by email
servers to bots is used by their botmasters. As a sec-
ond instance of our approach, we show how provid-
ing incorrect feedback to bots can have a negative
impact on the spamming effectiveness of a botnet.
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2 Background: The SMTP Protocol

The Simple Mail Transfer Protocol (SMTP), as defined
in RFC 821 [1], is a text-based protocol that is used
to send email messages originating from Mail User
Agents (MUAs — e.g., Outlook, Thunderbird, or Mutt),
through intermediate Mail Transfer Agents (MTAs —
e.g., Sendmail, Postfix, or Exchange) to the recipients’
mailboxes. The protocol is defined as an alternating dia-
logue where the sender and the receiver take turns trans-
mitting their messages. Messages sent by the sender
are called commands, and they instruct the receiver to
perform an action on behalf of the sender. The SMTP
RFC defines 14 commands. Each command consists
of four case-insensitive, alphabetic-character command
codes (e.g., MAIL) and additional, optional arguments
(e.g., FROM:<me@example.com>). One or more
space characters separate command codes and argument
fields. All commands are terminated by a line termina-
tor, which we denote as <CR><LF>. An exception is
the DATA command, which instructs the receiver to ac-
cept the subsequent lines as the email’s content, until the
sender transmits a dot character as the only character on
aline (i.e., <CR><LF>.<CR><LF>).

SMTP replies are sent by the receiver to inform the
sender about the progress of the email transfer process.
Replies consist of a three-digit status code, followed by
a space separator, followed by a short textual descrip-
tion. For example, the reply 250 Ok indicates to the
sender that the last command was executed successfully.
Commonly, replies are one line long and terminated
by <CR><LF>!. The RFC defines 21 different reply
codes. These codes inform the sender about the specific
state that the receiver has advanced to in its protocol state
machine and, thus, allows the sender to synchronize its
state with the state of the receiver. A plethora of addi-
tional RFCs have been introduced to extend and modify
the original SMTP protocol. For example, RFC 1869
introduced SMTP Service Extensions. These extensions
define how an SMTP receiver can inform a client about
the extensions it supports. More precisely, if a client
wants to indicate that it supports SMTP Service Exten-
sions, it will greet the server with EHLO instead of the
regular HELO command. The server then replies with
a list of available service extensions as a multi-line re-
ply. For example, a server capable of handling encryp-
tion can announce this capability by responding with a
250-STARTTLS reply to the client’s EHLO command.

MTAs, mail clients, and spambots implement differ-
ent sets of these extensions. As we will discuss in de-

I'The protocol allows the server to answer with multi-line replies. In
a multi-line reply, all lines but the last must begin with the status code
followed by a dash character. The last line of a multi-line reply must
be formatted like a regular one-line reply

Server: 220 debian

Client: HELO example.com

Server: 250 OK

Client: MAIL FROM:<me@example .com>
Server: 250 2.1.0 OK

Client: RCPT TO:<you@example .com>
Server: 250 2.1.5 OK

Client: DATA

Figure 1: A typical SMTP conversation

tail later, we leverage these differences to determine the
SMTP dialect spoken in a specific SMTP conversation.
In this paper, we consider an SMTP conversation the
sequence of commands and replies that leads to a DATA
command, to a QUIT command, or to an abrupt termina-
tion of the connection. This means that we do not con-
sider any reply or command that is sent after the client
starts transmitting the actual content of an email. An ex-
ample of an SMTP conversation is listed in Figure 1.

3 SMTP Dialects

The RFCs that define SMTP specify the protocol that
a client has to speak to properly communicate with a
server. However, different clients might implement the
SMTP protocol in slightly different ways, for three main
reasons:

1. The SMTP RFCs do not always provide a single
possible format when specifying the commands a
client must send. For example, command identi-
fiers are case insensitive, which means that EHLO
and ehlo are both valid command codes.

2. By using different SMTP extensions, clients might
add different parameters to the commands they
send.

3. Servers typically accept commands that do not com-
ply with the strict SMTP definitions. Therefore,
a client might implement the protocol in slightly
wrong ways while still succeeding in sending email
messages.

We call different implementations of the SMTP pro-
tocol SMTP dialects. A dialect D is defined as a state
machine

D =<%,5, 50,7, Fy, F, >,

where X is the input alphabet (composed of server
replies), S is a set of states, sg is the initial state, and
T is a set of transitions. Each state s in S is labeled with
a client command, and each transition ¢ in 7" is labeled
with a server reply. F, C S'is a set of good states, which
represent successful SMTP conversations, while F;, C .S
is a set of bad states, which represent failed SMTP con-
versations.
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250 2.1.50K

Figure 2: Simplified state machines for Outlook Express (left) and Bagle (right).

The state machine D captures the order in which com-
mands are sent in relation to server replies by that partic-
ular dialect.

Since SMTP messages are not always constant, but
contain variable fields (e.g., the recipient email address
in an RCPT command), we abstract commands and
replies as templates, and label states and transitions with
such templates.

We do not require D to be deterministic. The reason
for this is that some clients show a non-deterministic
behavior in the messages they exchange with SMTP
servers. For example, bots belonging to the Lethic mal-
ware family use EHLO and HELO interchangeably when
responding to a server 220 reply. Figure 2 shows two
example dialect state machines (Outlook Express and
Bagle, a spambot).

3.1 Message Templates

As explained previously, we label states and transitions
with message templates. We define the templates of the
messages that belong to a dialect as regular expressions.
Each message is composed of a sequence of tokens. We
define a token as any sequence of characters separated by
delimiters. We define spaces, colons, and equality sym-
bols as delimiters. We leverage domain knowledge to
develop a number of regular expressions for the variable
elements in an SMTP conversation. In particular, we de-
fine regular expressions for email addresses, fully qual-
ified domain names, domain names, IP addresses, num-
bers, and hostnames (see Figure 3 for details). Every to-
ken that does not match any of these regular expressions
is treated as a keyword.
An example of a message template is

MAIL From: <email-addr>,

where email-addr is a regular expression that
matches email addresses.

Given two dialects D and D’, we consider them differ-
ent if their state machines are different. For example, the
two dialects in Figure 2 differ in the sequence of com-
mands that the two clients send: Bagle sends a RSET

Email address: <?[\w\.—]+@[\w\.—]+>?

IP address: \[?\d{1.3}\.\d{1.3}\.\d{1.3}\.\d{1,3}\]?
Fully qualified domain name: [\w—]+\.[\w—]+\.\w[\w—]+
Domain name: [\w—]+\.[\w—]+

Number: [0—9]{3}[0—9]+

Hostname: [\w—]{5}[\w—]+

Figure 3: Regular expressions used in message tem-
plates.

command after the HELO, while Outlook Express sends
a MATIL command directly. Also, the format of the com-
mands of the two dialects differs: Outlook Express puts
a space between MAIL FROM: and the sender email ad-
dress, while Bagle does not.

In Section 4, we show how we can learn the dialect
spoken by an SMTP client. In Section 5, we show how
these learned dialects can be matched against an SMTP
conversation, which is crucial for performing spam miti-
gation, as we will show in Section 7.

4 Learning Dialects

To distinguish between different SMTP speakers, we re-
quire a mechanism that learns which dialect is spoken by
a particular client. To do this, we need a set of SMTP
conversations C generated by the client. Each conver-
sation is a sequence of <reply, command> pairs, where
command can be empty if the client did not send any-
thing after receiving a reply from the server.

It is important to note that the state machine learned
for the dialect is affected by the type of conversations in
C. For example, if C only contains successful SMTP
conversations, the portion of the dialect state machine
that we can learn from it is very small. In the typ-
ical SMTP conversation listed in Figure 1, the client
first connects to the SMTP server, then announces itself
(i.e., sends a HELO command), states who the sender of
the email is (i.e., sends a MAIL command), lists recipi-
ents (by using one or more RCPT commands), and starts
sending the actual email content (by sending a DATA
command). Observing this type of communication gives
no information on what a client would do upon receiv-
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ing a particular error, or a specific SMTP reply from the
server. To mitigate this problem, we collect a diverse
set of SMTP conversations. We do this by directing the
client to an SMTP server under our control, and sending
specific SMTP replies to it (see Section 4.2).

Even though sending specific replies allows us to ex-
plore more states than the ones we could explore other-
wise, we still cannot be sure that the dialects we learn are
complete. In Section 7, we show how the inferred state
machines are usually good enough for discriminating be-
tween different SMTP dialects. However, in some cases,
we might not be able to distinguish two different dialects
because the learned state machines are identical.

4.1 Learning Algorithm

Analyzing the set C allows us to learn part of the dialect
spoken by the client. Our learning algorithm processes
one SMTP conversation from C at a time, and iteratively
builds the dialect state machine.

4.1.1 Learning the Message Templates

For each message observed in a conversation Con in
C, our algorithm generates a regular expression that
matches it. The regular expression generation algorithm
works in three steps:

Step 1: First, we split the message into tokens. As men-
tioned in Section 3.1, we consider the space, colon, and
equality characters as delimiters.

Step 2: For each token, we check if it matches a known
regular expression. More precisely, we check it against
all the regular expressions defined in Figure 3, from the
most specific to the least specific, until one matches (this
means that we check the regular expressions in the fol-
lowing order: email address, IP address, fully qualified
domain name, domain name, number, hostname).

If a token matches a regular expression, we substitute

the token with the matched regular expression’s identifier
(e.g., <email-addr>). If none of the regular expres-
sions are matched, we consider the token a keyword, and
we include it verbatim in the template.
Step 3: We build the message template, by concatenating
the template tokens (which can be keywords or regular
expressions) and the delimiters, in the order in which we
encountered them in the original message.

Consider, for example, the command:

MAIL FROM:<evil@example.com>
First, we break the command into tokens:
[MATIL, FROM, <evil@example.com>]

The only token that matches one of the known regular
expressions is the email address. Therefore, we consider
the other tokens as keywords. The final template for this
command will therefore be:

MAIL FROM:<email-addr>

Notice that, by defining message format templates as we
described, we can be more precise than the SMTP stan-
dard specification and detect the (often subtle) differ-
ences between two dialects even though both might com-
ply with the SMTP RFC. For example, we would build
two different message format templates (and, therefore,
have two dialects) for two clients that use different case
for the EHLO keyword (e.g., one uses EHLO as a key-
word, while the other uses Eh10o).

4.1.2 Learning the State Machine

We incrementally build the dialect state machine by start-
ing from an empty initial state sy and adding new transi-
tions and states as we observe more SMTP conversations
from C. For each conversation Con in C, the algorithm
executes the following steps:

Step 1: We set the current state s to sg.

Step 2: We examine all tuples <7;,¢;> in Con.
An example of a tuple is <220 server, HELO
evil.com>.

Step 3: We apply the algorithm described in 4.1.1 to r;
and c¢;, and build the corresponding templates ¢, and ..
In the example, ¢, is 220 hostname and ¢. is HELO
domain. Note that ¢; could be empty, because the client
might not have sent any command after a reply from the
server. In this case ¢, will be an empty string.

Step 4: If the state machine has a state s; labeled with ¢,
we check if there is a transition ¢ labeled with ¢, going
from s to s;. () If there is one, we set the current state s
to s;, and go to Step 6. (ii) If there is no such transition,
we connect s and s; with a transition labeled with ¢,., set
the current state s to s;, and go to Step 6. (iii) If none of
the previous conditions hold, we go to Step 5.

Step 5: If there is no state labeled with ., we create a
new state s,,, label it with ¢, , and connect s and s,, with
a transition labeled ¢,. We then set the current state s to
Sy Following the previous example, if we have no state
labeled with HELO domain, we create a new state with
that label, and connect it to the current state s (in this
case the initial state) with a transition labeled with 220
hostname. If there are no tuples left in Con, and ¢, is
empty, we set the current state as a failure state for the
current dialect, and add it to F,. We then move to the
next conversation in C, and go back to Step 2 2. Other-
wise, we go to Step 6.

Step 6: If s is labeled with DATA, we mark the state as
a good final state for this dialect, and add it to F},. Else,
if s is labeled with QUIT, we mark s as a bad final state
and add it to F},. We then move to the next conversation
in C, and we go back to Step 2.

2By doing this, we handle cases in which the client abruptly termi-
nates the connection
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4.2 Collecting SMTP Conversations

To be able to model as much of a dialect as possible, we
need a comprehensive set of SMTP conversations gener-
ated by a client.

As previously discussed, the straightforward approach
to collect SMTP conversations is to passively observe the
messages exchanged between a client and a server. In
practice, this is often enough to uniquely determine the
dialect spoken by a client (see Section 7 for experimen-
tal results). However, there are cases in which passive
observation is not enough to uniquely identify a dialect.
In such cases, it would be beneficial to be able to send
specifically-crafted replies to a client (e.g., malformed
replies), and observe its responses.

To perform this exploration, we set up a testing envi-
ronment in which we direct clients to a mail server we
control, and we instrument the server to be able to craft
specific responses to the commands the client sends.

The SMTP RFCs define how a client should respond
to unexpected SMTP replies, such as errors and mal-
formed messages. However, both legitimate clients and
spam engines either exhibit small differences in the im-
plementation of these guidelines, or they do not imple-
ment them correctly. The reason for this is that imple-
menting a subset of the SMTP guidelines is enough to
be able to perform a correct conversation with a server
and successfully send an email, in most cases. There-
fore, there is no need for a client to implement the full
SMTP protocol. Of course, for legitimate clients, we ex-
pect the SMTP implementation to be mature, robust, and
complete — that is, corner cases are handled correctly.
In contrast, spambots have a very focused purpose when
using SMTP: send emails as fast as possible. For spam-
mers, taking into account every possible corner case of
the SMTP protocol is unnecessary; even more problem-
atic, it could impact the performance of the spam engine
(see Section 7.4 for more details).

In summary, we want to achieve two goals when ac-
tively learning an SMTP dialect. First, we want to learn
how a client reacts to replies that belong to the language
defined in the SMTP RFCs, but are not exposed during
passive observation. Second, we want to learn how a
client reacts to messages that are invalid according to the
SMTP RFCs.

We aim to systematically explore the message struc-
ture as well as the state machine of the dialect spoken by
a client. To this end, the variations to the SMTP protocol
we use for active probing are of two types: (i) variations
to the protocol state machine, which modify the sequence
or the number of the replies that are sent by the server;
and (ii) variations to the replies, which modify the struc-
ture of the reply messages that are sent by the server.

In the following, we discuss how we generate varia-
tions of both the protocol state machine and the replies.

Protocol state machine variations.
of protocol variation techniques:
Standard SMTP replies: These variations aim at expos-
ing responses to replies that comply with the RFCs, but
are not observable during a standard, successful SMTP
conversation, like the one in Figure 1. An example is
sending SMTP errors to the commands a client sends.
Some dialects continue the conversation with the server
even after receiving a critical error.

Additional SMTP replies: These variations add replies to
the SMTP conversation. More precisely, this technique
replies with more than one message to the commands the
client sends. Some dialects ignore the additional replies,
while others will only consider one of the replies.
Out-of-order SMTP replies: These variations are used to
analyze how a client reacts when it receives a reply that
should not be sent at that point in the protocol (i.e., a state
transition that is not defined by the standard SMTP state
machine). For example, some senders might start send-
ing the email content as soon as they receive a 354 reply,
even if they did not specify the sender and recipients of
the email yet.

Missing replies: These variations aim at exposing the be-
havior of a dialect when the server never sends a reply to
a command.

We use four types

Message format variations. These variations repre-
sent changes in the format of the replies that the server
sends back to a client. As described in Section 2,
SMTP server replies to a client’s command have the
format CODE TEXT<CR><LF>, where CODE repre-
sents the actual response to the client’s command, TEXT
provides human-readable information to the user, and
<CR><LF> is the line terminator. According to the
SMTP specification, a client should read the data from
the server until it receives a line terminator, parse the
code to check the response, and pass the text of the reply
to the user if necessary (e.g., in case an error occurred).
Given the specification, we craft reply variations in
four distinct ways to systematically study how a client
reacts to them:
Compliant replies: These reply variations comply with
the SMTP standard, but are seldom observed in a com-
mon conversation. For example, this technique might
vary the capitalization of the reply (uppercase/lower-
case/mixed case). The SMTP specification states that re-
ply text should be case-insensitive.
Incorrect replies: The SMTP specification states that re-
ply codes should always start with one of the digits 2, 3,
4, or 5 (according to the class of the status code), and
be three-digits long. These variations are replies that do
not comply with the protocol (e.g., a message with a re-
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ply code that is four digits long). A client is expected
to respond with a QUIT command to these malformed
replies, but certain dialects behave differently.
Truncated replies: As discussed previously, the SMTP
specification dictates how a client is supposed to handle
the replies it receives from the server. Of course, it is
not guaranteed that clients will follow the specification
and process the entire reply. The reason is that the only
important information the client needs to analyze to de-
termine the server’s response is the status code. Some
dialects might only check for the status code, discarding
the rest of the message. For these reasons, we generate
variations as follows: For each reply, we first separate it
into tokens as described in Section 3.1. Then, for each
token, we generate N different variations, where N is
the number of tokens in each reply. We obtain such vari-
ations by truncating the reply with a line terminator after
each token.

Incorrectly-terminated replies: From a practical point of
view, there is no need for a client to parse the full re-
ply until it reaches the line terminator. To assess whether
a dialect checks for the line terminator when receiving
a reply, we terminate the replies with incorrect termina-
tors. In particular, we use the sequences <CR>, <LF>,
<CR><CR>, and <LF><LF> as line terminators. For
each terminator, similar to what we did for truncated
replies, we generate 4N different variations of each re-
ply, by truncating the reply after every token.

We developed 228 variations to use for our active
probing. More precisely, we extracted the set of replies
that are contained in the Postfix 3 source code. Then, we
applied to them the variations described in this section,
and we injected them into a reference SMTP conversa-
tion. To this end, we used the sequence of server replies
from the conversation in Figure 1.

5 Matching Conversations to Dialects

After having learned the SMTP dialects for different
clients, we obtain a different state machine for each
client. Given a conversation between a client and a
server, we want to assess which dialect the client is
speaking. To do this, we merge all inferred dialect state
machines together into a single Decision State Machine
Mp.

5.1 Building the Decision State Machine

We use the approach proposed by Wolf [46] to merge the
dialect state machines into a single state machine. Given
two dialects D; and Do, the approach works as follows:

Step 1: We build the Cartesian product D x Ds. That is,
for each combination of states < s, so >, where s is a

3A popular open-source Mail Transfer

http://www.postfix.org/

Agent:

220 hostname

C1: HELO hostname
C2: HELO domain

C1: DATA
C2: RCPT TO:<email-addr.

Figure 4: An example of decision state machine

state in Dy and ss is a state in Dy, we build a new state
sp in the decision state machine M p.

The label of sp is a table with two columns. The first
column contains the identifier of one of the dialects sp
was built from (e.g., Dy), and the second column con-
tains the label that dialect had in the original state (either
§1 or s). Note that we add one row for each of the two
states that sp was built from. For example, the second
state of the state machine in Figure 4 is labeled with a
table containing the two possible message templates that
the clients C1 and C2 would send in that state (i.e., HELO
hostname and HELO domain).

We then check all the incoming transitions to s; and s

in the original state machines D; and D5. For each com-
bination of transitions <ti, to>, where ¢; is an incoming
transition for sy and ¢, is an incoming transition for so,
we check if ¢; and ¢2 have the same label. If they do, we
generate a new transition ¢4, and add it to M p. The label
of t4 is the label of ¢ and t5. The start state of ¢, is the
Cartesian product of the start states of ¢; and 9, respec-
tively, while the end state is sp. If the labels of s; and
5o do not match, we discard ¢4. For example, a transition
t1 labeled as 250 OK and a transition ¢, labeled as 553
Relaying Denied would not generate a transition in
Mp. At the end of this process, if sp is not connected
to any other state, it will be not part of the decision state
machines M p, since that state would not be reachable if
added to M p.
Step 2: We reduce the number of states in M by merg-
ing together states that are equivalent. To evaluate if two
states s and s, are equivalent, we first extract the set of
incoming transitions to s; and s;. We name these sets
I, and I». Then, we extract the set of outgoing transi-
tions from s; and s,, and name these sets O and Os.
We consider s; and so as equivalent if |I;| = |I3| and
|O1| = O3], and if the edges in the sets I; and I, and
in O1 and O5 have the exact same labels.

If s; and s9 are equivalent, we remove them from Mp,
and we add a state s; to M p. The label for s, is a table
composed of the combined rows of the label tables of
s1 and so. We then adjust all the transitions in Mp that
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had s; or s as start states to start from s, and all the
transitions that had s; or s, as end states to end at s.

We iteratively run this algorithm on all the dialects we
learned, and we build the final decision state machine
Mp. As an example, Figure 4 shows the decision state
machine built from the two dialects in Figure 2. Wolf
shows how this algorithm produces nearly-minimal re-
sulting state machines [46]. Empirical results indicate
that this works well in practice and is enough for our
purposes. Also, as for the dialect state machines, the de-
cision state machine is non-deterministic. This is not a
problem, since we analyze different states in parallel to
make a decision as we explain in the next section.

5.2 Making a Decision

Given an SMTP conversation C'on, we assign it to an
SMTP dialect by traversing the decision state machine
Mp in the following way:

Step 1: We keep a list A of active states, and a list Cp of
dialect candidates. At the beginning of the algorithm, A
only contains the initial state of M p, while Cp contains
all the learned dialects.

Step 2: Every time we see a server reply r in Con, we
check each state s, in A for outgoing transitions labeled
with r. If such transition exists, we follow each of them
and add the end states to a list A’. Then, we set A’ as the
new active state list A.

Step 3: Every time we see a client command ¢ in Con,
we check each state s, in A. If s,’s table has an entry
that matches ¢, and the identifier for that entry is in the
dialect candidate list Cp, we copy s, to a list A’. We
then remove from Cp all dialect candidates whose table
entry in s, did not match c. We set A’ as the new active
state list A.

The dialects that are still in C'p at the end of the pro-
cess are the possible candidates the conversation belongs
to. If Cp contains a single candidate, we can make a
decision and assign the conversation to a unique dialect.

5.3 Applying the Decision

The decision approach explained in the previous section
can be used in different ways, and for different purposes.
In particular, we can use it to assess to which client a
server is talking. Furthermore, we can use it for spam
mitigation, and close connections whenever a conversa-
tion matches a dialect spoken by a bot.

Similarly to what we discussed in Section 4, the de-
cision process can happen passively, or actively, by hav-
ing a server decide which replies to send to the client.
In the first case, we traverse the decision state machine
for each reply, as described in Section 5.2, and end up
with a dialect candidate set at the end of the conversa-
tion. Consider, for example, the decision state machine
in Figure 4. By passively observing the SMTP conver-

sation, our approach is able to discard one of the two
dialects from the candidate set as soon as the client sends
the HELO message. If the commands of the remaining
candidate match the ones in the decision state machine
for that client until we observe the DATA command, we
can attribute the conversation to that dialect. Otherwise,
the conversation does not belong to any learned dialect.
As discussed in Section 4, passive observation gives
no guarantee to uniquely identify a dialect. In this con-
text, a less problematic use case is to deploy this ap-
proach for spam detection: once the candidate set C'p
contains only bots, we can close the connection and clas-
sify this conversation as related to spam. As we will
show in Section 7, this approach works well in practice
on a real-world data set. If passive observation is not
enough to identify a dialect, one can use active probing.

Gain heuristic. To perform active detection, we need
to identify “good” replies that we can send to achieve
our purpose (dialect classification or spam mitigation).
More specifically, we need to find out which replies can
be used to expose the deviations in different implementa-
tions. To achieve this goal, we use the following heuris-
tic: For each state ¢; in which a dialect ¢ reaches the end
of a conversation (i.e., sends a DATA or QUIT command,
or just closes the connection), we assign a gain value g;
to the dialect ¢ in that state. The gain value represents
how much it would help achieve our detection goal if
we reached that state during our decision process. Then,
we propagate the gain values backwards along the tran-
sitions of the decision state machine. For each state s,
we set the gain for ¢ in that state as the maximum of the
gain values for ¢ that have been propagated to that state.
To correctly handle loops, we continue propagating the
gain values until we reach a fixed point. We then calcu-
late the gain for s as the minimum of the gains for any
dialect j in s. We do this to ensure that our decision is
safe in the worst-case scenario (i.e., for the client with
the minimal gain for that state). We calculate the initial
gain for a state in different ways, depending on the goal
of our decision process.

When performing spam mitigation, we want to avoid
a legitimate client from failing to send an email. For this
reason, we strongly penalize failure states for legitimate
clients, while we want to have high gains for states in
which spambots would fail. For each state in which a di-
alect reaches a final state, we calculate the gain for that
state as follows: First, we assign a score to each client
with a final label for that state (i.e., a QUIT, a DATA, or
a connection closed label). We want to give more impor-
tance to states that make bots fail, while we never want
to visit states that make legitimate clients fail. Also, we
want to give a neutral gain to states that make legitimate
clients succeed, and a slightly lower gain to states that
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make bots succeed. To achieve this, we assign a score of
1 for bot failure states, a score of 0 for legitimate clients
failure states, a score of 0.5 for legitimate-client success
states, and a score of 0.2 for bot success states. Notice
that what we need here is a lattice of values that respect
the stated precedence; therefore, any set of numbers that
maintain this relationship would work.

When performing classification, we want to be as ag-
gressive as possible in reducing the number of possible
dialect candidates. In other words, we want to have high
gains for states that allow us to make a decision on which
dialect is spoken by a given client. Such states are those
with a single possible client in them, or with different
clients, each one with a different command label. To
achieve this property, we set the gain for each state that
includes a final label as G = %, where n is the total num-
ber of labels in that state, and d is the number of unique
labels.

Reply selection. At each iteration of the algorithm ex-
plained in Section 5.2, we decide which reply to send
by evaluating the gain for every possible reply from the
states in A. For all the states reachable in one transi-
tion from the states in A, we first select the states S, that
still have at least an active client in their label table. We
group together those states in .S, that are connected to
the active states by transitions with the same label. For
each label group, we pick the minimum gain among the
states in that group. We consider this number as the gain
we would get by sending that reply. After calculating the
gain for all possible replies, we send the reply that has
the highest gain associated to it. In case more than one
reply yields the same gain we pick one randomly.

6 The Botnet Feedback Mechanism

Modern spamming botnets typically use template-based
spamming to send out emails [22,31,38]. With this tech-
nique, the botnet C&C infrastructure tells the bots what
kind of emails to send out, and the bots relay back in-
formation about the delivery as they received it from the
SMTP server. This server feedback is an important piece
of information to the botmaster, since it enables him to
monitor if his botnet is working correctly.

Of course, a legitimate sender is also interested in in-
formation about the delivery process. However, she is
interested in different information compared to the bot-
master. In particular, a legitimate user wants to know
whether the delivery of her emails failed (e.g., due to a
typo in the email address). In such a case, the user wants
to correct the mistake and send the message again. In
contrast, a spammer usually sends emails in batches, and
typically does not care about sending an email again in
case of failure.

Nonetheless, there are three main pieces of informa-
tion related to server feedback that a rational spammer
is interested in: (i) whether the delivery failed because
the IP address of the bot is blacklisted; (ii) whether the
delivery failed because of specific policies in place at the
receiving end (e.g., greylisting); (iii) whether the deliv-
ery failed because the recipient address does not exist. In
all three cases, the spammer can leverage the information
obtained from the mail server to make his operation more
effective and profitable. In the case of a blacklisted bot,
he can stop sending spam using that IP address, and wait
for it to be whitelisted again after several hours or days.
Empirical evidence suggests that spammers already col-
lect this information and act accordingly [38]. If the re-
cipient server replied with an SMTP non-critical error
(i.e., the ones used in greylisting), the spammer can send
the email again after some minutes to comply with the
recipient’s policy.

The third case, in which the recipient address does
not exist, is the most interesting, because it implies that
the spammer can permanently remove that email address
from his email lists, and avoid using it during subsequent
campaigns. Recent research suggests that bot feedback
is an important part of a spamming botnet operation. For
example, Stone-Gross et al. [38] showed that about 35%
of the email addresses used by the Cutwail botnet were
in fact non-existent. By leveraging the server feedback
received by the bots, a rational botmaster can get rid
of those non-existing addresses, and optimize his spam-
ming performance significantly.

Breaking the Loop: Providing False Responses to
Spam Emails. Based on these insights, we want to
study how we can manipulate the SMTP delivery pro-
cess of bots to influence their sending behavior. We want
to investigate what would happen if mail servers started
giving erroneous feedback to bots. In particular, we are
interested in the third case, since influencing the first two
pieces of information has only a limited, short-term im-
pact on a spammer. However, if we provide false in-
formation about the status of a recipient’s address, this
leads to a double bind for the spammer: on the one hand,
if a spammer considers server feedback, he will remove
a valid recipient address from his email list. Effectively,
this leads to a reduced number of spam emails received at
this particular address. On the other hand, if the spammer
does not consider server feedback, this reduces the effec-
tiveness of his spam campaigns since emails are sent to
non-existent addresses. In the long run, this will signifi-
cantly degrade the freshness of his email lists and reduce
the number of successfully sent emails. In the following,
we discuss how we can take advantage of this situation.
As a first step, we need to identify that a given SMTP
conversation belongs to a bot. To this end, a mail server
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can either use traditional, IP-based blacklists or lever-
age the analysis of SMTP dialects introduced previously.
Once we have identified a bot, a mail server can (instead
of closing the connection) start sending erroneous feed-
back to the bot, which will relay this information to the
C&C infrastructure. Specifically, the mail server could,
for example, report that the recipient of that email does
not exist. By doing this, the email server would lead
the botmaster to the lose-lose situation discussed before.
For a rational botmaster, we expect that this technique
would reduce the amount of spam the email address re-
ceives. We have implemented this approach as a second
instance of our technique to leverage the email delivery
for spam mitigation and report on the empirical results in
Section 7.3.

7 Evaluation

In this section, we evaluate the effectiveness of our ap-
proach. First, we describe our analysis environment.
Then, we evaluate both the dialects and the feedback ma-
nipulation techniques. Finally, we analyze the limitations
and the possible evasion techniques against our system.

7.1 Analysis Environment

We implemented our approach in a tool, called B@bel.
B@bel runs email clients (legitimate or malicious) in
virtual machines, and applies the learning techniques ex-
plained in Section 4 to learn the SMTP dialect of each
client. Then, it leverages the learned dialects to build a
decision machine Mp, and uses it to perform malware
classification or spam mitigation.

The first component of B@bel is a virtual machine
zoo. Each of the virtual machines in the zoo runs a dif-
ferent email client *. Clients can be legitimate email pro-
grams, mail transfer agents, or spambots.

The second component of B@bel is a gateway, used to
confine suspicious network traffic. Since the clients that
we run in the virtual machines are potentially malicious,
we need to make sure that they do not harm the outside
world. To this end, while still allowing the clients to
connect to the Internet, we use restricting firewall rules,
and we throttle their bandwidth, to make sure that they
will not be able to launch denial of service attacks. Fur-
thermore, we sinkhole all SMTP connections, redirecting
them to local mail servers under our control.

We use three different mail servers in B@bel. The
first email server is a regular server that speaks plain
SMTP, and will perform passive observation of the
client’s SMTP conversation. The second server is instru-

4We used VirtualBox as our virtualization environment, and Win-
dows XP SP3, Windows Server 2008, Windows 7, Ubuntu Linux 11.10,
or Mac OS X Lion as operating systems on the virtual machines, de-
pending on the operating system needed to run each of the legitimate
clients or MTAs. We used Windows XP SP3 to run the malware sam-
ples

mented to perform active probing, as described in Sec-
tion 4.2. Finally, the third server is configured to always
report to the client that the recipient of an email does not
exist, and is used to study how spammers use the feed-
back they receive from their bots.

The third component of B@bel is the learner. This
component analyzes the active or passive observations
generated between the clients in the zoo and the mail
servers, learns an SMTP dialect for each client, and gen-
erates the decision state machine using the various di-
alects as input, as explained in Section 5. According
to the task we want to perform (dialect classification or
spam mitigation), B@bel tags the states in the decision
state machine with the appropriate gain.

The last component of B@bel is the decision maker.
This component analyzes an SMTP conversation, by
either passively observing it or by impersonating the
server, and makes a decision about which dialect is spo-
ken by the client, using the process described in Sec-
tion 5.2.

7.2 Evaluating the Dialects

Evaluating Dialects for Classification We trained
B@bel by running active probing on a variety of pop-
ular Mail User Agents, Mail Transfer Agents, and bot
samples. Table 1 lists the clients we used for dialect
learning. Since we are extracting dialects by looking
at the SMTP conversations only, B@bel is agnostic to
the family a bot belongs to. However, for legibility pur-
poses, Table 1 groups bots according to the most fre-
quent label assigned by the anti-virus products deployed
by VirusTotal [44]. Our dataset contained 13 legitimate
MUASs and MTAs, and 91 distinct malware samplesS. We
picked the spambot samples to be representative of the
largest active spamming botnets according to a recent re-
port [26] (the report lists Lethic, Cutwail, Mazben, Cut-
wail, Tedroo, Bagle). We also picked worm samples that
spread through email, such as Mydoom. In total, the mal-
ware samples we selected belonged to 11 families. The
dialect learning phase resulted in a total of 60 dialects.
We explain the reason for the high number of discovered
dialects later in this section.

We then wanted to assess whether a dialect (i.e., a
state machine) is unique or not. For each combination
of dialects <dy, d2>, we merged their state machines to-
gether as explained in Section 5.1. We consider two di-
alects as distinct if any state of the merged state machine
has two different labels in the label table for the dialects
d; and ds, or if any state has a single possible dialect in
1t.

The results show that the dialects spoken by the legit-
imate MUAs and MTAs are distinct from the ones spo-

5The MD5 checksums of the malware samples are available at
http://cs.ucsb.edu/~gianluca/files/babel.txt
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Mail User Agents Mail Transfer Agents | Bots (by AV labels)

Eudora, Opera, Outlook 2010, Exchange 2010, Waledac, Donbot, Grum, Klez
Outlook Express, Pegasus, Exim, Postfix, Qmail, Buzus, Bagle, Lethic, Cutwail,
The Bat!, Thunderbird, Windows Live Mail | Sendmail Mydoom, Mazben, Tedroo

Table 1: MTAs, MUAS, and bots used to learn dialects.

ken by the bots. By analyzing the set of dialects spoken
by legitimate MUAs and MTAs, we found that they all
speak distinct dialects, except for Outlook Express and
Windows Live Mail. We believe that Microsoft used the
same email engine for these two products.

The 91 malware samples resulted in 48 unique di-
alects. We manually analyzed the spambots that use the
same dialect, and we found that they always belong to the
same family, with the exception of six samples. These
samples were either not flagged by any anti-virus at the
time of our analysis, or match a dropper that downloaded
the spambot at a later time [8]. This shows that B@bel
is able to classify spambot samples by looking at their
email behavior, and label them more accurately than anti-
virus products.

We then wanted to understand the reason for the high
number of dialects we discovered. To this end, we con-
sidered clusters of malware samples that were talking the
same dialect. For each cluster, we assigned a label to it,
based on the most common anti-virus label among the
samples in the cluster. All the clusters were unique, with
the exception of eleven clusters marked as Lethic and two
clusters marked as Mydoom. By manual inspection, we
found that Lethic randomly closes the connection after
sending the EHLO message. Since our dialect state ma-
chines are nondeterministic, our approach handles this
case, in principle. However, in some cases, this non-
deterministic behavior made it impossible to record a re-
ply for a particular test case during our active probing.
We found that each cluster labeled as Lethic differs for at
most five non-recorded test cases with every other Lethic
cluster. This gives us confidence to say that the dialect
spoken by Lethic is indeed unique. For the two clusters
labeled as Mydoom, we believe this is a common label
assigned to unknown worms. In fact, the two dialects
spoken by the samples in the clusters are very different.
This is another indicator that B@be 1 can be used to clas-
sify spamming malware in a more precise fashion than is
possible by relying on anti-virus labels only.

Evaluating Dialects for Spam Detection To evaluate
how the learned dialects can be used for spam detection,
we collected the SMTP conversations for 621,919 email
messages on four mail servers in our department, span-
ning 40 days of activity.

For each email received by the department servers, we
extracted the SMTP conversation associated with it, and
then ran B@bel on it to perform spam detection. To this

end, we used the conversations logged by the Anubis sys-
tem [4] during a period of one year (corresponding to
7,114 samples) to build the bot dialects, and the dialects
learned in Section 7.2 for MUAs and MTAs as legitimate
clients. In addition, we manually extracted the dialects
spoken by popular web mail services from the conversa-
tions logged by our department mail servers, and added
them to the legitimate MTAs dialects. Note that, since
the goal of this experiment is to perform passive spam
detection, learning the dialects by passively observing
SMTP conversations is sufficient.

During our experiment, B@bel marked any conversa-
tion as spam if, at the end of the conversation, the di-
alects in C'p were all associated with bots. Furthermore,
if the dialects in C'p were all associated with MUASs
or MTAs, B@bel marked the conversation as legitimate
(ham). If there were both good and malicious clients in
Cp, B@bel did not make a decision. Finally, if the deci-
sion state machine did not recognize the SMTP conversa-
tion at all, B@bel considered that conversation as spam.
This could happen when we observe a conversation from
a client that was not in our training set. As we will show
later, considering it as spam is a reasonable assumption,
and is not a major source of false positives.

In total, B@bel flagged 260,074 conversations as
spam, and 218,675 as ham. For 143,170 emails, B@bel
could not make a decision, because the decision pro-
cess ended up in a state where there were both legitimate
clients and bots in Cp.

To verify how accurate our decisions were, we used
a number of techniques. First, we checked whether the
email was blocked by the department mail servers in
the first place. These servers have a common configu-
ration, where incoming emails are first checked against
an IP blacklist, and then against more expensive content-
analysis techniques. In particular, these servers used a
commercial blacklist for discarding emails coming from
known spamming IP addresses, and SpamAssassin and
ClamAV for content analysis. Any time one of these
techniques and B@bel agreed on flagging a conversa-
tion as spam, we consider this as a true positive of our
system. We also consider as a true positive those con-
versations B@bel marked as spam, and that lead to an
NXDOMAIN or to a timeout when we tried to resolve the
domain associated to the sender email address. In addi-
tion, we checked the sender IP address against 30 addi-
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tional IP blacklists®, and considered any match as a true
positive. According to this ground truth, the true positive
rate for the emails Bebe 1 flagged as being sent by bots is
99.32%. Surprisingly, 98% of the 24,757 conversations
that were not recognized by our decision state machine
were flagged as spam by existing methods. This shows
that, even if the set of clients from which B@bel learned
the dialects from is not complete, there are no widely-
used legitimate clients we missed, and that it is safe to
consider any conversation generated by a non-observed
dialect as spam. For the remaining 2,074 emails that
B@bel flagged as spam, we could not assess if they were
spam or not. They might have been a false positive of
B@bel, or a false negative of the existing methods. To
remain on the safe side, we consider them as false posi-
tives. This results in B@be 1 having a precision of 99.3%.

We then looked at our false negatives. We consider as
false negatives those conversations that B@be1 classified
as belonging to a legitimate client dialect, but that have
been flagged as spam by any of the previously mentioned
techniques. In total, the other spam detection mecha-
nisms flagged 71,342 emails as spam, among the ones
that B@bel flagged as legitimate. Considering these
emails as false negatives, this results in B@bel having a
false negative rate of 21%. The number of false negatives
might appear large at first. However, we need to con-
sider the sources of these spam messages. While the vast
majority of spam comes from botnets, spam can also be
sent by dedicated MTAs, as well as through misused web
mail accounts. Since B@bel is designed to detect email
clients, we are able to detect which MTA or web mail
application the email comes from, but we cannot assess
whether that email is ham or spam. To show that this is
the case, we investigated these 71,342 messages, which
originated from 7,041 unique IP addresses. Assuming
these are legitimate MTAs, we connected to each IP ad-
dress on TCP port 25 and observed greeting messages
for popular MTAs. For 3,183 IP addresses, one of the
MTAs that we used to learn the dialects responded. The
remaining 3,858 IP addresses did not respond within a 10
second timeout. We performed reverse DNS lookups on
these IP addresses and assessed whether their assigned
DNS names contained indicative names such as smtp or
mail. 1,654 DNS names were in this group. We could
not find any conclusive proof that the remaining 2,204
addresses belong to legitimate MTAs.

For those dialects for which B@bel could not make a
decision (because the conversation lead to a state where
both one or more legitimate clients and bots were active),

%The blacklists we leveraged come from these services: Barracuda,
CBL, Spamhaus, Atma, Spamcop, Manitu, AHBL, DroneBL, DShield,
Emerging Threats, malcOde, McAfee, mdl, OpenBL, SORBS, Sucuri
Security, TrendMicro, UCEPROTECT, and ZeusTracker. Note that
some services provide multiple blacklists

we investigated if we could have assessed whether the
client was a bot or not by using active probing. Since the
spambot and legitimate client dialects that we observed
are disjoint, this is always possible. In particular, B@be 1
found that it is always possible to distinguish between the
dialects spoken by a spambot and by a legitimate email
client that look identical from passive analysis by send-
ing a single SMTP reply. For example, the SMTP RFC
specifies that multi-line replies are allowed, in the case
all the lines in the reply have the same code, and all the
reply codes but the last one are followed by a dash char-
acter. Therefore, multi-line replies that use different re-
ply codes are not allowed by the standard. We can lever-
age different handling of this corner case to disambiguate
between Qmail and Mydoom. More precisely, if we send
the reply 250-0OK<CR><LF>550 Error, Qmail will
take the first reply code as the right one, and continue
the SMTP transaction, while Mydoom will take the sec-
ond reply code as the right one, and close the connec-
tion. Based on these observations, we can say that if we
ran B@bel in active mode, we could distinguish between
these ambiguous cases, and make the right decision. Un-
fortunately, we could run B@bel only in passive mode
on our department mail servers.

Our results show that B@bel can detect (and possi-
bly block) spam emails sent by bots with high accuracy.
However, B@bel is unable to detect those spam emails
sent by dedicated MTAs or by compromised webmail ac-
counts. For this reason, similar to the other state-of-the-
art mitigation techniques, B@bel is not a silver bullet,
but should be used in combination with other anti-spam
mechanisms. To show what would be the advantage of
deploying B@bel on a mail server, we studied how much
spam would have been blocked on our department server
if B@bel was used in addition to or in substitution to
the commercial blacklist and the content analysis sys-
tems that are currently in use on those servers.

Similarly to IP blacklists, B@bel is a lightweight
technique. Such techniques are typically used as a first
spam-mitigation step to make quick decisions, as they
avoid having to apply resource-intensive content anal-
ysis techniques to most emails. For this reason, the
first configuration we studied is substituting the commer-
cial blacklist with B@bel. In this case, 259,974 emails
would have been dropped as spam, instead of the 219,726
that were blocked by the IP blacklist. This would have
resulted in 15.5% less emails being sent to the content
analysis system, reducing the load on the servers. More-
over, the emails detected as spam by B@bel and the IP
blacklist do not overlap completely. For example, the
IP blacklist flags as spam emails sent by known misused
MTAs. Therefore, we analyzed the amount of spam that
the two techniques could have caught if used together. In
this scenario, 278,664 emails would have been blocked,
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resulting in 26.8% less emails being forwarded to the
content analysis system compared to using the blacklist
alone. As a last experiment, we studied how much spam
would have been blocked on our servers by using Be@be 1
in combination with both the commercial blacklist and
the content analysis systems. In this scenario, 297,595
emails would have been flagged as spam, which consti-
tutes an improvement of 3.9% compared to the servers’
original configuration.

7.3 Evaluating the Feedback Manipulation

To investigate the effects of wrong server feedback to
bots, we set up the following experiment. We ran 32 mal-
ware samples from four large spamming botnet families
(Cutwail, Lethic, Grum, and Bagle) in a controlled envi-
ronment, and redirected all of their SMTP activity to the
third mail server in the B@bel architecture. We config-
ured this server to report that any recipient of the emails
the bots were sending to was non-existent, as described
in Section 7.1.

To assess whether the different botnets stopped send-
ing emails to those addresses, we leveraged a spamtrap
under our control. A spamtrap is a set of email addresses
that do not belong to real users, and, therefore, collect
only spam mails. To evaluate our approach, we leverage
the following idea: if an email address is successfully
removed from an email list used by a spam campaign,
we will not observe the same campaign targeting that ad-
dress again. We define as a spam campaign the set of
emails that share the same URL templates in their links,
similar to the work of Xie et al. [48]. While there are
more advanced methods to detect spam campaigns [31],
the chosen approach leads to sufficiently good results for
our purposes.

We ran our experiment for 73 days, from June 18 to
August 30, 2011. During this period, our mail server
replied with false server feedback for 3,632 destination
email addresses covered by our spamtrap, which were
targeted by 29 distinct spam campaigns. We call the set
of campaigns C and the set of email addresses Sy. Of
these, five campaigns never targeted the addresses for
which we gave erroneous feedback again. To estimate
the probability P, that the spammer running campaign c
in C'y actually removed the addresses from his list, and
that our observation is not random, we use the following
formula:

Po=1-(1--—2_

)te—tf
ty—ty ’

where 7 is the total number of emails received by Sy
for ¢, ty is the time at which we first gave a negative
feedback for an email address targeted by c, ¢ is the first
email for ¢ which we ever observed targeting our spam
trap, and t. is the last email we observed for c¢. This
formula calculates the probability that, given a certain

number n of emails observed for a certain campaign c,
no email was sent to the email addresses in Sy after we
sent a poisoned feedback for them. We calculate P. for
the five campaigns mentioned above. For three of them,
the confidence was above 0.99. For the remaining two,
we did not observe enough emails in our spamtrap to be
able to make a final estimate.

To assess the impact we would have had when send-
ing erroneous feedback to all the addresses in the spam-
trap, we look at how many emails the whole spamtrap
received from the campaigns in Cy. In total, 2,864,474
emails belonged to campaigns in C'y. Of these, 550,776
belonged to the three campaigns for which we are con-
fident that our technique works and reduced the amount
of spam emails received at these addresses. Surprisingly,
this accounts for 19% of the total number of emails re-
ceived, indicating that this approach could have impact
in practice.

We acknowledge that these results are preliminary and
provide only a first insight into the large-scale applica-
tion of server feedback poisoning. Nevertheless, we are
confident that this approach is reasonable since it leads
to a lose-lose situation for the botmaster, as discussed in
Section 6. We argue that the uncertainty about server
feedback introduced by our method is beneficial since it
reduces the amount of information a spammer can obtain
when sending spam.

7.4 Limitations and Evasion

Our results demonstrate that BA@bel is successful in de-
tecting current spambots. However, spam detection is an
adversarial game. Thus, once B@bel is deployed, we
have to expect that spammers will evolve and try to by-
pass our systems. In this section, we discuss potential
paths for evasion.

Evading dialects detection. The most immediate path
to avoid detection by dialects is to implement an SMTP
engine that precisely follows the specification. Alterna-
tively, a bot author could make use of an existing (open
source) SMTP engine that is used by legitimate email
clients. We argue that this has a negative impact on the
effectiveness and flexibility of spamming botnets.

Many spambots are built for performance; their aim
is to distribute as many messages as possible. In some
cases, spambots even send multiple messages without
waiting for any server response. Clearly, any additional
checks and parsing of server replies incurs overhead that
might slow down the sender. We performed a simple ex-
periment to measure the speed difference between a mal-
ware program sending spam (Bagle) and a legitimate
email library on Windows (Collaboration Data
Objects - CDO). We found that Bagle can send an
email every 20 ms to a local mail server. When trying to
send emails as fast as possible using the Windows library
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(in a tight loop), we measured that a single email required
200 ms, an order of magnitude longer. Thus, when bots
are forced to faithfully implement large portions of the
SMTP specification (because otherwise, active probing
will detect differences), spammers suffer a performance
penalty.

Spammers could still decide to adopt a well-known
SMTP implementation for their bots, run a full, paral-
lelized, SMTP implementation, or revert to a well-known
SMTP library when they detect that the recipient server
is using B@bel for detection. In this case, another as-
pect of spamming botnets has to be taken into account.
Typically, cyber criminals who infect machines with bots
are not the same as the spammers who rent botnets to dis-
tribute their messages. Modern spamming botnets allow
their customers to customize the email headers to mimic
legitimate clients. In this scenario, B@bel could exploit
possible discrepancies between the email client identified
by the SMTP dialect and the one announced in the body
of an email (for example, via the X-Mailer header).
When these two dialects do not match (and the SMTP
dialect does not indicate an MTA), we can detect that
the sender pretends to speak a dialect that is inconsis-
tent with the content of the (spam) message. Of course,
the botmasters could take away the possibility for their
customers to customize the headers of their emails, and
force them to match the ones typical of a certain legiti-
mate client (e.g., Outlook Express). However, while this
would make spam detection harder for B@bel, it would
make it easier for other systems that rely on email-header
analysis, such as Botnet Judo [31], because spammers
would be less flexible in the way they vary their tem-
plates.

Mitigating feedback manipulation. As we discussed
in Section 6, spammers can decide to either discard any
feedback they receive from the bots, or trust this feed-
back. To avoid this, attackers could guess whether the
receiving mail server is performing feedback manipula-
tion. For example, when all emails to a particular domain
are rejected because no recipient exists, maybe all feed-
back from this server can be discarded. In this case, we
would need to update our feedback mechanism to return
invalid feedback only in a fraction of the cases.

8 Related Work

Email spam is a well-known problem that has attracted a
substantial amount of research over the past years. In the
following, we briefly discuss how our approach is related
to previous work in this area and elaborate on the novel
aspects of our proposed methods.

Spam Filtering: Existing work on spam filtering can
be broadly classified in two categories: post-acceptance
methods and pre-acceptance methods. Post-acceptance

methods receive the full message and then rely on con-
tent analysis to detect spam emails. There are many ap-
proaches that allow one to differentiate between spam
and legitimate emails: popular methods include Naive
Bayes, Support Vector Machines (SVMs), or similar
methods from the field of machine learning [16,27, 35,
36]. Other approaches for content-based filtering rely on
identifying the URLs used in spam emails [2,48]. A third
method is DomainKeys Identified Mail (DKIM), a system
that verifies that an email has been sent by a certain do-
main by using cryptographic signatures [23]. In practice,
performing content analysis or computing cryptographic
checksums on every incoming email can be expensive
and might lead to high load on busy servers [41]. Fur-
thermore, an attacker might attempt to bypass the con-
tent analysis system by crafting spam messages in spe-
cific ways [25,28]. In general, the drawback of post-
acceptance methods is that an email has to be received
before it can be analyzed.

Pre-acceptance methods attempt to detect spam before
actually receiving the full message. Some analysis tech-
niques take the origin of an email into account and an-
alyze distinctive features about the sender of an email
(e.g., the IP address or autonomous system the email
is sent from, or the geographical distance between the
sender and the receiver) [17,34,39,43]. In practice, these
sender-based techniques have coverage problems: pre-
vious work showed how IP blacklists miss detecting a
large fraction of the IP addresses that are actually sending
spam, especially due to the highly dynamic nature of the
machines that send spam (typically botnets) [32,37,38].

Our method is a novel, third approach that focuses on
how messages are sent. This avoids costly content anal-
ysis, and does not require the design and implementa-
tion of a reputation metric or blacklist. In contrast, we
attempt to recognize the SMTP dialect during the ac-
tual SMTP transaction, and our empirical results show
that this approach can successfully discriminate between
spam and ham emails. This complements both pre-
acceptance and post-acceptance approaches. Another
work that went in this direction was done by Beverly et
al. [5] and Kakavelakis et al. [19]. The authors of these
two papers leveraged the fact that spambots have often
bad connections to the Internet, and perform spam detec-
tion by looking at TCP-level features such as retransmis-
sions and connection resets. Our system is more robust,
because it does not rely on assumptions based on the net-
work connectivity of a mail client.

Moreover, to the best of our knowledge, we are the
first to study the effects of manipulating server feedback
to poison the information sent by a bot to the botmaster.
Protocol Analysis: The core idea behind our approach
is to learn the SMTP dialect spoken by a particular
client. This problem is closely related to the problem of
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automated protocol reverse-engineering, where an (un-
known) protocol is analyzed to determine the individual
records/elements and the protocol’s structure [6, 13]. Ini-
tial work in this area focused on clustering of network
traces to group similar messages [14], while later meth-
ods extracted protocol information by analyzing the ex-
ecution of a program while it performs network commu-
nication [10, 15,24, 45,47]. Sophisticated methods can
also handle multiple messages and recover the protocol’s
state machine. For example, Dispatcher is a tool capa-
ble of extracting the format of protocol messages when
having access to only one endpoint, namely the bot bi-
nary [9]. Cho et al. leverage the information extracted
by Dispatcher to learn C&C protocols [11]. Brumley et
al. studied how deviations in the implementation of a
given protocol specification can be used to detect errors
or generate fingerprints [7]. The differences in how a
given program checks and processes inputs are identified
with the help of binary analysis (more specifically, sym-
bolic execution).

Our problem is related to previous work on protocol
analysis, in the sense that we extract different SMTP pro-
tocol variations, and use these variations to build finger-
prints. However, in this work, we treat the speaker of the
protocol (the bot) as a blackbox, and we do not perform
any code analysis or instrumentation to find protocol for-
mats or deviations. This is important because (i) mal-
ware is notoriously difficult to analyze and (ii) we might
not always have a malware sample available. Instead,
our technique allows us to build SMTP dialect state ma-
chines even when interacting with a previously-unknown
spambot.

There is also a line of research on fingerprinting pro-
tocols [12, 30, 49]. Initial work in this area leveraged
manual analysis. Nonetheless, there are methods, such
as FiG, that automatically generate fingerprints for DNS
servers [42]. The main difference between our work and
FiG is that our dialects are stateful while FiG operates
on individual messages. This entirely avoids the need to
merge and explore protocol state machines. However, as
discussed previously, individual messages are typically
not sufficient to distinguish between SMTP engines.

9 Conclusion

In this paper, we introduced a novel way to detect and
mitigate spam emails that complements content- and
sender-based analysis methods. We focus on how email
messages are sent and derive methods to influence the
spam delivery mechanism during SMTP transactions.
On the one hand, we show how small deviations in
the SMTP implementation of different email agents (so
called SMTP dialects) allow us to detect spambots dur-
ing the actual SMTP communication. On the other hand,
we study how the feedback mechanism used by botnets

can be poisoned, which can be used to have a negative
impact on the effectiveness of botnets.

Empirical results confirm that both aspects of our ap-
proach can be used to detect and mitigate spam emails.
While spammers might adapt their spam-sending prac-
tices as a result of our findings, we argue that this reduces
their performance and flexibility.
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Abstract

In this paper we quantify the effect of unsolicited emails
(spam) on behavior and engagement of email users.
Since performing randomized experiments in this set-
ting is rife with practical and moral issues, we seek to
determine causal relationships using observational data,
something that is difficult in many cases. Using a novel
modification of a user matching method combined with
a time series regression on matched user pairs, we de-
velop a framework for such causal inference that is par-
ticularly suited for the spam exposure use case. Using
our matching technique, we objectively quantify the ef-
fect that continued exposure to spam has on user engage-
ment in Yahoo! Mail. We find that indeed spam exposure
leads to significantly, both statistically and economically,
lower user engagement. The impact is non-linear; large
changes impact users in a progressively more negative
fashion. The impact is the strongest on “voluntary” cate-
gories of engagement such as composed emails and low-
est on “responsive” engagement metrics. Our estimation
technique and results not only quantify the negative im-
pact of abuse, but also allow decision makers to estimate
potential engagement gains from proposed investments
in abuse mitigation.

1 Introduction

Over the last several years, as email has steadily become
the dominant mode of text-based online communication,
unsolicited bulk email, generally referred to as “email-
spam” or simply “spam”, has increased in lockstep [33].
By some estimates the total fraction of all emails that can
be considered spam is higher than 90% [33, 10]. More-
over, while email-spam began as a way for unscrupulous
marketers to advertise their products, it has now become
the main vector for phishing [4, 14], installing malware,
and stealing information [22]. In short, email-spam has
morphed from being a mild irritant to an outright danger

to the users.

This has led to major efforts both in the industry
and the research community to develop better spam fil-
ters [5, 12, 13, 39, 40]. However, spammers are known
to quickly adapt their email messages in order to circum-
vent these filters [16]. This has resulted in an adver-
sarial game of “cat-and-mouse” between email service
providers (ESPs) and spammers: (1) Spammers send out
bulk emails designed to bypass the spam filters of major
email service providers; (2) In time, spam filters adapt
using machine learning and crowdsourcing techniques
and block the offending emails; (3) Spammers re-tune
message content, change the sending locations and so
forth, and the cycle continues. This results in email-spam
reaching user inboxes for the duration between the bulk
mails being sent and the spam-filters adapting. Unfor-
tunately, even though filters have improved dramatically,
spam is so cheap to send that the required conversation
rates for profitability, which are below 1 in 5 million, can
still be sustained [22].

Barring some fundamental change in the spam mar-
ket (such as legal or technological solutions), the chief
way to combat spam is to invest more resources to make
the spammers’ response cycle less economically viable,
which would force some spammers out of the market.
Characterizing this ecosystem is thus essential not just
for making both policy decisions but also in making de-
cisions that on the surface seem to be purely machine
learning in nature—e.g. how to design spam filters that
exploit signatures that are the hardest to game.

Although qualitative arguments about spam being a
negative social externality have been often made, it is
much harder to quantify the intuited numbers [1,21,27].
Since botnets form the main spam-delivery infrastruc-
ture, researchers interested in understanding the eco-
nomics of spam have made significant efforts in under-
standing the market behind the creation and renting of
botnets [32, 41, 3]. Kanich et al. [23] measure how suc-
cessful product-oriented spam ultimately is in marketing
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and selling the corresponding products. Similar studies
have provided quantitative estimates on the economics
of account phishing [17], the market behind “human-
farms” [31] and malware distributions [6]. Rao and Rei-
ley [34] review a large fraction of this literature from
an economic perspective. Such quantitative studies have
collectively thrown valuable light on various aspects of
the underground economy, thereby providing guidance to
both the policy-designers and designers of spam-filters.

Given this extensive literature, it is perhaps surprising
that seemingly little attention has been paid to the in-
terplay between email users and email service providers
and the associated responses to problems of email-spam.
For example, we are not aware of any work that quanti-
fies the long-term effects of spam reaching the inbox on
user engagement. In terms of the interplay, changes in
user engagement have a direct impact on ESP revenue
and are thus an important decision metric for anti-spam
investment. Economic theory tells us that a profit max-
imizing firm will invest in anti-spam technology only if
there is a compensating return in terms of increased user
engagement or retention. For instance, simply because
we all think spam is a bad thing does not mean service
providers will go broke fighting it! Being able to pro-
vide a quantitative estimate on how the long-term user
engagement is affected as a result of spam would provide
an added concrete incentive for the ESP to fight spam.

Some econometric studies [7, 42] have approached
the problem from the firm perspective (the client of the
email provider) and have shown that spam has a signifi-
cant cost in terms of the working time spent by users in
dealing with email. In particular, Caliendo et al. [7] use
a survey approach and find that the average employee
in their sample spent 1200 minutes per year in dealing
with spam. However, these small-scale studies cannot
quantify the effect of spam on longer-term user engage-
ment. Does getting more spam cause a user to stop
using the email service? It seems intuitive to assume
“yes”. However, it has never been established whether
this causal effect exists, how strong the effect is if it ex-
ists, what types of engagement would it affect, and how
to measure this in a statistically robust manner. More
explicitly, answering these questions is useful for multi-
ple reasons—it helps our broad understanding of the to-
tal negative externality of spam, which could potentially
have implications in deciding how to deal with spam at
the policy-level. Also, as spam filters get better, mak-
ing additional improvements in spam catch-rate becomes
harder and hence more expensive, and often involves dif-
ficult trade-offs either regarding total investment or about
false-positive rates (i.e. in deciding the operating point
of the spam classifiers). In terms of social efficiency
spam is clearly a negative [34] —the consensus view is
that spam should be mitigated far below current levels in

order to raise social welfare because the social costs of
spam clearly outweigh the monetary returns from spam-
ming. However, since the government cannot compel
ESPs to invest more heavily in anti-spam technology, ob-
taining estimates of the negative impact of spam, such
as ones in this paper, is important. Accurately quantify-
ing the impact of spam allows firms to make informed,
well-targeted investments. In turn, these investments can
potentially lead to improvements in service quality for
the end-users. While our study does not provide author-
itative answers to all these questions, it certainly builds
many of the tools and the necessary formalizations for it.

The gold standard for estimating causal effects is ran-
domized experimentation, also referred to as “A/B test-
ing” [24]. If we can expose users to spam completely
at random, then we can safely assume that any effect we
observe is due to spam. In the real world, however, per-
forming such experimentation is difficult because expos-
ing users to spam is problematic for both user experience
and the ESP’s reputation. Estimating causal effects is
typically difficult in the absence of randomized experi-
ments because most actions reflect something about the
user in terms of their type or future intentions. These cir-
cumstances lead to the classic problem of correlation in
the absence of causation. For example, since users tend
to get spam when they give out their emails to third party
services and active users tend to do so more often than
less active users, a naive plot of engagement-vs-spam
would show activity and spam exposure being positively
correlated.

An alternate method of estimating such effects is to
conduct in-depth surveys or in-lab tests of a smaller set
of users. In-lab methods are inadequate for our prob-
lem as we are looking to estimate potentially small, but
long-term effects. The size of the surveys or lab stud-
ies is necessarily limited by cost, which makes it hard
to estimate small and long-term effects. More impor-
tantly, what users report in a survey may not be reflected
in their actual behavior. In particular, rounding error can
severely bias estimates. For example, answering in a sur-
vey that one spends 5 minutes a day dealing with spam
might seem like a “small” amount, but over the course
of a year, that is 1250 minutes, or about 20 hours. For a
$30 an hour employee, this means it is a $600 per year
problem. If the true value was 1.5 minutes, but the user
rounded up, the resulting estimate could be off by a wide
margin.

An extensive literature in econometrics has focused
on developing techniques such covariate matching,
regression-coefficient methods, bias reduction, neighbor
matching, propensity score matching (PSM) etc. [35,
20, 9, 29] to deal with selection bias in observational
data. Among these, PSM and neighbor matching tech-
niques are considered more robust in estimating effects
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of a categorical treatment variable [29] than regression-
coefficient methods—in both of these the intuition is to
be able to match a untreated user with a treated one
based on a set of pre-defined user attributes. PSM cre-
ates the matching using only a single propensity score
that is obtained by a weighted combination of the user
attributes—the weights are learnt by modeling the ex-
posure treatment as a categorical variable directly using
a first stage logistic (or similar) regression. For nearest
neighbor methods user matching is done by treating them
as points in a high dimensional space. It is commonly
believed that PSM is more robust than nearest neighbor
matching methods when the number of user attributes is
large since finding nearest neighbors in high dimensions
is not robust (see e.g. [29] for detailed discussion). Yet,
for PSM one has to assume that the first stage regres-
sion is correctly specified. The non-parametric nature of
nearest neighbor matching methods makes them more re-
liable with respect to the fact that one does not have to
correctly specify a first stage regression—in small sam-
ples and with high data dimensionality, the benefits of
PSM outweigh the drawbacks.

In our setting, the popularity of Yahoo! Mail gives us a
huge set of users to match over, compared to the number
of user attributes. Also, existing PSM methods typically
assume the ability to model the probability that a par-
ticular user falls into the categorical “treatment” group.
However, in our application, spam exposure is a continu-
ous variable, leaving the treatment group ill-defined, and
hence this assumption fails. For both reasons, the nearest
neighbor matching is more appropriate in this setting.

In this paper we describe a large-scale nearest neigh-
bor matching method to infer causal relationship from
observational data for which the exposure is a contin-
uous variable. We apply this technique to the spam-
engagement setting. Overall the results provide strong
empirical support for the commonsense notion that spam
has a negative impact on user engagement. We provide
quantitative estimates that show that the impact of spam
in the inbox can have serious revenue implications and
can contribute to a large percentage drop in user engage-
ment. The effect is largest for more “volitional” user
activities such as composing and sending emails. The
function mapping spam changes to engagement appears
to be convex, with the marginal impact increasing with
the size of the exposure change. User characteristics are
not particularly informative in predicting the response to
spam — notably light users are equally affected in abso-
lute terms by a piece of spam in the inbox, meaning that
percentage-wise the impact is far greater for these users.
Thus, although the intuition that spam causes decreased
user engagement is commonplace, the main insight sup-
plied by this study is to extend and formalize this intu-
ition in a quantitative way.

Our Contributions.

e We conduct a principled and thorough study of
the causal relationship between spam exposure and
long-term user engagement. We find that, indeed,
exposure to spam results in long-term reduction in
user engagement in terms of logins, page views, and
emails sent. As far as we know, this is the first such
study to quantitatively establish this link between
spam exposure and user engagement.

e We propose the use of a variant of propensity score
matching, namely nearest neighbor matching, in
combination with regression based techniques in es-
tablishing causal relationships in large-scale obser-
vational data settings when the exposure metric is
continuous. This contribution of our paper is of
interest independent of its particular application in
this study. Our simulations (described in the Ap-
pendix) indicate that this method is indeed superior
to (variants of) propensity score matching for con-
tinuous exposure metrics.

Organization. In Section 2 we present our approach
for estimating causal relationships in large-scale obser-
vational data settings. Then in Section 3 we instantiate
our proposed approach to the case study of estimating
the effect of spam exposure on long-term user engage-
ment. The results of this case study are given in Sec-
tion 4. In Section 5 we review prior work in causal-
ity estimation and spam exposure studies. In Section 6
we conclude. Finally, in the Appendix we compare our
proposed methodology with variants of propensity score
matching and on simulated data show that our approach
performs better at estimating a hidden relationship be-
tween variables.

2 Measuring the Effect of Spam on User
Engagement

In this section, we first define the problem of estimat-
ing the effect of spam exposure on user engagement. We
start with a description of the aspects of the problem that
make it unique from other works in measuring effects.
We then present a formalization of the continuous expo-
sure setting and describe how to map our problem to this
formalization.

2.1 Aspects of the Problem Setting

Our problem of measuring engagement as a function
of spam exposure has the following characteristics that
make it unique, and hence requiring modifications to es-
tablished methodology.

USENIX Association

21st USENIX Security Symposium 35



Continuous Exposure: In our problem, the exposure
variable is continuous—there is no clear definition of a
“treatment” vs. “control” group. We cannot identify a
set of users and consider them as “treated,” i.e. having
been sufficiently exposed to spam because nearly every-
one is exposed to some degree. One solution would be
using an arbitrary threshold to define a treatment class.
But in some sense this is just asking the same question
back again: what is a critical level of spam such that a
person receiving that amount can be considered to be
sufficiently exposed? Thus, the continuous exposure is
not just an artifact of the data, incorporating that into the
modeling and estimating process is absolutely essential.

Engagement as a function of Exposure: Having de-
fined exposure to be a continuous variable, computing a
single number as the expected size of the effect is not
meaningful any more. Instead we want to answer the
following question: what is the expected effect if the
amount of exposure is increased by an amount As. We in-
tend to approximate the function that captures the change
in the effect as a result of the change in the exposure for
an average user.

Infeasibility of Randomized Testing: Randomized ex-
periments are clearly the gold standard for measuring ef-
fects. Suppose we intend to estimate the effect on a user
receiving As more spam messages in a month. Ideally,
we would be able to select a small random set of users,
and then tune their spam filters such that they receive As
more spam for this month. We could then measure the
resulting effect against a randomized control group.

For the spam-setting, however, performing such exper-
imentation is difficult on many levels: (1) exposing users
to spam is problematic from both a user experience and
Yahoo!’s reputation point of view. The negative effects
of spam does in fact often extend beyond a minor nui-
sance, since a majority of these messages contain URLs
that tempt users to either conduct commercial transac-
tions or to give out their personal information; (2) even if
we could filter out the most pernicious types of spam, the
revenue risk associated with user defection would cause
the size of the study to be limited, both in terms of the
amount of exposure and the number of users; 3) spam
that does leak into inbox is, by definition, currently un-
detectable before the user has interacted with it. Thus,
any randomized experiments would have to account for
exposure of this kind anyway.

2.2 Formal Problem Definition

We now define the problem formally and point out the
empirical quantities for which we would like to create
unbiased estimators. Suppose for each user 7, x; denotes
the set of features we observe. Let s; denote her exposure
variable and y; denote the response (or effect) variable.

Note that s; is continuous. If we want to study the impact
of spam on the user, then the exposure variable would
be the amount of spam received by the user in a partic-
ular time period, the same for all users — we call this
the exposure period. Abusing notation, we write y(x, s)
to denote that the response is a function of the user fea-
tures and the exposure. Let As denote a certain amount of
change in the exposure variable, and Ay(As) denote the
function that measures the average change in y due to an
increase As in the exposure. Formally, we define Ay(As)
as follows. Let E[-] denote the expectation operator.

Ay(AS) :E(x,s)[y(xas""As) —y(X,S)}. (1

The expectation in the above expression is taken over all
the user features and all the previous value of exposure.
This of course is not an observable quantity, since one
user has only one value of s. Thus, a more feasible quan-
tity to measure is the following — difference over pairs
who differ only in exposure, but have the same feature
vector.

AY(As) =E; y[vi — yr|3(X,80,i), (X, 87, 1), 8i — 8¢ = As]
(2)

Note how this quantity generalizes the effect measure-
ment for binary treatment variables. If s € {0,1}, then
the standard question of measuring the average treatment
effect would be

y(s=1)—y(s=0)
= Ex[yi —y,‘/|3<X,S = 17)71')7 (X,S = 07yi’>]

In our case, we are thus interested in the function Ay(As)
instead of a single value that measures the treatment vs.
non-treatment. This makes the application of the stan-
dard propensity score matching techniques [35] impossi-
ble: we can no longer define a treatment class.

One naive way of creating the estimate would be to
compute the following difference —essentially just take
the differences in the effect levels of users whose expo-
sure is s and those whose exposure is s + As.

f(As) =E;[y; | si = s] —Ei[yi | si = s+ As]

But this would be the wrong quantity, since conditioning
on the fact s; = s + As is different from conditioning on
s; = s (the corresponding distributions of x and hence
y(x,s) are different), and thus the above difference does
not measure what would happen to the average person if
the exposure suffered by that person increased by As.

Nearest Neighbor Matching. The essence of nearest
neighbor matching is that we can approximate the equa-
tion 2 by the following one.

Ay(As) =E; y[yi — yi|si — sy = As,x = x'] 3)
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where x ~ x’ denotes that x and x’ are approximately sim-
ilar, instead of being exactly same. The variants of this
definition of approximate similarity define the different
variants of the nearest neighbor matching algorithm.

Suppose we have a particular matching function, in
which, for each given user i = (x;,s;,y;), we can find
out a set of users N; such that for each j € N(i) satisfies
X ~ X;. Further define 1(X) to be the indicator vector for
the event X, in particular let 1(s,s’) denote the indicator
vector such that |s —s'| = As. If there are n users overall,
our empirical estimator for the quantity in equation 3 is
then given by

n(i,As) =Y > )I(Siysj)

i jeN(i
Ay(As):%Zn(ilAs) D 1siys)vi—v;)

JEN(i)

Essentially, in each neighborhood N(i), we compute the
average effect due to an increase of As exposure and then
average these effects over all the points to get the average
effect.

3 Data, Features and Matching for Spam

In this section we describe how to apply the above match-
ing technique for the spam exposure case study. We start
with a summary of our overall method. In order to mea-
sure how engagement is affected by spam exposure we
first need to specify how to measure user engagement
and spam exposure for a user. We then describe how to
create matchings between users based on user behavior
features.

3.1 Technique Summary

In order to measure the effect of spam exposure on user
engagement we first create a set of behavioral features
per user for a 2 month period, called the “matching pe-
riod.” These features are then used to create matchings
between users. We then observe the spam exposure of
these users on the exposure month (month 3) immedi-
ately following the matching period. Due to random vari-
ation in spam, the two users in a match are often exposed
to different amounts of spam (As). We then examine how
As impacts behavior in the observation period immedi-
ately following the exposure month. We look at differ-
ence in engagement for both the short-run (only month
4) and long-run (months 5-6), while controlling for how
these differences persisted within the pair (e.g. higher
month 3 spam likely means higher month 4 spam; in es-
timating month 4 engagement, we will control for this
difference).

The attribution of causality depends on the assumption
that within each pair of users, month 3 spam exposure is
random. This is known as the “selection on observables”
assumption. In general, spam exposure is correlated with
user activity. Using your account more actively tends to
get the email address “out there” more, making exposure
to spam non-random. For example, in a cross-section of
users, light users tend to get less spam than heavy users.
This is precisely the reason we need to use the matching
methodology to estimate causal effects (and overcome
spurious correlation). In our case, we match on both the
level and linear trend of usage. So the identifying as-
sumption stated more precisely is: conditional upon the
level and trend of usage (on all 14 matching criteria) over
two months, the spam exposure difference between users
within a pair in the following month is related to future
usage in only the following ways (a) the direct impact of
past spam exposure; (b) the indirect impact of past spam
exposure (higher spam today, might mean higher spam
tomorrow, which we must control for).

3.2 Data Description and Matching At-
tributes

Our data comes from the Yahoo! Mail logs of user activ-
ity.! To ensure accurate results, we first cleaned the data
of accounts that were potentially corrupted by phishing
attempts or spambots. We dropped any user who showed
a change in more than 4 sent messages a day (in average)
between the matching months (months 1-2) and the tar-
get months. This number was chosen based on an anal-
ysis of the distribution to determine what qualified as an
improbable outlier. We also dropped a pair of users that
had a Euclidean match distance of greater than 0.1 to en-
sure that we were always very close matches. Finally, we
dropped all users that showed near zero mail page views
in the matching month(s) and outliers (+3 standard de-
viations). The former is to increase the strength of our
estimator, as it is unreasonable to assume spam impacted
a user that never logged in, the latter to reduce the influ-
ence of high leverage anomalies.

After performing all the cleaning operations, we took
a large random sample of 500,000 users for 6 months,
and generated the following features per user per day:
all inbound mail, classified spam, total sent mail, com-
posed mail, replies, forwards, mail time spent, all page
views on Yahoo! site, all time spent on Yahoo! site, delete
without reading (messages that are removed from the in-
box without reading), deletes, spam votes and non-spam

"Note that this is purely observational data, no active experimen-
tation or bucket-testing was involved. Furthermore, we use only be-
havioral statistics aggregated at the anonymized user level. Thus there
are no privacy issues related to email content, or the graph of user-user
communication.
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votes.

To ensure that the matching generated very similar
users, we used all the 14 features over 2 months to com-
pute nearest neighbors. In addition, we also ensured that
the matched user accounts were registered in the same
year. We performed the matching process over the en-
tire mail sample, thus enabling a small enough distance
threshold. As a result of the matching, we end up with
486,102 matched pairs (one user could be considered in
multiple pairs, and not user-user pairs qualify for match-
ing, as we see below). Using the first two months of data
for the matching period ensures that each pair of users
had the same level of usage and the same (first order lin-
ear) trend.

3.3 Metrics for User Engagement

Yahoo! Mail users interact with the web user interface
in a variety of ways. Users can login into the interface
and just glance at the list of emails in the various folders
(“boxes”), can click on individual emails to open them
in a separate panel for reading or delete it without read-
ing. Other email related actions that are instrumented in-
clude replying to individual emails, or forwarding them,
composing new emails and marking emails as spam or
non-spam. Each of these actions represents a different
kind of engagement, and naturally certain forms of en-
gagement are more significant than the others. From a
short-run revenue calculation perspective, the page view
is the primary quantity of interest, as page views can be
easily converted to a dollar figure based on the advertis-
ing monetization rate. But not all page views are created
equal. For example, we have found that the number of
sent mails (and resulting pageviews) is a more reliable
predictor of future engagement than the pageviews re-
sulting from simply reading mail or reloading one’s in-
box. The reason is likely that sending mail both leads
to more mail in response and signals that the user is us-
ing the account as her primary email. We thus look at a
variety of such metrics to measure engagement.

3.4 Quantifying Spam Exposure

Yet another critical point in our study is how to quantify
the spam exposure of a user. Typically, the spam that a
user has been exposed to lands in her inbox does so pre-
cisely because the filters have been unable to recognize
it as spam. Consequently, this number is hard to mea-
sure for a user. We could rely on the “spam votes” of a
user a proxy for this quantity, but it is well known that
very few users give any votes. In fact, the average Ya-
hoo! Mail user gives less than one vote in an entire year,
whereas some users are extremely proactive in marking
emails as spam. To complicate matters, even spammers

and bot accounts give spam-votes, aiming to subvert the
machine-learned filters by providing false examples.

The strategy available to us is to use the number of
inbound emails classified by the Yahoo! filter as a mea-
sure of the spam targeted towards the user and infer “in-
box exposure” from this classified spam. Of all deliv-
ered mail (not blocked before connection), more than
half is classified as spam and sent to the spambox. The
false negative rate relates the spambox quantity to im-
plied inbox-exposure. For example, if the false negative
rate is 0.10, then for every 9 messages in the spambox,
we expect 1 piece of spam to slip into the inbox. For
the empirical analysis, we estimate the false negative rate
and use it to infer inbox-exposure, which we will use in
all our analysis. Due to confidentiality concerns of Ya-
hoo Inc., we cannot report the exact estimates of the false
negative rate, but will describe the process through which
we model and infer it.

Estimating the False Negative Rate: We estimate the
false negative rate in two ways. First, we utilize daily
usage logs of users over a 6 month period. Note that if
the false negative rate were 0, then conditional on past
behavior, daily spam box quantity should be unrelated to
inbox quantity, because there is no slippage. In contrast
if the rate is non-zero, increases in the spambox will be
positively correlated with increases in the inbox. We es-
timate this relationship using a regression of inbox quan-
tity on spambox quantity and lagged values of both quan-
tities, all on the daily level. This gives us an estimate, lets
call it FN.

To confirm this estimate, we examine how spambox
levels correlate with “delete without reading” in the in-
box. “Delete without reading” is a strong sign of spam,
but many legitimate mails are deleted without reading as
well. In fact 53% of all inbox messages are deleted in this
fashion. If the false negative rate was 0, then there should
not be a relationship between spambox and delete with-
out reading, conditional on inbox volume (inbox volume
and spambox volume could be related, so we control
for this). We estimate the empirical relationship using
a time-series regression and find that 1 message in the
spam box leads to .8F N deletes without reading. That is,
very close to our initial estimate of the false negative rate
using the other methodology and consistent with the idea
that not all users simply delete spam, but most do. Given
the mutual consistency of both approaches, we proceed
with our estimate of the false negative rate in all analysis.

Maintained Assumptions on the False Negative Rate:
The assumption of a constant false negative rate might
seem too strong when we consider the fact that users
have different propensities to sign-up for email mailing
lists. In our analysis, however, the individual variations
are less important for following reasons. First, we only
use this estimate to normalize in the aggregate sense —
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obtaining the aggregate inbox-spam in terms of the clas-
sified spam. Thus, in our case, all we require is that
within a pair of users, there are no systematic differ-
ences in false negative rate; this is essentially assured by
our bi-directional matching procedure. When examining
the differential impact of large increases in exposure vs.
small increases (non-linearities), the assumption requires
that when a user experiences a large increase in spam,
the classification rate stays the same. Indeed, given how
machine classification benefits from large quantities, one
might think that large quantities of spam are classified
with less error. We will see that we actually find an in-
creasing marginal impact of exposure, meaning that ei-
ther this is not an issue, or the real pattern is even more
convex.

The area that is most hampered by the constant false
negative rate assumption is the analysis of user charac-
teristics. For instance, if Yahoo! does a better job of
classifying spam for older users, then we will overstate
the inbox-exposure for these users. In the results section,
we note these concerns where applicable.

3.5 Creating the Matching

In this section, we describe the method of nearest neigh-
bor matching that we used. The basic framework is to
match users who are very similar to each other in the
matching period, and then analyze how their behaviors
differ in subsequent time periods. We first discuss how
to create the neighborhood set N (i) for each user.

Using kNN for Matching: In order to define the match-
ing, we use two criteria to define the neighborhoods N (i)
— a distance based threshold and a k-nearest neighbor
based threshold. The distance between the vectors is
measured in ¢, norm. We have a distance threshold d
that we use to filter our pairs that do not lie within d dis-
tance of each other. On top of this, we apply a k-nearest
neighbor based threshold — each point i contains no more
than k of its nearest neighbors in N(i). This ensures that
a dense region of the x manifold is not over-represented
in our estimate.

Using Bi-directional Matching: To avoid bias, we only
use bi-directional matches. What this means is that dyad
i—j is only included in the analysis if i is j’s nearest
neighbor and j is also i’s nearest neighbor. The near-
est neighbor property is not generally bi-directional (i’s
nearest neighbor might be j, but there is a node closer
to j, say r, that is further from 7). The most important
reason we include only bi-directional pairs is that it en-
sures that in the exposure period, the average difference
within a pair of users is O for all attributes we match on,
by construction, because the labeling of users within the
pair is purely nominal. In our estimation, this means that
we can reliably link differences in spam exposure within

the pair to differences in engagement, knowing that there
is no other reasons for a systematic difference.

An additional reason is that it naturally eliminates a
known issue with matching or propensity score estima-
tors that occurs when relatively few users are the “unex-
posed match” to relatively many exposed users. For in-
stance, consider a job training analysis in which we pre-
dict the probability (propensity score) of receiving train-
ing. PSM matches a pair in which one person actually re-
ceived training and one did not, but had similar predicted
probabilities of receiving training. By construction, there
are relatively few individuals who have a high predicted
probability of receiving training but in reality do not re-
ceive it. This means that these people are the “controls”
for a relatively large number of treated individuals, thus
increasing the impact of their behavior on observed es-
timates. In our routine, we get around this problem by
only using bi-directional matches. In our case, the prob-
lem that would arise is that some users in the less dense
portion of the kNN graph match to users in a denser por-
tion. These users in the less dense portion might be dif-
ferent in ways that induce bias (for instance if they are
always slightly more engaged).

Using Locality Sensitive Hashing: Computing the
matching efficiently for a large number of data points and
a moderately large number of dimensions is a non-trivial
task. In order to compute this, we utilize the locality sen-
sitive hashing technique [2]. Essentially, the idea is to
compute a hash function % such that the probability of
two points falling into the same hash bucket is inversely
proportional to the distance between them.

Prlh(i) # h(j)] o [[xi = x|

We first bucket all points using this hash function and
then do an exhaustive search inside each bucket to find
the k-nearest neighbors for each point that fall within
the distance threshold. We tune our LSH construction
such that with high probability we get all neighbors for
all points within the distance threshold.

4 Empirical Results

In this section we present the results of our empirical ap-
plication. We start by linearly modeling the short-run (1-
month in the future) impact of spam exposure on the var-
ious metrics of webmail engagement. We then examine
the effect more closely using a flexible non-linear model.
Next, we examine how mail spam impacts non-mail us-
age of properties on the Yahoo! network of sites (conta-
gion effects). We then proceed to estimate the medium-
run (2-3 months) impact of spam exposure on future en-
gagement. Finally we examine how user characteristics
modulate the impact of spam.
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4.1 Short-run Impact of Spam on Mail En-
gagement

Estimating Equation: In this subsection, we look at the
impact of month 3 spam on month 4 engagement. Recall
month 3 is our first post-match month, and thus the first
time spam exposure will meaningfully vary within a pair
of users. In our baseline specification, for each pair of
users i, we estimate the following equation with robust
ordinary least squares. Let y equal the engagement met-
ric we are interested in (page views, sent mail, etc) and
s the number of spam messages that reach an user’s in-
box. Let the months be denoted by 1,2.. etc. Let Ay,
Asj; denote the differences in the engagement and the ex-
posure metric for the " user-pair for the " month. Re-
call that months 1 and 2 were used to find matching users
(thus, the average Ay;;, As;; values are essentially zero for
t = 1,2). We run the following regression to estimate the
relation between Ay; 4 and As; 3.

Ayia = BAsiz+pyis+ NAyiz+ 1Asi4
=+ %ASZZA -+ ')/4AS?’4 + &

This specification controls for month 4 spam exposure
using a cubic polynomial and includes a lagged value of
the dependent variable, to control for the contempora-
neous impact of spam last month and activity bias (see
[25]). B is the quantity of interest, as it gives the first
order impact of spam exposure on engagement 1 month
in the future. Table 1 gives the estimates of 3 for the our
key engagement metrics.

Absolute Impact: As the results in Table 1 show, across
all metrics, the relationship between exposure and en-
gagement is consistent with the hypothesis that spam ex-
posure discourages usage. That spam has a negative im-
pact is perhaps obvious; however Table 1 gives a quanti-
tative estimates for all metrics, not just the sign of the
effect. In Column (1), we see that the impact of one
spam message in the inbox reduces mail page views next
month by 0.472 pageviews. For a webmail provider,
page views are the primary metric to gage the revenue
impact, as they can be converted to dollars based on the
ad revenue from each page view. The R-squared numbers
show that these regressors account typically account for
10% of the variation in the dependent variable.
However page views do not tell the whole story, as
other metrics, such as sent mail, are thought to be bet-
ter long-term predictors of engagement. In column (2),
we estimate that a spam message in the inbox reduces
webmail time spent next month by 24 seconds. Column
3 shows that about 1/4 of the page view impact comes
through reading fewer messages. Column (4) shows
sent mail impact. Sent mail includes composed emails
(written from scratch), replies and forwards. Overall,

Engagement Impact as % of Monthly Average
2.5

% Impact

Views Time Reads Sent Compose Reply Fwds LoginsO
Mail Engagement Metric

Figure 1: Differential impact of spam exposure magni-
tude on sent mail and mail page views.

users send much less mail than they receive or read,
as mass/automated emails are a large fraction of legiti-
mate email traffic as well. The impact on sent mail is
negative with most of the impact coming through com-
posed messages. This makes sense from a disengage-
ment/frustration perspective. One still replies to emails,
but perhaps looks for other communication outlets to
send new messages if the account is inundated with
spam. In Column 8, we see that spam leads to fewer
session logins as well.

Impact as Percentage of Baseline Usage: In Figure 1,
we show the relative size of the impact on each of the
engagement metrics. We create this by converting the
impact of 1 spam message in the inbox last month, esti-
mated in Table 1, to percentages as a function of the aver-
ages for each metric in the matching months. The largest
percentage impact occurs for composed messages, con-
sistent with the story that this sort voluntary user engage-
ment is the most susceptible to a negative experience.
The percentage impact on composed emails is more than
twice as large as the impact on replies and forwards.
Monthly “consumption” metrics, views, time spent and
reads, show between a 0.5—-1% decline as a result of a
spam message in the inbox. Logins show the lowest rel-
ative impact — although users engage less heavily after
spam exposure, in general they still login to the webmail
client with close to the same frequency.

4.2 Differential
Change Size

Impact by Exposure

In the previous section we modeled the impact of spam
exposure as a linear function. This was mainly to facil-
itate interpretation and comparisons across engagement
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Exposure Metric
(1 2 3) ) (5) (6) @) (®)
Page Views Time Reads Sent Composed Reply Fwd Login

Asi—1 (B) -0472%%% 24 20%%F - -0.108*F*  -0.0305%**  -0.0251%**%  -0.00326***  -0.00104***  -0.0572%**

(0.0236) (1.614) (0.0250) (0.00289) (0.00234) (0.000912) (0.000228) (0.010)
Ay 0.414%%* 0.483%#% (. 3%** 0.4027%%* 0.335%%* 0.509%%* 0.261%** 0.74%%

(0.00703) (0.0185) (0.0263) (0.0741) 0.0923) (0.0341) (0.0140) (.0001)
R-squared 0.162 0.177 0.10 0.089 0.065 0.123 0.048

Table 1: Impact of spam exposure on engagement 1-month in the future. Robust standard errors are in parentheses

and *** means p-value < 0.01.

metrics. In this subsection we examine how the impact
of the change in spam exposure depends on the magni-
tude of the change. To do so, we make use of the Frisch-
Waugh theorem from linear regression [15]. We first
regress the exposure metric on the control variables (the
variables other than past spam difference) and then take
the residual. We then regress the independent variable of
interest, last month’s spam exposure, on the control vari-
ables, and take the residual. The relationship between the
residuals of the dependent variable (engagement metrics)
and the residuals of the independent variable (last month
spam exposure) gives the relationship between these two
variables, net of the impact of the control variables.

Non-linear Impact on Sent Mail, Logins and Mail
Page Views: In Figure 2 we plot the relationship using a
local polynomial smoother (Epanechnikov kernel, band-
width=10) for three key engagement metrics: sent mail
(left axis), mail logins (left axis) and mail page views
(right axis). All three metrics display the same pattern.
The y-intercept at zero is almost exactly zero for all met-
rics, which is comforting, because it means that we (cor-
rectly) estimate that if a pair has no exposure difference,
there is not an engagement difference. This can be seen
as a confirmation of the validity of our matching pro-
cedure (we also do this via simulation runs in the fol-
lowing section). The slope close to zero is negative, but
significantly less than the slope for large differences in
exposure — relatively small changes in exposure tend to
discourage engagement, but the impact is muted. For all
metrics, at about 15 spam messages in the inbox in a one-
month period, the negative impact shows a sharp increase
(gets more negative). For sent emails and logins, this
slope increase levels off near 25 spam messages, but for
mail page views, the steep slope persists over all ranges
of values for which we have sufficient data.

Key Takeaways: The differential impact in Figure 2
gives insight into how spam negatively impacts the user
experience. Note that the x-axis in Figure 2 is the ab-
solute difference in number of spam received by the two
users in a pair over 1 month. Small changes in spam

Differential Impact by Exposure Level
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Figure 2: Differential impact of spam exposure magni-
tude on sent mail and mail page views.

exposure has a muted impact on the user, whereas large
changes have a much more pronounced effect. When the
increase in spam exposure reaches the level of once ev-
ery other day, the marginal impact ticks up considerably.
This disengagement is likely the result of a disruption of
the user experience. Since small changes are less disrup-
tive, the marginal effect is lower. One possible conclu-
sion to draw from this nonlinear trend is the following:
it is likely more worthwhile to make a relatively large
investment for a big increase in filtration accuracy (and
thus obtain a super-linear improvement in engagement),
rather than pay a relatively modest sum for an incremen-
tal improvement.

4.3 Contagion effects

So far we have documented a negative impact of mail
spam on many facets of webmail engagement provided
a quantitative estimates the magnitudes. The next nat-
ural question is “Does exposure to online abuse in
one domain carry over to engagement in a firm’s other
web properties?” These so-called “contagion effects” or
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Aggregate Effect Controlling for Mail
1 (@) 3) “)
Non-mail Non-mail Non-mail Non-mail
Page Views Time Spent | Page Views Time Spent
Contagion -0.064%* -4.33%%% -0.0176 -1.470
effect, As; | (0.03) (0.03) (1.72) (1.71)
A Mail 0.117%%*
page views t (0.003)
A Mail 0.136%**
time spent ¢ (0.006)
Ay;q 0.639%** 0.640%** 0.711%** 0.703%**
(0.028) (0.027) (0.055) (0.056)
R-squared 0.253 0214 0.265 0.226

Table 2: Contagion effects of mail spam on other net-
work activities. p<0.01: *** p<0.05: **,

“brand damage effects” are often used as justification
for investment in anti-abuse technology. Our empirical
framework allows us to examine this question by look-
ing at engagement across the Yahoo! network of sites.

Contagion Estimates: In Table 2 we estimate the im-
pact of Yahoo! Mail spam on page views and time spent
occurring on other parts of Yahoo!. In columns (1) and
(2), we do not control for the contemporaneous impact
on mail activity — this is why there are empty spaces
for these regressors. The estimated contagion effects in
this case are negative and statistically significant coming
in around 17% (13%) of the direct effect magnitude for
time-spent (resp. pageviews), as given in Table 1. In
evaluating the revenue impact of a proposed change in
the spam filter, these spillover effects should indeed be
taken into account. However, to qualify as a pure conta-
gion effect, we would want to be sure they are not me-
chanically due to lower Yahoo! Mail engagement. The
reason is that Yahoo! Mail uses various techniques to get
the user to engage with the rest of the Yahoo! network.
For example, news stories are shown in the “welcome
screen” and there is a web search bar. In column (3) and
(4), we control for contemporanous Yahoo! mail usage.
Controlling for mail usage reduces the estimated impact
of spam exposure by 80% — the remaining figures are
no longer statistically significant. The conclusion is that
while there measurable spillover effects, the direct cause
seems to be lower mail engagement itself. Since mail use
creates positive spillovers on the rest of the site, lowering
mail engagement has a more than 1:1 effect on engage-
ment. Once we control for this effect, nearly all of the
supposed contagion effects go away.

Key Takeaways: Our conclusion is thus that while in the
short term there are economically meaningful spillovers
of mail spam on the non-mail network activity, the
spillovers do not seem to be driven purely by contagion
or brand-damage reasons. Rather, they seems to be more
mechanically linked to the decreased mail engagement.
This is not to say that contagion effects to do not exist,
just that in this case they are swamped by the direct neg-

ative impact. Our careful analysis allows us to separate
these subtle differences.

44 Medium-run impact

Medium Term Impact of Spam
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Figure 3: Direct impact of spam on future behavior 1-3
months post-exposure.

In this subsection we examine the impact of spam ex-
posure on engagement up to 3 months in the future. In
Figure 3 we plot the impact coefficient of spam exposure
on sent mail, composed messages and read messages for
the range of 1 to 3 months in the past. The estimates
use the same specification as Table 1. The regressions
control for any short-run impacts that have already oc-
curred. For instance, in estimating the 3-month impact
(impact of spam 3 months ago), we control for the im-
mediate change in behavior this had (the short-run ef-
fect) by including lagged dependent variables in the re-
gression. What this means is we are estimating the direct
impact. For example, if the 2-month effect is estimated
to be zero, say, this does not mean the effect goes away, it
only means that there is no additional effect as compared
to the 1-month impact.

Engagement Estimates: Examining Figure 3 a few
trends are immediately clear. The first is that the ef-
fect decays over time. For sent mail and composed mail,
the negative impact occurs entirely in the first month fol-
lowing exposure. Recall that percentage-wise, these two
metrics saw the largest short-run declines. Evidently part
of the reason for this is that the total impact is felt in
the first month following exposure. The graph also con-
firms the analysis of the previous section that the impact
on sent mail occurs primarily through composed mes-
sages, not replies or forwards. For reading messages, the
decline is less steep as there is still significant impact 3-
months out. We thus conclude that while spam can have a
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ey (@) 3
Page Views  Sent Mail Reads
1{Male}=1 -0.0037 -0.00015 -0.0065%**%*
(0.0029) (0.0003) (0.0020)
1{New user}=1 -0.0107 -9.63e-06 -0.0014
(0.0076) (0.0006) (0.0053)
1{Light}=1 0.0036 -0.0006** 0.0011
(0.0029) (0.0003) (0.0020)
1{Heavy}=1 -0.0027 -0.0005 -0.0013
(0.0038) (0.0003) (0.0027)
1{User <30}=1 -0.00194  0.00123***  0.0106%***
(0.0030) (0.0003) (0.0020)
1{User >50}=1 -0.0090* 0.0009* -0.0043
(0.0051) (0.0005) (0.0035)
1{High baseline -0.0568 -0.0007 0.0605%*
exposure}=1 (0.0410) (0.00369) (0.0286)
R-squared 0.162 0.089 0.010

Table 3: Differential impact of spam exposure by user
characteristics. p<0.01: *** p<0.05: **, p<0.1: *.

direct impact on behavior up to 3-months down the road,
this is not the case for “volitional” categories in which
the initial impact is large, such as sent/composed mail.

4.5 Breakdown by user characteristics

In this subsection we augment the regression specifica-
tion used in Table 1 by interacting dummy variables for
user characteristics with spam exposure. The interaction
terms give the differential impact of spam based on the
characteristic in question. The results are summarized in
Table 3. All of the characteristics except gender and user
age (self-reported age of the user) were used in matching.
For the two measures that were not used in matching, the
indicator variable only equals 1 if both users fall under
the designation. For example, the variable 1{User <30}
is defined as 1 if both users are under the age of 30. High
baseline exposure is defined as being in the top 1/3 of
spam exposure in the matching months. Light users are
those that had page views in the bottom third during the
matching months, heavy is top third. All other variables
are self-explanatory.

Sent Mail and Page Views: We see that for sent mail
and page views, user characteristics do not appear to pre-
dict the response to spam. However, the fact that heavy
users do not show a higher absolute impact of spam ex-
posure, means that percentage-wise, light users are the
most adversely affected. Spam exposure is likely an im-
portant feature in retention, as it is known that decreased
usage among light users is an important predictor of quit-
ting.

Reading Messages: For reading messages, we find that

the impact is significantly larger for males (more nega-
tive) and smaller for young (in calendar age) users. Users
with higher baseline spam exposure respond slightly less
to changes in spam exposure, however as we noted, this
analysis is tenuous because we assume that spam classi-
fication accuracy is not a function of past exposure, when
in reality it might be, due to user votes, for instance.

Takeaways: Overall we do not see major difference in
the impact of spam based on user characteristics. The
most notable result is that the percentage impact is high-
est for light users.

5 Related Work

There are two broad classes of existing works related to
our research. On the methodology side, our work is re-
lated to the traditional causality methods literature. On
the application side, our work is related to those quanti-
fying the impact of spam. While we cannot cover every
work here, we will mention some key works from each
side in order to put our paper in context.

Estimating Causality: The study of causality has been
an active area for many years. In particular, our work
is developed within the framework of causal models de-
veloped by Rubin in early 1970s [36]. Our method
of matching users by covariates or features is based
on the theory developed in [36, 37]. The major steps
that distinguish us from this work are the combined use
of the matching and the regression to adapt this tech-
nique to the continuous setting, the use of criterion such
as nearest neighbor matching, bi-directional matching,
and locality sensitive hashing to speed up the compu-
tation. The propensity score matching method (PSM)
uses the propensity score (predicted probability of ex-
posure) to match users instead of actual covariates, and
was first proposed in [35] and many follow-up works,
nicely surveyed in [8], have proposed different refine-
ments under the framework of the PSM. Besides PSM,
other alternative ways to do such matching such as in-
verse propensity weighting [19, 20] and doubly robust
estimation [18, 26] are also popular. As we mentioned
earlier, all these works usually require that treatment and
untreated/unexposed (control) groups be clearly identi-
fied. Thus, it is not directly applicable in our spam study
as discussed earlier in Section 2.

Causal effects have been studied in many application
scenarios, especially on the Web [9, 38]. For example,
[9] applied several PSM to study the effect of online ads.
To the best of our knowledge, there is no previous study
on the causality effect of email spam on user engage-
ment.

Impact of Email Spam: As discussed before, email
spam has become a critical problem, being also related to
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various online nefarious activities [28] such as phishing,
scamming and spreading malware. Our paper is related
to recent works that try to quantify the impact of spam
from the economic side. For example, [22] conducted a
study to quantify the conversion rate of the spam in order
to understand how much spammers earned off bulk email
distribution. The focus was thus the economics of the
spam campaigns, rather than the user level metrics. [42]
studied how much inconvenience of users is caused by
the spam mails, by measuring the user’s “willingness to
pay” to remain unaffected by spam. [7] studied the cost
of spam and the cost saved by spam filtering. The goal
of all these papers is to quantify the cost from an orga-
nization’s point of view, and their main metric is amount
of working time spent in dealing with spam. Our aim
was instead to measure the effect on the user engagement
metrics from the economic perspective of the email ser-
vice provider. Since the email service provider is the the
key entity that invests in anti-spam technology, we feel
this is a useful perspective to adopt.

Studying the impact of spam on users is part of a
broader trend trying to characterize the economic incen-
tives each of the stakeholders has in combating spam.
Understanding the underground economy is the coun-
terpart of what we are doing here. As mentioned be-
fore, researchers have concentrated on individual parts of
this economy —the supply chain [22, 23], the labor mar-
ket [31, 30] and malware distribution [6]. We consider
our work as complementary to this thread, shedding light
onto the ESP-centric part of the economic cycle.

6 Discussion and Summary

In this paper we described a large scale match-
ing method, along with the corresponding regression
method, in order to infer causal effects from observa-
tional data, specifically applicable in the case when the
exposure variable is continuous. In situations where ex-
posure is not a decision of the user but is correlated with
engagement metrics, observational methods run into the
correlation without causation problem. The gold stan-
dard to measure causality of course is a randomized ex-
periment, but they are often too risky from a revenue
or brand management perspective (the negative impact
might outweigh the knowledge gains), unethical (involve
exposing users to bad outcomes) or not ideal because the
underlying behavior requires large changes in the inde-
pendent variable of interest to measure a behavioral re-
sponse. Mail spam runs afoul of all these requirements of
A/B testing and is inherently interesting to study, given
how pervasive it is in email-based communication.

We provide quantitative estimates that show that the
impact of spam in the inbox can have serious revenue im-
plications and can contribute to a large percentage drop

in user engagement. The effect is largest for more volun-
tary user activities such as sending and especially com-
posing emails. The function mapping spam changes to
engagement appears to be convex, with the marginal im-
pact increasing with the size of the exposure change.
We carefully looked for contagion effects and found that
while there are meaningful spillovers (reduced engage-
ment across the Yahoo! site) the spillovers can be me-
chanically linked to decreased webmail activity so are
thus not pure “brand-loss” effects, even though they are
still relevant in evaluating the revenue impact. User char-
acteristics are not particularly informative in predicting
the response to spam; the most notable result is that light
users are equally affected in absolute terms by a piece
of spam in the inbox, meaning that percentage-wise the
impact is far greater for these users.

Our result shows why it is important to quantitatively
estimate a behavior even when the sign of the impact is
“obvious.” Merely documenting that mail spam has neg-
ative impact on engagement would not be particularly in-
formative, but pinning the magnitude of the impact and
the channels through which it operates can help the firm
make investment decisions in filtration technology and
optimize the user-interface to mitigate the effects. We be-
lieve the method can be fruitfully applied to other forms
of abuse, such as abusive user-generated content, and
other online experiences, such as pop-up ads.
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7 Appendix: Comparison to Propensity
Score Matching via Simulations

There has also been much research into developing tech-
niques, e.g., covariate matching, bias reduction, propen-
sity score matching (PSM) [35, 20, 9], etc, which have
shown promising results in removing this bias in obser-
vational studies. In this section, we outline the basic
framework of propensity score matching and then dis-
cuss why the basic framework is unsuitable for us. We
then compare our proposed method, nearest neighbor
matching, with two variants of propensity score match-
ing model based on a simulation data set with ground
truth. Although our use of nearest neighbor matching
method was prompted by concerns e.g. continuous ex-
posure variable that make the naive PSM inapplicable,
nevertheless we want to test whether there exist variants
of PSM that are more adapted for our purposes. In or-
der to do such a test, we needed to simulate the actual
ground truth measure so that we can compare the effects
unearthed by each method to the ground truth. In what
follows, we first give an outline of PSM and then de-
scribe a variant we develop, stratified-PSM, that we com-
pare with the nearest neighbor matching technique that
we use. We then describe how we created the simulation
dataset and compared the different algorithms.

7.1 Propensity Score Matching

In this section, we first briefly explain the PSM method
of estimating effects before describing the modifications.
In the classical PSM model, we have clearly defined
treated and untreated (unexposed) groups—denote them
by U; and Uj respectively. The goal is to study the effect
or outcome y on the treated users. For each user u, we
use y, (s = 1) or y,(s = 0) to represent the effect on user
u depending on whether the user is treated or remains un-
treated. Thus, we are interested in measuring the effect
of treatment as Ay = E[y,(s = 1) —y,(s = 0)|u € U].
However, a single user u can either be in the treated or
the untreated group, but not both. A naive estimator of

the above effect would thus be Ay = E[y,(s = 1)|u €
U] —Ely,(s =0)|u € Up] - this faces the problem of se-
lection bias, since the populations in U; and U are differ-
ent, and have different properties which can be correlated
with outcome y. The basic idea in PSM to overcome this
bias is to select one or more users in the control group
for each treated user, based on some pre-exposure fea-
tures x,,. Under the condition of unfoundedness,

Pr(y,(s =0)|xy,,u € Uy) = Pr(y,(s =0)|x,,u € Uy),
we have the following estimator
Ay =E[y,(s =1)|u € U] — Ezcy, [yu(s = 0)|u € Uy, x, = 2],

where z € U; means z is a feature vector of a treated
user. To avoid matching on the whole feature vector x,,,
we can match on the one-dimensional propensity score
p(x,) which is the probability that a user with vector x,
belongs to the treatment group. Then we have

Ay=Elyu(s=1)lue U] 7Evep(U1)b)u(s:0)‘u € Uo, p(xu) =V],

where v € p(U;) means that v is a propensity score of a
treated user.

7.2 Unsuitability of PSM

As described above, the main aim in PSM is to try to
learn a consistent estimator of p(x), the probability the
user has been exposed to a certain amount of spam, based
on the all the feature we have constructed. In our case,
we proceed differently due to a couple of reasons as
pointed out — the basic underpinning of propensity score
matching methods is being able to model the probabil-
ity that a particular user falls into the treatment group.
If the exposure variable is continuous, this assumption,
and hence the modeling falls apart. We instead have to
have a variant where we would have to create separate
models for each value of the exposure. Secondly, the
primary reason for propensity score matching is because
matching users becomes difficult if the activity vector is
high dimensional and the number of users is small — this
is not the case for us: we have tens of features and we
have over a million users; and we are able to find close
matches. Lastly, being able to create a model that is a
consistent estimator of p(x) is very important, else we
could be subject to un-intended biases that arise from this
modeling.

In the presence of these issues, the commonly used
ways of applying propensity score matching (PSM) does
not apply to us. In the next subsection we describe a vari-
ant of PSM, where we stratify the dataset into multiple
exposure levels and solve a PSM for each level.
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PAIR
1.579

PSM1
3.376

PSM2
4578

PSM2-W
5.878

Table 4: The L1 difference from the ground-truth. The
smaller the value the better.

7.3 Variants of PSM for continuous expo-
sure

In our problem, we care about the effect on engagement
difference Ay if the spam fraction increases by As. To
adapt PSM in our setting, we start out by first grouping
users by discretizing their spam fraction values. Given
a set of user U and their spam fraction range [a,b], we
have the following two ways of grouping users:

e Equal-depth grouping. In this method, we order
all the users based on their spam fraction values in-
creasingly. We then split the order list equally into
m segments. In this method, each group has the
same number of users.

e Equal-width grouping. In this method, we cut the
spam fraction [a,b] equally into m segments, each
with a width of (b —a)/m. Users are grouped ac-
cordingly. In this method, each group can have dif-
ferent number of users.

Given a grouping method, for each pair of user segments,
we use the segment with the lower spam fraction as the
treated group and the one with the higher spam fraction
as the control group — we compute As, the difference of
the spam fraction between these two groups, as the dif-
ference of the average over the users in the two groups.
We can then use a PSM model to compute the effect Ay.
At the end, we will have a set of (As, Ay) pairs.

To get the estimation function between the effect dif-
ference and spam fraction difference, we use the local re-
gression method [11] to fit a curve on the set of (As,Ay)
pairs. We use PSM1 to denote Equal-depth grouping and
PSM2 to denote Equal-width grouping. Please note that
we have the same number of users for each (As,Ay) in
PSMI1 but we have different numbers of users for PSM2.
Thus for PSM2, we have a weighed version PSM2-W by
weighing each point proportional the number of users in
the treatment group before fitting the curve.

7.4 Simulation Results

To test the validity of our method by comparing it against
ground truth, as well as to compare different variants of
PSM with our method, we generate a simulation data
with ground truth by the following procedure: we sub-
sample 50K users from the mail-spam data that described
in Section 4. For each user, we only kept 8 matching fea-
tures — the mail pageviews, the incoming mail, incoming
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Figure 4: Comparison of our method PAIR and the vari-
ants of PSM methods.

spam, the outgoing mails for two months. The spam-
fraction in exposure month is the exposure variable, and
the mail page-views in the post-exposure month is the
effect variable. Because we want to generate the ground
truth effect as close to the real effect as possible, we then
learnt a gradient boosted decision tree model that tries to
fit the effect variable in terms of the matching features
and the exposure variable. This model that we learnt
of user behavior was then used to create the new val-
ues of the effect variable for each user — as the user-set
was sub-sampled, we strengthened the impact of expo-
sure on the mail-pageviews by adding in another compo-
nent to the model — this was a log-normally distributed
random variable whose expectation depends on the loga-
rithm of the difference of the spam exposure of this user
from the mean spam exposure of all users: this changed
each predicted effect value by around 10%. This aggre-
gated model was then used to generate the new data, and
also to create the ground truth curve for each value of As
by predicting the new effect and then averaging over all
user with the same matching features.

We show the comparison results in Figure 4. For PSM
methods, we set the number of user groups m = 20. (We
tried different values for m and found the results are
not very sensitive.) For our method, we obtain 1.17M
pairs after our nearest neighbor matching and filtering
steps. Each pair gives us a (Ay,As) point and we use
the same local regression method [11] to get a fitted
curve. In Figure 4, we show the ground truth curve
for Ay(As), as well as the estimated curves for every
method. Each of the estimates does capture the negative
correlation between As and Ay. But, the estimates pro-
duced by the PSM methods are certainly worse than the
one created by the nearest neighbor matching method.
This is measured quantitatively by the L1 difference be-
tween the each estimated curve with the ground truth
one — which we compute using 20 sampled points of
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As = {0.005,0.01,---,0.095,0.1}. The L1 differences
are shown in Table 4. One of the reasons of PSM per-
forming worse is that when As becomes large, the result-
ing buckets have small number of users, and hence the
variance is high. This simulation provides evidence that
the matching method provides a reasonable set of esti-
mates to ground truth, and that it performs better than
some obvious variants of PSM, when dealing with con-
tinuous treatment values.
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Abstract

We explore the robustness and usability of moving-
image object recognition (video) captchas, designing and
implementing automated attacks based on computer vi-
sion techniques. Our approach is suitable for broad
classes of moving-image captchas involving rigid ob-
jects. We first present an attack that defeats instances
of such a captcha (NuCaptcha) representing the state-of-
the-art, involving dynamic text strings called codewords.
We then consider design modifications to mitigate the at-
tacks (e.g., overlapping characters more closely). We im-
plement the modified captchas and test if designs mod-
ified for greater robustness maintain usability. Our lab-
based studies show that the modified captchas fail to of-
fer viable usability, even when the captcha strength is re-
duced below acceptable targets—signaling that the mod-
ified designs are not viable. We also implement and test
another variant of moving text strings using the known
emerging images idea. This variant is resilient to our at-
tacks and also offers similar usability to commercially
available approaches. We explain why fundamental ele-
ments of the emerging images concept resist our current
attack where others fails.

1 Introduction

Humans can recognize a wide variety of objects at a
glance, with no apparent effort, despite tremendous vari-
ations in the appearance of visual objects; and we can
answer a variety of questions regarding shape properties
and spatial relationships of what we see. The apparent
ease with which we recognize objects belies the mag-
nitude of this feat. We can also do so with astonishing
speed (e.g., in a fraction of a second) [41]. Indeed, the
Cognitive Science literature abounds with studies on vi-
sual perception showing that, for the most part, people
do not require noticeably more processing time for ob-
ject categorization (e.g., deciding whether the object is

a bird, a flower, a car) than for more fine grained object
classification (e.g., an eagle, a rose) [13]. Grill et al. [20]
showed that by the time subjects knew that a picture con-
tained an object at all, they already knew its class. If such
easy-for-human tasks are, in contrast, difficult for com-
puters, then they are strong candidates for distinguishing
humans from machines.

Since understanding what we see requires cognitive
ability, it is unsurprising that the decoding of motion-
based challenges has been adopted as a security mecha-
nism: various forms of motion-based object recognition
tasks have been suggested as reverse Turing tests, or what
are called Completely Automated Public Turing tests to
tell Computers and Humans Apart (captchas). Among
the key properties of captchas are: they must be easily
solved by humans; they should be usable; correct solu-
tions should only be attainable by solving the underly-
ing Al problem they are based on; they should be robust
(i.e., resist automated attacks); and the cost of answering
challenges with automated programs should exceed that
of soliciting humans to do the same task [1, 46]. To date,
a myriad of text, audio, and video-based captchas have
been suggested [22], many of which have succumbed to
different attacks [6, 7, 19, 32, 47, 48, 53].

While text-based captchas that prompt users to rec-
ognize distorted characters have been the most popular
form to date, motion-based or video captchas that pro-
vide some form of moving challenge have recently been
proposed as the successor to static captchas. One promi-
nent and contemporary example of this new breed of
captchas is NuCaptcha [35], which asserts to be “the
most secure and usable captcha,” and serves millions
of video captchas per day. The general idea embod-
ied in these approaches is to exploit the remarkable per-
ceptual abilities of humans to unravel structure-from-
motion [30]. For example, users are shown a video with a
series of characters (so-called random codewords) mov-
ing across a dynamic scene, and solve the captcha by en-
tering the correct codeword. For enhanced security, the
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codewords are presented among adversarial clutter [32]
(e.g., moving backgrounds and other objects with dif-
ferent trajectories), and consecutive characters may even
overlap significantly. The underlying assumption is that
attacks based on state-of-the-art computer vision tech-
niques are likely to fail at uncovering these challenges
within video sequences, whereas real users will be able
to solve the challenges with little effort.

However, unlike in humans, it turns out that object
classification, not recognition of known objects, is the
more challenging problem in Computer Vision [43].
That is, it is considerably more difficult to capture in
a computer recognition system the essence of a dog, a
horse, or a tree—i.e., the kind of classification that is
natural and immediate for the human visual system [29].
To this day, classification of objects in real-world scenes
remains an open and difficult problem. Recognizing
known objects, on the other hand, is more tractable, espe-
cially where it involves specific shapes undergoing trans-
formations that are easy to compensate for. As we show
later, many of these well-defined transformations hold in
current motion-based captcha designs, due in part to de-
sign choices that increase usability.

In what follows, we present an automated attack to
defeat the current state-of-the-art in moving-image ob-
ject recognition captchas. Through extensive evaluation
of several thousand real-world captchas, our attack can
completely undermine the security of the most prominent
examples of these, namely those currently generated by
NuCaptcha. After examining properties that enable our
attack, we explore a series of security countermeasures
designed to reduce the success of our attacks, including
natural extensions to the scheme under examination, as
well as an implementation of a recently proposed idea
(called Emerging Images [31]) for which attacks do not
appear as readily available. Rather than idle conjecture
about the efficacy of countermeasures, we implement
captchas embedding them and evaluate these strength-
ened variations of moving-image captchas by carrying
out and reporting on a usability study with subjects asked
to solve such captchas.

Our findings highlight the well-known tension be-
tween security and usability, which often have subtle in-
fluences on each other. In particular, we show that the
design of robust and usable moving-image captchas is
much harder than it looks. For example, while such
captchas may be more usable than their still-based coun-
terparts, they provide an attacker with a significant num-
ber of views of the target, each providing opportunities to
increase the confidence of guesses. Thus the challenge is
limiting the volume of visual cues available to automated
attacks, without adversely impacting usability.

2 Captcha Taxonomy and Related Work

Most captchas in commercial use today are character-
recognition (CR) captchas involving still images of dis-
torted characters; attacks essentially involve building on
optical character recognition advances. Audio captchas
(AUD) are a distinct second category, though unre-
lated to our present work. A third major category,
image-recognition (IR) captchas, involves classification
or recognition, of images or objects other than charac-
ters. A well-known example, proposed and then bro-
ken, is the Asirra captcha [16, 19] which involves ob-
ject classification (e.g., distinguishing cats from other
animals such as dogs). CR and IR schemes may in-
volve still images (CR-still, IR-still), or various types of
dynamic images (CR-dynamic, IR-dynamic). Dynamic
text and objects are of main interest in the present paper,
and contribute to a cross-class category: moving-image
object recognition (MIOR) captchas, involving objects
in motion through animations, emergent-image schemes,
and video [10-12, 26, 31, 35, 38]. A fourth category,
cognitive-based captchas (COG), include puzzles, ques-
tions, and other challenges related to the semantics of
images or language constructs. We include here content-
based video-labeling of YouTube videos [24].

The most comprehensive surveys of captchas to date
are those by Hidalgo and Maranon [22] and Basso and
Bergadano [2]. We also recommend other comprehen-
sive summaries: for defeating classes of AUD captchas,
Soupionis [40] and Bursztein et al. [4, 6]; for defeating
CR captchas, Yan et al. [47, 50] and Bursztein [7]; for a
systematic treatment of IR captchas and attacks, Zhu et
al. [53], as well as for robustness guidelines.

Usability has also been a central focus, for example,
including a large user study of CR and AUD captchas
involving Amazon Mechanical Turk users [5], a user
study of video-tagging [24], usability guidelines and
frameworks related to CR captchas [49]. Chellapilla et
al. [8, 9] also address robustness. Hidalgo et al. [22]
and Bursztein et al. [7] also review evaluation guidelines
including usability. Lastly, research on underground
markets for solving captchas [33], and malware-based
captcha farms [15], raise interesting questions about the
long-term viability of captchas.

Lastly, concurrent to our own work, Bursztein [3]
presents an approach to break the video captchas used by
NuCaptcha. The technique exploits the video by treat-
ing it as a series of independent frames, and then applies
a frame-based background removal process [7] to dis-
card the video background. Next, frame characteristics
(e.g., spatial salient feature density and text aspect ratio
of the overlapping letters) are used to detect the code-
word, after which a clustering technique is used to help
segment the characters of the codeword. As a final step,

50 21st USENIX Security Symposium

USENIX Association



traditional CR-still based attacks are used to recognize
the characters in each of the segmented frames. The ap-
proach taken by Bursztein is closely related to our base-
line method (§4.1) as it only uses single frame segmen-
tation and recognition. In contrast, our subsequent tech-
niques inherently use temporal information contained in
the video to identify the codeword, to improve the seg-
mentation, and to enhance the recognition step during the
codeword recovery process.

3 Background

In the human brain, it is generally assumed that an image
is represented by the activity of “units” tuned to local
features (e.g., small line and edge fragments). It is also
widely believed that objects appearing in a consistent or
familiar background are detected more accurately, and
processed more quickly, than objects appearing in an in-
consistent scene [36]. In either case, we must somehow
separate as much as possible of the image once we see
it. This feat is believed to be done via a segmentation
process that attempts to find the different objects in the
image that “go together” [43].

As with other aspects of our visual system, segmen-
tation involves different processes using a multitude of
sources of information (e.g., texture and color), which
makes it difficult to establish which spatial properties and
relations are important for different visual tasks. While
there is evidence that human vision contains processes
that perform grouping and segmentation prior to, and in-
dependent of, subsequent recognition processes, the ex-
act processes involved are still being debated [36].

Given the complexity of the visual system, it is not
surprising that this feat remains unmatched by computer
vision algorithms. One of the many reasons why this
task remains elusive is that perception of seemingly sim-
ple spatial relations often requires complex computations
that are difficult to unravel. This is due, in part, to the fact
that object classification (that is, the ability to accurately
discriminate each object of an object class from all other
possible objects in the scene) is computationally difficult
because even a single individual object can already pro-
duce an infinite set of different images (on the retina)
due to variations in position, scale, pose, illumination,
etc. Discriminating objects of a certain class is further
complicated by the often very large inner class variabil-
ity, which significantly changes the appearance beyond
the factors encountered for a single object. Hence, vision
operates in a high-dimensional space, making it difficult
to build useful forms of visual representation.

In computer vision, the somewhat simpler process of
recognizing known objects is simulated by first analyz-
ing an image locally to produce an edge map composed
of a large collection of local edge elements, from which

we proceed to identify larger structures. In this paper, we
are primarily interested in techniques for object segmen-
tation and tracking. In its simplest form, object tracking
can be defined as the problem of estimating the trajec-
tory of an object in the image plane as it moves around
a scene. Tracking makes use of temporal information
computed from a sequence of frames. This task can be
difficult for computer vision algorithms because of issues
related to noise in the image, complex object motion, the
nonrigid nature of objects, etc. However, the tracking
problem can be simplified if one can assume that ob-
ject motion is smooth, the motion is of constant velocity,
knowledge of the number and the size of the objects, or
even appearance and shape information. In NuCaptcha,
for example, many of these simplifications hold and so
several features (e.g., edges, optical flow) can be used to
help track objects. The correspondence search from one
frame to the next is performed by using tracking.

In video, this correspondence can be achieved by
building a representation of the scene (called the back-
ground model) and then finding deviations from the
model for each incoming frame. Intuitively, any signif-
icant change in the image region from the background
model signifies a moving object. The pixels constitut-
ing the regions undergoing change are marked for fur-
ther processing, and a connected component algorithm
is applied to obtain connected regions. This process is
typically referred to as background subtraction. At this
point, all that is needed is a way to partition the im-
age into perceptually similar regions, and then infer what
each of those regions represent. In §4, we discuss the ap-
proach we take for tackling the problems of background
subtraction, object tracking, segmentation, and classifi-
cation of the extracted regions.

4 Our Automated Approach

The aforementioned processes of segmentation, object
tracking, and region identification are possible in today’s
MIOR captchas because of several design decisions that
promote rapid visual identification [14]. NuCaptcha, for
instance, presents a streaming video containing moving
text against a dynamic background. The videos have four
noticeable characteristics, namely: (1) the letters are pre-
sented as rigid objects in order to improve a user’s abil-
ity to recognize the characters; (2) the background video
and the foreground character color are nearly constant in
color and always maintain a high contrast—we posit that
this is done to ease cognitive burden on users; (3) the
random “codewords” each have independent (but over-
lapping trajectories) which better enable users to distin-
guish adjacent characters; (4) lastly, the codewords are
chosen from a reduced alphabet where easily confused
characters are omitted. Some examples of a state-of-the-

USENIX Association

21st USENIX Security Symposium 51



Figure 1: Example moving-image object recognition (MIOR)
captchas from NuCaptcha (see http://nucaptcha.com/demo).

art MIOR captcha are given in Figure 1.

Before delving into the specifics of our most success-
ful attack, we first present a naive approach for automat-
ically decoding the challenges shown in MIOR captchas.
To see how this attack would work, we remind the reader
that a video can be seen as a stream of single pictures that
simply provides multiple views of a temporally evolving
scene. It is well known that human observers perceive a
naturally moving scene at a level of about thirty frames
per second, and for this reason, video captchas tend to
use a comparable frame rate to provide a natural video
experience that is not too jerky. Similarly, the challenge
shown in the captcha is rendered in multiple frames to
allow users to perceive and decode the codewords in an
effortless manner. In the NuCaptcha scheme, for exam-
ple, a single frame may contain the full codeword.

4.1 A Naive Attack

Given this observation, one way to attack such schemes
is to simply apply traditional OCR-based techniques that

work well at defeating CR-still captchas (e.g., [32, 47]).
More specifically, choose k frames at random, and iden-
tify the foreground pixels of the codeword by comparing
their color with a given reference color; notice the at-
tacker would likely know this value since the users are
asked to, for example, “type the RED moving charac-
ters”. Next, the length of the codeword can be inferred
by finding the leftmost and rightmost pixels on the fore-
ground. This in essence defines a line spanning over the
foreground pixels (see Figure 2). The positions of the
characters along the line can be determined by dividing
the line into n equidistant segments, where n denotes the
desired number of characters in the codeword. For each
of the segments, compute the center of gravity of the
foreground pixels in the vertical area of the image be-
longing to the segment. Lastly, select an image patch (of
the expected size of the characters) around the centers of
gravity of the segments, and feed each patch to a classi-
fier. In our work, we use a neural network approach [39]
because it is known to perform well at this object identi-
fication task. The neural network is trained in a manner
similar to what we discuss in §4.3.

Figure 2: Naive attack: Based on the foreground pixels, we
find the longest horizontal distance (white line) and the mean
value of vertical area (the respective bounding boxes above).

The above process yields a guess for each of the char-
acters of the codeword in the chosen frames of the video.
Let i denote the number of possible answers for each
character. By transforming the score from the neural net-
work into the probability p;;; where the j-th character
of the codeword corresponds to the i-th character in the
k-th frame, we calculate the probability F;; for each char-
acter j = 1,...,n of the codeword over all k frames as
Pj= %,)Zk pijk with s, = Y ; ; pijk. The choice that has
the highest probability is selected as the corresponding
character. With & = 10, this naive attack resulted in a
success rate of approximately 36% accuracy in correctly
deducing all three characters in the codewords of 4000
captchas from NuCaptcha. While this relatively simple
attack already raises doubts about the robustness of this
new MIOR captcha, we now present a significantly im-
proved attack that makes fewer assumptions about pixel
invariants [50] in the videos.
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4.2 Exploiting Temporal Information

A clear limitation of the naive attack is the fact that it
is not easily generalizable and it is not robust to slight
changes in the videos. In what follows, we make no as-
sumption about a priori knowledge of the color of the
codewords, nor do we assume that the centers of grav-
ity for each patch are equidistant. To do so, we apply a
robust segmentation method that utilizes temporal infor-
mation to improve our ability to recognize the characters
in the video.

inforest "

Decoding Process

o i
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Figure 3: High-level overview of our attack. (This, and other
figures, are best viewed in color.)

A basic overview of our attack is shown in Figure 3.
Given a MIOR captcha we extract the motion contained
in the video using the concept of salient features. Salient
features are characteristic areas of an image that can be
reliably detected in several frames. To infer the motion of
the salient feature points, we apply object tracking tech-
niques (stage @). With a set of salient features at hand,
we then use these features to estimate the color statis-
tics of the background. Specifically, we use a Gaussian
mixture model [18], which represents the color statistics
of the background through a limited set of Gaussian dis-
tributions. We use the color model of the background
to measure, for all pixels in each frame, their likelihood
of belonging to the background. Pixels with low likeli-
hoods are then extracted as foreground pixels (stage @).
The trajectories of the foreground pixels are then refined
using information inferred about the color of these pix-
els, and a foreground color model is built. Next, to ac-
count for the fact that all characters of the codewords
move independently, we segment the foreground into n

segments as in the naive attack (stage ©). We select each
image patch containing a candidate character and evalu-
ate the patch using a neural network based classifier [39]
(stage @). The classifier outputs a likelihood score that
the patch contains a character. As a final enhancement,
we incorporate a feedback mechanism in which we use
high confidence inferences to improve low confidence
detections of other patches. The net effect is that we
reduce the distractions caused by mutually overlapping
characters. Once all segments have been classified, we
output our guess for all characters of the codeword. We
now discuss the stages of our approach in more detail.

Figure 4: The circles depict salient features. These salient
features are usually corners of an object or texture areas.

Detecting Salient Features and Their
Motion (Stage ©)

A well-known class of salient features in the computer
vision community is gray value corners in images. In
this paper, we use the Harris corner detector [21] for
computing salient features, which uses the image gradi-
ent to identify points in the image with two orthogonal
gradients of significant magnitude. An example of the
detected corners is shown in Figure 4.

After identifying salient features in one frame of the
video we now need to identify their respective position
in the subsequent frames of the video. In general, there
are two choices for identifying the corresponding salient
features in the subsequent frames of the video. The
first choice is to independently detect salient features in
all frames and then compare them by using their image
neighborhoods (patches) to identify correlating patches
through an image based correlation (commonly called
matching). The second class of methods leverages the
small motion occurring in between two frames for an it-
erative search (commonly called tracking).

We opt for a tracking method given that tracking re-
sults for video are superior in accuracy and precision
to matching results. Specifically, we deploy the well
known KLT-tracking method [28], which is based on the
assumption that the image of a scene object has a con-
stant appearance in the different frames capturing the
object (brightness constancy). The MIOR captchas by
NuCaptcha use constant colors on the characters of the
codewords. This implies that the NuCaptcha frames are
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well suited for our method. Note that no assumption
about the specific color is made; only constant appear-
ance of each of the salient features is assumed. We return
to this assumption later in Section 5.2.

Motion Trajectory Clustering (Stage @)

In a typical video, the detected salient features will be
spread throughout the image. In the case of NuCaptcha,
the detected features are either on the background, the
plain (i.e., non-codeword) characters or the codeword
characters. We are foremost interested in obtaining the
information of the codeword characters. To identify the
codeword characters we use their distinctive motion pat-
terns as their motion is the most irregular motion in the
video captcha. In the case of NuCaptcha, we take advan-
tage of the fact that the motion trajectories of the back-
ground are significantly less stable (i.e., across consec-
utive frames) than the trajectories of the features on the
characters. Hence we can identify background features
by finding motion trajectories covering only a fraction of
the sequence; specifically we assume presence for less
than / = 20 frames. In our analysis, we observed little
sensitivity with respect to /.

Additionally, given that all characters (plain and code-
word) move along a common trajectory, we can further
identify this common component by linearly fitting a tra-
jectory to their path. Note that the centers of the rotating
codeword characters still move along this trajectory. Ac-
cordingly, we use the distinctive rotation of the codeword
characters to identify any of their associated patterns by
simply searching for the trajectories with the largest de-
viation from the more common motion trajectory. This
identifies the pixels belonging to the codeword charac-
ters as well as the plain characters. Additionally, the
features on the identified codeword characters allow us
to obtain the specific color of the codeword characters
without knowing the color a priori (see Figure 5).

Knowing the position of the codeword characters al-
lows us to learn a foreground color model. We use
a Gaussian mixture model for the foreground learning,
which in our case has a single moment corresponding
to the foreground color.! Additionally, given the above
identified salient features on the background, we also
learn a Gaussian mixture for the background, thereby
further separating the characters from the background.

At this point, we have isolated the trajectories of code-
word characters, and separated the codewords from the
background (see Figure 6). However, to decide which
salient features on the codeword characters belong to-
gether, we required additional trajectories. To acquire
these, we simply relax the constraint on the sharpness
of corners we care about (i.e., we lower the threshold
for the Harris corner detection algorithm) and rerun the

Figure 5: (Top): Initial optical flow. (Middle): salient points
with short trajectories in background are discarded. (Lower):
Trajectories on non-codeword characters are also discarded.

KLT-tracking on the new salient features. This yields
significantly more trajectories for use by our segmenta-
tion algorithm. Notice how dense the salient features are
in Figure 7. Note also that since the foreground extrac-
tion step provides patches that are not related to the back-
ground, we can automatically generate training samples
for our classifier, irrespective of the various backgrounds
the characters are contained in.

Figure 6: Example foreground extraction.

Figure 7: re-running tracking with a lower threshold on corner
quality: Left: before modification. Right: after modification.

Segmentation (Stage ©)

To segment the derived trajectories into groups, we use k-
means clustering [23]. We chose this approach over other
considerations (e.g., mean-shift [37] based clustering, or
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RANSAC [17] based clustering [51]) because of its sim-
plicity, coupled with the fact that we can take advantage
of our knowledge of the desired number of characters
(i.e., k), and use that to help guide the clustering proce-
dure. We cannot, however, apply the standard k-means
approach directly since it relies on Euclidean distances,
where each sample is a point. In our case, we need to take
the relationship between frames of the video sequence
into consideration, and so we must instead use each tra-
jectory as an observation. That is, we cluster the differ-
ent trajectories. However, this results in a non-Euclidean
space because different trajectories have different begin-
ning and ending frames. To address this problem, we
utilize the rigidity assumption [42] and define a distance
metric for trajectories that takes into consideration their
spatial distance, as well as the variation of their spatial
distance. The result is a robust technique that typically
converges within 5 iterations when k = 3, and 20 intera-
tions (on average) when k = 23. A sample output of this
stage is shown in Figure 8.

Figure 8: Left: before segmentation. Right: trajectories are
marked with different colors and bounding boxes are calculated
based on the center of the trajectories and the orientation of the
points. The red points denote areas with no trajectories.

4.3 Codeword Extraction and
Classification (Stage ©)

Given the center and orientation of each codeword char-
acter, the goal is to figure out exactly what that character
is. For this task, we extract a fixed-sized area around
each character (as in Figure 8), and supply that to our
classification stage. Before doing so, however, we refine
the patches by deleting pixels that are too close to the
trajectories of adjacent characters.

As mentioned earlier, we use a neural network for clas-
sifying the refined patches. A neural network is a mathe-
matical model or computational model that is inspired by
the structure of a biological neural network. The training
of a neural network is based on the notion of the possi-
bility of learning. Given a specific task to solve, and a
class of functions, learning in this context means using
a set of observations to find a function which solves the
task in some optimal sense.

Optimization: While the process outlined in stages @-
® works surprisingly well, there are several opportuni-

ties for improvement. Perhaps one of the most natural
extensions is to utilize a feedback mechanism to boost
recognition accuracy. The idea we pursue is based on
the observation that an adversary can leverage her confi-
dence about what particular patches represent to improve
her overall ability to break the captcha. Specifically, we
find and block the character that we are most confident
about. The basic idea is that although we may not be able
to infer all the characters at once, it is very likely that we
can infer some of the characters. By masking the char-
acter that we are most confident about, we can simplify
the problem into one of decoding a codeword with fewer
characters; which is easier to segment and recognize.

OF1 F

Figure 9: lterative decoding of a captcha.

The most confident character can be found using the
probability score provided by the classifier, although it
is non-trivial to do so without masking out too much of
the other characters. We solve this problem as follows.
In order to block a character, we try to match it with
templates of each character that can be gained by learn-
ing. One way to do that is to match scale-invariant fea-
ture transforms (SIFT) between the patch and a reference
template. While SIFT features can deal with scaling, ro-
tation and translation of characters, there are times when
some frames have insufficient SIFT features. Our solu-
tion is to find a frame with enough features to apply SIFT,
and then warp the template to mask the target character
in that frame. Once found, this frame is used as the ini-
tial position in an incremental alignment approach based
on KLT tracking. Essentially, we combine the benefits
of SIFT and KLT to provide a video sequence where the
character we are most confident about is omitted. At that
point, we rerun our attack, but with one fewer character.
This process is repeated until we have no characters left
to decode. This process is illustrated in Figure 9.

Runtime: Our implementation is based on a collection
of modules written in a mix of C++ and Mat lab code.
We make extensive use of the Open Source Computer
Vision library (OpenCV). Our un-optimized code takes
approximately 30s to decode the three characters in a
MIOR captcha when the feedback loop optimization (in
stage @) is disabled. With feedback enabled, processing
time increases to 250s. The bottleneck is in the incre-
mental alignment procedure (written in Mat lab).
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5 Evaluation

We now discuss the results of experiments we performed
on MIOR captchas. Specifically, the first set of experi-
ments are based on video sequences downloaded off the
demo page of NuCaptcha’s website. On each visit to the
demo page, a captcha with a random 3-character code-
word is displayed for 6 seconds before the video loops.
The displayed captchas were saved locally using a Fire-
fox plugin called NetVideoHunter. We downloaded 4500
captchas during November and December of 2011.

The collected videos contain captchas with all 19
backgrounds in use by NuCaptcha as of December 2011.
In each of these videos, the backgrounds are of moving
scenes (e.g., waves on a beach, kids playing baseball,
etc.) and the text in the foreground either moves across
the field of view or in-place. We painstakingly labeled
each of the videos by hand to obtain the ground truth.
We note that while NuCaptcha provides an API for ob-
taining captchas, we opted not to use that service as we
did not want to interfere with their service in any way. In
addition, our second set of experiments examine several
countermeasures against our attacks, and so for ethical
reasons, we opted to perform such experiments in a con-
trolled manner rather than with any in-the-wild experi-
mentation. These countermeasures are also evaluated in
our user study (§6).

5.1 Results

The naive attack was analyzed on 4000 captchas. Due
to time constraints, the extended attack (with and with-
out the feedback optimization) were each analyzed on a
random sample of 500 captchas. To determine an appro-
priate training set size, we varied the number of videos as
well as the number of extracted frames and examined the
recognition rate. The results (not shown) show that while
accuracy steadily increased with more training videos
(e.g., 50 versus 100 videos), we only observed marginal
improvement when the number of training patches taken
from each video exceeded 1500. In the subsequent anal-
yses, we use 300 video sequences for training (i.e., 900
codeword characters) and for each detected character, we
select 2 frames containing that character (yielding 1800
training patches in total). We use dense SIFT descrip-
tors [44] as the features for each patch (i.e., a SIFT de-
scriptor is extracted for each pixel in the patch, and con-
catenated to form a feature vector). The feature vectors
are used to train the neural network. For testing, we
choose a different set of 200 captchas, almost evenly dis-
tributed among the 19 backgrounds. The accuracy of the
attacks (in §4) are given in Table 1.

The result indicate that the robustness of these MIOR
captchas are far weaker than one would hope. In par-

ticular, our automated attacks can completely decode the
captchas more than three quarters of the time. In fact,
our success rates are even higher than some of the OCR-
based attacks on CR-still captchas [7, 19, 32, 47]. There
are, however, some obvious countermeasures that de-
signers of MIOR captchas might employ.

5.2 Mitigation

To highlight some of the tensions that exists between
the security and usability of MIOR captchas, we explore
a series of possible mitigations to our attacks. In or-
der to do so, we generate video captchas that closely
mimic those from NuCaptcha. In particular, we built
a framework for generating videos with characters that
move across a background scene with constant velocity
in the horizontal direction, and move up and down har-
monically. Similar to NuCaptcha, the characters of the
codeword also rotate. Our framework is tunable, and all
the parameters are set to the defaults calculated from the
original videos from NuCaptcha (denoted Standard). We
refer the interested reader to Appendix A for more details
on how we set the parameters. Given this framework, we
explore the following defenses:

e Extended: the codeword consists of m > 3 random
characters moving across a dynamic scene.

e Overlapping: same as the Standard case (i.e., m =
3), except characters are more closely overlapped.

o Semi-Transparent. identical to the Standard case,
except that the characters are semi-transparent.

e Emerging objects: a different MIOR captcha where
the codewords are 3 characters but created using an
“Emerging Images” [31] concept (see below).

Figure 10: Extended case. Top: scrolling; bottom: in-place.

Increasing the number of random characters shown in
the captcha would be a natural way to mitigate our attack.
Hence, the Extended characters case is meant to investi-
gate the point at which the success rate of our attacks fall
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Attack Single Character 3-Character

Strategy Accuracy Accuracy

Naive 68.5% (8216/12000) | 36.3% (1450/4000)
Enhanced (no feedback) | 90.0% (540/600) 75.5% (151/200)
Enhanced (with feedback) | 90.3% (542/600) 77.0% (154/200)

Table 1: Reconstruction accuracy for various attacks.

below a predefined threshold. An example is shown in
Figure 10. Similarly, we initially thought that increas-
ing the overlap between consecutive characters (i.e., the
Overlapping defense, Fig. 11) might be a viable alterna-
tive. We estimate the degree that two characters overlap
by the ratio of the horizontal distance of their centers and
their average width. That is, suppose that one character
is 20 pixels wide, and the other is 30 pixels wide. If the
horizontal distance of their centers is 20, then their over-
lap ratio is computed as 20/ w = 0.8. The smaller
this overlap ratio, the more the characters overlap. A ra-
tio of 0.5 means that the middle character is completely
overlapped in the horizontal direction. In both the origi-
nal captchas from NuCaptcha and our Standard case, the
overlap ratio is 0.95 for any two adjacent characters.

Figure 11: Overlapping characters (with ratio = 0.49).

The Semi-Transparent defense is an attempt to break
the assumption that the foreground is of constant color.
In this case, foreground extraction (stage @) will be dif-
ficult. To mimic this defense strategy, we adjust the
background-to-foreground pixel ratio. An example is
shown in figure 12.

Figure 12: Semi-transparent: 80% background to 20% fore-
ground pixel ratio. (Best viewed in color.)

The final countermeasure is based on the notion of
Emerging Images proposed by Mitra et al. [31]. Emer-
gence refers to “the unique human ability to aggregate
information from seemingly meaningless pieces, and to
perceive a whole that is meaningful” [31].2 The con-
cept has been exploited in Computer Graphics to prevent

automated tracking by computers, while simultaneously
allowing for high recognition rates in humans because of
our remarkable visual system. We apply the concepts
outlined by Mitra et al. [31] to generate captchas that
are resilient to our attacks. The key differences between
our implementation and the original paper is that our in-
put is 2D characters instead of 3D objects, and we do
not have the luxury of incorporating shadow information.
Our Emerging captchas are constructed as follows:

SWel) e Jo uonessd

(a) (b)

Figure 13: Emerging captcha. (a) Top: noisy background
frame. Middle: derivative of foreground image. Bottom: single
frame for an Emerging captcha. (b) Successive frames.

1. We build a noisy frame /;, by creating an image
with each pixel following a Gaussian distribution.
We blur the image such that the value of each pixel
is related to nearby pixels. We also include time cor-
respondence by filtering in the time domain. That is,
each frame is a mixture of a new noisy image and
the last frame.

2. We generate an image Iy, similar to that in Nu-
Captcha. We then find the edges in the image by
calculating the norm of derivatives of the image.

3. We combine I, and Iy, by creating a new im-
age I where each pixel in [ is defined as I(x,y) :=
Ipg(x,y) * exp(cf)frfw), where exp(x) is the exponen-
tial function. In this way, the pixels near the bound-
ary of characters in / are made more noisy than

other pixels.

4. We define a constant threshold # < 0. All pixel val-
ues in / that are larger than ¢ are made white. All
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the other pixels in / are made black.

The above procedure results in a series of frames
where no single frame contains the codeword in a way
that is easy to segment. The pixels near the boundaries
of the characters are also more likely to be blacker than
other pixels, which the human visual system somehow
uses to identify the structure from motion. This feat re-
mains challenging for computers since the points near the
boundaries change color randomly, making it difficult, if
not impossible, to track, using existing techniques. An
illustration is shown in Figure 13. To the best of our
knowledge, we provide the first concrete instantiation of
the notion of Emerging Images applied to captchas, as
well as a corresponding lab-based usability study (§6).

We refer interested readers to http://www.cs.
unc.edu/videocaptcha/ for examples of the mit-
igation strategies we explored.

5.2.1 Results

We now report on the results of running attacks on
captchas employing the aforementioned defenses. Fig-
ure 14 depicts the results for the Extended defense strat-
egy. In these experiments, we generated 100 random
captchas for each m € [3,23]. Our results clearly show
that simply increasing the codeword length is not neces-
sarily a viable defense. In fact, even at 23 characters, our
success rate is still 5%, on average.
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Figure 14: Attack success as a function of codeword length.

Figure 15 shows the results for the Overlapping de-
fense strategy. As before, the results are averaged over
100 sequences per point. The graph shows that the suc-
cess rate drops steadily as the overlap ratio decreases (de-
noted as “sensitivity” level in that plot). Interestingly,
NuCaptcha mentions that this defense strategy is in fact
one of the security features enabled by its behavioral
analysis engine. The images provided on their website
for the “very secure” mode, however, have an overlap ra-
tio of 0.78, which our attacks would still be able to break

more than 50% of the time.? Our success rate is still rel-
atively high (at 5%) even when the overlap ratio is as low
as 0.49. Recall that, at that point, the middle character is
100% overlapped, and others are 51% overlapped.

Figure 15 also shows the results for the Semi-
Transparent experiment. In that case, we varied the
transparency of the foreground pixel from 100% down
to 20%. Even when the codewords are barely visible (to
the human eye), we are still able to break the captchas
5% of the time. An example of one such captcha (with a
background to foreground ratio of 80 to 20 percent) was
shown earlier in Figure 12.
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Figure 15: Attack success rate against Overlapping and Semi-
Transparent defenses. Sensitivity refers to the overlap ratio
(circles) or the background-to-foreground ratio (squares).

Lastly, we generated 100 captchas based on our imple-
mentation of the Emerging Images concept. It comes as
no surprise that the attacks in this paper were not able to
decode a single one of these challenges — precisely be-
cause these captchas were specifically designed to make
optical flow tracking and object segmentation difficult.
From a security perspective, these MIOR captchas are
more robust than the other defenses we examined. We
return to that discussion in §7.

5.2.2 Discussion

The question remains, however, whether for any of the
defenses, parameters could be tuned to increase the ro-
bustness and still retain usablility. We explore precisely
that question next. That said, the forthcoming analysis
raises interesting questions, especially as it relates to the
robustness of captchas. In particular, there is presently
no consensus on the required adversarial effort a captcha
should present, or the security threshold in terms of suc-
cess rate that adversaries should be held below. For ex-
ample, Chellapilla et al. [8] state: “automated attacks
should not be more than 0.01% successful but the human
success rate should be at least 90%”. Others argue that
“if it is at least as expensive for an attacker to break the
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challenge by machine than it would be to pay a human to
take the captcha, the test can be considered secure” [22].
Zhu et al. [53] use the metric that the bot success rate
should not exceed 0.6%.

In the course of our pilot studies, it became clear
that if the parameters for the Extended, Overlapping,
and Semi-Transparent countermeasures are set too strin-
gently (e.g., to defeat automated attacks 99% of the
time), then the resulting MIOR captchas would be ex-
ceedingly difficult for humans to solve. Therefore, to
better measure the tension between usability and secu-
rity, we set the parameters for the videos (in §6) to values
where our attacks have a 5% success rate, despite that be-
ing intolerably high for practical security. Any captcha
at this parametrization, which is found to be unusable, is
thus entirely unviable.

6 User study

We now report on an IRB-approved user study with 25
participants that we conducted to assess the usability of
the aforementioned countermeasures. If the challenges
produced by the countermeasures prove too difficult for
both computers and humans to solve, then they are not
viable as captcha challenges. We chose a controlled
lab study because besides collecting quantitative perfor-
mance data, it gave us the opportunity to collect partici-
pants’ impromptu reactions and comments, and allowed
us to interview participants about their experience. This
type of information is invaluable in learning why cer-
tain mitigation strategies are unacceptable or difficult for
users and learning which strategies are deemed most ac-
ceptable. Additionally, while web-based or Mechanical
Turk studies may have allowed us to collect data from
more participants, such approaches lack the richness of
data available when the experimenter has the opportunity
to interact with the participants one-on-one. Mechani-
cal Turk studies have previously been used in captcha
research [5] when the goal of the studies are entirely
performance-based. However, since we are studying new
mitigation strategies, we felt that it was important to
gather both qualitative and quantitative data for a more
holistic perspective.

6.1 Methodology

We compared the defenses in §5.2 to a Standard ap-
proach which mimics NuCaptcha’s design. In these
captchas the video contains scrolling text with 2-3 words
in white font, followed by 3 random red characters that
move along the same trajectory as the white words. Simi-
lar to NuCaptcha, the red characters (i.e., the codewords)
also independently rotate as they move. For the Extended

strategy, we set m = 23. All 23 characters are continu-
ously visible on the screen. During pilot testing, we also
tried a scrolling 23-character variation of the Extended
scheme. However, this proved extremely difficult for
users to solve and they voiced strong dislike (and out-
rage) for the variation. For the Overlapping strategy, we
set the ratio to be 0.49. Recall that at this ratio, the mid-
dle character is overlapped 100% of the time, and the
others are 51% overlapped. For the Semi-Transparent
strategy, we set the ratio to be 80% background and 20%
foreground. For all experiments, we use the same alpha-
bet (of 20 characters) in NuCaptcha’s original videos.

A challenge refers to a single captcha puzzle to be
solved by the user. Each challenge was displayed on a
6-second video clip that used a canvas of size 300 x 126
and looped continuously. This is the same specification
used in NuCaptcha’s videos. Three different HD video
backgrounds (of a forest, a beach, and a sky) were used.
Some examples are shown in Figure 16. Sixty chal-
lenges were generated for each variation (20 for each
background, as applicable).

We also tested the Emerging strategy. The three-
character codeword was represented by black and white
pixel-based noise as described in §5.2. Sixty challenges
were generated using the same video parameters as the
other conditions.

The twenty-five participants were undergraduate,
graduate students, staff and faculty (15 males, 10 fe-
males, mean age 26) from a variety of disciplines. A
within-subjects experimental design was used, where
each participant had a chance to complete a set of 10
captchas for each strategy. The order of presentation for
the variations was counterbalanced according to a 5 X 5
Latin Square to eliminate biases from learning effects;
Latin Squares are preferred over random ordering of con-
ditions because randomization could lead to a situation
where one condition is favored (e.g., appearing in the
last position more frequently than other conditions, giv-
ing participants more chance to practice). Within each
variation, challenges were randomly selected.

A simple web-based user interface was designed
where users could enter their response in the textbox and
press submit, could request a new challenge, or could
access the help file. Indication of correctness was pro-
vided when users submitted their responses, and users
were randomly shown the next challenge in the set. Im-
mediately after completing the 10 challenges for a vari-
ation, users were asked to complete a paper-based ques-
tionnaire collecting their perception and opinion of that
variation. At the end of the session, a brief interview was
conducted to gather any overall comments. Each partici-
pant completed their session one-on-one with the exper-
imenter. A session lasted at most 45 minutes and users
were compensated $15 for their time.
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(a) Forest background

(b) Beach background

Hanging Out

(c) Sky background

Figure 16: Three backgrounds used for the challenges, shown for the Semi-Transparent variant.

6.2 Data Collection

The user interface was instrumented to log each user’s
interactions with the system. For each challenge, the
user’s textual response, the timing information, and the
outcome was recorded. A challenge could result in three
possible outcomes: success, error, or skipped. Question-
naire and interview data was also collected.

6.3 Analysis

Our analysis focused on the effects of five different
captcha variants on outcomes and solving times. We also
analyzed and reviewed questionnaire data representing
participant perceptions of the five variants. We used sev-
eral statistical tests and the within-subjects design of our
study impacted our choice of statistical tests; in each case
the chosen test accounted for the fact that we had multi-
ple data points from each participant. In all of our tests,
we chose p < 0.05 as the threshold for determining sta-
tistical significance.

One-way repeated-measures ANOVAs [25] were used
to evaluate aggregate differences between the means for
success rates and times. When the ANOVA revealed
a significant difference, we used post-hoc Tukey HSD
tests [27] to determine between which pairs the differ-
ences occurred. Here, we were interested only in whether
the four proposed mitigation strategies differed from the
Standard variant, so we report only on these four cases.

Our questionnaires used Likert-scale responses to as-
sess agreement with particular statements (1 - Strongly
Disagree, 10 - Strongly Agree). To compare this ordinal
data, we used the non-parametric Friedman’s Test [27].
When overall significant differences were found, we
used post-hoc Pairwise Wilcoxon tests with Bonferroni
correction to see which of the four proposed variants dif-
fered from the Standard variant.

Outcomes: Participants were presented with 10 chal-
lenges of each variant. Figure 17 shows a stacked bar
graph representing the mean number of success, error,
and skipped outcomes. To be identified as a Success,
the user’s response had to be entirely correct. An Er-
ror occurred when the user’s response did not match the
challenge’s solution. A Skipped outcome occurred when
the participant pressed the “Get A New Challenge” but-

ton and was presented with a different challenge. We
observe differences in the outcomes, with the Standard
variant being most successful and the Semi-Transparent
variant resulting in the most skipped outcomes.

© - m skip
 Eror
o Success.

Number of Challenges

Stand. Ext. Over. Trans. Emrg.

Figure 17: Mean number of success, error, and skipped out-
comes for Standard, Extended, Overlapping, Semi-Transparent
and Emerging variants, respectively.

For the purposes of our statistical tests, errors and
skipped outcomes were grouped since in both cases the
user was unable to solve the challenge. Each participant
was given a score comprising the number of successful
outcomes for each variant (out of 10 challenges).*

A one-way repeated-measure ANOVA showed signif-
icant differences between the five variants (F(4,120) =
29.12,p < 0.001). We used post-hoc Tukey HSD tests
to see whether any of the differences occurred between
the Standard variant and any of the other four variants.
The tests showed a statistically significant difference be-
tween all pairs except for the Standard< Emerging pair.
This means that the Extended, Overlapping, and Semi-
Transparent variants had a significantly lower number
of successes than the Standard variant, while Emerging
variant showed no difference.

Time to Solve: The time to solve was measured as the
time between when the challenge was displayed to when
the response was received. This included the time to type
the answer (correctly or incorrectly), as well as the time it
took the system to receive the reply (since the challenges
were served from our local server, transmission time was
negligible). Times for skipped challenges were not in-
cluded since users made “skip” decisions very quickly
and this may unfairly skew the results towards shorter
mean times. We include challenges that resulted in er-
rors because in these cases participants actively tried to
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Figure 18: Time taken to solve the MBOR captchas.

solve the challenge. The time distributions are depicted
in Figure 18 using boxplots. Notice that the Extended
variant took considerably longer to solve than the others.

We examined the differences in mean times using
a one-way repeated-measure ANOVA. The ANOVA
showed overall significant differences between the five
variants (F(4,120) = 112.95,p < 0.001). Once again,
we compared the Standard variant to the others in
our post-hoc tests. Tukey HSD tests showed no sig-
nificant differences between the Standard<Emerging
or Standard<Overlapping pairs. However, signifi-
cant differences were found for the Standard< Semi-
Transparent and Standard< Extended pairs. This means
that the Semi-Transparent and Extended variants took
significantly longer to solve than the Standard variant,
but the others showed no differences.

Skipped outcomes: The choice of background ap-
pears to have especially impacted the usability of the
Semi-Transparent variant. Participants most frequently
skipped challenges for the Semi-Transparent variant and
found the Forest background especially difficult to use.
Many users would immediately skip any challenge that
appeared with the Forest background because the trans-
parent letters were simply too difficult to see. For the
Semi-Transparent variant, 35% of challenges presented
on the Forest background were skipped, compared 17-
18% of challenges using the other two backgrounds. Par-
ticipants’ verbal and written comments confirm that they
found the Forest background very difficult, with some
users mentioning that they could not even find the letters
as they scrolled over some parts of the image.

Errors: Figure 19 shows the distribution of errors.
It shows that the majority of errors were made on the
middle characters of the challenge. We also examined
the types of errors, and found that most were mistakes
between characters that have similar appearances. The
most commonly confused pairs were: S/5, P/R, E/F, V/N,
C/G, and 7/T. About half of the errors for the Extended
variant were due to confusing pairs of characters, while

the other half involved either missing letters or including
extra ones. For the other variants, nearly all errors were
due to confusing pairs of characters.
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Figure 19: Location of errors within the codewords.

User perception: Immediately after completing the
set of challenges for each variant, participants completed
a Likert-scale questionnaire to collect their opinion and
perception of that variant. For each variant, participants
were asked to rate their agreement with the following
statements:

1. It was easy to accurately solve the challenge
2. The challenges were easy to understand
3. This captcha mechanism was pleasant to use

4. This captcha mechanism is more prone to mistakes
than traditional text-based captchas

Figure 20 shows boxplots representing users’ re-
sponses. Since Q.4 was negatively worded, responses
were inverted for easier comparisons. In all cases, higher
values on the y-axis indicate a more favorable response.

The results show that users clearly preferred the Stan-
dard variant and rated the others considerably lower
on all subjective measures. Friedman’s Tests showed
overall significant differences for each question (p <
0.001). Pairwise Wilcoxon Tests with Bonferroni correc-
tion were used to assess differences between the Stan-
dard variant and each of the other variants. Significant
differences were found between each pair compared.
The only exceptions are that users felt that the Extended
and Emerging variants were no more difficult to under-
stand (Question 2) than the Standard variant. This result
appears to contradict the results observed in Figure 20
and we believe that this is because the Wilcoxon test
compares ranks rather than means or medians.

Comments: Participants had the opportunity to pro-
vide free-form comments about each variant and offer
verbal comments to the experimenter. Samples are in-
cluded in Appendix B. Participants clearly preferred the
Standard variant, and most disliked the Extended variant.
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Figure 20:

Of the remaining schemes, the Emerging variant seemed
most acceptable although it also had its share of negative
reactions (e.g., one subject found it to be hideous).

7 Summary and Concluding Remarks

Our attack inherently leverages the temporal informa-
tion in the moving-image object recognition (MIOR)
captchas, and also exploits the fact that only object
recognition of known objects is needed. Our methods
also rely on a reasonably consistent appearance or slowly
varying appearance over time. That said, they can be
applied to any set of known objects or narrowly de-
fined objects under affine transformations that are known
to work well with detection methods in computer vi-
sion [45]. For the specific case of NuCaptcha, we showed
that not only are there inherent weaknesses in the current
MIOR captcha design, but that several obvious counter-
measures (e.g., extending the length of the codeword)
are not viable attack countermeasures. More importantly,
our work highlights the fact that the choice of underlying
hard problem by NuCaptcha’s designers was misguided;
its particular implementation falls into a solvable sub-
class of computer vision problems.

In the case of emergent captchas, our attacks fail
for two main reasons. First, in each frame there are
not enough visual cues that help distinguish the charac-
ters from the background. Second, the codewords have
no temporally consistent appearance. Combined, these
two facts pose significant challenges to existing com-
puter vision methods, which typically assume reason-
ably consistent appearance and visually distinctive fore-
grounds [52]. Nevertheless, our user study showed that
people had little trouble solving these captchas. This
bodes well for emergent captchas—per today’s attacks.

Looking towards the future, greater robustness would
result if MIOR captchas required automated attacks to
perform classification, categorization of classes with
large inner class variance, or to identify higher level se-
mantics to understand the presented challenge. Consider,
for example, the case where the user is presented with
two objects (a person and a truck) at the same scale, and
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Likert-scale responses: 1 is most negative, 10 is most positive.

asked to identify which one is larger. To succeed, the
automated attack would need to determine the objects
(without prior knowledge of what the objects are of) and
then understand the relationship. Humans can perform
this task because of the inherent priors learned in daily
life, but this feat remains a daunting problem in com-
puter vision. Therefore, this combination seems to of-
fer the right balance and underscores the ideas put forth
by Naor [34] and von Ahn et al. [1]—i.e., it is prudent
to employ hard (and useful) underlying AI problems in
captchas since it leads to a win-win situation: either the
captcha is not broken and there is a way to distinguish
between humans and computers, or it is broken and a
useful problem is solved.
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Notes

'In the case where the foreground characters have varying appear-
ance, we simply use multiple modes.

2Readers can view videos of the Emerging Images concept [31]
at http://graphics.stanford.edu/~niloy/research/
emergence/emergence_image_siga_09.html.

3See the Security Features discussed at http://www.
nucaptcha.com/features/security-features, 2012.
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4One participant opted to view only six challenges in each of the
Extended and Emerging variants. We count the remaining four as skips.
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Abstract

To help users create stronger text-based passwords, many
web sites have deployed password meters that provide
visual feedback on password strength. Although these
meters are in wide use, their effects on the security and
usability of passwords have not been well studied.

We present a 2,931-subject study of password creation
in the presence of 14 password meters. We found that
meters with a variety of visual appearances led users to
create longer passwords. However, significant increases
in resistance to a password-cracking algorithm were only
achieved using meters that scored passwords stringently.
These stringent meters also led participants to include
more digits, symbols, and uppercase letters.

Password meters also affected the act of password cre-
ation. Participants who saw stringent meters spent longer
creating their password and were more likely to change
their password while entering it, yet they were also more
likely to find the password meter annoying. However,
the most stringent meter and those without visual bars
caused participants to place less importance on satisfy-
ing the meter. Participants who saw more lenient meters
tried to fill the meter and were averse to choosing pass-
words a meter deemed “bad” or “poor.” Our findings can
serve as guidelines for administrators seeking to nudge
users towards stronger passwords.

1 Introduction

While the premature obituary of passwords has been
written time and again [22, 25], text passwords remain
ubiquitous [15]. Unfortunately, users often create pass-
words that are memorable but easy to guess [2, 25, 26].
To combat this behavior, system administrators em-
ploy a number of measures, including system-assigned
passwords and stringent password-composition policies.
System-assigned passwords can easily be made difficult
to guess, but users often struggle to remember them [13]

or write them down [28]. Password-composition poli-
cies, sets of requirements that every password on a sys-
tem must meet, can also make passwords more difficult
to guess [6,38]. However, strict policies can lead to user
frustration [29], and users may fulfill requirements in
ways that are simple and predictable [6].

Another measure for encouraging users to create
stronger passwords is the use of password meters. A
password meter is a visual representation of password
strength, often presented as a colored bar on screen.
Password meters employ suggestions to assist users in
creating stronger passwords. Many popular websites,
from Google to Twitter, employ password meters.

Despite their widespread use, password meters have
not been well studied. This paper contributes what we
believe to be the first large-scale study of what effect, if
any, password meters with different scoring algorithms
and visual components, such as color and size, have on
the security and usability of passwords users create.

We begin by surveying password meters in use on pop-
ular websites. Drawing from our observations, we create
a control condition without a meter and 14 conditions
with meters varying in visual features or scoring algo-
rithm. The only policy enforced is that passwords con-
tain at least eight characters. However, the meter nudges
the user toward more complex or longer passwords.

We found that using any of the tested password meters
led users to create passwords that were statistically sig-
nificantly longer than those created without a meter. Me-
ters that scored passwords more stringently led to even
longer passwords than a baseline password meter. These
stringent meters also led participants to include a greater
number of digits, symbols, and uppercase letters.

We also simulated a state-of-the-art password-
cracking algorithm [38] and compared the percentage of
passwords cracked in each condition by adversaries mak-
ing 500 million, 50 billion, and 5 trillion guesses. Pass-
words created without a meter were cracked at a higher
rate than passwords in any of the 14 conditions with me-
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ters, although most differences were not statistically sig-
nificant. Only passwords created in the presence of the
two stringent meters with visual bars were cracked at a
significantly lower rate than those created without a me-
ter. None of the conditions approximating meters we
observed in the wild significantly increased cracking re-
sistance, suggesting that currently deployed meters are
not sufficiently aggressive. However, we also found that
users have expectations about good passwords and can
only be pushed so far before aggressive meters seem to
annoy users rather than improve security.

We next review related work and provide background
in Section 2. We then survey popular websites’ pass-
word meters in Section 3 and present our methodology
in Section 4. Section 5 contains results related to pass-
word composition, cracking, and creation, while Sec-
tion 6 summarizes participants’ attitudes. We discuss
these findings in Section 7 and conclude in Section 8.

2 Related Work

Prior work related to password meters has focused on
password scoring rather than how meters affect the se-
curity and usability of passwords users create. We sum-
marize this prior work on password scoring, and we then
discuss more general work on the visual display of in-
dicators. In addition, we review work analyzing security
and usability tradeoffs in password-composition policies.
Finally, we discuss the “guessability” metric we use to
evaluate password strength.

2.1 Password Meters

Algorithms for estimating password strength have been
the focus of prior work. Sotirakopoulos et al. investi-
gated a password meter that compares the strength of a
user’s password with those of other users [31]. Castelluc-
cia et al. argued that traditional rule-based password me-
ters lack sufficient complexity to guide users to diverse
passwords, and proposed an adaptive Markov algorithm
that considers n-gram probabilities in training data [7].
In contrast, we use simple rule-based algorithms to esti-
mate strength, focusing on how meters affect the usabil-
ity and security of the passwords users create. To our
knowledge, there has been no formal large-scale study of
interface design for password meters.

Many password meters guide users toward, but do not
strictly require, complex passwords. This approach re-
flects the behavioral economics concept of nudging or
soft paternalism [24,34]. By helping users make better
decisions through known behavioral patterns and biases,
corporations, governments, and other entities have in-
duced a range of behavioral changes from investing more
toward retirement to eating more fruit.

2.2 Visual Display of Indicators

While the literature on visual design for password meters
is sparse, there is a large corpus of work in information
design generally. For instance, researchers have studied
progress indicators in online questionnaires, finding that
indicators can improve user experience if the indicator
shows faster progress than a user anticipated. However,
progress that lags behind a user’s own expectations can
cause the user to abandon the task at hand [8].

Much of the past work on small meters has focused on
physical and virtual dashboards [11]. Information design
has also been studied in consumer-choice situations, such
as nutrition labels [19] and over-the-counter drug labels,
focusing on whitespace, font size, and format [40].

2.3 Password-Composition Policies

In this paper, we examine security and usability tradeoffs
related to nudging users with password meters, rather
than imposing strict requirements. Significant work has
been done evaluating tradeoffs for enforced password-
composition policies.

Without intervention, users tend to create simple
passwords [12, 23, 33, 41]. Many organizations use
password-composition policies that force users to select
more complex passwords to increase password strength.
However, users are expected to conform to these poli-
cies in predictable ways, potentially reducing password
strength [6].  Although prior work has shown that
password-composition policies requiring more charac-
ters or more character classes can improve resistance to
automated guessing attacks, many passwords that meet
common policies remain vulnerable [18,26,37,38]. Fur-
thermore, strict policies can frustrate users, inhibit their
productivity, and lead users to write their passwords
down [1,14,16,21,32].

2.4 Measuring Guessability

In this work, we use “guessability,” or resistance to
automated password-cracking attacks, to evaluate the
strength of passwords. Guessability cannot be measured
as a single statistic for a set of passwords; instead, a given
algorithm, with a given set of parameters and training,
will crack some percentage of the passwords after a given
number of guesses. Weir et al. argue that guessability is
a more accurate measure of password strength than the
more commonly used entropy metric [38]. Dell’ Amico
et al. [9], Bonneau [3], and Castelluccia et al. [7] have
also used guessability as a metric. We measure guess-
ability using a guess-number calculator, which computes
how many guesses a given cracking algorithm will re-
quire to crack a specific password without running the
algorithm itself [18].
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Figure 1: A categorized assortment of the 46 unique indicators we found across Alexa’s 100 most visited global sites.

3 Password Meters “In the Wild”

To understand how password meters are currently used,
we examined Alexa’s 100 most visited global sites (col-
lected January 2012). Among these 100 sites, 96 allowed
users to register and create a password. Of these 96, 70
sites (73%) gave feedback on a user’s password based ei-
ther on its length or using a set of heuristics. The remain-
ing 26 sites (27%) provided no feedback. In some cases,
all sites owned by the same company used the same me-
ter; for example, Google used the same meter on all 27 of
its affiliates that we examined. In other cases, the meters
varied; for example, ebay.de used a different mecha-
nism than ebay . com. Removing duplicate indicators and
sites without feedback, there were 46 unique indicators.
Examples of these indicators are shown in Figure 1.

Indicators included bar-like meters that dis-
played strength (23, 50%); checkmark-or-x systems
(19, 41.3%); and text, often in red, indicating invalid
characters and too-short passwords (10, 21.2%). Sites
with bar-like meters used either a progress-bar metaphor
(13, 56.5%) or a segmented-box metaphor (8, 34.8%).
Two sites presented a bar that was always completely
filled but changed color (from red to green or blue)
as password complexity increased. Three other sites
used meters colored with a continuous gradient that was
revealed as users typed. Sites commonly warned about
insecure passwords using the words “weak” and “bad.”

We examined scoring mechanisms both by reading
the Javascript source of the page, when available, and
by testing sample passwords in each meter. Across all

meters, general scoring categories included password
length, the use of numbers, uppercase letters, and spe-
cial characters, and the use of blacklisted words. Most
meters updated dynamically as characters were typed.

Some meters had unique visual characteristics. Twit-
ter’s bar was always green, while the warning text
changed from red to green. Twitter offered phrases such
as “Password could be more secure” and “Password is
Perfect.” The site mail.ru had a three-segment bar with
key-shaped segments, while rakuten.co. jp had a me-
ter with a spring-like animation.

We found some inconsistencies across domains. Both
yahoo.com and yahoo.co. jp used a meter with four
segments; however, the scoring algorithm differed, as
shown in Figure 1. Google used the same meter across
all affiliated sites, yet its meter on blogger . com scored
passwords more stringently.

4 Methodology

We conducted a two-part online study of password-
strength meters, recruiting participants through Ama-
zon’s Mechanical Turk crowdsourcing service (MTurk).
Participants, who were paid 55 cents, needed to indi-
cate that they were at least 18 years old and use a web
browser with JavaScript enabled. Participants were as-
signed round-robin to one of 15 conditions, detailed in
Section 4.2. We asked each participant to imagine that
his or her main email provider had changed its password
requirements, and that he or she needed to create a new
password. We then asked the participant to create a pass-
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word using the interface shown in Figure 2.

Passwords needed to contain at least eight characters,
but there were no other requirements. The participant
was told he or she would be asked to return in a few days
to log in with the password. He or she then completed a
survey about the password-creation experience and was
asked to reenter his or her password at the end.

Two days later, participants received an email through
MTurk inviting them to return for a bonus payment of
70 cents. Participants were asked to log in again with
their password and to take another survey about how they
handled their password.

4.1 Password-Scoring Algorithms

Password-strength meters utilize a scoring function to
judge the strength of a password, displaying this score
through visual elements. We assigned passwords a score
using heuristics including the password’s length and the
character classes it contained. While alternative ap-
proaches to scoring have been proposed, as discussed in
Section 2, judging a password only on heuristics obviates
the need for a large, existing dataset of passwords and
can be implemented quickly in Javascript. These heuris-
tics were based on those we observed in the wild.

In our scoring system, a score of 0 points represented
a blank password field, while a score of 100 points filled
the meter and displayed the text “excellent.” We an-
nounced our only password-composition policy in bold
text to the participant as an “8-character minimum” re-
quirement. However, we designed our scoring algorithm
to assign passwords containing eight lowercase letters a
score of 32, displaying “bad.” To receive a score of 100
in most conditions, participants needed to meet one of
two policies identified as stronger in the literature [6,21],
which we term Basicl6 and ComprehensiveS. Unless
otherwise specified by the condition, passwords were as-
signed the larger of their Basic16 and Comprehensive8
scores. Thus, a password meeting either policy would
fill the meter. Each keystroke resulted in a recalculation
of the score and update of the meter.

The Basicl6 policy specifies that a password contain
at least 16 characters, with no further restrictions. In
our scoring system, the first 8 characters entered each re-
ceived 4 points, while all subsequent characters received
8 points. Thus, passwords such as aaaaaaaaaaaaaaaa,
WdAH5$87T5c#hgfd&, and passwordpassword would all
fill the meter with scores of exactly 100 points.

The second policy, ComprehensiveS, specifies that a
password contain at least eight characters, including an
uppercase letter, a lowercase letter, a digit, and a symbol.
Furthermore, this password must not be in the OpenWall
Mangled Wordlists, which is a cracking dictionary.! In

"http://www.openwall.com/wordlists/

LiveMaiI

Create a password

Account Password

A strong password helps prevent unauthorized access to your email account.

Type new password: [ssssseessssases

8-character minimum; case sensitive

Password strength: Poor. Consider adding a digit or making your password longer.

Retype new password:
—I Make my password expire every 72 days.

Save

Figure 2: An example of the password creation page. The
password meter’s appearance and scoring varied by condition.

our scoring system, 4 points were awarded for each char-
acter in the password, and an additional 17 points were
awarded each for the inclusion of an uppercase charac-
ter, a digit, and a symbol; 17 points were deducted if
the password contained no lowercase letters. A second
unique digit, symbol, or uppercase character would add
an additional 8 points, while a third would add an addi-
tional 4 points. Passing the dictionary check conferred
17 points. Therefore, passwords such as P4$sword,
gT7fas#g, and N!cklebk would fill the meter with a score
of exactly 100. In addition, passwords that were hy-
brids of the two policies, such as a 13-character password
meeting Comprehensive8 except containing no symbols,
could also fill the meter.

4.2 Conditions

Our 15 conditions fall into four main categories. The first
category contains the two conditions to which we com-
pared the others: having no password meter and having
a baseline password meter. Conditions in the next cate-
gory differ from the baseline meter in only one aspect of
visual presentation, but the scoring remains the same. In
contrast, conditions in the third category have the same
visual presentation as the baseline meter, but are scored
differently. Finally, we group together three conditions
that differ in multiple dimensions from the baseline me-
ter. In addition, we collectively refer to half-score, one-
third-score, text-only half-score, and text-only half-score
as the stringent conditions throughout the paper. Each
participant was assigned round-robin to one condition.

4.2.1 Control Conditions

No meter. This condition, our control, uses no visual
feedback mechanism. 26 of the Alexa Top 100 web-
sites provided no feedback on password strength, and
this condition allows us to isolate the effect of the visual
feedback in our other conditions.
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Baseline meter. This condition represents our default
password meter. The score is the higher of the scores de-
rived from comparing the password to the Basic16 and
Comprehensive8 policies, where a password meeting ei-
ther policy fills the bar. The color changes from red to
yellow to green as the score increases. We also provide
a suggestion, such as “Consider adding a digit or making
your password longer.” This condition is a synthesis of
meters we observed in the wild.

4.2.2 Conditions Differing in Appearance

Three-segment. This condition is similar to baseline
meter, except the continuously increasing bar is replaced
with a bar with three distinct segments, similar to meters
from Google and Mediafire.

Green. This condition is similar to baseline meter,
except instead of changing color as the password score
increases, the bar is always green, like Twitter’s meter.

Tiny. This condition is similar to baseline meter, but
with the meter’s size decreased by 50% horizontally and
60% vertically, similar to the size of Google’s meter.

Huge. This condition is similar to baseline meter, but
with the size of the meter increased by 50% horizontally
and 120% vertically.

No suggestions. This condition is similar to baseline
meter, but does not offer suggestions for improvement.

Text-only. This condition contains all of the text of
baseline meter, but has no visual bar graphic.

4.2.3 Conditions Differing in Scoring

Half-score. This condition is similar to baseline me-
ter, except that the password’s strength is displayed as if
it had received half the rating. A password that would fill
the baseline meter meter only fills this condition’s me-
ter half way, allowing us to study nudging the participant
toward a stronger password. A password with 28 charac-
ters, or one with 21 characters that included five different
uppercase letters, five different digits, and five different
symbols, would fill this meter.

One-third-score. This condition is similar to half-
score, except that the password’s strength is displayed
as if it had received one-third the rating. A password that
would fill the baseline meter meter only fills one-third of
this condition’s meter. A password containing 40 char-
acters would fill this meter.

Nudge-16. This condition is similar to baseline me-
ter, except that only the password score for the Basicl6
policy is calculated, allowing us to examine nudging the
user toward a specific password policy.

Nudge-comp8. As with nudge-16, this condition is
similar to baseline meter, except that only the password
score for Comprehensive8 is calculated.

4.2.4 Conditions Differing in Multiple Ways

Text-only half-score. As with text-only, this condition
contains all of the text of baseline meter, yet has no bar.
Furthermore, like half-score, the password’s strength is
displayed as if it had received only half the score.

Bold text-only half-score. This condition mirrors tex-
only half-score, except the text is displayed in bold.

Bunny. In place of a bar, the password score is re-
flected in the speed at which an animated Bugs Bunny
dances. When the score is 0, he stands still. His speed in-
creases with the score; at a score of 100, he dances at 20
frames per second; at a score of 200, he reaches his max-
imum of 50 frames per second. This condition explores
a visual feedback mechanism other than a traditional bar.

4.3 Mechanical Turk

Many researchers have examined using MTurk workers
for human-subjects research and found it to be a conve-
nient source of high-quality data [5, 10,20, 35]. MTurk
enables us to have a high volume of participants cre-
ate passwords, on a web site we control, with better
population diversity than would be available in an on-
campus laboratory environment [5]. MTurk workers are
also more educated, more technical, and younger than
the general population [17].

4.4 Statistical Tests

All statistical tests use a significance level of a = .05.
For each variable, we ran an omnibus test across all con-
ditions. We ran pairwise contrasts comparing each con-
dition to our two control conditions, no meter and base-
line meter. In addition, to investigate hypotheses about
the ways in which conditions varied, we ran planned con-
trasts comparing tiny to huge, nudge-16 to nudge-comp8,
half-score to one-third-score, text-only to text-only half-
score, half-score to text-only half-score, and text-only
half-score to bold text-only half-score. If a pairwise con-
trast is not noted as significant in the results section, it
was not found to be statistically significant. To control
for Type I error, we ran contrasts only where the omnibus
test was significant. Further, we corrected contrasts for
multiple testing, accounting for the previous contrasts.
We applied multiple testing correction to the p-values of
the omnibus tests when multiple tests were run on similar
variables, such as the Likert response variables measur-
ing user attitudes.

We analyzed quantitative data using Kruskal-Wallis
for the omnibus cases and Mann-Whitney U for the pair-
wise cases. These tests, identified in our results as K-W
and MWU, respectively, are analogues of the ANOVA
and 7-tests without the assumption of normality. We ana-
lyze categorical data for equality of proportions with x?
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tests for both the omnibus and pairwise cases. All multi-
ple testing correction used the Holm-Bonferroni method,
indicated as HC throughout the paper.

4.5 Calculating Guess Numbers

We evaluated the strength of passwords created in each
condition using a guess-number calculator (see Sec-
tion 2.4), allowing us to approximate passwords’ resis-
tance to automated cracking. Using a password guess
calculator similar to that used by Kelley et al. [18], we
calculate the guessability of passwords in three different
attack scenarios. This calculator simulates the password-
cracking algorithm devised by Weir et al. [39], which
makes guesses based on the structures, digits, symbols,
and alphabetic strings in its training data. The calculator
was set to only consider guesses with minimum length 8.
For training, we used several “public” datasets, includ-
ing leaked sets of cracked passwords. In Section 7.2, we
discuss ethical issues of using leaked data.

Training data included 40 million passwords from the
OpenWall Mangled Wordlist,> 32 million leaked pass-
words from the website RockYou [36], and about 47,000
passwords leaked from MySpace [27]. We augmented
the training data with all strings harvested from the
Google Web Corpus,? resulting in a dictionary of 14 mil-
lion alphabetic strings.

In the weak attacker scenario, we consider an attacker
with limited computational resources who can make 500
million (5 x 10%) guesses. In the medium attacker sce-
nario, we consider an attacker with greater resources who
can make 50 billion (5 x 10'%) guesses. Finally, in the
strong attacker scenario, we examine what percentage
of passwords would have been guessed within the first
5 trillion (5 x 10'%) guesses. John the Ripper®, a popu-
lar password cracker, can crack 500 million hashed pass-
words in about an hour on a modern desktop machine.
Five trillion guesses would require a botnet of several
hundred machines working for several days.

5 Results

From January to April 2012, 2,931 people completed
the initial task, and 2,016 of these subjects returned
for the second part of the study. We begin our evalua-
tion by comparing characteristics of passwords created in
each condition, including their length and the character
classes used. Next, we simulate a cracking algorithm to
evaluate what proportion of passwords in each condition
would be cracked by adversaries of varying strength. We

’http://wuw.openwall .com/wordlists/

*http://googleresearch.blogspot . com/2006/08/
all-our-n-gram-are-belong-to-you.html

“http://www.openwall .com/john/

then examine the usability of these passwords, followed
by data about the process of password creation. Finally,
we discuss participant demographics and potential inter-
action effects. In Section 6, we provide additional results
on participants’ attitudes and reactions.

5.1 Password Characteristics

The presence of almost any password meter significantly
increased password length. In conditions that scored
passwords stringently, the meter also increased the use of
digits, uppercase letters, and symbols. The length of the
passwords varied significantly across conditions, as did
the number of digits, uppercase characters, and symbols
contained in each password (HC K-W, p<.001). Table 1
displays the characteristics of passwords created.

Length The presence of any password meter ex-
cept text-only resulted in significantly longer passwords.
Passwords created with no meter had a mean length of
10.4, and passwords created in the fext-only condition
had a mean length of 10.9, which was not significantly
different. Passwords created in the thirteen other condi-
tions with meters, with mean length ranging from 11.3
to 14.9 characters, were significantly longer than in no
meter (HC MWU, p<.014).

Furthermore, passwords created in half-score, with
mean length 14.9, and in nudge-16, with mean length
13.0, were significantly longer than those created in
baseline meter, which had mean length 12.0 (HC MWU,
p<.017). On the other hand, passwords created in fex-
only, with mean length 10.9, were significantly shorter
than in baseline meter (HC MWU, p=.015). Although
passwords created in one-third-score had mean length
14.3, they had a high standard deviation (8.1) and did
not differ significantly from baseline meter.

Digits, Uppercase Characters, and Symbols Com-
pared to no meter, passwords in five conditions contained
significantly more digits: half-score, one-third-score,
nudge-comp8, bold text-only half-score, and bunny (HC
MWU, p<.028). In each of these five conditions, pass-
words contained a mean of 3.2 to 3.4 digits, compared to
2.4 digits in no meter. The mean number of digits in all
other conditions ranged from 2.5 to 3.1.

In three of these conditions, half-score, one-third-
score, and bold text-only half-score, passwords on av-
erage contained both more uppercase letters and more
symbols (HC MWU, p<.019) than in no meter. In these
three conditions, the mean number of uppercase charac-
ters ranged from 1.4 to 1.5 and the mean number of sym-
bols ranged from 0.8 to 1.0, whereas passwords created
in no meter contained a mean of 0.8 uppercase charac-
ters and 0.3 symbols. Furthermore, passwords created in

70 21st USENIX Security Symposium

USENIX Association



Table 1: A comparison across conditions of the characteristics of passwords created: the length, number of digits,
number of uppercase letters, and number of symbols. For each metric, we present the mean, the standard deviation
(SD), and the median. Conditions that differ significantly from no meter are indicated with an asterisk (*). Conditions

that differ significantly from baseline meter are indicated with a dagger (F).
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Length * * * * * % + * * * * % % %
Mean 104 120 | 115 11.3 114 116 114 109 | 149 143 130 11.6 | 123 13.0 112
SD 2.9 3.7 3.8 3.6 32 33 35 32 7.3 8.1 3.7 35 6.1 5.5 3.1
Median 9 11 10 10 11 11 11 10 12.5 12 12 11 10.5 11 10
Digits * * kS * *
Mean 2.4 2.7 2.8 2.6 2.7 2.5 3.0 2.5 33 34 32 33 3.1 32 33
SD 2.8 2.6 2.6 2.5 2.3 22 2.8 2.3 3.0 32 3.4 2.8 35 3.0 3.0
Median 2 2 2 2 3 2 2 2 3 3 3 3 2 3 3
Uppercase * * *
Mean 0.8 0.8 0.9 0.8 0.6 1.0 0.7 0.9 1.5 1.4 0.5 0.8 1.2 1.5 0.8
SD 2.0 1.8 1.7 2.0 14 2.3 1.5 1.7 34 32 1.3 1.5 2.2 2.5 1.5
Median 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5
Symbols * * #* *
Mean 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.8 1.0 0.5 0.5 0.6 0.9 0.4
SD 0.7 1.0 0.8 1.1 0.7 0.8 0.8 0.7 1.6 2.7 1.3 1.0 1.2 1.7 0.7
Median 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

text-only half-score had significantly more symbols, 0.6
on average, than no meter, although the mean number of
digits did not differ significantly.

While most participants used digits in their passwords,
uppercase characters and symbols were not as common.
In nearly all conditions, the majority of participants did
not use any uppercase characters in their password de-
spite the meter’s prompts to do so. In addition, fewer
than half of participants in any condition used symbols.

5.2 Password Guessability

We evaluated the strength of passwords based on their
“guessability,” which is the number of guesses an adver-
sary would need to guess that password, as detailed in
Section 2.4. We considered three adversaries: a weak
attacker with limited resources who makes 500 million
(5% 10%) guesses, a medium attacker who makes 50 bil-
lion (5 x 10'%) guesses, and a strong attacker who makes
5 trillion (5 x 10'%) guesses. Table 2 and Figure 3 present
the proportion of passwords cracked by condition.

We found that all conditions with password meters ap-
peared to provide a small advantage against attackers of
all three strengths. In all fourteen conditions with me-
ters, the percentage of passwords cracked by all three
adversaries was always smaller than in no meter, al-
though most of these differences were not statistically

significant. The only substantial increases in resistance
to cracking were provided by the two stringent meters
with visual bars, half-score and one-third-score.

A weak adversary cracked 21.0% of passwords in the
no meter condition, which was significantly larger than
the 5.8% of passwords cracked in the half-score condi-
tion and the 4.7% of passwords cracked in one-third-
score (HC x2, p<0.001). Furthermore, only 7.8% of
passwords were cracked in bunny, which was also signif-
icantly less than in no meter (HC x2, p=0.008). Between
9.5% and 15.3% of passwords were cracked in all other
conditions with meters, none of which were statistically
significantly different than no meter.

In the medium adversary scenario, significantly more
passwords were cracked in the no meter condition than
in the half-score and one-third-score conditions (HC 2,
p<0.017). 35.4% of the passwords in the no meter con-
dition were cracked, compared with 19.5% of passwords
in half-score and 16.8% of passwords in one-third-score.
None of the other conditions differed significantly from
no meter; between 23.7% and 34.4% of passwords were
cracked in these conditions.

The half-score and one-third-score meters were again
significantly better than no meter against a strong adver-
sary. In no meter, 46.7% of passwords were cracked,
compared with 26.3% in half-score and 27.9% in one-
third-score (HC x2, p<0.005). Between 33.7% and
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46.2% of passwords in all other conditions were cracked.

After the completion of the experiment, we ran ad-
ditional conditions to explore how meters consisting of
only a visual bar, without accompanying text, would
compare to text-only conditions and conditions contain-
ing both text and visual features. Since this data was
collected two months after the rest of our data, we do
not include it in our main analyses. However, passwords
created in these conditions performed similarly to equiv-
alent text-only conditions and strictly worse than equiv-
alent conditions containing both a bar and text. For in-
stance, a strong adversary cracked 48.3% of passwords
created with the baseline meter bar without its accom-
panying text and 33.0% of passwords created with the
half-score bar without its accompanying text.

5.3 Password Memorability and Storage

To gauge the memorability of the passwords subjects cre-
ated, we considered the proportion of subjects who re-
turned for the second day of our study, the ability of par-
ticipants to enter their password both minutes after cre-
ation and a few days after creation, and the number of
participants who either reported or were observed stor-
ing or writing down their password.

2,016 of our participants, 68.8%, returned and com-
pleted the second part of the study. The proportion
of participants who returned did not differ significantly
across conditions (2, p=0.241).

Between the 68.8% of participants who returned for
the second part of the study and the 31.2% of partici-
pants who did not, there were no significant differences
in the length of the passwords created, the number of dig-
its their password contained, or the percentage of pass-
words cracked by a medium or strong attacker. However,
the weak attacker cracked a significantly higher percent-
age of passwords created by subjects who did not return
for the second part of the study than passwords created
by participants who did return (HC x2, p<.001). 14.5%
of passwords created by subjects who did not return and
9.5% of passwords created by subjects who did return
were cracked. Participants who returned for the second
part of the study also had more uppercase letters and
more symbols in their passwords (K-W, p<.001). Partic-
ipants who returned had a mean of 1.0 uppercase letters
and 0.6 symbols in their passwords, while those who did
not had a mean of 0.8 uppercase letters and 0.5 symbols.

Participants’ ability to recall their password also did
not differ significantly between conditions, either min-
utes after creating their password (y2, p=0.236) or at
least two days later (752, p=0.250). In each condition,
93% or more of participants were able to enter their pass-
word correctly within three attempts minutes after creat-
ing the password. When they received an email two days

later to return and log in with their password, between
77% and 89% of the subjects in each condition were able
to log in successfully within the first three attempts.

As an additional test of password memorability, we
asked participants if they had written their password
down, either electronically or on paper, or if they had
stored their password in their browser. Furthermore, we
captured keystroke data as they entered their password,
which we examined for evidence of pasting in the pass-
word. If a participant answered affirmatively to either
question or pasted the password into the password field,
he or she was considered as having stored the password.
Overall, 767 participants (38.0% of those who returned)
reported that they had stored or written down their pass-
word. 78 of these 767 participants were also observed
to have pasted in their password. An additional 32 par-
ticipants (1.6%) were observed pasting in their password
even thought they had said they had not stored it.

The proportion of participants storing their passwords
did not differ across conditions ()2, p=0.364). In each
condition, between 33% and 44% of participants were
observed pasting in a password or reported writing down
or storing their password.

5.4 Password Creation Process

Based on analysis of participants’ keystrokes during
password creation, we found that participants behaved
differently in the presence of different password meters.
Password meters seemed to encourage participants to
reach milestones, such as filling the meter or no longer
having a “bad” or “poor” password. The majority of
participants who saw the most stringent meters changed
their mind partway into password creation, erasing what
they had typed and creating a different password. Table 3
presents this numerical data about password creation.

Most participants created a new password for this
study, although some participants reused or modified an
existing password. Between 57% and 71% of subjects
in each condition (63% overall) reported creating an en-
tirely new password, between 15% and 26% (21% over-
all) reported modifying an existing password, between
9% and 19% (14% overall) reported reusing an existing
password, and fewer than 4% (2% overall) used some
other strategy. The proportion of participants reporting
each behavior did not vary significantly across condi-
tions (x2, p=.876).

Participants in nudge-16, bunny, and all four strin-
gent conditions took longer to create their password than
those in no meter (HC x2, p<.001). The mean pass-
word creation time, measured from the first to the last
keystroke in the password box, was 19.9 seconds in
the no meter condition. It was 60.8 seconds for half-
score, 59.8 seconds for one-third-score, 57.1 seconds
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Table 2: A comparison of the percentage of passwords in each condition cracked by weak (5 x 10® guesses), medium
(5 x 10'° guesses), and strong adversaries (5 x 10'? guesses). Each cell contains the percentage of passwords cracked
in that threat model. Conditions that differ significantly from no meter are indicated with an asterisk (*).
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Figure 3: This graph contrasts the percentage of passwords that were cracked in each condition. The x-axis, which is
logarithmically scaled, indicates the number of guesses made by an adversary, as described in Section 2.4. The y-axis
indicates the percentage of passwords in that condition cracked by that particular guess number.

for bold text-only half-score, 38.5 seconds for rext-only
half-score, 33.1 seconds for nudge-16, and 30.4 seconds
for bunny. Compared also to the baseline meter meter,
where mean password creation time was 23.5 seconds,
participants took significantly longer in the half-score,
one-third-score, and bold text-only half-score conditions
(HC yx2, p<.008). The mean time of password creation
ranged from 21.0 to 26.6 seconds in all other conditions.

Password meters encouraged participants both to
avoid passwords that the meter rated “bad” or “poor”” and

to create passwords that filled the meter. Had there been a
password meter, 24.1% of passwords created in no meter
would have scored “bad” or “poor,” which was signifi-
cantly higher than the 12.0% or fewer of passwords in all
non-stringent conditions other than no suggestions and
nudge-16 rated “bad” or “poor” (HC xz, p<0.035). Had
no meter contained a password meter, 25.1% of pass-
words created would have filled the meter. A larger pro-
portion of passwords in all non-stringent conditions other
than no suggestions and nudge-16 filled the meter (HC
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Table 3: A comparison across conditions of password creation: the percentage of participants who completely filled
the password meter or equivalently scored “excellent” in text-only conditions, the percentage of participants whose
password received a score of “bad” or “poor”, the time of password creation (first to last keystroke), the number of
deletions (characters deleted after being entered) in the password creation process, the percentage of participants who
changed their password (initially entering a valid password containing at least 8 characters before completely deleting
it and entering a different password), and the edit distance between the initial password entered and the final password
saved, normalized by the length of the final password. Conditions differing significantly from no meter are indicated
with an asterisk (*), while those differing significantly from baseline meter are marked with a dagger (7).
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xz, p<0.006). In each of these conditions, 42.5% or
more of the passwords filled the meter. While the propor-
tion of passwords in nudge- 16 and the four stringent con-
ditions reaching these thresholds was significantly lower
than baseline meter, the proportions would have been
higher than baseline meter were the baseline meter scor-
ing algorithm used in those conditions.

During the password creation process, participants in
all four stringent conditions, as well as in nudge-16,
made more changes to their password than in no meter
or baseline meter. We considered the number of dele-
tions a participant made, which we defined as the num-
ber of characters that were inserted into the password and
then later deleted. In the four stringent conditions and in
nudge-16, the mean number of deletions by each partici-
pant ranged from 12.1 to 23.8 characters. In contrast, sig-
nificantly fewer deletions were made in no meter, with a
mean of 5.3 deletions, and baseline meter, with a mean
of 6.2 deletions (HC MWU, p<0.001). The bunny con-
dition, with a mean of 10.7, also had significantly more
deletions than no meter (HC MWU, p=0.004).

We further analyzed the proportion of participants
who changed their password, finding significantly more
changes occurring in the stringent conditions, as well
as in nudge-16 and bunny. Some participants entered a
password containing eight or more characters, meeting
the stated requirements, and then completely erased the
password creation box to start over. We define the ini-
tial password to be the longest such password containing
eight or more characters that a participant created before
starting over. Similarly, we define the final password to
be the password the participant eventually saved. We
considered participants to have changed their password
if they created an initial password, completely erased the
password field, and saved a final password that differed
by one edit or more from their initial password.

More than half of the participants in half-score, one-
third-score, and bold text-only half-score changed their
password during creation. Similarly, between 34.9% and
40.3% of nudge-16, text-only half-score, and bunny par-
ticipants changed their password. The proportion of par-
ticipants in these six conditions who changed their pass-
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word was greater than the 14.4% of no meter participants
and 18.7% of baseline meter participants who did so (HC
xz, p<.010). Across all conditions, only 7.7% of final
passwords consisted of the initial password with addi-
tional characters added to the end; in a particular condi-
tion, this percentage never exceeded 16%.

These changes in the password participants were cre-
ating resulted in final passwords that differed consider-
ably from the initial password. We assigned an edit dis-
tance of 0 to all participants who did not change their
password. For all other participants, we computed the
Levenshtein distance between the initial and final pass-
word, normalized by the length of the final password.
The mean normalized edit distance between initial and
final passwords ranged from 0.27 to 0.45 in the six afore-
mentioned conditions, significantly greater than no me-
ter, with a mean of 0.10, and baseline meter, with a mean
of 0.09 (HC MWU, p<.003).

We also compared the guessability of the initial and
final passwords for participants whose initial password,
final password, or both were guessed by the strong ad-
versary. 86.1% of the 43 such changes in half-score re-
sulted in a password that would take longer to guess, as
did 83.8% of 37 such changes in text-only half-score. In
contrast, 50% of 18 such changes in baseline meter and
between 56.7% and 76.7% such changes in all other con-
ditions resulted in passwords that would take longer to
guess. However, these differences were not statistically
significant.

5.5 Participant Demographics

Participants ranged in age from 18 to 74 years old, and
63% percent reported being male and 37% female.> 40%
percent reported majoring in or having a degree or job
in computer science, computer engineering, information
technology, or a related field; 55% said they did not. Par-
ticipants lived in 96 different countries, with most from
India (42%) and the United States (32%). Because many
of our password meters used a color scheme that includes
red and green, we asked about color-blindness; 3% of
participants reported being red-green color-blind, while
92% said they were not, consistent with the general pop-
ulation [30].

The number of subjects in each condition ranged from
184 to 202, since conditions were not reassigned if a par-
ticipant did not complete the study. There were no statis-
tically significant differences in the distribution of partic-
ipants’ gender, age, technology background, or country
of residence across experimental conditions.

However, participants who lived in different countries
created different types of passwords. We separated par-

SWe offered the option not to answer demographic questions; when
percentages sum to less than 100, non-answers make up the remainder.

ticipants into three groups based on location: United
States, India, and “the rest of the world.” Indian subjects’
passwords had mean length 12.2, U.S. subjects’ pass-
words had mean length 11.9, and all other subjects’ pass-
words had mean length 12.1 (HC K-W, p=0.002). Fur-
thermore, Indian subjects’ passwords had a mean of 0.9
uppercase letters, and both U.S. subjects’ and all other
subjects’ passwords had a mean of 1.0 uppercase letters
(HC K-W, p<0.001). While the percentage of passwords
cracked by a weak or medium attacker did not differ
significantly between the three groups, a lower percent-
age of the passwords created by Indian participants than
those created by American participants was cracked by a
strong adversary (HC yx2, p=.032). 42.3% of passwords
created by subjects from the U.S., 35.5% of passwords
created by subjects from India, and 38.8% of passwords
created by subjects from neither country were cracked
by a strong adversary. However, the guessing algorithm
was trained on sets of leaked passwords from sites based
in the U.S., which may have biased its guesses.

6 Participants’ Attitudes and Perceptions

We asked participants to rate their agreement on a Likert
scale with fourteen statements about the password cre-
ation process, such as whether it was fun or annoying,
as well as their beliefs about the password meter they
saw. We also asked participants to respond to an open-
ended prompt about how the password meter did or did
not help. We begin by reporting participants’ survey
responses, which reveal annoyance among participants
in the stringent conditions. The one-third-score condi-
tion and text-only stringent conditions also led partici-
pants to believe the meter gave an incorrect score and to
place less importance on the meter’s rating. The distri-
bution of responses to select survey questions is shown
in Figure 4. We then present participants’ open-ended
responses, which illuminate strategies for receiving high
scores from the meter.

6.1 Attitudes Toward Password Meters

In a survey immediately following password creation, a
higher percentage of participants in the stringent condi-
tions found password creation to be annoying or difficult
than those in baseline meter. A larger proportion of sub-
jects in the four stringent conditions than in either the
no meter or baseline meter conditions agreed that cre-
ating a password in this study was annoying (HC yx2,
p<.022). Similarly, a higher percentage of subjects in the
half-score and bold text-only half-score found creating a
password difficult than in either the no meter or baseline
meter conditions (HC xz, p<.012). Creating a password
was also considered difficult by a higher percentage of
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subjects in one-third-score and text-only half-score than
in baseline meter (HC y?, p<.003), although these con-
ditions did not differ significantly from no meter.

Participants in the stringent conditions also found the
password meter itself to be annoying at a higher rate. A
higher percentage of subjects in all four stringent con-
ditions than in baseline meter agreed that the password-
strength meter was annoying (HC x2, p<.007). Between
27% and 40% of participants in the four stringent condi-
tions, compared with 13% of baseline meter participants,
found the meter annoying.

Participants in the two stringent conditions without a
visual bar felt that they did not understand how the me-
ter rated their password. 38% of text-only half-score
and 39% of bold text-only half-score participants agreed
with the statement, “I do not understand how the pass-
word strength meter rates my password,” which was sig-
nificantly greater than the 22% of participants in base-
line meter who felt similarly (HC xz, p<.015). 32% of
half-score participants and 34% of one-third-score par-
ticipants also agreed, although these conditions were not
statistically significantly different than baseline meter.

The one-third-score condition and both text-only strin-
gent conditions led participants to place less importance
on the meter. A smaller proportion of one-third-score,
text-only half-score, and bold text-only half-score par-
ticipants than baseline meter subjects agreed, “It’s im-
portant to me that the password-strength meter gives
my password a high score” (HC x2, p<.021). 72% of
baseline meter participants, yet only between 49% and
56% of participants in those three conditions, agreed. In
all other conditions, between 64% and 78% of partici-
pants agreed. Among these conditions was half-score,
in which 68% of participants agreed, significantly more
than in one-third-score (HC x?, p=.005).

More participants in those same three conditions felt
the meter’s score was incorrect. 42-47% of one-third-
score, text-only half-score, and bold text-only half-score
participants felt the meter gave their password an incor-
rect score, significantly more than the 21% of baseline
meter participants who felt similarly (HC 2, p<.001).
Between 12% and 33% of participants in all other condi-
tions, including half-score, agreed; these conditions did
not differ significantly from baseline meter.

6.2 Participant Motivations

Participants’ open-ended responses to the prompt,
“Please explain how the password strength meter helped
you create a better password, or explain why it was
not helpful,” allowed some participants to explain their
thought process in reaction to the meter, while others dis-
cussed their impressions of what makes a good password.

6.2.1 Reactions to the Password Meter

Some participants noted that they changed their behavior
in response to the meter, most commonly adding a differ-
ent character class to the end of the password. One par-
ticipant said the meter “motivated [him] to use symbols,”
while another “just started adding numbers and letters to
the end of it until the high score was reached.” Partic-
ipants also said that the meter encouraged or reminded
them to use a more secure password. One representative
participant explained, “It kept me from being lazy when
creating my password. [I] probably would not have cap-
italized any letters if not for the meter.”

Other participants chose a password before seeing the
meter, yet expressed comfort in receiving validation. For
instance, one representative participant noted, “The pass-
word I ultimately used was decided on before hand.
However, whilst I was typing and I saw the strength of
my password increase and in turn felt reassured.”

However, a substantial minority of participants ex-
plained that they ignore password meters, often because
they believe these meters discourage passwords they can
remember. One representative participant said, “No mat-
ter what the meter says, I will just use the password I
chose because it’s the password I can remember. I do
not want to get a high score for the meter and in the end
have to lose or change my password.” Some participants
expressed frustration with meters for not understanding
this behavior. For instance, one participant explained, “I
have certain passwords that I use because I can remem-
ber them easily. I hate when the meter says my password
is not good enough- it’s good enough for me!”

Participants also reported embarrassment at poor
scores, fear of the consequences of having a weak pass-
word, or simply a desire to succeed at all tasks. One
participant who exemplifies the final approach said, “I
wanted to make my password better than just ‘fair,” so |
began to add more numbers until the password-strength
meter displayed that my password was ‘good.” I wanted
to create a strong password because I'm a highly com-
petitive perfectionist who enjoys positive feedback.” In
contrast, another participant stated, “Seeing a password
strength meter telling me my password is weak is scary.”

6.2.2 Impressions of Password Strength

Participants noted impressions of password strength that
were often based on past experiences. However, the
stringent conditions seemed to violate their expectations.

Most commonly, subjects identified a password con-
taining different character classes as strong. One repre-
sentative participant said, “I am pretty familiar with pass-
word strength meters, so I knew that creating a password
with at least 1 number/symbol and a mixture of upper
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Figure 4: These charts depict participants’ agreement or disagreement with the statement above each chart. Each
color represents the proportion of participants in that condition who expressed a particular level of agreement of
disagreement with the statement. Conditions in which the proportion of participants agreeing with a statement differed
significantly from no meter are indicated with an asterisk (*), while those that differed significantly from baseline
meter are marked with a dagger (). Participants in no meter did not respond to questions about password meters.

and lower case letters would be considered strong.” Par-
ticipants also had expectations for the detailed algorithm
with which passwords were scored, as exemplified by a
participant who thought the meter “includes only English
words as predictable; I could have used the Croatian for
‘password123’ if I wanted.”

The stringent conditions elicited complaints from par-
ticipants who disagreed with the meter. For example, one
participant was unsure how to receive a good score, say-
ing, “No matter what I typed, i.e. how long or what char-
acters, it still told me it was poor or fair.”” Another partici-
pant lamented, “Nothing was good enough for it!” Some
participants questioned the veracity of the stringent me-
ters. For instance, a one-third-score participant said, “I
have numbers, upper/lower case, and several symbols.
It’s 13 characters long. It still said it was poor. No way
that it’s poor.” Other participants reused passwords that
had received high scores from meters in the wild, not-
ing surprise at the stringent meters’ low scores. Some
participants became frustrated, including one who said
the one-third-score meter “was extremely annoying and
made me want to punch my computer.”

The bunny received mixed feedback from participants.
Some respondents thought that it sufficed as a feedback
mechanism for passwords. For instance, one subject
said, “I think it was just as helpful as any other method
I have seen for judging a password’s strength...I do think
the dancing bunny is much more light-hearted and fun.”
However, other participants found the more traditional

bar to be more appropriate, including one who said bunny
“was annoying, I am not five [years old].”

6.2.3 Goals for the Password Meter

Participants stated two primary goals they adopted while
using the password meter. Some participants aimed to
fill the bar, while others hoped simply to reach a point
the meter considered not to be poor. Those participants
who aimed to fill the bar noted that they continued to
modify their password until the bar was full, citing as
motivation the validation of having completed their goal
or their belief that a full bar indicated high security.

Participants employing the latter strategy increased the
complexity of their password until the text “poor” disap-
peared. One participant noted, “It gave me a fair score,
so I went ahead with the password, but if it would have
given me a low score I would not have used this pass-
word.” A number of participants noted that they didn’t
want to receive a poor rating. One representative partic-
ipant said, “I didn’t want to have poor strength, while I
didn’t feel I needed something crazy.”

Some participants also identified the bar’s color as a
factor in determining when a password was good enough.
Some participants hoped to reach a green color, while
others simply wanted the display not to be red. One par-
ticipant aiming towards a green color said, “I already
chose a fairly long password, but I changed a letter in
it to an uppercase one to make it turn green.” Another
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participant expressed, “I knew that I didn’t want to be in
the red, but being in the yellow I thought was ok.”

7 Discussion

We discuss our major findings relating to the design of
effective password meters. We also address our study’s
ethical considerations, limitations, and future work.

7.1 Effective Password Meters

At a high level, we found that users do change their be-
havior in the presence of a password-strength meter. See-
ing a password meter, even one consisting of a dancing
bunny, led users to create passwords that were longer.
Although the differences were generally not statistically
significant, passwords created in all 14 conditions with
password meters were cracked at a lower rate by adver-
sarial models of different strengths.

However, the most substantial changes in user behav-
ior were elicited by stringent meters. These meters led
users to add additional character classes and make their
password longer, leading to significantly increased resis-
tance to a guessing attack. Furthermore, more users who
saw stringent meters changed the password they were
creating, erasing a valid password they had typed and
replacing it with one that was usually harder to crack.

Unfortunately, the scoring systems of meters we ob-
served in the wild were most similar to our non-stringent
meters. This result suggests that meters currently in use
on popular websites are not aggressive enough in encour-
aging users to create strong passwords. However, if all
meters a user encountered were stringent, he or she might
habituate to receiving low scores and ignore the meter,
negating any potential security benefits.

There seems to be a limit to the stringency that a
user will tolerate. In particular, the one-third-score me-
ter seemed to push users too hard; one-third-score par-
ticipants found the meter important at a lower rate and
thought the meter to be incorrect at a higher rate, yet their
passwords were comparable in complexity and cracking-
resistance to those made by half-score participants. Were
meters too stringent, users might just give up.

Tweaks to the password meter’s visual display did
not lead to significant differences in password compo-
sition or user sentiment. Whether the meter was tiny,
monochromatic, or a dancing bunny did not seem to mat-
ter. However, an important factor seemed to be the com-
bination of text and a visual indicator, rather than only
having text or only having a visual bar. Conditions con-
taining text without visual indicators, run as part of our
experiment, and conditions containing a visual bar with-
out text, run subsequently to the experiment we focus on

here, were cracked at a higher rate and led to less favor-
able user sentiment than conditions containing a combi-
nation of text and a visual indicator.

In the presence of password-strength meters, partici-
pants changed the way they created a password. For in-
stance, the majority of participants in the stringent con-
ditions changed their password during creation. Meters
seemed to encourage participants to create a password
that filled the meter. If that goal seemed impossible, par-
ticipants seemed content to avoid passwords that were
rated “bad” or “poor.” In essence, the password me-
ter functions as a progress meter, and participants’ be-
havior echoed prior results on the effects progress me-
ters had on survey completion [8]. Meters whose esti-
mates of password strength mirrored participants’ expec-
tations seemed to encourage the creation of secure pass-
words, whereas very stringent meters whose scores di-
verged from expectations led to less favorable user senti-
ment and an increased likelihood that a participant would
abandon the task of creating a strong password.

We also found many users to have beliefs regarding
how to compose a strong password, such as including
different character classes. Because users’ understand-
ing of password strength appears at least partially based
on experience with real-world password-strength me-
ters and password-composition policies, our results sug-
gest that wide-scale deployment of more stringent meters
may train users to create stronger passwords routinely.

7.2 Ethical Considerations

We calculated our guessability results by training a
guess-number calculator on sets of passwords that are
publicly and widely available, but that were originally
gathered through illegal cracking and phishing attacks. It
can be argued that data acquired illegally should not be
used at all by researchers, and so we want to address the
ethical implications of our work. We use the passwords
alone, excluding usernames and email addresses. We
neither further propagate the data, nor does our work call
significantly greater attention to the data sets, which have
been used in several scientific studies [4,9, 18, 38, 39].
As a result, we believe our work causes no additional
harm to the victims, while offering potential benefits to
researchers and system administrators.

7.3 Limitations

One potential limitation of our study is its ecological va-
lidity. Subjects created passwords for an online study,
and they were not actually protecting anything valuable
with those passwords. Furthermore, one of the primary
motivations for part of the MTurk population is financial
compensation [17], which differs from real-world moti-
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vations for password creation. Outside of a study, users
would create passwords on web pages with the logos and
insignia of companies they might trust, perhaps making
them more likely to heed a password meter’s suggestions.
On the other hand, subjects who realize they are partic-
ipating in a password study may be more likely to think
carefully about their passwords and pay closer attention
to the password meter than they otherwise would. We did
ask participants to imagine that they were creating pass-
words for their real email accounts, which prior work has
shown to result in stronger passwords [21]. Because our
results are based on comparing passwords between con-
ditions, we believe our findings about how meters com-
pare to one another can be applied outside our study.
Our study used a password-cracking algorithm devel-
oped by Weir et al. [39] in a guess-number calculator im-
plemented by Kelley et al. [18] to determine a password’s
guessability. We did not experiment with a wide vari-
ety of cracking algorithms since prior work [18, 38, 42]
has found that this algorithm outperformed alternatives
including John the Ripper. Nevertheless, the relative re-
sistance to cracking of the passwords we collected may
differ depending on the choice of cracking algorithm.
Furthermore, the data we used to train our cracking al-
gorithm was not optimized to crack passwords of partic-
ular provenance. For instance, passwords created by par-
ticipants from India were the most difficult to crack. The
data with which we trained our guessing algorithm was
not optimized for participants creating passwords in lan-
guages other than English, which may have led to fewer
of these passwords being cracked; prior work by Kelley
et al. [18] found that the training set has a substantial ef-
fect on the success of the guessing algorithm we used.

7.4 Future Work

Further research in password-strength meters may in-
volve continued examination of the structure and com-
position of passwords created with meters. The presence
of a meter caused changes in users’ behavior, with over
50% of participants in three of the four stringent meter
conditions erasing a valid 8-character password they had
already entered and entering a new, different password.
The strategies users employed both initially and after this
shift deserve further investigation, both to suggest direc-
tions for user feedback and to uncover patterns that can
improve techniques for cracking passwords.

In addition, we have certainly not exhausted the space
of possible password-strength meters. Although we have
found that the score conveyed to the user is a more im-
portant factor than the visual display, it is possible that
either subtle or substantial variations to the scoring al-
gorithm (e.g., representing a password’s likelihood [7])
or to the textual feedback provided to users may increase

the usability and security of the resulting passwords. Fur-
thermore, there seems to be a limit to how stringent a
meter can be. Alternate scoring algorithms, improved
text feedback, and the degree of stringency that leads to
the best tradeoff between usability and security for pass-
words thus appear to be fertile ground for future work.

8 Conclusion

We have conducted the first large-scale study of
password-strength meters, finding that meters did affect
user behavior and security. Meters led users to create
longer passwords. However, unless the meter scored
passwords stringently, the resulting passwords were only
marginally more resistant to password cracking attacks.

Meters that rated passwords stringently led users to
make significantly longer passwords that included more
digits, symbols, and uppercase letters. These passwords
were not observed to be less memorable or usable, yet
they were cracked at a lower rate by simulated adver-
saries making 500 million, 50 billion, and 5 trillion
guesses. The most stringent meter annoyed users, yet did
not provide security benefits beyond those provided by
slightly less stringent meters. The combination of a vi-
sual indicator and text outperformed either in isolation.
However, the visual indicator’s appearance did not ap-
pear to have a substantial impact.

Despite the added strength that these more stringent
meters convey, we observed many more lenient meters
deployed in practice. Our findings suggest that, so long
as they are not overly onerous, employing more rigorous
meters would increase security.
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Abstract

We provide a number of practical techniques and
algorithms for exploiting randomness vulnerabilities
in PHP applications.We focus on the predictability of
password reset tokens and demonstrate how an attacker
can take over user accounts in a web application via
predicting or algorithmically derandomizing the PHP
core randomness generators. While our techniques are
designed for the PHP language, the principles behind
our techniques and our algorithms are independent of
PHP and can readily apply to any system that utilizes
weak randomness generators or low entropy sources.
Our results include: algorithms that reduce the entropy
of time variables, identifying and exploiting vulnera-
bilities of the PHP system that enable the recovery or
reconstruction of PRNG seeds, an experimental analy-
sis of the Hastad-Shamir framework for breaking trun-
cated linear variables, an optimized online Gaussian
solver for large sparse linear systems, and an algorithm
for recovering the state of the Mersenne twister gen-
erator from any level of truncation. We demonstrate
the gravity of our attacks via a number of case studies.
Specifically, we show that a number of current widely
used web applications can be broken using our tech-
niques including Mediawiki, Joomla, Gallery, osCom-
merce and others.

1 Introduction

Modern web applications employ a number of ways
for generating randomness, a feature which is critical
for their security. From session identifiers and pass-
word reset tokens, to random filenames and password
salts, almost every web application is relying on the
unpredictability of these values for ensuring secure op-
eration. However, usually programmers fail to under-
stand the importance of using cryptographically secure
pseudorandom number generators (PRNG) something
that opens the potential for attacks. Even worse, the
same trend holds for whole programming languages;
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& Computer Science and Engineering,
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PHP for example lacks a built-in cryptographically se-
cure PRNG in its core and until recently, version 5.3, it
tottaly lacked a cryptographically secure randomness
generation function.

This left PHP programmers with two options: They
will either implement their own PRNG from scratch
or they will employ whatever functions are offered by
the API in a “homebrew” and ad-hoc fashion. In ad-
dition, backwards compatibility and other issues (cf.
section 2), often push the developers away even from
the newly added randomness functions, making their
use very limited. As we will demonstrate and heavily
exploit in this work, this approach does not produce
secure web applications.

Observe that using a low entropy source or a crypto-
graphically weak PRNG to produce randomness does
not necessarily imply that an attack is feasible against
a system. Indeed, so far there have been a very limited
number of published attacks based on the insecure us-
age of PRNG functions in PHP, while popular exploit
databases' contain nearly zero exploits for such vul-
nerabilities (and this may partially explain the delay in
the PHP community adopting secure randomness gen-
eration functions). Showing that such attacks are in
fact very practical is the objective of our work.

In this paper we develop generic techniques and al-
gorithms to exploit randomness vulnerabilities in PHP
applications. We describe implementation issues that
allow one to either predict or completely recover the
initial seed of the PRNGs used in most web applica-
tions. We also give algorithms for recovering the in-
ternal state of the PRNGs used by the PHP system, in-
cluding the Mersenne twister generator and the glibc
LFSR based generator, even when their output is trun-
cated. These algorithms could be used in order to
attack hardened PHP installations even when strong
seeding is employed, as it is done by the Suhosin ex-
tension for PHP and they may be of independent inter-
est.

We also conducted an extensive audit of several pop-
ular PHP applications. We focused on the security
of password reset implementations. Using our attack

le.g. http://www.exploit-db.com

USENIX Association

21st USENIX Security Symposium 81



framework we were able to mount attacks that take
over arbitrary user accounts with practical complex-
ity. A number of widely used PHP applications are
affected (see Figure 7), while we believe that the im-
pact is even larger in less known applications.

Our results suggest that randomness attacks should
be considered practical for PHP applications and ex-
isting systems should be audited for these vulnerabili-
ties. Weak randomness is a grave vulnerability in any
secure system as it was also recently demonstrated in
the widely publicized discovery of common primes in
RSA public-keys by Lenstra et al. [14]. We finally
stress that our techniques apply in any setting beyond
PHP, whenever the same PRNG functions are used and
the attack vector relies on predicting a system defined
random object.

This is only an extended abstract, a full version can
be found in [1].

1.1 Attack model

In Figure 1 we present our general attack template. An
attacker is trying to predict the password reset token in
order to gain another user’s privileges (say an admin-
istrator’s). Each time the attacker makes a request to
the web server, his request is handled by a web appli-
cation instance, usually represented by a specific op-
erating system process, which contains some process
specific state. The web application uses a number of
application objects with values depending on its in-
ternal state, with some of these objects leaking to the
attacker through the web server responses. Examples
of such objects are session identifiers and outputs of
PRNG functions. Although our focus is in password
reset functions, the principles that we use and the tech-
niques that we develop can be readily applied in other
contexts when the application relies on the generation
of random values for security applications. Examples
of such applications are CAPTCHA’s and the produc-
tion of random filenames.

Attack complexity. Since we present explicit practi-
cal attacks, we define next the complexity under which
an attack should be consider practical. There are two
measure of complexity of interest. The first is the time
complexity and the second is the query or communi-
cation complexity. For some of our attacks the main
compuational operation is the calculation of an MD5
hash. With current GPU technologies an attacker can
perform up to 23° MDS5 calculations per second with
a $250 GPU, while with an additional $500 can reach
up to 232 calculations [9]. These figures suggest that
attacks that require up to 2*° MD5 calculations can
be easilty mounted. In terms of communication com-
plexity, most of our attacks have a query complexity
of a few thousand requests at most, while some have
as little as a few tens of requests. Our most commu-
nication intensive attacks (section 5) require less than

35K(~ 2'%) requests. Sample benchmarks that we per-
formed in various applications and server installations
show that on average one can perform up to 222 re-
quests in the course of a day.

2 PHP System

We will now describe functionalities of the PHP sys-
tem that are relevant to our attacks. We first describe
the different modes in which PHP might be running,
and then we will do a description of the randomness
generation functions in PHP. We focus our analysis in
the Apache web server, the most popular web server at
the time of this writing, however our attacks are easily
ported to any webserver that meets the configuration
requirements that we describe for each attack.

2.1 Proccess management

There are different ways in which a PHP script is ex-
ecuted. These ways affect its internal states, and thus
the state of its PRNGs. We will focus on the case when
PHP is running as an Apache module, which is the de-
fault installation in most Linux distributions and is also
very popular in Windows installations.

mod_php: Under this installation the Apache web
server is responsible for the process management.
When the server is started a number of child proccesses
are created and each time the number of occupied pro-
cesses passes a certain threshold a new process is cre-
ated. Conversely, if the idle proccesses are too many,
some processes are killed. One can specify a maxi-
mum number of requests for each process although this
is not enabled by default. Under this setting each PHP
script runs in the context of one of the child processes,
so its state is preserved under multiple connections un-
less the process is killed by the web server process
manager. The configuration is similar in the case the
web server uses threads instead of processes.

Keep-Alive requests. The HTTP protocol offers a
request header, called Keep-Alive. When this header
is set in an HTTP request, the web server is instructed
to keep the connection alive after the request is served.
Under mod_php installations this means that any sub-
sequent request will be handled from the same process.
This is a very important fact, that we will use in our
attacks. However in order to avoid having a process
hang from one connection for infinite time, most web
servers specify an upper bound on the number of con-
sequent keep-alive requests. The default value for this
bound in the Apache web server is 100.

2.2 Randomness Generation

In order to satisfy the need for generating randomness
in a web application, PHP offers a number of different
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Figure 1: Attack template.

randomness functions. We briefly describe each func-
tion below.

— php_combined lcg()/lcg value(): the
php_combined_lcg() function is used internally
by the PHP system, while lcg value() is its
public interface. This function is used in order to
create sessions, as well as in the uniqid function
described below to add extra entropy. It uses two
linear congruential generators (LCGs) which it
combines in order to get better quality numbers.
The output of this function is 64 bits.

— uniqid(prefix, extra_entropy): This
function returns a string concatenation of the
seconds and microseconds of the server time con-
verted in hexadecimal. When given an additional
argument it will prefix the output string with the
prefix given. If the second argument is set to true,
the function will suffix the output string with an
output from the php_combined_lcg() function.
This makes the total output to have length up to
15 bytes without the prefix.

— microtime(), time(): The function
microtime() returns a string concatenation
of the current microseconds divided by 10° with
the seconds obtained from the server clock. The
time () function returns the number of seconds
since Unix Epoch.

— mt_srand(seed)/mt_rand(min, max):
mt_rand is the interface for the Mersenne
Twister (MT) generator [15] in the PHP system.
In order to be compatible with the 31 bit output of
rand (), the LSB of the MT function is discarded.
The function takes two optional arguments which
map the 31 bit number to the [min,max| range.
The mt_srand () function is used to seed the MT
generator with the 32 bit value seed; if no seed
is provided then the seed is provided by the PHP
system.

— srand(seed)/rand(min, max): rand is the in-
terface function of the PHP system to the rand ()
function provided by libc. In unix, rand() ad-

ditive feedback generator (resembling a Linear
Feedback Shift Register (LFSR)), while in Win-
dows it is an LCG. The numbers generated by
rand () are in the range [0,23' — 1] but like before
the two optional arguments give the ability to map
the random number to the range [min,max]. Like
before the srand () function seeds the generator
similarly to the mt __srand () function.

— openssl_random _pseudo_bytes(length,
strong): This function is the only function
available in order to obtain cryptographically
secure random bytes. It was introduced in version
5.3 of PHP and its availability depends on the
availability of the openssl library in the system.
In addition, until version 5.3.4 of PHP this
function had performance problems [2] running
in Windows operating systems. The strong
parameter, if provided, is set to true if the
function returned cryptographically strong bytes
and false otherwise. For these reasons, and
for backward compatibility, its use is still very
limited in PHP applications.

In addition the application can utilize an operating sys-

tem PRNG (such as /dev/urandom). However, this

does not produce portable code since /dev/urandom
is unavailable in Windows OS.

3 The entropy of time measurements

Although ill-advised (e.g., [5]) many web applica-
tions use time measurements as an entropy source.
In PHP, time is accessed through the time() and
microtime () functions. Consider the following prob-
lem. At some point a script executing a request made
by the attacker makes a time measurement and use the
results to, say, generate a password reset token. The
attacker’s goal it to predict the output of the measure-
ment made by the PHP script. The time () function
has no entropy at all from an attacker point of view,
since the server reveals its time in the HTTP response
header as dictated by the HTTP protocol. On the other
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hand, microtime ranges from 0 to 10° giving a max-
imum entropy of about 20 bits. We develop two dis-
tinct attacks to reduce the entropy of microtime()
that have different advantages and mostly target two
different scenarios. The first one, Adversial Time Syn-
chronization, aims to predict the output of a specific
time measurement when there is no access to other
such measurements. The second, Request Twins, ex-
ploits the fact that the script may enable the attacker to
generate a correlated leak to the target measurement.

Adversarial Time Synchronization (ATS). As we
mentioned above, in each HTTP response the web
server includes a header containing the full date of the
server including hour, minutes and seconds. The basic
observation is that although we get no leak regarding
the microseconds from the HTTP date header we know
that when a second changes the microseconds are ze-
roed. We use this observation to narrow down their
value.

The algorithm proceeds as follows: We connect to
the web server and issue pairs of HTTP requests R1
and R2 in corresponding times 7'1 and 72 until a pair
is found in which the date HTTP header of the cor-
responding responses is different. At that point we
know that between the processing of the two HTTP
requests the microseconds of the server were zeroed.
We proceed to approximate the time of this event S in
localtime, denoted by the timestamp D, by calculating
the average RTT of the two requests and offsetting the
middle point between 72 and 7'1 by this value divided
by two.

In the Apache web server the date HTTP header is
set after processing the request of the user. If the at-
tacker requests a non existent file, then the point the
header is set is approximatelly the point that a valid
request will start executing the PHP script. It fol-
lows that if the attacker uses ATS with HTTP requests
to not existent files then he will synchronize approx-
imately with the beggining of the script’s execution.
Given a steady network where each request takes @
time to reach the target server, our algorithm devia-
tion depends only on the rate that the attacker can send
HTTP requests. In practice, we find that the algo-
rithm’s main source of error is the network distance
between the attacker’s system and the server cf. Fig-
ure 3. The above implementation we described is a
proof-of-concept and various optimizations can be ap-
plied to improve its accuracy.

Request Twins. Consider the following setting: an
application uses microtime () to generate a password
token for any user of the system. The attacker has ac-
cess to a user account of the application and tries to
take over the account of another user. This allows the
attacker to obtain password reset tokens for his account
and thus outputs of the microtime () function. The
key observation is that if the attacker performs in rapid

succession two password reset requests, one for his ac-
count and one for the target user’s account, then these
requests will be processed by the application with a
very small time difference and thus the conditional en-
tropy of the target user’s password reset token given
the attacker’s token will be small. Thus, the attacker
can generate a token for an account he owns and in
fast succession a token for the target account. Then
the microtime () used for generating the token of his
account can be used to approximate the microtime ()
output that was used for the token of the target account.

Experiments. We conducted a series of experiments
for both our algorithms using the following setup. We
created a PHP “time” script that prints out the current
seconds and microseconds of the server. To evaluate
the ATS algorithm we first performed synchronization
between a client and the server and afterwards we sent
arequest to the time script and tried to predict the value
it would return. To evaluate the Request Twins algo-
rithm we submitted two requests to the time script in
fast succession and measured the difference between
the output of the two responses.

In Figure 3 we show the time difference between
the server’s time and our client’s calculation for four
servers with different CPU’s and RTT parameters. Our
experiments suggest that both algorithms significantly
reduce the entropy of microseconds (up to an average
of 11 bits with ATS and 14 bits with Request Twins)
having different advantages each. Specifically, the
ATS algorithm seems to be affected by large RTT val-
ues while it is less affected by differences in the CPU
speed. The situation is reversed for Request Twins
where the algorithm is immune to changes in the RTT
however, it is less effective in old systems with low
processing speed.

4 Seed Attacks

In this section we describe attacks that allow either the
recovery or the reconstruction of the seeds used for the
PHP system’s PRNGs. This allows the attacker to pre-
dict all future iterations of these functions and hence
reduces the entropy of functions rand () ,mt_rand (),
lcg_value() as well as the extra entropy argument
of uniqid () to zero bits. We exploit two properties
of the seeds used in these functions. The first one is
the reusage of entropy sources between different seeds.
This enables us to reconstruct a seed without any ac-
cess to outputs of the respective PRNG. The second is
the small entropy of certain seeds that allows one to
recover its value by bruteforce.

We present three distinct attacks. The first attack al-
lows one to recover the seed of the internal LCG seed
used by the PHP system using a session identifier. Us-
ing that seed our second attack reconstructs the seed of
rand () and mt_rand() functions from the elements
of the LCG seed without any access to outputs of these
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Figure 3: Effectiveness of our time entropy lowering techniques against four servers

Figure 2: ATS. of different computational power and RTT. Time measurements are in microseconds.

functions. Finally, we exploit the fact that the seed
used in these functions is small enough for someone
with access to the output of these functions to recover
its value by bruteforce.

Generating fresh processes. Our attacks on this sec-
tion rely on the ability of the attacker to connect to a
process with a newly initialized state. We describe a
generic technique against mod_php in order to achieve
a connection to a fresh process. Recall that in mod_php
when the number of occupied processes passes a cer-
tain threshold new processes are created to handle the
new connections. This gives the attacker a way to force
the creation of fresh processes: The attacker creates a
large number of connections to the target server with
the keep-alive HTTP header set. Having occupied a
large number of processes the web server will create
a number of new processes to handle subsequent re-
quests. The attacker, keeping the previous connections
open, makes a new one which, given that the attacker
created enough connections, will be handled by a fresh
process.

4.1 Recovering the LCG seed from Ses-
sion ID’s

In this section we present a technique to recover the
php_combined_lcg() seed using a PHP session iden-
tifier. In PHP, when a new session is created using the
respective PHP function (session_start()), a pseu-
dorandom string is returned to the user in a cookie, in
order to identify that particular session. That string is
generated using a conjuction of user specific and pro-
cess specific information, and then is hashed using a
hash function which is by default MD5, however there
is an option to use other hash functions such as SHA-1.
The values contained in the hash are:
— Client IP address (32 bits).
— A time measurement: Unix epoch and microsec-
onds (32 + 20 bits).
— A value generated by php_combined_1cg() (64
bits).
Notice now that in the context of our attack model
the attacker controls each request thus he knows ex-

actly most of the values. Specifically, the client IP ad-
dress is the attacker’s IP address and the Unix Epoch
can be determined through the date HTTP header. In
addition, if php_combined_1cg() is not initialized at
the time the session is created, as it happens when a
fresh process is spawned, then it is seeded. The state
of the php_combined_1cg() is two registers sy, s of
size 32 bits each, which are initialized as follows. Let
T and T5 be two subsequent time measurements. Then
we have that

s1="Ty.sec® (Tj.usec < 11) and s = pid B (Tr.usec < 11)

where pid denotes the current process id, or if threads
are used the current thread id 2.

Process id’s have a range of 2!° values in Linux
systems In Windows systems the process id’s (resp.
threads) are also at most 2! unless there are more
than 21 active processes (resp. threads) in the system
which is a very unlikely occurence.

Observe now that the session calculation involves
three time measurements 7y, 77 and 7>. Given that
these three measurements are conducted succesivelly
it is advantageous to estimate their entropy by examin-
ing the random variables Ty, A} =T1 —To, A0 =T, —T7.
We conducted experiments in different systems to es-
timate the range of values for A; and A,. Our exper-
iments suggest that A; € [1,4] while A, € [0,3]. We
also found a positive linear correlation in the values of
the two pairs. This enables a cutdown of the possible
valid pairs. These results suggest that the additionally
entropy introduced by the two A variables is at most 5
bits.

To summarize, the total remaining entropy of the
session identifier hash is the sum of the microseconds
entropy from 7y (= 20 bits) the two A variables (=
5 bits) and the process identifier(15 bits). These give
a total of 40 bits which is tractable cf. section 1.1.
Furthermore the following improvements can be made:
(1) Using the ATS algorithm the microseconds entropy
can be reduced as much as 11 bits on average. (2) The
attacker can make several connections to fresh pro-
cesses instead of one, in rapid succession, obtaining

2In PHP versions before 5.3.2 the seed used only one time mea-
surement which made it even weaker.
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session identifiers from each of the processes. Because
the requests were made in a small time interval the
preimages of the hashes obtained belong into the same
search space, thus improving the probability of invert-
ing one of the preimages proportionally to the number
of session identifiers identifiers obtained. Our experi-
ments with the request twins technique suggest that at
least 4 session identifiers can be obtained from within
the same search space thus offering a reduction of at
least two bits. Adding these improvements reduces the
search time up to 227 MD5 computations.

4.2 Reconstructing the PRNG Seed from
Session ID’s

In this section we exploit the fact that the PHP system
reuses entropy sources between different generators, in
order to reconstruct the PRNG seed used by rand ()
and mt_rand () functions from a PHP session identi-
fier. In order to predict the seed we only need to find
a preimage for the session id, using the methods de-
scribed in the previous section. One advantage of this
attack is that it requires no outputs from the affected
functions.

When a new process is created the internal state of
the functions rand () and mt_rand () is uninitialized.
Thus, when these functions are called for the first time
within the script a seed is constructed as follows:

seed = (epoch x pid) ® (10° x php_combined_lcg|())

where epoch denotes the seconds since epoch and pid

denotes the process id of the process handling the re-

quest. It it easy to notice, that an attacker with access to

a session id preimage has all the information needed in

order to calculate the seed used to initialize the PRNGs

since:

— epoch is obtained through the HTTP Date header.

— pid is known from the seed of the
php_combined 1cg() obtained through the
preimage of the session id from section 4.1.

— php_combined_lcg() is also known, since the at-
tacker has access to its seed, he can easily predict
the next iteration after the initial value.

In summary the technique of this section allows the re-

construction of the seed of the mt_rand () and rand ()

functions given access to a PHP session id of a fresh
process. The time complexity of the attack is the
same as the one described in section 4.1 while the
query complexity is one request, given that the attacker

spawned a fresh process (which itself requires only a

handful of requests).

4.3 Recovering the Seed from Applica-
tion leaks

In contrast to the technique presented in the previous
section, the attack presented here recovers the seed of

the PRNG functions rand () and mt_rand () when the
attacker has access to the output of these functions. We
exploit the fact that the seed used by the PHP system is
only 32 bits. Thus, an attacker who connects to a fresh
process and obtains a number of outputs from these
functions can bruteforce the 32 bit seed that produces
the same output.

We emphasize that this attack works even if the out-
puts are truncated or passed through transformations
like hash functions. The requirements of the attack is
that the attacker can define a function from the set of
all seeds to a sufficiently large range and can obtain a
sample of this function evaluated on the seed that the
attacker tries to recover. Additionally for the attack to
work this function should behave as a random map.

Consider the following example. The attacker has
access to a user account of an application which gen-
erates a password reset token as 6 symbols where each
symbol is defined as g(mt_rand()) where g is a ta-
ble lookup function for a table with 60 entries contain-
ing alphanumeric characters. The attacker defines the
function f to be the concatenation of two password re-
set tokens generated just after the PRNG is initialized.
The attacker samples the function by connecting to a
fresh process and resetting his password two times.
Since the table of function g contains 60 entries, the
attacker obtains 6 bits per token symbol, giving a total
range to the function f of 72 bits.

The time complexity of the attack is 232 calculations
of f however, we can reduce the online complexity
of the attack using a time-space tradeoff. In this case
the online complexity of the attack can be as little as
216 The query complexity of the attack depends on
the number of requests needed to obtain a sample of
f. In the example given above the query complexity is
two requests.

5 State recovery attacks

One can argue that randomness attacks can be easily
thwarted by increasing the entropy of the seeding for
the PRNG functions used by the PHP system. For ex-
ample, the suhosin PHP hardening extension replaces
the rand () function with a Mersene Twister generator
with separate state from mt_rand () and offers a larger
seed for both generators getting entropy from the oper-
ating system?.

We show that this is not the case. We exploit the
algebraic structure of the PRNGs used in order to re-
cover their internal state after a sufficient number of
past outputs (leaks) have been observed by the attacker.
Any such attack has to overcome two challenges. First,
web applications usually need only a small range of

3The suhosin patch installed in some Unix operating systems
by default does not include the randomness patches, rather than it
mainly offers protection from memory corruption attacks. The full
extension is usually installed separately from the PHP packages.
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Figure 4: Mapping a random number n € [M] to 7
buckets and the respective bits of n that are revealed
given each bucket.

random numbers, for example to sample a random en-
try from an array. To achieve that, the PHP system
maps the output of the PRNG to the given range, an
action that may break the linearity of the generators.
Second, in order to collect the necessary leaks the at-
tacker may need to reconnect to the same process many
times to collect the leaks from the same generator in-
stance. Since, there could be many PHP processes run-
ning in the system, this poses another challenge for the
attacker.

In this section we present state recovery algo-
rithms for the truncated PRNG functions rand () and
mt_rand(). The algorithm for the latter function
is novel, while regarding the former we implement
and evaluate the Hastad-Shamir cryptanalytic frame-
work [8] for truncated linearly related variables. We
begin by discussing the way truncation takes place in
the PHP system. Afterwards, we tackle the problem of
reconnecting into the same server process. Finally we
present the two algorithms against the generators.

5.1 Truncating PRNG sequences in the
PHP system

As mentioned in section 2.2 the rand() and
mt_rand () functions can map their output to a user
defined range. This has the effect of truncating the
functions’ output. Here we discuss the process of trun-
cating the output and its implications for the attacker.

Let n € [M] = {0,...,M — 1} be a random number
generated by rand() or mt_rand (), where M = 23!
in the PHP system. In order to map that number in the
range [a,b] where a < b the PHP system maps 7 to a
number / € [a,b] in the following way:

n-(b—a+1)

l:
a-—+ i

We can view the process above as a mapping from
the set of numbers in the range [M] to b —a+ 1 “buck-
ets.” Our goal is to recover as many bits as possible
of the original number n. Observe that given [ it is
possible to recover immediately up to [log(b—a+1)|
most significant bits (MSB) of the original number n
as follows:

Given that n belongs to bucket / we obtain the fol-

lowing range for possible values for n:

(l—a)-M
b—a+1

(l—a+1)-M
b—a+1

I J<n<| J=1

Therefore, given a bucket number / we are able to
find an upper and lower bound for the original number
denoted respectively by L; and U;. In order to recover
a part of the original number n one can simply find the
number of most significant bits of L; and U, that are
equal and observe that these bits would be the same
also in the number n. Therefore, given a bucket [ we
can compare the MSBs of both numbers and set the
MSBs of n to the largest sequence of common most
significant bits of L;, U;.

Notice that in some cases even the most signifi-
cant bit of the two numbers are different, thus we
are be unable to infer any bit of the original number
n with absolute certainty. For example, in Figure 4
given that a number falls in bucket 3 we have that
920350134 <n < 1227133512. Because 920350134 <
230 and 1227133512 > 2°° we are unable to infer any
bit of the original number n.

Another important observation is that this specific
truncation algorithm allows the recovery of a fragment
of the MSBs of the original number. Therefore, in the
following sections we will assume that the truncation
occurs in the MSBs and we will describe our algo-
rithms based on MSB truncated numbers. However, all
algorithms described work for any kind of truncation.

5.2 Process distinguisher

As we mentioned in section 2.1, if one wants to receive
a number of leaks from the same PHP process one can
use keep-alive requests. However, there is an upper
bound that limits the number of such requests (by de-
fault 100). Therefore, if the attacker needs to observe
more outputs beyond the keep-alive limit the connec-
tion will drop and when the attacker connects back to
the server he may be served from a different process
with a different internal state. Therefore, in order to
apply state recovery attacks (which typically require
more than 100 requests), we must be able to submit
all the necessary requests to the same process. In this
section, we will describe a generic technique that finds
the same process over and over using the PHP session
leaks described in section 4.1.

While we cannot avoid disconnecting from a pro-
cess after we have submitted the maximum number of
keep-alive requests, we can start reconnecting back to
the server until we hit the process we were connected
before and continue to submit requests. The problem
in applying this approach is that it is not apparent to
distinguish whether the process we are currently con-
nected to is the one that was serving us in the previ-
ous connection. To distinguish between different pro-
cesses, we can use the preimage from a session iden-
tifier. Recall that the session id contains a value from
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the php_combined_1cg() function, which in turn uses
process specific state variables. Thus, if the session
is produced from the same process as before then the
php_combined_lcg() will contain the next state from
the one it was before. This gives us a way to find the
correct process among all the server processes running
in the server. In summary the algorithm will proceed
as follows:

1. The attacker obtains a session identifier and a
preimage for that id using the techniques dis-
cussed in section 4.1.

2. The attacker submits the necessary requests to ob-
tain leaks from the PRNG, using the keep-alive
HTTP header until the maximum number of re-
quests is reached.

3. The attacker initiates connections to the server re-
questing session identifiers. He attempts to ob-
tain a preimage for every session identifier using
the next value of the php_combined_lcg() from
the one used before or, if the server has high traf-
fic, the next few iterations. If a preimage is ob-
tained the attacker repeats step 2, until all neces-
sary leaks are obtained.

Notice that obtaining a preimage after disconnect-
ing requires to bruteforce a maximum number of 20
bits (the microseconds), and thus testing for the cor-
rect session id is an efficient procedure. Even if the
application is not using PHP sessions, or if a preimage
cannot be obtained, there are other, application spe-
cific, techniques in order to find the correct process.

A generic technique for Windows. In the case of
Windows systems the attacker can employ another
technique to collect the necessary leaks from the same
process in case the server has low traffic. In unix
servers with apache preforked server + mod_php all
idle processes are in a queue waiting to handle an in-
coming client. The first process in the queue handles
a client and then the process goes to the back of the
queue. Thus, if an attacker wants to reconnect to the
same process without using some process distinguisher
he will need to know exactly the number of processes
in the system and if there are any intermediate requests
by other clients while the attacker tries to reconnect to
the same process. However, in Windows prethreaded
server with mod_php things are slightly better for an
attacker. Threads are in a priority queue and when a
thread in the first place of the queue handles a request
from a client it returns again in that first place and han-
dles the first subsequent incoming request. Thus, an
attacker which manages to connect to that first thread
of the server, can rapidly close and reopen the connec-
tions thus leaving a very small window in which that
thread could be occupied by another client. Of course,
in high traffic servers the attacker would have a diffi-
culty connecting in a time when the server is idle in

the first place. Nevertheless, techniques exist [16] to
remotely determine the traffic of a server and thus al-
low the attacker to find an appropriate time window
within which he will attempt this attack.

Based on the above, in the following sections we
will assume that the attacker is able to collect the nec-
essary number of leaks from the targeted function.

5.3 State recovery for mt_rand()

The mt_rand() function uses the Mersenne Twister
generator in order to produce its output. In this section
we give a description of the Mersenne Twister genera-
tor and present an algorithm that allows the recovery of
the internal state of the generator even when the output
is truncated. Our algorithm also works in the presence
of non consecutive outputs as in the case resulting from
the buckets truncation algorithm of the PHP system (cf.
section 5.1).

Mersenne Twister. Mersenne Twister, and specifi-
cally the widely used MT19937 variant, is a linear
PRNG with a 624 32-bit word state. The MT algo-
rithm is based on the following recursion: for all k,

Xin = X B ((xe AOX80000000)| (x4 | AOXTEEEFEEF) ) A

where n = 624 and m = 397. The logical AND oper-
ation with 0x80000000 discards all but the most sig-
nificant bit of x; while the logical AND with Ox7fffffff
discards only the MSB of x;z;;. A is a 32 x 32 ma-
trix for which multiplication by a vector x is defined as
follows:

4o (x>1) ifx* =0
= (x> Doa ifx* =1

Here a = (a°,a',...,a*") = 0x9908BODF is a constant
32-bit vector (note that we use x>! to denote the LSB
of a vector x). The output of this recurrence is finally
multiplied by a 32 x 32 non singular matrix 7', called
the tempering matrix, in order to produce the final out-
put z =xT.

State recovery. Since the tempering matrix 7 is non
singular, given 624 outputs of the MT generator one
can easily compute the original state by multiplying
the output z with the inverse matrix 7~! thus obtain-
ing the state variable used as x; = 7T, After recov-
ering 624 state variables one can predict all future it-
erations. However, when the output of the generator is
truncated, predicting future iterations is not as straight-
forward as before because it is not possible to locally
recover all needed bits of the state variables given the
truncated output.

The key observation in recovering the internal state
is that due to the fact that the generator is in GF(2) the
truncation does not introduce non linearity even though
there are missing bits from the respective equations.
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Thus, we can express the output of the generator as a
set of linear equations in GF(2) which, when solved,
yield the initial state that produced the observed se-
quence. From the basic recurrence of MT we can de-
rive the following equations for each individual bit:

Lemma 5.1. Let xg,x1,... be an MT sequence and j >
0. Then the following equations hold for any k > 0:

0 _ 5,0 31 0
L X = X it © O 1y A 4)

1 4l 0 31
20 Xk = X Dt DX 1ynak D (x(j71>n+k+1

a)

A

< 3l xl(j—l)n+k+1n b

3.Vi2 < i -
1

C 31 .
xl(j Dntkt1 P (x(jfl)n+k+1 Ad')

Proof. The equations follow directly from the basic re-
currence.

In addition since the tempering matrix is only a lin-
ear transformation of the bits of the state variable x;,
we can similarly express each bit of the final output of
MT as a linear equation of the bits of the respective
state variable.

To recover the initial state of MT, we generate all
equations over the state bit variables xg,x1,...,X[9936-
To map any position in the MT sequence in an equation
over this set of variables, we apply the equations of the
lemma above recursively until all variables in the right
hand side have index below 19937.

Depending on the positions observed in the MT se-
quence the resulting linear system will be different.
The question that remains is whether that system is
solvable. Regarding the case of the 31-bit truncation,
i.e. only the MSB of the output word is revealed, we
can use known properties of the generator in order to
easily prove the following:

Lemma 5.2. Suppose we obtain the MSB of 19937
consecutive words from the MT generator. Then the
resulting linear system is uniquely solvable.

Proof. 1t is known that the MT sequence is 19937-
distributed to 1-bit accuracy*. The linear system is
uniquely solvable iff the rows are linearly independent.
Suppose that a set k < 19937 of rows are lineary de-
pendent. Then the last row of the set k obtained is
computable from the other members of the k-set some-
thing that contradicts the order of equidistribution of
MT. O

The above result is optimal in the sense that this is
the minimum number of observed outputs needed for
the system to become fully determined. In the case
we obtain non consecutive outputs due to truncation

4Suppose that a sequence is k-distributed to u-bit accuracy. Then
knowledge of the u most significant bits of / words does not allow
one to make any prediction for the u bits of the next word when [ < k.
This is the cryptographic interpretation of the “order of equidistribu-
tion” whose exact definition can be found in [15].

or application behavior, linear dependencies may arise
between the resulting equations and therefore we may
need a larger number of observed outputs.

Because we cannot know in advance when the sys-
tem will become solvable or the equations that will be
included, we employ an online version of Gaussian
elimination in order to form and solve the resulting
system. In this way, the attacker can begin collecting
leaks and gradually feed them to our Gaussian solver
until he is notified that a sufficient number of indepen-
dent equations have been collected. Note that regular
Gaussian elimination uses both elementary row and el-
ementary column operations. However, because we do
not have in advance the entire linear system we cannot
use elementary column operations. Instead we make
Gaussian elimination using only elementary row oper-
ations and utilize a bookkeeping system to enter equa-
tions in their place as they are produced by the leaks
supplied to the solver. Our solver employs a sparse
vector representation and is capable of solving overde-
termined sparse systems of tens of thousands of equa-
tions in a few minutes.

We ran a sequence of experiments to determine the
solvability of the system when a different number of
bits is truncated from the output. In addition we ran
experiments when the outputs of the MT generator is
passed through the PHP truncation algorithm, with dif-
ferent user defined ranges. All experiments were con-
ducted in a 4 x 2.3 GHz machine with 4 GB of RAM.

In Figure 5 we present the number of equations
needed when the PHP truncation algorithm is used.
In the x-axis we have the logarithm of the number
of buckets. We also show the standard deviation ap-
pearing as vertical bars. It can be seen that the num-
ber of equations needed is much higher than the the-
oretical lower bound of 19937 and fluctuates between
27000 and 33000. Neverthless, the number of leaks re-
quired is decreasing linearly to the number of buckets
we have. The reason is that although we have more lin-
early dependend equations, the total number of equa-
tions we obtain due to the larger number of buckets is
bigger.

Implementation error in the PHP system. The
PHP system up to current version, 5.3.10, has an error
in the implementation of the Mersenne Twister gen-
erator (we discovered this during the testing of our
solver). Specifically the following basic recurrence is
effectively used in the PHP system due to a program-
ming error:

Xietn = Xkt B ((xx A 0x80000000) | (xg A Ox7EfffEfe) | (x5 A Ox1))A

As a result the PHP system uses a different generator

which, as it turns out, has slightly more linear depen-
dencies than the MT generator. This means that prob-
ably the randomness properties of the PHP generator
are poorer compared to the original MT generator.
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Figure 5: Solving MT; y-axis:number of equations; x-axis: number of buckets (logarithm). Standard deviation

shown as vertical bars.

5.4 State recovery for rand()

We turn now to the problem of recovering the state
of rand () given a sequence of leaks from this gen-
erator. While mt_rand () is implemented within the
PHP source code and thus is unchanged across differ-
ent enviroments, the rand () function uses the respec-
tive function defined from the standard library of the
operating system. This results in different implemen-
tations across different operating systems. There are
mainly two different implementations of rand () one
from the glibc and one from the Windows library.

Windows rand(). The rand() function defined in
Windows is a Linear Congruential Generator (LCG).
An LCG is defined by a recurrence of the form

X, +1 = (aX, +c¢) mod m

Although LCGs are fast and require a small memory
footprint there are many problems which make them
insufficient for many uses, including of course cryp-
tographic purposes. The parameters used by the Win-
dows LCG are a = 214013, ¢ = 2531011,m = 232. In
addition, the output is truncated by default and only
the top 15 bits are returned. If PHP is running in a
threaded server in Windows then the parameters of the
LCG used are a = 1103515245, ¢ = 12345, m = 215.

Glibc rand(). In the past, glibc also used an LCG for
the rand () function. Subsequently an LFSR-like “ad-
ditive feedback” design was adopted. The generator
has a state of 31 words (of 32 bits each), over which it
is defined by the following recurrence:

ri = (ri_3+ri_31) mod 22

In addition the LSB of each word is discarded and the
output returned to the user is 0; = r; > 1. An interest-
ing note is that the man page of rand () states that rand

is a non-linear generator. Nevertheless, the non linear-
ity introduced by the truncation of the LSB is negligi-
ble and one can easily recover the initial values given
enough outputs of the generator.

State recovery. Notice that if the generators used
have a small state such as the Windows LCGs then
state recovery is easy, by applying the attack from sec-
tion 4 to bruteforce the entire state of the generator.
However, on the Glibc generator, which has a state of
992 bits, these attacks are infeasible assuming that the
state is random. Although LCGs and the Glibc gener-
ators are different, they both fall into the same crypt-
analytic framework introduced by Hastad and Shamir
in 1985 for recovering values of truncated linear vari-
ables. This framework allows one to uniquely solve
an underdefined system of linear equations when the
values of the variables are partially known. In this sec-
tion we will discuss our experiences with applying this
technique in the two aforementioned generators: The
LCG and the additive-feedback generator of glibc. We
will briefly describe the algorithm for recovering the
truncated variables in order to discuss our experiments
and results. The interested reader can find more infor-
mation about the algorithm in the original paper [8].
Suppose we are given a system with / linear equa-
tions on k variables modulo m denoted by x1,x2, ..., Xz,

a}xl +a§x2+---+a,1xk:0modm

a%xl +a%x2+---+a%xk =0 mod m

dhx, —|—a12x2—|—~~-—|—a2xk =0 mod m

where [ < k and each variable x; is partially known.
We want to solve the system uniquely by utilizing the
partial information of the k variables x;.

We use the coefficients of the / equations to create a
set of / vectors, where each vector is of the form v; =
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(ai,...,a;). In addition we add to this set the k vectors
m-e;,0 < i <k. The cryptanalytic framework exploits
properties of the lattice L that is defined as the linear
span of these vectors. Observe that the dimension of L
is k and in addition for every vector v € L we have that
Zf»‘:l vix; = 0 mod m.

Given the above the attack works as follows: first a
lattice is defined using the recurrence that defines the
linear generator; then, a lattice basis reduction algo-
rithm is employed to create a set of linearly indepen-
dent equations modulo m with small coefficients; fi-
nally, using the partially known values for each vari-
able, we convert this set of equations to equations over
the integers which can be solved uniquely. Specifi-
cally, we use the LLL [13] algorithm in order to obtain
a reduced basis B for the lattice L. Now because B =
{w;} is a basis, the vectors of B are linearly indepen-
dent. The key observation is that the lattice definition
implies that w; - X = W - (Xunknown + Xknown) = dj -m for
some unknown d;. Now as long as Xusknown - Wj < m /2
(this is the critical condition for solvability) we can
solve for d; and hence recover k equations for Xysknown
which will uniquely determine it.

The original paper provided a relation between the
size of Xyhown and the number of leaks required from
the generator so that the upper bound of m /2 is ensured
given the level of basis reduction achieved by LLL. In
the case of LCGs the paper demanded the modulo m to
be squarefree. However, as shown above, in the gen-
erators used it holds that m = 23? and thus their argu-
ments do not apply. In addition, the lattice of the addi-
tive generator of glibc is different than the one gener-
ated by an LCG and thus needs a different analysis.

We conducted a thorough experimental analysis of
the framework focusing on the two types of generators
above. In each case we tested the maximum possible
value of Xypown to see if the m/2 bound holds for the
reduced LLL basis. In the following paragraphs we
will briefly discuss the results of these experiments for
these types of generators.

In Figure 6 we show the relationship between the
number of leaks required for recovering the state with
the lattice-attack and the number of leaks that are trun-
cated for four LCGs: the Windows LCG, the glibc
LCG (which are both 32 bits), the Visual Basic LCG
(which is 24 bits) and an LCG used in the MMIX of
Knuth (which is 64 bits). It is seen that the number
of leaks required is very small but increases sharply as
more bits are truncated. In all cases the attack stops
being useful once the number of truncated bits leaves
none but the logw — 1 most significant bits where w is
the size of the LCG state. The logarithm barrier seems
to be uniformly present and hints that the MSB’s of
a truncated LCG sequence may be hard to predict (at
least using the techniques considered here). A similar
logarithmic barrier was also found in the experimental
analysis that was conducted by Contini and Shparlin-
ski [3] when they were investigating Stern’s attack [17]

against truncated LCG’s with secret parameters.

Applying the attack in the glibc additive feedback
generator we found that the LLL algorithm became a
bottleneck in the algorithm running time; due to its
large state the algorithm required a large number of
leaks to recover even small truncation levels there-
fore increasing the lattice dimension that was given
to the LLL algorithm. Our testing system (a 3.2GHz
cpu with 2GB memory) ran out of memory when 7
bits were truncated. The version of LLL we em-
ployed (SageMath 4.8) has time complexity O(k%)
where k is the dimension of the lattice (which repre-
sents roughly the number of leaks). The best time-
complexity known is O(k*logk) derived from [12];
this may enable much higher truncation levels to be re-
covered for the glibc generator, however we were not
able to test this experimentally as no implementation
of this algorithm is publicly available.

We conclude that truncated LCG type of generators
can be broken (in the sense of entirely recovering their
internal state) for all but extremely high levels of trun-
cation (e.g. in the case of 32-bit state LCG’s mod-
ulo 2% when they are truncated to 16 buckets or less).
For additive feedback type of generators, such as the
one in glibc, the situation is similar, however higher
recursion depths require more leaks (with a linear re-
lationship) that in turn affect the lattice dimension re-
sulting in longer running times. Comparing the results
between the LCGs and the additive feedback genera-
tors one may find some justification for the adoption
of the latter in recent versions of glibc : it appears that
- at least as far as lattice-based attacks are concerned -
it is harder to predict truncated glibc sequences (com-
pared to say, Windows LCG’s) due to the higher run-
ning times of LLL reduction (note though that this does
not mean that these are cryptographically secure).

6 Experimental results and Case studies

In order to evaluate the impact of our attacks on real
applications we conducted an audit to the password
reset function implementations of popular PHP appli-
cations. Figure 7 shows the results from our audit.
In each case succesfully exploiting the application re-
sulted in takeover of arbitrary user accounts® and in
some cases, when the administrator interface was af-
fected, of the entire application. In addition to iden-
tifiying these vulnerabilities we wrote sample exploits
for some types of attack we presented, each on one af-
fected application.

>The only exception to that is the HotCRP application where
passwords were stored in cleartext thus there was no password reset
functionality. However, in this case we were able to spoof registra-
tions for arbitrary email accounts.
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Figure 6: Solving LCGs with LLL; y-axis:number of leaks; x-axis: number of bits truncated.

Application Attack Application Attack
mediawiki 4.2 43 | 53 | e Joomla 4.3 °
Open eClass 42 43 | 54 | e MyBB ATSC | 4.1¢ | 53¢ | o
taskfreak 42 | 43 | 53 | e IpBoard ATSC | 4.1¢ | 42° | o
zen-cart ATS | RT ° phorum 4.2 43 | 53 | e
osCommerce 2.x | ATS | RT ° HotCRP 4.2 43 | 53 | e
osCommerce 3.x | 4.2 43 | 54 | e gazelle 4.3 5.3 °
elgg ATSC | 42 | 43 | e tikiWiki 4.2 43 | 54 | e
Gallery RTC | 4.1¢ | 42° | o SMF ATSC | 4.3¢ o

Figure 7: Summary of audit results. The c superscript denotes that the attack need to be used in combination with
other attacks with the same superscript. The e denotes a full attack while o denotes a weakness for which the
practical exploitation is either unverified or requires very specific configurations. The number denotes the section

in which the applied attack is described in the paper.

6.1 Selected Audit Results

Many applications we audited where trivially vulnera-
ble to our attacks since they used the affected PRNG
functions in a straightforward manner, thus making it
pretty easy for an attacker to apply our techniques and
exploit them. However some applications attempted
to defend against randomness attacks by creating cus-
tom token generators. We will describe some attacks
that resulted from using our framework against custom
generators.

Gallery. PHP Gallery is a very popular web based
photo album organizer. In order for a user to reset his
password he has to click to a link, which contains the
security token. The function that generates the token is
the following:

function hash($entropy="") {
return md5($entropy .
}

The token is generated using three entropy sources,

uniqid(mt_rand(), true));

namely a time measurement from uniqid(), an out-
put from the MT generator and an output from the
php_combined 1lcg() through the extra argument in
the uniqid() function. In addition the output is
passed through the MDS5 hash function so its infeasi-
ble to recover the initial values given the output of this
function. Since we do not have access to the output
of the function, the state reconstruction attack seems
an appropriate choice for attacking this token gener-
ation algorithm. Indeed, the Gallery application uses
PHP sessions thus an attacker can use them to predict
the php_combined _lcg() and mt_rand () outputs. In
addition by utilizing the request twins technique from
section 3 the attacker can further reduce the search
space he has to cover to a few thousand requests.

Joomla. Joomla is one of the most popular CMS ap-
plications, and it also have a long history of weak-
nesses in its generation of password reset tokens [4,
11]. Until recently, the code for the random token gen-
eration was the following:
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function genRandomPassword( $length=8 ) {

$salt = abc...xyzABC...XYZ0123456789 ;
$len = strlen ( $salt );
$makepass = ‘77

- $stat = @stat ( FILE ) ;
- if (empty($stat) || !isarray($stat))
- $stat=array(phpuname());
- mt_srand(crc32(microtime() .implode(|,$stat)));
for($i=0;$i<$length;$i++){
$makepass .= $salt[mt_rand(0,$lenl)];
}

return $makepass;

In addition the output of this function is
hashed using MDS5 along a secret, 16 bytes, key
(config.secret) which is created at installation
using the function above. The config.secret value
was also used to create a “remember me” cookie in the
following way:

cookie = md5(config.secret+’JLOGIN REMEMBER’)

Since the second part of the string is constant
and the config.secret is generated through the gen-
RandomPassword function which has only 232 possi-
ble values for each length, one could bruteforce all
possible values and recover config.secret. All
that was left was the prediction of the output of the
genRandomPassword () function in order to predict
the security token used to reset a password. One then
observes that although the contents of the $stat vari-
able in the genRandomPassword () function are suf-
ficiently random, the fact that crc is used to convert
this value to a 4 byte seed allows one to predict the
seed generated and thus the token. This attack was
reported in 2010 in [11] and a year after, Joomla re-
leased a patch for this vulnerability which removed the
custom seeding (dashed lines) from the token gener-
ation function. The idea was that because the gener-
ator is rolling constantly without reseeding one will
be unable to recover the config.secret and thus the
generator will be secure due to its secret state. Un-
fortunately, this may not be the case. If at the instal-
lation time the process handling the installation script
is fresh, a fact quite probable if we consider dedicated
servers that do not run other PHP applications, then
the search space of the config.secret will be again
232 and thus an attacker can use the same technique
as before to recover it. After the config.secret is
recovered, exploitation of the password reset imple-
mentation is straightforward using our seed recovery
attack from section 4.3. A similar attack also holds
when mod_cgi is used for script execution as each re-
quest will be handled by a fresh process again reducing
the search space for config.secret in 232 values.

However, the low entropy of the config.secret
key is not the only problem of this implementation.
Even if the key had enough entropy to be totally unpre-
dictable, the generator would still be vulnerable. No-
tice that in case the genRandomPassword () is called

with a newly initialized MT generator then there at
most 232 possible tokens, independently of the entropy
of config.secret. This gives an interesting attack
vector: We generate two tokens from a fresh process
sequentially for a user account that we control. Then
we start to connect to a fresh process and request a to-
ken for our account. If the token matches the token
generated before then we can submit a second request
for the target user’s account which, since the first to-
ken matched the token we own, will match the second
token that we requested before (recall that the tokens
are not bound to users). Observe that if we gener-
ate only one pair of tokens this attack is expected to
succeed after 232 requests, assuming that the seed is
random. Nevertheless, we can request more than one
pair of tokens thus increasing our success probability.
Specifically, if we have n pairs of tokens then at the
second phase the attack is expected to succeed after
232 /n requests. Therefore, if we denote by r(n) the ex-
pected requests that the attack needs to hit a “good”
token given n initial token pairs, then we have that
r(n) =2n+2%/n. Our goal is to minimize the func-
tion r(n); this function obtains a positive minimum at
n = 231/2 for which we have that r(23!/2) ~ 185000.
A simple bruteforcing framework that we wrote was
able to achieve around 2500 requests per minute, a rate
at which an attacker can compromise the application
in a little more than one hour. To be fair, we have to
add the requests that are required to spawn new pro-
cesses but even if we go as far as to double the needed
requests (and this is grossly overestimating) we still
have a higly practical attack.

Gazelle. Gazelle is a torrent tracker application,
which includes a frontend for building torrent shar-
ing communities. It’s been under active development
for the last couple of years and its gaining increasing
popularity. The interesting characteristic of the appli-
cation’s password reset implementation is that it uses
two generators of the PHP system (namely rand () and
mt_rand (). The code that generates a token is this:

function make_secret($Length = 32) {
$Secret = ’7;

$Chars=’abcdefghijklmnopqrstuvwxyz0123456789° ;

for($i=0; $i<$Length; $i++) {
Rand = mt_rand(0, strlen($Chars)-1);
$Secret .= substr($Chars, $Rand, 1);
}
return str_shuffle($Secret);

The code generates a random string using
mt_rand() and then shuffles the string using the
str_shuffle() function which internally uses the
rand () function. If we try to apply directly the seed
recovery attack, i.e. try to ask a question of the form
“which seed produces this token” then we will run
into problems because we have to take into account
two seeds, and a total search space of 64 bits which
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is infeasible. The normal action would be to follow
the same path as we did in the Gallery application
where we had a similar problem and utilize the seed
reconstruction attack which does not require an output
of the PRNGs. However, the Gazelle application uses
custom sessions (which are generated using the same
function), and thus we cannot apply that attack either.
The solution lies into slightly mofiying the seed recov-
ery attack. Instead of asking the question “which seed
produces this mt_rand() sequence”, which is shuffled
and thus affected by the second PRNG, we instead ask
which seed produces the unsorted set which contains
the characters of our string. This set is not affected by
the shuffling and thus we can effectively bruteforce
the mt_rand () seed independently. After recovering
the mt_rand () seed we know the initial sequence that
was produced and we can subsequently recover the
seed of rand () using the same attack.

6.2 Attacks Implementation

In addition to auditing the applications, we imple-
mented a number of our attacks targeting selected ap-
plications. In particular, we implemented a seed re-
covery attack against Mediawiki, a state reconstruction
attack against the Phorum application and the request
twins technique against Zen-cart. In the following sec-
tions we will briefly describe each vulnerability and
the results of our attacks implementation.

Mediawiki. Mediawiki is a very popular wiki appli-
cation used, among others, by Wikipedia. Mediawiki
uses mt_rand () in order to generate a new password
when the user requests a password reset. In order to
predict the generated password we use the seed recov-
ery attack of section 4.3. The function f that we sam-
ple is the one used to generate a CSRF token which is
the following:

function generateToken( $salt = ’’ ) {

$token = dechex(mt_rand()).dechex(mt_rand());

return md5( $token . $salt );

}

Our function f given a seed s first seeds the
mt_rand () generator and then uses that generator to
produce a token as the function above. To fully eval-
uate the practicality of the attack we implemented the
attack online, without any time-space tradeoff. Our im-
plementation was able to cover around 1300000 seed
evaluations of f per second in a dual-core laptop with
two 2.3 GHz processors. This allowed us to cover the
full 232 range in about 70 minutes. Of course, using
a time-space tradeoff the search time could be further
reduced to a few minutes.

Zen cart. Zen-Cart is a popular eCommerce applica-
tion. At the time of this writing, a sample database
which shops enter volunterily numbers about 2500 ac-
tive e-shops ®. In order to reset a user’s password

6www.zen-cart.com/index.php?main_page=showcase

zen-cart first seeds the mt_rand () generator with the
microtime () function and then uses the mt_rand ()
function to produce a new password for the user. Thus,
there at most 10 possible passwords which could be
produced. Our exploit used the request twins tech-
nique to reset both our password and the target user’s
password. Afterwards, we bruteforced the generated
password for our account to recover the microtime ()
value that produced it. This takes at most a few sec-
onds on any modern laptop. Then, our exploit brute-
forces the passwords generated by microtime () val-
ues close to the one that generated our own new pass-
word. We ran our exploit in a network with RTT
around 9 ms, and Zen-Cart was installed in a 4 x 2.3
GHz server. The average difference of the two pass-
words was about 3600 microseconds, and the exploit
needed at most two times that requests since we don’t
know which password was produced first. With the
rate of 2500 requests per minute that our implementa-
tion achieves, the attack is completed in a few minutes.
Phorum. Phorum is a classic bulletin board applica-
tion. It was used, among others, by the eStream com-
petition as an online discussion platform. In order for
a user to reset his password the following function is
used:

function phorum_gen_password($charpart=4, $numpart=3)

{
$vowels = ... //[char array];
$cons = ... //[char array];
$num_vowels = count($vowels);
$num_cons = count($cons);
$password="";

for($i = 0; $i < $charpart; $i++){
$password .= $cons[mt_rand(0, $num_cons - 1)]

. $vowels[mt_rand(0, $num_vowels - 1)];

}

$password = substr($password, O, $charpart);

if ($numpart){
$max=(int)str_pad("", $numpart, "9");
$min=(int)str_pad("1", $numpart, "0");
$num=(string)mt_rand($min, $max);

}

return strtolower ($password.$num) ;

What makes this function interesting in the context
of state recovery is that at if called with no arguments
(as it is in the application), at least four mt_rand ()
leaks are discarded in each call. We implemented
the attack having the application installed in a Win-
dows server with the Apache web server and we used
our generic technique for Windows in order to recon-
nect to the same process. On average, the attack re-
quired around 1100 requests and 11 reconnections of
our client. The running time was about 30 minutes, and
the main source of overhead was the system solving.
This fact is mainly explained from the small number
of buckets and the lost leaks of each iteration. Nev-
erthless, the attack remained highly practical, as we
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were able to compormise any user account (including
the administrator) within half an hour.

7 Defending against the Attacks

We believe that a major shortcoming of the PHP core
is that it does not provide a native cryptographically
secure PRNG and token generator. In fact, a pseu-
dorandom function (PRF) would be the most suitable
cryptographic primitive for generating random tokens
based on program defined labels; PRF’s can be con-
structed by PRNG’s [7]. We feel that this is a short-
coming since developers tend to prefer functions from
the core as they are compatible with every different
enviroment PHP is running in. A possible solution
would be to introduce a secure PRNG in the PHP
core (as a new function). We proposed this solu-
tion to the PHP development team which informed us
that the development overhead would be too big for
supporting such a function and the solution of using
openssl_random_pseudo_bytes() (which requires
OpenSSL) is their recommendation.

On the other hand, administrators can take a num-
ber of precautions to defend against randomness at-
tacks using current PHP versions. The Suhosin ex-
tension provides a secure seed in the mt_rand () and
rand () functions. The seed exploits the fact that the
Mersenne Twister has a large state and fills that state
using a hash function. Because rand () may have a
small state and is dependent from the operating sys-
tem, the Suhosin extension replaces rand() with a
Mersenne twister generator with a different state from
mt_rand (). The hashed values of the seed used are
a concatenation of predictable values such as process
identifiers and timestamps, along with, potentially, un-
predictable ones such as memory addresses of vari-
ables and input from /dev/urandom. Because the
addresses in any modern operating system are ran-
domized through ASLR, as a security precaution, us-
ing them as a seed should provide enough additional
entropy to make the two seed attacks (sections 4.2,
4.3) infeasible (assuming ASLR addresses are un-
predictable). In addition, the suhosin extension ig-
nores the calls to the seeding functions mt_srand (),
srand () in order to defend against weak seeding from
the application. Although this may introduce a state re-
covery vulnerability, in the majority of our case stud-
ies, custom seeding was pretty weak and this mea-
sure (of securely seeding once and ignoring applica-
tion based reseeding) increases security. We strongly
believe that securely seeding the generators, when pos-
sible, is a very useful exploit mitigation for the attacks
we presented. Although state recovery attacks would
still be possible, these attacks are more complex than
the seed attacks which require a handful of requests
and commodity hardware to compromise the applica-
tions. Furthermore, creating a secure seed from such
sources has a negligible performance overhead. There-

fore, such measures should be employed by the PHP
system as safeguards for applications that misuse the
PHP core PRNGs.

Our session preimage attack (section 4.1) can be
mitigated by utilizing an option (disabled by default)
of PHP to add extra entropy, from a file, in the ses-
sion identifier. By specifying /dev/urandom as the
entropy file, a user can increase the entropy of a
session arbitrarily thus making it infeasible for an
attacker to obtain a preimage. In Windows, be-
cause /dev/urandom is not available this option
gathers entropy using the same algorithm as in the
openssl_random_pseudo_bytes() function. The
PHP developement team informed us that the above
option will be enabled by default in the upcoming ver-
sion, PHP 5.4.

The above workarounds, if employed, will kill our
seed attacks and the generic process distinguisher we
devised. However, state recovery attacks would still be
possible either through some application specific leak,
or using the generic technique described for Windows
operating systems (section 5.2). In addition, we find
the possibility of the existence of other process distin-
guishers very probable; after all, the process identifier
is not considered a cryptographic secret and could be
leaked either through the application or the web server
or even the operating system itself. Therefore, we feel
that even using these workarounds, one should con-
sider state recovery attacks practical.

With the present state of the PHP system, developers
should avoid using directly the PRNGs of the PHP core
for security purposes. Any application that requires
a security token should employ a custom generator,
that will either use the functions from the PHP exten-
sions such as the openssl_random_pseudo_bytes (),
if available, or it will use other entropy sources. We
give an example of one such function in [1].

8 Related Work

The first randomness attack in PHP that we are aware
of appeared in a blog post by Stefan Esser [5, 6], where
he described basic system properties such as keep-
alive connection handling by web server processes,
and described how misusing mt_srand() could re-
sult in security vulnerabilities that he demonstrated in
some popular applications. Shortly after, the same
author released an update of the Suhosin extension
which included the randomness features for strong
seeding mentioned above. Our preimage attack on
PHP sessions was insipired by an attack introduced by
Samy Kamkar [10], in which he described some cases
where an adversary would be able to guess a PHP ses-
sion. However these attacks assumed a side-channel
of server information. Finally Gregor Kopf [11] de-
scribed, along other attacks, the vulnerability in the
password reset implementation of Joomla. This work
describes some type of seed recovery attacks but only
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for the case that a fresh seeding occurs within the PHP
script executed.

9 Conclusions

We find the fact that the most popular programming
language in a domain that has a clear need for cryp-
tographically strong randomness does not have such a
generator within its core system to be a security hazard.
Still, even if such a generator existed in the language,
the misuse of other functions would not disappear im-
mediately as API misusage is a very common security
problem in modern systems. Therefore, we believe
that research in the practical exploitation of such in-
secure functions should be continued and extended to
other environments even if they do offer better secu-
rity features in their API than PHP. In this paper we
explored the case of PHP installed in the Apache web
server along with mod_php. We also showed the ap-
plicability of some of our attacks in cgi mode where
each request is handled by a new process. However,
the case of fast_cgi needs further investigation as its
behavior depends highly on its configuration. In addi-
tion, it would be interesting to check other languages
and web servers, such as PHP on an IIS web server, or
Python and Ruby on Rails web applications in Apache.
A problem that is also of theoretical interest is the
development of faster algorithms for recovering trun-
cated linear variables and finding an explanation for
the logarithmic barrier we encountered when experi-
menting with the Héstad-Shamir framework. To con-
clude, despite the fact that linear generators are cryp-
tographically insecure, the fact that developers misuse
them for security critical features makes the analysis
of their practical security within a certain application
context an interesting research question which we be-
lieve needs further attention and awareness.
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Abstract

Vulnerabilities in browser extensions put users at risk by
providing a way for website and network attackers to
gain access to users’ private data and credentials. Exten-
sions can also introduce vulnerabilities into the websites
that they modify. In 2009, Google Chrome introduced
a new extension platform with several features intended
to prevent and mitigate extension vulnerabilities: strong
isolation between websites and extensions, privilege sep-
aration within an extension, and an extension permission
system. We performed a security review of 100 Chrome
extensions and found 70 vulnerabilities across 40 exten-
sions. Given these vulnerabilities, we evaluate how well
each of the security mechanisms defends against exten-
sion vulnerabilities. We find that the mechanisms mostly
succeed at preventing direct web attacks on extensions,
but new security mechanisms are needed to protect users
from network attacks on extensions, website metadata at-
tacks on extensions, and vulnerabilities that extensions
add to websites. We propose and evaluate additional de-
fenses, and we conclude that banning HTTP scripts and
inline scripts would prevent 47 of the 50 most severe vul-
nerabilities with only modest impact on developers.

1 Introduction

Browser extensions can introduce serious security vul-
nerabilities into users’ browsers or the websites that ex-
tensions interact with [20, 32]. In 2009, Google Chrome
introduced a new extension platform with several secu-
rity mechanisms intended to prevent and mitigate ex-
tension vulnerabilities. Safari and Mozilla Firefox have
since adopted some of these mechanisms for their own
extension platforms. In this paper, we evaluate the se-
curity of the widely-deployed Google Chrome extension
platform with the goal of understanding the practical suc-
cesses and failures of its security mechanisms.

Most extensions are written by well-meaning devel-
opers who are not security experts. These non-expert

developers need to build extensions that are robust to at-
tacks originating from malicious websites and the net-
work. Extensions can read and manipulate content from
websites, make unfettered network requests, and access
browser userdata like bookmarks and geolocation. In the
hands of a web or network attacker, these privileges can
be abused to collect users’ private information and au-
thentication credentials.

Google Chrome employs three mechanisms to prevent
and mitigate extension vulnerabilities:

o Privilege separation. Chrome extensions adhere to
a privilege-separated architecture [23]. Extensions
are built from two types of components, which are
isolated from each other: content scripts and core
extensions. Content scripts interact with websites
and execute with no privileges. Core extensions do
not directly interact with websites and execute with
the extension’s full privileges.

e [solated worlds. Content scripts can read and mod-
ify website content, but content scripts and websites
have separate program heaps so that websites can-
not access content scripts’ functions or variables.

e Permissions. Each extension comes packaged with
a list of permissions, which govern access to the
browser APIs and web domains. If an extension has
a core extension vulnerability, the attacker will only
gain access to the permissions that the vulnerable
extension already has.

In this work, we provide an empirical analysis of
these security mechanisms, which together comprise a
state-of-the-art least privilege system. We analyze 100
Chrome extensions, including the 50 most popular ex-
tensions, to determine whether Chrome’s security mech-
anisms successfully prevent or mitigate extension vulner-
abilities. We find that 40 extensions contain at least one
type of vulnerability. Twenty-seven extensions contain
core extension vulnerabilities, which give an attacker full
control over the extension.
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Based on this set of vulnerabilities, we evaluate the
effectiveness of each of the three security mechanisms.
Our primary findings are:

e The isolated worlds mechanism is highly successful
at preventing content script vulnerabilities.

e The success of the isolated worlds mechanism ren-
ders privilege separation unnecessary. However,
privilege separation would protect 62% of exten-
sions if isolated worlds were to fail. In the remain-
ing 38% of extensions, developers either intention-
ally or accidentally negate the benefits of privilege
separation. This highlights that forcing developers
to divide their software into components does not
automatically achieve security on its own.

e Permissions significantly reduce the severity of half
of the core extension vulnerabilities, which demon-
strates that permissions are effective at mitigating
vulnerabilities in practice. Additionally, dangerous
permissions do not correlate with vulnerabilities:
developers who write vulnerable extensions use per-
missions the same way as other developers.

Although these mechanisms reduce the rate and scope
of several classes of attacks, a large number of high-
privilege vulnerabilities remain.

We propose and evaluate four additional defenses. Our
extension review demonstrates that many developers do
not follow security best practices if they are optional, so
we propose four mandatory bans on unsafe coding prac-
tices. We quantify the security benefits and functional-
ity costs of these restrictions on extension behavior. Our
evaluation shows that banning inline scripts and HTTP
scripts would prevent 67% of the overall vulnerabilities
and 94% of the most dangerous vulnerabilities at a rela-
tively low cost for most extensions. In concurrent work,
Google Chrome implemented Content Security Policy
(CSP) for extensions to optionally restrict their own be-
havior. Motivated in part by our study [5], future versions
of Chrome will use CSP to enforce some of the manda-
tory bans that we proposed and evaluated.

Contributions. We contribute the following:

e We establish the rate at which extensions contain
different types of vulnerabilities, which should di-
rect future extension security research efforts.

e We perform the first large-scale study of the ef-
fectiveness of privilege separation when developers
who are not security experts are required to use it.

o Although it has been assumed that permissions mit-
igate vulnerabilities [12, 14, 10], we are the first to
evaluate the extent to which this is true in practice.

e We propose and evaluate new defenses. This study
partially motivated Chrome’s adoption of a new
mandatory security mechanism.

2 Extension Security Background

2.1 Threat Model

In this paper, we focus on non-malicious extensions that
are vulnerable to external attacks. Most extensions are
written by well-meaning developers who are not secu-
rity experts. We do not consider malicious extensions;
preventing malicious extensions requires completely dif-
ferent tactics, such as warnings, user education, security
scans of the market, and feedback and rating systems.
Benign-but-buggy extensions face two types of attacks:

e Network attackers. People who use insecure net-
works (e.g., public WiFi hotspots) may encounter
network attackers [26, 21]. A network attacker’s
goal is to obtain personal information or credentials
from a target user. To achieve this goal, a network
attacker will read and alter HTTP traffic to mount
man-in-the-middle attacks. (Assuming that TLS
works as intended, a network attacker cannot com-
promise HTTPS traffic.) Consequently, data and
scripts loaded over HTTP may be compromised.

If an extension adds an HTTP script — a JavaScript
file loaded over HTTP — to itself, a network attacker
can run arbitrary JavaScript within the extension’s
context. If an extension adds an HTTP script to
an HTTPS website, then the website will no longer
benefit from the confidentiality, integrity, and au-
thentication guarantees of HTTPS. Similarly, insert-
ing HTTP data into an HTTPS website or extension
can lead to vulnerabilities if the untrusted data is al-
lowed to execute as code.

o Web attackers. Users may visit websites that host
malicious content (e.g., advertisements or user com-
ments). A website can launch a cross-site script-
ing attack on an extension if the extension treats the
website’s data or functions as trusted. The goal of
a web attacker is to gain access to browser userdata
(e.g., history) or violate website isolation (e.g., read
another site’s password).

Extensions are primarily written in JavaScript and
HTML, and JavaScript provides several methods for con-
verting strings to code, such as eval and setTimeout.
If used improperly, these methods can introduce code
injection vulnerabilities that compromise the extension.
Data can also execute if it is written to a page as
HTML instead of as text, e.g., through the use of
document .write or document.body.innerHTML. Ex-
tension developers need to be careful to avoid passing
unsanitized, untrusted data to these execution sinks.
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Figure 1: The architecture of a Google Chrome extension.

2.2 Chrome Extension Security Model

Many Firefox extensions have publicly suffered from
vulnerabilities [20, 32]. To prevent this, the Google
Chrome extension platform was designed to protect users
from vulnerabilities in benign-but-buggy extensions [4].
It features three primary security mechanisms:

e Privilege separation. Every Chrome extension is
composed of two types of components: zero or
more content scripts and zero or one core extension.
Content scripts read and modify websites as needed.
The core extension implements features that do not
directly involve websites, including browser UI el-
ements, long-running background jobs, an options
page, etc. Content scripts and core extensions run in
separate processes, and they communicate by send-
ing structured clones over an authenticated channel.
Each website receives its own separate, isolated in-
stance of a given content script. Core extensions can
access Chrome’s extension API, but content scripts
cannot. Figure 1 illustrates the relationship between
components in a Chrome extension.

The purpose of this architecture is to shield the priv-
ileged part of an extension (i.e., the core extension)
from attackers. Content scripts are at the highest
risk of attack because they directly interact with
websites, so they are low-privilege. The sheltered
core extension is higher-privilege. As such, an at-
tack that only compromises a content script does
not pose a significant threat to the user unless the
attack can be extended across the message-passing
channel to the higher-privilege core extension.

1.4% of extensions also include binary plugins in
addition to content scripts and core extensions [12].
Binary plugins are native executables and are not
protected by any of these security mechanisms. We
do not discuss the security of binary plugins in this
paper because they are infrequently used and must
undergo a manual security review before they can
be posted in the Chrome Web Store.

o [solated worlds. The isolated worlds mechanism is
intended to protect content scripts from web attack-
ers. A content script can read or modify a website’s
DOM, but the content script and website have sepa-
rate JavaScript heaps with their own DOM objects.
Consequently, content scripts and websites never
exchange pointers. This should make it more dif-
ficult for websites to tamper with content scripts. !

e Permissions. By default, extensions cannot use
parts of the browser API that impact users’ privacy
or security. In order to gain access to these APIs, a
developer must specify the desired permissions in a
file that is packaged with the extension. For exam-
ple, an extension must request the bookmarks per-
mission to read or alter the user’s bookmarks. Per-
missions also restrict extensions’ use of cross-origin
XMLHttpRequests; an extension needs to specify
the domains that it wants to interact with. Only the
core extension can use permissions. Content scripts
cannot invoke browser APIs or make cross-origin
XHRs.> A content script has only two privileges:
it can access the website it is running on, and send
messages to its core extension.

Permissions are intended to mitigate core extension
vulnerabilities.’> An extension is limited to the per-
missions that its developer requested, so an attacker
cannot request new permissions for a compromised
extension. Consequently, the severity of a vulnera-
bility in an extension is limited to the API calls and
domains that the permissions allow.

! Although isolated worlds separates websites from content scripts,
it not a form of privilege separation; privilege separation refers to tech-
niques that isolate parts of the same application from each other.

2In newer versions of Chrome, content scripts can make cross-
origin XHRs. However, this was not permitted at the time of our study.

3Extension permissions are shown to users during installation, so
they may also have a role in helping users avoid malicious extensions;
however, we focus on benign-but-buggy extensions in this work.
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Google Chrome was the first browser to implement
privilege separation, isolated worlds, and permissions for
an extension system. These security mechanisms were
intended to make Google Chrome extensions safer than
Mozilla Firefox extensions or Internet Explorer browser
helper objects [4]. Subsequently, Safari adopted an iden-
tical extension platform, and Mozilla Firefox’s new Add-
on SDK (Jetpack) privilege-separates extension mod-
ules. All of our study findings are directly applicable to
Safari’s extension platform, and the privilege separation
evaluation likely translates to Firefox’s Add-on SDK.

Contemporaneously with our extension review, the
Google Chrome extension team began to implement
a fourth security mechanism: Content Security Policy
(CSP) for extensions. CSP is a client-side HTML pol-
icy system that allows website developers to restrict what
types of scripts can run on a page [29]. It is intended to
prevent cross-site scripting attacks by blocking the exe-
cution of scripts that have been inserted into pages. By
default, CSP disables inline scripts: JavaScript will not
run if it is in a link, between <script> tags, or in an
event handler. The page’s policy can specify a set of
trusted servers, and only scripts from these servers will
execute. Consequently, any attacker that were to gain
control of a page would only be able to add code from
the trusted servers (which should not lead to harm). CSP
can also restrict the use of eval, XHR, and iframes. In
Chrome, CSP applies to extensions’ HTML pages [28].

3 Extension Security Review

We reviewed 100 Google Chrome extensions from the
official directory. This set is comprised of the 50 most
popular extensions and 50 randomly-selected extensions
from June 2011.* Section 3.1 presents our extension re-
view methodology. Our security review found that 40%
of the extensions contain vulnerabilities, and Section 3.2
describes the vulnerabilities. Section 3.3 presents our ob-
servation that 31% of developers do not follow even the
simplest security best practices. We notified most of the
authors of vulnerable extensions (Section 3.4).

3.1 Methodology

We manually reviewed the 100 selected extensions, using
a three-step security review process:

1. Black-box testing. We exercised each extension’s
user interface and monitored its network traffic to
observe inputs and behavior. We looked for in-
stances of network data being inserted into the

4We excluded four extensions because they included binary plugins;
they were replaced with the next popular or random extensions. The
directory’s popularity metric is primarily based on the number of users.

DOM of a page. After observing an extension, we
inserted malicious data into its network traffic (in-
cluding the websites it interacts with) to test poten-
tial vulnerabilities.

2. Source code analysis. We examined extensions’
source code to determine whether data from an
untrusted source could flow to an execution sink.
After manually reviewing the source code, we
used grep to search for any additional sources or
sinks that we might have missed. For sources,
we looked for static and dynamic script inser-
tion, XMLHttpRequests, cookies, bookmarks, and
reading websites” DOMs. For sinks, we looked
for uses of eval, setTimeout, document.write,
innerHTML, etc. We then manually traced the call
graph to find additional vulnerabilities.

3. Holistic testing. We matched extensions’ source
code to behaviors we identified during black-box
testing. With our combined knowledge of an ex-
tension’s source code, network traffic, and user in-
terface, we attempted to identify any additional be-
havior that we had previously missed.

We then verified that all of the vulnerabilities could occur
in practice by building attacks. Our goal was to find all
vulnerabilities in every extension.

During our review, we looked for three types of vul-
nerabilities: vulnerabilities that extensions add to web-
sites (e.g., HTTP scripts on HTTPS websites), vulnera-
bilities in content scripts, and vulnerabilities in core ex-
tensions. Some content script vulnerabilities may also
be core extension vulnerabilities, depending on the ex-
tensions’ architectures. Core extension vulnerabilities
are the most severe because the core is the most privi-
leged extension component. We do not report vulnera-
bilities if the potential attacker is a trusted website (e.g.,
https://mail.google.com) and the potentially mali-
cious data is not user-generated; we do not believe that
well-known websites are likely to launch web attacks.

After our manual review, we applied a well-known
commercial static analysis tool to six extensions, with
custom rules. However, our manual review identified
significantly more vulnerabilities, and the static analysis
tool did not find any additional vulnerabilities because of
limitations in its ability to track strings. Prior research
has similarly found that a manual review by experts un-
covers more bugs than static analysis tools [30]. Our
other alternative, VEX [3], was not built to handle several
of the types of attacks that we reviewed. Consequently,
we did not pursue static analysis further.
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Web Network
Vulnerable Component Attacker Attacker
Core extension 5 50
Content script 3 1
Website 6 14

Table 1: 70 vulnerabilities, by location and threat model.

Vulnerable Component  Popular Random  Total
Core extension 12 15 27
Content script 1 2 3
Website 11 6 17
Any 22 18 40

Table 2: The number of extensions with vulnerabilities,
of 50 popular and 50 randomly-selected extensions.

3.2 Vulnerabilities

We found 70 vulnerabilities across 40 extensions. The
appendix identifies the vulnerable extensions. Table 1
categorizes the vulnerabilities by the location of the vul-
nerability and the type of attacker that could exploit it.
More of the vulnerabilities can be leveraged by a net-
work attacker than by a web attacker, which reflects the
fact that two of the Chrome extension platform’s secu-
rity measures were primarily designed to prevent web at-
tacks. A bug may be vulnerable to both web and network
attacks; we count it as a single vulnerability but list it in
both categories in Table 1 for illustrative purposes.

The vulnerabilities are evenly distributed between
popular and randomly-selected extensions. Table 2
shows the distribution. Although popular extensions are
more likely to be professionally written, this does not
result in a lower vulnerability rate in the set of popular
extensions that we examined. We hypothesize that pop-
ular extensions have more complex communication with
websites and servers, which increases their attack sur-
face and neutralizes the security benefits of having been
professionally developed. The most popular vulnerable
extension had 768, 154 users in June 2011.

3.3 Developer Security Effort

Most extension developers are not security experts.
However, there are two best practices that a security-
conscious extension developer can follow without any
expertise. First, developers can use HTTPS instead of
HTTP when it is available, to prevent a network attacker
from inserting data or code into an extension. Second,
developers can use innerText instead of innerHTML
when adding untrusted, non-HTML data to a page;
innerText does not allow inline scripts to execute. We
evaluate developers’ use of these best practices in order
to determine how security-conscious they are.

We find that 31 extensions contain at least one vulner-
ability that was caused by not following these two sim-
ple best practices. This demonstrates that a substantial
fraction of developers do not make use of optional se-
curity mechanisms, even if the security mechanisms are
very simple to understand and use. As such, we advocate
mandatory security mechanisms that force developers to
follow best security practices (Section 7).

3.4 Author Notification

We disclosed the extensions’ vulnerabilities to all of the
developers that we were able to contact. We found con-
tact information for 80% of the vulnerable extensions.’
Developers were contacted between June and September
2011, depending on when we completed each review. We
sent developers follow-up e-mails if they did not respond
to our initial vulnerability disclosure within a month.

Of the 32 developers that we contacted, 19 acknowl-
edged and fixed the vulnerabilities in their extensions,
and 7 acknowledged the vulnerabilities but have not
completely fixed them as of February 7, 2012. Two of
the un-patched extensions are official Google extensions.
As requested, we provided guidance on how the security
bugs could be fixed. None of the developers disputed the
legitimacy of the vulnerabilities, although one developer
argued that a vulnerability was too difficult to fix.

The appendix identifies the extensions that have been
fixed. However, the “fixed” extensions are not necessar-
ily secure despite our review. While checking on the sta-
tus of vulnerabilities, we discovered that developers of
several extensions have introduced new security vulner-
abilities that were not present during our initial review.
We do not discuss the new vulnerabilities in this paper.

4 Evaluation of Isolated Worlds

The isolated worlds mechanism is intended to pro-
tect content scripts from malicious websites, includ-
ing otherwise-benign websites that have been altered by
a network attacker. We evaluate whether the isolated
worlds mechanism is sufficient to protect content scripts
from websites. Our security review indicates that iso-
lated worlds largely succeeds: only 3 of the 100 exten-
sions have content script vulnerabilities, and only 2 of
the vulnerabilities allow arbitrary code execution.

Developers face four main security challenges when
writing extensions that interact with websites. We dis-
cuss whether and how well the isolated worlds mecha-
nism helps prevent these vulnerability classes.

SFor the remaining 20%, contact information was unavailable, the
extension had been removed from the directory, or we were unable to
contact the developer in a language spoken by the developer.
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Data as HTML. One potential web development mis-
take is to insert untrusted data as HTML into a page,
thereby allowing untrusted data to run as code. The iso-
lated worlds mechanism mitigates this type of error in
content scripts. When a content script inserts data as
HTML into a website, any scripts in the data are executed
within the website’s isolated world instead of the exten-
sion’s. This means that an extension can read data from a
website’s DOM, edit it, and then re-insert it into the page
without introducing a content script vulnerability. Alter-
nately, an extension can copy data from one website into
another website. In this case, the extension will have in-
troduced a vulnerability into the edited website, but the
content script itself will be unaffected.

We expect that content scripts would exhibit a higher
vulnerability rate if the isolated worlds mechanism did
not mitigate data-as-HTML bugs. Six extensions’ con-
tent scripts contained data-as-HTML errors that resulted
in web site vulnerabilities, instead of the more-dangerous
content script vulnerabilities. Furthermore, we found
that 20 of the 50 (40%) core extension vulnerabilities are
caused by inserting untrusted data into HTML; core ex-
tensions do not have the benefit of the isolated worlds
mechanism to ameliorate this class of error. Since it is
unlikely that developers exercise greater caution when
writing content scripts than when writing core exten-
sions, we conclude that the isolated worlds mechanism
reduces the rate of content script vulnerabilities by miti-
gating data-as-HTML errors.

Eval. Developers can introduce vulnerabilities into their
extensions by using eval to execute untrusted data. If an
extension reads data from a website’s DOM and evals
the data in a content script, the resulting code will run in
the content script’s isolated world. As such, the isolated
worlds mechanism does not prevent or mitigate vulnera-
bilities due to the use of eval in a content script.

We find that relatively few developers use eval, possi-
bly because its use has been responsible for well-known
security problems in the past [8, 27]. Only 14 extensions
use eval or equivalent constructs to convert strings to
code in their content scripts, and most of those use it
only once in a library function. However, we did find
two content script vulnerabilities that arise because of an
extension’s use of eval in its content script. For exam-
ple, the Blank Canvas Script Handler extension can be
customized with supplemental scripts, which the exten-
sion downloads from a website and evals in a content
script. Although the developer is intentionally running
data from the website as code, the integrity of the HTTP
website that hosts the supplemental scripts could be com-
promised by a network attacker.

Click Injection. Extensions can register event handlers
for DOM elements on websites. For example, an ex-
tension might register a handler for a button’s onClick
event. However, extensions cannot differentiate between
events that are triggered by the user and events that are
generated by a malicious web site. A website can launch
a click injection attack by invoking an extension’s event
handler, thereby tricking the extension into performing
an action that was not requested by the user. Although
this attack does not allow the attacker to run arbitrary
code in the vulnerable content script, it does allow the
website to control the content script’s behavior.

The isolated worlds mechanism does not prevent or
mitigate click injection attacks at all. However, the at-
tack surface is small because relatively few extensions
register event handlers for websites’ DOM elements. Of
the 17 extensions that register event handlers, most are
for simple buttons that toggle Ul state. We observed only
one click injection vulnerability, in the Google Voice ex-
tension. The extension changes phone numbers on web-
sites into links. When a user clicks a phone number
link, Google Voice inserts a confirmation dialog onto the
DOM of the website to ensure that the user wants to place
a phone call. Google Voice will place the call following
the user’s confirmation. However, a malicious website
could fire the extension’s event handlers on the link and
confirmation dialog, thereby placing a phone call from
the user’s Google Voice account without user consent.

Prototypes and Capabilities. In the past, many vulner-
abilities due to prototype poisoning and capability leaks
have been observed in bookmarklets and Firefox exten-
sions [20, 32, 2]. The isolated worlds mechanism pro-
vides heap separation, which prevents both of these types
of attacks. Regardless of developer behavior, these at-
tacks are not possible in Chrome extensions as long as
the isolation mechanism works correctly.

Based on our security review, the isolated worlds
mechanism is highly effective at shielding content scripts
from malicious websites. It mitigates data-as-HTML er-
rors, which we found were very common in the Chrome
extensions that we reviewed. Heap separation also pre-
vents prototype poisoning and capability leaks, which are
common errors in bookmarklets and Firefox extensions.
Although the isolated worlds mechanism does not pre-
vent click injection or eval-based attacks, we find that
developers rarely make these mistakes. We acknowledge
that our manual review could have missed some content
script vulnerabilities. However, we find it unlikely that
we could have missed many, given our success at find-
ing the same types of vulnerabilities in core extensions.
We therefore conclude that the isolated worlds mecha-
nism is effective, and other extension platforms should
implement it if they have not yet done so.
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5 [Evaluation of Privilege Separation

Privilege separation is intended to shield the privileged
core extension from attacks. The isolated worlds mecha-
nism serves as the first line of defense against malicious
websites, and privilege separation is supposed to protect
the core extension when isolated worlds fails. We eval-
uate the effectiveness of extension privilege separation
and find that, although it is unneeded, it would be par-
tially successful at accomplishing its purpose if the iso-
lated worlds mechanism were to fail.

5.1 Cross-Component Vulnerabilities

Some developers give content scripts access to core
extension permissions, which removes the defense-in-
depth benefits of privilege separation. We evaluate the
impact of developer behavior on the effectiveness of ex-
tension privilege separation.

Vulnerable Content Scripts. The purpose of privilege
separation is to limit the impact of content script vulner-
abilities. Even if a content script is vulnerable, privi-
lege separation should prevent an attacker from execut-
ing code with the extension’s permissions. We iden-
tified two extensions with content script vulnerabilities
that permit arbitrary code execution; these two exten-
sions could benefit from privilege separation.

Despite privilege separation, both of the vulnerabili-
ties yield access to some core extension privileges. The
vulnerable content scripts can send messages to their
respective core extensions, requesting that the core ex-
tensions exercise their privileges. In both extensions,
the core extension makes arbitrary XHRs on behalf of
the content script and returns the result to the content
script. This means that the two vulnerable content scripts
could trigger arbitrary HTTP XHRs even though con-
tent scripts should not have access to a cross-origin
XMLHttpRequest object. These vulnerable extensions
represent a partial success for privilege separation be-
cause the attacker cannot gain full privileges, but also
a partial failure because the attacker can gain the ability
to make cross-origin XHRs.

Hypothetical Vulnerabilities. Due to the success of
the isolated worlds mechanism, our set of vulnerabilities
only includes two extensions that need privilege separa-
tion as a second line of defense. To expand the scope of
our evaluation of privilege separation, we explore a hy-
pothetical scenario: if the currently-secure extensions’
content scripts had vulnerabilities, would privilege sepa-
ration mitigate these vulnerabilities?

Of the 98 extensions that do not have content script
vulnerabilities, 61 have content scripts. We reviewed the
message passing boundary between these content scripts

Permissions Number of Scripts
All of the extension’s permissions 4
Partial: Cross-origin XHRs? 9
Partial: Tab control 5
Partial: Other 5

Table 3: 61 extensions have content scripts that do not
have code injection vulnerabilities. If an attacker were
hypothetically able to compromise the content scripts,
these are the permissions that the attacker could gain ac-
cess to via the message-passing channel with the cores.

and their core extensions. We determined that 38% of
content scripts can leverage communication with their
core extensions to abuse some core extension privileges:
4 extensions’ content scripts can use all of their cores’
permissions, and 19 can use some of their cores’ permis-
sions. Table 3 shows which permissions attackers would
be able to obtain via messages if they were able to com-
promise the content scripts. This demonstrates that privi-
lege separation could be a relatively effective layer of de-
fense, if needed: we can expect that privilege separation
would be effective at limiting the damage of a content
script vulnerability 62% of the time.

Example. The AdBlock extension allows its content
script to execute a set of pre-defined functions in the core
extension. To do this, the content script sends a mes-
sage to the core extension. A string in the message is
used to index the window object, allowing the content
script to select a pre-defined function to run. Unfortu-
nately, this also permits arbitrary code execution because
the window object provides access to eval. As such,
a compromised content script would have unfettered ac-
cess to the core extension’s permissions.

Example. A bug in the Web Developer extension unin-
tentionally grants its content script full privileges. Its
content script can post small notices to the popup page,
which is part of the core extension. The notices are in-
serted using innerHTML. The notices are supposed to be
text, but a compromised content script could send a no-
tice with an inline script that would execute in the popup
page with full core extension permissions.

5.2 Web Site Metadata Vulnerabilities

The Chrome extension platform applies privilege separa-
tion with the expectation that malicious website data will
first enter an extension via a vulnerable content script.
However, it is possible for a website to attack a core ex-
tension without crossing the privilege separation bound-
ary. Website-controlled metadata such as titles and URLs
can be accessed by the core extension through browser
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Type Vulnerabilities
‘Website content 2
Website metadata 5
HTTP XHR 16
HTTP script 28
Total 50

Table 4: The types of core extension vulnerabilities.

managers (e.g., the history, bookmark, and tab man-
agers). This metadata may include inline scripts, and
mishandled metadata can lead to a core extension vulner-
ability. Website metadata does not flow through content
scripts, so privilege separation does not impede it. We
identified five vulnerabilities from metadata that would
allow an attacker to circumvent privilege separation.

Example. The Speeddial extension replicates Chrome’s
built-in list of recently closed pages. Speeddial keeps
track of the tabs opened using the tabs manager and does
not sanitize the titles of these pages before adding them
to the HTML of one of its core extension pages. If a title
were to contain an inline script, it would execute with the
core extension’s permissions.

5.3 Direct Network Attacks

Privilege separation is intended to protect the core exten-
sion from web attackers and HTTP websites that have
been compromised by network attackers. However, the
core extension may also be subject to direct network at-
tacks. Nothing separates a core extension from code
in HTTP scripts or data in HTTP XMLHttpRequests.
HTTP scripts in the core extension give a network at-
tacker the ability to execute code with the extension’s
full permissions, and HTTP XHRs cause vulnerabilities
when extensions allow the HTTP data to execute.

Direct network attacks comprise the largest class
of core extension vulnerabilities, as Table 4 illus-
trates. Of the 50 core extension vulnerabilities, 44 vul-
nerabilities (88%) stem from HTTP scripts or HTTP
XMLHttpRequests, as opposed to website data. For ex-
ample, many extensions put the HTTP version of the
Google Analytics script in the core extension to track
which of the extensions’ features are used.

Example. Google Dictionary allows a user to look up
definitions of words by double clicking on a word. The
desired definition is fetched by making a HTTP request
to google.com servers. The response is inserted into
one of the core extension’s pages using innerHTML. A
network attacker could modify the response to contain
malicious inline scripts, which would then execute as
part of the privileged core extension page.

5.4 Implications

The isolated worlds mechanism is so effective at protect-
ing content scripts from websites that privilege separa-
tion is rarely needed. As such, privilege separation is
used to address a threat that almost does not exist, at
the cost of increasing the complexity and performance
overhead of extensions. (Privilege separation requires an
extra process for each extension, and communication be-
tween content scripts and core extensions is IPC.) We
find that network attackers are the real threat to core ex-
tension security, but privilege separation does not miti-
gate or prevent these attacks. This shows that although
privilege separation can be a powerful security mecha-
nism [23], its placement within an overall system is an
important determining factor of its usefulness.

Our study also has implications for the use of privi-
lege separation in other contexts. All Chrome extension
developers are required to privilege separate their exten-
sions, which allows us to evaluate how well developers
who are not security experts use privilege separation. We
find that privilege separation would be fairly effective at
preventing web attacks in the absence of isolated worlds:
privilege separation would fully protect 62% of core ex-
tensions. However, in more than a third of extensions,
developers created message passing channels that allow
low-privilege code to exploit high-privilege code. This
demonstrates that forcing developers to privilege sepa-
rate their software will improve security in most cases,
but a significant fraction of developers will accidentally
or intentionally negate the benefits of privilege separa-
tion. Mandatory privilege separation could be a valuable
line of defense for another platform, but it should not be
relied on as the only security mechanism; it should be
coupled with other lines of defense.

6 Evaluation of the Permission System

The Chrome permission system is intended to reduce
the severity of core extension vulnerabilities. If a web-
site or network attacker were to successfully inject mali-
cious code into a core extension, the severity of the at-
tack would be limited by the extension’s permissions.
However, permissions will not mitigate vulnerabilities
in extensions that request many dangerous permissions.
We evaluate the extent to which permissions mitigate the
core extension vulnerabilities that we found.

Table 5 lists the permissions that the vulnerable ex-
tensions request. Ideally, each permission should be re-
quested infrequently. We find that 70% of vulnerable ex-
tensions request the tabs permission; an attacker with
access to the tabs API can collect a user’s browsing his-
tory or redirect pages that a user views. Fewer than half
of extensions request each of the other permissions.
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Permissions Times Requested  Percentage
tabs (browsing history) 19 70%
all HTTP domains 12 44%
all HTTPS domains 12 44%
specific domains 10 37%
notifications 5 19%
bookmarks 4 15%
no permissions 4 15%
cookies 3 11%
geolocation 1 4%
context menus 1 4%
unlimited storage 1 4%

Table 5: The permissions that are requested by the 27
extensions with core extension vulnerabilities.

High
1% -

44%

Medium
30%

Figure 2: The 27 extensions with core vulnerabilities,
categorized by the severity of their worst vulnerabilities.

To summarize the impact of permissions on extension
vulnerabilities, we categorized all of the vulnerabilities
by attack severity. We based our categorization on the
Firefox Security Severity Ratings [1], which has been
previously used to classify extension privileges [4]:

e Critical: Leaks the permission to run arbitrary code
on the user’s system

o High: Leaks permissions for the DOM of all
HTTP(S) websites

e Medium: Leaks permissions for private user data
(e.g., history) or the DOM of specific websites that
contain financial or important personal data (e.g.,
https://*.google.com/*)

e Low: Leaks permissions for the DOM of spe-
cific websites that do not contain sensitive data
(e.g., http://*.espncricinfo.com) or permis-
sions that can be used to annoy the user (e.g., fill up
storage or make notifications)

e None: Does not leak any permissions

We did not find any critically-vulnerable extensions.
This is a consequence of our extension selection method-
ology: we did not review any extensions with binary plu-
gins, which are needed to obtain critical privileges.
Figure 2 categorizes the 27 vulnerable extensions by
their most severe vulnerabilities. In the absence of a per-
mission system, all of the vulnerabilities would give an

attacker access to all of the browser’s privileges (i.e., crit-
ical privileges). With the permission system, less than
half of the vulnerable extensions yield access to high-
severity permissions. As such, our study demonstrates
that the permission system successfully limits the sever-
ity of most vulnerabilities.

We hypothesized that permissions would positively
correlate with vulnerabilities. Past work has shown that
many extensions are over-permissioned [12, 14], and we
thought that developers who are unwilling to follow se-
curity best practices (e.g., use HTTPS) would be unwill-
ing to take the time to specify the correct set of permis-
sions. This would result in vulnerable extensions re-
questing dangerous permissions at a higher rate. How-
ever, we do not find any evidence of a positive correlation
between vulnerabilities and permissions. The 27 exten-
sions with core vulnerabilities requested permissions at
a lower rate than the other 73 extensions, although the
difference was not statistically significant. Our results
show that developers of vulnerable extensions can use
permissions well enough to reduce the privileges of their
insecure extensions, even though they lack the expertise
or motivation required to secure their extensions.

Permissions are not only used by the Google Chrome
extension system. Android implements a similar permis-
sion system, and future HTMLS5 device APIs will likely
be guarded with permissions. Although it has been as-
sumed that permissions mitigate vulnerabilities [10, 12,
14], our study is the first to evaluate whether this is true
for real-world vulnerabilities or measure quantitatively
how much it helps mitigate these vulnerabilities in prac-
tice. Our findings indicate that permissions can have a
significant positive impact on system security and are
worth including in a new platform as a second line of
defense against attacks. However, they are not effective
enough to be relied on as the only defense mechanism.

7 Defenses

Despite Google Chrome’s security architecture, our se-
curity review identified 70 vulnerabilities in 40 exten-
sions. Based on the nature of these vulnerabilities, we
propose and evaluate four additional defenses. The de-
fenses are bans on unsafe coding practices that lead to
vulnerabilities. We advocate mandatory bans on unsafe
coding practices because many developers do not fol-
low security best practices when they are optional (Sec-
tion 3.3). We quantify the security benefits and com-
patibility costs of each of these defenses to determine
whether they should be adopted. Our main finding is that
a combination of banning HTTP scripts and banning in-
line scripts would prevent 94% of the core extension vul-
nerabilities, with only a small amount of developer effort
to maintain full functionality in most cases.
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In concurrent work, Google Chrome implemented
Content Security Policy (CSP) for extensions. CSP can
be used to enforce all four of these defenses. Initially,
the use of CSP was wholly optional for developers. As
of Chrome 18, extensions that take advantage of new fea-
tures will be subject to a mandatory policy; this change
was partially motivated by our study [5].

7.1 Banning HTTP Scripts

Scripts fetched over HTTP are responsible for half of the
vulnerabilities that we found. All of these vulnerabili-
ties could be prevented by not allowing extensions to add
HTTP scripts to their core extensions [15] or to HTTPS
websites. Extensions that currently violate this restric-
tion could be easily modified to comply by packaging the
script with the extension or using a HTTPS URL. Only
vulnerable extensions would be affected by the ban be-
cause any extension that uses HTTP scripts will be vul-
nerable to man-in-the-middle attacks.

Core Extension Vulnerabilities. Banning HTTP scripts
from core extensions would remove 28 core extension
vulnerabilities (56% of the total core extension vulner-
abilities) from 15 extensions. These 15 extensions load
HTTP scripts from 13 domains, 10 of which already offer
the same script over HTTPS. The remaining 3 scripts are
static files that could be downloaded once and packaged
with the extensions.

Website Vulnerabilities. Preventing extensions from
adding HTTP scripts to HTTPS websites would re-
move 8 website vulnerabilities from 8 extensions (46%
of the total website vulnerabilities). These vulnerabili-
ties allow a network attacker to circumvent the protec-
tion that HTTPS provides for websites. The extensions
load HTTP scripts from 7 domains, 3 of which offer an
HTTPS option. The remaining 4 scripts are static scripts
that could be packaged with the extensions.

7.2 Banning Inline Scripts

Untrusted data should not be added to pages as
HTML because it can contain inline scripts (e.g., in-
line event handlers, links with embedded JavaScript, and
<script> tags). For example, untrusted data could
contain an image tag with an inline event handler:
<img onload="doEvil();" ...>. We find that 40%
of the core extension vulnerabilities are caused by adding
untrusted data to pages as HTML. These vulnerabilities
could be prevented by not allowing any inline scripts to
execute: the untrusted data will still be present as HTML,
but it would be static. JavaScript will only run on a page
ifitis in a separate . js file that is stored locally or loaded
from a trusted server that the developer has whitelisted.

Banning inline scripts from extension HTML would
eliminate 20 vulnerabilities from 15 extensions. All of
these vulnerabilities are core extension vulnerabilities.
Content script vulnerabilities cannot be caused by inline
scripts, and we cannot prevent extensions from adding
inline scripts to HTTPS websites because existing en-
forcement mechanisms cannot differentiate between a
website’s own inline scripts and extension-added scripts.

However, banning inline scripts has costs. Developers
use legitimate inline scripts for several reasons, such as
to define event handlers. In order to maintain function-
ality despite the ban, all extensions would need to delete
their inline scripts from HTML and move them to sepa-
rate . js files. Inline event handlers (e.g., onclick) can-
not simply be copied and pasted; they need to be rewrit-
ten as programmatically using the DOM APL

We reviewed the 100 extensions to determine what
changes would be needed to comply with a ban on in-
line scripts. Applying this ban breaks 79% of the exten-
sions. However, all of the extensions could be retrofitted
to work without inline scripts without significant changes
to the extension. Most of the compatibility costs pertain
to moving the extensions’ inline event handlers. The ex-
tensions contain an average of 7 event handlers, with a
maximum of 98 and a minimum of 0 event handlers.

7.3 Banning Eval

Dynamic code generation converts strings to code, and
its use can lead to vulnerabilities if the strings are un-
trusted data. Disallowing the use of dynamic code gen-
eration (e.g., eval and setTimeout) would eliminate
three vulnerabilities: one core extension vulnerability,
and two vulnerabilities that are both content script and
core extension vulnerabilities.

We reviewed the 100 extensions and find that dynamic
code generation is primarily used in three ways:

1. Developers sometimes pass static strings to
setTimeout instead of functions. This coding pat-
tern cannot be exploited. It would be easy to alter
instances of this coding pattern to comply with a
ban on dynamic code generation; the strings simply
need to be replaced with equivalent functions.

2. Some developers use eval on data instead of
JSON.parse. We identified one vulnerability that
was caused by this practice. In the absence of dy-
namic code generation, developers could simply use
the recommended JSON . parse.

3. Two extensions use eval to run user-specified
scripts that extend the extensions. In both cases,
their error is that they fetch the extra scripts over
HTTP instead of HTTPS. For these two extensions,
a ban on eval would prevent the vulnerabilities but
irreparably break core features of the extensions.
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Security Broken, Broken And
Restriction Benefit But Fixable Unfixable
No HTTP scripts in core 15% 15% 0%
No HTTP scripts on HTTPS websites 8% 8% 0%
No inline scripts 15% 79% 0%
No eval 3% 30% 2%
No HTTP XHRs 17% 29% 14%
All of the above 35% 86% 16%
No HTTP scripts and no inline scripts 32% 80% 0%
Chrome 18 policy 27% 85% 2%

Table 6: The percentage of the 100 extensions that would be affected by the restrictions. The “Security Benefit”

column shows the number of extensions that would be fixed by the corresponding restriction.

Richards et al. present additional uses of eval in a large-
scale study of web applications [24].

We find that 32 extensions would be broken by a ban
on dynamic code generation. Most instances can easily
be replaced, but 2 extensions would be permanently bro-
ken. Overall, a ban on eval would fix three vulnerabili-
ties at the cost of fundamentally breaking two extensions.

7.4 Banning HTTP XHR

Network attacks can occur if untrusted data from
an HTTP XMLHttpRequest is allowed to flow to a
JavaScript execution sink. 30% of the 70 vulnerabilities
are caused by allowing data from HTTP XHRs to exe-
cute. One potential defense is to disallow HTTP XHRs;
all XHRs would have to use HTTPS. This ban would re-
move vulnerabilities from 17 extensions.

However, banning HTTP XHRs would have a high
compatibility cost. The only way to comply with an
HTTPS-only XHR policy is to ensure that the server sup-
ports HTTPS; unlike scripts, remote data cannot be pack-
aged with extensions. Developers who do not control
the servers that their extensions interact with will not be
able to adapt their extensions. Extension developers who
also control the domains may be able to add support for
HTTPS, although this can be a prohibitively expensive
and difficult process for a novice developer.

We reviewed the 100 extensions and found that 29%
currently make HTTP XHRs. All of these would need
to be changed to use HTTPS XHRs. However, not all of
the domains offer HTTPS. Ten extensions request data
from at least one HTTP-only domain. Additionally, four
extensions make HTTP XHRs to an unlimited number of
domains based on URLs provided by the user; these ex-
tensions would have permanently reduced functionality.
For example, Web Developer lets users check whether a
website is valid HTML. It fetches the user-specified web-
site with an XHR and then validates it. Under a ban on
HTTP XHRs, the extension would not be able to validate
HTTP websites. In total, 14% of extensions would have
some functionality permanently disabled by the ban.

7.5 Recommendations

Table 6 summarizes the benefits and costs of the de-
fenses. If the set of 100 extensions were subject to all
four bans, only 5 vulnerable extensions would remain,
and 16 extensions would be permanently broken. Based
on this evaluation, we conclude:

e We strongly recommend banning HTTP scripts and
inline scripts; together, they would prevent 47 of the
50 core extension vulnerabilities, and no extension
would be permanently broken. The developer effort
required to comply with these restrictions is modest.

e Banning eval would have a neutral effect: neither
the security benefits nor the costs are large. Conse-
quently, we advise against banning eval.

e We do not recommend banning HTTP XHRs, given
the number of extensions that would be permanently
disabled by the ban. Of the 20 vulnerabilities that
the ban on HTTP XHRs would prevent, 70% could
also be prevented by banning inline scripts. We do
not feel that the ban on HTTP XHRs adds enough
value to justify breaking 14% of extensions.

Starting with Chrome 18, extensions will be subject to
a CSP that enforces some of these bans [13]. Our study
partially motivated their decision to adopt the bans [5],
although the policy that they adopted is slightly stricter
than our recommendations. The mandatory policy in
Chrome 18 will ban HTTP scripts in core extensions, in-
line scripts, and dynamic code generation. Due to tech-
nical limitations, they are not adopting a ban on adding
HTTP scripts to HTTPS websites. The policy will re-
move all of the core extension vulnerabilities that we
found. The only extensions that the policy will perma-
nently break are the two extensions that rely on eval.
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8 Related Work

Extension vulnerabilities. To our knowledge, our work
is the first to evaluate the efficacy of the Google Chrome
extension platform, which is widely deployed and ex-
plicitly designed to prevent and mitigate extension vul-
nerabilities. Vulnerabilities in other extension platforms,
such as Firefox, have been investigated by previous re-
searchers [20, 3]. We found that 40% of Google Chrome
extensions are vulnerable, which is in contrast to a pre-
vious study that found that 0.24% of Firefox extensions
contain vulnerabilities [3]. This does not necessarily im-
ply that Firefox extensions are more secure; rather, our
scopes and methodologies differ. Unlike the previous
study, we considered network attackers as well as web
attackers. We find that 5% of Google Chrome exten-
sions have the types of web vulnerabilities that the pre-
vious study covered. The remaining discrepancy could
be accounted for by our methodology: we employed ex-
pert human reviewers whereas previous work relied on
a static analysis tool that does not model dynamic code
evaluation, data flow through the extension API, data
flow through DOM APIs, or click injection attacks.

Privilege separation. Privilege separation is a fundamen-
tal software engineering principle proposed by Saltzer
and Schroeder [25]. Numerous works have applied this
concept to security, such as OpenSSH [23] and gmail [6].
Recently, researchers have built several tools and frame-
works to help developers privilege separate their appli-
cations [7, 11, 17, 18, 22]. Studies have established that
privilege separation has value in software projects that
employ security experts (e.g., browsers [9]). However,
we focus on the effectiveness of privilege separation in
applications that are not written by security experts.

In concurrent and independent work, Karim et al. stud-
ied the effectiveness of privilege separation in Mozilla
Jetpack extensions [16]. Like Chrome extensions, Jet-
pack extensions are split into multiple components with
different permissions. They statically analyzed Jetpack
extensions and found several capability leaks in mod-
ules. Although none of these capability leaks are tied to
known vulnerabilities, the capability leaks demonstrate
that developers can make errors in a privilege-separated
environment. Their findings support the results of our
analysis of privilege separation in Chrome extensions.

Extension permissions. Previous researchers have es-
tablished that permissions can reduce the privileges of
extensions without negatively impacting the extensions’
functionality [4, 12]. Studies have also shown that some
extensions request unnecessary permissions, which is
undesirable because it unnecessarily increases the scope
of a potential vulnerability [12, 14]. All of these past
studies asserted that the correct usage of permissions

could reduce the severity of attacks on extensions. How-
ever, they did not study whether this is true in practice
or quantify the benefit for deployed applications. To our
knowledge, we are the first to test whether permissions
mitigate vulnerabilities in practice.

CSP compatibility. Adapting websites to work with CSP
can be a challenging undertaking for developers, primar-
ily due to the complexities associated with server-side
templating languages [31]. However, extensions do not
use templating languages. Consequently, applying CSP
to extensions is easier than applying it to websites in
most cases. We expect that our CSP compatibility find-
ings for extensions will translate to packaged JavaScript
and packaged web applications.

Malicious extensions.  Extension platforms can be
used to build malware (e.g., FFsniFF and Infos-
tealer.Snifula [33]). Mozilla and Google employ several
strategies to prevent malicious extensions, such as do-
main verification, fees, and security reviews. Liu et al.
propose changes to Chrome to make malware easier to
identify [19]. Research on extension malware is orthog-
onal to our work, which focuses on external attackers that
leverage vulnerabilities in benign-but-buggy extensions.

9 Conclusion

We performed a security review on a set of 100 Google
Chrome extensions, including the 50 most popular, and
found that 40% have at least one vulnerability. Based
on this set of vulnerabilities, we evaluated the effective-
ness of Chrome’s three extension security mechanisms:
isolated worlds, privilege separation, and permissions.
We found that the isolated worlds mechanism is highly
effective because it prevents common developer errors
(i.e., data-as-HTML errors). The effectiveness of iso-
lated worlds means that privilege separation is rarely
needed. Privilege separation’s infrequent usefulness may
not justify the complexity and communication overhead
that it adds to extensions. However, our study shows that
privilege separation would improve security in the ab-
sence of isolated worlds. We also found that permissions
can have a significant positive impact on system security;
developers of vulnerable extensions can use permissions
well enough to reduce the scope of their vulnerabilities.
Although we demonstrated that privilege separation
and permissions can mitigate vulnerabilities, developers
do not always use them optimally. We identified sev-
eral instances in which developers accidentally negated
the benefits of privilege separation or intentionally cir-
cumvented the privilege separation boundary to imple-
ment features. Similarly, extensions sometimes ask for
more permissions than they need [12]. Automated tools
for privilege separation and permission assignment could
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help developers better use these security mechanisms,
thereby rendering them even more effective.

Despite the successes of these security mechanisms,
extensions are widely vulnerable. The vulnerabilities oc-
cur because the system was designed to address only one
threat: websites that attack extensions through direct in-
teraction. There are no security mechanisms to prevent
direct network attacks on core extensions, website meta-
data attacks, or attacks on websites that have been altered
by extensions. This finding should serve as a reminder
that multiple threats should be considered when initially
designing a system. We propose to prevent these addi-
tional threats by banning insecure coding practices that
commonly lead to vulnerabilities; bans on HTTP scripts
and inline scripts would remove 94% of the most serious
attacks with a tractable developer cost.
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A. List of Extensions

We selected 100 extensions from the official Chrome ex-
tension directory. We have coded extensions as follows:
vulnerable and fixed (1), vulnerable but not fixed (¥), and
created by Google (*). We last checked whether exten-
sions are still vulnerable on February 7, 2012.

Most Popular Extensions

The 50 most popular extensions (and versions) that we
reviewed are as follows: AdBlock 2.4.6, FB Photo Zoom
1.1105.7.2, FastestChrome - Browse Faster 4.0.67, Ad-
block Plus for Google Chrome? (Beta) 1.1.3", Google
Translate 1.2.3.1%*, Google Dictionary (by Google)
3.0.0%T, Downloads 1, Turn Off the Lights 2.0.0.7,
Google Chrome to Phone Extension 2.3.0%, Firebug Lite
for Google Chrome 1.3.2.97617, Docs PDF/PowerPoint
Viewer (by Google) 3.5%, RSS Subscription Exten-
sion (by Google) 2.1.3*%, Webpage Screenshot 5.27,
Mail Checker Plus for Google Mail 1.2.3.3, Awesome
Screenshot: Capture & Annotate 3.0.4%, Google Voice
(by Google) 2.2.3.4%7, Speed Dial 2.1%, Smooth Ges-
tures 0.15.2, Xmarks Bookmark Sync 1.0.14, Send from
Gmail (by Google) 1.12*, SocialPlus! 2.5.4% Flash-
Block 0.9.31, AddThis - Share & Bookmark (new) 2.17,
WOT 1.1, Add to Amazon Wish List 1.0.0.47, Stumble-
Upon 3.5.18.1%, Google Calendar Checker (by Google)
1.2.1*, Clip to Evernote 5.0.14.9248, Google Quick
Scroll 1.8*, Stylish 0.7, Silver Bird 1.9.7.9%, Smooth-
Scroll 1.0.1, Browser Button for AdBlock 0.0.13, TV
2.0.5, Fast YouTube Search 1.2%, Slideshow 1.2.97, bit.ly
— a simple URL shortener 1.2.1.9, Web Developer
0.3.1, LastPass 1.73.2, SmileyCentral 1.0.0.3%, Select
To Get Maps 1.1.1%, TooManyTabs for Chrome 1.6.5,
Blog This! (by Google) 0.1.1*, TinEye Reverse Im-
age Search 1.1, ESPN Cricinfo 1.8.3", MegaUpload
DownloadHelper 1.2, Forecastfox 2.0.10%, PanicButton
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0.13.17, AutoPager Chrome 0.6.2.12, RapidShare Down-
loadHelper 1.1.1.

Randomly Selected Extensions

The 50 randomly selected extensions (and versions) that
we reviewed are as follows: The Independent 1.7.0.37,
Deposit Files Download Helper 1.2, The Huffington Post
1.0.5%, Bookmarks Menu 3.4.6, X-notifier (Gmail, Hot-
mail, Yahoo, AOL ...) 0.8.2%, SmartVideo For YouTube
0.94, PostRank Extension 0.1.7, Bookmark Sentry
1.6.5%, Print Plus 1.0.5.0%, 4chan 4chrome 9001.47%,
HootSuite Hootlet 1.5, Cortex 1.8.3, ScribeFire 1.7%,
Chrome Dictionary Lite 0.2.6", Taberareloo 2.0.17, SEO
Status Pagerank/Alexa Toolbar 1.6, ChatVibes Facebook
Video Chat! 1.0.7F, PHP Console 2.1.4, Blank Can-
vas Script Handler 0.0.17%, Reddit Reveal 0.2, Greplin
1.7.3, DropBox 1.1.5, Speedtest.or.th 1, Happy Status
1.0.1%, New Tab Favorites 0.1, Ricks Domain Cleaner for
Chrome 1.1.1, Fazedr 1.6, LL Bonus Comics First! 2.2,
Better Reddit 0.0.4, (non-English characters) 1, turl.im
url shortener 1.1, Wooword Bounce 1.2, ntust Library
0.7, me2Mini 0.0.81%, Back to Top 1.1, Favstar Tally by
@paul_shinn 1.0.0.0, ChronoMovie 0.1.0, AutoPagerize
0.3.1, Rlweb’s Bitcoin Generator 0.1, Nooooo button 1%,
The Bass Buttons 1.95, Buttons 1.4, OpenAttribute 0.67,
Nu.nl TV gids 1.1.3%, Hide Sponsored Links in Gmail?
1.4, Short URL 4, Smart Photo Viewer on Facebook
1.3.0.1%, Airline Checkin (mobile) 1.2102, Democracy
Now! 1.1%, Coworkr.net Chrome 0.9.
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Establishing Browser Security Guarantees
through Formal Shim Verification

Dongseok Jang
UC San Diego

Abstract

Web browsers mediate access to valuable private data in
domains ranging from health care to banking. Despite
this critical role, attackers routinely exploit browser vul-
nerabilities to exfiltrate private data and take over the un-
derlying system. We present QUARK, a browser whose
kernel has been implemented and verified in Coq. We
give a specification of our kernel, show that the imple-
mentation satisfies the specification, and finally show
that the specification implies several security properties,
including tab non-interference, cookie integrity and con-
fidentiality, and address bar integrity.

1 Introduction

Web browsers increasingly dominate computer use as
people turn to Web applications for everything from busi-
ness productivity suites and educational software to so-
cial networking and personal banking. Consequently,
browsers mediate access to highly valuable, private data.
Given the browser’s sensitive, essential role, it should be
highly secure and robust in the face of adversarial attack.
Unfortunately, security experts consistently discover
vulnerabilities in all popular browsers, leading to data
loss and remote exploitation. In the annual Pwn20wn
competition, part of the CanSecWest security confer-
ence [4], security experts demonstrate new attacks on up-
to-date browsers, allowing them to subvert a user’s ma-
chine through the click of a single link. These vulnera-
bilities represent realistic, zero-day exploits and thus are
quickly patched by browser vendors. Exploits are also
regularly found in the wild; Google maintains a Vulner-
ability Reward Program, publishing its most notorious
bugs and rewarding the cash to their reporters [2].
Researchers have responded to the problems of
browser security with a diverse range of techniques, from
novel browser architectures [10, 42, 17, 41, 31] and de-
fenses against specific attacks [26, 20, 22, 8, 36] to al-
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ternative security policies [25, 40, 21, 8, 39, 5] and im-
proved JavaScript safety [14, 23, 38, 6, 44]. While all
these techniques improve browser security, the intricate
subtleties of Web security make it very difficult to know
with full certainty whether a given technique works as in-
tended. Often, a solution only “works” until an attacker
finds a bug in the technique or its implementation. Even
in work that attempts to provide strong guarantees (for
example [17, 13, 41, 12]) the guarantees come from ana-
lyzing a model of the browser, not the actual implemen-
tation. Reasoning about such a simplified model eases
the verification burden by omitting the gritty details and
corner cases present in real systems. Unfortunately, at-
tackers exploit precisely such corner cases. Thus, these
approaches still leave a formality gap between the theory
and implementation of a technique.

There is one promising technique that could mini-
mize this formality gap: fully formal verification of the
browser implementation, carried out in the demanding
and foundational context of a mechanical proof assistant.
This severe discipline forces the programmer to specify
precisely how their code should behave and then pro-
vides the tools to formally guarantee that it does, all in
fully formal logic, building from basic axioms up. For
their trouble, the programmer is rewarded with a ma-
chine checkable proof that the implementation satisfies
the specification. With this proof in hand, we can avoid
further reasoning about the large, complex implementa-
tion, and instead consider only the substantially smaller,
simpler specification. In order to believe that such a
browser truly satisfies its specification, one needs only
trust a very small, extensively tested proof checker. By
reasoning about the actual implementation directly, we
can guarantee that any security properties implied by the
specification will hold in every case, on every run of the
actual browser.

Unfortunately, formal verification in a proof assistant
is tremendously difficult. Often, those systems which we
can formally verify are severely restricted, “toy” versions
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of the programs we actually have in mind. Thus, many
researchers still consider full formal verification of real-
istic, browser-scale systems an unrealistic fantasy. Fortu-
nately, recent advances in fully formal verification allow
us to begin challenging this pessimistic outlook.

In this paper we demonstrate how formal shim verifi-
cation radically reduces the verification burden for large
systems to the degree that we were able to formally
verify the implementation of a modern Web browser,
QUARK, within the demanding and foundational context
of the mechanical proof assistant Coq.

At its core, formal shim verification addresses the
challenge of formally verifying a large system by clev-
erly reducing the amount of code that must be con-
sidered; instead of formalizing and reasoning about gi-
gantic system components, all components communi-
cate through a small, lightweight shim which ensures the
components are restricted to only exhibit allowed behav-
iors. Formal shim verification only requires one to rea-
son about the shim, thus eliminating the tremendously
expensive or infeasible task of verifying large, complex
components in a proof assistant.

Our Web browser, QUARK, exploits formal shim ver-
ification and enables us to verify security properties for
a million lines of code while reasoning about only a few
hundred. To achieve this goal, QUARK is structured sim-
ilarly to Google Chrome [10] or OP [17]. It consists
of a small browser kernel which mediates access to sys-
tem resources for all other browser components. These
other components run in sandboxes which only allow the
component to communicate with the kernel. In this way,
QUARK is able to make strong guarantees about a million
lines of code (e.g., the renderer, JavaScript implementa-
tion, JPEG decoders, etc.) while only using a proof as-
sistant to reason about a few hundred lines of code (the
kernel). Because the underlying system is protected from
QUARK’s untrusted components (i.e., everything other
than the kernel) we were free to adopt state-of-the-art
implementations and thus QUARK is able to run popu-
lar, complex Web sites like Facebook and GMail.

By applying formal shim verification to only reason
about a small core of the browser, we formally establish
the following security properties in QUARK, all within a
proof assistant:

1. Tab Non-Interference: no tab can ever affect how
the kernel interacts with another tab

2. Cookie Confidentiality and Integrity: cookies for
a domain can only be accessed/modified by tabs of
that domain

3. Address Bar Integrity and Correctness: the ad-
dress bar cannot be modified by a tab without the

user being involved, and always displays the correct
address bar.

To summarize, our contributions are as follows:

e We demonstrate how formal shim verification en-
abled us to formally verify the implementation of
a modern Web browser. We discuss the techniques,
tools, and design decisions required to formally ver-
ify QUARK in detail.

e We identify and formally prove key security prop-
erties for a realistic Web browser.

e We provide a framework that can be used to further
investigate and prove more complex policies within
a working, formally verified browser.

The rest of the paper is organized as follows. Section 2
provides background on browser security techniques and
formal verification. Section 3 presents an overview of
the QUARK browser. Section 4 details the design of the
QUARK kernel and its implementation. Section 5 ex-
plains the tools and techniques we used to formally ver-
ify the implementation of the QUARK kernel. Section 6
evaluates QUARK along several dimensions while Sec-
tion 7 discusses lessons learned from our endeavor.

2 Background and Related Work

This section briefly discusses both previous efforts to im-
prove browser security and verification techniques to en-
sure programs behave as specified.

Browser Security As mentioned in the Introduction,
there is a rich literature on techniques to improve browser
security [10, 42, 17, 41, 31, 13, 12]. We distinguish our-
selves from all previous techniques by verifying the ac-
tual implementation of a modern Web browser and for-
mally proving that it satisfies our security properties, all
in the context of a mechanical proof assistant. Below, we
survey the most closely related work.

Previous browsers like Google Chrome [10],
Gazelle [42], and OP [17] have been designed using
privilege separation [35], where the browser is divided
into components which are then limited to only those
privileges they absolutely require, thus minimizing the
damage an attacker can cause by exploiting any one
component. We follow this design strategy.

Chrome’s design compromises the principles of priv-
ilege separation for the sake of performance and com-
patibility. Unfortunately, its design does not protect the
user’s data from a compromised tab which is free to
leak all cookies for every domain. Gazelle [42] adopts
a more principled approach, implementing the browser
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as a multi-principal OS, where the kernel has exclusive
control over resource management across various Web
principals. This allows Gazelle to enforce richer policies
than those found in Chrome. However, neither Chrome
nor Gazelle apply any formal methods to make guaran-
tees about their browser.

The OP [17] browser goes beyond privilege separa-
tion. Its authors additionally construct a model of their
browser kernel and apply the Maude model checker to
ensure that this model satisfies important security prop-
erties such as the same origin policy and address bar cor-
rectness. As such, the OP browser applies insight similar
to our work, in that OP focuses its formal reasoning on
a small kernel. However, unlike our work, OP does not
make any formal guarantees about the actual browser im-
plementation, which means there is still a formality gap
between the model and the code that runs. Our formal
shim verification closes this formality gap by conducting
all proofs in full formal detail using a proof assistant.

Formal Verification Recently, researchers have begun
using proof assistants to fully formally verify imple-
mentations for foundational software including Operat-
ing Systems [27], Compilers [28, 1], Database Man-
agement Systems [29], Web Servers [30], and Sand-
boxes [32]. Some of these results have even experimen-
tally been shown to to drastically improve software relia-
bility: Yang et al. [43] show through random testing that
the CompCert verified C compiler is substantially more
robust and reliable than its non-verified competitors like
GCC and LLVM.

As researchers verify more of the software stack, the
frontier is being pushed toward higher level platforms
like the browser. Unfortunately, previous verification re-
sults have only been achieved at staggering cost; in the
case of selL4, verification took over 13 person years of
effort. Based on these results, verifying a browser-scale
platform seemed truly infeasible.

Our formal verification of QUARK was radically
cheaper than previous efforts. Previous efforts were
tremendously expensive because researchers proved
nearly every line of code correct. We avoid these costs in
QUARK by applying formal shim verification: we struc-
ture our browser so that all our target security properties
can be ensured by a very small browser kernel and then
reason only about that single, tiny component. Leverag-
ing this technique enabled us to make strong guarantees
about the behavior of a million of lines of code while rea-
soning about only a few hundred in the mechanical proof
assistant Coq.

We use the Ynot library [34] extensively to reason
about imperative programming features, e.g., impure
functions like fopen, which are otherwise unavailable in
Coq’s pure implementation language. Ynot also provides
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features which allow us to verify QUARK in a familiar
style: invariants expressed as pre- and post-conditions
over program states, essentially a variant of Hoare Type
Theory [33]. Specifically, Ynot enables trace-based ver-
ification, used extensively in [30] to prove properties of
servers. This technique entails reasoning about the se-
quence of externally visible actions a program may per-
form on any input, also known as traces. Essentially,
our specification delineates which sequences of system
calls the QUARK kernel can make and our verification
consists of proving that the implementation is restricted
to only making such sequences of system calls. We go
on to formally prove that satisfying this specification im-
plies higher level security properties like tab isolation,
cookie integrity and confidentiality, and address bar in-
tegrity and correctness. Building QUARK with a different
proof assistant like Isabelle/HOL would have required
essentially the same approach for encoding imperative
programming features, but we chose Coq since Ynot is
available and has been well vetted.

Our approach is fundamentally different from pre-
vious verification tools like ESP [16], SLAM [7],
BLAST [18] and Terminator [15], which work on ex-
isting code bases. In our approach, instead of trying
to prove properties about a large existing code base ex-
pressed in difficult-to-reason-about languages like C or
C++, we rewrite the browser inside of a theorem prover.
This provides much stronger reasoning capabilities.

3 QUARK Architecture and Design

Figure 1 diagrams QUARK’s architecture. Similar to
Chrome [10] and OP [17], QUARK isolates complex and
vulnerability-ridden components in sandboxes, forcing
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them to access all sensitive resources through a small,
simple browser kernel. Our kernel, written in Coq, runs
in its own process and mediates access to resources in-
cluding the keyboard, disk, and network. Each tab runs a
modified version of WebKit in its own process. WebKit
is the open source browser engine used in Chrome and
Safari. It provides various callbacks for clients as Python
bindings which we use to implement tabs. Since tab pro-
cesses cannot directly access any system resources, we
hook into these callbacks to re-route WebKit’s network,
screen, and cookie access through our kernel written in
Coq. QUARK also uses separate processes for display-
ing to the screen, storing and accessing cookies, as well
reading input from the user.

Throughout the paper, we assume that an attacker can
compromise any QUARK component which is exposed to
content from the Internet, except for the kernel which we
formally verified. This includes all tab processes, cookie
processes, and the graphical output process. Thus, we
provide strong formal guarantees about tab and cookie
isolation, even when some processes have been com-
pletely taken over (e.g., by a buffer overflow attack in
the rendering or JavaScript engine of WebKit).

3.1 Graphical User Interface

The traditional GUI for Web browsers manages several
key responsibilities: reading mouse and keyboard input,
showing rendered graphical output, and displaying the
current URL. Unfortunately, such a monolithic compo-
nent cannot be made to satisfy our security goals. If
compromised, such a GUI component could spoof the
current URL or send arbitrary user inputs to the kernel,
which, if coordinated with a compromised tab, would vi-
olate tab isolation. Thus QUARK must carefully separate
GUI responsibilities to preserve our security guarantees
while still providing a realistic browser.

QUARK divides GUI responsibilities into several com-
ponents which the kernel orchestrates to provide a tradi-
tional GUI for the user. The most complex component
displays rendered bitmaps on the screen. QUARK puts
this component in a separate process to which the kernel
directs rendered bitmaps from the currently selected tab.
Because the kernel never reads input from this graphi-
cal output process, any vulnerabilities it may have can-
not subvert the kernel or impact any other component
in QUARK. Furthermore, treating the graphical output
component as a separate process simplifies the kernel and
proofs because it allows the kernel to employ a uniform
mechanism for interacting with the outside world: mes-
sages over channels.

To formally reason about the address bar, we designed
our kernel so that the current URL is written directly to
the kernel’s stdout. This gives rise to a hybrid graphi-

o T =

amazon
aol

Search att
american airlines

Amazon.com: Online Shopping for
arel, Computers ...
Cached - Similar

james along with electronics,
jeneral home and garden item: 2

Books Textbooks
Online shopping for millions of Save
new & used books on ...

Figure 2: QUARK Screenshot. This screenshot shows QUARK run-
ning a Google search, including an interactive drop-down suggesting
query completions and an initial set of search results from a JavaScript
event handler dispatching an “instant search” as well as a page preview
from a search result link. (Location blurred for double-blind review.)

cal/text output as shown in Figure 2 where the kernel has
complete control over the address bar. With this design,
the graphical output process is never able to spoof the
address bar.

QUARK also uses a separate input process to support
richer inputs, e.g., the mouse. The input process is a
simple Python script which grabs keyboard and mouse
events from the user, encodes them as user input mes-
sages, and forwards them on to the kernel’s stdin. For
keystrokes, the input process simply writes characters in
ASCII format to the kernel’s stdin. We use several “un-
printable” ASCII values (all smaller than 60 and all un-
typeable from the keyboard) to pass special information
from the input process to the kernel. For example, the in-
put process maps keys F1-F12 to such un-printable char-
acters, which allows the kernel to use F11 for “new tab”,
and F1-F10 for selecting tabs 1-10. Mouse clicks are also
sent to the kernel through un-printable ASCII values. Be-
cause the input process only reads from the keyboard and
mouse, and never from the kernel or any other QUARK
components, it cannot be exposed any attacks originating
from the network.

3.2 Example of Message Exchanges

To illustrate how the kernel orchestrates all the com-
ponents in QUARK, we detail the steps from startup
to a tab loading http://www.google.com. The user
opens QUARK by starting the kernel which in turn
starts three processes: the input process, the graph-
ical output process, and a tab process. The ker-
nel establishes a two-way communication channel with
each process it starts. Next, the kernel then sends a
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(Go "http://www.google.com") message to the tab
indicating it should load the given URL (for now, assume
this is normal behavior for all new tabs).

The tab process comprises our modified version of
WebKit wrapped by a thin layer of Python to handle
messaging with the kernel. After recieving the Go mes-
sage, the Python wrapper tells WebKit to start process-
ing http://www.google. com. Since the tab process is
running in a sandbox, WebKit cannot directly access the
network. When it attempts to, our Python wrapper in-
tervenes and sends a GetURL request to the kernel. As
long as the request is valid, the kernel responds with a
ResDoc message containing the HTML document the tab
requested.

Once the tab process has received the necessary re-
sources from the kernel and rendered the Web pages, it
sends a Display message to the kernel which contains a
bitmap to display. When the kernel receives a Display
message from the current tab, it forwards the message on
to the graphical output process, which in turn displays
the bitmap on the screen.

When the kernel reads a printable character ¢ from
standard input, it sends a (KeyPress c) message to the
currently selected tab. Upon receiving such a message,
the tab calls the appropriate input handler in WebKit. For
example, if a user types “a” on Google, the “a” character
is read by the kernel, passed to the tab, and then passed
to WebKit, at which point WebKit adds the “a” charac-
ter to Google’s search box. This in turn causes WebKit’s
JavaScript engine to run an event handler that Google has
installed on their search box. The event handler performs
an “instant search”, which initiates further communica-
tion with the QUARK kernel to access additional network
resources, followed by another Display message to re-
paint the screen. Note that to ease verification, QUARK
currently handles all requests synchronously.

3.3 Efficiency

With a few simple optimizations, we achieve perfor-
mance comparable to WebKit on average (see Section 6
for measurements). Following Chrome, we adopt two
optimizations critical for good graphics performance.
First, QUARK uses shared memory to pass bitmaps from
the tab process through the kernel to the output process,
so that the Display message only passes a shared mem-
ory ID instead of a bitmap. This drastically reduces the
communication cost of sending bitmaps. To prevent a
malicious tab from accessing another tab’s shared mem-
ory, we run each tab as a different user, and set access
controls so that a tab’s shared memory can only be ac-
cessed by the output process. Second, QUARK uses
rectangle-based rendering: instead of sending a large
bitmap of the entire screen each time the display changes,

the tab process determines which part of the display has
changed, and sends bitmaps only for the rectangular re-
gions that need to be updated. This drastically reduces
the size of the bitmaps being transferred, and the amount
of redrawing on the screen.

For I/O performance, the original Ynot library used
single-character read/write routines, imposing significant
overhead. We defined a new I/O library which uses size
n reads/writes. This reduced reading an n byte message
from n I/O calls to just three: reading a 1 byte tag, fol-
lowed by a 4 byte payload size, and then a single read for
the entire payload.

We also optimized socket connections in QUARK. Our
original prototype opened a new TCP connection for each
HTTP GET request, imposing significant overhead. Mod-
ern Web servers and browsers use persistent connections
to improve the efficiency of page loading and the respon-
siveness of Web 2.0 applications. These connections are
maintained anywhere from a few seconds to several min-
utes, allowing the client and server can exchange mul-
tiple request/responses on a single connection. Services
like Google Chat make use of very long-lived HTTP con-
nections to support responsive interaction with the user.

We support such persistent HTTP connections via
Unix domain sockets which allow processes to send open
file descriptors over channels using the sendmsg and
recvmsg system calls. When a tab needs to open a
socket, it sends a GetSoc message to the kernel with the
host and port. If the request is valid, the kernel opens
and connects the socket, and then sends an open socket
file descriptor to the tab. Once the tab gets the socket file
descriptor, it can read/write on the socket, but it cannot
re-connect the socket to another host/port. In this way,
the kernel controls all socket connections.

Even though we formally verify our browser kernel in
a proof assistant, we were still able to implement and
reason about these low-level optimizations.

3.4 Socket Security Policy

The GetSoc message brings up an interesting security
issue. If the kernel satisfied all GetSoc requests, then a
compromised tab could open sockets to any server and
exchange arbitrary amounts of information. The kernel
must prevent this scenario by restricting socket connec-
tions.

To implement this restriction, we introduce the idea
of a domain suffix for a tab which the user enters when
the tab starts. A tab’s domain suffix controls several se-
curity features in QUARK, including which socket con-
nections are allowed and how cookies are handled (see
Section 3.5). In fact, our address bar, located at the very
top of the browser (see Figure 2), displays the domain
suffix, not just the tab’s URL. We therefore refer to it as
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the “domain bar”.

For simplicity, our current domain suffixes build on
the notion of a public suffix, which is a top-level domain
under which Internet users can directly register names,
for example .com, .co.uk, or .edu — Mozilla main-
tains an exhaustive list of such suffixes [3]. In particu-
lar, we require the domain suffix for a tab to be exactly
one level down from a public suffix, e.g., google.com,
amazon.com, etc. In the current QUARK prototype the
user provides a tab’s domain suffix separately from its
initial URL, but one could easily compute the former
from the later. Note that, once set, a tab’s domain suf-
fix never changes. In particular, any frames a tab loads
do not affect its domain suffix.

We considered using the tab’s origin (which includes
the URL, scheme, and port) to restrict socket creation,
but such a policy is too restrictive for many useful
sites. For example, a single GMail tab uses frames
from domains such as static.google.com and mail.
google.com. However, our actual domain suffix checks
are modularized within QUARK, which will allow us to
experiment with finer grained policies in future work.

To enforce our current socket creation policy, we first
define a subdomain relation < as follows: given domain
d; and domain suffix d», we use di < d, to denote that
d; is a subdomain of d;. For example www.google. com
< google.com. If a tab with domain suffix ¢ requests
to open a connection to a host 4, then the kernel allows
the connection if 2 <¢. To load URLs that are not a
subdomain of the tab suffix, the tab must send a GetURL
message to the kernel — in response, the kernel does not
open a socket but, if the request is valid, may provide the
content of the URL. Since the kernel does not attach any
cookies to the HTTP request for a GetURL message, a
tab can only access publicly available data using GetURL.
In addition, GetURL requests only provide the response
body, not HTTP headers.

Note that an exploited tab could leak cookies by en-
coding information within the URL parameter of GetURL
requests, but only cookies for that tab’s domain could be
leaked. Because we do not provide any access to HTTP
headers with GetURL, we consider this use of GetURL
to leak cookies analogous to leaking cookie data over
timing channels.

Although we elide details in the current work, we also
slightly enhanced our socket policy to improve perfor-
mance. Sites with large data sets often use content dis-
tribution networks whose domains will not satisfy our
domain suffix checks. For example facebook. com uses
fbedn.net to load much of its data. Unfortunately, the
simple socket policy described above will force all this
data to be loaded using slow GetURL requests through
the kernel. To address this issue, we associate whitelists
with the most popular sites so that tabs for those do-

mains can open sockets to the associated content distri-
bution network. The tab domain suffix remains a sin-
gle string, e.g. facebook. com, but behind the scenes, it
gets expanded into a list depending on the domain, e.g.,
[facebook.com, fbcdn.net]. When deciding whether
to satisfy a given socket request, QUARK considers this
list as a disjunction of allowed domain suffixes. Cur-
rently, we provide these whitelists manually.

3.5 Cookies and Cookie Policy

QUARK maintains a set of cookie processes to handle
cookie accesses from tabs. This set of cookie processes
will contain a cookie process for domain suffix S if S is
the domain suffix of a running tab. By restricting mes-
sages to and from cookie processes, the QUARK kernel
guarantees that browser components will only be able to
access cookies appropriate for their domain.

The kernel receives cookie store/retrieve requests from
tabs and directs the requests to the appropriate cookie
process. If a tab with domain suffix ¢ asks to store a
cookie with domain c, then our kernel allows the oper-
ation if ¢ <, in which case it sends the store request to
the cookie process for domain ¢. Similarly, if a tab with
domain suffix ¢ wants to retrieve a cookie for domain c,
then our kernel allows the operation if ¢ < ¢, in which
case it sends the request to the cookie process for domain
t and forwards any response to the requesting tab.

The above policy prevents cross-domain cookie reads
from a compromised tab, and it prevents a compro-
mised cookie process from leaking information about
its cookies to another domain; yet it also allows dif-
ferent tabs with the same domain suffix (but different
URLSs) to communicate through cookies (for example,
mail.google.com and calendar.google.com).

3.6 Security Properties of QUARK

We provide intuitive descriptions of the security prop-
erties we proved for QUARK’s kernel; formal defini-
tions appear later in Section 4. A tab in the kernel is a
pair, containing the tab’s domain suffix as a string and
the tab’s communication channel as a file descriptor. A
cookie process is also a pair, containing the domain suffix
that this cookie process manages and its communication
channel. We define the state of the kernel as the cur-
rently selected tab, the list of tabs, and the list of cookie
processes. Note that the kernel state only contains strings
and file descriptors.
We prove the following main theorems in Coq:

1. Response Integrity: The way the kernel responds
to any request only depends on past user “control
keys” (namely keys F1-F12). This ensures that one
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browser component (e.g., a tab or cookie process)
can never influence how the kernel responds to an-
other component, and that the kernel never allows
untrusted input (e.g., data from the web) to influ-
ence how the kernel responds to a request.

2. Tab Non-Interference: The kernel’s response to a
tab’s request is the same no matter how other tabs
interact with the kernel. This ensures that the kernel
never provides a direct way for one tab to attack an-
other tab or steal private information from another
tab.

3. No Cross-domain Socket Creation: The kernel
disallows any cross-domain socket creation (as de-
scribed in Section 3.4).

4. Cookie Integrity/Confidentiality: The kernel dis-
allows any cross-domain cookie stores or retrieves
(as described in Section 3.5).

5. Domain Bar Integrity and Correctness: The do-
main bar cannot be compromised by a tab, and is
always equal to the domain suffix of the currently
selected tab.

4 Kernel Implementation in Coq

QUARK’s most distinguishing feature is its kernel, which
is implemented and proved correct in Coq. In this section
we present the implementation of the main kernel loop.
In the next section we explain how we formally verified
the kernel.

Coq enables users to write programs in a small, simple
functional language and then reason formally about them
using a powerful logic, the Calculus of Constructions.
This language is essentially an effect-free (pure) subset
of popular functional languages like ML or Haskell with
the additional restriction that programs must always ter-
minate. Unfortunately, these limitations make Coq’s de-
fault implementation language ill-suited for writing sys-
tem programs like servers or browsers which must be ef-
fectful to perform I/O and by design may not terminate.

To address the limitations of Coq’s implementation
language, we use Ynot [34]. Ynot is a Coq library
which provides monadic types that allow us to write ef-
fectful, non-terminating programs in Coq while retain-
ing the strong guarantees and reasoning capabilities Coq
normally provides. Equipped with Ynot, we can write
our browser kernel in a fairly straightforward style whose
essence is shown in Figure 3.

Single Step of Kernel. QUARK’s kernel is essentially
a loop that continuously responds to requests from the
user or tabs. In each iteration, the kernel calls kstep

Definition kstep(ctab, ctabs) :=
chan <- iselect(stdin, tabs);
match chan with
| Stdin =>

c <- read(stdin);

match c with

I npn o=>
t <- mktab();
write_msg(t, Render);
return (t, t::tabs)

| .

end
| Tab t =>
msg <- read_msg(t);
match msg with
| GetSoc(host, port) =>
if (safe_soc(host, domain_suffix(t)) then
send_soc(t, host, port);
return (ctab, tabs)
else
write_msg(t, Error);
return (ctab, tabs)

end
end

Figure 3: Body for Main Kernel Loop. This Coq code shows how our
QUARK kernel receives and responds to requests from other browser
components. It first uses a Unix-style select to choose a ready input
channel, reads a request from that channel, and responds to the message
appropriately. For example, if the user enters “+”, the kernel creates
a new tab and sends it the Render message. In each case, the code
returns the new kernel state resulting from handling this request.

which takes the current kernel state, handles a single re-
quest, and returns the new kernel state as shown in Fig-
ure 3. The kernel state is a tuple of the current tab (ctab),
the list of tabs (tabs), and a few other components which
we omit here (e.g., the list of cookie processes). For
details regarding the loop and kernel initialization code
please see [24].

[13%1]

kstep starts by calling iselect (the “i” stands for
input) which performs a Unix-style select over stdin
and all tab input channels, returning Stdin if stdin is
ready for reading or Tab t if the input channel of tab
t is ready. iselect is implemented in Coq using a
select primitive which is ultimately just a thin wrap-
per over the Unix select system call. The Coq extraction
process, which converts Coq into OCaml for execution,
can be customized to link our Coq code with OCaml im-
plementations of primitives like select. Thus select
is exposed to Coq essentially as a primitive of the ap-
propriate monadic type. We have similar primitives for
reading/writing on channels, and opening sockets.

Request from User. If stdin is ready for reading,
the kernel reads one character c using the read primi-
tive, and then responds based on the value of c. If c is
“+”, the kernel adds a new tab to the browser. To achieve
this, it first calls mktab to start a tab process (another
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primitive implemented in OCaml). mktab returns a tab
object, which contains an input and output channels to
communicate with the tab process. Once the tab t is
created, the kernel sends it a Render message using the
write_msg function — this tells t to render itself, which
will later cause the tab to send a Display message to
the kernel. Finally, we return an updated kernel state
(t, t::tabs), which sets the newly created tab t as
the current tab, and adds t to the list of tabs.

In addition to “+” the kernel handles several other
cases for user input, which we omit in Figure 3. For
example, when the kernel reads keys F1 through F10,
it switches to tabs 1 through 10, respectively, if the tab
exists. To switch tabs, the kernel updates the currently
selected tab and sends it a Render message. The ker-
nel also processes mouse events delivered by the input
process to the kernel’s stdin. For now, we only han-
dle mouse clicks, which are delivered by the input pro-
cess using a single un-printable ASCII character (adding
richer mouse events would not fundamentally change our
kernel or proofs). The kernel in this case calls a primi-
tive implemented in OCaml which gets the location of
the mouse, and it sends a MouseClick message using
the returned coordinates to the currently selected tab. We
use this two-step approach for mouse clicks (un-printable
character from the input process, followed by primitive
in OCaml), so that the kernel only needs to processes a
single character at a time from stdin, which simplifies
the kernel and proofs.

Request from Tab. If a tab t is ready for reading, the
kernel reads a message m from the tab using read_msg,
and then sends a response which depends on the mes-
sage. If the message is GetSoc (host, port), then the
tab is requesting that a socket be opened to the given
host/port. We apply the socket policy described in Sec-
tion 3.4, where domain_suffix t returns the domain
suffix of a tab t, and safe_soc(host, domsuf) ap-
plies the policy (which basically checks that host is a
sub-domain of domsuf). If the policy allows the socket
to be opened, the kernel uses the send_socket to open
a socket to the host, and send the socket over the chan-
nel to the tab (recall that we use Unix domain sockets to
send open file descriptors from one process to another).
Otherwise, it returns an Error message.

In addition to GetSoc the kernel handles several other
cases for tab requests, which we omit in Figure 3. For
example, the kernel responds to GetURL by retrieving a
URL and returning the result. It responds to cookie store
and retrieve messages by checking the security policy
from Section 3.5 and forwarding the message to the ap-
propriate cookie process (note that for simplicity, we did
not show the cookie processes in Figure 3). The kernel
also responds to cookie processes that are sending cookie
results back to a tab, by forwarding the cookie results

to the appropriate tab. The kernel responds to Display
messages by forwarding them to the output process.

Monads in Ynot. The code in Figure 3 shows how
Ynot supports an imperative programming style in Coq.
This is achieved via monads which allow one to en-
code effectful, non-terminating computations in pure
languages like Haskell or Coq. Here we briefly show
how monads enable this encoding. In the next section we
extend our discussion to show how Ynot’s monads also
enable reasoning about the kernel using pre- and post-
conditions as in Hoare logic.

We use Ynot’s ST monad which is a parameterized
type where ST T denotes computations which may per-
form some I/O and then return a value of type T. To use
ST, Ynot provides a bind primitive which has the fol-
lowing dependent type:

bind : forall T1 T2,
ST T1 -> (T1 -> ST T2) -> ST T2

This type indicates that, for any types T1 and T2, bind
will take two parameters: (1) a monad of type ST T1 and
(2) a function that takes a value of type T1 and returns a
monad of type ST T2; then bind will produce a value
in the ST T2 monad. The type parameters T1 and T2
are inferred automatically by Coq. Thus, the expression
bind X Y returns a monad which represents the compu-
tation: run X to get a value v; run (Y v) to get a value
v’;return v’.

To make using bind more convenient, Ynot
also defines Haskell-style “do” syntactic sugar us-
ing Coq’s Notation mechanism, so that x <- a;b
is translated to bind a (fun x => b), and a;b is
translated to bind a (fun _ => b). Finally, the
Ynot library provides a return primitive of type
forall T (v: T), ST T (where again T is inferred by
Coq). Given a value v, the monad return v represents
the computation that does no I/O and simply returns v.

5 Kernel Verification

In this section we explain how we verified QUARK’s ker-
nel. First, we specify correct behavior of the kernel in
terms of fraces. Second, we prove the kernel satisfies this
specification using the full power of Ynot’s monads. Fi-
nally, we prove that our kernel specification implies our
target security properties.

5.1 Actions and Traces

We verify our kernel by reasoning about the sequences of
calls to primitives (i.e., system calls) it can make. We call
such a sequence a frace; our kernel specification (hence-
forth “spec”) defines which traces are allowed for a cor-
rect implementation as in [30].
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Definition Trace := list Action.

Inductive Action :=

| ReadN  : chan -> positive -> list ascii -> Action
| WriteN : chan -> positive -> list ascii -> Action
| MkTab : tab -> Action

| SentSoc : tab -> list ascii -> list ascii -> Action

Definition Read c b :=
ReadN c¢ 1 [c]

Figure 4: Traces and Actions. This Coq code defines the type of
externally visible actions our kernel can take. A trace is simply a list
of such actions. We reason about our kernel by proving properties of
the traces it can have. Traces are like other Coq values; in particular,
we can write functions that return traces. Read is a helper function to
construct a trace fragment corresponding to reading a single byte.

We use a list of actions to represent the trace the
kernel produces by calling primitives. Each action in
a trace corresponds to the kernel invoking a particular
primitive. Figure 4 shows a partial definition of the
Action datatype. For example: ReadN f n 1 is an
Action indicating that the n bytes in list 1 were read
from input channel £; MkTab t indicates that tab t was
created; SentSoc t host port indicates a socket was
connected to host/port and passed to tab t.

We can manipulate traces and Actions like any other
values in Coq. For example, we can define a function
Read c b to encode the special case that a single byte
b was read on input channel c. Though not shown here,
we also define similar helper functions to build up trace
fragments which correspond to having read or written
a particular message to a given component. For exam-
ple, ReadMsg t (GetSoc host port) corresponds to
the trace fragment that results from reading a GetSoc re-
quest from tab t.

5.2 Kernel Specification

Figure 5 shows a simplified snippet of our kernel spec.
The spec is a predicate tcorrect over traces with two
constructors, stating the two ways in which tcorrect
can be established: (1) tcorrect_nil states that the
empty trace satisfies tcorrect (2) tcorrect_step
states that if tr satisfies tcorrect and the kernel
takes a single step, meaning that after tr it gets a
request req, and responds with rsp, then the trace
rsp ++ req ++ tr (where ++ is list concatenation)
also satisfies tcorrect. By convention the first action
in a trace is the most recent.

The predicate step_correct defines correctness
for a single iteration of the kernel’s main loop:
step_correct tr req rsp holds if given the past
trace tr and a request req, the response of the
kernel should be rsp. The predicate has several
constructors (not all shown) enumerating the ways

Inductive tcorrect :
| tcorrect_nil:
tcorrect nil
| tcorrect_step: forall tr req rsp,
tcorrect tr ->
step_correct tr req rsp —>
tcorrect (rsp ++ req ++ tr).

Trace -> Prop :=

Inductive step_correct :
Trace -> Trace -> Trace -> Prop :=
| step_correct_add_tab: forall tr t,
step_correct tr
(MkTab t :: Read stdin "+" ::
(WroteMsg t Render)
| step_correct_socket_true: forall tr t host port,
is_safe_soc host (domain_suffix t) = true ->
step_correct tr
(ReadMsg t (GetSoc host port))
(SentSoc t host port)
| step_correct_socket_false: forall tr t host port,
is_safe_soc host (domain_suffix t) <> true ->
step_correct tr
(ReadMsg t (GetSoc host port) ++ tr)
(WroteMsg t Error ++ tr)

nil)

Figure 5: Kernel Specification. step_correct is a predicate over
triples containing a past trace, a request trace, and a response trace; it
holds when the response is valid for the given request in the context of
the past trace. tcorrect defines a correct trace for our kernel to be a
sequence of correct steps, i.e., the concatenation of valid request and
response trace fragments.

step_correct can be established. For example,
step_correct_add_tab states that typing “+” on
stdin leads to the creation of a tab and sending the
Render message. The step_correct_socket_true
case captures the successful socket creation case,
whereas step_correct_socket_false captures the
error case.

5.3 Monads in Ynot Revisited

In the previous section, we explained Ynot’s ST monad
as being parameterized over a single type T. In re-
ality, ST takes two additional parameters representing
pre- and post-conditions for the computation encoded by
the monad. Thus, ST T P Q represents a computation
which, if started in a state where P holds, may perform
some I/O and then return a value of type T in a state
where Q holds. For technical reasons, these pre- and post-
conditions are expressed using separation logic, but we
defer details to a tech report [24].

Following the approach of Malecha et al. [30], we de-
fine an opaque predicate (traced tr) to represent the
fact that at a given point during execution, tr captures
all the past activities; and (open f) to represent the fact
that channel f is currently open. An opaque predicate
cannot be proven directly. This property allows us to
ensure that no part of the kernel can forge a proof of
(traced tr) for any trace it independently constructs.
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Axiom readn:
forall (f: chan) (n: positive) {tr: Trace},
ST (list ascii)

{traced tr * open f}

{fun 1 =>

traced (ReadN f n 1 :: tr) *
[len 1 = n] * open f }.
Definition read_msg:
forall (t: tab) {tr: Tracel},
ST msg
{traced tr * open (tchan t)}
{fun m =>

traced (ReadMsg t m ++ tr) * open (tchan t)} :=

Figure 6: Example Monadic Types. This Coq code shows the
monadic types for the readn primitive and for the read msg func-
tion which is implemented in terms of readn. In both cases, the first
expression between curly braces represents a pre-condition and the sec-
ond represents a post-condition. The asterisk (*) may be read as normal
conjunction in this context.

Thus (traced tr) can only be true for the current trace
tr.

Figure 6 shows the full monadic type for the readn
primitive, which reads n bytes of data and returns it.
The * connective represents the separating conjunc-
tion from separation logic. For our purposes, con-
sider it as a regular conjunction. The precondition of
(readn f n tr) states that tr is the current trace and
that £ is open. The post-condition states that the trace
after readn will be the same as the original, but with
an additional (ReadN f n 1) action at the beginning,
where the length of 1 isequal ton (1en 1 = nis areg-
ular predicate, which is lifted using square brackets into
a separation logic predicate). After the call, the channel
£ is still open.

The full type of the Ynot bind operation makes sure
that when two monads are sequenced, the post-condition
of the first monad implies the pre-condition of the sec-
ond. This is achieved by having bind take an additional
third argument, which is a proof of this implication. The
syntactic sugar for x <- a;bisupdated to pass the wild-
card “_” for the additional argument. When processing
the definition of our kernel, Coq will enter into an inter-
active mode that allows the user to construct proofs to
fill in these wildcards. This allows us to prove that the
post-condition of each monad implies the pre-condition
of the immediately following monad in Coq’s interactive
proof environment.

5.4 Back to the Kernel

We now return to our kernel from Figure 3 and show how
we prove that it satisfies the spec from Figure 5. We
augment the kernel state to additionally include the trace
of the kernel so far, and we update our kernel code to
maintain this tr field. By using a special encoding in

Ynot for this trace, the tr field is not realized at run-

time, it is only used for proof purposes.
We define the kcorrect predicate as follows (s.tr
projects the current trace out of kernel state s):

Definition kcorrect (s: kstate) :=
traced s.tr * [tcorrect s.tr]

Now we want to show that kcorrect is an invariant that
holds throughout execution of the kernel. Essentially we
must show that (kcorrect s) is aloop invariant on the
kernel state s for the main kernel loop, which boils down
to showing that (kcorrect s) is valid as both the pre-
and post-condition for the loop body, kstep as shown in
Figure 3.

As mentioned previously, Coq will ask us to prove im-
plications between the post-condition of one monad and
the pre-condition of the next. While these proofs are ul-
timately spelled out in full formal detail, Coq provides
facilities to automate a substantial portion of the proof
process. Ynot further provides a handful of sophisticated
tactics which helped automatically dispatch tedious, re-
peatedly occurring proof obligations. We had to manu-
ally prove the cases which were not handled automati-
cally. While we have only shown the key kernel invari-
ant here, in the full implementation there are many ad-
ditional Hoare predicates for the intermediate goals be-
tween program points. We defer details of these predi-
cates and the manual proof process to [24], but discuss
proof effort in Section 6.

5.5 Security Properties

Our security properties are phrased as theorems about the
spec. We now prove that our spec implies these key secu-
rity properties, which we intend to hold in QUARK. Fig-
ure 7 shows these key theorems, which correspond pre-
cisely to the security properties outlined in Section 3.6.

State Integrity. The first security property,
kstate_dep_user, ensures that the kernel state only
changes in response to the user pressing a “control key”
(e.g. switching to the third tab by pressing F3). The
theorem establishes this property by showing its contra-
positive: if the kernel steps by responding with rsp to re-
quest req after trace tr and no “control keys” were read
from the user, then the kernel state remains unchanged
by this step. The function proj_user_control, not
shown here, simply projects from the trace all actions
of the form (Read c¢ stdin) where c is a control key.
The function kernel_state, not shown here, just com-
putes the kernel state from a trace. We also prove that at
the beginning of any invocation to kloop in Figure 3, all
fields of s aside from tr are equal to the corresponding
field in (kernel_state s.tr).

Response Integrity. The second security property,
kresponse_dep_kstate, ensures that every kernel re-
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Theorem kstate_dep_user:
forall tr req rsp,
step_correct tr req rsp ->
proj_user_control tr
= proj_user_control (rsp ++ req ++ tr) ->
kernel_state tr = kernel_state (rsp ++ req ++ tr).

Theorem kresponse_dep_kstate:
forall trl tr2 req rsp,
kernel_state trl = kernel_state tr2 ->
step_correct trl req rsp ->
step_correct tr2 req rsp.

Theorem tab_NI:
forall trl tr2 t req rspl rsp2,
tcorrect trl -> tcorrect tr2 ->
from_tab t req ->
(cur_tab trl = Some t <-> cur_tab tr2 = Some t) ->
step_correct trl req rspl ->
step_correct tr2 req rsp2 ->

rspl = rsp2 \/
(exists m, rspl = WroteCMsg (cproc_for t trl) m /\
rsp2 = WroteCMsg (cproc_for t tr2) m).

Theorem no_xdom_sockets:
tcorrect tr ->
In (SendSocket t host s) tr ->
is_safe_soc host (domain_suffic t).

forall tr t,

Theorem no_xdom_cookie_set: forall trl tr2 cproc,
tcorrect (trl ++ SetCookie key value cproc :: tr2) ->
exists tr t,
(tr2 = (SetCookieRequest t key value :: tr) /\
is_safe_cook (domain cproc) (domain_suffix t))

Theorem dom_bar_correct: forall tr,
tcorrect tr -> dom_bar tr =

Figure 7: Kernel Security Properties. This Coq code shows how
traces allow us to formalize QUARK’s security properties.

sponse depends solely on the request and the kernel state.
This delineates which parts of a trace can affect the ker-
nel’s behavior: for a given request req, the kernel will
produce the same response rsp, for any two traces that
induce the same kernel state, even if the two traces have
completely different sets of requests/responses (recall
that the kernel state only includes the current tab and
the set of tabs, and most request responses don’t change
these). Since the kernel state depends only the user’s
control key inputs, this theorem immediately establishes
the fact that our browser will never allow one component
to influence how the kernel treats another component un-
less the user intervenes.

Note that kresponse_dep_kstate shows that the ker-
nel will produce the same response given the same re-
quest after any two traces that induce the same kernel
state. This may seem surprising since many of the ker-
nel’s operations produce nondeterministic results, e.g.,
there is no way to guarantee that two web fetches of the
same URL will produce the same document. However,
such nondeterminism is captured in the request, which

domain_suffix (cur_tab tr).

is consistent with our notion of requests as inputs and
responses as outputs.

Tab Non-Interference. The second security property,
tab_NI, states that the kernel’s response to a tab is not
affected by any other tab. In particular, tab_NI shows
that if in the context of a valid trace, tri, the kernel
responds to a request req from tab t with rspl, then
the kernel will respond to the same request req with an
equivalent response in the context of any other valid trace
tr2 which also contains tab t, irrespective of what other
tabs are present in tr2 or what actions they take. Note
that this property holds in particular for the case where
trace tr2 contains only tab t, which leads to the follow-
ing corollary: the kernel’s response to a tab will be the
same even if all other tabs did not exist

The formal statement of the theorem in Figure 7 is
made slightly more complicated because of two issues.
First, we must assume that the focused tab at the end of
trl (denoted by cur_tab tril) is t if and only if the
focused tab at the end of tr2 is also t. This additional
assumption is needed because the kernel responds differ-
ently based on whether a tab is focused or not. For exam-
ple, when the kernel receives a Display message from a
tab (indicating that the tab wants to display its rendered
page to the user), the kernel only forwards the message
to the output process if the tab is currently focused.

The second complication is that the communication
channel underlying the cookie process for t’s domain
may not be the same between trl and tr2. Thus, in
the case that kernel responds by forwarding a valid re-
quest from t to its cookie process, we guarantee that the
kernel sends the same payload to the cookie process cor-
responding to t’s domain.

Note that, unlike kresponse_dep_kstate, tab_NI
does not require trl and tr2 to induce the same ker-
nel state. Instead, it merely requires the request req to
be from a tab t, and tr1 and tr2 to be valid traces that
both contain t (indeed, t must be on both traces other-
wise the step_correct assumptions would not hold).
Other than these restrictions, tr1l and tr2 may be arbi-
trarily different. They could contain different tabs from
different domains, have different tabs focused, different
cookie processes, etc.

Response Integrity and Tab Non-Interference provide
different, complimentary guarantees. Response Integrity
ensures the response to any request req is only affected
by control keys and req, while Tab Non-Interference
guarantees that the response to a tab request does not leak
information to another tab. Note that Response Integrity
could still hold for a kernel which mistakenly sends re-
sponses to the wrong tab, but Tab Non-Interference pre-
vents this. Similarly, Tab Non-Interference could hold
for a kernel which allows a tab to affect how the kernel
responds to a cookie process, but Response Integrity pre-
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cludes such behavior.

It is also important to understand that tab_NI proves
the absence of interference as caused by the kernel, not
by other components, such as the network or cookie pro-
cesses. In particular, it is still possible for two websites to
communicate with each other through the network, caus-
ing one tab to affect another tab’s view of the web. Sim-
ilarly, it is possible for one tab to set a cookie which is
read by another tab, which again causes a tab to affect an-
other one. For the cookie case, however, we have a sep-
arate theorem about cookie integrity and confidentiality
which states that cookie access control is done correctly.

Note that this property is an adaptation of the tra-
ditional non-interference property. In traditional non-
interference, the program has “high” and “low” inputs
and outputs; a program is non-interfering if high inputs
never affect low outputs. Intuitively, this constrains the
program to never reveal secret information to untrusted
principles.

We found that this traditional approach to non-
interference fits poorly with our trace-based verification
approach. In particular, because the browser is a non-
terminating, reactive program, the “inputs” and “out-
puts” are infinite streams of data.

Previous research [11] has adapted the notion of non-
interference to the setting of reactive programs like
browsers. They provide a formal definition of non-
interference in terms of possibly infinite input and out-
put streams. A program at a particular state is non-
interfering if it produces similar outputs from similar in-
puts. The notion of similarity is parameterized in their
definition; they explore several options and examine the
consequences of each definition for similarity.

Our tab non-interference theorem can be viewed in
terms of the definition from [11], where requests are “in-
puts” and responses are “outputs”; essentially, our the-
orem shows the inductive case for potentially infinite
streams. Adapting our definition to fit directly in the
framework from [11] is complicated by the fact that we
deal with a unified trace of input and output events in the
sequence they occur instead of having one trace of input
events and a separate trace of output events. In future
work, we hope to refine our notion of non-interference
to be between domains instead of tabs, and we believe
that applying the formalism from [11] will be useful in
achieving this goal. Unlike [11], we prove a version of
non-interference for a particular program, the QUARK
browser kernel, directly in Coq.

No Cross-domain Socket Creation. The third secu-
rity property, no_xdom_sockets, ensures that the ker-
nel never delivers a socket bound to domain d to a tab
whose domain does not match d. This involves check-
ing URL suffixes in a style very similar to the cookie
policy as discussed earlier. This property forces a tab to

Component Language | Lines of code
Kernel Code Coq 859
Kernel Security Properties Coq 142
Kernel Proofs Coq 4,383
Kernel Primitive Specification Coq 143
Kernel Primitives Ocaml/C 538
Tab Process Python 229
Input Process Python 60
Output Process Python 83
Cookie Process Python 135
Python Message Lib Python 334
WebKit Modifications C 250
WebKit C/C++ 969,109

Figure 8: QUaRK Components by Language and Size.

use GetURL when accessing websites that do not match
its domain suffix, thus restricting the tab to only access
publicly available data from other domains.

Cookie Integrity/Confidentiality. The fourth secu-
rity property states cookie integri