
conference

proceedings

21st USENIX
Security
Symposium

Bellevue, WA, USA
August 8–10, 2012

Proceedings of the 21st U
SEN

IX Security Sym
posium

	
Bellevue, W

A
, USA 

August 8–10, 2012
Sponsored by

© 2012 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers
remain with the author or the author’s employer. Permission is granted for
the noncommercial reproduction of the complete work for educational or
research purposes. Permission is granted to print, primarily for one person’s
exclusive use, a single copy of these Proceedings. USENIX acknowledges all
trademarks herein.

ISBN 978-931971-95-9

USENIX Association

Proceedings of the

21st USENIX Security Symposium

August 8–10, 2012
Bellevue, WA

Conference Organizers

Program Chair
Tadayoshi Kohno, University of Washington

Program Committee
Ben Adida, Mozilla
Nikita Borisov, University of Illinois at

Urbana-Champaign
David Brumley, Carnegie Mellon University
Kelly Caine, Indiana University
Srdjan Capkun, ETH
Sonia Chiasson, Carleton University
Mihai Christodorescu, IBM T.J. Watson Research

Center
Anupam Datta, Carnegie Mellon University
William Enck, North Carolina State University
David Evans, University of Virginia
Kevin Fu, University of Massachusetts Amherst
Carrie Gates, CA Technologies
Roxana Geambasu, Columbia University
Ian Goldberg, University of Waterloo
Matthew Green, Johns Hopkins University
Urs Hengartner, University of Waterloo
Jaeyeon Jung, Microsoft Research
Sam King, University of Illinois at Urbana-Champaign
Engin Kirda, Northeastern University
Christian Kreibich, International Computer Science

Institute

Kirill Levchenko, University of California, San Diego
David Lie, University of Toronto
Jonathan McCune, Carnegie Mellon University
David Molnar, Microsoft Research
Alex Moshchuk, Microsoft Research
Steven Murdoch, University of Cambridge
Cristina Nita-Rotaru, Purdue University
Niels Provos, Google
Vitaly Shmatikov, University of Texas, Austin
Diana Smetters, Google
Dan Wallach, Rice University

Invited Talks Committee
David Evans, University of Virginia
David Molnar, Microsoft Research
Bruce Potter, Ponte Technologies
Margo Seltzer, Harvard School of Engineering

and Applied Sciences and Oracle

Poster Session Coordinator
Matt Bishop, University of California, Davis

Rump Session Chair
Matt Blaze, University of Pennsylvania

External Reviewers
Moheeb Abu Rajab

Ayo Akinyele

Ivan Alagenchev

Chaitrali Amrutkar

Dirk Balfanz

Jeremiah Blocki

Shuo Chen

Yikan Chen

Longze Chen

Shane Clark

Alan Dunn

Christina Garman

Chris Grier

Matt Hicks

David Huang

Suman Jana

Limin Jia

Haohui Mai

Prateek Mittal

Andres Molina-Markham

Shishir Nagaraja

James Newsome

Anh Nguyen

Matthew Pagano

Amir Rahmati

Mastooreh Salajegheh

Simon Sibomana

Arunesh Sinha

Sooel Son

Shuo Tang

Tianhao Tong

Michael Tschantz

Samee Zahur

Yuchen Zhou

21st USENIX Security Symposium
August 8–10, 2012

Bellevue, WA, USA

Message from the USENIX Security ’12 Program Chair . . viii

Wednesday, August 8
Spam and Drugs
PharmaLeaks: Understanding the Business of Online Pharmaceutical Affiliate Programs. . 1
Damon McCoy, George Mason University; Andreas Pitsillidis and Grant Jordan, University of California,
San Diego; Nicholas Weaver and Christian Kreibich, University of California, San Diego, and International
Computer Science Institute; Brian Krebs, KrebsOnSecurity.com; Geoffrey M. Voelker, Stefan Savage, and
Kirill Levchenko, University of California, San Diego

B@bel: Leveraging Email Delivery for Spam Mitigation. . 17
Gianluca Stringhini and Manuel Egele, University of California, Santa Barbara; Apostolis Zarras and Thorsten
Holz, Ruhr-University Bochum; Christopher Kruegel and Giovanni Vigna, University of California, Santa
Barbara

Impact of Spam Exposure on User Engagement. . 33
Anirban Dasgupta, Yahoo! Labs; Kunal Punera, RelateIQ Inc.; Justin M. Rao, Microsoft Research; Xuanhui
Wang, Facebook

CAPTCHAs and Password Strength
Security and Usability Challenges of Moving-Object CAPTCHAs: Decoding Codewords in Motion. 49
Y. Xu, University of North Carolina at Chapel Hill; G. Reynaga and S. Chiasson, Carleton University; J.-M.
Frahm and F. Monrose, University of North Carolina at Chapel Hill; P. van Oorschot, Carleton University

How Does Your Password Measure Up? The Effect of Strength Meters on Password Creation 65
Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass, Michelle L. Mazurek, Timothy
Passaro, Richard Shay, Timothy Vidas, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor, Carnegie Mellon
University

I Forgot Your Password: Randomness Attacks Against PHP Applications. .81
George Argyros and Aggelos Kiayias, University of Athens

Browser Security
An Evaluation of the Google Chrome Extension Security Architecture. . 97
Nicholas Carlini, Adrienne Porter Felt, and David Wagner, University of California, Berkeley

Establishing Browser Security Guarantees through Formal Shim Verification. . 113
Dongseok Jang, Zachary Tatlock, and Sorin Lerner, University of California, San Diego

The Brain
Neuroscience Meets Cryptography: Designing Crypto Primitives Secure Against Rubber Hose Attacks. 129
Hristo Bojinov, Stanford University; Daniel Sanchez and Paul Reber, Northwestern University; Dan Boneh,
Stanford University; Patrick Lincoln, SRI

On the Feasibility of Side-Channel Attacks with Brain-Computer Interfaces. . 143
Ivan Martinovic, University of Oxford; Doug Davies, Mario Frank, and Daniele Perito, University of California,
Berkeley; Tomas Ros, University of Geneva; Dawn Song, University of California, Berkeley

Thursday, August 9
A Chance of Clouds
Whispers in the Hyper-space: High-speed Covert Channel Attacks in the Cloud. . 159
Zhenyu Wu, Zhang Xu, and Haining Wang, The College of William and Mary

Policy-Sealed Data: A New Abstraction for Building Trusted Cloud Services . . 175
Nuno Santos, MPI-SWS; Rodrigo Rodrigues, CITI/Universidade Nova de Lisboa; Krishna P. Gummadi, MPI-
SWS; Stefan Saroiu, Microsoft Research

StealthMem: System-Level Protection Against Cache-Based Side Channel Attacks in the Cloud. 189
Taesoo Kim, MIT CSAIL; Marcus Peinado and Gloria Mainar-Ruiz, Microsoft Research

Embedded Security
Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices. . 205
Nadia Heninger, UC San Diego; Zakir Durumeric, Eric Wustrow, and J. Alex Halderman, University of
Michigan

TARDIS: Time and Remanence Decay in SRAM to Implement Secure Protocols on Embedded Devices
without Clocks . . 221
Amir Rahmati and Mastooreh Salajegheh, University of Massachusetts Amherst; Dan Holcomb, University
of California, Berkeley; Jacob Sorber, Dartmouth College; Wayne P. Burleson and Kevin Fu, University of
Massachusetts Amherst

Gone in 360 Seconds: Hijacking with Hitag2. . 237
Roel Verdult and Flavio D. Garcia, Radboud University Nijmegen; Josep Balasch, KU Leuven ESAT/COSIC
and IBBT

Secure Computation and PIR
Taking Proof-Based Verified Computation a Few Steps Closer to Practicality . . 253
Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg, and Michael Walfish, The
University of Texas at Austin

Optimally Robust Private Information Retrieval. . 269
Casey Devet and Ian Goldberg, University of Waterloo; Nadia Heninger, University of California, San Diego

Billion-Gate Secure Computation with Malicious Adversaries . . 285
Benjamin Kreuter, abhi shelat, and Chih-hao Shen, University of Virginia

Authentication and Secure Deletion
Progressive Authentication: Deciding When to Authenticate on Mobile Phones. . 301
Oriana Riva, Microsoft Research; Chuan Qin, University of South Carolina; Karin Strauss and Dimitrios
Lymberopoulos, Microsoft Research

Origin-Bound Certificates: A Fresh Approach to Strong Client Authentication for the Web 317
Michael Dietz, Rice University; Alexei Czeskis, University of Washington; Dirk Balfanz, Google Inc.; Dan S.
Wallach, Rice University

Data Node Encrypted File System: Efficient Secure Deletion for Flash Memory. . 333
Joel Reardon, Srdjan Capkun, and David Basin, ETH Zurich

Privacy Enhancing Technologies and Network Traffic Analysis
Throttling Tor Bandwidth Parasites. . 349
Rob Jansen and Paul Syverson, U.S. Naval Research Laboratory; Nicholas Hopper, University of Minnesota

Chimera: A Declarative Language for Streaming Network Traffic Analysis. . 365
Kevin Borders, National Security Agency; Jonathan Springer, Reservoir Labs; Matthew Burnside, National
Security Agency

Thursday, August 9 (continued)
New Attacks on Timing-based Network Flow Watermarks . . 381
Zi Lin and Nicholas Hopper, University of Minnesota

Friday, August 10
Web Security
On Breaking SAML: Be Whoever You Want to Be. .397
Juraj Somorovsky, Ruhr-University Bochum; Andreas Mayer, Adolf Würth GmbH & Co. KG; Jörg Schwenk,
Marco Kampmann, and Meiko Jensen, Ruhr-University Bochum

Clickjacking: Attacks and Defenses. . 413
Lin-Shung Huang, Carnegie Mellon University; Alex Moshchuk, Helen J. Wang, and Stuart Schechter,
Microsoft Research; Collin Jackson, Carnegie Mellon University

Privilege Separation in HTML5 Applications. . 429
Devdatta Akhawe, Prateek Saxena, and Dawn Song, University of California, Berkeley

Software Security I
Fuzzing with Code Fragments. . 445
Christian Holler, Mozilla Corporation; Kim Herzig and Andreas Zeller, Saarland University

kGuard: Lightweight Kernel Protection against Return-to-User Attacks. . 459
Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D. Keromytis, Columbia University

Enhanced Operating System Security Through Efficient and Fine-grained Address Space Randomization. 475
Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum, Vrije Universiteit Amsterdam

Botnets and Web Security
From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware . . 491
Manos Antonakakis, Damballa Inc. and Georgia Institute of Technology; Roberto Perdisci, University
of Georgia and Georgia Institute of Technology; Yacin Nadji, Georgia Institute of Technology; Nikolaos
Vasiloglou and Saeed Abu-Nimeh, Damballa Inc.; Wenke Lee and David Dagon, Georgia Institute of
Technology

PubCrawl: Protecting Users and Businesses from CRAWLers. . 507
Gregoire Jacob, University of California, Santa Barbara/Telecom SudParis; Engin Kirda, Northeastern
University; Christopher Kruegel and Giovanni Vigna, University of California, Santa Barbara

Enemy of the State: A State-Aware Black-Box Web Vulnerability Scanner. . 523
Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna, University of California, Santa
Barbara

Mobile Devices
Aurasium: Practical Policy Enforcement for Android Applications. . 539
Rubin Xu, Computer Laboratory, University of Cambridge; Hassen Saïdi, Computer Science Laboratory, SRI
International; Ross Anderson, Computer Laboratory, University of Cambridge

AdSplit: Separating Smartphone Advertising from Applications. . 553
Shashi Shekhar, Michael Dietz, and Dan S. Wallach, Rice University

DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android
Malware Analysis. . 569
Lok Kwong Yan, Syracuse University and Air Force Research Laboratory; Heng Yin, Syracuse University

(Friday, August 10, continues on p. vi)

Friday, August 10 (continued)
Software Security II
Sting: Finding Name Resolution Vulnerabilities in Programs . . 585
Hayawardh Vijayakumar, Joshua Schiffman, and Trent Jaeger, The Pennsylvania State University

Tracking Rootkit Footprints with a Practical Memory Analysis System. . 601
Weidong Cui and Marcus Peinado, Microsoft Research; Zhilei Xu, Massachusetts Institute of Technology;
Ellick Chan, University of Illinois at Urbana-Champaign

tachyon: Tandem Execution for Efficient Live Patch Testing. . 617
Matthew Maurer and David Brumley, Carnegie Mellon University

Being Social
Privacy-Preserving Social Plugins. . 631
Georgios Kontaxis, Michalis Polychronakis, and Angelos D. Keromytis, Columbia University; Evangelos P.
Markatos, FORTH-ICS

Social Networking with Frientegrity: Privacy and Integrity with an Untrusted Provider 647
Ariel J. Feldman, Aaron Blankstein, Michael J. Freedman, and Edward W. Felten, Princeton University

Efficient and Scalable Socware Detection in Online Social Networks. . 663
Md Sazzadur Rahman, Ting-Kai Huang, Harsha V. Madhyastha, and Michalis Faloutsos, University of
California, Riverside

Message from the USENIX Security ’12 Program Chair

It is my great pleasure to welcome you to the 21st USENIX Security Symposium. We have an outstanding event in
store for you, and for that, I thank all of you—the authors, the invited speakers, the program committee members
and other organizers, the external reviewers, the sponsors, the USENIX staff, and the attendees. The USENIX
Security Symposium would not be the premier venue that it is if it were not for your involvement.

This year USENIX Security received 222 submissions. As in previous years, the program committee used a
multi-round reviewing process. The authors of submissions were not revealed to the reviewers, and every paper
was reviewed by at least two reviewers. Papers that received a positive score in the first round were reviewed by
at least two additional reviewers. The program committee met to discuss the submissions on April 19 and 20 at the
Microsoft Research campus in Redmond, Washington. Jaeyeon Jung at Microsoft Research devoted a huge amount
of time to ensure that all aspects of the meeting ran smoothly; I am deeply grateful to her for all of her hard work as
host. I would also like to thank Microsoft Research and USENIX for funding the meals during the PC meeting.

After very careful and extensive deliberations, the program committee decided to accept or conditionally accept 43
papers—a record for USENIX Security. The quality of these papers is very high—a testimony to the strength of
our community!

The entire program committee invested a tremendous effort in reviewing and discussing these papers. Please join
me in thanking the program committee and all the external reviewers, listed on page ii, for their countless hours of
work. I would also like to thank Will Enck, Kevin Fu, and Sam King for serving as deputy chairs and handling the
submissions for which I had a conflict.

We also have a wonderful selection of invited talks for you. I would like to thank the invited talks committee—
David Evans, Casey Henderson, David Molnar, Bruce Potter, and Margo Seltzer—for all of the hard work they
invested toward ensuring an exciting, interesting, educational, and invigorating invited talks track. The Poster and
Rump Sessions have also been hits at previous USENIX Security Symposiums, and I think you will find them to
be “can’t-miss” events at this year’s USENIX Security too. I would like to thank Matt Bishop for serving as this
year’s Poster Session Chair, and Matt Blaze for serving as this year’s Rump Session Chair.

I am also deeply grateful to the entire staff at USENIX. They have worked incredibly hard to help make USENIX
Security one of the top conferences in the field. Please join me in thanking them. Please also join me in thanking
Joseph Schwartz for capturing USENIX Security on video.

Finally, I would like to thank all of the authors who submitted their research papers, posters, and Rump
Session talks.

Welcome to Bellevue, Washington, for the 21st USENIX Security Symposium! I hope you enjoy the conference.

Tadayoshi Kohno, University of Washington
USENIX Security ’12 Program Chair

USENIX Association 	 21st USENIX Security Symposium  1

PharmaLeaks: Understanding the Business of
Online Pharmaceutical Affiliate Programs

Damon McCoy� Andreas Pitsillidis∗ Grant Jordan∗ Nicholas Weaver∗† Christian Kreibich∗†

Brian Krebs‡ Geoffrey M. Voelker∗ Stefan Savage∗ Kirill Levchenko∗

�Department of Computer Science ∗Department of Computer Science and Engineering
George Mason University University of California, San Diego

†International Computer Science Institute ‡KrebsOnSecurity.com
Berkeley, CA

Abstract
Online sales of counterfeit or unauthorized products
drive a robust underground advertising industry that in-
cludes email spam, “black hat” search engine optimiza-
tion, forum abuse and so on. Virtually everyone has en-
countered enticements to purchase drugs, prescription-
free, from an online “Canadian Pharmacy.” However,
even though such sites are clearly economically moti-
vated, the shape of the underlying business enterprise
is not well understood precisely because it is “under-
ground.” In this paper we exploit a rare opportunity to
view three such organizations—the GlavMed, SpamIt
and RX-Promotion pharmaceutical affiliate programs—
from the inside. Using “ground truth” data sets includ-
ing four years of raw transaction logs covering over $185
million in sales, we provide an in-depth empirical anal-
ysis of worldwide consumer demand, the key role of in-
dependent third-party advertisers, and a detailed cost ac-
counting of the overall business model.

1 Introduction
Much like the legitimate Internet economy, advertising
is a major driver for the “underground” criminal econ-
omy as well. For all their variety, spam, search-engine
abuse, forum spam and social spam—as well as the bot-
nets, fast-flux networks and other technical infrastruc-
ture that enable these activities—are all simply low-cost
advertising platforms that monetize latent consumer de-
mand. Consequently, an emerging research agenda has
developed around understanding the economic structure
of these businesses, both to understand the scope and
drivers for the problem [8, 9, 13], as well as to help pri-
oritize interventions [14, 15]. Unfortunately, while clever
inference and estimation techniques can illuminate a few
of the key questions, much remains unclear. This is be-
cause, as a rule, there is little “ground truth” data in the
field for either validating such results or to provide finer-
grained analytics that can be obtained via inference.

This paper provides a rare counter-point to this rule.
Under a variety of serendipitous circumstances (largely

driven by competition between criminal organizations),
a broad corpus of ground truth data has become avail-
able. In particular, in this paper we analyze the content
and implications of low-level databases and transactional
metadata describing years of activity at the GlavMed,
SpamIt and RX-Promotion pharmaceutical affiliate pro-
grams. By examining hundreds of thousands of orders,
comprising a settled revenue totaling over US$185M,
we are able to provide comprehensive documentation on
three key aspects of underground advertising activity:

Customers. We provide detailed analysis on the con-
sumer demand for Internet-advertised counterfeit phar-
maceuticals, covering customer demographics, product
selection (including an examination of drug abuse as a
driver), reorder rates and market saturation.

Advertisers. We quantitatively detail the role of third-
party affiliate advertisers (both email/forum spammers
and SEO-based advertisers), the dynamics of their labor
market, their ability to drive revenue and the distribution
of their commission income. This analysis includes the
operators of many of the best-known botnets including
MegaD, Grum, Rustock and Storm, and we document in-
dividual advertisers generating over $10M in sales.

Sponsors. We derive an empirical revenue and cost
model, including both direct costs (sales commissions,
supply, payment processing) and indirect costs (hosting,
domain registration, program advertisements). We also
provide insight and validation about the most significant
overheads for the operators of such programs.

This is an unusual research paper. We introduce no
new artifact, we develop no new inference technique,
we deploy no new measurement infrastructure. We do
none of these things because we don’t need to; we
have the actual data sets that we would otherwise try
to measure, infer or estimate. Thus, while there are sig-
nificant methodological challenges that we must over-
come (mainly around the forensic reverse engineering
of database schemas and their semantics), ultimately the
contribution of this paper is in its results. However, we
believe these are both unique and significant, with impli-
cations for best addressing this variety of Internet abuse.

1

2  21st USENIX Security Symposium	 USENIX Association

2 Background
Abusive Internet advertising has existed virtually as long
as the Internet itself. In addition to well-defined adver-
tising channels such as sponsored search [11, 12], rogue
advertisers make use of a broad range of vectors to at-
tract customer traffic including email spam [1, 6, 14, 17],
search engine manipulation [7, 13, 23], forums and blog
spam [19, 24] as well as online social networks [4, 22].
Due to pressure against these tactics, few legitimate mer-
chants will engage such advertisers and thus rogue adver-
tising and rogue products tend to go hand in hand. For
example, in one recent report on email spam, Syman-
tec estimated that 80% of all such messages shilled for
“prescription-free” pharmaceuticals [21].

However, the structure of this activity has changed sig-
nificantly over the last decade. In particular, market spe-
cialization has largely eliminated the independent “soup-
to-nuts” advertiser who previously handled the entirety
of the sale process [16]. Instead the rise of the affil-
iate program, or “partnerka”, model has separated the
role of the advertiser, paid on commission to attract cus-
tomer traffic, from the sponsor who in turn handles Web
site design, payment processing, customer service and
fulfillment [18]. This evolution is not unique to abu-
sive advertising; indeed, large legitimate merchants such
as Amazon also sponsor affiliate programs as a means
of advertising. However, it has been deeply internalized
within the underground ecosystem including the pay-per-
install [3], FakeAV [20], pornography [25], pharmaceuti-
cals [2], herbal supplements [14], replica [14] and coun-
terfeit software markets [9], among others.

Counterfeit pharmaceuticals represent a typical ex-
ample. Here a range of sponsoring affiliate programs
provide drugstore storefronts, drug fulfillment (typically
via drop shipping from India), payment processing, cus-
tomer service and so on. Independent advertisers, or af-
filiates, in turn promote the program (e.g., by using bot-
nets to send spam email or manipulating search engine
results) and are paid a commission on each sale that re-
sults from a click on one of their ads. Commissions range
from 30%–40% of gross revenue, typically paid via a
quasi-anonymous online money transfer service such as
WebMoney or Liberty Reserve.

This business model has two key advantages for the
advertiser: focus and mobility. Without needing to at-
tend to issues such as Web site design, payment pro-
cessing, customer service, fulfillment and so on, the ad-
vertiser is free to focus single-mindedly on the task of
attracting customer traffic to these sites. Indeed, this
functional specialization has supported the creation of
ever more sophisticated botnets for email delivery or
“black hat” search engine optimization, and many of the
largest botnets are directly involved in advertising the
programs in this paper (Rustock, MegaD, Grum, Cut-

wail, Storm, Waledac and others). The second advantage
of this model, mobility, is that the loosely coupled nature
of their relationship with affiliate programs allows an ad-
vertiser to switch programs at will (or even support mul-
tiple programs at once). This low “switching cost” pro-
vides bargaining power for the effective advertiser (in-
deed, we witness high-sales advertisers able to use this
threat to drive higher commissions). More importantly,
it reduces an advertiser’s exposure to business continuity
risk. If a particular affiliate program should shut down,
advertisers can still monetize their investments (e.g., in a
botnet) by advertising for a different sponsor.

However, the benefits of this separation are strong for
the sponsoring affiliate program as well. By outsourcing
advertising they free themselves from direct exposure to
the criminal risks associated with large-scale advertising
enterprises (e.g., mass compromise of computers and on-
line accounts). Second, because advertisers are paid on a
commission basis, they also outsource “innovation risk”.
Program sponsors need not predict the best way to at-
tract customer traffic at a given point in time. Instead
hundreds of advertisers innovate independently; if many
of them fail, so be it. Since advertisers are only paid com-
missions on successful sales, a sponsor will only end up
paying for effective advertising strategies and need not
distinguish among strategies a priori.

Against this background, online pharmaceutical sales
is one of the oldest and largest affiliate program markets.
This market supports tens of affiliate programs and, as
we will see, thousands of independent advertisers (affili-
ates) and hundreds of thousands of customers. However,
while the mechanics of this business model are well-
described in recent work [2, 14, 18], the dynamics of
the actors and the underlying constants that define the
cost structure (and hence the vulnerabilities in the busi-
ness) are not well understood at all. Indeed, even simple
questions such as “How big is sales turnover?” are imper-
fectly understood. For example, Kanich et al. used one
method to estimate that the combined turnover across
seven leading pharmacy programs (constituting two-
thirds of affiliate brands advertised in spam) is roughly
86,000 orders per month [9]. However, Leontiadis et al.
use a different technique to arrive at a much larger esti-
mate suggesting over 640,000 orders per month [13].

In this paper, we answer this and many other such
questions precisely by focusing in depth on three phar-
maceutical affiliate programs: GlavMed, SpamIt and
RX-Promotion. These organizations have been in busi-
ness for five years or more. Together, they represent
many tens of storefront “brands” (including the ubiqui-
tous “Canadian Pharmacy”) and, according to the data
from our prior measurement studies, these programs
have been advertised in over a third of all spam email
messages [14].

2

USENIX Association 	 21st USENIX Security Symposium  3

3 Authenticity and Ethics

Our use of “found data” creates two new concerns that
we address here: authenticity and ethics.

First, it is useful to provide some rough context con-
cerning the circumstances leading to the release of these
data sets. As explained in the previous section, GlavMed
and RX-Promotion are both long-operating pharmaceu-
tical affiliate programs based in Russia. However, for a
variety of reasons, enmity developed between owners in
each program, revealed anecdotally through “sniping” on
underground forums, claims of denial-of-service attacks
and ultimately to the hacking of each other’s infrastruc-
ture sites. Perhaps inspired by the “online leak” meme,
popularized recently by Wikileaks and others, elements
of these two organizations (or parties sympathetic to
their positions) gained access to information about each
other’s operations and then made portions of this data
available: sometimes publishing very broadly on under-
ground forums and file-sharing sites, and other times dis-
tributing to a variety of journalists, e-crime researchers,
law enforcement agencies as well as a broad range of un-
derground actors.

Through these channels we obtained access to three
transactional data sets: the complete dump, covering four
years, of the GlavMed and SpamIt back-end database
(comprising transactions, payments and so on) and
a year of more restricted transactional data for the
RX-Promotion program. We also received two metadata
corpuses: detailed archived chat logs from the program
operator for sites operated by GlavMed and SpamIt, as
well as financial data concerning the revenue and cost
structure for the RX-Promotion program. For further
context and back-story about this data, we refer readers
to the “Pharma Wars” series by Brian Krebs [10].

3.1 Authenticity
Given that we did not gather the information ourselves
and the adversarial nature by which the data became
available, an obvious question is how to evaluate its accu-
racy and authenticity: how do we know that our sources
did not fake the data?

While we cannot establish clear provenance beyond
all possible doubt, we observe a range of strong sup-
porting evidence. First, we observe that the data sets are
large and detailed (over 2M sales records, with over 140
linked tables, coupled with several GB of related meta-
data). These attributes do not entirely discount the pos-
sibility that they could be grossly fraudulent, but it sug-
gests that the costs of creating such a forgery would be
significant.

Second, we consider questions of internal and cross-
consistency. The transactional data sets have complex
schemas (covering orders, potentially many payment

transactions per order, commissions to advertisers, sub-
sequent payouts, and so on) and we find direct concor-
dances between the different elements (e.g., if we sum
the settled sales for a particular affiliate it typically re-
lates directly to the size of the payout to that affiliate).
We also find concordances between the transactional data
and the metadata. For example, we found multiple chat
logs directing a GlavMed/SpamIt employee to make a
payment to a particular affiliate that is then matched by
an identical payout record in the associated transactional
database. Similarly, the monthly revenue for shipped
products for RX-Promotion is consistent with the set-
tled revenue from its payment processor in the same pe-
riod. Finally, during the period covered by all three trans-
actional data sets we had placed multiple product or-
ders from each of the associated programs [9, 14]. We
find each and every one of our orders in the appropriate
database with the correct data.

While this evidence cannot comprehensively prove the
absence of fraud,1 given the strong concordances and the
absence of any evidence supporting the forgery hypoth-
esis, we believe the greater likelihood is that these data
sets are authentic and accurate. We proceed with this as-
sumption going forward.

3.2 Ethics
The other fundamental issue concerns the ethics of us-
ing data that was, in all likelihood, gathered via illegal
means. Here there are two kinds of questions. The first
is a high-level question concerning whether the nature of
how the data was originally gathered should prima facie
proscribe all subsequent uses of it. This question is not
new and it manifests in a range of fields. For example,
should a political scientist be proscribed from analyzing
the contents of the Pentagon papers (or the more contem-
porary Wikileaks data) in reasoning about U.S. foreign
policy? Similarly, should researchers avoid using widely
publicized stolen password data (e.g., from the Anony-
mous/Lulzsec leaks) when studying the strength of user-
selected passwords? We justify our own choice to take
such steps by reasoning about harm.

We observe that this data is already broadly available
and the knowledge of its existence, its association with
the GlavMed, SpamIt and RX-Promotion organizations,
and some of the over-arching contents (e.g., total rev-
enue, etc.) have already been widely and publicly docu-
mented. Consequently, we cannot create any new harm
simply through association with these entities or repeat-
ing these findings.

To manage any remaining harms we institute a number

1For example, while we believe comprehensive forgery would have
been cost prohibitive given the size and richness of these data sets, a
forger might have selectively altered only certain records and updated
dependent schemas to be consistent.

3

4  21st USENIX Security Symposium	 USENIX Association

Program Period Affiliates Customers Billed orders Revenue

GlavMed Jan 2007 – Apr 2010 1,759 584,199 699,516 $81M

SpamIt Jun 2007 – Apr 2010 484 535,365 704,169 $92M

RX-Promotion Oct 2009 – Dec 2010 415 59,769 – 69,446 71,294 $12M

Table 1: Summary of the affiliate program data used in the analysis. Orders are rounded to the nearest thousand, revenue to the
nearest million U.S. Dollars. Affiliates and customers are listed after de-duplication and billed orders and revenue reflect only those
orders whose payment transactions completed (both processes are described in Section 4.1).

of controls in our work focused on the individual stake-
holders. First and foremost, and in accordance with our
institution’s human subjects review process, we protect
customer confidentiality since, of all parties described in
the data, they are most vulnerable. To this end, we com-
mitted to modify the raw data sets to anonymize person-
ally identifiable customer data such as their name, ad-
dress and the PAN component of their credit card in-
formation (though in a way that we are able to asso-
ciate multiple orders from the same customer). For the
remaining stakeholders, program employees, affiliates,
suppliers and payment processors, we use a similar stan-
dard in publishing our work. In each of these cases the
persons or organizations operate using handles or code
names that are not clearly identifiable (e.g., “brainstorm”
or “gl”) without the use of additional data sources. In
some cases (e.g., payment processors, suppliers) we have
become aware of the likely true names of these orga-
nizations (typically through reading the metadata) but
we restrict ourselves to using these non-identifiable code
names since the true names do not enhance our analysis.
We do not name program employees and we typically
discuss affiliates in aggregate, with an exception being
the top affiliates whom we distinguish in this paper using
only their online handles.

4 Derived Data
Using “found data” also introduces a range of method-
ological challenges, ranging from reverse engineering
schemas to resolving ambiguities in the data. In this sec-
tion we describe the data sets (summarized in Table 1)
and explain how we derived the additional contextual re-
lations used in our analysis.

4.1 GlavMed and SpamIt
The first two data sets are PostgresSQL database dumps
of the operational databases for the GlavMed and SpamIt
programs, including all schemas, data, and trigger func-
tions, but no other code external to the database. The
GlavMed database begins November 2005 and ends
early May 2010, of which we use the period spanning
all of 2007–2009 and the first four months of 2010.2

2Since our goal is accuracy and not completeness, we purposely ex-
clude the first 14 months of the data set because it is both “poisoned”

GlavMed and SpamIt are sister programs run by the same
organization and, indeed, both use the same database
schema. In fact, it appears that SpamIt was “forked”
from the GlavMed database on June 19, 2007: all records
before that date are identical in both databases, while
records after that date are distinct. Leaked chat logs
of the program operators suggest that this split was
related to the owner’s contemporaneous acquisition of
Spamdot.biz, a popular closed spammer forum of that
period. In part through this forum, the SpamIt program
nominally catered to a select group of affiliates relying on
email and other forms of spam, while GlavMed remained
open to a broader range of advertisers who primarily ad-
vertised via search engine optimization techniques.3

A detailed description of the data and its associated
schema, consisting of over 140 tables in each database,
is outside the scope of this paper. However, we perform
most of our analysis using five tables: shop sales de-
scribing each order, shop transactions recording at-
tempts to bill (or refund) the order via a payment service
provider, shop customers recording customer infor-
mation, shop affiliates recording information about
each affiliate, and shop affiliates income 2 record-
ing affiliate commissions for each sale. We also relied on
instant message chat logs of the operators of GlavMed
and SpamIt to aid our understanding and validate our hy-
potheses about the meaning and use of various tables.

However, the GlavMed and SpamIt databases are fun-
damentally operational in nature, and not naturally de-
signed for the kind of broad analysis that are the goal
of this paper. Thus, we now describe the additional data
processing required to produce necessary relations (e.g.,
such as identifying unique customers).

4.1.1 Customers

In an ideal world, each customer record would represent
a unique customer and include accurate demographic in-
formation for our analysis (age, sex, and either country
or U.S. ZIP code). The reality, hardly unique to our data
set, is less obliging: In addition to many test accounts

with transactions for other kinds of products, including $500K in
counterfeit software sales, and makes inconsistent use of the database
schemas that become standard in the later portion of the date range.

3This distinction is not absolute, however; domains advertised by
GlavMed affiliates have appeared in email spam.

4

USENIX Association 	 21st USENIX Security Symposium  5

used by the store operators, a large number of customer
records are generated by irate users venting their frustra-
tion with the deluge of spam advertising the program.4

Thus, for the purpose of this study, we consider only
customers who have successfully placed an order (more
specifically, those whose credit card or other payment
mechanism was successfully billed, as described later),
which reduces the number of customer records by 21%
in the GlavMed data set (from 875,457 to 690,590) and
39% in the SpamIt data set (from 1,145,521 to 693,319),
the latter clearly attracting more abuse.

De-duplication. An additional problem is that, unless
the customer uses a previously assigned customer num-
ber to explicitly log in, each repeat order would result in
a new customer record. To identify repeat customers, we
de-duplicate the remaining customer records by coalesc-
ing those whose name, billing address and email address
are identical, reducing the number of unique customers
to 584,199 in GlavMed and 535,365 in SpamIt. For ad-
dress matching, we used the common Visa/MasterCard
Address Verification System (AVS) predicate, which re-
lies on street number and ZIP code only. Both names and
email address matches were case insensitive, and we al-
lowed first and last names to be transposed.

Demographics. Our analysis relies on customer demo-
graphic data consisting of the customer’s country or U.S.
ZIP code, as well as their self-reported age and sex. The
country and ZIP code are necessary for proper order ful-
fillment, and therefore are generally reliable. However,
customers optionally provide age and sex data when or-
dering, so it is not always present and it is subject to
misreporting. Only 41% of GlavMed orders and 38% of
SpamIt orders included this information, and we cannot
validate it since customers could easily dissemble. In-
deed, we found that a larger than expected number of
users reported birth dates of January 1, February 2, and
so on (these being some of the easiest dates to report via
the interface). However, these anomalies are a small mi-
nority and we proceed under the assumption that the data
is generally correct (eliminating these cases does not sub-
stantively change the results reported in Section 5.1.3).

4.1.2 Affiliates
As with customers, affiliate records also require de-
duplication. However, here the duplication is not a mere
artifact of the interface, but is frequently an intentional
action. Affiliates frequently register under multiple iden-
tities, either to modulate their perceived earnings (affili-
ate programs commonly provide “top” lists showing the
affiliates with the highest earned commissions) or to gain

4This frustration was well captured by the many regular expres-
sions in the operators’ customer blacklist, e.g., (.*)SP(A+)M(.*) and
(.*)F(U+)CK(.*).

access to additional referral commissions that are pro-
vided on sales generated by new affiliates referred into
the program.5 To address these issues, we de-duplicate
affiliates as follows. For all affiliates with over $200 in
revenue we link those who share an email address, ICQ
number6 or “identified commission payments”. We con-
sidered a commission payment to be identified if it rep-
resents over 75% of an affiliate’s revenue and includes
unique payment account information (such as a Web-
Money, Fethard Finance, or ePassporte account or an
identified GlavMed payment card). The notion of identi-
fied payments was necessary to avoid incorrectly associ-
ating affiliates who use the commission payments system
to pay third parties (e.g., by asking for small payouts to
a third-party WebMoney purse).

4.1.3 Transaction Outcomes
In the GlavMed and SpamIt data sets, each customer
sales record in turn drives the creation of one or more
transaction records which reflect an attempt to transfer
money to or from a customer (as identified by a credit
card or Automated Clearing House (ACH) identifier) via
a third-party payment service provider. When a trans-
action is successful the response status field in this
record is zero (we validated these semantics by exam-
ining both raw payment processing error messages and
associated SQL triggers in the databases).

However, for a host of reasons transactions are fre-
quently declined. Indeed, over 25% of all transaction at-
tempts decline in both the GlavMed and SpamIt data sets.
In these cases, new transactions may be generated, pos-
sibly using different payment service providers. In some
cases, large order amounts are billed into two smaller
transactions. Overall, 91% of sales are able to complete
a payment transaction.

Finally, a transaction may be refunded, either par-
tially or fully. An additional complexity arises from cur-
rency conversion because customer payments are inter-
nally valued in U.S. Dollars, but can arrive in Euros,
Pounds and several other currencies. When refunds ar-
rive in native currency, we locate the original transaction
and calculate the dollar refund value on a pro-rated ba-
sis against the original value in the native currency. All
revenue numbers reported in the analysis refer to the total
amount billed, before any refunds against the transaction.
Refunds are shown separately in Table 3.

Note that having this ground truth data allows us to
calibrate biases in previous methods for estimating rev-
enue. In particular, we revisit our “purchase pair” tech-

5As an incentive to attract affiliates, program sponsors will typically
offer their affiliates a 5% commission on the future sales of any new
affiliate they bring into the program.

6ICQ is one of the oldest widely-deployed IM chat systems, and is
very popular in Russia and CIS states.

5

6  21st USENIX Security Symposium	 USENIX Association

nique that infers order turnover via customer order num-
ber advancement and then conservatively estimates the
average order size to gauge overall revenue [9]. Across
four years, we find that a significant number of order
numbers never appear in the database due to either fil-
tering for customer fraud or shopping cart abandonment
(between 13–28% for SpamIt and 7–17% for GlavMed).
The lower number of absent orders for GlavMed is likely
because the search engine vector used by its affiliates
generates less antipathy among consumers. In both cases,
8–12% of the orders that do appear in the database are
ultimately declined and do not ship. Consequently, true
turnover is between 8% (low of GlavMed) and 35% (high
of SpamIt) less than predicted by the “purchase pair”
technique. However, since the average successful order
size is between $115 (GlavMed) and $135 (SpamIt),
revenue estimates basd on an average sale of $100 are
roughly in-line with true revenue (within 6% overall for
GlavMed and 13% overall for SpamIt).

4.2 RX-Promotion
Our third data set concerning transactions from the
RX-Promotion program is far more limited. It only cov-
ers a single year of data from January to December of
2010, consisting of a single extracted view summarizing
each sale during the period made by U.S. customers. In
addition, roughly one week of data is missing (around
the last week of April 2010). Consequently, this trans-
actional data will strictly understate the turnover from
RX-Promotion.7

Each sales record includes information about the cus-
tomer (name only), the status of the order, its contents,
the total price as well the amount paid to the supplier,
shipper and the affiliate who generated the sale. Our anal-
ysis includes only orders with the status value “shipped”,
which make up 77% of all sales records (“declined” was
the next largest category at 14%).

Since the RX-Promotion data set does not include
crisp customer identifiers, we use two approximations for
identifying multiple orders belonging to the same cus-
tomer. The conservative approximation of 69,446 cus-
tomers only links sales records together if a customer
explicitly logs into the site using a previously assigned
customer ID. However, we note that this measure strictly
overestimates the number of customers since many users
prefer to place subsequent orders by entering in their in-
formation again. Alternatively, one can group customers
that share the same first and last name (normalized for

7Based on our measurements of both the GlavMed and SpamIt data
sets, our own previous study of the Eva Pharmacy program [9], and in-
ference from the RX-Promotion metadata, we are confident that U.S.
customers represent between 75% and 85% of total turnover. In ad-
dition, the missing week of data from April should cause our data to
underestimate annual orders by an additional 2%.

2007 2008 2009 2010 2011
0
1
2
3
4
5
6
7
8
9

10

O
rd

er
s

pe
r w

ee
k

(th
ou

sa
nd

s)

GlavMed
SpamIt
RX−Promotion

Figure 1: Weekly sales volume for each of the programs.

capitalization), resulting in 59,769 customers. This ap-
proach will accurately capture multiple orders from the
same user, but at the expense of potentially aliasing users
who happen to share the same first and last names. Thus,
the true number of unique customers is likely between
the two estimates, but to avoid aliasing issues we use the
larger conservative estimate in our analyses.

Finally, we also make use of seven months of over-
lapping metadata that includes detailed spreadsheets ac-
counting for month-by-month costs and cash flow. This
data does not have any of the previous limitations and
captures the financial performance of the program pre-
cisely and in its entirety.

5 Analysis
Using these data sets, we now provide a detailed assess-
ment of the affiliate program business model. From the
standpoint of the program sponsor, we consider four key
aspects of the business enterprise in turn: customers, af-
filiate advertisers, costs and payment processing.

5.1 Customers
Neither online pharmacies nor their advertisers generate
capital on their own. These activities thrive only because
they exploit latent customer demand for the products on
offer. It is this customer purchasing that drives the entire
ecosystem and thus this is where we begin: how many
purchases, for what, by whom and, perhaps, why?

Overall, as shown in Table 1, 584,199 unique cus-
tomers placed orders via GlavMed during the measure-
ment period and 535,365 placed orders via SpamIt; of
these approximately 130K appear in both. RX-Promotion
is a smaller program and covers a shorter time period,
with somewhere between 59,769 and 69,446 distinct cus-
tomers placing orders. In turn these customers gener-
ated almost 1.5M orders, varying from week to week as
shown in Figure 1. Note that the spike in May 2007 for
GlavMed is an artifact corresponding to the short period
after GlavMed had purchased SpamIt, but before they

6

USENIX Association 	 21st USENIX Security Symposium  7

2007 2008 2009 2010 2011

0

1

2

3

4

5

6

7

8
W

ee
kl

y
ne

w
 c

us
to

m
er

s
(h

un
dr

ed
 th

ou
sa

nd
s) GlavMed

SpamIt
RX−Promotion

Figure 2: Cumulative number of new customers.

had forked the databases in June 2007 (Section 4.1). Af-
ter the fork, GlavMed has very steady growth in orders
until mid-2009, even surpassing SpamIt, and then starts
to decline. Orders to SpamIt plateau for 2008–2009, sim-
ilarly declining in mid-2009.8 RX-Promotion order vol-
umes are considerably more dynamic, for reasons we
will explain later, with totals varying between 1–2 thou-
sand per week across the year of data.

5.1.1 First-time Customers
However, these million plus customers and their pur-
chases do not necessarily constitute the entirety of this
market, but only the portion that has been serviced to
date by these particular programs. This raises the ques-
tion: How saturated is the market for counterfeit pharma-
ceuticals? To evaluate this, Figure 2 shows the cumula-
tive number of unique customers seen in each program
per week over the measurement period. Thus, changes in
slope indicate changes in the rate of new customer ac-
quisition. From these trends it is clear that that the affil-
iate programs are attracting new customers at a steady
rate over time, and that the market does not appear
to be saturating at all. In particular, sister programs
GlavMed and SpamIt attract new customers at nearly the
same rate (3,367/week and 3,569/week on average) while
RX-Promotion, a smaller program, attracts customers at
a slower, but still constant rate (1,429/week on average).
The stability of this growth over time provides some ex-
planation for why spammers continue to blast email in-
discriminately to all Internet users over time: they are
still mining a rich vein of latent customer demand.

8This decline undoubtedly has many roots including increasing
pressure that mounted on SpamIt due to its high visibility (e.g., the
principal owner of SpamIt was identified by Russian Newsweek as the
World’s Biggest Spammer), shutdowns of large botnets operating as af-
filiates (e.g., the MegaD botnet, which we observed spamming for sites
associated with SpamIt affiliate “docent”, ceased operating in Novem-
ber of 2009), and inter-program competition (e.g., starting in 2010,
we see a roughly 15% reduction in the number of active affiliates in
the SpamIt program and we witness one large affiliate, “anonymouse”,
leaving SpamIt and moving to RX-Promotion during this period).

5.1.2 Repeat Customers
New customers, however, are not the whole story. The
graphs in Figure 3 show total program revenue per week
broken down into two components: revenues from first-
time customers and revenue from repeat orders from ex-
isting customers. What we see is that repeat orders are an
important part of the business, constituting 27% and 38%
of average program revenue for GlavMed and SpamIt,
respectively. For RX-Promotion revenue from repeat or-
ders is between 9% and 23% of overall revenue.

Overall, revenue from repeat customers steadily in-
creases over the years for GlavMed and SpamIt, and
holds steady even when orders and overall revenue de-
cline in mid-2009. The situation is more dynamic for
RX-Promotion with a pronounced dip in program rev-
enue in the middle of 2010 that impacts new and repeat
customers both. This dip corresponds to the period when
RX-Promotion lost its payment processing services for
scheduled drugs.9 Indeed, if we only consider the period
after August 2nd, repeat order revenue averages between
12% and 32%.

This data highlights a counterpoint to the conventional
wisdom that online pharmacies are pure scams: simply
taking credit cards and either never providing goods or
providing goods of no quality. Were this hypothesis true,
we would not expect to see repeat purchases—clear signs
of customer satisfaction—in such numbers. Anecdotally,
we have placed several hundred such orders ourselves
and, while we cannot speak to the quality of the products
we received, we have almost always received a product
in return for our payment [9, 14].

5.1.3 Product Demand
Beyond measuring overall demand, we are particularly
interested in determining what makes up this demand:
which drugs are being purchased, and does this provide
clues about why this market is preferred.

In an effort to reach all customer niches, each of the
programs carries thousands of products. To reason about
this multitude of drugs, we classified the bulk of the
products into broad categories based on our best assess-
ment (necessarily subjective) of the drug’s use: erectile
dysfunction, pain/inflammation, male enhancement (not
ED), mental health, sleep, obesity and other.

Using this classification, customer demand for spe-
cific kinds of drugs in the different programs is striking.
As with the previous time series graphs, Figure 4 shows
weekly revenue for the three affiliate programs over time,

9Associated metadata suggests that RX-Promotion’s payment ser-
vice provider (PSP) had arranged for merchant accounts at an Icelandic
bank to be used for RX-Promotion controlled drug payments. However,
on May 10th 2010, a complaint by Visa caused the bank to shut down
these accounts and thus processing for controlled substances was cur-
tailed until August 2nd when the PSP established new accounts for this
purpose with Azeri banks.

7

8  21st USENIX Security Symposium	 USENIX Association

2007 2008 2009 2010
0
1
2
3
4
5
6
7
8

W
ee

kl
y

re
ve

nu
e

(h
un

dr
ed

 th
ou

sa
nd

s)
Repeat
First time

(a) GlavMed

2007 2008 2009 2010
0
1
2
3
4
5
6
7
8

W
ee

kl
y

re
ve

nu
e

(h
un

dr
ed

 th
ou

sa
nd

s)

Repeat
First time

(b) SpamIt

2010 2011
0

1

2

3

4

W
ee

kl
y

re
ve

nu
e

(h
un

dr
ed

 th
ou

sa
nd

s)

Repeat (login)
Repeat (name match)
First time

(c) RX-Promotion

Figure 3: Weekly order revenue shown by customer class.

2007 2008 2009 2010
0

1

2

3

4

5

6

7

8

W
ee

kl
y

re
ve

nu
e

(h
un

dr
ed

 th
ou

sa
nd

s) Other
Erectile dysfunction
Pain/Inflamation

Infection
Mental Health
Obesity

(a) GlavMed

2007 2008 2009 2010
0
1
2
3
4
5
6
7
8

W
ee

kl
y

re
ve

nu
e

(h
un

dr
ed

 th
ou

sa
nd

s) Other
Erectile dysfunction
Pain/Inflamation

Male enhancement
Obesity
Mental Health

(b) SpamIt

2010 2011
0

1

2

3

4

W
ee

kl
y

re
ve

nu
e

(h
un

dr
ed

 th
ou

sa
nd

s) Other
Erectile dysfunction
Pain/Inflamation

Mental Health
Sleep
Obesity

(c) RX-Promotion

Figure 4: Weekly order revenue shown by drug type.

but here each of the top five revenue-earning drug cat-
egories is colored distinctly. For GlavMed and SpamIt,
the jokes about spam are spot on: “erectile dysfunction”
(ED) purchases dominate their revenue. Customers do
purchase other notable drugs, but they represent a small
fraction of revenue over time for these programs.

In contrast, revenue from pain/inflammation or-
ders matches revenue from ED in RX-Promotion.
RX-Promotion has a markedly different formulary from
GlavMed and SpamIt, prominently offering products
that GlavMed and SpamIt do not sell. Specifically,
these include scheduled drugs for pain (Oxycodone, Hy-
drocodone, Vicodin, etc.), mental health (Adderal, Ri-
talin, etc.), and sleep (Valium, etc.), all of which have
high abuse potential.10

These examples suggest that there may in fact be a
range of distinct reasons why different drugs are popu-
lar via this medium. Table 2 summarizes order volume
and program revenue for different groups of drugs sold to
customers by the three affiliate programs. Here we merge
our original set of categories into three groups that cor-
respond to different customer motivations for purchas-
ing drugs. The first group includes erectile dysfunction
(ED), male enhancement, and related products (includ-
ing fakes such as “Herbal Viagra”). These drugs, some-

10The Controlled Substances Act in the U.S. defines five drug
“schedules”, or classifications, according to various criteria such as po-
tential for abuse. Scheduled drugs require prescriptions and have heavy
financial and/or criminal penalties for illegal sale.

times called “lifestyle” drugs, do not address chronic or
acute illness. While they are relatively easy to obtain
under prescription, seekers may prefer the online chan-
nel for reasons of embarrassment or price.11 The sec-
ond group includes drugs that have the potential to be
seriously abused, and includes addictive drugs such as
opiates, depressants, stimulants, etc. For many of these
drugs, customers run substantial legal risk in purchasing
them without prescription, and presumably run this risk
because of a strong desire or need. The third group in-
cludes drugs for treating chronic or acute illnesses. Since
these drugs carry no strong abuse risk, nor represent a
clear cause for social discomfort, we presume that their
purchase is motivated by economics: lower direct drug
costs (which can be substantial) and the absence of indi-
rect costs (for a doctor’s visit). In each category, the table
also lists the top categories or specific products.

Reflecting Figure 4, the ED group dominates items
ordered and revenue to the program, particularly for
GlavMed and SpamIt. For RX-Promotion, though, drugs
with the potential for abuse are high-revenue or-
ders. Although they comprise just 14% of orders for

11The per-item drug price offered by such programs is frequently
less than 20% of that offered by legitimate retailers. For example, the
median price for 10 tablets of 100mg Sildenafil Citrate was $42.57 on
GlavMed and $23.40 at RX-Promotion. By contrast, according to data
at drugs.com, legitimate brand Viagra in the same amount sells for
$193.99. Note that these prices do not account for shipping, which can
add $15 to $30 per order.

8

USENIX Association 	 21st USENIX Security Symposium  9

GlavMed SpamIt RX-Promotion

Product Orders Revenue Orders Revenue Orders Revenue

ED and Related 580K (73%) $55M (75%) 670K (79%) $70M (82%) 58K (72%) $5.3M (51%)
Viagra 300K (38%) $28M (38%) 290K (34%) $31M (36%) 33K (41%) $2.7M (27%)
Cialis 180K (23%) $19M (26%) 190K (22%) $23M (27%) 18K (22%) $1.9M (19%)
Combo Packs 49K (6.1%) $3.9M (5.4%) 110K (14%) $8.4M (9.8%) 5100 (6.4%) $350K (3.4%)
Levitra 32K (4.1%) $3.2M (4.4%) 35K (4.2%) $3.9M (4.5%) 1200 (1.5%) $150K (1.5%)

Abuse Potential 48K (6.1%) $4.5M (6.1%) 64K (7.6%) $6.2M (7.3%) 11K (14%) $3.3M (32%)
Painkillers 29K (3.7%) $2.4M (3.3%) 53K (6.3%) $4.7M (5.5%) 10K (13%) $3.0M (29%)
Opiates — — — — 8000 (10%) $2.7M (26%)
Soma/Ultram/Tramadol 20K (2.5%) $1.8M (2.4%) 46K (5.5%) $4.1M (4.8%) 1000 (1.3%) $150K (1.5%)

Chronic Conditions 120K (15%) $9.5M (13%) 64K (7.6%) $5.2M (6.1%) 8500 (11%) $1.3M (13%)
Mental Health 23K (2.9%) $2.1M (2.9%) 16K (1.9%) $1.4M (1.7%) 6000 (7.4%) $1.1M (11%)
Antibiotics 25K (3.2%) $2.1M (2.9%) 16K (1.9%) $1.4M (1.6%) 1300 (1.6%) $97K (0.9%)
Heart and Related 12K (1.5%) $770K (1.1%) 9700 (1.2%) $630K (0.7%) 390 (0.5%) $35K (0.3%)

Uncategorized 48K (6.0%) $4.0M (5.5%) 47K (5.6%) $3.9M (4.6%) 2400 (3.0%) $430K (4.2%)

Table 2: Product popularity in each of the three programs. Product groupings and categories are in italics; individual brands are
without italics. Opiates are a further subcategory of Painkillers, and include Oxycodone, Hydrocodone, Vicodin, and Percocet.
Note, this table only describes revenue from drugs and does not capture shipping charges, which are orthogonal to drug popularity.

RX-Promotion, they account for nearly a third of pro-
gram revenue, with the Schedule-II opiates—only avail-
able at RX-Promotion—accounting for a quarter of rev-
enue. Indeed, during the period when RX-Promotion had
working credit card processing for controlled meds, sales
of Schedule II, III and IV drugs produced 48% of all rev-
enue! The fact that such drugs are over-represented in re-
peat orders as well (roughly 50% more prevalent in both
RX-Promotion and, for drugs like Soma and Tramdol, in
SpamIt) reinforces the hypothesis that abuse may be a
substantial driver for this component of demand.

5.1.4 Demographics
Although ED drugs account for the majority of business
for affiliate programs, focusing on the remaining prod-
ucts reveals remarkably pronounced age and sex trends
among customers.

Focusing on customers reporting age and sex infor-
mation, Figure 5 shows the percentage of all items or-
dered as a function of age, sex, and detailed product cat-
egory for GlavMed and SpamIt (excluding ED products,
as they would overwhelm the graph). The left half of
each graph shows results for women, and the right half
shows results for men. The y-axis is the self-reported age
of customers, and the x-axis is the percent of all items
these customers ordered. For each age the graphs show
stacked horizontal bars, with segments for the top ten
non-ED product categories.

Both age and sex purchasing patterns emerge from
this visualization. For example, male GlavMed cus-
tomers in Figure 5(a) purchase male pattern baldness
products (peaking between ages 20–30) and male en-
hancement products (peak 45–50), while women pre-
dominantly purchase obesity (peak 40–45) and reproduc-

tive health products (peak 25–30).12 Mental health and
pain/inflammation products are roughly equally popular
for men and women, with an older age bias for men.

In contrast to GlavMed, just a few categories predomi-
nate for SpamIt in Figure 5(b): pain/inflammation, infec-
tion, and mental health for both men and women, male
enhancement for men. Other categories more popular in
GlavMed, such as acne and male pattern baldness, are
smaller. One explanation is that the differences in prod-
uct popularity correlates with the vector used to adver-
tise the different affiliate programs. Since GlavMed is
more likely to be involved in search engine optimiza-
tion (SEO) oriented advertising, they have an opportu-
nity to target narrower markets (e.g., by manipulating
search results for keywords correlated with specific prod-
uct categories). By contrast, spam is an indiscriminate
advertising medium and customers clicking on spam-
advertised links are predominantly taken to storefronts
advertising ED products. Thus, for these customers to
buy other products would require additional initiative to
search within the site.

5.1.5 Geography
While both affiliate programs are located in Russia, most
of their customers are not. Based on customer ship-
ping addresses, we can determine that, across GlavMed
and SpamIt programs, customers from the United States
dominate at 75% of orders, with Canada, Australia, and
populous countries in Western Europe following in sin-
gle digits. Emphatically, Western money fuels these af-

12Interestingly, male customers also purchase the estrogen drug Clo-
mid, which we have come to understand may be explained by body
builders who commonly abuse the drug to counter some of the side-
effects of steroids.

9

10  21st USENIX Security Symposium	 USENIX Association

1 0 0 1
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

�

Male Enhancement

�

Reproductive Health

�

Heart

�

Acne

�

Male Pattern Baldness

�

Obesity

�

Mental Health

�

Infection

�

Pain

�

Reproductive Health

�

Heart

�

Acne

�

Obesity

�

Mental Health

�

Infection

�

Pain

Age

% Items % Items

(a) GlavMed

1 0 0 1 2

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

�

Hormones

�

Acne

�

Male Pattern Baldness

�

Heart

�

Obesity

�

Infection

�

Mental Health

�

Male Enhancement

�

Pain

�

Hormones

�

Acne

�

Heart

�

Obesity

�

Infection

�

Mental Health

�

Pain

Age

% Items % Items

(b) SpamIt

Figure 5: Items purchased separated into product category and customer age. The left half of each graph show orders from women,
and the right half shows orders from men. Customers restricted to those who self-report age and sex.

filiate programs with the U.S., Europe, Canada and Aus-
tralia constituting 97% of all orders, consistent with the
breakdown previously observed in [9].13

5.2 Affiliates
While customer purchasing drives the online pharmaceu-
tical ecosystem, affiliates are the ones who attract and
deliver the customers—and their money—to the online
pharmacies. Affiliates operate by commission, receiving
a significant fraction (typically 30–40%) of each cus-
tomer purchase that reflects the substantial risk they as-
sume in their aggressive advertising activities. Next we
analyze the role affiliates play in making online pharma-
ceutical programs successful as a business.

As discussed in Section 4.1.1, we merge separate ac-
counts in the GlavMed and SpamIt databases that belong
to the same affiliate. After account merging, during the
2007–2010 measurement period 1,037 affiliates were ac-
tive in GlavMed and 305 in SpamIt. Lacking detailed ac-
count profile information in RX-Promotion, we consider
each account a separate affiliate. With this assumption,
during the smaller one-year period for RX-Promotion
415 affiliates were active.

5.2.1 Program Revenue
GlavMed and RX-Promotion are open affiliate programs,
and as such they actively advertise and recruit new affil-
iates to join their programs (with the public advertising
focused on SEO-based advertising vectors). SpamIt, on

13This previous study also identified substantive differences in the
make-up of drugs purchased in the U.S. vs. other Western countries
(with U.S. customers driving a disproportionate fraction of demand for
non-ED meds). While we still observe this pattern in the SpamIt data
(with the fraction of non-ED meds in U.S. customer orders being 3.8×
larger than for Europe and Canada), it is absent in GlavMed customers,
suggesting that the advertising vector plays a key role in this effect.

GlavMed

RX Promotion

SpamIt

Figure 6: Distribution of affiliate contributions to total program
revenue for each program.

the other hand, is a closed program—focused specifically
on email spam—where affiliates join by invitation (Sec-
tion 4.1). These models influence the kinds of affiliates
in a program, the impact they have on generating revenue
for a program, as well as the commissions they earn.

Although the programs contain hundreds to thousands
of affiliates, most affiliates contribute little to the over-
all revenue of the programs. Figure 6 shows the CDFs
of affiliate contributions to total program revenue for the
three affiliate programs. The x-axis is the percent of af-
filiates, sorted from highest to lowest revenue they gen-
erate for the program, and the y-axis is the percent of
total program revenue. The graph shows that just 10% of
the highest-revenue affiliates account for 75–90% of total
program revenue across the three affiliate programs; for
GlavMed and RX-Promotion in particular, the remaining
90% of affiliates bring in just 10–15% of total revenue.

In the end, the most important affiliates for a program
are just a small fraction of all affiliates. From a business
perspective, programs can focus their attention and en-

10

USENIX Association 	 21st USENIX Security Symposium  11

2007 2008 2009 2010
0

10
20
30
40
50
60
70
80
90

100
C

um
ul

at
ive

 re
ve

nu
e

(m
illi

on
s)

GlavMed
SpamIt

Figure 7: Cumulative contribution of new affiliates over time to
the three-year total program revenue. Each week adds the con-
tribution to total program revenue made by the new affiliates
that appear that week.

ergy on the top performing affiliates. Alternatively, from
an intervention perspective, undermining the activities of
just a handful of affiliates would have a considerable af-
fect on a program’s bottom line: undermining the top 3–
10 affiliates would impact 25–40% of program revenue.

Moreover, there is evidence that these high-revenue
affiliates are not simply lucky, but represent the best-
established and experienced advertisers. Figure 7 shows
that it is the oldest affiliates who contribute most to
weekly program revenue on an ongoing basis. For both
programs, the curves show the cumulative contribution
to total program revenue over time for new affiliates.
For the new affiliates that appear each week, we incre-
ment a running sum with the total revenue those affili-
ates generate for the program—revenue generated from
the moment they join until the end of the measurement
period. For instance, the affiliates that generate revenue
in the first week account for nearly 10% of all rev-
enue for the entire three years of business. The dashed
lines show the contributions to total revenue by affiliates
that have joined on year intervals, emphasizing that the
older affiliates are important for generating revenue over
time. Affiliates that joined before 2008 contributed 69%
GlavMed and 54% of SpamIt total program revenue as
of April 2010. In contrast, affiliates that joined in 2009
and 2010 contributed less than 10% of that total.

5.2.2 Affiliate Commissions
Since only a small fraction of affiliates account for much
of the business, many affiliates earn small commissions.
Indeed, the median annualized affiliate commissions for
GlavMed, SpamIt, and RX-Promotion are just $292,
$3,320, and $428, respectively. This skew dovetails with
suggestions that spam-based advertising may be a labor
“lemon market” [5]. On the other hand, the most success-
ful affiliates are able to derive substantial income through
their advertising. Indeed, the top five affiliates were able

GlavMed SpamIt

RX Promotion

Figure 8: Distribution of affiliate commissions in each program.

to earn over $1M for themselves in a twelve-month pe-
riod (and a dozen exceeded $500K).14 Virtually all of
these earnings result from sales commissions with only
a minor share deriving from referral commissions (i.e.,
referral commissions are not a major source of income).

Figure 8 reveals a more nuanced picture of affiliate
commissions. For each program, the graph shows a PDF
of annualized commissions across all affiliates: the x-axis
is the annualized commission earned by an affiliate, and
the y-axis is the fraction of all affiliates that earned a
given commission. We calculate the commission for an
affiliate using the total customer sales linked to the af-
filiate multiplied by the commission rate of the affiliate,
plus any referral commissions. Sales commission rates
range from 15–45%, with 30–40% being the most com-
mon (generally high-revenue affiliates receive the high-
est commission rates).15 The “dots” on the PDFs denote
the median annualized commissions for that program.

For the open programs GlavMed and RX-Promotion,
the majority of affiliates earn very low annualized com-
missions. The peaks of the PDFs range between $20–
$200 a year for GlavMed, and $20–$2,000 a year for
RX-Promotion. The closed program SpamIt, however,
shows a bimodal distribution, with a mass of “poor” af-
filiates earning small commissions (mode around $500)
and another mass of “rich” affiliates earning large com-
missions (mode around $30,000), but still with many af-
filiates earning over $100,000 a year.

As another perspective, on an ongoing basis the ac-
tive affiliates in SpamIt, a closed program, each gen-
erate three times more revenue than active affiliates in
GlavMed and RX-Promotion, both open programs. Fig-

14Note that Figure 8 does not involve extrapolating, but is based on
taking the best four consecutive quarter’s earnings for each affiliate and
thus gains accuracy at the potential expense of right-censoring.

15Note that not all programs reward commissions uniformly over all
drugs. For example, RX-Promotion typically discounts commissions
by 10% on controlled drugs, so an affiliate receiving 40% on the sale
of Viagra may only receive 30% on the sale of Oxycodone.

11

12  21st USENIX Security Symposium	 USENIX Association

2007 2008 2009 2010 2011

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

W
ee

kl
y

re
ve

nu
e

pe
r a

ffi
lia

te
 (t

ho
us

an
ds

 o
f d

ol
la

rs
)

GlavMed
SpamIt
RX−Promotion

Figure 9: Average revenue per active affiliate each week.

ure 9 shows the average weekly revenue generated by
active affiliates. For each week, we total the revenue
generated by the affiliates that were active in attracting
customers that week, and divide by the number of ac-
tive affiliates. This metric is surprisingly stable over time
and strongly correlates with the nature of the affiliate
program. In both GlavMed and RX-Promotion, the av-
erage weekly revenue per affiliate is around $2,000. In
SpamIt, though, the average weekly revenue per affili-
ate ranges between $5,000–$7,000. Open programs fo-
cus on increasing the total number of affiliates, but the
vast majority have little impact on total revenue. Instead,
by focusing on quality affiliates, the closed nature of the
SpamIt program is much more effective at attracting pro-
ductive affiliates and avoiding unproductive ones.

Focusing only on these most productive affiliates, we
would intuitively expect them to also be the operators of
the largest spamming botnets. However, even a cursory
examination of the data shows that there is considerable
more complexity at work. For example, while the oper-
ators of the prodigious Rustock botnet (cosma2k, bird,
and adv1) indeed receive large commission payments
(over $1.9M), botnet operators do not appear to dominate
the top earners. Indeed, two of the largest botnet opera-
tors, docent (operator of MegaD) and severa (operator of
Storm and Waledac) only received modest payments of
$308K and $169K, respectively, for directly advertising
SpamIt sites.16

There are a number of potential reasons for these re-
sults. First, we are only privy to sales for these par-
ticular affiliate programs and thus, if a botnet devotes
much of its resources to another program, those earnings
are outside our analysis. Moreover, while some botnets
are largely monopolized by their owners, in many other
cases the botnets are rented to provide service for third

16We identify botnet operators through metadata, documented more
fully in the many articles in the “PharmaWars” series [10], and corrob-
orated based on which affiliates receive money for domains known to
be advertised via particular botnets.

parties. For example, the second most profitable affili-
ate, scorrp2, earned close to $3M while advertising do-
mains that we witnessed emerging from a range of bot-
nets including MegaD, Cutwail and Xarvester. Adding to
the confusion, in a number of cases botnet code is sold
between parties and, thus, what some researchers may
identify as a single botnet may in fact reflect multiple
distinct infrastructures. Finally, we also note spamming
is not the only profitable advertising vector. Indeed, the
largest overall earner, webplanet, appears to have earned
$4.6M using Web-based advertising instead. Fully unrav-
eling the complexities of these relationships and why cer-
tain affiliates are more successful than others remains an
open question.

5.3 Costs
Affiliate programs operate a complex business. As such,
they have a range of costs and overheads to cover and
only a fraction of their revenue translates to profit. Using
a combination of transactional and metadata, we next re-
construct both direct and indirect costs for the programs.
We also explore in more detail the cost structure of ful-
fillment (drug markup and shipping).

5.3.1 Direct Costs and Gross Margin
Direct costs are costs attributable to individual sales.
While advertising is normally considered an indirect
cost, affiliate programs pay for advertising as a direct
cost of a sale, so we consider affiliate commissions to
be a direct cost in this context. In addition, direct costs
include the supplier costs for the products themselves,
shipping them to customers, the fees charged by banks
and credit card processors for processing customer credit
card transactions, and customer refunds.

However, of these quantities only commissions are
completely unambiguously encoded across all transac-
tional data sets; RX-Promotion also includes a measure
of the supplier cost and a field indicating the type of ship-
ping (from which the shipping cost can be reverse engi-
neered). The situation with GlavMed and SpamIt is more
complex. Starting on August 8, 2008 both databases in-
clude fine-grained information about shipping and sup-
ply cost for each order. For periods before this, we are
forced to extrapolate. Refunds can be calculated directly
in the SpamIt and GlavMed data sets; for RX-Promotion,
we infer refunds based on orders with a cancelled sta-
tus. Finally, processing charges can vary among pay-
ment processors, currencies, card brands and over time.
However, in examining a large number of recorded fees
(found in the chatlogs) over the full period these fees
range between 7–12% in practice, so as an approxima-
tion we use 10%.

Putting this data together, Table 3 itemizes the gross
revenue and direct cost breakdown for GlavMed and

12

USENIX Association 	 21st USENIX Security Symposium  13

GlavMed & SpamIt RX-Promotion
2007 2008 2009 2010 2010

Gross revenue $27.3M $60.1M $67.7M $18.0M $12.8M
Direct costs $17.2M (63.1%) $42.9M (71.4%) $45.6M (67.3%) $12.1M (67.1%) $9.9M (77.1%)

Commissions $7.9M (28.9%) $23.0M (38.3%) $24.9M (36.8%) $6.6M (36.7%) $3.9M (30.2%)
Suppliers (goods)a $1.9M (7%) $4.3M (7.2%) $4.2M (6.2%) $1.1M (6.1%) $1.0M (7.6%)
Suppliers (shipping)b $3.1M (11.4%) $7.6M (12.6%) $7.8M (11.5%) $2.1M (11.7%) $1.5M (11.5%)
Processingc $2.7M (10%) $6.0M (10%) $6.8M (10%) $1.8M (10%) $1.3M (10%)
Refunds $1.6M (5.9%) $2.0M (3.3%) $1.9M (2.8%) $0.5M (2.6%) $1.0M (7.8%)

Gross margin $10.1M (36.9%) $17.2M (28.6%) $22.1M (32.7%) $5.9M (32.9%) $2.9M (22.9%)
a Average supplier costs used to estimate missing supplier costs for 35% of goods.
b Average shipping costs used to estimate missing shipping costs for 60% of orders.
c Processor costs range between 7% and 11% of sales revenue.

Table 3: Gross revenue, direct costs and resulting gross margin for the GlavMed and SpamIt programs combined.

SpamIt (combined) and RX-Promotion on a yearly ba-
sis. Not surprisingly (given average affiliate commissions
of 30–40%) direct costs consume the majority of rev-
enue. Note that, due to holdback charges, the gross mar-
gin number likely overstates cash flow by around 10%,
and may in fact overstate revenue as well (if holdback
charges are not released). Payment processors comport-
ing with “high risk” merchants such as these univer-
sally hold back a portion of net proceeds to handle fu-
ture chargebacks and fines. From examining the logs,
a 10% holdback of up to 180 days is common and, in
reviewing discussions about holdbacks, the operators of
GlavMed/SpamIt routinely operate under the assumption
that this money may never be made available.

5.3.2 Indirect Costs and Net Revenue
Indirect costs are costs that are not generally attributable
to individual sales. For online pharmacies, indirect costs
are incurred for marketing (i.e., advertising the affiliate
program on popular blogs and forums to attract new affil-
iates), for IT (i.e., registering domains for affiliates to use
in URLs that link to storefront pages, as well as server
and hosting costs), for administrative costs (i.e., staff
salaries), customer service, bank fines and “lobbying”.
By also calculating indirect costs, we can then estimate a
program’s net profit—its proverbial “bottom line.”

However, indirect costs are difficult to extract from
transaction data since they are necessarily indirect. Thus,
for this analysis we focus in particular on RX-Promotion
for which we have highly detailed metadata comprising
the raw monthly balance sheets (in spreadsheet form)
for seven months of revenue. The full spreadsheet is too
large to reproduce here, but we have extracted the equiv-
alent direct costs that we calculated from transactional
data in Table 3, and aggregated indirect costs in key ar-
eas. We summarize the resulting balance sheet in Table 4,
reflecting seven months of revenue between March and
September in 2010.

The direct costs taken from the balance sheet data
are highly similar to the transactional equivalents, dif-

RX-Promotion
March – September 2010

Gross revenue $7.8M

Direct costs $5.5M (70.8%)
Commissions $3M (38.1%)
Suppliersa $1.4M (17.6%)
Processing $1M (13.2%)
Other direct $148.3K (1.9%)

Indirect costs $1004K (12.8%)
Administrative $197K (2.5%)
Customer service $124K (1.6%)
Fines $107K (1.4%)
IT expenses $202K (2.6%)

Domains $114K (1.5%)
Servers, hosting $66K (0.8%)

Selling expenses $315K (4%)
Marketing $105K (1.3%)
Lobbying $157K (2%)

Other indirect $134K (1.7%)
Net revenue $1.3M (16.3%)
a Costs of goods and shipping are combined.

Table 4: Balance sheet for RX-Promotion detailing
indirect costs.

fering primarily due to differences in the make-up of
commission tiers during this seven-month period and the
greater precision available for payment processing over-
heads. Overall indirect costs represent almost 13% of
gross, split among a range of different overheads. Note
that the $157K lobbying charge is concentrated in two
large payments which may be related to conflict between
RX-Promotion and GlavMed/SpamIt. Overall, the net
revenue for this period—the profit returned to the affil-
iate program owners—is just 16.3% of gross revenue.
This value is not uniform from month to month, how-
ever. For example, during the period when processing
for controlled drugs was lost, RX-Promotion simultane-
ously lost revenue, incurred large fines, and had to pay
greater average commissions (since the commissions for
controlled drugs were discounted 10%) leading to a net

13

14  21st USENIX Security Symposium	 USENIX Association

loss for at least one month. By contrast, during the very
best month (September) net revenue exceeds 30%.

We do not have equivalent indirect cost data for
GlavMed or SpamIt, but we are able to infer a subset
of these overheads. The operators used a special affiliate
(affiliate id value 20) to manage the working capital
of each. The Affiliate 20 account received referral com-
missions from all affiliates who did not have a referring
affiliate designated explicitly. During the measurement
period, Affiliate 20 earned $2.7M. Operating expendi-
tures, as well as some affiliate payouts, were deducted
from this account.

Starting May 2009, the comment field of each pay-
out began including a short description of the payment.
A payment for a banner advertisement (recruiting affili-
ates), for example, would be listed as described as “ban-
ner GM - gofuckbiz.com”. Although free-form, the com-
ment text typically used a small number of phrases. Us-
ing a manually generated list of regular expressions, we
identified several indirect costs during the period from
May 2009 to April 2010. These costs include marketing
($153K, 0.2% of revenue), domain purchasing ($511K,
0.8% of revenue) and servers/hosting ($247K, 0.4% of
revenue). Interestingly, it appears that marketing and
servers/hosting are similar costs between the two pro-
grams (suggesting they are largely fixed costs) but do-
main purchasing appears to track revenue (presumably
since greater advertising volume requires more domain
turnover due to blacklisting).

Finally, we also have anecdotal data in the form of
chat logs between the lead operator and the owner of
GlavMed/SpamIt. These logs state that overall net rev-
enue fluctuated between 10% and 20%, agreeing struc-
turally with the RX-Promotion data.

Thus, we believe that 10–20% is likely to reflect a typ-
ical net revenue for successful pharmaceutical programs.
While this is smaller on an earnings-per-sale basis than
the commissions awarded to individual affiliates, it is
a more profitable enterprise when the affiliate program
is successful. For example, the largest SpamIt affiliate
might make $2M in a year, but in that same year the pro-
gram itself is likely to clear over $10M in profit.

5.3.3 Markup
After commissions, supply costs for the programs are
one of the largest expenses. Using the categories from
Figure 2, ED contains by far the most popular products
purchased, and also has the highest markups of more than
15 to 20 times the supply cost. The average markup of
Viagra in GlavMed and SpamIt, for instance, translates
to a customer price 25 times cost. Markups in the Abuse
and Chronic categories are considerably smaller, ranging
between 5–8 times supply cost. Interestingly, the ship-
ping cost is a loss leader for GlavMed/SpamIt since they

charge a flat fee per order (orders with more than one
item result in supplier shipping costs higher than col-
lected shipping fees) and offer free shipping for orders
over $200. In fact, for the orders for which we have fine-
grained product and shipping cost data, the supplier costs
of delivering the drugs (8.5M) actually exceeded the costs
of the drugs delivered.

5.4 Payment Processing
Finally, affiliate programs must arrange for reliable pro-
cessing of customer payments. In a sense, obtaining re-
liable payment processing services may be the most im-
portant function of the affiliate program, since it is the
only mechanism by which all other efforts can be mone-
tized. Previously, our group identified that a small num-
ber of banks were critical to virtually all online pharma-
ceutical sales [14]. However, the means by which those
banks were accessed has never been well documented.

In fact, in the “high-risk” payment market, merchant
processing is frequently handled by independent Pay-
ment Service Providers (PSPs) who manage the rela-
tionships with acquiring banks and provide Web-based
payment gateway services to clients.17 While users of
these services may have a contractual relationship with
the bank, in other cases PSPs may “front” their own
merchant accounts on behalf of their clients (a form of
identity laundering called “factoring” and typically dis-
allowed by card association rules). Merchants in turn can
mitigate some of their own risk by working with multi-
ple providers; this strategy not only provides redundancy,
but each provider may place limits on transaction vol-
umes (e.g., to fit within the underwriting risk limits on
their overall merchant portfolio) and may have different
services they are willing to offer (e.g., MC, Visa, Amex,
eCheck, etc.) for different product categories (e.g., herbal
vs. prescription vs. controlled drugs).

In the case of RX-Promotion the affiliate program en-
joyed a partnership with a large ISO/PSP and thus this
entity handled virtually all of their processing needs.
GlavMed and SpamIt, by contrast, did not work with
any single provider, but no less that twenty-one distinct
providers over the lifetime of our data sets. However,
these providers differ considerably in what services they
are used for, the volume of transactions they are able to
handle and how long-lived they are. In fact, almost half
of these providers are never used to process significant
transaction volumes (mostly likely due to risk controls).

Illustrating this point, Figure 10 graphs the transaction
volume of GlavMed/SpamIt handled by different pay-
ment service providers over time. The y-axis identifies

17We use the term “payment service provider” here in a generic
sense, and the organizations involved may be some combination of
proper PSPs, account brokers, merchant servicers, ISO/MSPs with
third-party servicers, etc.

14

USENIX Association 	 21st USENIX Security Symposium  15

Figure 10: Payment transactions over time by payment ser-
vice provider. The colored volume of each circle corresponds
to the transaction volume in a month for a particular terminal
(color indicating payment method), with terminals grouped by
providers.

the top nine providers (using a designator taken directly
from the database or an abbreviation thereof) while the
remaining providers are aggregated together under the
ellipsis. Each circle in the graph represents the number
of transactions processed via a particular terminal in a
month, with terminals belonging to a particular provider
grouped together based on time of first use.18 In any
given circle, the color red indicates MasterCard transac-
tions, blue is for Visa, yellow for other credit cards (pri-
marily Amex), and green for eCheck.

There are a number of striking observations one can
draw from this figure. First is the clear dominance of
Visa processing. Aggregating across both GlavMed and
SpamIt, Visa transactions represent almost 67% of all
revenue, followed by MasterCard with 23% and Amer-
ican Express with 6% (with the remainder concentrated
in eCheck transactions through the ACH system). While
part of this discrepancy is likely due to demand—Visa
is the most popular payment card brand—this difference
also reflects a supply issue as well. For reasons not en-
tirely clear, it has traditionally been far easier for online
pharmaceutical programs to obtain payment processing
services for Visa than for MasterCard or Amex. Indeed,

18A terminal is effectively an interface point for sending payment
transactions, corresponding to a particular merchant account. Note that
while some terminals are for general purpose use, others service a par-
ticular function such as providing a compatible base currency (e.g., the
terminal named “lt-euro-visa” provides European Visa transactions) or
handling rebills (e.g., “gl-rebill-m”).

we find that during periods in which MasterCard pro-
cessing was available, Visa/MasterCard revenue percent-
ages stabilized at around 63%/30%, respectively, for both
GlavMed and SpamIt.

Second, a relatively small number of payment service
providers dominate the transaction volume (in particu-
lar GL, LT and LV). Together these three providers are
responsible for 84% of all revenue for GlavMed and
SpamIt. Many of the other providers are active for very
short lifetimes, and with very low volumes, before they
are either abandoned or, more typically, they are unwill-
ing to continue business with the program operators.

Finally, there are also clear patterns indicative of prob-
lems with particular providers over time. For example,
for each terminal a sudden drop in volume and rise in de-
clines (not shown) is typically a precursor to that termi-
nal being abandoned. Some of these cases clearly reflect
changes in long-term business relationships: in March
of 2008, for instance, there is a clear transition mov-
ing the largest volume of Visa processing between LV
and LT; similarly, American Express processing moves
from AFF to SN during the same period. In the last five
months of 2010 it appears that GlavMed/SpamIt experi-
enced significant setbacks in processing capability, with
LT processing only minor volumes (forcing them to push
a higher volume of transactions through GL). These find-
ings provide additional support and context for our pre-
vious findings that the financial aspect of the counter-
feit pharmaceutical ecosystem is among the most fragile
components [14].

6 Conclusion

This paper provides an unprecedented view inside the
economics of modern pharmaceutical affiliate programs:
an enterprise that ultimately capitalizes a wide array
of infrastructure services including botnets, malware,
bullet-proof hosting and so on. Among the results of
this work, we have shown that the customer market
is large and far from fully tapped, with repeat orders
playing a key role in mature programs. We have also
seen that a small number of big affiliates can dominate
the revenue equation and that disrupting these partic-
ular affiliates would have disproportionate damage on
the whole program. Finally, even very large programs
such as GlavMed/SpamIt depend on a handful of pay-
ment service providers to reliably monetize their activ-
ities, reinforcing the observation that financial services
are a “weak point” in the value chain. Surprisingly, while
affiliate programs can drive substantial sales, their costs
are significant and ultimately net revenues are modest,
typically under just 20% of sales. This finding again sug-
gests that such organizations are fragile to economic dis-
ruptions of even a modest scale.

15

16  21st USENIX Security Symposium	 USENIX Association

Acknowledgments

We would like to thank the various anonymous providers
of our data sets, without which there would have been
no paper. We have also benefited heavily from the many
members of the cyber-investigations community who
have provided us valuable insight as we have tried to
map data onto meaning. Closer to home, we would like
to thank Erin Kenneally for her ongoing legal guidance
and ethical oversight, as well as the technical support of
Brian Kantor and Cindy Moore who have managed our
systems and storage needs.

This work was supported in part by National Sci-
ence Foundation grants NSF-0433668, NSF-0433702,
NSF-0831138 and CNS-0905631, by the Office of Naval
Research MURI grant N000140911081, and by gener-
ous research, operational and/or in-kind support from
Google, Microsoft, Yahoo, Cisco, HP and the UCSD
Center for Networked Systems (CNS).

References
[1] D. S. Anderson, C. Fleizach, S. Savage, and G. M.

Voelker. Spamscatter: Characterizing Internet Scam
Hosting Infrastructure. In Proc. of 16th USENIX Secu-
rity, 2007.

[2] Behind Online Pharma. From Mumbai to Riga to New
York: Our Investigative Class Follows the Trail of Illegal
Pharma. http://behindonlinepharma.com, 2009.

[3] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Mea-
suring Pay-per-Install: The Commoditization of Malware
Distribution. In Proc. of 20th USENIX Security, 2011.

[4] C. Grier, K. Thomas, V. Paxson, and M. Zhang. @spam:
The Underground on 140 Characters or Less. In Proc. of
17th ACM CCS, 2010.

[5] C. Herley and D. Florêncio. Nobody Sells Gold for the
Price of Silver: Dishonesty, Uncertainty and the Under-
ground Economy. In Proc. of 8th WEIS, 2009.

[6] J. P. John, A. Moshchuk, S. D. Gribble, and A. Krishna-
murthy. Studying Spamming Botnets Using Botlab. In
Proc. of 6th NSDI, 2009.

[7] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi.
deSEO: Combating Search-Result Poisoning. In Proc. of
20th USENIX Security, 2011.

[8] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M.
Voelker, V. Paxson, and S. Savage. Spamalytics: An Em-
pirical Analysis of Spam Marketing Conversion. In Proc.
of 15th ACM CCS, 2008.

[9] C. Kanich, N. Weaver, D. McCoy, T. Halvorson,
C. Kreibich, K. Levchenko, V. Paxson, G. M. Voelker, and
S. Savage. Show Me the Money: Characterizing Spam-
advertised Revenue. In Proc. of 20th USENIX Security,
2011.

[10] B. Krebs. SpamIt, Glavmed Pharmacy Networks
Exposed. Krebs on Security Blog, http://www.

krebsonsecurity.com/category/pharma-wars/,
2011.

[11] LegitScript and KnujOn. No Prescription Required:
Bing.com Prescription Drug Ads. http://www.

legitscript.com/download/BingRxReport.pdf,
2009.

[12] LegitScript and KnujOn. Yahoo! Internet Phar-
macy Advertisements. http://www.legitscript.

com/download/YahooRxAnalysis.pdf, 2009.
[13] N. Leontiadis, T. Moore, and N. Christin. Measuring and

Analyzing Search-Redirection Attacks in the Illicit On-
line Prescription Drug Trade. In Proc. 20th USENIX Se-
curity, 2011.

[14] K. Levchenko, N. Chachra, B. Enright, M. Felegyhazi,
C. Grier, T. Halvorson, C. Kanich, C. Kreibich, H. Liu,
D. McCoy, A. Pitsillidis, N. Weaver, V. Paxson, G. M.
Voelker, and S. Savage. Click Trajectories: End-to-End
Analysis of the Spam Value Chain. In Proc. of 32nd IEEE
Security and Privacy, 2011.

[15] H. Liu, K. Levchenko, M. Félegyházi, C. Kreibich,
G. Maier, G. M. Voelker, and S. Savage. On the Effects
of Registrar-level Intervention. In Proc. of 4th USENIX
LEET, 2011.

[16] B. S. McWilliams. Spam Kings: The Real Story Be-
hind the High-Rolling Hucksters Pushing Porn, Pills and
@*#?% Enlargements. O’Reilly Media, Sept. 2004.

[17] A. Ramachandran and N. Feamster. Understanding the
Network-Level Behavior of Spammers. In Proceedings
of ACM SIGCOMM, Pisa, Italy, Sept. 2006.

[18] D. Samosseiko. The Partnerka — What is it, and why
should you care? In Proc. of Virus Bulletin Conference,
2009.

[19] Y. Shin, M. Gupta, and S. Myers. The Nuts and Bolts of a
Forum Spam Automator. In Proc. of 4th USENIX LEET,
2011.

[20] B. Stone-Gross, R. Abman, R. Kemmerer, C. Kruegel,
D. Steigerwald, and G. Vigna. The Underground Econ-
omy of Fake Antivirus Software. In Proc. of 10th WEIS,
2011.

[21] Symantec. MessageLabs June 2010 Intelligence Re-
port. http://www.symanteccloud.com/mlireport/

MLI_2010_06_June_FINAL.pdf.
[22] K. Thomas, C. Grier, V. Paxson, and D. Song. Suspended

Accounts In Retrospect: An Analysis of Twitter Spam. In
Proc. of 11th IMC, 2011.

[23] D. Wang, S. Savage, and G. M. Voelker. Cloak and Dag-
ger: Dynamics of Web Search Cloaking. In Proc. of 18th
CCS, 2011.

[24] Y.-M. Wang, M. Ma, Y. Niu, and H. Chen. Spam Double-
Funnel: Connecting Web Spammers with Advertisers. In
Proc. of 16th WWW, 2007.

[25] G. Wondracek, T. Holz, C. Platzer, E. Kirda, and
C. Kruegel. Is the Internet for Porn? An Insight into the
Online Adult Industry. In Proc. of 9th WEIS, 2010.

16

USENIX Association 	 21st USENIX Security Symposium  17

B@bel: Leveraging Email Delivery for Spam Mitigation

Gianluca Stringhini§, Manuel Egele§, Apostolis Zarras‡, Thorsten Holz‡,
Christopher Kruegel§, and Giovanni Vigna§

§University of California, Santa Barbara ‡ Ruhr-University Bochum
{gianluca,maeg,chris,vigna}@cs.ucsb.edu
{apostolis.zarras,thorsten.holz}@rub.de

Abstract
Traditional spam detection systems either rely on con-
tent analysis to detect spam emails, or attempt to detect
spammers before they send a message, (i.e., they rely
on the origin of the message). In this paper, we intro-
duce a third approach: we present a system for filtering
spam that takes into account how messages are sent by
spammers. More precisely, we focus on the email de-
livery mechanism, and analyze the communication at the
SMTP protocol level.

We introduce two complementary techniques as con-
crete instances of our new approach. First, we leverage
the insight that different mail clients (and bots) imple-
ment the SMTP protocol in slightly different ways. We
automatically learn these SMTP dialects and use them
to detect bots during an SMTP transaction. Empiri-
cal results demonstrate that this technique is successful
in identifying (and rejecting) bots that attempt to send
emails. Second, we observe that spammers also take into
account server feedback (for example to detect and re-
move non-existent recipients from email address lists).
We can take advantage of this observation by returning
fake information, thereby poisoning the server feedback
on which the spammers rely. The results of our experi-
ments show that by sending misleading information to a
spammer, it is possible to prevent recipients from receiv-
ing subsequent spam emails from that same spammer.

1 Introduction
Email spam, or unsolicited bulk email, is one of the ma-
jor open security problems of the Internet. Accounting
for more than 77% of the overall world-wide email traf-
fic [21], spam is annoying for users who receive emails
they did not request, and it is damaging for users who
fall for scams and other attacks. Also, spam wastes re-
sources on SMTP servers, which have to process a sig-
nificant amount of unwanted emails [41].

A lucrative business has emerged around email spam,
and recent studies estimate that large affiliate cam-

paigns generate between $400K and $1M revenue per
month [20].

Nowadays, about 85% of world-wide spam traffic is
sent by botnets [40]. Botnets are networks of compro-
mised computers that act under the control of a single
entity, known as the botmaster. During recent years, a
wealth of research has been performed to mitigate both
spam and botnets [18, 22, 29, 31, 33, 34, 50].

Existing spam detection systems fall into two main
categories. The first category focuses on the content of
an email. By identifying features of an email’s content,
one can classify it as spam or ham (i.e., a benign email
message) [16, 27, 35]. The second category focuses on
the origin of an email [17, 43]. By analyzing distinctive
features about the sender of an email (e.g., the IP address
or autonomous system from which the email is sent, or
the geographical distance between the sender and the re-
cipient), one can assess whether an email is likely spam,
without looking at the email content.

While existing approaches reduce spam, they also suf-
fer from limitations. For instance, running content anal-
ysis on every received email is not always feasible for
high-volume servers [41]. In addition, such content anal-
ysis systems can be evaded [25, 28]. Similarly, origin-
based techniques have coverage problems in practice.
Previous work showed how IP blacklisting, a popular
origin-based technique [3], misses a large fraction of the
IP addresses that are actually sending spam [32, 37].

In this paper, we propose a novel, third approach to
fight spam. Instead of looking at the content of mes-
sages (what) or their origins (who), we analyze the way
in which emails are sent (how). More precisely, we focus
on the email delivery mechanism. That is, we look at the
communication between the sender of an email and the
receiving mail server at the SMTP protocol level. Our
approach can be used in addition to traditional spam de-
fense mechanisms. We introduce two complementary
techniques as concrete instances of our new approach:
SMTP dialects and Server feedback manipulation.

18  21st USENIX Security Symposium	 USENIX Association

SMTP dialects. This technique leverages the observa-
tion that different email clients (and bots) implement the
SMTP protocol in slightly different ways. These de-
viations occur at various levels, and range from differ-
ences in the case of protocol keywords, to differences in
the syntax of individual messages, to the way in which
messages are parsed. We refer to deviations from the
strict SMTP specification (as defined in the correspond-
ing RFCs) as SMTP dialects. As with human language
dialects, the listener (the server) typically understands
what the speaker (a legitimate email client or a bot) is
saying. This is because SMTP servers, similar to many
other Internet services, follow Postel’s law, which states:
“Be liberal in what you accept, and conservative in what
you send.”

We introduce a model that represents SMTP dialects
as state machines, and we present an algorithm that
learns dialects for different email clients (and their re-
spective email engines). Our algorithm uses both pas-
sive observation and active probing to efficiently gener-
ate models that can distinguish between different email
engines. Unlike previous work on service and protocol
fingerprinting, our models are stateful. This is impor-
tant, because it is almost never enough to inspect a single
message to be able to identify a specific dialect.

Leveraging our models, we implement a decision pro-
cedure that can, based on the observation of an SMTP
transaction, determine the sender’s dialect. This is use-
ful, as it allows an email server to terminate the con-
nection with a client when this client is recognized as a
spambot. The connection can be dropped before any con-
tent is transmitted, which saves computational resources
at the server. Moreover, the identification of a sender’s
dialect allows analysts to group bots of the same family,
or track the evolution of spam engines within a single
malware family.

Server feedback manipulation. The SMTP protocol
is used by a client to send a message to the server. Dur-
ing this transaction, the client receives from the server
information related to the delivery process. One impor-
tant piece of information is whether the intended recipi-
ent exists or not. The performance of a spam campaign
can improve significantly when a botmaster takes into
account server feedback. In particular, it is beneficial
for spammers to remove non-existent recipient addresses
from their email lists. This prevents a spammer from
sending useless messages during subsequent campaigns.
Indeed, previous research has shown that certain bots re-
port the error codes received from email servers back to
their command and control nodes [22, 38].

To exploit the way in which botnets currently lever-
age server feedback, it is possible to manipulate the re-
sponses from the mail server to a bot. In particular, when

a mail server identifies the sender as a bot, instead of
dropping the connection, the server could simply reply
that the recipient address does not exist. To identify a bot,
one can either use traditional origin-based approaches or
leverage the SMTP dialects proposed in this paper. When
the server feedback is poisoned in this fashion, spammers
have to decide between two options. One possibility is to
continue to consider server feedback and, as a result, re-
move valid email addresses from their email list. This
reduces the spam emails that these users will receive in
the future. Alternatively, spammers can decide to distrust
and discard any server feedback. This reduces the effec-
tiveness of future campaigns since emails will be sent to
non-existent users.

Our experimental results demonstrate that our tech-
niques are successful in identifying (and rejecting) bots
that attempt to send unwanted emails. Moreover, we
show that we can successfully poison spam campaigns
and prevent recipients from receiving subsequent emails
from certain spammers. However, we recognize that
spam is an adversarial activity and an arms race. Thus,
a successful deployment of our approach might prompt
spammers to adapt. We discuss possible paths for spam-
mers to evolve, and we argue that such evolution comes
at a cost in terms of performance and flexibility.

To summarize, the paper makes the following main con-
tributions:

• We introduce a novel approach to detect and mit-
igate spam emails. This approach focuses on the
email delivery mechanism — the SMTP communi-
cation between the email client and the email server.
It is complementary to traditional techniques that
operate either on the message origin or on the mes-
sage content.

• We introduce the concept of SMTP dialects as one
concrete instance of our approach. Dialects capture
small variations in the ways in which clients imple-
ment the SMTP protocol. This allows us to distin-
guish between legitimate email clients and spam-
bots. We designed and implemented a technique to
automatically learn the SMTP dialects of both legit-
imate email clients and spambots.

• We implemented our approach in a tool, called
B@bel. Our experimental results demonstrate that
B@bel is able to correctly identify spambots in a
real-world scenario.

• We study how the feedback provided by email
servers to bots is used by their botmasters. As a sec-
ond instance of our approach, we show how provid-
ing incorrect feedback to bots can have a negative
impact on the spamming effectiveness of a botnet.

USENIX Association 	 21st USENIX Security Symposium  19

2 Background: The SMTP Protocol
The Simple Mail Transfer Protocol (SMTP), as defined
in RFC 821 [1], is a text-based protocol that is used
to send email messages originating from Mail User
Agents (MUAs — e.g., Outlook, Thunderbird, or Mutt),
through intermediate Mail Transfer Agents (MTAs —
e.g., Sendmail, Postfix, or Exchange) to the recipients’
mailboxes. The protocol is defined as an alternating dia-
logue where the sender and the receiver take turns trans-
mitting their messages. Messages sent by the sender
are called commands, and they instruct the receiver to
perform an action on behalf of the sender. The SMTP
RFC defines 14 commands. Each command consists
of four case-insensitive, alphabetic-character command
codes (e.g., MAIL) and additional, optional arguments
(e.g., FROM:<me@example.com>). One or more
space characters separate command codes and argument
fields. All commands are terminated by a line termina-
tor, which we denote as <CR><LF>. An exception is
the DATA command, which instructs the receiver to ac-
cept the subsequent lines as the email’s content, until the
sender transmits a dot character as the only character on
a line (i.e., <CR><LF>.<CR><LF>).

SMTP replies are sent by the receiver to inform the
sender about the progress of the email transfer process.
Replies consist of a three-digit status code, followed by
a space separator, followed by a short textual descrip-
tion. For example, the reply 250 Ok indicates to the
sender that the last command was executed successfully.
Commonly, replies are one line long and terminated
by <CR><LF>1. The RFC defines 21 different reply
codes. These codes inform the sender about the specific
state that the receiver has advanced to in its protocol state
machine and, thus, allows the sender to synchronize its
state with the state of the receiver. A plethora of addi-
tional RFCs have been introduced to extend and modify
the original SMTP protocol. For example, RFC 1869
introduced SMTP Service Extensions. These extensions
define how an SMTP receiver can inform a client about
the extensions it supports. More precisely, if a client
wants to indicate that it supports SMTP Service Exten-
sions, it will greet the server with EHLO instead of the
regular HELO command. The server then replies with
a list of available service extensions as a multi-line re-
ply. For example, a server capable of handling encryp-
tion can announce this capability by responding with a
250-STARTTLS reply to the client’s EHLO command.

MTAs, mail clients, and spambots implement differ-
ent sets of these extensions. As we will discuss in de-

1The protocol allows the server to answer with multi-line replies. In
a multi-line reply, all lines but the last must begin with the status code
followed by a dash character. The last line of a multi-line reply must
be formatted like a regular one-line reply

� �
S e r v e r : 220 d e b i a n
C l i e n t : HELO example . com
S e r v e r : 250 OK
C l i e n t : MAIL FROM:<me@example . com>
S e r v e r : 250 2 . 1 . 0 OK
C l i e n t : RCPT TO:<you@example . com>
S e r v e r : 250 2 . 1 . 5 OK
C l i e n t : DATA� �

Figure 1: A typical SMTP conversation

tail later, we leverage these differences to determine the
SMTP dialect spoken in a specific SMTP conversation.

In this paper, we consider an SMTP conversation the
sequence of commands and replies that leads to a DATA
command, to a QUIT command, or to an abrupt termina-
tion of the connection. This means that we do not con-
sider any reply or command that is sent after the client
starts transmitting the actual content of an email. An ex-
ample of an SMTP conversation is listed in Figure 1.

3 SMTP Dialects
The RFCs that define SMTP specify the protocol that
a client has to speak to properly communicate with a
server. However, different clients might implement the
SMTP protocol in slightly different ways, for three main
reasons:

1. The SMTP RFCs do not always provide a single
possible format when specifying the commands a
client must send. For example, command identi-
fiers are case insensitive, which means that EHLO
and ehlo are both valid command codes.

2. By using different SMTP extensions, clients might
add different parameters to the commands they
send.

3. Servers typically accept commands that do not com-
ply with the strict SMTP definitions. Therefore,
a client might implement the protocol in slightly
wrong ways while still succeeding in sending email
messages.

We call different implementations of the SMTP pro-
tocol SMTP dialects. A dialect D is defined as a state
machine

D =< Σ, S, s0, T, Fg, Fb >,

where Σ is the input alphabet (composed of server
replies), S is a set of states, s0 is the initial state, and
T is a set of transitions. Each state s in S is labeled with
a client command, and each transition t in T is labeled
with a server reply. Fg ⊆ S is a set of good states, which
represent successful SMTP conversations, while Fb ⊆ S
is a set of bad states, which represent failed SMTP con-
versations.

20  21st USENIX Security Symposium	 USENIX Association

Figure 2: Simplified state machines for Outlook Express (left) and Bagle (right).

The state machine D captures the order in which com-
mands are sent in relation to server replies by that partic-
ular dialect.

Since SMTP messages are not always constant, but
contain variable fields (e.g., the recipient email address
in an RCPT command), we abstract commands and
replies as templates, and label states and transitions with
such templates.

We do not require D to be deterministic. The reason
for this is that some clients show a non-deterministic
behavior in the messages they exchange with SMTP
servers. For example, bots belonging to the Lethic mal-
ware family use EHLO and HELO interchangeably when
responding to a server 220 reply. Figure 2 shows two
example dialect state machines (Outlook Express and
Bagle, a spambot).

3.1 Message Templates

As explained previously, we label states and transitions
with message templates. We define the templates of the
messages that belong to a dialect as regular expressions.
Each message is composed of a sequence of tokens. We
define a token as any sequence of characters separated by
delimiters. We define spaces, colons, and equality sym-
bols as delimiters. We leverage domain knowledge to
develop a number of regular expressions for the variable
elements in an SMTP conversation. In particular, we de-
fine regular expressions for email addresses, fully qual-
ified domain names, domain names, IP addresses, num-
bers, and hostnames (see Figure 3 for details). Every to-
ken that does not match any of these regular expressions
is treated as a keyword.

An example of a message template is

MAIL From: <email-addr>,

where email-addr is a regular expression that
matches email addresses.

Given two dialects D and D’, we consider them differ-
ent if their state machines are different. For example, the
two dialects in Figure 2 differ in the sequence of com-
mands that the two clients send: Bagle sends a RSET

� �
Email a d d r e s s : <?[\w\.−]+@[\w\.−]+>?
IP a d d r e s s : \[?\d{1 ,3}\ .\d{1 ,3}\ .\d{1 ,3}\ .\d{1 ,3}\]?
F u l l y q u a l i f i e d domain name : [\w−]+\ .[\w−]+\.\w[\w−]+
Domain name : [\w−]+\ .[\w−]+
Number : [0−9]{3}[0−9]+
Hostname : [\w−]{5}[\w−]+� �
Figure 3: Regular expressions used in message tem-
plates.

command after the HELO, while Outlook Express sends
a MAIL command directly. Also, the format of the com-
mands of the two dialects differs: Outlook Express puts
a space between MAIL FROM: and the sender email ad-
dress, while Bagle does not.

In Section 4, we show how we can learn the dialect
spoken by an SMTP client. In Section 5, we show how
these learned dialects can be matched against an SMTP
conversation, which is crucial for performing spam miti-
gation, as we will show in Section 7.

4 Learning Dialects
To distinguish between different SMTP speakers, we re-
quire a mechanism that learns which dialect is spoken by
a particular client. To do this, we need a set of SMTP
conversations C generated by the client. Each conver-
sation is a sequence of <reply, command> pairs, where
command can be empty if the client did not send any-
thing after receiving a reply from the server.

It is important to note that the state machine learned
for the dialect is affected by the type of conversations in
C. For example, if C only contains successful SMTP
conversations, the portion of the dialect state machine
that we can learn from it is very small. In the typ-
ical SMTP conversation listed in Figure 1, the client
first connects to the SMTP server, then announces itself
(i.e., sends a HELO command), states who the sender of
the email is (i.e., sends a MAIL command), lists recipi-
ents (by using one or more RCPT commands), and starts
sending the actual email content (by sending a DATA
command). Observing this type of communication gives
no information on what a client would do upon receiv-

USENIX Association 	 21st USENIX Security Symposium  21

ing a particular error, or a specific SMTP reply from the
server. To mitigate this problem, we collect a diverse
set of SMTP conversations. We do this by directing the
client to an SMTP server under our control, and sending
specific SMTP replies to it (see Section 4.2).

Even though sending specific replies allows us to ex-
plore more states than the ones we could explore other-
wise, we still cannot be sure that the dialects we learn are
complete. In Section 7, we show how the inferred state
machines are usually good enough for discriminating be-
tween different SMTP dialects. However, in some cases,
we might not be able to distinguish two different dialects
because the learned state machines are identical.

4.1 Learning Algorithm

Analyzing the set C allows us to learn part of the dialect
spoken by the client. Our learning algorithm processes
one SMTP conversation from C at a time, and iteratively
builds the dialect state machine.

4.1.1 Learning the Message Templates

For each message observed in a conversation Con in
C, our algorithm generates a regular expression that
matches it. The regular expression generation algorithm
works in three steps:
Step 1: First, we split the message into tokens. As men-
tioned in Section 3.1, we consider the space, colon, and
equality characters as delimiters.
Step 2: For each token, we check if it matches a known
regular expression. More precisely, we check it against
all the regular expressions defined in Figure 3, from the
most specific to the least specific, until one matches (this
means that we check the regular expressions in the fol-
lowing order: email address, IP address, fully qualified
domain name, domain name, number, hostname).

If a token matches a regular expression, we substitute
the token with the matched regular expression’s identifier
(e.g., <email-addr>). If none of the regular expres-
sions are matched, we consider the token a keyword, and
we include it verbatim in the template.
Step 3: We build the message template, by concatenating
the template tokens (which can be keywords or regular
expressions) and the delimiters, in the order in which we
encountered them in the original message.

Consider, for example, the command:

MAIL FROM:<evil@example.com>

First, we break the command into tokens:

[MAIL, FROM, <evil@example.com>]

The only token that matches one of the known regular
expressions is the email address. Therefore, we consider
the other tokens as keywords. The final template for this
command will therefore be:

MAIL FROM:<email-addr>

Notice that, by defining message format templates as we
described, we can be more precise than the SMTP stan-
dard specification and detect the (often subtle) differ-
ences between two dialects even though both might com-
ply with the SMTP RFC. For example, we would build
two different message format templates (and, therefore,
have two dialects) for two clients that use different case
for the EHLO keyword (e.g., one uses EHLO as a key-
word, while the other uses Ehlo).

4.1.2 Learning the State Machine

We incrementally build the dialect state machine by start-
ing from an empty initial state s0 and adding new transi-
tions and states as we observe more SMTP conversations
from C. For each conversation Con in C, the algorithm
executes the following steps:
Step 1: We set the current state s to s0.
Step 2: We examine all tuples <ri, ci> in Con.
An example of a tuple is <220 server, HELO
evil.com>.
Step 3: We apply the algorithm described in 4.1.1 to ri
and ci, and build the corresponding templates tr and tc.
In the example, tr is 220 hostname and tc is HELO
domain. Note that ci could be empty, because the client
might not have sent any command after a reply from the
server. In this case tc will be an empty string.
Step 4: If the state machine has a state sj labeled with tc,
we check if there is a transition t labeled with tr going
from s to sj . (i) If there is one, we set the current state s
to sj , and go to Step 6. (ii) If there is no such transition,
we connect s and sj with a transition labeled with tr, set
the current state s to sj , and go to Step 6. (iii) If none of
the previous conditions hold, we go to Step 5.
Step 5: If there is no state labeled with tc, we create a
new state sn, label it with tc , and connect s and sn with
a transition labeled tr. We then set the current state s to
sn. Following the previous example, if we have no state
labeled with HELO domain, we create a new state with
that label, and connect it to the current state s (in this
case the initial state) with a transition labeled with 220
hostname. If there are no tuples left in Con, and tc is
empty, we set the current state as a failure state for the
current dialect, and add it to Fb. We then move to the
next conversation in C, and go back to Step 2 2. Other-
wise, we go to Step 6.
Step 6: If s is labeled with DATA, we mark the state as
a good final state for this dialect, and add it to Fg . Else,
if s is labeled with QUIT, we mark s as a bad final state
and add it to Fb. We then move to the next conversation
in C, and we go back to Step 2.

2By doing this, we handle cases in which the client abruptly termi-
nates the connection

22  21st USENIX Security Symposium	 USENIX Association

4.2 Collecting SMTP Conversations

To be able to model as much of a dialect as possible, we
need a comprehensive set of SMTP conversations gener-
ated by a client.

As previously discussed, the straightforward approach
to collect SMTP conversations is to passively observe the
messages exchanged between a client and a server. In
practice, this is often enough to uniquely determine the
dialect spoken by a client (see Section 7 for experimen-
tal results). However, there are cases in which passive
observation is not enough to uniquely identify a dialect.
In such cases, it would be beneficial to be able to send
specifically-crafted replies to a client (e.g., malformed
replies), and observe its responses.

To perform this exploration, we set up a testing envi-
ronment in which we direct clients to a mail server we
control, and we instrument the server to be able to craft
specific responses to the commands the client sends.

The SMTP RFCs define how a client should respond
to unexpected SMTP replies, such as errors and mal-
formed messages. However, both legitimate clients and
spam engines either exhibit small differences in the im-
plementation of these guidelines, or they do not imple-
ment them correctly. The reason for this is that imple-
menting a subset of the SMTP guidelines is enough to
be able to perform a correct conversation with a server
and successfully send an email, in most cases. There-
fore, there is no need for a client to implement the full
SMTP protocol. Of course, for legitimate clients, we ex-
pect the SMTP implementation to be mature, robust, and
complete — that is, corner cases are handled correctly.
In contrast, spambots have a very focused purpose when
using SMTP: send emails as fast as possible. For spam-
mers, taking into account every possible corner case of
the SMTP protocol is unnecessary; even more problem-
atic, it could impact the performance of the spam engine
(see Section 7.4 for more details).

In summary, we want to achieve two goals when ac-
tively learning an SMTP dialect. First, we want to learn
how a client reacts to replies that belong to the language
defined in the SMTP RFCs, but are not exposed during
passive observation. Second, we want to learn how a
client reacts to messages that are invalid according to the
SMTP RFCs.

We aim to systematically explore the message struc-
ture as well as the state machine of the dialect spoken by
a client. To this end, the variations to the SMTP protocol
we use for active probing are of two types: (i) variations
to the protocol state machine, which modify the sequence
or the number of the replies that are sent by the server;
and (ii) variations to the replies, which modify the struc-
ture of the reply messages that are sent by the server.

In the following, we discuss how we generate varia-
tions of both the protocol state machine and the replies.

Protocol state machine variations. We use four types
of protocol variation techniques:
Standard SMTP replies: These variations aim at expos-
ing responses to replies that comply with the RFCs, but
are not observable during a standard, successful SMTP
conversation, like the one in Figure 1. An example is
sending SMTP errors to the commands a client sends.
Some dialects continue the conversation with the server
even after receiving a critical error.
Additional SMTP replies: These variations add replies to
the SMTP conversation. More precisely, this technique
replies with more than one message to the commands the
client sends. Some dialects ignore the additional replies,
while others will only consider one of the replies.
Out-of-order SMTP replies: These variations are used to
analyze how a client reacts when it receives a reply that
should not be sent at that point in the protocol (i.e., a state
transition that is not defined by the standard SMTP state
machine). For example, some senders might start send-
ing the email content as soon as they receive a 354 reply,
even if they did not specify the sender and recipients of
the email yet.
Missing replies: These variations aim at exposing the be-
havior of a dialect when the server never sends a reply to
a command.

Message format variations. These variations repre-
sent changes in the format of the replies that the server
sends back to a client. As described in Section 2,
SMTP server replies to a client’s command have the
format CODE TEXT<CR><LF>, where CODE repre-
sents the actual response to the client’s command, TEXT
provides human-readable information to the user, and
<CR><LF> is the line terminator. According to the
SMTP specification, a client should read the data from
the server until it receives a line terminator, parse the
code to check the response, and pass the text of the reply
to the user if necessary (e.g., in case an error occurred).

Given the specification, we craft reply variations in
four distinct ways to systematically study how a client
reacts to them:
Compliant replies: These reply variations comply with
the SMTP standard, but are seldom observed in a com-
mon conversation. For example, this technique might
vary the capitalization of the reply (uppercase/lower-
case/mixed case). The SMTP specification states that re-
ply text should be case-insensitive.
Incorrect replies: The SMTP specification states that re-
ply codes should always start with one of the digits 2, 3,
4, or 5 (according to the class of the status code), and
be three-digits long. These variations are replies that do
not comply with the protocol (e.g., a message with a re-

USENIX Association 	 21st USENIX Security Symposium  23

ply code that is four digits long). A client is expected
to respond with a QUIT command to these malformed
replies, but certain dialects behave differently.
Truncated replies: As discussed previously, the SMTP
specification dictates how a client is supposed to handle
the replies it receives from the server. Of course, it is
not guaranteed that clients will follow the specification
and process the entire reply. The reason is that the only
important information the client needs to analyze to de-
termine the server’s response is the status code. Some
dialects might only check for the status code, discarding
the rest of the message. For these reasons, we generate
variations as follows: For each reply, we first separate it
into tokens as described in Section 3.1. Then, for each
token, we generate N different variations, where N is
the number of tokens in each reply. We obtain such vari-
ations by truncating the reply with a line terminator after
each token.
Incorrectly-terminated replies: From a practical point of
view, there is no need for a client to parse the full re-
ply until it reaches the line terminator. To assess whether
a dialect checks for the line terminator when receiving
a reply, we terminate the replies with incorrect termina-
tors. In particular, we use the sequences <CR>, <LF>,
<CR><CR>, and <LF><LF> as line terminators. For
each terminator, similar to what we did for truncated
replies, we generate 4N different variations of each re-
ply, by truncating the reply after every token.

We developed 228 variations to use for our active
probing. More precisely, we extracted the set of replies
that are contained in the Postfix 3 source code. Then, we
applied to them the variations described in this section,
and we injected them into a reference SMTP conversa-
tion. To this end, we used the sequence of server replies
from the conversation in Figure 1.

5 Matching Conversations to Dialects
After having learned the SMTP dialects for different
clients, we obtain a different state machine for each
client. Given a conversation between a client and a
server, we want to assess which dialect the client is
speaking. To do this, we merge all inferred dialect state
machines together into a single Decision State Machine
MD.

5.1 Building the Decision State Machine

We use the approach proposed by Wolf [46] to merge the
dialect state machines into a single state machine. Given
two dialects D1 and D2, the approach works as follows:
Step 1: We build the Cartesian product D1×D2. That is,
for each combination of states < s1, s2 >, where s1 is a

3A popular open-source Mail Transfer Agent:
http://www.postfix.org/

Figure 4: An example of decision state machine

state in D1 and s2 is a state in D2, we build a new state
sD in the decision state machine MD.

The label of sD is a table with two columns. The first
column contains the identifier of one of the dialects sD
was built from (e.g., D1), and the second column con-
tains the label that dialect had in the original state (either
s1 or s2). Note that we add one row for each of the two
states that sD was built from. For example, the second
state of the state machine in Figure 4 is labeled with a
table containing the two possible message templates that
the clients C1 and C2would send in that state (i.e., HELO
hostname and HELO domain).

We then check all the incoming transitions to s1 and s2
in the original state machines D1 and D2. For each com-
bination of transitions <t1, t2>, where t1 is an incoming
transition for s1 and t2 is an incoming transition for s2,
we check if t1 and t2 have the same label. If they do, we
generate a new transition td, and add it to MD. The label
of td is the label of t1 and t2. The start state of td is the
Cartesian product of the start states of t1 and t2, respec-
tively, while the end state is sD. If the labels of s1 and
s2 do not match, we discard td. For example, a transition
t1 labeled as 250 OK and a transition t2 labeled as 553
Relaying Denied would not generate a transition in
MD. At the end of this process, if sD is not connected
to any other state, it will be not part of the decision state
machines MD, since that state would not be reachable if
added to MD.
Step 2: We reduce the number of states in MD by merg-
ing together states that are equivalent. To evaluate if two
states s1 and s2 are equivalent, we first extract the set of
incoming transitions to s1 and s2. We name these sets
I1 and I2. Then, we extract the set of outgoing transi-
tions from s1 and s2, and name these sets O1 and O2.
We consider s1 and s2 as equivalent if |I1| = |I2| and
|O1| = |O2|, and if the edges in the sets I1 and I2, and
in O1 and O2 have the exact same labels.

If s1 and s2 are equivalent, we remove them from MD,
and we add a state sd to MD. The label for sd is a table
composed of the combined rows of the label tables of
s1 and s2. We then adjust all the transitions in MD that

24  21st USENIX Security Symposium	 USENIX Association

had s1 or s2 as start states to start from sd, and all the
transitions that had s1 or s2 as end states to end at sd.

We iteratively run this algorithm on all the dialects we
learned, and we build the final decision state machine
MD. As an example, Figure 4 shows the decision state
machine built from the two dialects in Figure 2. Wolf
shows how this algorithm produces nearly-minimal re-
sulting state machines [46]. Empirical results indicate
that this works well in practice and is enough for our
purposes. Also, as for the dialect state machines, the de-
cision state machine is non-deterministic. This is not a
problem, since we analyze different states in parallel to
make a decision as we explain in the next section.

5.2 Making a Decision

Given an SMTP conversation Con, we assign it to an
SMTP dialect by traversing the decision state machine
MD in the following way:
Step 1: We keep a list A of active states, and a list CD of
dialect candidates. At the beginning of the algorithm, A
only contains the initial state of MD, while CD contains
all the learned dialects.
Step 2: Every time we see a server reply r in Con, we
check each state sa in A for outgoing transitions labeled
with r. If such transition exists, we follow each of them
and add the end states to a list A′. Then, we set A′ as the
new active state list A.
Step 3: Every time we see a client command c in Con,
we check each state sa in A. If sa’s table has an entry
that matches c, and the identifier for that entry is in the
dialect candidate list CD, we copy sa to a list A′. We
then remove from CD all dialect candidates whose table
entry in sa did not match c. We set A′ as the new active
state list A.

The dialects that are still in CD at the end of the pro-
cess are the possible candidates the conversation belongs
to. If CD contains a single candidate, we can make a
decision and assign the conversation to a unique dialect.

5.3 Applying the Decision

The decision approach explained in the previous section
can be used in different ways, and for different purposes.
In particular, we can use it to assess to which client a
server is talking. Furthermore, we can use it for spam
mitigation, and close connections whenever a conversa-
tion matches a dialect spoken by a bot.

Similarly to what we discussed in Section 4, the de-
cision process can happen passively, or actively, by hav-
ing a server decide which replies to send to the client.
In the first case, we traverse the decision state machine
for each reply, as described in Section 5.2, and end up
with a dialect candidate set at the end of the conversa-
tion. Consider, for example, the decision state machine
in Figure 4. By passively observing the SMTP conver-

sation, our approach is able to discard one of the two
dialects from the candidate set as soon as the client sends
the HELO message. If the commands of the remaining
candidate match the ones in the decision state machine
for that client until we observe the DATA command, we
can attribute the conversation to that dialect. Otherwise,
the conversation does not belong to any learned dialect.

As discussed in Section 4, passive observation gives
no guarantee to uniquely identify a dialect. In this con-
text, a less problematic use case is to deploy this ap-
proach for spam detection: once the candidate set CD

contains only bots, we can close the connection and clas-
sify this conversation as related to spam. As we will
show in Section 7, this approach works well in practice
on a real-world data set. If passive observation is not
enough to identify a dialect, one can use active probing.

Gain heuristic. To perform active detection, we need
to identify “good” replies that we can send to achieve
our purpose (dialect classification or spam mitigation).
More specifically, we need to find out which replies can
be used to expose the deviations in different implementa-
tions. To achieve this goal, we use the following heuris-
tic: For each state ci in which a dialect i reaches the end
of a conversation (i.e., sends a DATA or QUIT command,
or just closes the connection), we assign a gain value gi
to the dialect i in that state. The gain value represents
how much it would help achieve our detection goal if
we reached that state during our decision process. Then,
we propagate the gain values backwards along the tran-
sitions of the decision state machine. For each state s,
we set the gain for i in that state as the maximum of the
gain values for i that have been propagated to that state.
To correctly handle loops, we continue propagating the
gain values until we reach a fixed point. We then calcu-
late the gain for s as the minimum of the gains for any
dialect j in s. We do this to ensure that our decision is
safe in the worst-case scenario (i.e., for the client with
the minimal gain for that state). We calculate the initial
gain for a state in different ways, depending on the goal
of our decision process.

When performing spam mitigation, we want to avoid
a legitimate client from failing to send an email. For this
reason, we strongly penalize failure states for legitimate
clients, while we want to have high gains for states in
which spambots would fail. For each state in which a di-
alect reaches a final state, we calculate the gain for that
state as follows: First, we assign a score to each client
with a final label for that state (i.e., a QUIT, a DATA, or
a connection closed label). We want to give more impor-
tance to states that make bots fail, while we never want
to visit states that make legitimate clients fail. Also, we
want to give a neutral gain to states that make legitimate
clients succeed, and a slightly lower gain to states that

USENIX Association 	 21st USENIX Security Symposium  25

make bots succeed. To achieve this, we assign a score of
1 for bot failure states, a score of 0 for legitimate clients
failure states, a score of 0.5 for legitimate-client success
states, and a score of 0.2 for bot success states. Notice
that what we need here is a lattice of values that respect
the stated precedence; therefore, any set of numbers that
maintain this relationship would work.

When performing classification, we want to be as ag-
gressive as possible in reducing the number of possible
dialect candidates. In other words, we want to have high
gains for states that allow us to make a decision on which
dialect is spoken by a given client. Such states are those
with a single possible client in them, or with different
clients, each one with a different command label. To
achieve this property, we set the gain for each state that
includes a final label as G = d

n , where n is the total num-
ber of labels in that state, and d is the number of unique
labels.

Reply selection. At each iteration of the algorithm ex-
plained in Section 5.2, we decide which reply to send
by evaluating the gain for every possible reply from the
states in A. For all the states reachable in one transi-
tion from the states in A, we first select the states Sa that
still have at least an active client in their label table. We
group together those states in Sa that are connected to
the active states by transitions with the same label. For
each label group, we pick the minimum gain among the
states in that group. We consider this number as the gain
we would get by sending that reply. After calculating the
gain for all possible replies, we send the reply that has
the highest gain associated to it. In case more than one
reply yields the same gain we pick one randomly.

6 The Botnet Feedback Mechanism

Modern spamming botnets typically use template-based
spamming to send out emails [22,31,38]. With this tech-
nique, the botnet C&C infrastructure tells the bots what
kind of emails to send out, and the bots relay back in-
formation about the delivery as they received it from the
SMTP server. This server feedback is an important piece
of information to the botmaster, since it enables him to
monitor if his botnet is working correctly.

Of course, a legitimate sender is also interested in in-
formation about the delivery process. However, she is
interested in different information compared to the bot-
master. In particular, a legitimate user wants to know
whether the delivery of her emails failed (e.g., due to a
typo in the email address). In such a case, the user wants
to correct the mistake and send the message again. In
contrast, a spammer usually sends emails in batches, and
typically does not care about sending an email again in
case of failure.

Nonetheless, there are three main pieces of informa-
tion related to server feedback that a rational spammer
is interested in: (i) whether the delivery failed because
the IP address of the bot is blacklisted; (ii) whether the
delivery failed because of specific policies in place at the
receiving end (e.g., greylisting); (iii) whether the deliv-
ery failed because the recipient address does not exist. In
all three cases, the spammer can leverage the information
obtained from the mail server to make his operation more
effective and profitable. In the case of a blacklisted bot,
he can stop sending spam using that IP address, and wait
for it to be whitelisted again after several hours or days.
Empirical evidence suggests that spammers already col-
lect this information and act accordingly [38]. If the re-
cipient server replied with an SMTP non-critical error
(i.e., the ones used in greylisting), the spammer can send
the email again after some minutes to comply with the
recipient’s policy.

The third case, in which the recipient address does
not exist, is the most interesting, because it implies that
the spammer can permanently remove that email address
from his email lists, and avoid using it during subsequent
campaigns. Recent research suggests that bot feedback
is an important part of a spamming botnet operation. For
example, Stone-Gross et al. [38] showed that about 35%
of the email addresses used by the Cutwail botnet were
in fact non-existent. By leveraging the server feedback
received by the bots, a rational botmaster can get rid
of those non-existing addresses, and optimize his spam-
ming performance significantly.

Breaking the Loop: Providing False Responses to
Spam Emails. Based on these insights, we want to
study how we can manipulate the SMTP delivery pro-
cess of bots to influence their sending behavior. We want
to investigate what would happen if mail servers started
giving erroneous feedback to bots. In particular, we are
interested in the third case, since influencing the first two
pieces of information has only a limited, short-term im-
pact on a spammer. However, if we provide false in-
formation about the status of a recipient’s address, this
leads to a double bind for the spammer: on the one hand,
if a spammer considers server feedback, he will remove
a valid recipient address from his email list. Effectively,
this leads to a reduced number of spam emails received at
this particular address. On the other hand, if the spammer
does not consider server feedback, this reduces the effec-
tiveness of his spam campaigns since emails are sent to
non-existent addresses. In the long run, this will signifi-
cantly degrade the freshness of his email lists and reduce
the number of successfully sent emails. In the following,
we discuss how we can take advantage of this situation.

As a first step, we need to identify that a given SMTP
conversation belongs to a bot. To this end, a mail server

26  21st USENIX Security Symposium	 USENIX Association

can either use traditional, IP-based blacklists or lever-
age the analysis of SMTP dialects introduced previously.
Once we have identified a bot, a mail server can (instead
of closing the connection) start sending erroneous feed-
back to the bot, which will relay this information to the
C&C infrastructure. Specifically, the mail server could,
for example, report that the recipient of that email does
not exist. By doing this, the email server would lead
the botmaster to the lose-lose situation discussed before.
For a rational botmaster, we expect that this technique
would reduce the amount of spam the email address re-
ceives. We have implemented this approach as a second
instance of our technique to leverage the email delivery
for spam mitigation and report on the empirical results in
Section 7.3.

7 Evaluation
In this section, we evaluate the effectiveness of our ap-
proach. First, we describe our analysis environment.
Then, we evaluate both the dialects and the feedback ma-
nipulation techniques. Finally, we analyze the limitations
and the possible evasion techniques against our system.

7.1 Analysis Environment

We implemented our approach in a tool, called B@bel.
B@bel runs email clients (legitimate or malicious) in
virtual machines, and applies the learning techniques ex-
plained in Section 4 to learn the SMTP dialect of each
client. Then, it leverages the learned dialects to build a
decision machine MD, and uses it to perform malware
classification or spam mitigation.

The first component of B@bel is a virtual machine
zoo. Each of the virtual machines in the zoo runs a dif-
ferent email client 4. Clients can be legitimate email pro-
grams, mail transfer agents, or spambots.

The second component of B@bel is a gateway, used to
confine suspicious network traffic. Since the clients that
we run in the virtual machines are potentially malicious,
we need to make sure that they do not harm the outside
world. To this end, while still allowing the clients to
connect to the Internet, we use restricting firewall rules,
and we throttle their bandwidth, to make sure that they
will not be able to launch denial of service attacks. Fur-
thermore, we sinkhole all SMTP connections, redirecting
them to local mail servers under our control.

We use three different mail servers in B@bel. The
first email server is a regular server that speaks plain
SMTP, and will perform passive observation of the
client’s SMTP conversation. The second server is instru-

4We used VirtualBox as our virtualization environment, and Win-
dows XP SP3, Windows Server 2008, Windows 7, Ubuntu Linux 11.10,
or Mac OS X Lion as operating systems on the virtual machines, de-
pending on the operating system needed to run each of the legitimate
clients or MTAs. We used Windows XP SP3 to run the malware sam-
ples

mented to perform active probing, as described in Sec-
tion 4.2. Finally, the third server is configured to always
report to the client that the recipient of an email does not
exist, and is used to study how spammers use the feed-
back they receive from their bots.

The third component of B@bel is the learner. This
component analyzes the active or passive observations
generated between the clients in the zoo and the mail
servers, learns an SMTP dialect for each client, and gen-
erates the decision state machine using the various di-
alects as input, as explained in Section 5. According
to the task we want to perform (dialect classification or
spam mitigation), B@bel tags the states in the decision
state machine with the appropriate gain.

The last component of B@bel is the decision maker.
This component analyzes an SMTP conversation, by
either passively observing it or by impersonating the
server, and makes a decision about which dialect is spo-
ken by the client, using the process described in Sec-
tion 5.2.

7.2 Evaluating the Dialects

Evaluating Dialects for Classification We trained
B@bel by running active probing on a variety of pop-
ular Mail User Agents, Mail Transfer Agents, and bot
samples. Table 1 lists the clients we used for dialect
learning. Since we are extracting dialects by looking
at the SMTP conversations only, B@bel is agnostic to
the family a bot belongs to. However, for legibility pur-
poses, Table 1 groups bots according to the most fre-
quent label assigned by the anti-virus products deployed
by VirusTotal [44]. Our dataset contained 13 legitimate
MUAs and MTAs, and 91 distinct malware samples5. We
picked the spambot samples to be representative of the
largest active spamming botnets according to a recent re-
port [26] (the report lists Lethic, Cutwail, Mazben, Cut-
wail, Tedroo, Bagle). We also picked worm samples that
spread through email, such as Mydoom. In total, the mal-
ware samples we selected belonged to 11 families. The
dialect learning phase resulted in a total of 60 dialects.
We explain the reason for the high number of discovered
dialects later in this section.

We then wanted to assess whether a dialect (i.e., a
state machine) is unique or not. For each combination
of dialects <d1, d2>, we merged their state machines to-
gether as explained in Section 5.1. We consider two di-
alects as distinct if any state of the merged state machine
has two different labels in the label table for the dialects
d1 and d2, or if any state has a single possible dialect in
it.

The results show that the dialects spoken by the legit-
imate MUAs and MTAs are distinct from the ones spo-

5The MD5 checksums of the malware samples are available at
http://cs.ucsb.edu/~gianluca/files/babel.txt

USENIX Association 	 21st USENIX Security Symposium  27

Mail User Agents Mail Transfer Agents Bots (by AV labels)
Eudora, Opera, Outlook 2010, Exchange 2010, Waledac, Donbot, Grum, Klez
Outlook Express, Pegasus, Exim, Postfix, Qmail, Buzus, Bagle, Lethic, Cutwail,
The Bat!, Thunderbird, Windows Live Mail Sendmail Mydoom, Mazben, Tedroo

Table 1: MTAs, MUAs, and bots used to learn dialects.

ken by the bots. By analyzing the set of dialects spoken
by legitimate MUAs and MTAs, we found that they all
speak distinct dialects, except for Outlook Express and
Windows Live Mail. We believe that Microsoft used the
same email engine for these two products.

The 91 malware samples resulted in 48 unique di-
alects. We manually analyzed the spambots that use the
same dialect, and we found that they always belong to the
same family, with the exception of six samples. These
samples were either not flagged by any anti-virus at the
time of our analysis, or match a dropper that downloaded
the spambot at a later time [8]. This shows that B@bel
is able to classify spambot samples by looking at their
email behavior, and label them more accurately than anti-
virus products.

We then wanted to understand the reason for the high
number of dialects we discovered. To this end, we con-
sidered clusters of malware samples that were talking the
same dialect. For each cluster, we assigned a label to it,
based on the most common anti-virus label among the
samples in the cluster. All the clusters were unique, with
the exception of eleven clusters marked as Lethic and two
clusters marked as Mydoom. By manual inspection, we
found that Lethic randomly closes the connection after
sending the EHLO message. Since our dialect state ma-
chines are nondeterministic, our approach handles this
case, in principle. However, in some cases, this non-
deterministic behavior made it impossible to record a re-
ply for a particular test case during our active probing.
We found that each cluster labeled as Lethic differs for at
most five non-recorded test cases with every other Lethic
cluster. This gives us confidence to say that the dialect
spoken by Lethic is indeed unique. For the two clusters
labeled as Mydoom, we believe this is a common label
assigned to unknown worms. In fact, the two dialects
spoken by the samples in the clusters are very different.
This is another indicator that B@bel can be used to clas-
sify spamming malware in a more precise fashion than is
possible by relying on anti-virus labels only.

Evaluating Dialects for Spam Detection To evaluate
how the learned dialects can be used for spam detection,
we collected the SMTP conversations for 621,919 email
messages on four mail servers in our department, span-
ning 40 days of activity.

For each email received by the department servers, we
extracted the SMTP conversation associated with it, and
then ran B@bel on it to perform spam detection. To this

end, we used the conversations logged by the Anubis sys-
tem [4] during a period of one year (corresponding to
7,114 samples) to build the bot dialects, and the dialects
learned in Section 7.2 for MUAs and MTAs as legitimate
clients. In addition, we manually extracted the dialects
spoken by popular web mail services from the conversa-
tions logged by our department mail servers, and added
them to the legitimate MTAs dialects. Note that, since
the goal of this experiment is to perform passive spam
detection, learning the dialects by passively observing
SMTP conversations is sufficient.

During our experiment, B@bel marked any conversa-
tion as spam if, at the end of the conversation, the di-
alects in CD were all associated with bots. Furthermore,
if the dialects in CD were all associated with MUAs
or MTAs, B@bel marked the conversation as legitimate
(ham). If there were both good and malicious clients in
CD, B@bel did not make a decision. Finally, if the deci-
sion state machine did not recognize the SMTP conversa-
tion at all, B@bel considered that conversation as spam.
This could happen when we observe a conversation from
a client that was not in our training set. As we will show
later, considering it as spam is a reasonable assumption,
and is not a major source of false positives.

In total, B@bel flagged 260,074 conversations as
spam, and 218,675 as ham. For 143,170 emails, B@bel
could not make a decision, because the decision pro-
cess ended up in a state where there were both legitimate
clients and bots in CD.

To verify how accurate our decisions were, we used
a number of techniques. First, we checked whether the
email was blocked by the department mail servers in
the first place. These servers have a common configu-
ration, where incoming emails are first checked against
an IP blacklist, and then against more expensive content-
analysis techniques. In particular, these servers used a
commercial blacklist for discarding emails coming from
known spamming IP addresses, and SpamAssassin and
ClamAV for content analysis. Any time one of these
techniques and B@bel agreed on flagging a conversa-
tion as spam, we consider this as a true positive of our
system. We also consider as a true positive those con-
versations B@bel marked as spam, and that lead to an
NXDOMAIN or to a timeout when we tried to resolve the
domain associated to the sender email address. In addi-
tion, we checked the sender IP address against 30 addi-

28  21st USENIX Security Symposium	 USENIX Association

tional IP blacklists6, and considered any match as a true
positive. According to this ground truth, the true positive
rate for the emails B@bel flagged as being sent by bots is
99.32%. Surprisingly, 98% of the 24,757 conversations
that were not recognized by our decision state machine
were flagged as spam by existing methods. This shows
that, even if the set of clients from which B@bel learned
the dialects from is not complete, there are no widely-
used legitimate clients we missed, and that it is safe to
consider any conversation generated by a non-observed
dialect as spam. For the remaining 2,074 emails that
B@bel flagged as spam, we could not assess if they were
spam or not. They might have been a false positive of
B@bel, or a false negative of the existing methods. To
remain on the safe side, we consider them as false posi-
tives. This results in B@bel having a precision of 99.3%.

We then looked at our false negatives. We consider as
false negatives those conversations that B@bel classified
as belonging to a legitimate client dialect, but that have
been flagged as spam by any of the previously mentioned
techniques. In total, the other spam detection mecha-
nisms flagged 71,342 emails as spam, among the ones
that B@bel flagged as legitimate. Considering these
emails as false negatives, this results in B@bel having a
false negative rate of 21%. The number of false negatives
might appear large at first. However, we need to con-
sider the sources of these spam messages. While the vast
majority of spam comes from botnets, spam can also be
sent by dedicated MTAs, as well as through misused web
mail accounts. Since B@bel is designed to detect email
clients, we are able to detect which MTA or web mail
application the email comes from, but we cannot assess
whether that email is ham or spam. To show that this is
the case, we investigated these 71,342 messages, which
originated from 7,041 unique IP addresses. Assuming
these are legitimate MTAs, we connected to each IP ad-
dress on TCP port 25 and observed greeting messages
for popular MTAs. For 3,183 IP addresses, one of the
MTAs that we used to learn the dialects responded. The
remaining 3,858 IP addresses did not respond within a 10
second timeout. We performed reverse DNS lookups on
these IP addresses and assessed whether their assigned
DNS names contained indicative names such as smtp or
mail. 1,654 DNS names were in this group. We could
not find any conclusive proof that the remaining 2,204
addresses belong to legitimate MTAs.

For those dialects for which B@bel could not make a
decision (because the conversation lead to a state where
both one or more legitimate clients and bots were active),

6The blacklists we leveraged come from these services: Barracuda,
CBL, Spamhaus, Atma, Spamcop, Manitu, AHBL, DroneBL, DShield,
Emerging Threats, malc0de, McAfee, mdl, OpenBL, SORBS, Sucuri
Security, TrendMicro, UCEPROTECT, and ZeusTracker. Note that
some services provide multiple blacklists

we investigated if we could have assessed whether the
client was a bot or not by using active probing. Since the
spambot and legitimate client dialects that we observed
are disjoint, this is always possible. In particular, B@bel
found that it is always possible to distinguish between the
dialects spoken by a spambot and by a legitimate email
client that look identical from passive analysis by send-
ing a single SMTP reply. For example, the SMTP RFC
specifies that multi-line replies are allowed, in the case
all the lines in the reply have the same code, and all the
reply codes but the last one are followed by a dash char-
acter. Therefore, multi-line replies that use different re-
ply codes are not allowed by the standard. We can lever-
age different handling of this corner case to disambiguate
between Qmail and Mydoom. More precisely, if we send
the reply 250-OK<CR><LF>550 Error, Qmail will
take the first reply code as the right one, and continue
the SMTP transaction, while Mydoom will take the sec-
ond reply code as the right one, and close the connec-
tion. Based on these observations, we can say that if we
ran B@bel in active mode, we could distinguish between
these ambiguous cases, and make the right decision. Un-
fortunately, we could run B@bel only in passive mode
on our department mail servers.

Our results show that B@bel can detect (and possi-
bly block) spam emails sent by bots with high accuracy.
However, B@bel is unable to detect those spam emails
sent by dedicated MTAs or by compromised webmail ac-
counts. For this reason, similar to the other state-of-the-
art mitigation techniques, B@bel is not a silver bullet,
but should be used in combination with other anti-spam
mechanisms. To show what would be the advantage of
deploying B@bel on a mail server, we studied how much
spam would have been blocked on our department server
if B@bel was used in addition to or in substitution to
the commercial blacklist and the content analysis sys-
tems that are currently in use on those servers.

Similarly to IP blacklists, B@bel is a lightweight
technique. Such techniques are typically used as a first
spam-mitigation step to make quick decisions, as they
avoid having to apply resource-intensive content anal-
ysis techniques to most emails. For this reason, the
first configuration we studied is substituting the commer-
cial blacklist with B@bel. In this case, 259,974 emails
would have been dropped as spam, instead of the 219,726
that were blocked by the IP blacklist. This would have
resulted in 15.5% less emails being sent to the content
analysis system, reducing the load on the servers. More-
over, the emails detected as spam by B@bel and the IP
blacklist do not overlap completely. For example, the
IP blacklist flags as spam emails sent by known misused
MTAs. Therefore, we analyzed the amount of spam that
the two techniques could have caught if used together. In
this scenario, 278,664 emails would have been blocked,

USENIX Association 	 21st USENIX Security Symposium  29

resulting in 26.8% less emails being forwarded to the
content analysis system compared to using the blacklist
alone. As a last experiment, we studied how much spam
would have been blocked on our servers by using B@bel
in combination with both the commercial blacklist and
the content analysis systems. In this scenario, 297,595
emails would have been flagged as spam, which consti-
tutes an improvement of 3.9% compared to the servers’
original configuration.

7.3 Evaluating the Feedback Manipulation

To investigate the effects of wrong server feedback to
bots, we set up the following experiment. We ran 32 mal-
ware samples from four large spamming botnet families
(Cutwail, Lethic, Grum, and Bagle) in a controlled envi-
ronment, and redirected all of their SMTP activity to the
third mail server in the B@bel architecture. We config-
ured this server to report that any recipient of the emails
the bots were sending to was non-existent, as described
in Section 7.1.

To assess whether the different botnets stopped send-
ing emails to those addresses, we leveraged a spamtrap
under our control. A spamtrap is a set of email addresses
that do not belong to real users, and, therefore, collect
only spam mails. To evaluate our approach, we leverage
the following idea: if an email address is successfully
removed from an email list used by a spam campaign,
we will not observe the same campaign targeting that ad-
dress again. We define as a spam campaign the set of
emails that share the same URL templates in their links,
similar to the work of Xie et al. [48]. While there are
more advanced methods to detect spam campaigns [31],
the chosen approach leads to sufficiently good results for
our purposes.

We ran our experiment for 73 days, from June 18 to
August 30, 2011. During this period, our mail server
replied with false server feedback for 3,632 destination
email addresses covered by our spamtrap, which were
targeted by 29 distinct spam campaigns. We call the set
of campaigns Cf and the set of email addresses Sf . Of
these, five campaigns never targeted the addresses for
which we gave erroneous feedback again. To estimate
the probability Pc that the spammer running campaign c
in Cf actually removed the addresses from his list, and
that our observation is not random, we use the following
formula:

Pc = 1− (1− n
tf−tb

)te−tf ,

where n is the total number of emails received by Sf

for c, tf is the time at which we first gave a negative
feedback for an email address targeted by c, tb is the first
email for c which we ever observed targeting our spam
trap, and te is the last email we observed for c. This
formula calculates the probability that, given a certain

number n of emails observed for a certain campaign c,
no email was sent to the email addresses in Sf after we
sent a poisoned feedback for them. We calculate Pc for
the five campaigns mentioned above. For three of them,
the confidence was above 0.99. For the remaining two,
we did not observe enough emails in our spamtrap to be
able to make a final estimate.

To assess the impact we would have had when send-
ing erroneous feedback to all the addresses in the spam-
trap, we look at how many emails the whole spamtrap
received from the campaigns in Cf . In total, 2,864,474
emails belonged to campaigns in Cf . Of these, 550,776
belonged to the three campaigns for which we are con-
fident that our technique works and reduced the amount
of spam emails received at these addresses. Surprisingly,
this accounts for 19% of the total number of emails re-
ceived, indicating that this approach could have impact
in practice.

We acknowledge that these results are preliminary and
provide only a first insight into the large-scale applica-
tion of server feedback poisoning. Nevertheless, we are
confident that this approach is reasonable since it leads
to a lose-lose situation for the botmaster, as discussed in
Section 6. We argue that the uncertainty about server
feedback introduced by our method is beneficial since it
reduces the amount of information a spammer can obtain
when sending spam.

7.4 Limitations and Evasion

Our results demonstrate that B@bel is successful in de-
tecting current spambots. However, spam detection is an
adversarial game. Thus, once B@bel is deployed, we
have to expect that spammers will evolve and try to by-
pass our systems. In this section, we discuss potential
paths for evasion.

Evading dialects detection. The most immediate path
to avoid detection by dialects is to implement an SMTP
engine that precisely follows the specification. Alterna-
tively, a bot author could make use of an existing (open
source) SMTP engine that is used by legitimate email
clients. We argue that this has a negative impact on the
effectiveness and flexibility of spamming botnets.

Many spambots are built for performance; their aim
is to distribute as many messages as possible. In some
cases, spambots even send multiple messages without
waiting for any server response. Clearly, any additional
checks and parsing of server replies incurs overhead that
might slow down the sender. We performed a simple ex-
periment to measure the speed difference between a mal-
ware program sending spam (Bagle) and a legitimate
email library on Windows (Collaboration Data
Objects - CDO). We found that Bagle can send an
email every 20 ms to a local mail server. When trying to
send emails as fast as possible using the Windows library

30  21st USENIX Security Symposium	 USENIX Association

(in a tight loop), we measured that a single email required
200 ms, an order of magnitude longer. Thus, when bots
are forced to faithfully implement large portions of the
SMTP specification (because otherwise, active probing
will detect differences), spammers suffer a performance
penalty.

Spammers could still decide to adopt a well-known
SMTP implementation for their bots, run a full, paral-
lelized, SMTP implementation, or revert to a well-known
SMTP library when they detect that the recipient server
is using B@bel for detection. In this case, another as-
pect of spamming botnets has to be taken into account.
Typically, cyber criminals who infect machines with bots
are not the same as the spammers who rent botnets to dis-
tribute their messages. Modern spamming botnets allow
their customers to customize the email headers to mimic
legitimate clients. In this scenario, B@bel could exploit
possible discrepancies between the email client identified
by the SMTP dialect and the one announced in the body
of an email (for example, via the X-Mailer header).
When these two dialects do not match (and the SMTP
dialect does not indicate an MTA), we can detect that
the sender pretends to speak a dialect that is inconsis-
tent with the content of the (spam) message. Of course,
the botmasters could take away the possibility for their
customers to customize the headers of their emails, and
force them to match the ones typical of a certain legiti-
mate client (e.g., Outlook Express). However, while this
would make spam detection harder for B@bel, it would
make it easier for other systems that rely on email-header
analysis, such as Botnet Judo [31], because spammers
would be less flexible in the way they vary their tem-
plates.

Mitigating feedback manipulation. As we discussed
in Section 6, spammers can decide to either discard any
feedback they receive from the bots, or trust this feed-
back. To avoid this, attackers could guess whether the
receiving mail server is performing feedback manipula-
tion. For example, when all emails to a particular domain
are rejected because no recipient exists, maybe all feed-
back from this server can be discarded. In this case, we
would need to update our feedback mechanism to return
invalid feedback only in a fraction of the cases.

8 Related Work
Email spam is a well-known problem that has attracted a
substantial amount of research over the past years. In the
following, we briefly discuss how our approach is related
to previous work in this area and elaborate on the novel
aspects of our proposed methods.
Spam Filtering: Existing work on spam filtering can
be broadly classified in two categories: post-acceptance
methods and pre-acceptance methods. Post-acceptance

methods receive the full message and then rely on con-
tent analysis to detect spam emails. There are many ap-
proaches that allow one to differentiate between spam
and legitimate emails: popular methods include Naive
Bayes, Support Vector Machines (SVMs), or similar
methods from the field of machine learning [16, 27, 35,
36]. Other approaches for content-based filtering rely on
identifying the URLs used in spam emails [2,48]. A third
method is DomainKeys Identified Mail (DKIM), a system
that verifies that an email has been sent by a certain do-
main by using cryptographic signatures [23]. In practice,
performing content analysis or computing cryptographic
checksums on every incoming email can be expensive
and might lead to high load on busy servers [41]. Fur-
thermore, an attacker might attempt to bypass the con-
tent analysis system by crafting spam messages in spe-
cific ways [25, 28]. In general, the drawback of post-
acceptance methods is that an email has to be received
before it can be analyzed.

Pre-acceptance methods attempt to detect spam before
actually receiving the full message. Some analysis tech-
niques take the origin of an email into account and an-
alyze distinctive features about the sender of an email
(e.g., the IP address or autonomous system the email
is sent from, or the geographical distance between the
sender and the receiver) [17,34,39,43]. In practice, these
sender-based techniques have coverage problems: pre-
vious work showed how IP blacklists miss detecting a
large fraction of the IP addresses that are actually sending
spam, especially due to the highly dynamic nature of the
machines that send spam (typically botnets) [32, 37, 38].

Our method is a novel, third approach that focuses on
how messages are sent. This avoids costly content anal-
ysis, and does not require the design and implementa-
tion of a reputation metric or blacklist. In contrast, we
attempt to recognize the SMTP dialect during the ac-
tual SMTP transaction, and our empirical results show
that this approach can successfully discriminate between
spam and ham emails. This complements both pre-
acceptance and post-acceptance approaches. Another
work that went in this direction was done by Beverly et
al. [5] and Kakavelakis et al. [19]. The authors of these
two papers leveraged the fact that spambots have often
bad connections to the Internet, and perform spam detec-
tion by looking at TCP-level features such as retransmis-
sions and connection resets. Our system is more robust,
because it does not rely on assumptions based on the net-
work connectivity of a mail client.

Moreover, to the best of our knowledge, we are the
first to study the effects of manipulating server feedback
to poison the information sent by a bot to the botmaster.
Protocol Analysis: The core idea behind our approach
is to learn the SMTP dialect spoken by a particular
client. This problem is closely related to the problem of

USENIX Association 	 21st USENIX Security Symposium  31

automated protocol reverse-engineering, where an (un-
known) protocol is analyzed to determine the individual
records/elements and the protocol’s structure [6,13]. Ini-
tial work in this area focused on clustering of network
traces to group similar messages [14], while later meth-
ods extracted protocol information by analyzing the ex-
ecution of a program while it performs network commu-
nication [10, 15, 24, 45, 47]. Sophisticated methods can
also handle multiple messages and recover the protocol’s
state machine. For example, Dispatcher is a tool capa-
ble of extracting the format of protocol messages when
having access to only one endpoint, namely the bot bi-
nary [9]. Cho et al. leverage the information extracted
by Dispatcher to learn C&C protocols [11]. Brumley et
al. studied how deviations in the implementation of a
given protocol specification can be used to detect errors
or generate fingerprints [7]. The differences in how a
given program checks and processes inputs are identified
with the help of binary analysis (more specifically, sym-
bolic execution).

Our problem is related to previous work on protocol
analysis, in the sense that we extract different SMTP pro-
tocol variations, and use these variations to build finger-
prints. However, in this work, we treat the speaker of the
protocol (the bot) as a blackbox, and we do not perform
any code analysis or instrumentation to find protocol for-
mats or deviations. This is important because (i) mal-
ware is notoriously difficult to analyze and (ii) we might
not always have a malware sample available. Instead,
our technique allows us to build SMTP dialect state ma-
chines even when interacting with a previously-unknown
spambot.

There is also a line of research on fingerprinting pro-
tocols [12, 30, 49]. Initial work in this area leveraged
manual analysis. Nonetheless, there are methods, such
as FiG, that automatically generate fingerprints for DNS
servers [42]. The main difference between our work and
FiG is that our dialects are stateful while FiG operates
on individual messages. This entirely avoids the need to
merge and explore protocol state machines. However, as
discussed previously, individual messages are typically
not sufficient to distinguish between SMTP engines.

9 Conclusion
In this paper, we introduced a novel way to detect and
mitigate spam emails that complements content- and
sender-based analysis methods. We focus on how email
messages are sent and derive methods to influence the
spam delivery mechanism during SMTP transactions.
On the one hand, we show how small deviations in
the SMTP implementation of different email agents (so
called SMTP dialects) allow us to detect spambots dur-
ing the actual SMTP communication. On the other hand,
we study how the feedback mechanism used by botnets

can be poisoned, which can be used to have a negative
impact on the effectiveness of botnets.

Empirical results confirm that both aspects of our ap-
proach can be used to detect and mitigate spam emails.
While spammers might adapt their spam-sending prac-
tices as a result of our findings, we argue that this reduces
their performance and flexibility.

Acknowledgments
This work was supported by the Office of Naval Research
(ONR) under Grant N000140911042, the National Sci-
ence Foundation (NSF) under grants CNS-0845559 and
CNS-0905537, by Secure Business Austria, and by the
German Federal Ministry of Education and Research un-
der grant 01BY1111 / MoBE. We want to thank our shep-
herd Alex Moshchuk and the anonymous reviewers for
their valuable comments, and Andreas Boschke for his
help in setting up some of our experiments.

References
[1] RFC 821: Simple Mail Transfer Protocol. http://tools.

ietf.org/html/rfc821.

[2] SURBL URI reputation data. http://www.surbl.org/.

[3] The Spamhaus Project. http://www.spamhaus.org.

[4] BAYER, U., MOSER, A., KRUEGEL, C., AND KIRDA, E. Dy-
namic analysis of malicious code. Journal in Computer Virology
2, 1 (2006), 67–77.

[5] BEVERLY, R., AND SOLLINS, K. Exploiting Trasport-level
Characteristics of Spam. In Collaboration, Electronic messag-
ing, Anti-Abuse and Spam Conference (CEAS) (2008).

[6] BORISOV, N., BRUMLEY, D., WANG, H. J., DUNAGAN, J.,
JOSHI, P., AND GUO, C. Generic Application-Level Protocol
Analyzer and its Language. In Symposium on Network and Dis-
tributed System Security (NDSS) (2007).

[7] BRUMLEY, D., CABALLERO, J., LIANG, Z., NEWSOM, J., AND
SONG, D. Towards Automatic Discovery of Deviations in Bi-
nary Implementations with Applications to Error Detection and
Fingerprint Generation. In USENIX Security Symposium (2007).

[8] CABALLERO, J., GRIER, C., KREIBICH, C., AND PAXSON,
V. Measuring Pay-per-Install: The Commoditization of Malware
Distribution. In USENIX Security Symposium (2011).

[9] CABALLERO, J., POOSANKAM, P., KREIBICH, C., AND SONG,
D. X. Dispatcher: Enabling Active Botnet Infiltration Using Au-
tomatic Protocol Reverse-Engineering. In ACM Conference on
Computer and Communications Security (CCS) (2009).

[10] CABALLERO, J., YIN, H., LIANG, Z., AND SONG, D. X. Poly-
glot: Automatic Extraction of Protocol Message Format Using
Dynamic Binary Analysis. In ACM Conference on Computer and
Communications Security (CCS) (2007).

[11] CHO, C. BABIC, D. S. D. Inference and Analysis of Formal
Models of Botnet Command and Control Protocols. In ACM
Conference on Computer and Communications Security (CCS)
(2010).

[12] COMER, D. E., AND LIN, J. C. Probing TCP Implementations.
In USENIX Summer Technical Conference (1994).

[13] COMPARETTI, P. M., WONDRACEK, G., KRUEGEL, C., AND
KIRDA, E. Prospex: Protocol Specification Extraction. In IEEE
Symposium on Security and Privacy (2009).

[14] CUI, W., KANNAN, J., AND WANG, H. J. Discoverer: Auto-
matic Protocol Reverse Engineering from Network Traces. In
USENIX Security Symposium (2007).

32  21st USENIX Security Symposium	 USENIX Association

[15] CUI, W., PEINADO, M., CHEN, K., WANG, H. J., AND IRUN-
BRIZ, L. Tupni: automatic reverse engineering of input formats.
In ACM Conference on Computer and Communications Security
(CCS) (2008).

[16] DRUCKER, H., WU, D., AND VAPNIK, V. N. Support vector
machines for spam categorization. In IEEE transactions on neu-
ral networks (1999).

[17] HAO, S., SYED, N. A., FEAMSTER, N., GRAY, A. G., AND
KRASSER, S. Detecting Spammers with SNARE: Spatio-
temporal Network-level Automatic Reputation Engine. In
USENIX Security Symposium (2009).

[18] JOHN, J. P., MOSHCHUK, A., GRIBBLE, S. D., AND KRISH-
NAMURTHY, A. Studying Spamming Botnets Using Botlab. In
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI) (2009).

[19] KAKAVELAKIS, G., BEVERLY, R., AND J., Y. Auto-learning
of SMTP TCP Transport-Layer Features for Spam and Abusive
Message Detection. In USENIX Large Installation System Ad-
ministration Conference (2011).

[20] KANICH, C., WEAVER, N., MCCOY, D., HALVORSON, T.,
KREIBICH, C., LEVCHENKO, K., PAXSON, V., VOELKER, G.,
AND SAVAGE, S. Show Me the Money: Characterizing Spam-
advertised Revenue. USENIX Security Symposium (2011).

[21] KASPERSKY LAB. Spam Report: April 2012. https:
//www.securelist.com/en/analysis/204792230/
Spam_Report_April_2012, 2012.

[22] KREIBICH, C., KANICH, C., LEVCHENKO, K., ENRIGHT, B.,
VOELKER, G. M., PAXSON, V., AND SAVAGE, S. On the Spam
Campaign Trail. In USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET) (2008).

[23] LEIBA, B. DomainKeys Identified Mail (DKIM): Using digital
signatures for domain verification. In Collaboration, Electronic
messaging, Anti-Abuse and Spam Conference (CEAS) (2007).

[24] LIN, Z., JIANG, X., XU, D., AND ZHANG, X. Automatic Pro-
tocol Format Reverse Engineering through Context-Aware Moni-
tored Execution. In Symposium on Network and Distributed Sys-
tem Security (NDSS) (2008).

[25] LOWD, D., AND MEEK, C. Good word attacks on statistical
spam filters. In Collaboration, Electronic messaging, Anti-Abuse
and Spam Conference (CEAS) (2005).

[26] M86 LABS. Security labs report. http://www.
m86security.com/documents/pdfs/security_
labs/m86_security_labs_report_2h2011.pdf,
2011.

[27] MEYER, T., AND WHATELEY, B. SpamBayes: Effective open-
source, Bayesian based, email classification system. In Collab-
oration, Electronic messaging, Anti-Abuse and Spam Conference
(CEAS) (2004).

[28] NELSON, B., BARRENO, M., CHI, F. J., JOSEPH, A. D., RU-
BINSTEIN, B. I. P., SAINI, U., SUTTON, C., TYGAR, J. D.,
AND XIA, K. Exploiting Machine Learning to Subvert Your
Spam Filter. In USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI) (2008).

[29] PATHAK, A., HU, Y. C., AND MAO, Z. M. Peeking into spam-
mer behavior from a unique vantage point. In USENIX Workshop
on Large-Scale Exploits and Emergent Threats (LEET) (2008).

[30] PAXSON, V. Automated Packet Trace Analysis of TCP Imple-
mentations. In ACM SIGCOMM Conference (1997).

[31] PITSILLIDIS, A., LEVCHENKO, K., KREIBICH, C., KANICH,
C., VOELKER, G. M., PAXSON, V., WEAVER, N., AND SAV-
AGE, S. botnet Judo: Fighting Spam with Itself. In Symposium
on Network and Distributed System Security (NDSS) (2010).

[32] RAMACHANDRAN, A., DAGON, D., AND FEAMSTER, N. Can
DNS-based blacklists keep up with bots? In Collaboration,
Electronic messaging, Anti-Abuse and Spam Conference (CEAS)
(2006).

[33] RAMACHANDRAN, A., AND FEAMSTER, N. Understanding
the Network-level Behavior of Spammers. SIGCOMM Comput.
Commun. Rev. 36 (August 2006).

[34] RAMACHANDRAN, A., FEAMSTER, N., AND VEMPALA, S. Fil-
tering Spam with Behavioral Blacklisting. In ACM Conference on
Computer and Communications Security (CCS) (2007).

[35] SAHAMI, M., DUMAIS, S., HECKERMANN, D., AND
HORVITZ, E. A Bayesian approach to filtering junk e-mail.
Learning for Text Categorization (1998).

[36] SCULLEY, D., AND WACHMAN, G. M. Relaxed Online SVMs
for Spam Filtering. In ACM SIGIR Conference on Research and
Development in Information Retrieval (2007).

[37] SINHA, S., BAILEY, M., AND JAHANIAN, F. Shades of Grey:
On the Effectiveness of Reputation-based “Blacklists”. In In-
ternational Conference on Malicious and Unwanted Software
(2008).

[38] STONE-GROSS, B., HOLZ, T., STRINGHINI, G., AND VIGNA,
G. The Underground Economy of Spam: A Botmaster’s Perspec-
tive of Coordinating Large-Scale Spam Campaigns. In USENIX
Workshop on Large-Scale Exploits and Emergent Threats (LEET)
(2011).

[39] STRINGHINI, G., HOLZ, T., STONE-GROSS, B., KRUEGEL, C.,
AND VIGNA, G. BotMagnifier: Locating Spammers on the In-
ternet. In USENIX Security Symposium (2011).

[40] SYMANTEC CORP. State of spam & phishing report.
http://www.symantec.com/business/theme.
jsp?themeid=state_of_spam, 2010.

[41] TAYLOR, B. Sender reputation in a large webmail service. In
Collaboration, Electronic messaging, Anti-Abuse and Spam Con-
ference (CEAS) (2006).

[42] VENKATARAMAN, S., CABALLERO, J., POOSANKAM, P.,
KANG, M. G., AND SONG, D. X. FiG: Automatic Fingerprint
Generation. In Symposium on Network and Distributed System
Security (NDSS) (2007).

[43] VENKATARAMAN, S., SEN, S., SPATSCHECK, O., HAFFNER,
P., AND SONG, D. Exploiting Network Structure for Proactive
Spam Mitigation. In USENIX Security Symposium (2007).

[44] VIRUSTOTAL. Free Online Virus, Malware and URL Scanner.
https://www.virustotal.com/.

[45] WANG, Z., JIANG, X., CUI, W., WANG, X., AND GRACE, M.
ReFormat: Automatic Reverse Engineering of Encrypted Mes-
sages. In European Symposium on Research in Computer Secu-
rity (ESORICS) (2009).

[46] WOLF, W. An Algorithm for Nearly-Minimal Collapsing of
Finite-State Machine Networks. In IEEE International Confer-
ence on Computer-Aided Design (ICCAD) (1990).

[47] WONDRACEK, G., COMPARETTI, P. M., KRUEGEL, C., AND
KIRDA, E. Automatic Network Protocol Analysis. In Symposium
on Network and Distributed System Security (NDSS) (2008).

[48] XIE, Y., YU, F., ACHAN, K., PANIGRAHY, R., HULTEN, G.,
AND OSIPKOV, I. Spamming Botnets: Signatures and Character-
istics. SIGCOMM Comput. Commun. Rev. 38 (August 2008).

[49] ZALEWSKI, M. p0f v3. http://lcamtuf.coredump.cx/
p0f3/, 2012.

[50] ZHUANG, L., DUNAGAN, J., SIMON, D. R., WANG, H. J.,
AND TYGAR, J. D. Characterizing Botnets From Email Spam
Records. In USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET) (2008).

USENIX Association 	 21st USENIX Security Symposium  33

Impact of Spam Exposure on User Engagement

Anirban Dasgupta†, Kunal Punera‡, Justin M. Rao∓, Xuanhui Wang§
†Yahoo! Labs, Sunnyvale CA

anirban@yahoo-inc.com
‡ RelateIQ Inc., Palo Alto, CA

kunal.punera@utexas.edu
∓Microsoft Research, New York, NY

justin.rao@microsoft.com
§Facebook, Menlo Park CA

xuanhui@gmail.com

Abstract
In this paper we quantify the effect of unsolicited emails
(spam) on behavior and engagement of email users.
Since performing randomized experiments in this set-
ting is rife with practical and moral issues, we seek to
determine causal relationships using observational data,
something that is difficult in many cases. Using a novel
modification of a user matching method combined with
a time series regression on matched user pairs, we de-
velop a framework for such causal inference that is par-
ticularly suited for the spam exposure use case. Using
our matching technique, we objectively quantify the ef-
fect that continued exposure to spam has on user engage-
ment in Yahoo! Mail. We find that indeed spam exposure
leads to significantly, both statistically and economically,
lower user engagement. The impact is non-linear; large
changes impact users in a progressively more negative
fashion. The impact is the strongest on “voluntary” cate-
gories of engagement such as composed emails and low-
est on “responsive” engagement metrics. Our estimation
technique and results not only quantify the negative im-
pact of abuse, but also allow decision makers to estimate
potential engagement gains from proposed investments
in abuse mitigation.

1 Introduction

Over the last several years, as email has steadily become
the dominant mode of text-based online communication,
unsolicited bulk email, generally referred to as “email-
spam” or simply “spam”, has increased in lockstep [33].
By some estimates the total fraction of all emails that can
be considered spam is higher than 90% [33, 10]. More-
over, while email-spam began as a way for unscrupulous
marketers to advertise their products, it has now become
the main vector for phishing [4, 14], installing malware,
and stealing information [22]. In short, email-spam has
morphed from being a mild irritant to an outright danger

to the users.
This has led to major efforts both in the industry

and the research community to develop better spam fil-
ters [5, 12, 13, 39, 40]. However, spammers are known
to quickly adapt their email messages in order to circum-
vent these filters [16]. This has resulted in an adver-
sarial game of “cat-and-mouse” between email service
providers (ESPs) and spammers: (1) Spammers send out
bulk emails designed to bypass the spam filters of major
email service providers; (2) In time, spam filters adapt
using machine learning and crowdsourcing techniques
and block the offending emails; (3) Spammers re-tune
message content, change the sending locations and so
forth, and the cycle continues. This results in email-spam
reaching user inboxes for the duration between the bulk
mails being sent and the spam-filters adapting. Unfor-
tunately, even though filters have improved dramatically,
spam is so cheap to send that the required conversation
rates for profitability, which are below 1 in 5 million, can
still be sustained [22].

Barring some fundamental change in the spam mar-
ket (such as legal or technological solutions), the chief
way to combat spam is to invest more resources to make
the spammers’ response cycle less economically viable,
which would force some spammers out of the market.
Characterizing this ecosystem is thus essential not just
for making both policy decisions but also in making de-
cisions that on the surface seem to be purely machine
learning in nature—e.g. how to design spam filters that
exploit signatures that are the hardest to game.

Although qualitative arguments about spam being a
negative social externality have been often made, it is
much harder to quantify the intuited numbers [1, 21, 27].
Since botnets form the main spam-delivery infrastruc-
ture, researchers interested in understanding the eco-
nomics of spam have made significant efforts in under-
standing the market behind the creation and renting of
botnets [32, 41, 3]. Kanich et al. [23] measure how suc-
cessful product-oriented spam ultimately is in marketing

1

34  21st USENIX Security Symposium	 USENIX Association

and selling the corresponding products. Similar studies
have provided quantitative estimates on the economics
of account phishing [17], the market behind “human-
farms” [31] and malware distributions [6]. Rao and Rei-
ley [34] review a large fraction of this literature from
an economic perspective. Such quantitative studies have
collectively thrown valuable light on various aspects of
the underground economy, thereby providing guidance to
both the policy-designers and designers of spam-filters.

Given this extensive literature, it is perhaps surprising
that seemingly little attention has been paid to the in-
terplay between email users and email service providers
and the associated responses to problems of email-spam.
For example, we are not aware of any work that quanti-
fies the long-term effects of spam reaching the inbox on
user engagement. In terms of the interplay, changes in
user engagement have a direct impact on ESP revenue
and are thus an important decision metric for anti-spam
investment. Economic theory tells us that a profit max-
imizing firm will invest in anti-spam technology only if
there is a compensating return in terms of increased user
engagement or retention. For instance, simply because
we all think spam is a bad thing does not mean service
providers will go broke fighting it! Being able to pro-
vide a quantitative estimate on how the long-term user
engagement is affected as a result of spam would provide
an added concrete incentive for the ESP to fight spam.

Some econometric studies [7, 42] have approached
the problem from the firm perspective (the client of the
email provider) and have shown that spam has a signifi-
cant cost in terms of the working time spent by users in
dealing with email. In particular, Caliendo et al. [7] use
a survey approach and find that the average employee
in their sample spent 1200 minutes per year in dealing
with spam. However, these small-scale studies cannot
quantify the effect of spam on longer-term user engage-
ment. Does getting more spam cause a user to stop
using the email service? It seems intuitive to assume
“yes”. However, it has never been established whether
this causal effect exists, how strong the effect is if it ex-
ists, what types of engagement would it affect, and how
to measure this in a statistically robust manner. More
explicitly, answering these questions is useful for multi-
ple reasons—it helps our broad understanding of the to-
tal negative externality of spam, which could potentially
have implications in deciding how to deal with spam at
the policy-level. Also, as spam filters get better, mak-
ing additional improvements in spam catch-rate becomes
harder and hence more expensive, and often involves dif-
ficult trade-offs either regarding total investment or about
false-positive rates (i.e. in deciding the operating point
of the spam classifiers). In terms of social efficiency
spam is clearly a negative [34]—the consensus view is
that spam should be mitigated far below current levels in

order to raise social welfare because the social costs of
spam clearly outweigh the monetary returns from spam-
ming. However, since the government cannot compel
ESPs to invest more heavily in anti-spam technology, ob-
taining estimates of the negative impact of spam, such
as ones in this paper, is important. Accurately quantify-
ing the impact of spam allows firms to make informed,
well-targeted investments. In turn, these investments can
potentially lead to improvements in service quality for
the end-users. While our study does not provide author-
itative answers to all these questions, it certainly builds
many of the tools and the necessary formalizations for it.

The gold standard for estimating causal effects is ran-
domized experimentation, also referred to as “A/B test-
ing” [24]. If we can expose users to spam completely
at random, then we can safely assume that any effect we
observe is due to spam. In the real world, however, per-
forming such experimentation is difficult because expos-
ing users to spam is problematic for both user experience
and the ESP’s reputation. Estimating causal effects is
typically difficult in the absence of randomized experi-
ments because most actions reflect something about the
user in terms of their type or future intentions. These cir-
cumstances lead to the classic problem of correlation in
the absence of causation. For example, since users tend
to get spam when they give out their emails to third party
services and active users tend to do so more often than
less active users, a naive plot of engagement-vs-spam
would show activity and spam exposure being positively
correlated.

An alternate method of estimating such effects is to
conduct in-depth surveys or in-lab tests of a smaller set
of users. In-lab methods are inadequate for our prob-
lem as we are looking to estimate potentially small, but
long-term effects. The size of the surveys or lab stud-
ies is necessarily limited by cost, which makes it hard
to estimate small and long-term effects. More impor-
tantly, what users report in a survey may not be reflected
in their actual behavior. In particular, rounding error can
severely bias estimates. For example, answering in a sur-
vey that one spends 5 minutes a day dealing with spam
might seem like a “small” amount, but over the course
of a year, that is 1250 minutes, or about 20 hours. For a
$30 an hour employee, this means it is a $600 per year
problem. If the true value was 1.5 minutes, but the user
rounded up, the resulting estimate could be off by a wide
margin.

An extensive literature in econometrics has focused
on developing techniques such covariate matching,
regression-coefficient methods, bias reduction, neighbor
matching, propensity score matching (PSM) etc. [35,
20, 9, 29] to deal with selection bias in observational
data. Among these, PSM and neighbor matching tech-
niques are considered more robust in estimating effects

2

USENIX Association 	 21st USENIX Security Symposium  35

of a categorical treatment variable [29] than regression-
coefficient methods—in both of these the intuition is to
be able to match a untreated user with a treated one
based on a set of pre-defined user attributes. PSM cre-
ates the matching using only a single propensity score
that is obtained by a weighted combination of the user
attributes—the weights are learnt by modeling the ex-
posure treatment as a categorical variable directly using
a first stage logistic (or similar) regression. For nearest
neighbor methods user matching is done by treating them
as points in a high dimensional space. It is commonly
believed that PSM is more robust than nearest neighbor
matching methods when the number of user attributes is
large since finding nearest neighbors in high dimensions
is not robust (see e.g. [29] for detailed discussion). Yet,
for PSM one has to assume that the first stage regres-
sion is correctly specified. The non-parametric nature of
nearest neighbor matching methods makes them more re-
liable with respect to the fact that one does not have to
correctly specify a first stage regression—in small sam-
ples and with high data dimensionality, the benefits of
PSM outweigh the drawbacks.

In our setting, the popularity of Yahoo! Mail gives us a
huge set of users to match over, compared to the number
of user attributes. Also, existing PSM methods typically
assume the ability to model the probability that a par-
ticular user falls into the categorical “treatment” group.
However, in our application, spam exposure is a continu-
ous variable, leaving the treatment group ill-defined, and
hence this assumption fails. For both reasons, the nearest
neighbor matching is more appropriate in this setting.

In this paper we describe a large-scale nearest neigh-
bor matching method to infer causal relationship from
observational data for which the exposure is a contin-
uous variable. We apply this technique to the spam-
engagement setting. Overall the results provide strong
empirical support for the commonsense notion that spam
has a negative impact on user engagement. We provide
quantitative estimates that show that the impact of spam
in the inbox can have serious revenue implications and
can contribute to a large percentage drop in user engage-
ment. The effect is largest for more “volitional” user
activities such as composing and sending emails. The
function mapping spam changes to engagement appears
to be convex, with the marginal impact increasing with
the size of the exposure change. User characteristics are
not particularly informative in predicting the response to
spam — notably light users are equally affected in abso-
lute terms by a piece of spam in the inbox, meaning that
percentage-wise the impact is far greater for these users.
Thus, although the intuition that spam causes decreased
user engagement is commonplace, the main insight sup-
plied by this study is to extend and formalize this intu-
ition in a quantitative way.

Our Contributions.

• We conduct a principled and thorough study of
the causal relationship between spam exposure and
long-term user engagement. We find that, indeed,
exposure to spam results in long-term reduction in
user engagement in terms of logins, page views, and
emails sent. As far as we know, this is the first such
study to quantitatively establish this link between
spam exposure and user engagement.

• We propose the use of a variant of propensity score
matching, namely nearest neighbor matching, in
combination with regression based techniques in es-
tablishing causal relationships in large-scale obser-
vational data settings when the exposure metric is
continuous. This contribution of our paper is of
interest independent of its particular application in
this study. Our simulations (described in the Ap-
pendix) indicate that this method is indeed superior
to (variants of) propensity score matching for con-
tinuous exposure metrics.

Organization. In Section 2 we present our approach
for estimating causal relationships in large-scale obser-
vational data settings. Then in Section 3 we instantiate
our proposed approach to the case study of estimating
the effect of spam exposure on long-term user engage-
ment. The results of this case study are given in Sec-
tion 4. In Section 5 we review prior work in causal-
ity estimation and spam exposure studies. In Section 6
we conclude. Finally, in the Appendix we compare our
proposed methodology with variants of propensity score
matching and on simulated data show that our approach
performs better at estimating a hidden relationship be-
tween variables.

2 Measuring the Effect of Spam on User
Engagement

In this section, we first define the problem of estimat-
ing the effect of spam exposure on user engagement. We
start with a description of the aspects of the problem that
make it unique from other works in measuring effects.
We then present a formalization of the continuous expo-
sure setting and describe how to map our problem to this
formalization.

2.1 Aspects of the Problem Setting
Our problem of measuring engagement as a function
of spam exposure has the following characteristics that
make it unique, and hence requiring modifications to es-
tablished methodology.

3

36  21st USENIX Security Symposium	 USENIX Association

Continuous Exposure: In our problem, the exposure
variable is continuous—there is no clear definition of a
“treatment” vs. “control” group. We cannot identify a
set of users and consider them as “treated,” i.e. having
been sufficiently exposed to spam because nearly every-
one is exposed to some degree. One solution would be
using an arbitrary threshold to define a treatment class.
But in some sense this is just asking the same question
back again: what is a critical level of spam such that a
person receiving that amount can be considered to be
sufficiently exposed? Thus, the continuous exposure is
not just an artifact of the data, incorporating that into the
modeling and estimating process is absolutely essential.
Engagement as a function of Exposure: Having de-
fined exposure to be a continuous variable, computing a
single number as the expected size of the effect is not
meaningful any more. Instead we want to answer the
following question: what is the expected effect if the
amount of exposure is increased by an amount ∆s. We in-
tend to approximate the function that captures the change
in the effect as a result of the change in the exposure for
an average user.
Infeasibility of Randomized Testing: Randomized ex-
periments are clearly the gold standard for measuring ef-
fects. Suppose we intend to estimate the effect on a user
receiving ∆s more spam messages in a month. Ideally,
we would be able to select a small random set of users,
and then tune their spam filters such that they receive ∆s
more spam for this month. We could then measure the
resulting effect against a randomized control group.

For the spam-setting, however, performing such exper-
imentation is difficult on many levels: (1) exposing users
to spam is problematic from both a user experience and
Yahoo!’s reputation point of view. The negative effects
of spam does in fact often extend beyond a minor nui-
sance, since a majority of these messages contain URLs
that tempt users to either conduct commercial transac-
tions or to give out their personal information; (2) even if
we could filter out the most pernicious types of spam, the
revenue risk associated with user defection would cause
the size of the study to be limited, both in terms of the
amount of exposure and the number of users; 3) spam
that does leak into inbox is, by definition, currently un-
detectable before the user has interacted with it. Thus,
any randomized experiments would have to account for
exposure of this kind anyway.

2.2 Formal Problem Definition
We now define the problem formally and point out the
empirical quantities for which we would like to create
unbiased estimators. Suppose for each user i, xi denotes
the set of features we observe. Let si denote her exposure
variable and yi denote the response (or effect) variable.

Note that si is continuous. If we want to study the impact
of spam on the user, then the exposure variable would
be the amount of spam received by the user in a partic-
ular time period, the same for all users — we call this
the exposure period. Abusing notation, we write y(x,s)
to denote that the response is a function of the user fea-
tures and the exposure. Let ∆s denote a certain amount of
change in the exposure variable, and ∆y(∆s) denote the
function that measures the average change in y due to an
increase ∆s in the exposure. Formally, we define ∆y(∆s)
as follows. Let E[·] denote the expectation operator.

∆y(∆s) = E(x,s)[y(x,s+∆s)− y(x,s)]. (1)

The expectation in the above expression is taken over all
the user features and all the previous value of exposure.
This of course is not an observable quantity, since one
user has only one value of s. Thus, a more feasible quan-
tity to measure is the following – difference over pairs
who differ only in exposure, but have the same feature
vector.

∆y(∆s) = Ei,i′ [yi − yi′ |∃(x,si,yi),(x,si′ ,yi′),si − si′ = ∆s]
(2)

Note how this quantity generalizes the effect measure-
ment for binary treatment variables. If s ∈ {0,1}, then
the standard question of measuring the average treatment
effect would be

y(s = 1)− y(s = 0)
= Ex[yi − yi′ |∃(x,s = 1,yi),(x,s = 0,yi′)]

In our case, we are thus interested in the function ∆y(∆s)
instead of a single value that measures the treatment vs.
non-treatment. This makes the application of the stan-
dard propensity score matching techniques [35] impossi-
ble: we can no longer define a treatment class.

One naive way of creating the estimate would be to
compute the following difference—essentially just take
the differences in the effect levels of users whose expo-
sure is s and those whose exposure is s+∆s.

f (∆s) = Ei[yi | si = s]−Ei[yi | si = s+∆s]

But this would be the wrong quantity, since conditioning
on the fact si = s+∆s is different from conditioning on
si = s (the corresponding distributions of x and hence
y(x,s) are different), and thus the above difference does
not measure what would happen to the average person if
the exposure suffered by that person increased by ∆s.
Nearest Neighbor Matching. The essence of nearest
neighbor matching is that we can approximate the equa-
tion 2 by the following one.

∆y(∆s) =Ei,i′ [yi − yi′ |si − si′ = ∆s,x ≈ x′] (3)

4

USENIX Association 	 21st USENIX Security Symposium  37

where x≈ x′ denotes that x and x′ are approximately sim-
ilar, instead of being exactly same. The variants of this
definition of approximate similarity define the different
variants of the nearest neighbor matching algorithm.

Suppose we have a particular matching function, in
which, for each given user i = (xi,si,yi), we can find
out a set of users Ni such that for each j ∈ N(i) satisfies
x j ≈ xi. Further define 1(X) to be the indicator vector for
the event X , in particular let 1(s,s′) denote the indicator
vector such that |s− s′|= ∆s. If there are n users overall,
our empirical estimator for the quantity in equation 3 is
then given by

n(i,∆s) = ∑
i

∑
j∈N(i)

1(si,s j)

∆y(∆s) =
1
n ∑

i

1
n(i,∆s) ∑

j∈N(i)
1(si,s j)(yi − y j)

Essentially, in each neighborhood N(i), we compute the
average effect due to an increase of ∆s exposure and then
average these effects over all the points to get the average
effect.

3 Data, Features and Matching for Spam

In this section we describe how to apply the above match-
ing technique for the spam exposure case study. We start
with a summary of our overall method. In order to mea-
sure how engagement is affected by spam exposure we
first need to specify how to measure user engagement
and spam exposure for a user. We then describe how to
create matchings between users based on user behavior
features.

3.1 Technique Summary
In order to measure the effect of spam exposure on user
engagement we first create a set of behavioral features
per user for a 2 month period, called the “matching pe-
riod.” These features are then used to create matchings
between users. We then observe the spam exposure of
these users on the exposure month (month 3) immedi-
ately following the matching period. Due to random vari-
ation in spam, the two users in a match are often exposed
to different amounts of spam (∆s). We then examine how
∆s impacts behavior in the observation period immedi-
ately following the exposure month. We look at differ-
ence in engagement for both the short-run (only month
4) and long-run (months 5-6), while controlling for how
these differences persisted within the pair (e.g. higher
month 3 spam likely means higher month 4 spam; in es-
timating month 4 engagement, we will control for this
difference).

The attribution of causality depends on the assumption
that within each pair of users, month 3 spam exposure is
random. This is known as the “selection on observables”
assumption. In general, spam exposure is correlated with
user activity. Using your account more actively tends to
get the email address “out there” more, making exposure
to spam non-random. For example, in a cross-section of
users, light users tend to get less spam than heavy users.
This is precisely the reason we need to use the matching
methodology to estimate causal effects (and overcome
spurious correlation). In our case, we match on both the
level and linear trend of usage. So the identifying as-
sumption stated more precisely is: conditional upon the
level and trend of usage (on all 14 matching criteria) over
two months, the spam exposure difference between users
within a pair in the following month is related to future
usage in only the following ways (a) the direct impact of
past spam exposure; (b) the indirect impact of past spam
exposure (higher spam today, might mean higher spam
tomorrow, which we must control for).

3.2 Data Description and Matching At-
tributes

Our data comes from the Yahoo! Mail logs of user activ-
ity.1 To ensure accurate results, we first cleaned the data
of accounts that were potentially corrupted by phishing
attempts or spambots. We dropped any user who showed
a change in more than 4 sent messages a day (in average)
between the matching months (months 1-2) and the tar-
get months. This number was chosen based on an anal-
ysis of the distribution to determine what qualified as an
improbable outlier. We also dropped a pair of users that
had a Euclidean match distance of greater than 0.1 to en-
sure that we were always very close matches. Finally, we
dropped all users that showed near zero mail page views
in the matching month(s) and outliers (+3 standard de-
viations). The former is to increase the strength of our
estimator, as it is unreasonable to assume spam impacted
a user that never logged in, the latter to reduce the influ-
ence of high leverage anomalies.

After performing all the cleaning operations, we took
a large random sample of 500,000 users for 6 months,
and generated the following features per user per day:
all inbound mail, classified spam, total sent mail, com-
posed mail, replies, forwards, mail time spent, all page
views on Yahoo! site, all time spent on Yahoo! site, delete
without reading (messages that are removed from the in-
box without reading), deletes, spam votes and non-spam

1Note that this is purely observational data, no active experimen-
tation or bucket-testing was involved. Furthermore, we use only be-
havioral statistics aggregated at the anonymized user level. Thus there
are no privacy issues related to email content, or the graph of user-user
communication.

5

38  21st USENIX Security Symposium	 USENIX Association

votes.
To ensure that the matching generated very similar

users, we used all the 14 features over 2 months to com-
pute nearest neighbors. In addition, we also ensured that
the matched user accounts were registered in the same
year. We performed the matching process over the en-
tire mail sample, thus enabling a small enough distance
threshold. As a result of the matching, we end up with
486,102 matched pairs (one user could be considered in
multiple pairs, and not user-user pairs qualify for match-
ing, as we see below). Using the first two months of data
for the matching period ensures that each pair of users
had the same level of usage and the same (first order lin-
ear) trend.

3.3 Metrics for User Engagement
Yahoo! Mail users interact with the web user interface
in a variety of ways. Users can login into the interface
and just glance at the list of emails in the various folders
(“boxes”), can click on individual emails to open them
in a separate panel for reading or delete it without read-
ing. Other email related actions that are instrumented in-
clude replying to individual emails, or forwarding them,
composing new emails and marking emails as spam or
non-spam. Each of these actions represents a different
kind of engagement, and naturally certain forms of en-
gagement are more significant than the others. From a
short-run revenue calculation perspective, the page view
is the primary quantity of interest, as page views can be
easily converted to a dollar figure based on the advertis-
ing monetization rate. But not all page views are created
equal. For example, we have found that the number of
sent mails (and resulting pageviews) is a more reliable
predictor of future engagement than the pageviews re-
sulting from simply reading mail or reloading one’s in-
box. The reason is likely that sending mail both leads
to more mail in response and signals that the user is us-
ing the account as her primary email. We thus look at a
variety of such metrics to measure engagement.

3.4 Quantifying Spam Exposure
Yet another critical point in our study is how to quantify
the spam exposure of a user. Typically, the spam that a
user has been exposed to lands in her inbox does so pre-
cisely because the filters have been unable to recognize
it as spam. Consequently, this number is hard to mea-
sure for a user. We could rely on the “spam votes” of a
user a proxy for this quantity, but it is well known that
very few users give any votes. In fact, the average Ya-
hoo! Mail user gives less than one vote in an entire year,
whereas some users are extremely proactive in marking
emails as spam. To complicate matters, even spammers

and bot accounts give spam-votes, aiming to subvert the
machine-learned filters by providing false examples.

The strategy available to us is to use the number of
inbound emails classified by the Yahoo! filter as a mea-
sure of the spam targeted towards the user and infer “in-
box exposure” from this classified spam. Of all deliv-
ered mail (not blocked before connection), more than
half is classified as spam and sent to the spambox. The
false negative rate relates the spambox quantity to im-
plied inbox-exposure. For example, if the false negative
rate is 0.10, then for every 9 messages in the spambox,
we expect 1 piece of spam to slip into the inbox. For
the empirical analysis, we estimate the false negative rate
and use it to infer inbox-exposure, which we will use in
all our analysis. Due to confidentiality concerns of Ya-
hoo Inc., we cannot report the exact estimates of the false
negative rate, but will describe the process through which
we model and infer it.
Estimating the False Negative Rate: We estimate the
false negative rate in two ways. First, we utilize daily
usage logs of users over a 6 month period. Note that if
the false negative rate were 0, then conditional on past
behavior, daily spam box quantity should be unrelated to
inbox quantity, because there is no slippage. In contrast
if the rate is non-zero, increases in the spambox will be
positively correlated with increases in the inbox. We es-
timate this relationship using a regression of inbox quan-
tity on spambox quantity and lagged values of both quan-
tities, all on the daily level. This gives us an estimate, lets
call it FN.

To confirm this estimate, we examine how spambox
levels correlate with “delete without reading” in the in-
box. “Delete without reading” is a strong sign of spam,
but many legitimate mails are deleted without reading as
well. In fact 53% of all inbox messages are deleted in this
fashion. If the false negative rate was 0, then there should
not be a relationship between spambox and delete with-
out reading, conditional on inbox volume (inbox volume
and spambox volume could be related, so we control
for this). We estimate the empirical relationship using
a time-series regression and find that 1 message in the
spam box leads to .8FN deletes without reading. That is,
very close to our initial estimate of the false negative rate
using the other methodology and consistent with the idea
that not all users simply delete spam, but most do. Given
the mutual consistency of both approaches, we proceed
with our estimate of the false negative rate in all analysis.
Maintained Assumptions on the False Negative Rate:
The assumption of a constant false negative rate might
seem too strong when we consider the fact that users
have different propensities to sign-up for email mailing
lists. In our analysis, however, the individual variations
are less important for following reasons. First, we only
use this estimate to normalize in the aggregate sense —

6

USENIX Association 	 21st USENIX Security Symposium  39

obtaining the aggregate inbox-spam in terms of the clas-
sified spam. Thus, in our case, all we require is that
within a pair of users, there are no systematic differ-
ences in false negative rate; this is essentially assured by
our bi-directional matching procedure. When examining
the differential impact of large increases in exposure vs.
small increases (non-linearities), the assumption requires
that when a user experiences a large increase in spam,
the classification rate stays the same. Indeed, given how
machine classification benefits from large quantities, one
might think that large quantities of spam are classified
with less error. We will see that we actually find an in-
creasing marginal impact of exposure, meaning that ei-
ther this is not an issue, or the real pattern is even more
convex.

The area that is most hampered by the constant false
negative rate assumption is the analysis of user charac-
teristics. For instance, if Yahoo! does a better job of
classifying spam for older users, then we will overstate
the inbox-exposure for these users. In the results section,
we note these concerns where applicable.

3.5 Creating the Matching
In this section, we describe the method of nearest neigh-
bor matching that we used. The basic framework is to
match users who are very similar to each other in the
matching period, and then analyze how their behaviors
differ in subsequent time periods. We first discuss how
to create the neighborhood set N(i) for each user.
Using kNN for Matching: In order to define the match-
ing, we use two criteria to define the neighborhoods N(i)
— a distance based threshold and a k-nearest neighbor
based threshold. The distance between the vectors is
measured in ℓ2 norm. We have a distance threshold d
that we use to filter our pairs that do not lie within d dis-
tance of each other. On top of this, we apply a k-nearest
neighbor based threshold – each point i contains no more
than k of its nearest neighbors in N(i). This ensures that
a dense region of the x manifold is not over-represented
in our estimate.
Using Bi-directional Matching: To avoid bias, we only
use bi-directional matches. What this means is that dyad
i– j is only included in the analysis if i is j’s nearest
neighbor and j is also i’s nearest neighbor. The near-
est neighbor property is not generally bi-directional (i’s
nearest neighbor might be j, but there is a node closer
to j, say r, that is further from i). The most important
reason we include only bi-directional pairs is that it en-
sures that in the exposure period, the average difference
within a pair of users is 0 for all attributes we match on,
by construction, because the labeling of users within the
pair is purely nominal. In our estimation, this means that
we can reliably link differences in spam exposure within

the pair to differences in engagement, knowing that there
is no other reasons for a systematic difference.

An additional reason is that it naturally eliminates a
known issue with matching or propensity score estima-
tors that occurs when relatively few users are the “unex-
posed match” to relatively many exposed users. For in-
stance, consider a job training analysis in which we pre-
dict the probability (propensity score) of receiving train-
ing. PSM matches a pair in which one person actually re-
ceived training and one did not, but had similar predicted
probabilities of receiving training. By construction, there
are relatively few individuals who have a high predicted
probability of receiving training but in reality do not re-
ceive it. This means that these people are the “controls”
for a relatively large number of treated individuals, thus
increasing the impact of their behavior on observed es-
timates. In our routine, we get around this problem by
only using bi-directional matches. In our case, the prob-
lem that would arise is that some users in the less dense
portion of the kNN graph match to users in a denser por-
tion. These users in the less dense portion might be dif-
ferent in ways that induce bias (for instance if they are
always slightly more engaged).
Using Locality Sensitive Hashing: Computing the
matching efficiently for a large number of data points and
a moderately large number of dimensions is a non-trivial
task. In order to compute this, we utilize the locality sen-
sitive hashing technique [2]. Essentially, the idea is to
compute a hash function h such that the probability of
two points falling into the same hash bucket is inversely
proportional to the distance between them.

Pr[h(i) �= h(j)] ∝ �xi −x j�

We first bucket all points using this hash function and
then do an exhaustive search inside each bucket to find
the k-nearest neighbors for each point that fall within
the distance threshold. We tune our LSH construction
such that with high probability we get all neighbors for
all points within the distance threshold.

4 Empirical Results

In this section we present the results of our empirical ap-
plication. We start by linearly modeling the short-run (1-
month in the future) impact of spam exposure on the var-
ious metrics of webmail engagement. We then examine
the effect more closely using a flexible non-linear model.
Next, we examine how mail spam impacts non-mail us-
age of properties on the Yahoo! network of sites (conta-
gion effects). We then proceed to estimate the medium-
run (2–3 months) impact of spam exposure on future en-
gagement. Finally we examine how user characteristics
modulate the impact of spam.

7

40  21st USENIX Security Symposium	 USENIX Association

4.1 Short-run Impact of Spam on Mail En-
gagement

Estimating Equation: In this subsection, we look at the
impact of month 3 spam on month 4 engagement. Recall
month 3 is our first post-match month, and thus the first
time spam exposure will meaningfully vary within a pair
of users. In our baseline specification, for each pair of
users i, we estimate the following equation with robust
ordinary least squares. Let y equal the engagement met-
ric we are interested in (page views, sent mail, etc) and
s the number of spam messages that reach an user’s in-
box. Let the months be denoted by 1,2.. etc. Let ∆yit ,
∆sit denote the differences in the engagement and the ex-
posure metric for the ith user-pair for the tth month. Re-
call that months 1 and 2 were used to find matching users
(thus, the average ∆yit ,∆sit values are essentially zero for
t = 1,2). We run the following regression to estimate the
relation between ∆yi,4 and ∆si,3.

∆yi,4 = β∆si,3 +ρyi,4 + γ1∆yi,3 + γ2∆si,4

+ γ3∆s2
i,4 + γ4∆s3

i,4 + εi

This specification controls for month 4 spam exposure
using a cubic polynomial and includes a lagged value of
the dependent variable, to control for the contempora-
neous impact of spam last month and activity bias (see
[25]). β is the quantity of interest, as it gives the first
order impact of spam exposure on engagement 1 month
in the future. Table 1 gives the estimates of β for the our
key engagement metrics.
Absolute Impact: As the results in Table 1 show, across
all metrics, the relationship between exposure and en-
gagement is consistent with the hypothesis that spam ex-
posure discourages usage. That spam has a negative im-
pact is perhaps obvious; however Table 1 gives a quanti-
tative estimates for all metrics, not just the sign of the
effect. In Column (1), we see that the impact of one
spam message in the inbox reduces mail page views next
month by 0.472 pageviews. For a webmail provider,
page views are the primary metric to gage the revenue
impact, as they can be converted to dollars based on the
ad revenue from each page view. The R-squared numbers
show that these regressors account typically account for
10% of the variation in the dependent variable.

However page views do not tell the whole story, as
other metrics, such as sent mail, are thought to be bet-
ter long-term predictors of engagement. In column (2),
we estimate that a spam message in the inbox reduces
webmail time spent next month by 24 seconds. Column
3 shows that about 1/4 of the page view impact comes
through reading fewer messages. Column (4) shows
sent mail impact. Sent mail includes composed emails
(written from scratch), replies and forwards. Overall,

0

.5

1

1.5

2

2.5

%
 Im

pa
ct

Views Time Reads Sent Compose Reply Fwds Logins
Mail Engagement Metric

Engagement Impact as % of Monthly Average

Figure 1: Differential impact of spam exposure magni-
tude on sent mail and mail page views.

users send much less mail than they receive or read,
as mass/automated emails are a large fraction of legiti-
mate email traffic as well. The impact on sent mail is
negative with most of the impact coming through com-
posed messages. This makes sense from a disengage-
ment/frustration perspective. One still replies to emails,
but perhaps looks for other communication outlets to
send new messages if the account is inundated with
spam. In Column 8, we see that spam leads to fewer
session logins as well.
Impact as Percentage of Baseline Usage: In Figure 1,
we show the relative size of the impact on each of the
engagement metrics. We create this by converting the
impact of 1 spam message in the inbox last month, esti-
mated in Table 1, to percentages as a function of the aver-
ages for each metric in the matching months. The largest
percentage impact occurs for composed messages, con-
sistent with the story that this sort voluntary user engage-
ment is the most susceptible to a negative experience.
The percentage impact on composed emails is more than
twice as large as the impact on replies and forwards.
Monthly “consumption” metrics, views, time spent and
reads, show between a 0.5–1% decline as a result of a
spam message in the inbox. Logins show the lowest rel-
ative impact — although users engage less heavily after
spam exposure, in general they still login to the webmail
client with close to the same frequency.

4.2 Differential Impact by Exposure
Change Size

In the previous section we modeled the impact of spam
exposure as a linear function. This was mainly to facil-
itate interpretation and comparisons across engagement

8

USENIX Association 	 21st USENIX Security Symposium  41

Exposure Metric
(1) (2) (3) (4) (5) (6) (7) (8)

Page Views Time Reads Sent Composed Reply Fwd Login

∆st−1 (β) -0.472*** -24.20*** -0.108*** -0.0305*** -0.0251*** -0.00326*** -0.00104*** -0.0572***
(0.0236) (1.614) (0.0250) (0.00289) (0.00234) (0.000912) (0.000228) (0.010)

∆yt−1 0.414*** 0.483*** 0.113*** 0.402*** 0.335*** 0.509*** 0.261*** 0.74***
(0.00703) (0.0185) (0.0263) (0.0741) 0.0923) (0.0341) (0.0140) (.0001)

R-squared 0.162 0.177 0.10 0.089 0.065 0.123 0.048

Table 1: Impact of spam exposure on engagement 1-month in the future. Robust standard errors are in parentheses
and *** means p-value < 0.01.

metrics. In this subsection we examine how the impact
of the change in spam exposure depends on the magni-
tude of the change. To do so, we make use of the Frisch-
Waugh theorem from linear regression [15]. We first
regress the exposure metric on the control variables (the
variables other than past spam difference) and then take
the residual. We then regress the independent variable of
interest, last month’s spam exposure, on the control vari-
ables, and take the residual. The relationship between the
residuals of the dependent variable (engagement metrics)
and the residuals of the independent variable (last month
spam exposure) gives the relationship between these two
variables, net of the impact of the control variables.

Non-linear Impact on Sent Mail, Logins and Mail
Page Views: In Figure 2 we plot the relationship using a
local polynomial smoother (Epanechnikov kernel, band-
width=10) for three key engagement metrics: sent mail
(left axis), mail logins (left axis) and mail page views
(right axis). All three metrics display the same pattern.
The y-intercept at zero is almost exactly zero for all met-
rics, which is comforting, because it means that we (cor-
rectly) estimate that if a pair has no exposure difference,
there is not an engagement difference. This can be seen
as a confirmation of the validity of our matching pro-
cedure (we also do this via simulation runs in the fol-
lowing section). The slope close to zero is negative, but
significantly less than the slope for large differences in
exposure — relatively small changes in exposure tend to
discourage engagement, but the impact is muted. For all
metrics, at about 15 spam messages in the inbox in a one-
month period, the negative impact shows a sharp increase
(gets more negative). For sent emails and logins, this
slope increase levels off near 25 spam messages, but for
mail page views, the steep slope persists over all ranges
of values for which we have sufficient data.

Key Takeaways: The differential impact in Figure 2
gives insight into how spam negatively impacts the user
experience. Note that the x-axis in Figure 2 is the ab-
solute difference in number of spam received by the two
users in a pair over 1 month. Small changes in spam

0

−.2

−.4

−.6

−.8

−1

Se
nt

Em
ail

s/L
og

ins

−10

−8

−6

−4

−2

0

Y!
 M

ail
 P

ag
e V

iew
s

0 10 20 30 40
Difference in Spam Exposure

Email Page Views (right axis) Sent Emails (left axis)

Login (left axis)

Differential Impact by Exposure Level

Figure 2: Differential impact of spam exposure magni-
tude on sent mail and mail page views.

exposure has a muted impact on the user, whereas large
changes have a much more pronounced effect. When the
increase in spam exposure reaches the level of once ev-
ery other day, the marginal impact ticks up considerably.
This disengagement is likely the result of a disruption of
the user experience. Since small changes are less disrup-
tive, the marginal effect is lower. One possible conclu-
sion to draw from this nonlinear trend is the following:
it is likely more worthwhile to make a relatively large
investment for a big increase in filtration accuracy (and
thus obtain a super-linear improvement in engagement),
rather than pay a relatively modest sum for an incremen-
tal improvement.

4.3 Contagion effects
So far we have documented a negative impact of mail
spam on many facets of webmail engagement provided
a quantitative estimates the magnitudes. The next nat-
ural question is “Does exposure to online abuse in
one domain carry over to engagement in a firm’s other
web properties?” These so-called “contagion effects” or

9

42  21st USENIX Security Symposium	 USENIX Association

Aggregate Effect Controlling for Mail
(1) (2) (3) (4)

Non-mail Non-mail Non-mail Non-mail
Page Views Time Spent Page Views Time Spent

Contagion -0.064** -4.33*** -0.0176 -1.470
effect, ∆st−1 (0.03) (0.03) (1.72) (1.71)
∆ Mail 0.117***
page views t (0.003)
∆ Mail 0.136***
time spent t (0.006)
∆yt−1 0.639*** 0.640*** 0.711*** 0.703***

(0.028) (0.027) (0.055) (0.056)
R-squared 0.253 0.214 0.265 0.226

Table 2: Contagion effects of mail spam on other net-
work activities. p<0.01: ***, p<0.05: **.

“brand damage effects” are often used as justification
for investment in anti-abuse technology. Our empirical
framework allows us to examine this question by look-
ing at engagement across the Yahoo! network of sites.
Contagion Estimates: In Table 2 we estimate the im-
pact of Yahoo! Mail spam on page views and time spent
occurring on other parts of Yahoo!. In columns (1) and
(2), we do not control for the contemporaneous impact
on mail activity – this is why there are empty spaces
for these regressors. The estimated contagion effects in
this case are negative and statistically significant coming
in around 17% (13%) of the direct effect magnitude for
time-spent (resp. pageviews), as given in Table 1. In
evaluating the revenue impact of a proposed change in
the spam filter, these spillover effects should indeed be
taken into account. However, to qualify as a pure conta-
gion effect, we would want to be sure they are not me-
chanically due to lower Yahoo! Mail engagement. The
reason is that Yahoo! Mail uses various techniques to get
the user to engage with the rest of the Yahoo! network.
For example, news stories are shown in the “welcome
screen” and there is a web search bar. In column (3) and
(4), we control for contemporanous Yahoo! mail usage.
Controlling for mail usage reduces the estimated impact
of spam exposure by 80% – the remaining figures are
no longer statistically significant. The conclusion is that
while there measurable spillover effects, the direct cause
seems to be lower mail engagement itself. Since mail use
creates positive spillovers on the rest of the site, lowering
mail engagement has a more than 1:1 effect on engage-
ment. Once we control for this effect, nearly all of the
supposed contagion effects go away.
Key Takeaways: Our conclusion is thus that while in the
short term there are economically meaningful spillovers
of mail spam on the non-mail network activity, the
spillovers do not seem to be driven purely by contagion
or brand-damage reasons. Rather, they seems to be more
mechanically linked to the decreased mail engagement.
This is not to say that contagion effects to do not exist,
just that in this case they are swamped by the direct neg-

ative impact. Our careful analysis allows us to separate
these subtle differences.

4.4 Medium-run impact

−.1

−.05

0

Re
ad

−.02

−.01

0

Se
nt/

Co
mp

os
ed

1 2 3
Months before Present

Sent (right axis) Composed (right)
Read Messages (left)

Medium Term Impact of Spam

Figure 3: Direct impact of spam on future behavior 1–3
months post-exposure.

In this subsection we examine the impact of spam ex-
posure on engagement up to 3 months in the future. In
Figure 3 we plot the impact coefficient of spam exposure
on sent mail, composed messages and read messages for
the range of 1 to 3 months in the past. The estimates
use the same specification as Table 1. The regressions
control for any short-run impacts that have already oc-
curred. For instance, in estimating the 3-month impact
(impact of spam 3 months ago), we control for the im-
mediate change in behavior this had (the short-run ef-
fect) by including lagged dependent variables in the re-
gression. What this means is we are estimating the direct
impact. For example, if the 2-month effect is estimated
to be zero, say, this does not mean the effect goes away, it
only means that there is no additional effect as compared
to the 1-month impact.
Engagement Estimates: Examining Figure 3 a few
trends are immediately clear. The first is that the ef-
fect decays over time. For sent mail and composed mail,
the negative impact occurs entirely in the first month fol-
lowing exposure. Recall that percentage-wise, these two
metrics saw the largest short-run declines. Evidently part
of the reason for this is that the total impact is felt in
the first month following exposure. The graph also con-
firms the analysis of the previous section that the impact
on sent mail occurs primarily through composed mes-
sages, not replies or forwards. For reading messages, the
decline is less steep as there is still significant impact 3-
months out. We thus conclude that while spam can have a

10

USENIX Association 	 21st USENIX Security Symposium  43

(1) (2) (3)
Page Views Sent Mail Reads

1{Male}=1 -0.0037 -0.00015 -0.0065***
(0.0029) (0.0003) (0.0020)

1{New user}=1 -0.0107 -9.63e-06 -0.0014
(0.0076) (0.0006) (0.0053)

1{Light}=1 0.0036 -0.0006** 0.0011
(0.0029) (0.0003) (0.0020)

1{Heavy}=1 -0.0027 -0.0005 -0.0013
(0.0038) (0.0003) (0.0027)

1{User <30}=1 -0.00194 0.00123*** 0.0106***
(0.0030) (0.0003) (0.0020)

1{User >50}=1 -0.0090* 0.0009* -0.0043
(0.0051) (0.0005) (0.0035)

1{High baseline -0.0568 -0.0007 0.0605**
exposure}=1 (0.0410) (0.00369) (0.0286)
R-squared 0.162 0.089 0.010

Table 3: Differential impact of spam exposure by user
characteristics. p<0.01: ***, p<0.05: **, p<0.1: *.

direct impact on behavior up to 3-months down the road,
this is not the case for “volitional” categories in which
the initial impact is large, such as sent/composed mail.

4.5 Breakdown by user characteristics
In this subsection we augment the regression specifica-
tion used in Table 1 by interacting dummy variables for
user characteristics with spam exposure. The interaction
terms give the differential impact of spam based on the
characteristic in question. The results are summarized in
Table 3. All of the characteristics except gender and user
age (self-reported age of the user) were used in matching.
For the two measures that were not used in matching, the
indicator variable only equals 1 if both users fall under
the designation. For example, the variable 1{User <30}
is defined as 1 if both users are under the age of 30. High
baseline exposure is defined as being in the top 1/3 of
spam exposure in the matching months. Light users are
those that had page views in the bottom third during the
matching months, heavy is top third. All other variables
are self-explanatory.
Sent Mail and Page Views: We see that for sent mail
and page views, user characteristics do not appear to pre-
dict the response to spam. However, the fact that heavy
users do not show a higher absolute impact of spam ex-
posure, means that percentage-wise, light users are the
most adversely affected. Spam exposure is likely an im-
portant feature in retention, as it is known that decreased
usage among light users is an important predictor of quit-
ting.
Reading Messages: For reading messages, we find that

the impact is significantly larger for males (more nega-
tive) and smaller for young (in calendar age) users. Users
with higher baseline spam exposure respond slightly less
to changes in spam exposure, however as we noted, this
analysis is tenuous because we assume that spam classi-
fication accuracy is not a function of past exposure, when
in reality it might be, due to user votes, for instance.
Takeaways: Overall we do not see major difference in
the impact of spam based on user characteristics. The
most notable result is that the percentage impact is high-
est for light users.

5 Related Work

There are two broad classes of existing works related to
our research. On the methodology side, our work is re-
lated to the traditional causality methods literature. On
the application side, our work is related to those quanti-
fying the impact of spam. While we cannot cover every
work here, we will mention some key works from each
side in order to put our paper in context.
Estimating Causality: The study of causality has been
an active area for many years. In particular, our work
is developed within the framework of causal models de-
veloped by Rubin in early 1970s [36]. Our method
of matching users by covariates or features is based
on the theory developed in [36, 37]. The major steps
that distinguish us from this work are the combined use
of the matching and the regression to adapt this tech-
nique to the continuous setting, the use of criterion such
as nearest neighbor matching, bi-directional matching,
and locality sensitive hashing to speed up the compu-
tation. The propensity score matching method (PSM)
uses the propensity score (predicted probability of ex-
posure) to match users instead of actual covariates, and
was first proposed in [35] and many follow-up works,
nicely surveyed in [8], have proposed different refine-
ments under the framework of the PSM. Besides PSM,
other alternative ways to do such matching such as in-
verse propensity weighting [19, 20] and doubly robust
estimation [18, 26] are also popular. As we mentioned
earlier, all these works usually require that treatment and
untreated/unexposed (control) groups be clearly identi-
fied. Thus, it is not directly applicable in our spam study
as discussed earlier in Section 2.

Causal effects have been studied in many application
scenarios, especially on the Web [9, 38]. For example,
[9] applied several PSM to study the effect of online ads.
To the best of our knowledge, there is no previous study
on the causality effect of email spam on user engage-
ment.
Impact of Email Spam: As discussed before, email
spam has become a critical problem, being also related to

11

44  21st USENIX Security Symposium	 USENIX Association

various online nefarious activities [28] such as phishing,
scamming and spreading malware. Our paper is related
to recent works that try to quantify the impact of spam
from the economic side. For example, [22] conducted a
study to quantify the conversion rate of the spam in order
to understand how much spammers earned off bulk email
distribution. The focus was thus the economics of the
spam campaigns, rather than the user level metrics. [42]
studied how much inconvenience of users is caused by
the spam mails, by measuring the user’s “willingness to
pay” to remain unaffected by spam. [7] studied the cost
of spam and the cost saved by spam filtering. The goal
of all these papers is to quantify the cost from an orga-
nization’s point of view, and their main metric is amount
of working time spent in dealing with spam. Our aim
was instead to measure the effect on the user engagement
metrics from the economic perspective of the email ser-
vice provider. Since the email service provider is the the
key entity that invests in anti-spam technology, we feel
this is a useful perspective to adopt.

Studying the impact of spam on users is part of a
broader trend trying to characterize the economic incen-
tives each of the stakeholders has in combating spam.
Understanding the underground economy is the coun-
terpart of what we are doing here. As mentioned be-
fore, researchers have concentrated on individual parts of
this economy—the supply chain [22, 23], the labor mar-
ket [31, 30] and malware distribution [6]. We consider
our work as complementary to this thread, shedding light
onto the ESP-centric part of the economic cycle.

6 Discussion and Summary

In this paper we described a large scale match-
ing method, along with the corresponding regression
method, in order to infer causal effects from observa-
tional data, specifically applicable in the case when the
exposure variable is continuous. In situations where ex-
posure is not a decision of the user but is correlated with
engagement metrics, observational methods run into the
correlation without causation problem. The gold stan-
dard to measure causality of course is a randomized ex-
periment, but they are often too risky from a revenue
or brand management perspective (the negative impact
might outweigh the knowledge gains), unethical (involve
exposing users to bad outcomes) or not ideal because the
underlying behavior requires large changes in the inde-
pendent variable of interest to measure a behavioral re-
sponse. Mail spam runs afoul of all these requirements of
A/B testing and is inherently interesting to study, given
how pervasive it is in email-based communication.

We provide quantitative estimates that show that the
impact of spam in the inbox can have serious revenue im-
plications and can contribute to a large percentage drop

in user engagement. The effect is largest for more volun-
tary user activities such as sending and especially com-
posing emails. The function mapping spam changes to
engagement appears to be convex, with the marginal im-
pact increasing with the size of the exposure change.
We carefully looked for contagion effects and found that
while there are meaningful spillovers (reduced engage-
ment across the Yahoo! site) the spillovers can be me-
chanically linked to decreased webmail activity so are
thus not pure “brand-loss” effects, even though they are
still relevant in evaluating the revenue impact. User char-
acteristics are not particularly informative in predicting
the response to spam; the most notable result is that light
users are equally affected in absolute terms by a piece
of spam in the inbox, meaning that percentage-wise the
impact is far greater for these users.

Our result shows why it is important to quantitatively
estimate a behavior even when the sign of the impact is
“obvious.” Merely documenting that mail spam has neg-
ative impact on engagement would not be particularly in-
formative, but pinning the magnitude of the impact and
the channels through which it operates can help the firm
make investment decisions in filtration technology and
optimize the user-interface to mitigate the effects. We be-
lieve the method can be fruitfully applied to other forms
of abuse, such as abusive user-generated content, and
other online experiences, such as pop-up ads.

References

[1] E. Allman. The economics of spam. Queue, 1(9):80,
2003.

[2] A. Andoni. Nearest neighbor search: the old, the new,
and the impossible, 2009.

[3] P. Barford and V. Yegneswaran. An inside look at botnets.
Malware Detection, pages 171–191, 2007.

[4] A. Bergholz, J. De Beer, S. Glahn, M.-F. Moens, G. Paaß,
and S. Strobel. New filtering approaches for phishing
email. J. Comput. Secur., 18(1):7–35, 2010.

[5] A. Bratko, B. Filipič, G. V. Cormack, T. R. Lynam, and
B. Zupan. Spam filtering using statistical data compres-
sion models. Journal of Machine Learning Research,
7:2673–2698, 2006.

[6] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Mea-
suring pay-per-install: The commoditization of malware
distribution. In Proceedings of the 20th USENIX Security
Symposium, 2011.

[7] M. Caliendo, M. Clement, D. Papies, and S. Scheel-
Kopeinig. The cost impact of spam filters: Measuring
the effect of information system technologies in organi-
zations. IZA Discussion Paper No. 3755, 2008.

[8] M. Caliendo and S. Kopeinig. Some practical guid-
ance for the implementation of propensity score match-
ing. Journal of Economic Surveys, 22(1):31–72, 2008.

12

USENIX Association 	 21st USENIX Security Symposium  45

[9] D. Chan, R. Ge, O. Gershony, T. Hesterberg, and D. Lam-
bert. Evaluating online ad campaigns in a pipeline: causal
models at scale. In 16th ACM SIGKDD, pages 7–16.
ACM, 2010.

[10] T. Claburn. Spam made up 94% of all e-mail in de-
cember. Technical report, Information Week, http:

//www.informationweek.com/news/internet/

showArticle.jhtml?articleID=197001430, 2007.

[11] W. S. Cleveland. Robust locally weighted regression and
smoothing scatterplots. Journal of the American Statisti-
cal Association, 74(368):829–836, 1979.

[12] G. V. Cormack. Email spam filtering: A systematic re-
view. In Foundations and Trends in Information Re-
trieval, 2008.

[13] A. Dasgupta, M. Gurevich, and K. Punera. Enhanced
email spam filtering through combining similarity graphs.
In WSDM, pages 785–794, 2011.

[14] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing
works. In CHI, pages 581–590, New York, NY, USA,
2006. ACM.

[15] D. Fiebig and R. Bartels. The frisch-waugh theorem
and generalized least squares. Econometric Reviews,
15(4):431–443, 1996.

[16] J. Goodman, G. V. Cormack, and D. Heckerman. Spam
and the ongoing battle for the inbox. Commun. ACM,
50(2):24–33, 2007.

[17] C. Herley and D. Florêncio. A profitless endeavor: phish-
ing as tragedy of the commons. In Proceedings of the
2008 workshop on New security paradigms, NSPW ’08,
pages 59–70, New York, NY, USA, 2008. ACM.

[18] K. Hirano, G. W. Imbens, and G. Ridder. Efficient esti-
mation of average treatment effects using the estimated
propensity score. Econometrica, 71(4):1161–1189, 07
2003.

[19] D. G. Horvitz and D. J. Thompson. A Generalization
of Sampling Without Replacement From a Finite Uni-
verse. Journal of the American Statistical Association,
47(260):663–685, 1952.

[20] J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and
B. Schölkopf. Correcting Sample Selection Bias by Unla-
beled Data. In Advances in Neural Information Process-
ing Systems 19, pages 601–608, 2007.

[21] C. Ivey. http://www.shoestringmillionaire.com/the-
asymmetrical-economy-of-spam/, 2011.

[22] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M.
Voelker, V. Paxson, and S. Savage. Spamalytics: an em-
pirical analysis of spam marketing conversion. In Pro-
ceedings of the 15th ACM conference on Computer and
communications security, pages 3–14, 2008.

[23] C. Kanich, N. Weaver, D. McCoy, T. Halvorson,
C. Kreibich, K. Levchenko, V. Paxson, G. Voelker, and
S. Savage. Show me the money: characterizing spam-
advertised revenue. In Proceedings of the 20th USENIX
Security Symposium, pages 8–12, 2011.

[24] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M.
Henne. Controlled experiments on the web: survey and
practical guide. KDD, 18(1):140–181, 2009.

[25] R. Lewis, J. Rao, and D. Reiley. Here, there, and every-
where: correlated online behaviors can lead to overesti-
mates of the effects of advertising. In WWW 2011, pages
157–166. ACM, 2011.

[26] J. K. Lunceford and M. Davidian. Stratification and
weighting via the propensity score in estimation of causal
treatment effects: a comparative study. Statistics in
Medicine, 23(19):2937–2960, 2004.

[27] S. Malinin. Spammers earn millions and cause damages
of billions. http://english.pravda.ru/russia/economics/15-
09-2005/8908-spam-0/, 2005.

[28] T. Moore, R. Clayton, and R. Anderson. The eco-
nomics of online crime. Journal of Economic Perspec-
tives, 23(3):3–20, 2009.

[29] S. Morgan and C. Winship. Counterfactuals and Causal
Inference: Methods and Principles for Social Research.
Analytical Methods for Social Research. Cambridge Uni-
versity Press, 2007.

[30] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy,
G. M. Voelker, and S. Savage. Re: Captchas – under-
standing captcha-solving from an economic context. In
Proceedings of the USENIX Security Symposium, August
2010.

[31] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and
G. Voelker. Dirty jobs: The role of freelance labor in
web service abuse. In Proceedings of the 20th USENIX
Security Symposium, 2011.

[32] Y. Namestnikov. The economics of botnets. Analysis on
Viruslist. com, Kapersky Lab, 2009.

[33] E. Park. Update on global spam volume.
http://www.symantec.com/connect/blogs/update-global-
spam-volume.

[34] J. M. Rao and D. H. Reiley. The economics of spam.
Journal of Economic Perspectives, Forthcoming Summer,
2012.

[35] P. Rosenbaum and D. Rubin. The central role of the
propensity score in observational studies for causal ef-
fects. Biometrika, 70(1):41, 1983.

[36] D. B. Rubin. Estimating causal effects of treatments in
randomized and nonrandomized studies. Journal of Edu-
cational Psychology, 66(5):688–701, 1974.

[37] D. B. Rubin. Assignment to treatment group on the basis
of a covariate. Journal Of Educational Statistics, 2(1):1–
26, 1977.

[38] D. B. Rubin and R. P. Waterman. Estimating the causal
effects of marketing interventions using propensity score
methodology. Statistical Science, 21(2):206–222, 2006.

[39] D. Sculley and G. M. Wachman. Relaxed online svms for
spam filtering. In SIGIR, pages 415–422, New York, NY,
USA, 2007. ACM.

13

46  21st USENIX Security Symposium	 USENIX Association

[40] A. K. Seewald. An evaluation of naive bayes variants in
content-based learning for spam filtering. Intelligent Data
Analysis, 11(5):497–524, 2007.

[41] B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna. The
underground economy of spam: a botmaster’s perspective
of coordinating large-scale spam campaigns. In Proceed-
ings of the 4th USENIX conference on Large-scale ex-
ploits and emergent threats, LEET’11, pages 4–4, Berke-
ley, CA, USA, 2011. USENIX Association.

[42] S.-H. Yoo, C.-O. Shin, and S.-J. Kwak. Inconvenience
cost of spam mail: a contingent valuation study. Applied
Economics Letters, 13(14):933–936, November 2006.

7 Appendix: Comparison to Propensity
Score Matching via Simulations

There has also been much research into developing tech-
niques, e.g., covariate matching, bias reduction, propen-
sity score matching (PSM) [35, 20, 9], etc, which have
shown promising results in removing this bias in obser-
vational studies. In this section, we outline the basic
framework of propensity score matching and then dis-
cuss why the basic framework is unsuitable for us. We
then compare our proposed method, nearest neighbor
matching, with two variants of propensity score match-
ing model based on a simulation data set with ground
truth. Although our use of nearest neighbor matching
method was prompted by concerns e.g. continuous ex-
posure variable that make the naive PSM inapplicable,
nevertheless we want to test whether there exist variants
of PSM that are more adapted for our purposes. In or-
der to do such a test, we needed to simulate the actual
ground truth measure so that we can compare the effects
unearthed by each method to the ground truth. In what
follows, we first give an outline of PSM and then de-
scribe a variant we develop, stratified-PSM, that we com-
pare with the nearest neighbor matching technique that
we use. We then describe how we created the simulation
dataset and compared the different algorithms.

7.1 Propensity Score Matching
In this section, we first briefly explain the PSM method
of estimating effects before describing the modifications.
In the classical PSM model, we have clearly defined
treated and untreated (unexposed) groups—denote them
by U1 and U0 respectively. The goal is to study the effect
or outcome y on the treated users. For each user u, we
use yu(s = 1) or yu(s = 0) to represent the effect on user
u depending on whether the user is treated or remains un-
treated. Thus, we are interested in measuring the effect
of treatment as ∆y = E[yu(s = 1)− yu(s = 0)|u ∈ U1].
However, a single user u can either be in the treated or
the untreated group, but not both. A naive estimator of

the above effect would thus be ∆y = E[yu(s = 1)|u ∈
U1]−E[yu(s = 0)|u ∈U0] – this faces the problem of se-
lection bias, since the populations in U1 and U0 are differ-
ent, and have different properties which can be correlated
with outcome y. The basic idea in PSM to overcome this
bias is to select one or more users in the control group
for each treated user, based on some pre-exposure fea-
tures xu. Under the condition of unfoundedness,

Pr(yu(s = 0)|xu,u ∈U0) = Pr(yu(s = 0)|xu,u ∈U1),

we have the following estimator

∆y = E[yu(s = 1)|u ∈U1]−Ez∈U1 [yu(s = 0)|u ∈U0,xu = z],

where z ∈ U1 means z is a feature vector of a treated
user. To avoid matching on the whole feature vector xu,
we can match on the one-dimensional propensity score
p(xu) which is the probability that a user with vector xu
belongs to the treatment group. Then we have

∆y=E[yu(s= 1)|u∈U1]−Ev∈p(U1)[yu(s= 0)|u∈U0, p(xu)= v],

where v ∈ p(U1) means that v is a propensity score of a
treated user.

7.2 Unsuitability of PSM

As described above, the main aim in PSM is to try to
learn a consistent estimator of p(x), the probability the
user has been exposed to a certain amount of spam, based
on the all the feature we have constructed. In our case,
we proceed differently due to a couple of reasons as
pointed out – the basic underpinning of propensity score
matching methods is being able to model the probabil-
ity that a particular user falls into the treatment group.
If the exposure variable is continuous, this assumption,
and hence the modeling falls apart. We instead have to
have a variant where we would have to create separate
models for each value of the exposure. Secondly, the
primary reason for propensity score matching is because
matching users becomes difficult if the activity vector is
high dimensional and the number of users is small – this
is not the case for us: we have tens of features and we
have over a million users; and we are able to find close
matches. Lastly, being able to create a model that is a
consistent estimator of p(x) is very important, else we
could be subject to un-intended biases that arise from this
modeling.

In the presence of these issues, the commonly used
ways of applying propensity score matching (PSM) does
not apply to us. In the next subsection we describe a vari-
ant of PSM, where we stratify the dataset into multiple
exposure levels and solve a PSM for each level.

14

USENIX Association 	 21st USENIX Security Symposium  47

PAIR PSM1 PSM2 PSM2-W
1.579 3.376 4.578 5.878

Table 4: The L1 difference from the ground-truth. The
smaller the value the better.
7.3 Variants of PSM for continuous expo-

sure
In our problem, we care about the effect on engagement
difference ∆y if the spam fraction increases by ∆s. To
adapt PSM in our setting, we start out by first grouping
users by discretizing their spam fraction values. Given
a set of user U and their spam fraction range [a,b], we
have the following two ways of grouping users:

• Equal-depth grouping. In this method, we order
all the users based on their spam fraction values in-
creasingly. We then split the order list equally into
m segments. In this method, each group has the
same number of users.

• Equal-width grouping. In this method, we cut the
spam fraction [a,b] equally into m segments, each
with a width of (b− a)/m. Users are grouped ac-
cordingly. In this method, each group can have dif-
ferent number of users.

Given a grouping method, for each pair of user segments,
we use the segment with the lower spam fraction as the
treated group and the one with the higher spam fraction
as the control group – we compute ∆s, the difference of
the spam fraction between these two groups, as the dif-
ference of the average over the users in the two groups.
We can then use a PSM model to compute the effect ∆y.
At the end, we will have a set of (∆s,∆y) pairs.

To get the estimation function between the effect dif-
ference and spam fraction difference, we use the local re-
gression method [11] to fit a curve on the set of (∆s,∆y)
pairs. We use PSM1 to denote Equal-depth grouping and
PSM2 to denote Equal-width grouping. Please note that
we have the same number of users for each (∆s,∆y) in
PSM1 but we have different numbers of users for PSM2.
Thus for PSM2, we have a weighed version PSM2-W by
weighing each point proportional the number of users in
the treatment group before fitting the curve.

7.4 Simulation Results
To test the validity of our method by comparing it against
ground truth, as well as to compare different variants of
PSM with our method, we generate a simulation data
with ground truth by the following procedure: we sub-
sample 50K users from the mail-spam data that described
in Section 4. For each user, we only kept 8 matching fea-
tures – the mail pageviews, the incoming mail, incoming

0.00 0.02 0.04 0.06 0.08 0.10

−2
5

−2
0

−1
5

−1
0

−5
0

delta s

di
ffe

re
nc

e

ground−truth
PAIR
PSM1
PSM2
PSM2−W

Figure 4: Comparison of our method PAIR and the vari-
ants of PSM methods.

spam, the outgoing mails for two months. The spam-
fraction in exposure month is the exposure variable, and
the mail page-views in the post-exposure month is the
effect variable. Because we want to generate the ground
truth effect as close to the real effect as possible, we then
learnt a gradient boosted decision tree model that tries to
fit the effect variable in terms of the matching features
and the exposure variable. This model that we learnt
of user behavior was then used to create the new val-
ues of the effect variable for each user – as the user-set
was sub-sampled, we strengthened the impact of expo-
sure on the mail-pageviews by adding in another compo-
nent to the model – this was a log-normally distributed
random variable whose expectation depends on the loga-
rithm of the difference of the spam exposure of this user
from the mean spam exposure of all users: this changed
each predicted effect value by around 10%. This aggre-
gated model was then used to generate the new data, and
also to create the ground truth curve for each value of ∆s
by predicting the new effect and then averaging over all
user with the same matching features.

We show the comparison results in Figure 4. For PSM
methods, we set the number of user groups m = 20. (We
tried different values for m and found the results are
not very sensitive.) For our method, we obtain 1.17M
pairs after our nearest neighbor matching and filtering
steps. Each pair gives us a (∆y,∆s) point and we use
the same local regression method [11] to get a fitted
curve. In Figure 4, we show the ground truth curve
for ∆y(∆s), as well as the estimated curves for every
method. Each of the estimates does capture the negative
correlation between ∆s and ∆y. But, the estimates pro-
duced by the PSM methods are certainly worse than the
one created by the nearest neighbor matching method.
This is measured quantitatively by the L1 difference be-
tween the each estimated curve with the ground truth
one – which we compute using 20 sampled points of

15

48  21st USENIX Security Symposium	 USENIX Association

∆s = {0.005,0.01, · · · ,0.095,0.1}. The L1 differences
are shown in Table 4. One of the reasons of PSM per-
forming worse is that when ∆s becomes large, the result-
ing buckets have small number of users, and hence the
variance is high. This simulation provides evidence that
the matching method provides a reasonable set of esti-
mates to ground truth, and that it performs better than
some obvious variants of PSM, when dealing with con-
tinuous treatment values.

16

USENIX Association 	 21st USENIX Security Symposium  49

Security and Usability Challenges of Moving-Object CAPTCHAs:
Decoding Codewords in Motion

Y. Xu†, G. Reynaga‡, S. Chiasson‡, J-M. Frahm†, F. Monrose† and P. van Oorschot‡

†Department of Computer Science, University of North Carolina at Chapel Hill, USA
‡School of Computer Science, Carleton University, Canada
email:{yix,jmf,fabian}@cs.unc.edu, {gerardor,chiasson,paulv}@scs.carleton.ca

Abstract
We explore the robustness and usability of moving-
image object recognition (video) captchas, designing and
implementing automated attacks based on computer vi-
sion techniques. Our approach is suitable for broad
classes of moving-image captchas involving rigid ob-
jects. We first present an attack that defeats instances
of such a captcha (NuCaptcha) representing the state-of-
the-art, involving dynamic text strings called codewords.
We then consider design modifications to mitigate the at-
tacks (e.g., overlapping characters more closely). We im-
plement the modified captchas and test if designs mod-
ified for greater robustness maintain usability. Our lab-
based studies show that the modified captchas fail to of-
fer viable usability, even when the captcha strength is re-
duced below acceptable targets—signaling that the mod-
ified designs are not viable. We also implement and test
another variant of moving text strings using the known
emerging images idea. This variant is resilient to our at-
tacks and also offers similar usability to commercially
available approaches. We explain why fundamental ele-
ments of the emerging images concept resist our current
attack where others fails.

1 Introduction

Humans can recognize a wide variety of objects at a
glance, with no apparent effort, despite tremendous vari-
ations in the appearance of visual objects; and we can
answer a variety of questions regarding shape properties
and spatial relationships of what we see. The apparent
ease with which we recognize objects belies the mag-
nitude of this feat. We can also do so with astonishing
speed (e.g., in a fraction of a second) [41]. Indeed, the
Cognitive Science literature abounds with studies on vi-
sual perception showing that, for the most part, people
do not require noticeably more processing time for ob-
ject categorization (e.g., deciding whether the object is

a bird, a flower, a car) than for more fine grained object
classification (e.g., an eagle, a rose) [13]. Grill et al. [20]
showed that by the time subjects knew that a picture con-
tained an object at all, they already knew its class. If such
easy-for-human tasks are, in contrast, difficult for com-
puters, then they are strong candidates for distinguishing
humans from machines.

Since understanding what we see requires cognitive
ability, it is unsurprising that the decoding of motion-
based challenges has been adopted as a security mecha-
nism: various forms of motion-based object recognition
tasks have been suggested as reverse Turing tests, or what
are called Completely Automated Public Turing tests to
tell Computers and Humans Apart (captchas). Among
the key properties of captchas are: they must be easily
solved by humans; they should be usable; correct solu-
tions should only be attainable by solving the underly-
ing AI problem they are based on; they should be robust
(i.e., resist automated attacks); and the cost of answering
challenges with automated programs should exceed that
of soliciting humans to do the same task [1, 46]. To date,
a myriad of text, audio, and video-based captchas have
been suggested [22], many of which have succumbed to
different attacks [6, 7, 19, 32, 47, 48, 53].

While text-based captchas that prompt users to rec-
ognize distorted characters have been the most popular
form to date, motion-based or video captchas that pro-
vide some form of moving challenge have recently been
proposed as the successor to static captchas. One promi-
nent and contemporary example of this new breed of
captchas is NuCaptcha [35], which asserts to be “the
most secure and usable captcha,” and serves millions
of video captchas per day. The general idea embod-
ied in these approaches is to exploit the remarkable per-
ceptual abilities of humans to unravel structure-from-
motion [30]. For example, users are shown a video with a
series of characters (so-called random codewords) mov-
ing across a dynamic scene, and solve the captcha by en-
tering the correct codeword. For enhanced security, the

50  21st USENIX Security Symposium	 USENIX Association

codewords are presented among adversarial clutter [32]
(e.g., moving backgrounds and other objects with dif-
ferent trajectories), and consecutive characters may even
overlap significantly. The underlying assumption is that
attacks based on state-of-the-art computer vision tech-
niques are likely to fail at uncovering these challenges
within video sequences, whereas real users will be able
to solve the challenges with little effort.

However, unlike in humans, it turns out that object
classification, not recognition of known objects, is the
more challenging problem in Computer Vision [43].
That is, it is considerably more difficult to capture in
a computer recognition system the essence of a dog, a
horse, or a tree—i.e., the kind of classification that is
natural and immediate for the human visual system [29].
To this day, classification of objects in real-world scenes
remains an open and difficult problem. Recognizing
known objects, on the other hand, is more tractable, espe-
cially where it involves specific shapes undergoing trans-
formations that are easy to compensate for. As we show
later, many of these well-defined transformations hold in
current motion-based captcha designs, due in part to de-
sign choices that increase usability.

In what follows, we present an automated attack to
defeat the current state-of-the-art in moving-image ob-
ject recognition captchas. Through extensive evaluation
of several thousand real-world captchas, our attack can
completely undermine the security of the most prominent
examples of these, namely those currently generated by
NuCaptcha. After examining properties that enable our
attack, we explore a series of security countermeasures
designed to reduce the success of our attacks, including
natural extensions to the scheme under examination, as
well as an implementation of a recently proposed idea
(called Emerging Images [31]) for which attacks do not
appear as readily available. Rather than idle conjecture
about the efficacy of countermeasures, we implement
captchas embedding them and evaluate these strength-
ened variations of moving-image captchas by carrying
out and reporting on a usability study with subjects asked
to solve such captchas.

Our findings highlight the well-known tension be-
tween security and usability, which often have subtle in-
fluences on each other. In particular, we show that the
design of robust and usable moving-image captchas is
much harder than it looks. For example, while such
captchas may be more usable than their still-based coun-
terparts, they provide an attacker with a significant num-
ber of views of the target, each providing opportunities to
increase the confidence of guesses. Thus the challenge is
limiting the volume of visual cues available to automated
attacks, without adversely impacting usability.

2 Captcha Taxonomy and Related Work

Most captchas in commercial use today are character-
recognition (CR) captchas involving still images of dis-
torted characters; attacks essentially involve building on
optical character recognition advances. Audio captchas
(AUD) are a distinct second category, though unre-
lated to our present work. A third major category,
image-recognition (IR) captchas, involves classification
or recognition, of images or objects other than charac-
ters. A well-known example, proposed and then bro-
ken, is the Asirra captcha [16, 19] which involves ob-
ject classification (e.g., distinguishing cats from other
animals such as dogs). CR and IR schemes may in-
volve still images (CR-still, IR-still), or various types of
dynamic images (CR-dynamic, IR-dynamic). Dynamic
text and objects are of main interest in the present paper,
and contribute to a cross-class category: moving-image
object recognition (MIOR) captchas, involving objects
in motion through animations, emergent-image schemes,
and video [10–12, 26, 31, 35, 38]. A fourth category,
cognitive-based captchas (COG), include puzzles, ques-
tions, and other challenges related to the semantics of
images or language constructs. We include here content-
based video-labeling of YouTube videos [24].

The most comprehensive surveys of captchas to date
are those by Hidalgo and Maranon [22] and Basso and
Bergadano [2]. We also recommend other comprehen-
sive summaries: for defeating classes of AUD captchas,
Soupionis [40] and Bursztein et al. [4, 6]; for defeating
CR captchas, Yan et al. [47, 50] and Bursztein [7]; for a
systematic treatment of IR captchas and attacks, Zhu et
al. [53], as well as for robustness guidelines.

Usability has also been a central focus, for example,
including a large user study of CR and AUD captchas
involving Amazon Mechanical Turk users [5], a user
study of video-tagging [24], usability guidelines and
frameworks related to CR captchas [49]. Chellapilla et
al. [8, 9] also address robustness. Hidalgo et al. [22]
and Bursztein et al. [7] also review evaluation guidelines
including usability. Lastly, research on underground
markets for solving captchas [33], and malware-based
captcha farms [15], raise interesting questions about the
long-term viability of captchas.

Lastly, concurrent to our own work, Bursztein [3]
presents an approach to break the video captchas used by
NuCaptcha. The technique exploits the video by treat-
ing it as a series of independent frames, and then applies
a frame-based background removal process [7] to dis-
card the video background. Next, frame characteristics
(e.g., spatial salient feature density and text aspect ratio
of the overlapping letters) are used to detect the code-
word, after which a clustering technique is used to help
segment the characters of the codeword. As a final step,

USENIX Association 	 21st USENIX Security Symposium  51

traditional CR-still based attacks are used to recognize
the characters in each of the segmented frames. The ap-
proach taken by Bursztein is closely related to our base-
line method (§4.1) as it only uses single frame segmen-
tation and recognition. In contrast, our subsequent tech-
niques inherently use temporal information contained in
the video to identify the codeword, to improve the seg-
mentation, and to enhance the recognition step during the
codeword recovery process.

3 Background

In the human brain, it is generally assumed that an image
is represented by the activity of “units” tuned to local
features (e.g., small line and edge fragments). It is also
widely believed that objects appearing in a consistent or
familiar background are detected more accurately, and
processed more quickly, than objects appearing in an in-
consistent scene [36]. In either case, we must somehow
separate as much as possible of the image once we see
it. This feat is believed to be done via a segmentation
process that attempts to find the different objects in the
image that “go together” [43].

As with other aspects of our visual system, segmen-
tation involves different processes using a multitude of
sources of information (e.g., texture and color), which
makes it difficult to establish which spatial properties and
relations are important for different visual tasks. While
there is evidence that human vision contains processes
that perform grouping and segmentation prior to, and in-
dependent of, subsequent recognition processes, the ex-
act processes involved are still being debated [36].

Given the complexity of the visual system, it is not
surprising that this feat remains unmatched by computer
vision algorithms. One of the many reasons why this
task remains elusive is that perception of seemingly sim-
ple spatial relations often requires complex computations
that are difficult to unravel. This is due, in part, to the fact
that object classification (that is, the ability to accurately
discriminate each object of an object class from all other
possible objects in the scene) is computationally difficult
because even a single individual object can already pro-
duce an infinite set of different images (on the retina)
due to variations in position, scale, pose, illumination,
etc. Discriminating objects of a certain class is further
complicated by the often very large inner class variabil-
ity, which significantly changes the appearance beyond
the factors encountered for a single object. Hence, vision
operates in a high-dimensional space, making it difficult
to build useful forms of visual representation.

In computer vision, the somewhat simpler process of
recognizing known objects is simulated by first analyz-
ing an image locally to produce an edge map composed
of a large collection of local edge elements, from which

we proceed to identify larger structures. In this paper, we
are primarily interested in techniques for object segmen-
tation and tracking. In its simplest form, object tracking
can be defined as the problem of estimating the trajec-
tory of an object in the image plane as it moves around
a scene. Tracking makes use of temporal information
computed from a sequence of frames. This task can be
difficult for computer vision algorithms because of issues
related to noise in the image, complex object motion, the
nonrigid nature of objects, etc. However, the tracking
problem can be simplified if one can assume that ob-
ject motion is smooth, the motion is of constant velocity,
knowledge of the number and the size of the objects, or
even appearance and shape information. In NuCaptcha,
for example, many of these simplifications hold and so
several features (e.g., edges, optical flow) can be used to
help track objects. The correspondence search from one
frame to the next is performed by using tracking.

In video, this correspondence can be achieved by
building a representation of the scene (called the back-
ground model) and then finding deviations from the
model for each incoming frame. Intuitively, any signif-
icant change in the image region from the background
model signifies a moving object. The pixels constitut-
ing the regions undergoing change are marked for fur-
ther processing, and a connected component algorithm
is applied to obtain connected regions. This process is
typically referred to as background subtraction. At this
point, all that is needed is a way to partition the im-
age into perceptually similar regions, and then infer what
each of those regions represent. In §4, we discuss the ap-
proach we take for tackling the problems of background
subtraction, object tracking, segmentation, and classifi-
cation of the extracted regions.

4 Our Automated Approach

The aforementioned processes of segmentation, object
tracking, and region identification are possible in today’s
MIOR captchas because of several design decisions that
promote rapid visual identification [14]. NuCaptcha, for
instance, presents a streaming video containing moving
text against a dynamic background. The videos have four
noticeable characteristics, namely: (1) the letters are pre-
sented as rigid objects in order to improve a user’s abil-
ity to recognize the characters; (2) the background video
and the foreground character color are nearly constant in
color and always maintain a high contrast—we posit that
this is done to ease cognitive burden on users; (3) the
random “codewords” each have independent (but over-
lapping trajectories) which better enable users to distin-
guish adjacent characters; (4) lastly, the codewords are
chosen from a reduced alphabet where easily confused
characters are omitted. Some examples of a state-of-the-

52  21st USENIX Security Symposium	 USENIX Association

Figure 1: Example moving-image object recognition (MIOR)
captchas from NuCaptcha (see http://nucaptcha.com/demo).

art MIOR captcha are given in Figure 1.
Before delving into the specifics of our most success-

ful attack, we first present a naïve approach for automat-
ically decoding the challenges shown in MIOR captchas.
To see how this attack would work, we remind the reader
that a video can be seen as a stream of single pictures that
simply provides multiple views of a temporally evolving
scene. It is well known that human observers perceive a
naturally moving scene at a level of about thirty frames
per second, and for this reason, video captchas tend to
use a comparable frame rate to provide a natural video
experience that is not too jerky. Similarly, the challenge
shown in the captcha is rendered in multiple frames to
allow users to perceive and decode the codewords in an
effortless manner. In the NuCaptcha scheme, for exam-
ple, a single frame may contain the full codeword.

4.1 A Naïve Attack

Given this observation, one way to attack such schemes
is to simply apply traditional OCR-based techniques that

work well at defeating CR-still captchas (e.g., [32, 47]).
More specifically, choose k frames at random, and iden-
tify the foreground pixels of the codeword by comparing
their color with a given reference color; notice the at-
tacker would likely know this value since the users are
asked to, for example, “type the RED moving charac-
ters”. Next, the length of the codeword can be inferred
by finding the leftmost and rightmost pixels on the fore-
ground. This in essence defines a line spanning over the
foreground pixels (see Figure 2). The positions of the
characters along the line can be determined by dividing
the line into n equidistant segments, where n denotes the
desired number of characters in the codeword. For each
of the segments, compute the center of gravity of the
foreground pixels in the vertical area of the image be-
longing to the segment. Lastly, select an image patch (of
the expected size of the characters) around the centers of
gravity of the segments, and feed each patch to a classi-
fier. In our work, we use a neural network approach [39]
because it is known to perform well at this object identi-
fication task. The neural network is trained in a manner
similar to what we discuss in §4.3.

Figure 2: Naïve attack: Based on the foreground pixels, we
find the longest horizontal distance (white line) and the mean
value of vertical area (the respective bounding boxes above).

The above process yields a guess for each of the char-
acters of the codeword in the chosen frames of the video.
Let i denote the number of possible answers for each
character. By transforming the score from the neural net-
work into the probability pi jk where the j-th character
of the codeword corresponds to the i-th character in the
k-th frame, we calculate the probability Pi j for each char-
acter j = 1, . . . ,n of the codeword over all k frames as
Pi j =

1
sp

∑k pi jk with sp = ∑i, j,k pi jk. The choice that has
the highest probability is selected as the corresponding
character. With k = 10, this naïve attack resulted in a
success rate of approximately 36% accuracy in correctly
deducing all three characters in the codewords of 4000
captchas from NuCaptcha. While this relatively simple
attack already raises doubts about the robustness of this
new MIOR captcha, we now present a significantly im-
proved attack that makes fewer assumptions about pixel
invariants [50] in the videos.

USENIX Association 	 21st USENIX Security Symposium  53

4.2 Exploiting Temporal Information
A clear limitation of the naïve attack is the fact that it
is not easily generalizable and it is not robust to slight
changes in the videos. In what follows, we make no as-
sumption about a priori knowledge of the color of the
codewords, nor do we assume that the centers of grav-
ity for each patch are equidistant. To do so, we apply a
robust segmentation method that utilizes temporal infor-
mation to improve our ability to recognize the characters
in the video.

D
ec

od
in

g
Pr

oc
es

s

❶
tracking

video stream

foreground extraction

segmentation

classification

❷

❸

❹

❺

feedback

Figure 3: High-level overview of our attack. (This, and other
figures, are best viewed in color.)

A basic overview of our attack is shown in Figure 3.
Given a MIOR captcha we extract the motion contained
in the video using the concept of salient features. Salient
features are characteristic areas of an image that can be
reliably detected in several frames. To infer the motion of
the salient feature points, we apply object tracking tech-
niques (stage �). With a set of salient features at hand,
we then use these features to estimate the color statis-
tics of the background. Specifically, we use a Gaussian
mixture model [18], which represents the color statistics
of the background through a limited set of Gaussian dis-
tributions. We use the color model of the background
to measure, for all pixels in each frame, their likelihood
of belonging to the background. Pixels with low likeli-
hoods are then extracted as foreground pixels (stage �).
The trajectories of the foreground pixels are then refined
using information inferred about the color of these pix-
els, and a foreground color model is built. Next, to ac-
count for the fact that all characters of the codewords
move independently, we segment the foreground into n

segments as in the naïve attack (stage �). We select each
image patch containing a candidate character and evalu-
ate the patch using a neural network based classifier [39]
(stage �). The classifier outputs a likelihood score that
the patch contains a character. As a final enhancement,
we incorporate a feedback mechanism in which we use
high confidence inferences to improve low confidence
detections of other patches. The net effect is that we
reduce the distractions caused by mutually overlapping
characters. Once all segments have been classified, we
output our guess for all characters of the codeword. We
now discuss the stages of our approach in more detail.

Figure 4: The circles depict salient features. These salient
features are usually corners of an object or texture areas.

Detecting Salient Features and Their
Motion (Stage �)
A well-known class of salient features in the computer
vision community is gray value corners in images. In
this paper, we use the Harris corner detector [21] for
computing salient features, which uses the image gradi-
ent to identify points in the image with two orthogonal
gradients of significant magnitude. An example of the
detected corners is shown in Figure 4.

After identifying salient features in one frame of the
video we now need to identify their respective position
in the subsequent frames of the video. In general, there
are two choices for identifying the corresponding salient
features in the subsequent frames of the video. The
first choice is to independently detect salient features in
all frames and then compare them by using their image
neighborhoods (patches) to identify correlating patches
through an image based correlation (commonly called
matching). The second class of methods leverages the
small motion occurring in between two frames for an it-
erative search (commonly called tracking).

We opt for a tracking method given that tracking re-
sults for video are superior in accuracy and precision
to matching results. Specifically, we deploy the well
known KLT-tracking method [28], which is based on the
assumption that the image of a scene object has a con-
stant appearance in the different frames capturing the
object (brightness constancy). The MIOR captchas by
NuCaptcha use constant colors on the characters of the
codewords. This implies that the NuCaptcha frames are

54  21st USENIX Security Symposium	 USENIX Association

well suited for our method. Note that no assumption
about the specific color is made; only constant appear-
ance of each of the salient features is assumed. We return
to this assumption later in Section 5.2.

Motion Trajectory Clustering (Stage �)

In a typical video, the detected salient features will be
spread throughout the image. In the case of NuCaptcha,
the detected features are either on the background, the
plain (i.e., non-codeword) characters or the codeword
characters. We are foremost interested in obtaining the
information of the codeword characters. To identify the
codeword characters we use their distinctive motion pat-
terns as their motion is the most irregular motion in the
video captcha. In the case of NuCaptcha, we take advan-
tage of the fact that the motion trajectories of the back-
ground are significantly less stable (i.e., across consec-
utive frames) than the trajectories of the features on the
characters. Hence we can identify background features
by finding motion trajectories covering only a fraction of
the sequence; specifically we assume presence for less
than l = 20 frames. In our analysis, we observed little
sensitivity with respect to l.

Additionally, given that all characters (plain and code-
word) move along a common trajectory, we can further
identify this common component by linearly fitting a tra-
jectory to their path. Note that the centers of the rotating
codeword characters still move along this trajectory. Ac-
cordingly, we use the distinctive rotation of the codeword
characters to identify any of their associated patterns by
simply searching for the trajectories with the largest de-
viation from the more common motion trajectory. This
identifies the pixels belonging to the codeword charac-
ters as well as the plain characters. Additionally, the
features on the identified codeword characters allow us
to obtain the specific color of the codeword characters
without knowing the color a priori (see Figure 5).

Knowing the position of the codeword characters al-
lows us to learn a foreground color model. We use
a Gaussian mixture model for the foreground learning,
which in our case has a single moment corresponding
to the foreground color.1 Additionally, given the above
identified salient features on the background, we also
learn a Gaussian mixture for the background, thereby
further separating the characters from the background.

At this point, we have isolated the trajectories of code-
word characters, and separated the codewords from the
background (see Figure 6). However, to decide which
salient features on the codeword characters belong to-
gether, we required additional trajectories. To acquire
these, we simply relax the constraint on the sharpness
of corners we care about (i.e., we lower the threshold
for the Harris corner detection algorithm) and rerun the

Figure 5: (Top): Initial optical flow. (Middle): salient points
with short trajectories in background are discarded. (Lower):
Trajectories on non-codeword characters are also discarded.

KLT-tracking on the new salient features. This yields
significantly more trajectories for use by our segmenta-
tion algorithm. Notice how dense the salient features are
in Figure 7. Note also that since the foreground extrac-
tion step provides patches that are not related to the back-
ground, we can automatically generate training samples
for our classifier, irrespective of the various backgrounds
the characters are contained in.

Figure 6: Example foreground extraction.

Figure 7: re-running tracking with a lower threshold on corner
quality: Left: before modification. Right: after modification.

Segmentation (Stage �)
To segment the derived trajectories into groups, we use k-
means clustering [23]. We chose this approach over other
considerations (e.g., mean-shift [37] based clustering, or

USENIX Association 	 21st USENIX Security Symposium  55

RANSAC [17] based clustering [51]) because of its sim-
plicity, coupled with the fact that we can take advantage
of our knowledge of the desired number of characters
(i.e., k), and use that to help guide the clustering proce-
dure. We cannot, however, apply the standard k-means
approach directly since it relies on Euclidean distances,
where each sample is a point. In our case, we need to take
the relationship between frames of the video sequence
into consideration, and so we must instead use each tra-
jectory as an observation. That is, we cluster the differ-
ent trajectories. However, this results in a non-Euclidean
space because different trajectories have different begin-
ning and ending frames. To address this problem, we
utilize the rigidity assumption [42] and define a distance
metric for trajectories that takes into consideration their
spatial distance, as well as the variation of their spatial
distance. The result is a robust technique that typically
converges within 5 iterations when k = 3, and 20 intera-
tions (on average) when k = 23. A sample output of this
stage is shown in Figure 8.

Figure 8: Left: before segmentation. Right: trajectories are
marked with different colors and bounding boxes are calculated
based on the center of the trajectories and the orientation of the
points. The red points denote areas with no trajectories.

4.3 Codeword Extraction and
Classification (Stage �)

Given the center and orientation of each codeword char-
acter, the goal is to figure out exactly what that character
is. For this task, we extract a fixed-sized area around
each character (as in Figure 8), and supply that to our
classification stage. Before doing so, however, we refine
the patches by deleting pixels that are too close to the
trajectories of adjacent characters.

As mentioned earlier, we use a neural network for clas-
sifying the refined patches. A neural network is a mathe-
matical model or computational model that is inspired by
the structure of a biological neural network. The training
of a neural network is based on the notion of the possi-
bility of learning. Given a specific task to solve, and a
class of functions, learning in this context means using
a set of observations to find a function which solves the
task in some optimal sense.

Optimization: While the process outlined in stages �-
� works surprisingly well, there are several opportuni-

ties for improvement. Perhaps one of the most natural
extensions is to utilize a feedback mechanism to boost
recognition accuracy. The idea we pursue is based on
the observation that an adversary can leverage her confi-
dence about what particular patches represent to improve
her overall ability to break the captcha. Specifically, we
find and block the character that we are most confident
about. The basic idea is that although we may not be able
to infer all the characters at once, it is very likely that we
can infer some of the characters. By masking the char-
acter that we are most confident about, we can simplify
the problem into one of decoding a codeword with fewer
characters; which is easier to segment and recognize.

Figure 9: Iterative decoding of a captcha.

The most confident character can be found using the
probability score provided by the classifier, although it
is non-trivial to do so without masking out too much of
the other characters. We solve this problem as follows.
In order to block a character, we try to match it with
templates of each character that can be gained by learn-
ing. One way to do that is to match scale-invariant fea-
ture transforms (SIFT) between the patch and a reference
template. While SIFT features can deal with scaling, ro-
tation and translation of characters, there are times when
some frames have insufficient SIFT features. Our solu-
tion is to find a frame with enough features to apply SIFT,
and then warp the template to mask the target character
in that frame. Once found, this frame is used as the ini-
tial position in an incremental alignment approach based
on KLT tracking. Essentially, we combine the benefits
of SIFT and KLT to provide a video sequence where the
character we are most confident about is omitted. At that
point, we rerun our attack, but with one fewer character.
This process is repeated until we have no characters left
to decode. This process is illustrated in Figure 9.

Runtime: Our implementation is based on a collection
of modules written in a mix of C++ and Matlab code.
We make extensive use of the Open Source Computer
Vision library (OpenCV). Our un-optimized code takes
approximately 30s to decode the three characters in a
MIOR captcha when the feedback loop optimization (in
stage �) is disabled. With feedback enabled, processing
time increases to 250s. The bottleneck is in the incre-
mental alignment procedure (written in Matlab).

56  21st USENIX Security Symposium	 USENIX Association

5 Evaluation

We now discuss the results of experiments we performed
on MIOR captchas. Specifically, the first set of experi-
ments are based on video sequences downloaded off the
demo page of NuCaptcha’s website. On each visit to the
demo page, a captcha with a random 3-character code-
word is displayed for 6 seconds before the video loops.
The displayed captchas were saved locally using a Fire-
fox plugin called NetVideoHunter. We downloaded 4500
captchas during November and December of 2011.

The collected videos contain captchas with all 19
backgrounds in use by NuCaptcha as of December 2011.
In each of these videos, the backgrounds are of moving
scenes (e.g., waves on a beach, kids playing baseball,
etc.) and the text in the foreground either moves across
the field of view or in-place. We painstakingly labeled
each of the videos by hand to obtain the ground truth.
We note that while NuCaptcha provides an API for ob-
taining captchas, we opted not to use that service as we
did not want to interfere with their service in any way. In
addition, our second set of experiments examine several
countermeasures against our attacks, and so for ethical
reasons, we opted to perform such experiments in a con-
trolled manner rather than with any in-the-wild experi-
mentation. These countermeasures are also evaluated in
our user study (§6).

5.1 Results

The naïve attack was analyzed on 4000 captchas. Due
to time constraints, the extended attack (with and with-
out the feedback optimization) were each analyzed on a
random sample of 500 captchas. To determine an appro-
priate training set size, we varied the number of videos as
well as the number of extracted frames and examined the
recognition rate. The results (not shown) show that while
accuracy steadily increased with more training videos
(e.g., 50 versus 100 videos), we only observed marginal
improvement when the number of training patches taken
from each video exceeded 1500. In the subsequent anal-
yses, we use 300 video sequences for training (i.e., 900
codeword characters) and for each detected character, we
select 2 frames containing that character (yielding 1800
training patches in total). We use dense SIFT descrip-
tors [44] as the features for each patch (i.e., a SIFT de-
scriptor is extracted for each pixel in the patch, and con-
catenated to form a feature vector). The feature vectors
are used to train the neural network. For testing, we
choose a different set of 200 captchas, almost evenly dis-
tributed among the 19 backgrounds. The accuracy of the
attacks (in §4) are given in Table 1.

The result indicate that the robustness of these MIOR
captchas are far weaker than one would hope. In par-

ticular, our automated attacks can completely decode the
captchas more than three quarters of the time. In fact,
our success rates are even higher than some of the OCR-
based attacks on CR-still captchas [7, 19, 32, 47]. There
are, however, some obvious countermeasures that de-
signers of MIOR captchas might employ.

5.2 Mitigation
To highlight some of the tensions that exists between
the security and usability of MIOR captchas, we explore
a series of possible mitigations to our attacks. In or-
der to do so, we generate video captchas that closely
mimic those from NuCaptcha. In particular, we built
a framework for generating videos with characters that
move across a background scene with constant velocity
in the horizontal direction, and move up and down har-
monically. Similar to NuCaptcha, the characters of the
codeword also rotate. Our framework is tunable, and all
the parameters are set to the defaults calculated from the
original videos from NuCaptcha (denoted Standard). We
refer the interested reader to Appendix A for more details
on how we set the parameters. Given this framework, we
explore the following defenses:
• Extended: the codeword consists of m > 3 random

characters moving across a dynamic scene.

• Overlapping: same as the Standard case (i.e., m =
3), except characters are more closely overlapped.

• Semi-Transparent: identical to the Standard case,
except that the characters are semi-transparent.

• Emerging objects: a different MIOR captcha where
the codewords are 3 characters but created using an
“Emerging Images” [31] concept (see below).

Figure 10: Extended case. Top: scrolling; bottom: in-place.

Increasing the number of random characters shown in
the captcha would be a natural way to mitigate our attack.
Hence, the Extended characters case is meant to investi-
gate the point at which the success rate of our attacks fall

USENIX Association 	 21st USENIX Security Symposium  57

Attack Single Character 3-Character
Strategy Accuracy Accuracy
Naïve 68.5% (8216/12000) 36.3% (1450/4000)

Enhanced (no feedback) 90.0% (540/600) 75.5% (151/200)
Enhanced (with feedback) 90.3% (542/600) 77.0% (154/200)

Table 1: Reconstruction accuracy for various attacks.

below a predefined threshold. An example is shown in
Figure 10. Similarly, we initially thought that increas-
ing the overlap between consecutive characters (i.e., the
Overlapping defense, Fig. 11) might be a viable alterna-
tive. We estimate the degree that two characters overlap
by the ratio of the horizontal distance of their centers and
their average width. That is, suppose that one character
is 20 pixels wide, and the other is 30 pixels wide. If the
horizontal distance of their centers is 20, then their over-
lap ratio is computed as 20/ 20+30

2 = 0.8. The smaller
this overlap ratio, the more the characters overlap. A ra-
tio of 0.5 means that the middle character is completely
overlapped in the horizontal direction. In both the origi-
nal captchas from NuCaptcha and our Standard case, the
overlap ratio is 0.95 for any two adjacent characters.

Figure 11: Overlapping characters (with ratio = 0.49).

The Semi-Transparent defense is an attempt to break
the assumption that the foreground is of constant color.
In this case, foreground extraction (stage �) will be dif-
ficult. To mimic this defense strategy, we adjust the
background-to-foreground pixel ratio. An example is
shown in figure 12.

Figure 12: Semi-transparent: 80% background to 20% fore-
ground pixel ratio. (Best viewed in color.)

The final countermeasure is based on the notion of
Emerging Images proposed by Mitra et al. [31]. Emer-
gence refers to “the unique human ability to aggregate
information from seemingly meaningless pieces, and to
perceive a whole that is meaningful” [31].2 The con-
cept has been exploited in Computer Graphics to prevent

automated tracking by computers, while simultaneously
allowing for high recognition rates in humans because of
our remarkable visual system. We apply the concepts
outlined by Mitra et al. [31] to generate captchas that
are resilient to our attacks. The key differences between
our implementation and the original paper is that our in-
put is 2D characters instead of 3D objects, and we do
not have the luxury of incorporating shadow information.
Our Emerging captchas are constructed as follows:

fram
e i

fram
e i+1

fram
e i+2

creation of a fram
e

(a) (b)

Figure 13: Emerging captcha. (a) Top: noisy background
frame. Middle: derivative of foreground image. Bottom: single
frame for an Emerging captcha. (b) Successive frames.

1. We build a noisy frame Ibg by creating an image
with each pixel following a Gaussian distribution.
We blur the image such that the value of each pixel
is related to nearby pixels. We also include time cor-
respondence by filtering in the time domain. That is,
each frame is a mixture of a new noisy image and
the last frame.

2. We generate an image I f g similar to that in Nu-
Captcha. We then find the edges in the image by
calculating the norm of derivatives of the image.

3. We combine Ibg and I f g by creating a new im-
age I where each pixel in I is defined as I(x,y) :=
Ibg(x,y) ∗ exp(I f g

const), where exp(x) is the exponen-
tial function. In this way, the pixels near the bound-
ary of characters in I are made more noisy than
other pixels.

4. We define a constant threshold t < 0. All pixel val-
ues in I that are larger than t are made white. All

58  21st USENIX Security Symposium	 USENIX Association

the other pixels in I are made black.

The above procedure results in a series of frames
where no single frame contains the codeword in a way
that is easy to segment. The pixels near the boundaries
of the characters are also more likely to be blacker than
other pixels, which the human visual system somehow
uses to identify the structure from motion. This feat re-
mains challenging for computers since the points near the
boundaries change color randomly, making it difficult, if
not impossible, to track, using existing techniques. An
illustration is shown in Figure 13. To the best of our
knowledge, we provide the first concrete instantiation of
the notion of Emerging Images applied to captchas, as
well as a corresponding lab-based usability study (§6).

We refer interested readers to http://www.cs.
unc.edu/videocaptcha/ for examples of the mit-
igation strategies we explored.

5.2.1 Results

We now report on the results of running attacks on
captchas employing the aforementioned defenses. Fig-
ure 14 depicts the results for the Extended defense strat-
egy. In these experiments, we generated 100 random
captchas for each m ∈ [3,23]. Our results clearly show
that simply increasing the codeword length is not neces-
sarily a viable defense. In fact, even at 23 characters, our
success rate is still 5%, on average.

Figure 14: Attack success as a function of codeword length.

Figure 15 shows the results for the Overlapping de-
fense strategy. As before, the results are averaged over
100 sequences per point. The graph shows that the suc-
cess rate drops steadily as the overlap ratio decreases (de-
noted as “sensitivity” level in that plot). Interestingly,
NuCaptcha mentions that this defense strategy is in fact
one of the security features enabled by its behavioral
analysis engine. The images provided on their website
for the “very secure” mode, however, have an overlap ra-
tio of 0.78, which our attacks would still be able to break

more than 50% of the time.3 Our success rate is still rel-
atively high (at 5%) even when the overlap ratio is as low
as 0.49. Recall that, at that point, the middle character is
100% overlapped, and others are 51% overlapped.

Figure 15 also shows the results for the Semi-
Transparent experiment. In that case, we varied the
transparency of the foreground pixel from 100% down
to 20%. Even when the codewords are barely visible (to
the human eye), we are still able to break the captchas
5% of the time. An example of one such captcha (with a
background to foreground ratio of 80 to 20 percent) was
shown earlier in Figure 12.

Figure 15: Attack success rate against Overlapping and Semi-
Transparent defenses. Sensitivity refers to the overlap ratio
(circles) or the background-to-foreground ratio (squares).

Lastly, we generated 100 captchas based on our imple-
mentation of the Emerging Images concept. It comes as
no surprise that the attacks in this paper were not able to
decode a single one of these challenges — precisely be-
cause these captchas were specifically designed to make
optical flow tracking and object segmentation difficult.
From a security perspective, these MIOR captchas are
more robust than the other defenses we examined. We
return to that discussion in §7.

5.2.2 Discussion

The question remains, however, whether for any of the
defenses, parameters could be tuned to increase the ro-
bustness and still retain usablility. We explore precisely
that question next. That said, the forthcoming analysis
raises interesting questions, especially as it relates to the
robustness of captchas. In particular, there is presently
no consensus on the required adversarial effort a captcha
should present, or the security threshold in terms of suc-
cess rate that adversaries should be held below. For ex-
ample, Chellapilla et al. [8] state: “automated attacks
should not be more than 0.01% successful but the human
success rate should be at least 90%”. Others argue that
“if it is at least as expensive for an attacker to break the

USENIX Association 	 21st USENIX Security Symposium  59

challenge by machine than it would be to pay a human to
take the captcha, the test can be considered secure” [22].
Zhu et al. [53] use the metric that the bot success rate
should not exceed 0.6%.

In the course of our pilot studies, it became clear
that if the parameters for the Extended, Overlapping,
and Semi-Transparent countermeasures are set too strin-
gently (e.g., to defeat automated attacks 99% of the
time), then the resulting MIOR captchas would be ex-
ceedingly difficult for humans to solve. Therefore, to
better measure the tension between usability and secu-
rity, we set the parameters for the videos (in §6) to values
where our attacks have a 5% success rate, despite that be-
ing intolerably high for practical security. Any captcha
at this parametrization, which is found to be unusable, is
thus entirely unviable.

6 User study

We now report on an IRB-approved user study with 25
participants that we conducted to assess the usability of
the aforementioned countermeasures. If the challenges
produced by the countermeasures prove too difficult for
both computers and humans to solve, then they are not
viable as captcha challenges. We chose a controlled
lab study because besides collecting quantitative perfor-
mance data, it gave us the opportunity to collect partici-
pants’ impromptu reactions and comments, and allowed
us to interview participants about their experience. This
type of information is invaluable in learning why cer-
tain mitigation strategies are unacceptable or difficult for
users and learning which strategies are deemed most ac-
ceptable. Additionally, while web-based or Mechanical
Turk studies may have allowed us to collect data from
more participants, such approaches lack the richness of
data available when the experimenter has the opportunity
to interact with the participants one-on-one. Mechani-
cal Turk studies have previously been used in captcha
research [5] when the goal of the studies are entirely
performance-based. However, since we are studying new
mitigation strategies, we felt that it was important to
gather both qualitative and quantitative data for a more
holistic perspective.

6.1 Methodology

We compared the defenses in §5.2 to a Standard ap-
proach which mimics NuCaptcha’s design. In these
captchas the video contains scrolling text with 2-3 words
in white font, followed by 3 random red characters that
move along the same trajectory as the white words. Simi-
lar to NuCaptcha, the red characters (i.e., the codewords)
also independently rotate as they move. For the Extended

strategy, we set m = 23. All 23 characters are continu-
ously visible on the screen. During pilot testing, we also
tried a scrolling 23-character variation of the Extended
scheme. However, this proved extremely difficult for
users to solve and they voiced strong dislike (and out-
rage) for the variation. For the Overlapping strategy, we
set the ratio to be 0.49. Recall that at this ratio, the mid-
dle character is overlapped 100% of the time, and the
others are 51% overlapped. For the Semi-Transparent
strategy, we set the ratio to be 80% background and 20%
foreground. For all experiments, we use the same alpha-
bet (of 20 characters) in NuCaptcha’s original videos.

A challenge refers to a single captcha puzzle to be
solved by the user. Each challenge was displayed on a
6-second video clip that used a canvas of size 300×126
and looped continuously. This is the same specification
used in NuCaptcha’s videos. Three different HD video
backgrounds (of a forest, a beach, and a sky) were used.
Some examples are shown in Figure 16. Sixty chal-
lenges were generated for each variation (20 for each
background, as applicable).

We also tested the Emerging strategy. The three-
character codeword was represented by black and white
pixel-based noise as described in §5.2. Sixty challenges
were generated using the same video parameters as the
other conditions.

The twenty-five participants were undergraduate,
graduate students, staff and faculty (15 males, 10 fe-
males, mean age 26) from a variety of disciplines. A
within-subjects experimental design was used, where
each participant had a chance to complete a set of 10
captchas for each strategy. The order of presentation for
the variations was counterbalanced according to a 5× 5
Latin Square to eliminate biases from learning effects;
Latin Squares are preferred over random ordering of con-
ditions because randomization could lead to a situation
where one condition is favored (e.g., appearing in the
last position more frequently than other conditions, giv-
ing participants more chance to practice). Within each
variation, challenges were randomly selected.

A simple web-based user interface was designed
where users could enter their response in the textbox and
press submit, could request a new challenge, or could
access the help file. Indication of correctness was pro-
vided when users submitted their responses, and users
were randomly shown the next challenge in the set. Im-
mediately after completing the 10 challenges for a vari-
ation, users were asked to complete a paper-based ques-
tionnaire collecting their perception and opinion of that
variation. At the end of the session, a brief interview was
conducted to gather any overall comments. Each partici-
pant completed their session one-on-one with the exper-
imenter. A session lasted at most 45 minutes and users
were compensated $15 for their time.

60  21st USENIX Security Symposium	 USENIX Association

(a) Forest background (b) Beach background (c) Sky background

Figure 16: Three backgrounds used for the challenges, shown for the Semi-Transparent variant.

6.2 Data Collection

The user interface was instrumented to log each user’s
interactions with the system. For each challenge, the
user’s textual response, the timing information, and the
outcome was recorded. A challenge could result in three
possible outcomes: success, error, or skipped. Question-
naire and interview data was also collected.

6.3 Analysis

Our analysis focused on the effects of five different
captcha variants on outcomes and solving times. We also
analyzed and reviewed questionnaire data representing
participant perceptions of the five variants. We used sev-
eral statistical tests and the within-subjects design of our
study impacted our choice of statistical tests; in each case
the chosen test accounted for the fact that we had multi-
ple data points from each participant. In all of our tests,
we chose p < 0.05 as the threshold for determining sta-
tistical significance.

One-way repeated-measures ANOVAs [25] were used
to evaluate aggregate differences between the means for
success rates and times. When the ANOVA revealed
a significant difference, we used post-hoc Tukey HSD
tests [27] to determine between which pairs the differ-
ences occurred. Here, we were interested only in whether
the four proposed mitigation strategies differed from the
Standard variant, so we report only on these four cases.

Our questionnaires used Likert-scale responses to as-
sess agreement with particular statements (1 - Strongly
Disagree, 10 - Strongly Agree). To compare this ordinal
data, we used the non-parametric Friedman’s Test [27].
When overall significant differences were found, we
used post-hoc Pairwise Wilcoxon tests with Bonferroni
correction to see which of the four proposed variants dif-
fered from the Standard variant.

Outcomes: Participants were presented with 10 chal-
lenges of each variant. Figure 17 shows a stacked bar
graph representing the mean number of success, error,
and skipped outcomes. To be identified as a Success,
the user’s response had to be entirely correct. An Er-
ror occurred when the user’s response did not match the
challenge’s solution. A Skipped outcome occurred when
the participant pressed the “Get A New Challenge” but-

ton and was presented with a different challenge. We
observe differences in the outcomes, with the Standard
variant being most successful and the Semi-Transparent
variant resulting in the most skipped outcomes.

Figure 17: Mean number of success, error, and skipped out-
comes for Standard, Extended, Overlapping, Semi-Transparent
and Emerging variants, respectively.

For the purposes of our statistical tests, errors and
skipped outcomes were grouped since in both cases the
user was unable to solve the challenge. Each participant
was given a score comprising the number of successful
outcomes for each variant (out of 10 challenges).4

A one-way repeated-measure ANOVA showed signif-
icant differences between the five variants (F(4,120) =
29.12, p < 0.001). We used post-hoc Tukey HSD tests
to see whether any of the differences occurred between
the Standard variant and any of the other four variants.
The tests showed a statistically significant difference be-
tween all pairs except for the Standard⇔Emerging pair.
This means that the Extended, Overlapping, and Semi-
Transparent variants had a significantly lower number
of successes than the Standard variant, while Emerging
variant showed no difference.

Time to Solve: The time to solve was measured as the
time between when the challenge was displayed to when
the response was received. This included the time to type
the answer (correctly or incorrectly), as well as the time it
took the system to receive the reply (since the challenges
were served from our local server, transmission time was
negligible). Times for skipped challenges were not in-
cluded since users made “skip” decisions very quickly
and this may unfairly skew the results towards shorter
mean times. We include challenges that resulted in er-
rors because in these cases participants actively tried to

USENIX Association 	 21st USENIX Security Symposium  61

Figure 18: Time taken to solve the MBOR captchas.

solve the challenge. The time distributions are depicted
in Figure 18 using boxplots. Notice that the Extended
variant took considerably longer to solve than the others.

We examined the differences in mean times using
a one-way repeated-measure ANOVA. The ANOVA
showed overall significant differences between the five
variants (F(4,120) = 112.95, p < 0.001). Once again,
we compared the Standard variant to the others in
our post-hoc tests. Tukey HSD tests showed no sig-
nificant differences between the Standard⇔Emerging
or Standard⇔Overlapping pairs. However, signifi-
cant differences were found for the Standard⇔Semi-
Transparent and Standard⇔Extended pairs. This means
that the Semi-Transparent and Extended variants took
significantly longer to solve than the Standard variant,
but the others showed no differences.

Skipped outcomes: The choice of background ap-
pears to have especially impacted the usability of the
Semi-Transparent variant. Participants most frequently
skipped challenges for the Semi-Transparent variant and
found the Forest background especially difficult to use.
Many users would immediately skip any challenge that
appeared with the Forest background because the trans-
parent letters were simply too difficult to see. For the
Semi-Transparent variant, 35% of challenges presented
on the Forest background were skipped, compared 17-
18% of challenges using the other two backgrounds. Par-
ticipants’ verbal and written comments confirm that they
found the Forest background very difficult, with some
users mentioning that they could not even find the letters
as they scrolled over some parts of the image.

Errors: Figure 19 shows the distribution of errors.
It shows that the majority of errors were made on the
middle characters of the challenge. We also examined
the types of errors, and found that most were mistakes
between characters that have similar appearances. The
most commonly confused pairs were: S/5, P/R, E/F, V/N,
C/G, and 7/T. About half of the errors for the Extended
variant were due to confusing pairs of characters, while

the other half involved either missing letters or including
extra ones. For the other variants, nearly all errors were
due to confusing pairs of characters.

Figure 19: Location of errors within the codewords.

User perception: Immediately after completing the
set of challenges for each variant, participants completed
a Likert-scale questionnaire to collect their opinion and
perception of that variant. For each variant, participants
were asked to rate their agreement with the following
statements:

1. It was easy to accurately solve the challenge

2. The challenges were easy to understand

3. This captcha mechanism was pleasant to use

4. This captcha mechanism is more prone to mistakes
than traditional text-based captchas

Figure 20 shows boxplots representing users’ re-
sponses. Since Q.4 was negatively worded, responses
were inverted for easier comparisons. In all cases, higher
values on the y-axis indicate a more favorable response.

The results show that users clearly preferred the Stan-
dard variant and rated the others considerably lower
on all subjective measures. Friedman’s Tests showed
overall significant differences for each question (p <
0.001). Pairwise Wilcoxon Tests with Bonferroni correc-
tion were used to assess differences between the Stan-
dard variant and each of the other variants. Significant
differences were found between each pair compared.
The only exceptions are that users felt that the Extended
and Emerging variants were no more difficult to under-
stand (Question 2) than the Standard variant. This result
appears to contradict the results observed in Figure 20
and we believe that this is because the Wilcoxon test
compares ranks rather than means or medians.

Comments: Participants had the opportunity to pro-
vide free-form comments about each variant and offer
verbal comments to the experimenter. Samples are in-
cluded in Appendix B. Participants clearly preferred the
Standard variant, and most disliked the Extended variant.

62  21st USENIX Security Symposium	 USENIX Association

(a) Accuracy (b) Easy to understand (c) Pleasant to use (d) More error-prone (responses
inverted)

Figure 20: Likert-scale responses: 1 is most negative, 10 is most positive.

Of the remaining schemes, the Emerging variant seemed
most acceptable although it also had its share of negative
reactions (e.g., one subject found it to be hideous).

7 Summary and Concluding Remarks

Our attack inherently leverages the temporal informa-
tion in the moving-image object recognition (MIOR)
captchas, and also exploits the fact that only object
recognition of known objects is needed. Our methods
also rely on a reasonably consistent appearance or slowly
varying appearance over time. That said, they can be
applied to any set of known objects or narrowly de-
fined objects under affine transformations that are known
to work well with detection methods in computer vi-
sion [45]. For the specific case of NuCaptcha, we showed
that not only are there inherent weaknesses in the current
MIOR captcha design, but that several obvious counter-
measures (e.g., extending the length of the codeword)
are not viable attack countermeasures. More importantly,
our work highlights the fact that the choice of underlying
hard problem by NuCaptcha’s designers was misguided;
its particular implementation falls into a solvable sub-
class of computer vision problems.

In the case of emergent captchas, our attacks fail
for two main reasons. First, in each frame there are
not enough visual cues that help distinguish the charac-
ters from the background. Second, the codewords have
no temporally consistent appearance. Combined, these
two facts pose significant challenges to existing com-
puter vision methods, which typically assume reason-
ably consistent appearance and visually distinctive fore-
grounds [52]. Nevertheless, our user study showed that
people had little trouble solving these captchas. This
bodes well for emergent captchas—per today’s attacks.

Looking towards the future, greater robustness would
result if MIOR captchas required automated attacks to
perform classification, categorization of classes with
large inner class variance, or to identify higher level se-
mantics to understand the presented challenge. Consider,
for example, the case where the user is presented with
two objects (a person and a truck) at the same scale, and

asked to identify which one is larger. To succeed, the
automated attack would need to determine the objects
(without prior knowledge of what the objects are of) and
then understand the relationship. Humans can perform
this task because of the inherent priors learned in daily
life, but this feat remains a daunting problem in com-
puter vision. Therefore, this combination seems to of-
fer the right balance and underscores the ideas put forth
by Naor [34] and von Ahn et al. [1]—i.e., it is prudent
to employ hard (and useful) underlying AI problems in
captchas since it leads to a win-win situation: either the
captcha is not broken and there is a way to distinguish
between humans and computers, or it is broken and a
useful problem is solved.

Acknowledgments

The authors thank Pierre Georgel, Joseph Tighe, and Avi
Rubin for insightful discussions about this work, and for
valuable feedback on an earlier draft of this manuscript.
We are also especially grateful to Fletcher Fairey (of the
Office of University Counsel at Chapel Hill), and Cindy
Cohn and Marcia Hofmann (of the Electronic Frontier
Foundation) for their guidance and assistance in making
our findings available to NuCaptcha in a timely manner.

Sonia Chiasson holds a Canada Research Chair in Hu-
man Oriented Computer Security and Paul Van Oorschot
holds a Canada Research Chair in Authentication and
Computer Security; both acknowledge the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC) for funding the Chairs and Discovery Grants,
as well as funding from NSERC ISSNet. This work
is also supported by the National Science Foundation
(NSF) under award number 1148895.

Notes
1In the case where the foreground characters have varying appear-

ance, we simply use multiple modes.
2Readers can view videos of the Emerging Images concept [31]

at http://graphics.stanford.edu/~niloy/research/
emergence/emergence_image_siga_09.html.

3See the Security Features discussed at http://www.
nucaptcha.com/features/security-features, 2012.

USENIX Association 	 21st USENIX Security Symposium  63

4One participant opted to view only six challenges in each of the
Extended and Emerging variants. We count the remaining four as skips.

References
[1] L. V. Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA:

using hard AI problems for security. In Eurocrypt, pages 294–
311, 2003.

[2] A. Basso and F. Bergadano. Anti-bot strategies based on hu-
man interactive proofs. In P. Stavroulakis and M. Stamp, editors,
Handbook of Information and Communication Security, pages
273–291. Springer, 2010.

[3] E. Bursztein. How we broke the NuCaptcha video scheme
and what we proposed to fix it. See http://elie.im/
blog/security/how-we-broke-the-nucaptcha\
-video-scheme-and-what-we-propose-to-fix-it/,
Accessed March, 2012.

[4] E. Bursztein and S. Bethard. DeCAPTCHA: breaking 75% of
ebay audio CAPTCHAs. In Proceedings of the 3rd USENIX
Workshop on Offensive Technologies, 2009.

[5] E. Bursztein, S. Bethard, C. Fabry, J. C. Mitchell, and D. Juraf-
sky. How good are humans at solving CAPTCHAs? a large scale
evaluation. In IEEE Symposium on Security and Privacy, pages
399–413, 2010.

[6] E. Bursztein, R. Beauxis, H. Paskov, D. Perito, C. Fabry, and
J. C. Mitchell. The failure of noise-based non-continuous audio
CAPTCHAs. In IEEE Symposium on Security and Privacy, pages
19–31, 2011.

[7] E. Bursztein, M. Martin, and J. Mitchell. Text-based CAPTCHA
strengths and weaknesses. In Proceedings of the 18th ACM con-
ference on Computer and communications security, pages 125–
138, 2011.

[8] K. Chellapilla, K. Larson, P. Y. Simard, and M. Czerwinski. De-
signing human friendly human interaction proofs (hips). In ACM
Conference on Human Factors in Computing Systems, pages
711–720, 2005.

[9] K. Chellapilla, K. Larson, P. Y. Simard, and M. Czerwinski.
Building segmentation based human-friendly human interaction
proofs (hips). In Human Interactive Proofs, Second International
Workshop, pages 1–26, 2005.

[10] J. Cui, W. Zhang, Y. Peng, Y. Liang, B. Xiao, J. Mei, D. Zhang,
and X. Wang. A 3-layer Dynamic CAPTCHA Implementation.
In Workshop on Education Technology and Computer Science,
volume 1, pages 23–26, march 2010.

[11] J.-S. Cui, J.-T. Mei, X. Wang, D. Zhang, and W.-Z. Zhang. A
CAPTCHA Implementation Based on 3D Animation. In Inter-
national Conference on Multimedia Information Networking and
Security, volume 2, pages 179 –182, nov. 2009.

[12] J.-S. Cui, J.-T. Mei, W.-Z. Zhang, X. Wang, and D. Zhang. A
CAPTCHA Implementation Based on Moving Objects Recogni-
tion Problem. In International Conference on E-Business and
E-Government, pages 1277–1280, may 2010.

[13] J. J. DiCarlo and D. D. Cox. Untangling invariant object recog-
nition. Trends in Cognitive Sciences, 11:333–341, 2007.

[14] J. Driver and G. Baylis. Edge-assignment and figure-ground seg-
mentation in short-term visual matching. Cognitive Psychology,
31:248–306, 1996.

[15] M. Egele, L. Bilge, E. Kirda, and C. Kruegel. Captcha smug-
gling: hijacking web browsing sessions to create captcha farms.
In Proceedings of the ACM Symposium on Applied Computing,
pages 1865–1870, 2010.

[16] J. Elson, J. R. Douceur, J. Howell, and J. Saul. Asirra: a
CAPTCHA that exploits interest-aligned manual image catego-
rization. In Proceedings of the ACM Conference on Computer
and Communications Security, pages 366–374, 2007.

[17] M. Fischler and R. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis
and automated cartography. Comm. of the ACM, 24(6):381–395,
1981.

[18] N. Friedman and S. Russell. Image segmentation in video se-
quences: A probabilistic approach. University of California,
Berkeley, 94720, 1776.

[19] P. Golle. Machine learning attacks against the Asirra CAPTCHA.
In Proceedings of the ACM Conference on Computer and Com-
munications Security, pages 535–542, 2008.

[20] K. Grill-Spector and N. Kanwisher. Visual recognition: as soon
as you know it is there, you know what it is. Psychological Sci-
ence, 16(2):152–160, 2005.

[21] C. Harris and M. Stephens. A combined corner and edge de-
tection. In Proceedings of The Fourth Alvey Vision Conference,
volume 15, pages 147–151, 1988.

[22] J. M. G. Hidalgo and G. Alvarez. CAPTCHAs: An Artificial In-
telligence Application to Web Security. Advances in Computers,
83:109–181, 2011.

[23] A. Jain, M. Murty, and P. Flynn. Data clustering: a review. ACM
computing Surveys, 31(3):264–323, 1999.

[24] K. A. Kluever and R. Zanibbi. Balancing usability and security
in a video CAPTCHA. In Proceedings of the 5th Symposium on
Usable Privacy and Security, pages 1–14, 2009.

[25] J. Lazar, J. H. Feng, and H. Hochheiser. Research Methods in
Human-Computer Interaction. John Wiley and Sons, 2010.

[26] W.-H. Liao and C.-C. Chang. Embedding information within dy-
namic visual patterns. In Multimedia and Expo, IEEE Interna-
tional Conference on, volume 2, pages 895–898, june 2004.

[27] R. Lowry. Concepts and Applications of Inferential Statistics.
Vassar College, http://faculty.vassar.edu/lowry/
webtext.html, 1998.

[28] B. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision. In International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 674–679, 1981.

[29] D. Marr. Vision: a computational investigation into the human
representation and processing of visual information. W. H. Free-
man, San Francisco, 1982.

[30] D. Marr and T. Poggio. A computational theory of human stereo
vision. Proceedings of the Royal Society of London. Series B,
Biological Sciences, 204(1156):301–328, 1979.

[31] N. J. Mitra, H.-K. Chu, T.-Y. Lee, L. Wolf, H. Yeshurun, and
D. Cohen-Or. Emerging images. ACM Transactions on Graphics,
28(5), 2009.

[32] G. Mori and J. Malik. Recognizing objects in adversarial clutter:
breaking a visual CAPTCHA. In Computer Vision and Pattern
Recognition, volume 1, pages 134 –141, june 2003.

64  21st USENIX Security Symposium	 USENIX Association

[33] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M.
Voelker, and S. Savage. Re: CAPTCHAs-understanding
CAPTCHA-solving services in an economic context. In USENIX
Security Symposium, pages 435–462, 2010.

[34] M. Naor. Verification of a human in the loop or identification via
the Turing test, 1996.

[35] NuCaptcha. Whitepaper: NuCaptcha & Traditional Captcha,
2011. http://nucaptcha.com.

[36] A. Oliva and A. Torralba. The role of context in object recogni-
tion. Trends in Cognitive Sciences, 11(12):520 – 527, 2007.

[37] S. Ray and R. Turi. Determination of number of clusters in k-
means clustering and application in colour image segmentation.
In Proceedings of the International conference on advances in
pattern recognition and digital techniques, pages 137–143, 1999.

[38] M. Shirali-Shahreza and S. Shirali-Shahreza. Motion
CAPTCHA. In Conference on Human System Interactions, pages
1042–1044, May 2008.

[39] P. Simard, D. Steinkraus, and J. Platt. Best practices for convo-
lutional neural networks applied to visual document analysis. In
Proceedings of the Seventh International Conference on Docu-
ment Analysis and Recognition, volume 2, pages 958–962, 2003.

[40] Y. Soupionis and D. Gritzalis. Audio CAPTCHA: Existing so-
lutions assessment and a new implementation for voip telephony.
Computers & Security, 29(5):603–618, 2010.

[41] S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the
human visual system. Nature, 381(6582):520–522, 1996.

[42] S. Ullman. Computational studies in the interpretation of struc-
ture and motion: Summary and extension. In Human and Ma-
chine Vision. Academic Press, 1983.

[43] S. Ullman. High-Level Vision: Object Recognition and Visual
Cognition. The MIT Press, 1 edition, July 2000.

[44] A. Vedaldi and B. Fulkerson. Vlfeat: An open and portable li-
brary of computer vision algorithms. In Proceedings of the inter-
national conference on Multimedia, pages 1469–1472, 2010.

[45] P. A. Viola and M. J. Jones. Rapid object detection using a
boosted cascade of simple features. In Computer Vision and Pat-
tern Recognition, 2001.

[46] L. von Ahn, M. Blum, and J. Langford. Telling humans and com-
puters apart automatically. Commun. ACM, 47:56–60, February
2004.

[47] J. Yan and A. S. E. Ahmad. Breaking visual CAPTCHAs with
naive pattern recognition algorithms. In ACSAC, pages 279–291,
2007.

[48] J. Yan and A. S. E. Ahmad. A low-cost attack on a microsoft
CAPTCHA. In ACM Conference on Computer and Communica-
tions Security, pages 543–554, 2008.

[49] J. Yan and A. S. E. Ahmad. Usability of CAPTCHAs or usability
issues in CAPTCHA design. In SOUPS, pages 44–52, 2008.

[50] J. Yan and A. El Ahmad. CAPTCHA robustness: A security
engineering perspective. Computer, 44(2):54 –60, feb. 2011.

[51] J. Yan and M. Pollefeys. Articulated motion segmentation using
RANSAC with priors. Dynamical Vision, pages 75–85, 2007.

[52] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey.
ACM Comput. Surv., 38, December 2006.

[53] B. B. Zhu, J. Yan, Q. Li, C. Yang, J. Liu, N. Xu, M. Yi, and
K. Cai. Attacks and design of image recognition CAPTCHAs.
In ACM Conference on Computer and Communications Security,
pages 187–200, 2010.

A Parameters for video generation
Similar to NuCaptcha’s videos, our sequences have letters that move
across a background scene with constant velocity in the horizontal di-
rection, and move up and down harmonically (i.e., y(t) = A∗ sin(ωt +
ψ), y is the vertical position of the letter, t is the frame id, and A,ω,ψ
are adjustable parameters). The horizontal distance between two letters
is a function of their average width. If their widths are width1,width2,
the distance between their centers are set to be α ∗ width1+width2

2 , where
α is an adjustable parameter that indicates how much two letters over-
lap. Our letters also rotate and loop around. The angleθ to which a
letter rotates is also decided by a sin function θ = θ0 ∗ sin(ωθ t +ψθ),
where θ0,ωθ ,ψθ are adjustable parameters. For the standard case, we
set the parameters the same as in NuCaptcha’s videos. We adjust these
parameters based on the type of defenses we explore (in Section 5.2).

B Comments from User Study
Table 2 highlights some of the free-form responses written on the ques-
tionnaire used in our study.

Variant Comments
Standard - User friendly

- It was too easy
- Much easier than traditional captchas

Extended - My mother would not be able to solve these
- Giant Pain in the Butt! Sheer mass of text was
overwhelming and I got lost many times
- Too long! I would prefer a shorter text
- It was very time consuming, and is very prone to
mistakes

Overlapping - Letters too bunched – several loops needed to de-
cipher
- Takes longer because I had to wait for the letter to
move a bit so I can see more of it
- Still had a dizzying affect. Not pleasant
- Some characters were only partially revealed, ‘Y’
looked like a ‘V’

Semi-
Transparent

- Tree background is unreadable, any non-solid
background creates too much interference
- With some backgrounds I almost didn’t realize
there were red letters
- It was almost faded and very time consuming. I
think I made more mistakes in this mechanism

Emerging - Not that complicated
- I’d feel dizzy after staring at it for more than 1 min
- It was hideous! Like an early 2000s website. But
it did do the job. It made my eyes feel ‘fuzzy’ after
a while
- It was good, better than the challenges with line
through letters

Table 2: Sample participant comments for each variant

USENIX Association 	 21st USENIX Security Symposium  65

How Does Your Password Measure Up?
The Effect of Strength Meters on Password Creation

Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass,
Michelle L. Mazurek, Timothy Passaro, Richard Shay, Timothy Vidas,

Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor
Carnegie Mellon University

{bur, pgage, sarangak, jlee, mmaass, mmazurek, tpassaro,
rshay, tvidas, lbauer, nicolasc, lorrie}@cmu.edu

Abstract

To help users create stronger text-based passwords, many
web sites have deployed password meters that provide
visual feedback on password strength. Although these
meters are in wide use, their effects on the security and
usability of passwords have not been well studied.

We present a 2,931-subject study of password creation
in the presence of 14 password meters. We found that
meters with a variety of visual appearances led users to
create longer passwords. However, significant increases
in resistance to a password-cracking algorithm were only
achieved using meters that scored passwords stringently.
These stringent meters also led participants to include
more digits, symbols, and uppercase letters.

Password meters also affected the act of password cre-
ation. Participants who saw stringent meters spent longer
creating their password and were more likely to change
their password while entering it, yet they were also more
likely to find the password meter annoying. However,
the most stringent meter and those without visual bars
caused participants to place less importance on satisfy-
ing the meter. Participants who saw more lenient meters
tried to fill the meter and were averse to choosing pass-
words a meter deemed “bad” or “poor.” Our findings can
serve as guidelines for administrators seeking to nudge
users towards stronger passwords.

1 Introduction

While the premature obituary of passwords has been
written time and again [22, 25], text passwords remain
ubiquitous [15]. Unfortunately, users often create pass-
words that are memorable but easy to guess [2, 25, 26].
To combat this behavior, system administrators em-
ploy a number of measures, including system-assigned
passwords and stringent password-composition policies.
System-assigned passwords can easily be made difficult
to guess, but users often struggle to remember them [13]

or write them down [28]. Password-composition poli-
cies, sets of requirements that every password on a sys-
tem must meet, can also make passwords more difficult
to guess [6, 38]. However, strict policies can lead to user
frustration [29], and users may fulfill requirements in
ways that are simple and predictable [6].

Another measure for encouraging users to create
stronger passwords is the use of password meters. A
password meter is a visual representation of password
strength, often presented as a colored bar on screen.
Password meters employ suggestions to assist users in
creating stronger passwords. Many popular websites,
from Google to Twitter, employ password meters.

Despite their widespread use, password meters have
not been well studied. This paper contributes what we
believe to be the first large-scale study of what effect, if
any, password meters with different scoring algorithms
and visual components, such as color and size, have on
the security and usability of passwords users create.

We begin by surveying password meters in use on pop-
ular websites. Drawing from our observations, we create
a control condition without a meter and 14 conditions
with meters varying in visual features or scoring algo-
rithm. The only policy enforced is that passwords con-
tain at least eight characters. However, the meter nudges
the user toward more complex or longer passwords.

We found that using any of the tested password meters
led users to create passwords that were statistically sig-
nificantly longer than those created without a meter. Me-
ters that scored passwords more stringently led to even
longer passwords than a baseline password meter. These
stringent meters also led participants to include a greater
number of digits, symbols, and uppercase letters.

We also simulated a state-of-the-art password-
cracking algorithm [38] and compared the percentage of
passwords cracked in each condition by adversaries mak-
ing 500 million, 50 billion, and 5 trillion guesses. Pass-
words created without a meter were cracked at a higher
rate than passwords in any of the 14 conditions with me-

66  21st USENIX Security Symposium	 USENIX Association

ters, although most differences were not statistically sig-
nificant. Only passwords created in the presence of the
two stringent meters with visual bars were cracked at a
significantly lower rate than those created without a me-
ter. None of the conditions approximating meters we
observed in the wild significantly increased cracking re-
sistance, suggesting that currently deployed meters are
not sufficiently aggressive. However, we also found that
users have expectations about good passwords and can
only be pushed so far before aggressive meters seem to
annoy users rather than improve security.

We next review related work and provide background
in Section 2. We then survey popular websites’ pass-
word meters in Section 3 and present our methodology
in Section 4. Section 5 contains results related to pass-
word composition, cracking, and creation, while Sec-
tion 6 summarizes participants’ attitudes. We discuss
these findings in Section 7 and conclude in Section 8.

2 Related Work

Prior work related to password meters has focused on
password scoring rather than how meters affect the se-
curity and usability of passwords users create. We sum-
marize this prior work on password scoring, and we then
discuss more general work on the visual display of in-
dicators. In addition, we review work analyzing security
and usability tradeoffs in password-composition policies.
Finally, we discuss the “guessability” metric we use to
evaluate password strength.

2.1 Password Meters
Algorithms for estimating password strength have been
the focus of prior work. Sotirakopoulos et al. investi-
gated a password meter that compares the strength of a
user’s password with those of other users [31]. Castelluc-
cia et al. argued that traditional rule-based password me-
ters lack sufficient complexity to guide users to diverse
passwords, and proposed an adaptive Markov algorithm
that considers n-gram probabilities in training data [7].
In contrast, we use simple rule-based algorithms to esti-
mate strength, focusing on how meters affect the usabil-
ity and security of the passwords users create. To our
knowledge, there has been no formal large-scale study of
interface design for password meters.

Many password meters guide users toward, but do not
strictly require, complex passwords. This approach re-
flects the behavioral economics concept of nudging or
soft paternalism [24, 34]. By helping users make better
decisions through known behavioral patterns and biases,
corporations, governments, and other entities have in-
duced a range of behavioral changes from investing more
toward retirement to eating more fruit.

2.2 Visual Display of Indicators
While the literature on visual design for password meters
is sparse, there is a large corpus of work in information
design generally. For instance, researchers have studied
progress indicators in online questionnaires, finding that
indicators can improve user experience if the indicator
shows faster progress than a user anticipated. However,
progress that lags behind a user’s own expectations can
cause the user to abandon the task at hand [8].

Much of the past work on small meters has focused on
physical and virtual dashboards [11]. Information design
has also been studied in consumer-choice situations, such
as nutrition labels [19] and over-the-counter drug labels,
focusing on whitespace, font size, and format [40].

2.3 Password-Composition Policies
In this paper, we examine security and usability tradeoffs
related to nudging users with password meters, rather
than imposing strict requirements. Significant work has
been done evaluating tradeoffs for enforced password-
composition policies.

Without intervention, users tend to create simple
passwords [12, 23, 33, 41]. Many organizations use
password-composition policies that force users to select
more complex passwords to increase password strength.
However, users are expected to conform to these poli-
cies in predictable ways, potentially reducing password
strength [6]. Although prior work has shown that
password-composition policies requiring more charac-
ters or more character classes can improve resistance to
automated guessing attacks, many passwords that meet
common policies remain vulnerable [18,26,37,38]. Fur-
thermore, strict policies can frustrate users, inhibit their
productivity, and lead users to write their passwords
down [1, 14, 16, 21, 32].

2.4 Measuring Guessability
In this work, we use “guessability,” or resistance to
automated password-cracking attacks, to evaluate the
strength of passwords. Guessability cannot be measured
as a single statistic for a set of passwords; instead, a given
algorithm, with a given set of parameters and training,
will crack some percentage of the passwords after a given
number of guesses. Weir et al. argue that guessability is
a more accurate measure of password strength than the
more commonly used entropy metric [38]. Dell’Amico
et al. [9], Bonneau [3], and Castelluccia et al. [7] have
also used guessability as a metric. We measure guess-
ability using a guess-number calculator, which computes
how many guesses a given cracking algorithm will re-
quire to crack a specific password without running the
algorithm itself [18].

2

USENIX Association 	 21st USENIX Security Symposium  67

Figure 1: A categorized assortment of the 46 unique indicators we found across Alexa’s 100 most visited global sites.

3 Password Meters “In the Wild”

To understand how password meters are currently used,
we examined Alexa’s 100 most visited global sites (col-
lected January 2012). Among these 100 sites, 96 allowed
users to register and create a password. Of these 96, 70
sites (73%) gave feedback on a user’s password based ei-
ther on its length or using a set of heuristics. The remain-
ing 26 sites (27%) provided no feedback. In some cases,
all sites owned by the same company used the same me-
ter; for example, Google used the same meter on all 27 of
its affiliates that we examined. In other cases, the meters
varied; for example, ebay.de used a different mecha-
nism than ebay.com. Removing duplicate indicators and
sites without feedback, there were 46 unique indicators.
Examples of these indicators are shown in Figure 1.

Indicators included bar-like meters that dis-
played strength (23, 50%); checkmark-or-x systems
(19, 41.3%); and text, often in red, indicating invalid
characters and too-short passwords (10, 21.2%). Sites
with bar-like meters used either a progress-bar metaphor
(13, 56.5%) or a segmented-box metaphor (8, 34.8%).
Two sites presented a bar that was always completely
filled but changed color (from red to green or blue)
as password complexity increased. Three other sites
used meters colored with a continuous gradient that was
revealed as users typed. Sites commonly warned about
insecure passwords using the words “weak” and “bad.”

We examined scoring mechanisms both by reading
the Javascript source of the page, when available, and
by testing sample passwords in each meter. Across all

meters, general scoring categories included password
length, the use of numbers, uppercase letters, and spe-
cial characters, and the use of blacklisted words. Most
meters updated dynamically as characters were typed.

Some meters had unique visual characteristics. Twit-
ter’s bar was always green, while the warning text
changed from red to green. Twitter offered phrases such
as “Password could be more secure” and “Password is
Perfect.” The site mail.ru had a three-segment bar with
key-shaped segments, while rakuten.co.jp had a me-
ter with a spring-like animation.

We found some inconsistencies across domains. Both
yahoo.com and yahoo.co.jp used a meter with four
segments; however, the scoring algorithm differed, as
shown in Figure 1. Google used the same meter across
all affiliated sites, yet its meter on blogger.com scored
passwords more stringently.

4 Methodology

We conducted a two-part online study of password-
strength meters, recruiting participants through Ama-
zon’s Mechanical Turk crowdsourcing service (MTurk).
Participants, who were paid 55 cents, needed to indi-
cate that they were at least 18 years old and use a web
browser with JavaScript enabled. Participants were as-
signed round-robin to one of 15 conditions, detailed in
Section 4.2. We asked each participant to imagine that
his or her main email provider had changed its password
requirements, and that he or she needed to create a new
password. We then asked the participant to create a pass-

3

68  21st USENIX Security Symposium	 USENIX Association

word using the interface shown in Figure 2.
Passwords needed to contain at least eight characters,

but there were no other requirements. The participant
was told he or she would be asked to return in a few days
to log in with the password. He or she then completed a
survey about the password-creation experience and was
asked to reenter his or her password at the end.

Two days later, participants received an email through
MTurk inviting them to return for a bonus payment of
70 cents. Participants were asked to log in again with
their password and to take another survey about how they
handled their password.

4.1 Password-Scoring Algorithms
Password-strength meters utilize a scoring function to
judge the strength of a password, displaying this score
through visual elements. We assigned passwords a score
using heuristics including the password’s length and the
character classes it contained. While alternative ap-
proaches to scoring have been proposed, as discussed in
Section 2, judging a password only on heuristics obviates
the need for a large, existing dataset of passwords and
can be implemented quickly in Javascript. These heuris-
tics were based on those we observed in the wild.

In our scoring system, a score of 0 points represented
a blank password field, while a score of 100 points filled
the meter and displayed the text “excellent.” We an-
nounced our only password-composition policy in bold
text to the participant as an “8-character minimum” re-
quirement. However, we designed our scoring algorithm
to assign passwords containing eight lowercase letters a
score of 32, displaying “bad.” To receive a score of 100
in most conditions, participants needed to meet one of
two policies identified as stronger in the literature [6,21],
which we term Basic16 and Comprehensive8. Unless
otherwise specified by the condition, passwords were as-
signed the larger of their Basic16 and Comprehensive8
scores. Thus, a password meeting either policy would
fill the meter. Each keystroke resulted in a recalculation
of the score and update of the meter.

The Basic16 policy specifies that a password contain
at least 16 characters, with no further restrictions. In
our scoring system, the first 8 characters entered each re-
ceived 4 points, while all subsequent characters received
8 points. Thus, passwords such as aaaaaaaaaaaaaaaa,
WdH5$87T5c#hgfd&, and passwordpassword would all
fill the meter with scores of exactly 100 points.

The second policy, Comprehensive8, specifies that a
password contain at least eight characters, including an
uppercase letter, a lowercase letter, a digit, and a symbol.
Furthermore, this password must not be in the OpenWall
Mangled Wordlists, which is a cracking dictionary.1 In

1http://www.openwall.com/wordlists/

Figure 2: An example of the password creation page. The
password meter’s appearance and scoring varied by condition.

our scoring system, 4 points were awarded for each char-
acter in the password, and an additional 17 points were
awarded each for the inclusion of an uppercase charac-
ter, a digit, and a symbol; 17 points were deducted if
the password contained no lowercase letters. A second
unique digit, symbol, or uppercase character would add
an additional 8 points, while a third would add an addi-
tional 4 points. Passing the dictionary check conferred
17 points. Therefore, passwords such as P4$sword,
gT7fas#g, and N!ck1ebk would fill the meter with a score
of exactly 100. In addition, passwords that were hy-
brids of the two policies, such as a 13-character password
meeting Comprehensive8 except containing no symbols,
could also fill the meter.

4.2 Conditions
Our 15 conditions fall into four main categories. The first
category contains the two conditions to which we com-
pared the others: having no password meter and having
a baseline password meter. Conditions in the next cate-
gory differ from the baseline meter in only one aspect of
visual presentation, but the scoring remains the same. In
contrast, conditions in the third category have the same
visual presentation as the baseline meter, but are scored
differently. Finally, we group together three conditions
that differ in multiple dimensions from the baseline me-
ter. In addition, we collectively refer to half-score, one-
third-score, text-only half-score, and text-only half-score
as the stringent conditions throughout the paper. Each
participant was assigned round-robin to one condition.

4.2.1 Control Conditions

No meter. This condition, our control, uses no visual
feedback mechanism. 26 of the Alexa Top 100 web-
sites provided no feedback on password strength, and
this condition allows us to isolate the effect of the visual
feedback in our other conditions.

4

USENIX Association 	 21st USENIX Security Symposium  69

Baseline meter. This condition represents our default
password meter. The score is the higher of the scores de-
rived from comparing the password to the Basic16 and
Comprehensive8 policies, where a password meeting ei-
ther policy fills the bar. The color changes from red to
yellow to green as the score increases. We also provide
a suggestion, such as “Consider adding a digit or making
your password longer.” This condition is a synthesis of
meters we observed in the wild.

4.2.2 Conditions Differing in Appearance

Three-segment. This condition is similar to baseline
meter, except the continuously increasing bar is replaced
with a bar with three distinct segments, similar to meters
from Google and Mediafire.

Green. This condition is similar to baseline meter,
except instead of changing color as the password score
increases, the bar is always green, like Twitter’s meter.

Tiny. This condition is similar to baseline meter, but
with the meter’s size decreased by 50% horizontally and
60% vertically, similar to the size of Google’s meter.

Huge. This condition is similar to baseline meter, but
with the size of the meter increased by 50% horizontally
and 120% vertically.

No suggestions. This condition is similar to baseline
meter, but does not offer suggestions for improvement.

Text-only. This condition contains all of the text of
baseline meter, but has no visual bar graphic.

4.2.3 Conditions Differing in Scoring

Half-score. This condition is similar to baseline me-
ter, except that the password’s strength is displayed as if
it had received half the rating. A password that would fill
the baseline meter meter only fills this condition’s me-
ter half way, allowing us to study nudging the participant
toward a stronger password. A password with 28 charac-
ters, or one with 21 characters that included five different
uppercase letters, five different digits, and five different
symbols, would fill this meter.

One-third-score. This condition is similar to half-
score, except that the password’s strength is displayed
as if it had received one-third the rating. A password that
would fill the baseline meter meter only fills one-third of
this condition’s meter. A password containing 40 char-
acters would fill this meter.

Nudge-16. This condition is similar to baseline me-
ter, except that only the password score for the Basic16
policy is calculated, allowing us to examine nudging the
user toward a specific password policy.

Nudge-comp8. As with nudge-16, this condition is
similar to baseline meter, except that only the password
score for Comprehensive8 is calculated.

4.2.4 Conditions Differing in Multiple Ways

Text-only half-score. As with text-only, this condition
contains all of the text of baseline meter, yet has no bar.
Furthermore, like half-score, the password’s strength is
displayed as if it had received only half the score.

Bold text-only half-score. This condition mirrors text-
only half-score, except the text is displayed in bold.

Bunny. In place of a bar, the password score is re-
flected in the speed at which an animated Bugs Bunny
dances. When the score is 0, he stands still. His speed in-
creases with the score; at a score of 100, he dances at 20
frames per second; at a score of 200, he reaches his max-
imum of 50 frames per second. This condition explores
a visual feedback mechanism other than a traditional bar.

4.3 Mechanical Turk
Many researchers have examined using MTurk workers
for human-subjects research and found it to be a conve-
nient source of high-quality data [5, 10, 20, 35]. MTurk
enables us to have a high volume of participants cre-
ate passwords, on a web site we control, with better
population diversity than would be available in an on-
campus laboratory environment [5]. MTurk workers are
also more educated, more technical, and younger than
the general population [17].

4.4 Statistical Tests
All statistical tests use a significance level of α = .05.
For each variable, we ran an omnibus test across all con-
ditions. We ran pairwise contrasts comparing each con-
dition to our two control conditions, no meter and base-
line meter. In addition, to investigate hypotheses about
the ways in which conditions varied, we ran planned con-
trasts comparing tiny to huge, nudge-16 to nudge-comp8,
half-score to one-third-score, text-only to text-only half-
score, half-score to text-only half-score, and text-only
half-score to bold text-only half-score. If a pairwise con-
trast is not noted as significant in the results section, it
was not found to be statistically significant. To control
for Type I error, we ran contrasts only where the omnibus
test was significant. Further, we corrected contrasts for
multiple testing, accounting for the previous contrasts.
We applied multiple testing correction to the p-values of
the omnibus tests when multiple tests were run on similar
variables, such as the Likert response variables measur-
ing user attitudes.

We analyzed quantitative data using Kruskal-Wallis
for the omnibus cases and Mann-Whitney U for the pair-
wise cases. These tests, identified in our results as K-W
and MWU, respectively, are analogues of the ANOVA
and t-tests without the assumption of normality. We ana-
lyze categorical data for equality of proportions with χ2

5

70  21st USENIX Security Symposium	 USENIX Association

tests for both the omnibus and pairwise cases. All multi-
ple testing correction used the Holm-Bonferroni method,
indicated as HC throughout the paper.

4.5 Calculating Guess Numbers
We evaluated the strength of passwords created in each
condition using a guess-number calculator (see Sec-
tion 2.4), allowing us to approximate passwords’ resis-
tance to automated cracking. Using a password guess
calculator similar to that used by Kelley et al. [18], we
calculate the guessability of passwords in three different
attack scenarios. This calculator simulates the password-
cracking algorithm devised by Weir et al. [39], which
makes guesses based on the structures, digits, symbols,
and alphabetic strings in its training data. The calculator
was set to only consider guesses with minimum length 8.
For training, we used several “public” datasets, includ-
ing leaked sets of cracked passwords. In Section 7.2, we
discuss ethical issues of using leaked data.

Training data included 40 million passwords from the
OpenWall Mangled Wordlist,2 32 million leaked pass-
words from the website RockYou [36], and about 47,000
passwords leaked from MySpace [27]. We augmented
the training data with all strings harvested from the
Google Web Corpus,3 resulting in a dictionary of 14 mil-
lion alphabetic strings.

In the weak attacker scenario, we consider an attacker
with limited computational resources who can make 500
million (5× 108) guesses. In the medium attacker sce-
nario, we consider an attacker with greater resources who
can make 50 billion (5× 1010) guesses. Finally, in the
strong attacker scenario, we examine what percentage
of passwords would have been guessed within the first
5 trillion (5× 1012) guesses. John the Ripper4, a popu-
lar password cracker, can crack 500 million hashed pass-
words in about an hour on a modern desktop machine.
Five trillion guesses would require a botnet of several
hundred machines working for several days.

5 Results

From January to April 2012, 2,931 people completed
the initial task, and 2,016 of these subjects returned
for the second part of the study. We begin our evalua-
tion by comparing characteristics of passwords created in
each condition, including their length and the character
classes used. Next, we simulate a cracking algorithm to
evaluate what proportion of passwords in each condition
would be cracked by adversaries of varying strength. We

2http://www.openwall.com/wordlists/
3http://googleresearch.blogspot.com/2006/08/

all-our-n-gram-are-belong-to-you.html
4http://www.openwall.com/john/

then examine the usability of these passwords, followed
by data about the process of password creation. Finally,
we discuss participant demographics and potential inter-
action effects. In Section 6, we provide additional results
on participants’ attitudes and reactions.

5.1 Password Characteristics
The presence of almost any password meter significantly
increased password length. In conditions that scored
passwords stringently, the meter also increased the use of
digits, uppercase letters, and symbols. The length of the
passwords varied significantly across conditions, as did
the number of digits, uppercase characters, and symbols
contained in each password (HC K-W, p<.001). Table 1
displays the characteristics of passwords created.

Length The presence of any password meter ex-
cept text-only resulted in significantly longer passwords.
Passwords created with no meter had a mean length of
10.4, and passwords created in the text-only condition
had a mean length of 10.9, which was not significantly
different. Passwords created in the thirteen other condi-
tions with meters, with mean length ranging from 11.3
to 14.9 characters, were significantly longer than in no
meter (HC MWU, p≤.014).

Furthermore, passwords created in half-score, with
mean length 14.9, and in nudge-16, with mean length
13.0, were significantly longer than those created in
baseline meter, which had mean length 12.0 (HC MWU,
p≤.017). On the other hand, passwords created in text-
only, with mean length 10.9, were significantly shorter
than in baseline meter (HC MWU, p=.015). Although
passwords created in one-third-score had mean length
14.3, they had a high standard deviation (8.1) and did
not differ significantly from baseline meter.

Digits, Uppercase Characters, and Symbols Com-
pared to no meter, passwords in five conditions contained
significantly more digits: half-score, one-third-score,
nudge-comp8, bold text-only half-score, and bunny (HC
MWU, p<.028). In each of these five conditions, pass-
words contained a mean of 3.2 to 3.4 digits, compared to
2.4 digits in no meter. The mean number of digits in all
other conditions ranged from 2.5 to 3.1.

In three of these conditions, half-score, one-third-
score, and bold text-only half-score, passwords on av-
erage contained both more uppercase letters and more
symbols (HC MWU, p<.019) than in no meter. In these
three conditions, the mean number of uppercase charac-
ters ranged from 1.4 to 1.5 and the mean number of sym-
bols ranged from 0.8 to 1.0, whereas passwords created
in no meter contained a mean of 0.8 uppercase charac-
ters and 0.3 symbols. Furthermore, passwords created in

6

USENIX Association 	 21st USENIX Security Symposium  71

Table 1: A comparison across conditions of the characteristics of passwords created: the length, number of digits,
number of uppercase letters, and number of symbols. For each metric, we present the mean, the standard deviation
(SD), and the median. Conditions that differ significantly from no meter are indicated with an asterisk (*). Conditions
that differ significantly from baseline meter are indicated with a dagger (†).

Metric no
m

et
er

(*
)

ba
se

lin
e

m
et

er
(†

)

th
re

e-
se

gm
en

t

gr
ee

n

tin
y

hu
ge

no
su

gg
es

tio
n

te
xt

-o
nl

y

ha
lf

-s
co

re

on
e-

th
ir

d-
sc

or
e

nu
dg

e-
16

nu
dg

e-
co

m
p8

te
xt

-o
nl

y
ha

lf

bo
ld

te
xt

-o
nl

y
ha

lf

bu
nn

y

Length * * * * * * † *,† * *,† * * * *
Mean 10.4 12.0 11.5 11.3 11.4 11.6 11.4 10.9 14.9 14.3 13.0 11.6 12.3 13.0 11.2
SD 2.9 3.7 3.8 3.6 3.2 3.3 3.5 3.2 7.3 8.1 3.7 3.5 6.1 5.5 3.1

Median 9 11 10 10 11 11 11 10 12.5 12 12 11 10.5 11 10

Digits * * * * *
Mean 2.4 2.7 2.8 2.6 2.7 2.5 3.0 2.5 3.3 3.4 3.2 3.3 3.1 3.2 3.3
SD 2.8 2.6 2.6 2.5 2.3 2.2 2.8 2.3 3.0 3.2 3.4 2.8 3.5 3.0 3.0

Median 2 2 2 2 3 2 2 2 3 3 3 3 2 3 3

Uppercase * * *,†
Mean 0.8 0.8 0.9 0.8 0.6 1.0 0.7 0.9 1.5 1.4 0.5 0.8 1.2 1.5 0.8
SD 2.0 1.8 1.7 2.0 1.4 2.3 1.5 1.7 3.4 3.2 1.3 1.5 2.2 2.5 1.5

Median 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5

Symbols * * * *
Mean 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.8 1.0 0.5 0.5 0.6 0.9 0.4
SD 0.7 1.0 0.8 1.1 0.7 0.8 0.8 0.7 1.6 2.7 1.3 1.0 1.2 1.7 0.7

Median 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

text-only half-score had significantly more symbols, 0.6
on average, than no meter, although the mean number of
digits did not differ significantly.

While most participants used digits in their passwords,
uppercase characters and symbols were not as common.
In nearly all conditions, the majority of participants did
not use any uppercase characters in their password de-
spite the meter’s prompts to do so. In addition, fewer
than half of participants in any condition used symbols.

5.2 Password Guessability

We evaluated the strength of passwords based on their
“guessability,” which is the number of guesses an adver-
sary would need to guess that password, as detailed in
Section 2.4. We considered three adversaries: a weak
attacker with limited resources who makes 500 million
(5×108) guesses, a medium attacker who makes 50 bil-
lion (5×1010) guesses, and a strong attacker who makes
5 trillion (5×1012) guesses. Table 2 and Figure 3 present
the proportion of passwords cracked by condition.

We found that all conditions with password meters ap-
peared to provide a small advantage against attackers of
all three strengths. In all fourteen conditions with me-
ters, the percentage of passwords cracked by all three
adversaries was always smaller than in no meter, al-
though most of these differences were not statistically

significant. The only substantial increases in resistance
to cracking were provided by the two stringent meters
with visual bars, half-score and one-third-score.

A weak adversary cracked 21.0% of passwords in the
no meter condition, which was significantly larger than
the 5.8% of passwords cracked in the half-score condi-
tion and the 4.7% of passwords cracked in one-third-
score (HC χ2, p<0.001). Furthermore, only 7.8% of
passwords were cracked in bunny, which was also signif-
icantly less than in no meter (HC χ2, p=0.008). Between
9.5% and 15.3% of passwords were cracked in all other
conditions with meters, none of which were statistically
significantly different than no meter.

In the medium adversary scenario, significantly more
passwords were cracked in the no meter condition than
in the half-score and one-third-score conditions (HC χ2,
p≤0.017). 35.4% of the passwords in the no meter con-
dition were cracked, compared with 19.5% of passwords
in half-score and 16.8% of passwords in one-third-score.
None of the other conditions differed significantly from
no meter; between 23.7% and 34.4% of passwords were
cracked in these conditions.

The half-score and one-third-score meters were again
significantly better than no meter against a strong adver-
sary. In no meter, 46.7% of passwords were cracked,
compared with 26.3% in half-score and 27.9% in one-
third-score (HC χ2, p≤0.005). Between 33.7% and

7

72  21st USENIX Security Symposium	 USENIX Association

46.2% of passwords in all other conditions were cracked.
After the completion of the experiment, we ran ad-

ditional conditions to explore how meters consisting of
only a visual bar, without accompanying text, would
compare to text-only conditions and conditions contain-
ing both text and visual features. Since this data was
collected two months after the rest of our data, we do
not include it in our main analyses. However, passwords
created in these conditions performed similarly to equiv-
alent text-only conditions and strictly worse than equiv-
alent conditions containing both a bar and text. For in-
stance, a strong adversary cracked 48.3% of passwords
created with the baseline meter bar without its accom-
panying text and 33.0% of passwords created with the
half-score bar without its accompanying text.

5.3 Password Memorability and Storage

To gauge the memorability of the passwords subjects cre-
ated, we considered the proportion of subjects who re-
turned for the second day of our study, the ability of par-
ticipants to enter their password both minutes after cre-
ation and a few days after creation, and the number of
participants who either reported or were observed stor-
ing or writing down their password.

2,016 of our participants, 68.8%, returned and com-
pleted the second part of the study. The proportion
of participants who returned did not differ significantly
across conditions (χ2, p=0.241).

Between the 68.8% of participants who returned for
the second part of the study and the 31.2% of partici-
pants who did not, there were no significant differences
in the length of the passwords created, the number of dig-
its their password contained, or the percentage of pass-
words cracked by a medium or strong attacker. However,
the weak attacker cracked a significantly higher percent-
age of passwords created by subjects who did not return
for the second part of the study than passwords created
by participants who did return (HC χ2, p<.001). 14.5%
of passwords created by subjects who did not return and
9.5% of passwords created by subjects who did return
were cracked. Participants who returned for the second
part of the study also had more uppercase letters and
more symbols in their passwords (K-W, p<.001). Partic-
ipants who returned had a mean of 1.0 uppercase letters
and 0.6 symbols in their passwords, while those who did
not had a mean of 0.8 uppercase letters and 0.5 symbols.

Participants’ ability to recall their password also did
not differ significantly between conditions, either min-
utes after creating their password (χ2, p=0.236) or at
least two days later (χ2, p=0.250). In each condition,
93% or more of participants were able to enter their pass-
word correctly within three attempts minutes after creat-
ing the password. When they received an email two days

later to return and log in with their password, between
77% and 89% of the subjects in each condition were able
to log in successfully within the first three attempts.

As an additional test of password memorability, we
asked participants if they had written their password
down, either electronically or on paper, or if they had
stored their password in their browser. Furthermore, we
captured keystroke data as they entered their password,
which we examined for evidence of pasting in the pass-
word. If a participant answered affirmatively to either
question or pasted the password into the password field,
he or she was considered as having stored the password.
Overall, 767 participants (38.0% of those who returned)
reported that they had stored or written down their pass-
word. 78 of these 767 participants were also observed
to have pasted in their password. An additional 32 par-
ticipants (1.6%) were observed pasting in their password
even thought they had said they had not stored it.

The proportion of participants storing their passwords
did not differ across conditions (χ2, p=0.364). In each
condition, between 33% and 44% of participants were
observed pasting in a password or reported writing down
or storing their password.

5.4 Password Creation Process

Based on analysis of participants’ keystrokes during
password creation, we found that participants behaved
differently in the presence of different password meters.
Password meters seemed to encourage participants to
reach milestones, such as filling the meter or no longer
having a “bad” or “poor” password. The majority of
participants who saw the most stringent meters changed
their mind partway into password creation, erasing what
they had typed and creating a different password. Table 3
presents this numerical data about password creation.

Most participants created a new password for this
study, although some participants reused or modified an
existing password. Between 57% and 71% of subjects
in each condition (63% overall) reported creating an en-
tirely new password, between 15% and 26% (21% over-
all) reported modifying an existing password, between
9% and 19% (14% overall) reported reusing an existing
password, and fewer than 4% (2% overall) used some
other strategy. The proportion of participants reporting
each behavior did not vary significantly across condi-
tions (χ2, p=.876).

Participants in nudge-16, bunny, and all four strin-
gent conditions took longer to create their password than
those in no meter (HC χ2, p<.001). The mean pass-
word creation time, measured from the first to the last
keystroke in the password box, was 19.9 seconds in
the no meter condition. It was 60.8 seconds for half-
score, 59.8 seconds for one-third-score, 57.1 seconds

8

USENIX Association 	 21st USENIX Security Symposium  73

Table 2: A comparison of the percentage of passwords in each condition cracked by weak (5×108 guesses), medium
(5×1010 guesses), and strong adversaries (5×1012 guesses). Each cell contains the percentage of passwords cracked
in that threat model. Conditions that differ significantly from no meter are indicated with an asterisk (*).

Adversary no
m

et
er

(*
)

ba
se

lin
e

m
et

er
(†

)

th
re

e-
se

gm
en

t

gr
ee

n

tin
y

hu
ge

no
su

gg
es

tio
n

te
xt

-o
nl

y

ha
lf

-s
co

re

on
e-

th
ir

d-
sc

or
e

nu
dg

e-
16

nu
dg

e-
co

m
p8

te
xt

-o
nl

y
ha

lf

bo
ld

te
xt

-o
nl

y
ha

lf

bu
nn

y

Weak * * *
% Cracked 21.0 11.1 10.3 12.0 10.7 9.6 11.0 15.1 5.8 4.7 15.3 10.3 9.5 11.4 7.8

Medium * *
% Cracked 35.4 27.2 26.6 30.0 30.0 31.0 25.9 34.4 19.5 16.8 25.0 23.7 24.2 25.7 28.1

Strong * *
% Cracked 46.7 39.4 39.4 45.5 42.1 41.6 39.3 46.2 26.3 27.9 33.7 39.2 34.7 35.6 40.1

0%

10%

20%

30%

40%

50%

1E+04 1E+05 1E+06 1E+07 1E+08 1E+09 1E+10 1E+11 1E+12 1E+13

Pe
rc

en
ta

ge
 o

f P
as

sw
or

ds
 C

ra
ck

ed

Number of Guesses

no meter – 46.7%
text-only – 46.2%
green – 45.5%
tiny – 42.1%
huge – 41.6%
bunny – 40.1%
baseline meter – 39.4%
three-segment – 39.4%
no suggestions – 39.3%
nudge-comp8 – 39.2%
bold text-only half – 35.6%
text-only half – 34.7%
nudge-16 – 33.7%
one-third-score – 27.9%
half-score – 26.3%

Weak Medium Strong
5E+8 5E+10 5E+12

Figure 3: This graph contrasts the percentage of passwords that were cracked in each condition. The x-axis, which is
logarithmically scaled, indicates the number of guesses made by an adversary, as described in Section 2.4. The y-axis
indicates the percentage of passwords in that condition cracked by that particular guess number.

for bold text-only half-score, 38.5 seconds for text-only
half-score, 33.1 seconds for nudge-16, and 30.4 seconds
for bunny. Compared also to the baseline meter meter,
where mean password creation time was 23.5 seconds,
participants took significantly longer in the half-score,
one-third-score, and bold text-only half-score conditions
(HC χ2, p<.008). The mean time of password creation
ranged from 21.0 to 26.6 seconds in all other conditions.

Password meters encouraged participants both to
avoid passwords that the meter rated “bad” or “poor” and

to create passwords that filled the meter. Had there been a
password meter, 24.1% of passwords created in no meter
would have scored “bad” or “poor,” which was signifi-
cantly higher than the 12.0% or fewer of passwords in all
non-stringent conditions other than no suggestions and
nudge-16 rated “bad” or “poor” (HC χ2, p≤0.035). Had
no meter contained a password meter, 25.1% of pass-
words created would have filled the meter. A larger pro-
portion of passwords in all non-stringent conditions other
than no suggestions and nudge-16 filled the meter (HC

9

74  21st USENIX Security Symposium	 USENIX Association

Table 3: A comparison across conditions of password creation: the percentage of participants who completely filled
the password meter or equivalently scored “excellent” in text-only conditions, the percentage of participants whose
password received a score of “bad” or “poor”, the time of password creation (first to last keystroke), the number of
deletions (characters deleted after being entered) in the password creation process, the percentage of participants who
changed their password (initially entering a valid password containing at least 8 characters before completely deleting
it and entering a different password), and the edit distance between the initial password entered and the final password
saved, normalized by the length of the final password. Conditions differing significantly from no meter are indicated
with an asterisk (*), while those differing significantly from baseline meter are marked with a dagger (†).

Metric no
m

et
er

(*
)

ba
se

lin
e

m
et

er
(†

)

th
re

e-
se

gm
en

t

gr
ee

n

tin
y

hu
ge

no
su

gg
es

tio
n

te
xt

-o
nl

y

ha
lf

-s
co

re

on
e-

th
ir

d-
sc

or
e

nu
dg

e-
16

nu
dg

e-
co

m
p8

te
xt

-o
nl

y
ha

lf

bo
ld

te
xt

-o
nl

y
ha

lf

bu
nn

y

Filled Meter * * * * * * *,† *,† † * *,† *,† *
% of participants (25.1) 48.5 53.2 42.5 48.2 52.8 37.3 46.2 9.0 1.6 24.5 46.9 3.2 5.0 48.4

“Bad” or “Poor” * * * * * * *,† *,† † * *,† *,† *
% of participants (24.1) 9.1 10.3 12.0 9.6 8.1 7.5 13.4 58.4 93.7 37.2 9.8 76.3 67.8 8.3

Time (seconds) *,† *,† * * *,† *
Mean 19.9 23.5 22.7 21.0 21.5 25.8 24.7 24.8 60.8 59.8 33.1 26.6 38.5 57.1 30.4

SD 28.4 22.7 23.6 22.2 23.2 28.9 36.6 29.4 75.7 84.9 33.2 30.2 49.8 150.0 36.9
Median 10.6 15.6 14.0 13.7 13.1 14.7 13.0 14.0 39.1 34.2 23.2 13.8 23.5 32.8 19.8

Deletions *,† *,† *,† *,† *,† *
Mean 5.3 6.2 7.5 5.8 6.2 7.8 5.5 7.8 23.8 22.9 12.1 8.1 14.6 23.1 10.7

SD 10.7 10.2 13.7 12.4 10.8 11.3 8.4 11.9 29.0 26.6 16.2 13.3 19.3 26.9 17.2
Median 0 0 0 0 1 2 0 0 13.5 13 8 1 8 13.5 5

Changed PW *,† *,† *,† *,† *,† *,†
% of participants 14.4 18.7 25.6 16.5 23.9 23.4 25.9 25.8 52.6 52.6 40.3 24.7 35.8 51.0 34.9

Norm. Edit Dist. *,† *,† *,† *,† *,† *,†
Mean 0.10 0.09 0.47 0.09 0.14 0.12 0.15 0.17 0.37 0.45 0.27 0.15 0.27 0.35 0.28

SD 0.29 0.23 4.84 0.28 0.30 0.31 0.37 0.36 0.42 1.22 0.38 0.36 0.43 0.47 0.70
Median 0 0 0 0 0 0 0 0 0.15 0.11 0 0 0 0.08 0

χ2, p≤0.006). In each of these conditions, 42.5% or
more of the passwords filled the meter. While the propor-
tion of passwords in nudge-16 and the four stringent con-
ditions reaching these thresholds was significantly lower
than baseline meter, the proportions would have been
higher than baseline meter were the baseline meter scor-
ing algorithm used in those conditions.

During the password creation process, participants in
all four stringent conditions, as well as in nudge-16,
made more changes to their password than in no meter
or baseline meter. We considered the number of dele-
tions a participant made, which we defined as the num-
ber of characters that were inserted into the password and
then later deleted. In the four stringent conditions and in
nudge-16, the mean number of deletions by each partici-
pant ranged from 12.1 to 23.8 characters. In contrast, sig-
nificantly fewer deletions were made in no meter, with a
mean of 5.3 deletions, and baseline meter, with a mean
of 6.2 deletions (HC MWU, p<0.001). The bunny con-
dition, with a mean of 10.7, also had significantly more
deletions than no meter (HC MWU, p=0.004).

We further analyzed the proportion of participants
who changed their password, finding significantly more
changes occurring in the stringent conditions, as well
as in nudge-16 and bunny. Some participants entered a
password containing eight or more characters, meeting
the stated requirements, and then completely erased the
password creation box to start over. We define the ini-
tial password to be the longest such password containing
eight or more characters that a participant created before
starting over. Similarly, we define the final password to
be the password the participant eventually saved. We
considered participants to have changed their password
if they created an initial password, completely erased the
password field, and saved a final password that differed
by one edit or more from their initial password.

More than half of the participants in half-score, one-
third-score, and bold text-only half-score changed their
password during creation. Similarly, between 34.9% and
40.3% of nudge-16, text-only half-score, and bunny par-
ticipants changed their password. The proportion of par-
ticipants in these six conditions who changed their pass-

10

USENIX Association 	 21st USENIX Security Symposium  75

word was greater than the 14.4% of no meter participants
and 18.7% of baseline meter participants who did so (HC
χ2, p≤.010). Across all conditions, only 7.7% of final
passwords consisted of the initial password with addi-
tional characters added to the end; in a particular condi-
tion, this percentage never exceeded 16%.

These changes in the password participants were cre-
ating resulted in final passwords that differed consider-
ably from the initial password. We assigned an edit dis-
tance of 0 to all participants who did not change their
password. For all other participants, we computed the
Levenshtein distance between the initial and final pass-
word, normalized by the length of the final password.
The mean normalized edit distance between initial and
final passwords ranged from 0.27 to 0.45 in the six afore-
mentioned conditions, significantly greater than no me-
ter, with a mean of 0.10, and baseline meter, with a mean
of 0.09 (HC MWU, p<.003).

We also compared the guessability of the initial and
final passwords for participants whose initial password,
final password, or both were guessed by the strong ad-
versary. 86.1% of the 43 such changes in half-score re-
sulted in a password that would take longer to guess, as
did 83.8% of 37 such changes in text-only half-score. In
contrast, 50% of 18 such changes in baseline meter and
between 56.7% and 76.7% such changes in all other con-
ditions resulted in passwords that would take longer to
guess. However, these differences were not statistically
significant.

5.5 Participant Demographics
Participants ranged in age from 18 to 74 years old, and
63% percent reported being male and 37% female.5 40%
percent reported majoring in or having a degree or job
in computer science, computer engineering, information
technology, or a related field; 55% said they did not. Par-
ticipants lived in 96 different countries, with most from
India (42%) and the United States (32%). Because many
of our password meters used a color scheme that includes
red and green, we asked about color-blindness; 3% of
participants reported being red-green color-blind, while
92% said they were not, consistent with the general pop-
ulation [30].

The number of subjects in each condition ranged from
184 to 202, since conditions were not reassigned if a par-
ticipant did not complete the study. There were no statis-
tically significant differences in the distribution of partic-
ipants’ gender, age, technology background, or country
of residence across experimental conditions.

However, participants who lived in different countries
created different types of passwords. We separated par-

5We offered the option not to answer demographic questions; when
percentages sum to less than 100, non-answers make up the remainder.

ticipants into three groups based on location: United
States, India, and “the rest of the world.” Indian subjects’
passwords had mean length 12.2, U.S. subjects’ pass-
words had mean length 11.9, and all other subjects’ pass-
words had mean length 12.1 (HC K-W, p=0.002). Fur-
thermore, Indian subjects’ passwords had a mean of 0.9
uppercase letters, and both U.S. subjects’ and all other
subjects’ passwords had a mean of 1.0 uppercase letters
(HC K-W, p<0.001). While the percentage of passwords
cracked by a weak or medium attacker did not differ
significantly between the three groups, a lower percent-
age of the passwords created by Indian participants than
those created by American participants was cracked by a
strong adversary (HC χ2, p=.032). 42.3% of passwords
created by subjects from the U.S., 35.5% of passwords
created by subjects from India, and 38.8% of passwords
created by subjects from neither country were cracked
by a strong adversary. However, the guessing algorithm
was trained on sets of leaked passwords from sites based
in the U.S., which may have biased its guesses.

6 Participants’ Attitudes and Perceptions

We asked participants to rate their agreement on a Likert
scale with fourteen statements about the password cre-
ation process, such as whether it was fun or annoying,
as well as their beliefs about the password meter they
saw. We also asked participants to respond to an open-
ended prompt about how the password meter did or did
not help. We begin by reporting participants’ survey
responses, which reveal annoyance among participants
in the stringent conditions. The one-third-score condi-
tion and text-only stringent conditions also led partici-
pants to believe the meter gave an incorrect score and to
place less importance on the meter’s rating. The distri-
bution of responses to select survey questions is shown
in Figure 4. We then present participants’ open-ended
responses, which illuminate strategies for receiving high
scores from the meter.

6.1 Attitudes Toward Password Meters
In a survey immediately following password creation, a
higher percentage of participants in the stringent condi-
tions found password creation to be annoying or difficult
than those in baseline meter. A larger proportion of sub-
jects in the four stringent conditions than in either the
no meter or baseline meter conditions agreed that cre-
ating a password in this study was annoying (HC χ2,
p≤.022). Similarly, a higher percentage of subjects in the
half-score and bold text-only half-score found creating a
password difficult than in either the no meter or baseline
meter conditions (HC χ2, p≤.012). Creating a password
was also considered difficult by a higher percentage of

11

76  21st USENIX Security Symposium	 USENIX Association

subjects in one-third-score and text-only half-score than
in baseline meter (HC χ2, p≤.003), although these con-
ditions did not differ significantly from no meter.

Participants in the stringent conditions also found the
password meter itself to be annoying at a higher rate. A
higher percentage of subjects in all four stringent con-
ditions than in baseline meter agreed that the password-
strength meter was annoying (HC χ2, p≤.007). Between
27% and 40% of participants in the four stringent condi-
tions, compared with 13% of baseline meter participants,
found the meter annoying.

Participants in the two stringent conditions without a
visual bar felt that they did not understand how the me-
ter rated their password. 38% of text-only half-score
and 39% of bold text-only half-score participants agreed
with the statement, “I do not understand how the pass-
word strength meter rates my password,” which was sig-
nificantly greater than the 22% of participants in base-
line meter who felt similarly (HC χ2, p≤.015). 32% of
half-score participants and 34% of one-third-score par-
ticipants also agreed, although these conditions were not
statistically significantly different than baseline meter.

The one-third-score condition and both text-only strin-
gent conditions led participants to place less importance
on the meter. A smaller proportion of one-third-score,
text-only half-score, and bold text-only half-score par-
ticipants than baseline meter subjects agreed, “It’s im-
portant to me that the password-strength meter gives
my password a high score” (HC χ2, p≤.021). 72% of
baseline meter participants, yet only between 49% and
56% of participants in those three conditions, agreed. In
all other conditions, between 64% and 78% of partici-
pants agreed. Among these conditions was half-score,
in which 68% of participants agreed, significantly more
than in one-third-score (HC χ2, p=.005).

More participants in those same three conditions felt
the meter’s score was incorrect. 42-47% of one-third-
score, text-only half-score, and bold text-only half-score
participants felt the meter gave their password an incor-
rect score, significantly more than the 21% of baseline
meter participants who felt similarly (HC χ2, p≤.001).
Between 12% and 33% of participants in all other condi-
tions, including half-score, agreed; these conditions did
not differ significantly from baseline meter.

6.2 Participant Motivations

Participants’ open-ended responses to the prompt,
“Please explain how the password strength meter helped
you create a better password, or explain why it was
not helpful,” allowed some participants to explain their
thought process in reaction to the meter, while others dis-
cussed their impressions of what makes a good password.

6.2.1 Reactions to the Password Meter

Some participants noted that they changed their behavior
in response to the meter, most commonly adding a differ-
ent character class to the end of the password. One par-
ticipant said the meter “motivated [him] to use symbols,”
while another “just started adding numbers and letters to
the end of it until the high score was reached.” Partic-
ipants also said that the meter encouraged or reminded
them to use a more secure password. One representative
participant explained, “It kept me from being lazy when
creating my password. [I] probably would not have cap-
italized any letters if not for the meter.”

Other participants chose a password before seeing the
meter, yet expressed comfort in receiving validation. For
instance, one representative participant noted, “The pass-
word I ultimately used was decided on before hand.
However, whilst I was typing and I saw the strength of
my password increase and in turn felt reassured.”

However, a substantial minority of participants ex-
plained that they ignore password meters, often because
they believe these meters discourage passwords they can
remember. One representative participant said, “No mat-
ter what the meter says, I will just use the password I
chose because it’s the password I can remember. I do
not want to get a high score for the meter and in the end
have to lose or change my password.” Some participants
expressed frustration with meters for not understanding
this behavior. For instance, one participant explained, “I
have certain passwords that I use because I can remem-
ber them easily. I hate when the meter says my password
is not good enough– it’s good enough for me!”

Participants also reported embarrassment at poor
scores, fear of the consequences of having a weak pass-
word, or simply a desire to succeed at all tasks. One
participant who exemplifies the final approach said, “I
wanted to make my password better than just ‘fair,’ so I
began to add more numbers until the password-strength
meter displayed that my password was ‘good.’ I wanted
to create a strong password because I’m a highly com-
petitive perfectionist who enjoys positive feedback.” In
contrast, another participant stated, “Seeing a password
strength meter telling me my password is weak is scary.”

6.2.2 Impressions of Password Strength

Participants noted impressions of password strength that
were often based on past experiences. However, the
stringent conditions seemed to violate their expectations.

Most commonly, subjects identified a password con-
taining different character classes as strong. One repre-
sentative participant said, “I am pretty familiar with pass-
word strength meters, so I knew that creating a password
with at least 1 number/symbol and a mixture of upper

12

USENIX Association 	 21st USENIX Security Symposium  77

(*) no meter
(†) baseline meter

three-segment
green

tiny
huge

no suggestions
text-only

half-score
one-third-score

nudge-16
nudge-comp8

text-only half
bold text-only half

bunny

It's important to me that the
password strength meter gives
my password a high score.

I think the password strength
meter gave an incorrect score
of my password's strength.

The password strength
meter was annoying.

Creating a password that meets
the requirements given in this
study was difficult.

0 20% 40% 60% 80% 100% 0 20% 40% 60% 80% 100% 0 20% 40% 60% 80% 100% 0 20% 40% 60% 80% 100%

Strongly Disagree Disagree Neutral Agree Strongly Agree

* †
†

†

* †

†

†
†

†

†
†

†
†

†
†

Figure 4: These charts depict participants’ agreement or disagreement with the statement above each chart. Each
color represents the proportion of participants in that condition who expressed a particular level of agreement of
disagreement with the statement. Conditions in which the proportion of participants agreeing with a statement differed
significantly from no meter are indicated with an asterisk (*), while those that differed significantly from baseline
meter are marked with a dagger (†). Participants in no meter did not respond to questions about password meters.

and lower case letters would be considered strong.” Par-
ticipants also had expectations for the detailed algorithm
with which passwords were scored, as exemplified by a
participant who thought the meter “includes only English
words as predictable; I could have used the Croatian for
‘password123’ if I wanted.”

The stringent conditions elicited complaints from par-
ticipants who disagreed with the meter. For example, one
participant was unsure how to receive a good score, say-
ing, “No matter what I typed, i.e. how long or what char-
acters, it still told me it was poor or fair.” Another partici-
pant lamented, “Nothing was good enough for it!” Some
participants questioned the veracity of the stringent me-
ters. For instance, a one-third-score participant said, “I
have numbers, upper/lower case, and several symbols.
It’s 13 characters long. It still said it was poor. No way
that it’s poor.” Other participants reused passwords that
had received high scores from meters in the wild, not-
ing surprise at the stringent meters’ low scores. Some
participants became frustrated, including one who said
the one-third-score meter “was extremely annoying and
made me want to punch my computer.”

The bunny received mixed feedback from participants.
Some respondents thought that it sufficed as a feedback
mechanism for passwords. For instance, one subject
said, “I think it was just as helpful as any other method
I have seen for judging a password’s strength...I do think
the dancing bunny is much more light-hearted and fun.”
However, other participants found the more traditional

bar to be more appropriate, including one who said bunny
“was annoying, I am not five [years old].”

6.2.3 Goals for the Password Meter

Participants stated two primary goals they adopted while
using the password meter. Some participants aimed to
fill the bar, while others hoped simply to reach a point
the meter considered not to be poor. Those participants
who aimed to fill the bar noted that they continued to
modify their password until the bar was full, citing as
motivation the validation of having completed their goal
or their belief that a full bar indicated high security.

Participants employing the latter strategy increased the
complexity of their password until the text “poor” disap-
peared. One participant noted, “It gave me a fair score,
so I went ahead with the password, but if it would have
given me a low score I would not have used this pass-
word.” A number of participants noted that they didn’t
want to receive a poor rating. One representative partic-
ipant said, “I didn’t want to have poor strength, while I
didn’t feel I needed something crazy.”

Some participants also identified the bar’s color as a
factor in determining when a password was good enough.
Some participants hoped to reach a green color, while
others simply wanted the display not to be red. One par-
ticipant aiming towards a green color said, “I already
chose a fairly long password, but I changed a letter in
it to an uppercase one to make it turn green.” Another

13

78  21st USENIX Security Symposium	 USENIX Association

participant expressed, “I knew that I didn’t want to be in
the red, but being in the yellow I thought was ok.”

7 Discussion

We discuss our major findings relating to the design of
effective password meters. We also address our study’s
ethical considerations, limitations, and future work.

7.1 Effective Password Meters

At a high level, we found that users do change their be-
havior in the presence of a password-strength meter. See-
ing a password meter, even one consisting of a dancing
bunny, led users to create passwords that were longer.
Although the differences were generally not statistically
significant, passwords created in all 14 conditions with
password meters were cracked at a lower rate by adver-
sarial models of different strengths.

However, the most substantial changes in user behav-
ior were elicited by stringent meters. These meters led
users to add additional character classes and make their
password longer, leading to significantly increased resis-
tance to a guessing attack. Furthermore, more users who
saw stringent meters changed the password they were
creating, erasing a valid password they had typed and
replacing it with one that was usually harder to crack.

Unfortunately, the scoring systems of meters we ob-
served in the wild were most similar to our non-stringent
meters. This result suggests that meters currently in use
on popular websites are not aggressive enough in encour-
aging users to create strong passwords. However, if all
meters a user encountered were stringent, he or she might
habituate to receiving low scores and ignore the meter,
negating any potential security benefits.

There seems to be a limit to the stringency that a
user will tolerate. In particular, the one-third-score me-
ter seemed to push users too hard; one-third-score par-
ticipants found the meter important at a lower rate and
thought the meter to be incorrect at a higher rate, yet their
passwords were comparable in complexity and cracking-
resistance to those made by half-score participants. Were
meters too stringent, users might just give up.

Tweaks to the password meter’s visual display did
not lead to significant differences in password compo-
sition or user sentiment. Whether the meter was tiny,
monochromatic, or a dancing bunny did not seem to mat-
ter. However, an important factor seemed to be the com-
bination of text and a visual indicator, rather than only
having text or only having a visual bar. Conditions con-
taining text without visual indicators, run as part of our
experiment, and conditions containing a visual bar with-
out text, run subsequently to the experiment we focus on

here, were cracked at a higher rate and led to less favor-
able user sentiment than conditions containing a combi-
nation of text and a visual indicator.

In the presence of password-strength meters, partici-
pants changed the way they created a password. For in-
stance, the majority of participants in the stringent con-
ditions changed their password during creation. Meters
seemed to encourage participants to create a password
that filled the meter. If that goal seemed impossible, par-
ticipants seemed content to avoid passwords that were
rated “bad” or “poor.” In essence, the password me-
ter functions as a progress meter, and participants’ be-
havior echoed prior results on the effects progress me-
ters had on survey completion [8]. Meters whose esti-
mates of password strength mirrored participants’ expec-
tations seemed to encourage the creation of secure pass-
words, whereas very stringent meters whose scores di-
verged from expectations led to less favorable user senti-
ment and an increased likelihood that a participant would
abandon the task of creating a strong password.

We also found many users to have beliefs regarding
how to compose a strong password, such as including
different character classes. Because users’ understand-
ing of password strength appears at least partially based
on experience with real-world password-strength me-
ters and password-composition policies, our results sug-
gest that wide-scale deployment of more stringent meters
may train users to create stronger passwords routinely.

7.2 Ethical Considerations
We calculated our guessability results by training a
guess-number calculator on sets of passwords that are
publicly and widely available, but that were originally
gathered through illegal cracking and phishing attacks. It
can be argued that data acquired illegally should not be
used at all by researchers, and so we want to address the
ethical implications of our work. We use the passwords
alone, excluding usernames and email addresses. We
neither further propagate the data, nor does our work call
significantly greater attention to the data sets, which have
been used in several scientific studies [4, 9, 18, 38, 39].
As a result, we believe our work causes no additional
harm to the victims, while offering potential benefits to
researchers and system administrators.

7.3 Limitations
One potential limitation of our study is its ecological va-
lidity. Subjects created passwords for an online study,
and they were not actually protecting anything valuable
with those passwords. Furthermore, one of the primary
motivations for part of the MTurk population is financial
compensation [17], which differs from real-world moti-

14

USENIX Association 	 21st USENIX Security Symposium  79

vations for password creation. Outside of a study, users
would create passwords on web pages with the logos and
insignia of companies they might trust, perhaps making
them more likely to heed a password meter’s suggestions.
On the other hand, subjects who realize they are partic-
ipating in a password study may be more likely to think
carefully about their passwords and pay closer attention
to the password meter than they otherwise would. We did
ask participants to imagine that they were creating pass-
words for their real email accounts, which prior work has
shown to result in stronger passwords [21]. Because our
results are based on comparing passwords between con-
ditions, we believe our findings about how meters com-
pare to one another can be applied outside our study.

Our study used a password-cracking algorithm devel-
oped by Weir et al. [39] in a guess-number calculator im-
plemented by Kelley et al. [18] to determine a password’s
guessability. We did not experiment with a wide vari-
ety of cracking algorithms since prior work [18, 38, 42]
has found that this algorithm outperformed alternatives
including John the Ripper. Nevertheless, the relative re-
sistance to cracking of the passwords we collected may
differ depending on the choice of cracking algorithm.

Furthermore, the data we used to train our cracking al-
gorithm was not optimized to crack passwords of partic-
ular provenance. For instance, passwords created by par-
ticipants from India were the most difficult to crack. The
data with which we trained our guessing algorithm was
not optimized for participants creating passwords in lan-
guages other than English, which may have led to fewer
of these passwords being cracked; prior work by Kelley
et al. [18] found that the training set has a substantial ef-
fect on the success of the guessing algorithm we used.

7.4 Future Work

Further research in password-strength meters may in-
volve continued examination of the structure and com-
position of passwords created with meters. The presence
of a meter caused changes in users’ behavior, with over
50% of participants in three of the four stringent meter
conditions erasing a valid 8-character password they had
already entered and entering a new, different password.
The strategies users employed both initially and after this
shift deserve further investigation, both to suggest direc-
tions for user feedback and to uncover patterns that can
improve techniques for cracking passwords.

In addition, we have certainly not exhausted the space
of possible password-strength meters. Although we have
found that the score conveyed to the user is a more im-
portant factor than the visual display, it is possible that
either subtle or substantial variations to the scoring al-
gorithm (e.g., representing a password’s likelihood [7])
or to the textual feedback provided to users may increase

the usability and security of the resulting passwords. Fur-
thermore, there seems to be a limit to how stringent a
meter can be. Alternate scoring algorithms, improved
text feedback, and the degree of stringency that leads to
the best tradeoff between usability and security for pass-
words thus appear to be fertile ground for future work.

8 Conclusion

We have conducted the first large-scale study of
password-strength meters, finding that meters did affect
user behavior and security. Meters led users to create
longer passwords. However, unless the meter scored
passwords stringently, the resulting passwords were only
marginally more resistant to password cracking attacks.

Meters that rated passwords stringently led users to
make significantly longer passwords that included more
digits, symbols, and uppercase letters. These passwords
were not observed to be less memorable or usable, yet
they were cracked at a lower rate by simulated adver-
saries making 500 million, 50 billion, and 5 trillion
guesses. The most stringent meter annoyed users, yet did
not provide security benefits beyond those provided by
slightly less stringent meters. The combination of a vi-
sual indicator and text outperformed either in isolation.
However, the visual indicator’s appearance did not ap-
pear to have a substantial impact.

Despite the added strength that these more stringent
meters convey, we observed many more lenient meters
deployed in practice. Our findings suggest that, so long
as they are not overly onerous, employing more rigorous
meters would increase security.

9 Acknowledgments

This research was supported by NSF grants DGE-
0903659 and CNS-1116776, by CyLab at Carnegie Mel-
lon under grants DAAD19-02-1-0389 and W911NF-09-
1-0273 from the Army Research Office, by Air Force
Research Lab Award No. FA87501220139, and by a gift
from Microsoft Research.

References
[1] ADAMS, A., SASSE, M. A., AND LUNT, P. Making passwords

secure and usable. In Proc. HCI on People and Computers XII
(1997).

[2] BISHOP, M., AND KLEIN, D. V. Improving system security
via proactive password checking. Computers & Security 14, 3
(1995), 233–249.

[3] BONNEAU, J. The science of guessing: Analyzing an
anonymized corpus of 70 million passwords. In Proc. IEEE Sym-
posium on Security and Privacy (2012).

15

80  21st USENIX Security Symposium	 USENIX Association

[4] BONNEAU, J., JUST, M., AND MATTHEWS, G. What’s in a
name? Evaluating statistical attacks on personal knowledge ques-
tions. In Proc. Financial Crypto (2010).

[5] BUHRMESTER, M., KWANG, T., AND GOSLING, S. D. Ama-
zon’s Mechanical Turk: A new source of inexpensive, yet high-
quality, data? Perspectives on Psychological Science 6, 1 (2011),
3–5.

[6] BURR, W. E., DODSON, D. F., AND POLK, W. T. Electronic
authentication guideline. Tech. rep., NIST, 2006.

[7] CASTELLUCCIA, C., DÜRMUTH, M., AND PERITO, D. Adap-
tive password-strength meters from Markov models. In Proc.
NDSS (2012).

[8] CONRAD, F. G., COUPER, M. P., TOURANGEAU, R., AND
PEYTCHEV, A. The impact of progress indicators on task com-
pletion. Interacting with computers 22, 5 (2010), 417–427.

[9] DELL’AMICO, M., MICHIARDI, P., AND ROUDIER, Y. Pass-
word strength: An empirical analysis. In Proc. INFOCOM
(2010).

[10] DOWNS, J. S., HOLBROOK, M. B., SHENG, S., AND CRANOR,
L. F. Are your participants gaming the system? Screening Me-
chanical Turk workers. In Proc. CHI (2010).

[11] FEW, S. Information Dashboard Design: The Effective Visual
Communication of Data. O’Reilly Media, Inc., 2006.

[12] FLORÊNCIO, D., AND HERLEY, C. A large-scale study of web
password habits. In Proc. WWW (2007).

[13] FORGET, A., CHIASSON, S., VAN OORSCHOT, P., AND BID-
DLE, R. Improving text passwords through persuasion. In Proc.
SOUPS (2008).

[14] HERLEY, C. So long, and no thanks for the externalities: The
rational rejection of security advice by users. In Proc. NSPW
(2009).

[15] HERLEY, C., AND VAN OORSCHOT, P. A research agenda ac-
knowledging the persistence of passwords. IEEE Security & Pri-
vacy, 99 (2011).

[16] INGLESANT, P., AND SASSE, M. A. The true cost of unus-
able password policies: Password use in the wild. In Proc. CHI
(2010).

[17] IPEIROTIS, P. G. Demographics of Mechanical Turk. Tech. Rep.
CeDER-10-01, New York University, March 2010.

[18] KELLEY, P. G., KOMANDURI, S., MAZUREK, M. L., SHAY,
R., VIDAS, T., BAUER, L., CHRISTIN, N., CRANOR, L. F., ,
AND LOPEZ, J. Guess again (and again and again): Measuring
password strength by simulating password-cracking algorithms.
In Proc. IEEE Symposium on Security and Privacy (2012).

[19] KESSLER, D. A., MANDE, J. R., SCARBROUGH, F. E.,
SCHAPIRO, R., AND FEIDEN, K. Developing the “nutrition
facts” food label. Harvard Health Policy Review 4, 2 (2003),
13–24.

[20] KITTUR, A., CHI, E. H., AND SUH, B. Crowdsourcing user
studies with Mechanical Turk. In Proc. CHI (2008).

[21] KOMANDURI, S., SHAY, R., KELLEY, P. G., MAZUREK, M. L.,
BAUER, L., CHRISTIN, N., CRANOR, L. F., AND EGELMAN,
S. Of passwords and people: Measuring the effect of password-
composition policies. In Proc. CHI (2011).

[22] KOTADIA, M. Gates predicts death of the password, Feb. 2004.
http://news.cnet.com/2100-1029-5164733.html.

[23] LEYDEN, J. Office workers give away passwords for a cheap pen,
Apr. 2003. http://www.theregister.co.uk/2003/04/18/
office_workers_give_away_passwords/.

[24] LOEWENSTEIN, G. F., AND HAISLEY, E. C. The economist as
therapist: Methodological ramifications of ‘light’ paternalism. In
The Foundations of Positive and Normative Economics. Oxford
University Press, 2008.

[25] MILMAN, D. A. Death to passwords, Dec. 2010. http://

blogs.computerworld.com/17543/death_to_passwords.

[26] PROCTOR, R. W., LIEN, M.-C., VU, K.-P. L., SCHULTZ,
E. E., AND SALVENDY, G. Improving computer security for
authentication of users: Influence of proactive password restric-
tions. Behavior Research Methods, Instruments, & Computers
34, 2 (2002), 163–169.

[27] SCHNEIER, B. Myspace passwords aren’t so dumb,
Dec. 2006. http://www.wired.com/politics/security/

commentary/securitymatters/2006/12/72300.

[28] SHAY, R., KELLEY, P. G., KOMANDURI, S., MAZUREK, M. L.,
UR, B., VIDAS, T., BAUER, L., CHRISTIN, N., AND CRANOR,
L. F. Correct horse battery staple: Exploring the usability of
system-assigned passphrases. In Proc. SOUPS (2012).

[29] SHAY, R., KOMANDURI, S., KELLEY, P. G., LEON, P. G.,
MAZUREK, M. L., BAUER, L., CHRISTIN, N., AND CRANOR,
L. F. Encountering stronger password requirements: User atti-
tudes and behaviors. In Proc. SOUPS (2010).

[30] SHEVELL, S. K., Ed. The Science of Color. Elsevier, 2003.

[31] SOTIRAKOPOULOS, A., MUSLUKOV, I., BEZNOSOV, K., HER-
LEY, C., AND EGELMAN, S. Motivating users to choose better
passwords through peer pressure. In Proc. SOUPS (Poster Ab-
stract) (2011).

[32] STANTON, J. M., STAM, K. R., MASTRANGELO, P., AND
JOLTON, J. Analysis of end user security behaviors. Comp. &
Security 24, 2 (2005), 124–133.

[33] SUMMERS, W. C., AND BOSWORTH, E. Password policy: The
good, the bad, and the ugly. In Proc. WISICT (2004).

[34] THALER, R., AND SUNSTEIN, C. Nudge: Improving decisions
about health, wealth, and happiness. Yale University Press, 2008.

[35] TOOMIM, M., KRIPLEAN, T., PÖRTNER, C., AND LANDAY,
J. Utility of human-computer interactions: Toward a science of
preference measurement. In Proc. CHI (2011).

[36] VANCE, A. If your password is 123456, just make it hackme.
New York Times (New York edition), Jan. 21, 2010.

[37] VU, K.-P. L., PROCTOR, R. W., BHARGAV-SPANTZEL, A.,
TAI, B.-L. B., AND COOK, J. Improving password security and
memorability to protect personal and organizational information.
Int. J. of Human-Comp. Studies 65, 8 (2007), 744–757.

[38] WEIR, M., AGGARWAL, S., COLLINS, M., AND STERN, H.
Testing metrics for password creation policies by attacking large
sets of revealed passwords. In Proc. CCS (2010).

[39] WEIR, M., AGGARWAL, S., DE MEDEIROS, B., AND GLODEK,
B. Password cracking using probabilistic context-free grammars.
In Proc. IEEE Symposium on Security and Privacy (2009).

[40] WOGALTER, M., AND VIGILANTE, JR., W. Effects of label
format on knowledge acquisition and perceived readability by
younger and older adults. Ergonomics 46, 4 (2003), 327–344.

[41] YAN, J. J. A note on proactive password checking. In Proc.
NSPW (2001).

[42] ZHANG, Y., MONROSE, F., AND REITER, M. K. The security
of modern password expiration: An algorithmic framework and
empirical analysis. In Proc. CCS (2010).

16

USENIX Association 	 21st USENIX Security Symposium  81

I Forgot Your Password: Randomness Attacks Against PHP Applications∗

George Argyros
Dept. of Informatics & Telecom.,

University of Athens,
argyros.george@gmail.com

Aggelos Kiayias
Dept. of Informatics & Telecom.,

University of Athens,
aggelos@di.uoa.gr

& Computer Science and Engineering,
University of Connecticut, Storrs, USA.

Abstract

We provide a number of practical techniques and
algorithms for exploiting randomness vulnerabilities
in PHP applications.We focus on the predictability of
password reset tokens and demonstrate how an attacker
can take over user accounts in a web application via
predicting or algorithmically derandomizing the PHP
core randomness generators. While our techniques are
designed for the PHP language, the principles behind
our techniques and our algorithms are independent of
PHP and can readily apply to any system that utilizes
weak randomness generators or low entropy sources.
Our results include: algorithms that reduce the entropy
of time variables, identifying and exploiting vulnera-
bilities of the PHP system that enable the recovery or
reconstruction of PRNG seeds, an experimental analy-
sis of the Håstad-Shamir framework for breaking trun-
cated linear variables, an optimized online Gaussian
solver for large sparse linear systems, and an algorithm
for recovering the state of the Mersenne twister gen-
erator from any level of truncation. We demonstrate
the gravity of our attacks via a number of case studies.
Specifically, we show that a number of current widely
used web applications can be broken using our tech-
niques including Mediawiki, Joomla, Gallery, osCom-
merce and others.

1 Introduction

Modern web applications employ a number of ways
for generating randomness, a feature which is critical
for their security. From session identifiers and pass-
word reset tokens, to random filenames and password
salts, almost every web application is relying on the
unpredictability of these values for ensuring secure op-
eration. However, usually programmers fail to under-
stand the importance of using cryptographically secure
pseudorandom number generators (PRNG) something
that opens the potential for attacks. Even worse, the
same trend holds for whole programming languages;

∗Research partly supported by ERC Project CODAMODA.

PHP for example lacks a built-in cryptographically se-
cure PRNG in its core and until recently, version 5.3, it
tottaly lacked a cryptographically secure randomness
generation function.

This left PHP programmers with two options: They
will either implement their own PRNG from scratch
or they will employ whatever functions are offered by
the API in a “homebrew” and ad-hoc fashion. In ad-
dition, backwards compatibility and other issues (cf.
section 2), often push the developers away even from
the newly added randomness functions, making their
use very limited. As we will demonstrate and heavily
exploit in this work, this approach does not produce
secure web applications.

Observe that using a low entropy source or a crypto-
graphically weak PRNG to produce randomness does
not necessarily imply that an attack is feasible against
a system. Indeed, so far there have been a very limited
number of published attacks based on the insecure us-
age of PRNG functions in PHP, while popular exploit
databases1 contain nearly zero exploits for such vul-
nerabilities (and this may partially explain the delay in
the PHP community adopting secure randomness gen-
eration functions). Showing that such attacks are in
fact very practical is the objective of our work.

In this paper we develop generic techniques and al-
gorithms to exploit randomness vulnerabilities in PHP
applications. We describe implementation issues that
allow one to either predict or completely recover the
initial seed of the PRNGs used in most web applica-
tions. We also give algorithms for recovering the in-
ternal state of the PRNGs used by the PHP system, in-
cluding the Mersenne twister generator and the glibc
LFSR based generator, even when their output is trun-
cated. These algorithms could be used in order to
attack hardened PHP installations even when strong
seeding is employed, as it is done by the Suhosin ex-
tension for PHP and they may be of independent inter-
est.

We also conducted an extensive audit of several pop-
ular PHP applications. We focused on the security
of password reset implementations. Using our attack

1e.g. http://www.exploit-db.com

1

82  21st USENIX Security Symposium	 USENIX Association

framework we were able to mount attacks that take
over arbitrary user accounts with practical complex-
ity. A number of widely used PHP applications are
affected (see Figure 7), while we believe that the im-
pact is even larger in less known applications.

Our results suggest that randomness attacks should
be considered practical for PHP applications and ex-
isting systems should be audited for these vulnerabili-
ties. Weak randomness is a grave vulnerability in any
secure system as it was also recently demonstrated in
the widely publicized discovery of common primes in
RSA public-keys by Lenstra et al. [14]. We finally
stress that our techniques apply in any setting beyond
PHP, whenever the same PRNG functions are used and
the attack vector relies on predicting a system defined
random object.

This is only an extended abstract, a full version can
be found in [1].

1.1 Attack model
In Figure 1 we present our general attack template. An
attacker is trying to predict the password reset token in
order to gain another user’s privileges (say an admin-
istrator’s). Each time the attacker makes a request to
the web server, his request is handled by a web appli-
cation instance, usually represented by a specific op-
erating system process, which contains some process
specific state. The web application uses a number of
application objects with values depending on its in-
ternal state, with some of these objects leaking to the
attacker through the web server responses. Examples
of such objects are session identifiers and outputs of
PRNG functions. Although our focus is in password
reset functions, the principles that we use and the tech-
niques that we develop can be readily applied in other
contexts when the application relies on the generation
of random values for security applications. Examples
of such applications are CAPTCHA’s and the produc-
tion of random filenames.

Attack complexity. Since we present explicit practi-
cal attacks, we define next the complexity under which
an attack should be consider practical. There are two
measure of complexity of interest. The first is the time
complexity and the second is the query or communi-
cation complexity. For some of our attacks the main
compuational operation is the calculation of an MD5
hash. With current GPU technologies an attacker can
perform up to 230 MD5 calculations per second with
a $250 GPU, while with an additional $500 can reach
up to 232 calculations [9]. These figures suggest that
attacks that require up to 240 MD5 calculations can
be easilty mounted. In terms of communication com-
plexity, most of our attacks have a query complexity
of a few thousand requests at most, while some have
as little as a few tens of requests. Our most commu-
nication intensive attacks (section 5) require less than

35K(≈ 215) requests. Sample benchmarks that we per-
formed in various applications and server installations
show that on average one can perform up to 222 re-
quests in the course of a day.

2 PHP System

We will now describe functionalities of the PHP sys-
tem that are relevant to our attacks. We first describe
the different modes in which PHP might be running,
and then we will do a description of the randomness
generation functions in PHP. We focus our analysis in
the Apache web server, the most popular web server at
the time of this writing, however our attacks are easily
ported to any webserver that meets the configuration
requirements that we describe for each attack.

2.1 Proccess management
There are different ways in which a PHP script is ex-
ecuted. These ways affect its internal states, and thus
the state of its PRNGs. We will focus on the case when
PHP is running as an Apache module, which is the de-
fault installation in most Linux distributions and is also
very popular in Windows installations.

mod php: Under this installation the Apache web
server is responsible for the process management.
When the server is started a number of child proccesses
are created and each time the number of occupied pro-
cesses passes a certain threshold a new process is cre-
ated. Conversely, if the idle proccesses are too many,
some processes are killed. One can specify a maxi-
mum number of requests for each process although this
is not enabled by default. Under this setting each PHP
script runs in the context of one of the child processes,
so its state is preserved under multiple connections un-
less the process is killed by the web server process
manager. The configuration is similar in the case the
web server uses threads instead of processes.

Keep-Alive requests. The HTTP protocol offers a
request header, called Keep-Alive. When this header
is set in an HTTP request, the web server is instructed
to keep the connection alive after the request is served.
Under mod php installations this means that any sub-
sequent request will be handled from the same process.
This is a very important fact, that we will use in our
attacks. However in order to avoid having a process
hang from one connection for infinite time, most web
servers specify an upper bound on the number of con-
sequent keep-alive requests. The default value for this
bound in the Apache web server is 100.

2.2 Randomness Generation
In order to satisfy the need for generating randomness
in a web application, PHP offers a number of different

2

USENIX Association 	 21st USENIX Security Symposium  83

Figure 1: Attack template.

randomness functions. We briefly describe each func-
tion below.

php combined lcg()/lcg value(): the
php combined lcg() function is used internally
by the PHP system, while lcg value() is its
public interface. This function is used in order to
create sessions, as well as in the uniqid function
described below to add extra entropy. It uses two
linear congruential generators (LCGs) which it
combines in order to get better quality numbers.
The output of this function is 64 bits.
uniqid(prefix, extra entropy): This
function returns a string concatenation of the
seconds and microseconds of the server time con-
verted in hexadecimal. When given an additional
argument it will prefix the output string with the
prefix given. If the second argument is set to true,
the function will suffix the output string with an
output from the php combined lcg() function.
This makes the total output to have length up to
15 bytes without the prefix.
microtime(), time(): The function
microtime() returns a string concatenation
of the current microseconds divided by 106 with
the seconds obtained from the server clock. The
time() function returns the number of seconds
since Unix Epoch.
mt srand(seed)/mt rand(min, max):
mt rand is the interface for the Mersenne
Twister (MT) generator [15] in the PHP system.
In order to be compatible with the 31 bit output of
rand(), the LSB of the MT function is discarded.
The function takes two optional arguments which
map the 31 bit number to the [min,max] range.
The mt srand() function is used to seed the MT
generator with the 32 bit value seed; if no seed
is provided then the seed is provided by the PHP
system.
srand(seed)/rand(min, max): rand is the in-
terface function of the PHP system to the rand()
function provided by libc. In unix, rand() ad-

ditive feedback generator (resembling a Linear
Feedback Shift Register (LFSR)), while in Win-
dows it is an LCG. The numbers generated by
rand() are in the range [0,231−1] but like before
the two optional arguments give the ability to map
the random number to the range [min,max]. Like
before the srand() function seeds the generator
similarly to the mt srand() function.
openssl random pseudo bytes(length,

strong): This function is the only function
available in order to obtain cryptographically
secure random bytes. It was introduced in version
5.3 of PHP and its availability depends on the
availability of the openssl library in the system.
In addition, until version 5.3.4 of PHP this
function had performance problems [2] running
in Windows operating systems. The strong

parameter, if provided, is set to true if the
function returned cryptographically strong bytes
and false otherwise. For these reasons, and
for backward compatibility, its use is still very
limited in PHP applications.

In addition the application can utilize an operating sys-
tem PRNG (such as /dev/urandom). However, this
does not produce portable code since /dev/urandom

is unavailable in Windows OS.

3 The entropy of time measurements

Although ill-advised (e.g., [5]) many web applica-
tions use time measurements as an entropy source.
In PHP, time is accessed through the time() and
microtime() functions. Consider the following prob-
lem. At some point a script executing a request made
by the attacker makes a time measurement and use the
results to, say, generate a password reset token. The
attacker’s goal it to predict the output of the measure-
ment made by the PHP script. The time() function
has no entropy at all from an attacker point of view,
since the server reveals its time in the HTTP response
header as dictated by the HTTP protocol. On the other

3

84  21st USENIX Security Symposium	 USENIX Association

hand, microtime ranges from 0 to 106 giving a max-
imum entropy of about 20 bits. We develop two dis-
tinct attacks to reduce the entropy of microtime()

that have different advantages and mostly target two
different scenarios. The first one, Adversial Time Syn-
chronization, aims to predict the output of a specific
time measurement when there is no access to other
such measurements. The second, Request Twins, ex-
ploits the fact that the script may enable the attacker to
generate a correlated leak to the target measurement.

Adversarial Time Synchronization (ATS). As we
mentioned above, in each HTTP response the web
server includes a header containing the full date of the
server including hour, minutes and seconds. The basic
observation is that although we get no leak regarding
the microseconds from the HTTP date header we know
that when a second changes the microseconds are ze-
roed. We use this observation to narrow down their
value.

The algorithm proceeds as follows: We connect to
the web server and issue pairs of HTTP requests R1
and R2 in corresponding times T 1 and T 2 until a pair
is found in which the date HTTP header of the cor-
responding responses is different. At that point we
know that between the processing of the two HTTP
requests the microseconds of the server were zeroed.
We proceed to approximate the time of this event S in
localtime, denoted by the timestamp D, by calculating
the average RTT of the two requests and offsetting the
middle point between T 2 and T 1 by this value divided
by two.

In the Apache web server the date HTTP header is
set after processing the request of the user. If the at-
tacker requests a non existent file, then the point the
header is set is approximatelly the point that a valid
request will start executing the PHP script. It fol-
lows that if the attacker uses ATS with HTTP requests
to not existent files then he will synchronize approx-
imately with the beggining of the script’s execution.
Given a steady network where each request takes RT T

2
time to reach the target server, our algorithm devia-
tion depends only on the rate that the attacker can send
HTTP requests. In practice, we find that the algo-
rithm’s main source of error is the network distance
between the attacker’s system and the server cf. Fig-
ure 3. The above implementation we described is a
proof-of-concept and various optimizations can be ap-
plied to improve its accuracy.

Request Twins. Consider the following setting: an
application uses microtime() to generate a password
token for any user of the system. The attacker has ac-
cess to a user account of the application and tries to
take over the account of another user. This allows the
attacker to obtain password reset tokens for his account
and thus outputs of the microtime() function. The
key observation is that if the attacker performs in rapid

succession two password reset requests, one for his ac-
count and one for the target user’s account, then these
requests will be processed by the application with a
very small time difference and thus the conditional en-
tropy of the target user’s password reset token given
the attacker’s token will be small. Thus, the attacker
can generate a token for an account he owns and in
fast succession a token for the target account. Then
the microtime() used for generating the token of his
account can be used to approximate the microtime()
output that was used for the token of the target account.

Experiments. We conducted a series of experiments
for both our algorithms using the following setup. We
created a PHP “time” script that prints out the current
seconds and microseconds of the server. To evaluate
the ATS algorithm we first performed synchronization
between a client and the server and afterwards we sent
a request to the time script and tried to predict the value
it would return. To evaluate the Request Twins algo-
rithm we submitted two requests to the time script in
fast succession and measured the difference between
the output of the two responses.

In Figure 3 we show the time difference between
the server’s time and our client’s calculation for four
servers with different CPU’s and RTT parameters. Our
experiments suggest that both algorithms significantly
reduce the entropy of microseconds (up to an average
of 11 bits with ATS and 14 bits with Request Twins)
having different advantages each. Specifically, the
ATS algorithm seems to be affected by large RTT val-
ues while it is less affected by differences in the CPU
speed. The situation is reversed for Request Twins
where the algorithm is immune to changes in the RTT
however, it is less effective in old systems with low
processing speed.

4 Seed Attacks

In this section we describe attacks that allow either the
recovery or the reconstruction of the seeds used for the
PHP system’s PRNGs. This allows the attacker to pre-
dict all future iterations of these functions and hence
reduces the entropy of functions rand(),mt rand(),
lcg value() as well as the extra entropy argument
of uniqid() to zero bits. We exploit two properties
of the seeds used in these functions. The first one is
the reusage of entropy sources between different seeds.
This enables us to reconstruct a seed without any ac-
cess to outputs of the respective PRNG. The second is
the small entropy of certain seeds that allows one to
recover its value by bruteforce.

We present three distinct attacks. The first attack al-
lows one to recover the seed of the internal LCG seed
used by the PHP system using a session identifier. Us-
ing that seed our second attack reconstructs the seed of
rand() and mt rand() functions from the elements
of the LCG seed without any access to outputs of these

4

USENIX Association 	 21st USENIX Security Symposium  85

Figure 2: ATS.

Configuration ATS Req. Twins
CPU(GHz) RTT(ms) min max avg min max avg

1×3.2 1.1 0 4300 410 0 1485 47
4×2.3 8.2 5 76693 4135 565 1669 1153
1×0.3 9 53 39266 2724 1420 23022 4849
2×2.6 135 73 140886 83573 2 1890 299

Figure 3: Effectiveness of our time entropy lowering techniques against four servers
of different computational power and RTT. Time measurements are in microseconds.

functions. Finally, we exploit the fact that the seed
used in these functions is small enough for someone
with access to the output of these functions to recover
its value by bruteforce.

Generating fresh processes. Our attacks on this sec-
tion rely on the ability of the attacker to connect to a
process with a newly initialized state. We describe a
generic technique against mod php in order to achieve
a connection to a fresh process. Recall that in mod php
when the number of occupied processes passes a cer-
tain threshold new processes are created to handle the
new connections. This gives the attacker a way to force
the creation of fresh processes: The attacker creates a
large number of connections to the target server with
the keep-alive HTTP header set. Having occupied a
large number of processes the web server will create
a number of new processes to handle subsequent re-
quests. The attacker, keeping the previous connections
open, makes a new one which, given that the attacker
created enough connections, will be handled by a fresh
process.

4.1 Recovering the LCG seed from Ses-
sion ID’s

In this section we present a technique to recover the
php combined lcg() seed using a PHP session iden-
tifier. In PHP, when a new session is created using the
respective PHP function (session start()), a pseu-
dorandom string is returned to the user in a cookie, in
order to identify that particular session. That string is
generated using a conjuction of user specific and pro-
cess specific information, and then is hashed using a
hash function which is by default MD5, however there
is an option to use other hash functions such as SHA-1.
The values contained in the hash are:

Client IP address (32 bits).
A time measurement: Unix epoch and microsec-
onds (32 + 20 bits).
A value generated by php combined lcg() (64
bits).

Notice now that in the context of our attack model
the attacker controls each request thus he knows ex-

actly most of the values. Specifically, the client IP ad-
dress is the attacker’s IP address and the Unix Epoch
can be determined through the date HTTP header. In
addition, if php combined lcg() is not initialized at
the time the session is created, as it happens when a
fresh process is spawned, then it is seeded. The state
of the php combined lcg() is two registers s1, s2 of
size 32 bits each, which are initialized as follows. Let
T1 and T2 be two subsequent time measurements. Then
we have that

s1 = T1.sec⊕(T1.usec � 11) and s2 = pid⊕(T2.usec � 11)

where pid denotes the current process id, or if threads
are used the current thread id 2.

Process id’s have a range of 215 values in Linux
systems In Windows systems the process id’s (resp.
threads) are also at most 215 unless there are more
than 215 active processes (resp. threads) in the system
which is a very unlikely occurence.

Observe now that the session calculation involves
three time measurements T0, T1 and T2. Given that
these three measurements are conducted succesivelly
it is advantageous to estimate their entropy by examin-
ing the random variables T0,∆1 = T1−T0,∆2 = T2−T1.
We conducted experiments in different systems to es-
timate the range of values for ∆1 and ∆2. Our exper-
iments suggest that ∆1 ∈ [1,4] while ∆2 ∈ [0,3]. We
also found a positive linear correlation in the values of
the two pairs. This enables a cutdown of the possible
valid pairs. These results suggest that the additionally
entropy introduced by the two ∆ variables is at most 5
bits.

To summarize, the total remaining entropy of the
session identifier hash is the sum of the microseconds
entropy from T0 (≈ 20 bits) the two ∆ variables (≈
5 bits) and the process identifier(15 bits). These give
a total of 40 bits which is tractable cf. section 1.1.
Furthermore the following improvements can be made:
(1) Using the ATS algorithm the microseconds entropy
can be reduced as much as 11 bits on average. (2) The
attacker can make several connections to fresh pro-
cesses instead of one, in rapid succession, obtaining

2In PHP versions before 5.3.2 the seed used only one time mea-
surement which made it even weaker.

5

86  21st USENIX Security Symposium	 USENIX Association

session identifiers from each of the processes. Because
the requests were made in a small time interval the
preimages of the hashes obtained belong into the same
search space, thus improving the probability of invert-
ing one of the preimages proportionally to the number
of session identifiers identifiers obtained. Our experi-
ments with the request twins technique suggest that at
least 4 session identifiers can be obtained from within
the same search space thus offering a reduction of at
least two bits. Adding these improvements reduces the
search time up to 227 MD5 computations.

4.2 Reconstructing the PRNG Seed from
Session ID’s

In this section we exploit the fact that the PHP system
reuses entropy sources between different generators, in
order to reconstruct the PRNG seed used by rand()

and mt rand() functions from a PHP session identi-
fier. In order to predict the seed we only need to find
a preimage for the session id, using the methods de-
scribed in the previous section. One advantage of this
attack is that it requires no outputs from the affected
functions.

When a new process is created the internal state of
the functions rand() and mt rand() is uninitialized.
Thus, when these functions are called for the first time
within the script a seed is constructed as follows:

seed = (epoch× pid)⊕ (106 ×php combined lcg())

where epoch denotes the seconds since epoch and pid
denotes the process id of the process handling the re-
quest. It it easy to notice, that an attacker with access to
a session id preimage has all the information needed in
order to calculate the seed used to initialize the PRNGs
since:

epoch is obtained through the HTTP Date header.
pid is known from the seed of the
php combined lcg() obtained through the
preimage of the session id from section 4.1.
php combined lcg() is also known, since the at-
tacker has access to its seed, he can easily predict
the next iteration after the initial value.

In summary the technique of this section allows the re-
construction of the seed of the mt rand() and rand()
functions given access to a PHP session id of a fresh
process. The time complexity of the attack is the
same as the one described in section 4.1 while the
query complexity is one request, given that the attacker
spawned a fresh process (which itself requires only a
handful of requests).

4.3 Recovering the Seed from Applica-
tion leaks

In contrast to the technique presented in the previous
section, the attack presented here recovers the seed of

the PRNG functions rand() and mt rand() when the
attacker has access to the output of these functions. We
exploit the fact that the seed used by the PHP system is
only 32 bits. Thus, an attacker who connects to a fresh
process and obtains a number of outputs from these
functions can bruteforce the 32 bit seed that produces
the same output.

We emphasize that this attack works even if the out-
puts are truncated or passed through transformations
like hash functions. The requirements of the attack is
that the attacker can define a function from the set of
all seeds to a sufficiently large range and can obtain a
sample of this function evaluated on the seed that the
attacker tries to recover. Additionally for the attack to
work this function should behave as a random map.

Consider the following example. The attacker has
access to a user account of an application which gen-
erates a password reset token as 6 symbols where each
symbol is defined as g(mt rand()) where g is a ta-
ble lookup function for a table with 60 entries contain-
ing alphanumeric characters. The attacker defines the
function f to be the concatenation of two password re-
set tokens generated just after the PRNG is initialized.
The attacker samples the function by connecting to a
fresh process and resetting his password two times.
Since the table of function g contains 60 entries, the
attacker obtains 6 bits per token symbol, giving a total
range to the function f of 72 bits.

The time complexity of the attack is 232 calculations
of f however, we can reduce the online complexity
of the attack using a time-space tradeoff. In this case
the online complexity of the attack can be as little as
216. The query complexity of the attack depends on
the number of requests needed to obtain a sample of
f . In the example given above the query complexity is
two requests.

5 State recovery attacks

One can argue that randomness attacks can be easily
thwarted by increasing the entropy of the seeding for
the PRNG functions used by the PHP system. For ex-
ample, the suhosin PHP hardening extension replaces
the rand() function with a Mersene Twister generator
with separate state from mt rand() and offers a larger
seed for both generators getting entropy from the oper-
ating system3.

We show that this is not the case. We exploit the
algebraic structure of the PRNGs used in order to re-
cover their internal state after a sufficient number of
past outputs (leaks) have been observed by the attacker.
Any such attack has to overcome two challenges. First,
web applications usually need only a small range of

3The suhosin patch installed in some Unix operating systems
by default does not include the randomness patches, rather than it
mainly offers protection from memory corruption attacks. The full
extension is usually installed separately from the PHP packages.

6

USENIX Association 	 21st USENIX Security Symposium  87

Figure 4: Mapping a random number n ∈ [M] to 7
buckets and the respective bits of n that are revealed
given each bucket.

random numbers, for example to sample a random en-
try from an array. To achieve that, the PHP system
maps the output of the PRNG to the given range, an
action that may break the linearity of the generators.
Second, in order to collect the necessary leaks the at-
tacker may need to reconnect to the same process many
times to collect the leaks from the same generator in-
stance. Since, there could be many PHP processes run-
ning in the system, this poses another challenge for the
attacker.

In this section we present state recovery algo-
rithms for the truncated PRNG functions rand() and
mt rand(). The algorithm for the latter function
is novel, while regarding the former we implement
and evaluate the Håstad-Shamir cryptanalytic frame-
work [8] for truncated linearly related variables. We
begin by discussing the way truncation takes place in
the PHP system. Afterwards, we tackle the problem of
reconnecting into the same server process. Finally we
present the two algorithms against the generators.

5.1 Truncating PRNG sequences in the
PHP system

As mentioned in section 2.2 the rand() and
mt rand() functions can map their output to a user
defined range. This has the effect of truncating the
functions’ output. Here we discuss the process of trun-
cating the output and its implications for the attacker.

Let n ∈ [M] = {0, . . . ,M − 1} be a random number
generated by rand() or mt rand(), where M = 231

in the PHP system. In order to map that number in the
range [a,b] where a < b the PHP system maps n to a
number l ∈ [a,b] in the following way:

l = a+
n · (b−a+1)

M

We can view the process above as a mapping from
the set of numbers in the range [M] to b−a+1 “buck-
ets.” Our goal is to recover as many bits as possible
of the original number n. Observe that given l it is
possible to recover immediately up to �log(b−a+1)�
most significant bits (MSB) of the original number n
as follows:

Given that n belongs to bucket l we obtain the fol-

lowing range for possible values for n:

� (l −a) ·M
b−a+1

� ≤ n ≤ � (l −a+1) ·M
b−a+1

�−1

Therefore, given a bucket number l we are able to
find an upper and lower bound for the original number
denoted respectively by Ll and Ul . In order to recover
a part of the original number n one can simply find the
number of most significant bits of Ll and Ul that are
equal and observe that these bits would be the same
also in the number n. Therefore, given a bucket l we
can compare the MSBs of both numbers and set the
MSBs of n to the largest sequence of common most
significant bits of Ll ,Ul .

Notice that in some cases even the most signifi-
cant bit of the two numbers are different, thus we
are be unable to infer any bit of the original number
n with absolute certainty. For example, in Figure 4
given that a number falls in bucket 3 we have that
920350134≤ n≤ 1227133512. Because 920350134<
230 and 1227133512 > 230 we are unable to infer any
bit of the original number n.

Another important observation is that this specific
truncation algorithm allows the recovery of a fragment
of the MSBs of the original number. Therefore, in the
following sections we will assume that the truncation
occurs in the MSBs and we will describe our algo-
rithms based on MSB truncated numbers. However, all
algorithms described work for any kind of truncation.

5.2 Process distinguisher
As we mentioned in section 2.1, if one wants to receive
a number of leaks from the same PHP process one can
use keep-alive requests. However, there is an upper
bound that limits the number of such requests (by de-
fault 100). Therefore, if the attacker needs to observe
more outputs beyond the keep-alive limit the connec-
tion will drop and when the attacker connects back to
the server he may be served from a different process
with a different internal state. Therefore, in order to
apply state recovery attacks (which typically require
more than 100 requests), we must be able to submit
all the necessary requests to the same process. In this
section, we will describe a generic technique that finds
the same process over and over using the PHP session
leaks described in section 4.1.

While we cannot avoid disconnecting from a pro-
cess after we have submitted the maximum number of
keep-alive requests, we can start reconnecting back to
the server until we hit the process we were connected
before and continue to submit requests. The problem
in applying this approach is that it is not apparent to
distinguish whether the process we are currently con-
nected to is the one that was serving us in the previ-
ous connection. To distinguish between different pro-
cesses, we can use the preimage from a session iden-
tifier. Recall that the session id contains a value from

7

88  21st USENIX Security Symposium	 USENIX Association

the php combined lcg() function, which in turn uses
process specific state variables. Thus, if the session
is produced from the same process as before then the
php combined lcg() will contain the next state from
the one it was before. This gives us a way to find the
correct process among all the server processes running
in the server. In summary the algorithm will proceed
as follows:

1. The attacker obtains a session identifier and a
preimage for that id using the techniques dis-
cussed in section 4.1.

2. The attacker submits the necessary requests to ob-
tain leaks from the PRNG, using the keep-alive
HTTP header until the maximum number of re-
quests is reached.

3. The attacker initiates connections to the server re-
questing session identifiers. He attempts to ob-
tain a preimage for every session identifier using
the next value of the php combined lcg() from
the one used before or, if the server has high traf-
fic, the next few iterations. If a preimage is ob-
tained the attacker repeats step 2, until all neces-
sary leaks are obtained.

Notice that obtaining a preimage after disconnect-
ing requires to bruteforce a maximum number of 20
bits (the microseconds), and thus testing for the cor-
rect session id is an efficient procedure. Even if the
application is not using PHP sessions, or if a preimage
cannot be obtained, there are other, application spe-
cific, techniques in order to find the correct process.

A generic technique for Windows. In the case of
Windows systems the attacker can employ another
technique to collect the necessary leaks from the same
process in case the server has low traffic. In unix
servers with apache preforked server + mod php all
idle processes are in a queue waiting to handle an in-
coming client. The first process in the queue handles
a client and then the process goes to the back of the
queue. Thus, if an attacker wants to reconnect to the
same process without using some process distinguisher
he will need to know exactly the number of processes
in the system and if there are any intermediate requests
by other clients while the attacker tries to reconnect to
the same process. However, in Windows prethreaded
server with mod php things are slightly better for an
attacker. Threads are in a priority queue and when a
thread in the first place of the queue handles a request
from a client it returns again in that first place and han-
dles the first subsequent incoming request. Thus, an
attacker which manages to connect to that first thread
of the server, can rapidly close and reopen the connec-
tions thus leaving a very small window in which that
thread could be occupied by another client. Of course,
in high traffic servers the attacker would have a diffi-
culty connecting in a time when the server is idle in

the first place. Nevertheless, techniques exist [16] to
remotely determine the traffic of a server and thus al-
low the attacker to find an appropriate time window
within which he will attempt this attack.

Based on the above, in the following sections we
will assume that the attacker is able to collect the nec-
essary number of leaks from the targeted function.

5.3 State recovery for mt rand()
The mt rand() function uses the Mersenne Twister
generator in order to produce its output. In this section
we give a description of the Mersenne Twister genera-
tor and present an algorithm that allows the recovery of
the internal state of the generator even when the output
is truncated. Our algorithm also works in the presence
of non consecutive outputs as in the case resulting from
the buckets truncation algorithm of the PHP system (cf.
section 5.1).

Mersenne Twister. Mersenne Twister, and specifi-
cally the widely used MT19937 variant, is a linear
PRNG with a 624 32-bit word state. The MT algo-
rithm is based on the following recursion: for all k,

xk+n = xk+m⊕((xk∧0x80000000)|(xk+1∧0x7fffffff))A

where n = 624 and m = 397. The logical AND oper-
ation with 0x80000000 discards all but the most sig-
nificant bit of xk while the logical AND with 0x7fffffff
discards only the MSB of xk+1. A is a 32× 32 ma-
trix for which multiplication by a vector x is defined as
follows:

xA =

{
(x � 1) if x31 = 0
(x � 1)⊕a if x31 = 1

Here a = (a0,a1, ...,a31) = 0x9908B0DF is a constant
32-bit vector (note that we use x31 to denote the LSB
of a vector x). The output of this recurrence is finally
multiplied by a 32× 32 non singular matrix T , called
the tempering matrix, in order to produce the final out-
put z = xT .

State recovery. Since the tempering matrix T is non
singular, given 624 outputs of the MT generator one
can easily compute the original state by multiplying
the output z with the inverse matrix T−1 thus obtain-
ing the state variable used as xi = ziT−1. After recov-
ering 624 state variables one can predict all future it-
erations. However, when the output of the generator is
truncated, predicting future iterations is not as straight-
forward as before because it is not possible to locally
recover all needed bits of the state variables given the
truncated output.

The key observation in recovering the internal state
is that due to the fact that the generator is in GF(2) the
truncation does not introduce non linearity even though
there are missing bits from the respective equations.

8

USENIX Association 	 21st USENIX Security Symposium  89

Thus, we can express the output of the generator as a
set of linear equations in GF(2) which, when solved,
yield the initial state that produced the observed se-
quence. From the basic recurrence of MT we can de-
rive the following equations for each individual bit:

Lemma 5.1. Let x0,x1, . . . be an MT sequence and j >
0. Then the following equations hold for any k ≥ 0:

1. x0
jn+k = x0

(j−1)n+k+m ⊕ (x31
(j−1)n+k+1 ∧a0)

2. x1
jn+k = x1

(j−1)n+k+m ⊕ x0
(j−1)n+k ⊕ (x31

(j−1)n+k+1 ∧
a1)

3. ∀i,2 ≤ i ≤ 31 : xi
jn+k = xi

(j−1)n+k+m ⊕
xi−1
(j−1)n+k+1 ⊕ (x31

(j−1)n+k+1 ∧ai)

Proof. The equations follow directly from the basic re-
currence.

In addition since the tempering matrix is only a lin-
ear transformation of the bits of the state variable xi,
we can similarly express each bit of the final output of
MT as a linear equation of the bits of the respective
state variable.

To recover the initial state of MT, we generate all
equations over the state bit variables x0,x1, . . . ,x19936.
To map any position in the MT sequence in an equation
over this set of variables, we apply the equations of the
lemma above recursively until all variables in the right
hand side have index below 19937.

Depending on the positions observed in the MT se-
quence the resulting linear system will be different.
The question that remains is whether that system is
solvable. Regarding the case of the 31-bit truncation,
i.e. only the MSB of the output word is revealed, we
can use known properties of the generator in order to
easily prove the following:

Lemma 5.2. Suppose we obtain the MSB of 19937
consecutive words from the MT generator. Then the
resulting linear system is uniquely solvable.

Proof. It is known that the MT sequence is 19937-
distributed to 1-bit accuracy4. The linear system is
uniquely solvable iff the rows are linearly independent.
Suppose that a set k ≤ 19937 of rows are lineary de-
pendent. Then the last row of the set k obtained is
computable from the other members of the k-set some-
thing that contradicts the order of equidistribution of
MT.

The above result is optimal in the sense that this is
the minimum number of observed outputs needed for
the system to become fully determined. In the case
we obtain non consecutive outputs due to truncation

4Suppose that a sequence is k-distributed to u-bit accuracy. Then
knowledge of the u most significant bits of l words does not allow
one to make any prediction for the u bits of the next word when l < k.
This is the cryptographic interpretation of the “order of equidistribu-
tion” whose exact definition can be found in [15].

or application behavior, linear dependencies may arise
between the resulting equations and therefore we may
need a larger number of observed outputs.

Because we cannot know in advance when the sys-
tem will become solvable or the equations that will be
included, we employ an online version of Gaussian
elimination in order to form and solve the resulting
system. In this way, the attacker can begin collecting
leaks and gradually feed them to our Gaussian solver
until he is notified that a sufficient number of indepen-
dent equations have been collected. Note that regular
Gaussian elimination uses both elementary row and el-
ementary column operations. However, because we do
not have in advance the entire linear system we cannot
use elementary column operations. Instead we make
Gaussian elimination using only elementary row oper-
ations and utilize a bookkeeping system to enter equa-
tions in their place as they are produced by the leaks
supplied to the solver. Our solver employs a sparse
vector representation and is capable of solving overde-
termined sparse systems of tens of thousands of equa-
tions in a few minutes.

We ran a sequence of experiments to determine the
solvability of the system when a different number of
bits is truncated from the output. In addition we ran
experiments when the outputs of the MT generator is
passed through the PHP truncation algorithm, with dif-
ferent user defined ranges. All experiments were con-
ducted in a 4×2.3 GHz machine with 4 GB of RAM.

In Figure 5 we present the number of equations
needed when the PHP truncation algorithm is used.
In the x-axis we have the logarithm of the number
of buckets. We also show the standard deviation ap-
pearing as vertical bars. It can be seen that the num-
ber of equations needed is much higher than the the-
oretical lower bound of 19937 and fluctuates between
27000 and 33000. Neverthless, the number of leaks re-
quired is decreasing linearly to the number of buckets
we have. The reason is that although we have more lin-
early dependend equations, the total number of equa-
tions we obtain due to the larger number of buckets is
bigger.

Implementation error in the PHP system. The
PHP system up to current version, 5.3.10, has an error
in the implementation of the Mersenne Twister gen-
erator (we discovered this during the testing of our
solver). Specifically the following basic recurrence is
effectively used in the PHP system due to a program-
ming error:

xk+n = xk+m ⊕ ((xk ∧0x80000000)|(xk+1 ∧0x7ffffffe)|(xk ∧0x1))A

As a result the PHP system uses a different generator
which, as it turns out, has slightly more linear depen-
dencies than the MT generator. This means that prob-
ably the randomness properties of the PHP generator
are poorer compared to the original MT generator.

9

90  21st USENIX Security Symposium	 USENIX Association

Figure 5: Solving MT; y-axis:number of equations; x-axis: number of buckets (logarithm). Standard deviation
shown as vertical bars.

5.4 State recovery for rand()
We turn now to the problem of recovering the state
of rand() given a sequence of leaks from this gen-
erator. While mt rand() is implemented within the
PHP source code and thus is unchanged across differ-
ent enviroments, the rand() function uses the respec-
tive function defined from the standard library of the
operating system. This results in different implemen-
tations across different operating systems. There are
mainly two different implementations of rand() one
from the glibc and one from the Windows library.

Windows rand(). The rand() function defined in
Windows is a Linear Congruential Generator (LCG).
An LCG is defined by a recurrence of the form

Xn+1 = (aXn + c) mod m

Although LCGs are fast and require a small memory
footprint there are many problems which make them
insufficient for many uses, including of course cryp-
tographic purposes. The parameters used by the Win-
dows LCG are a = 214013,c = 2531011,m = 232. In
addition, the output is truncated by default and only
the top 15 bits are returned. If PHP is running in a
threaded server in Windows then the parameters of the
LCG used are a = 1103515245,c = 12345,m = 215.

Glibc rand(). In the past, glibc also used an LCG for
the rand() function. Subsequently an LFSR-like “ad-
ditive feedback” design was adopted. The generator
has a state of 31 words (of 32 bits each), over which it
is defined by the following recurrence:

ri = (ri−3 + ri−31) mod 232

In addition the LSB of each word is discarded and the
output returned to the user is oi = ri � 1. An interest-
ing note is that the man page of rand() states that rand

is a non-linear generator. Nevertheless, the non linear-
ity introduced by the truncation of the LSB is negligi-
ble and one can easily recover the initial values given
enough outputs of the generator.

State recovery. Notice that if the generators used
have a small state such as the Windows LCGs then
state recovery is easy, by applying the attack from sec-
tion 4 to bruteforce the entire state of the generator.
However, on the Glibc generator, which has a state of
992 bits, these attacks are infeasible assuming that the
state is random. Although LCGs and the Glibc gener-
ators are different, they both fall into the same crypt-
analytic framework introduced by Håstad and Shamir
in 1985 for recovering values of truncated linear vari-
ables. This framework allows one to uniquely solve
an underdefined system of linear equations when the
values of the variables are partially known. In this sec-
tion we will discuss our experiences with applying this
technique in the two aforementioned generators: The
LCG and the additive-feedback generator of glibc. We
will briefly describe the algorithm for recovering the
truncated variables in order to discuss our experiments
and results. The interested reader can find more infor-
mation about the algorithm in the original paper [8].

Suppose we are given a system with l linear equa-
tions on k variables modulo m denoted by x1,x2, . . . ,xk,

a1
1x1 +a1

2x2 + · · ·+a1
kxk = 0 mod m

a2
1x1 +a2

2x2 + · · ·+a2
kxk = 0 mod m

. . .

al
1x1 +al

2x2 + · · ·+al
kxk = 0 mod m

where l < k and each variable xi is partially known.
We want to solve the system uniquely by utilizing the
partial information of the k variables xi.

We use the coefficients of the l equations to create a
set of l vectors, where each vector is of the form vi =

10

USENIX Association 	 21st USENIX Security Symposium  91

(a1, . . . ,ak). In addition we add to this set the k vectors
m · ei,0 < i ≤ k. The cryptanalytic framework exploits
properties of the lattice L that is defined as the linear
span of these vectors. Observe that the dimension of L
is k and in addition for every vector v ∈ L we have that
∑k

i=1 vixi = 0 mod m.
Given the above the attack works as follows: first a

lattice is defined using the recurrence that defines the
linear generator; then, a lattice basis reduction algo-
rithm is employed to create a set of linearly indepen-
dent equations modulo m with small coefficients; fi-
nally, using the partially known values for each vari-
able, we convert this set of equations to equations over
the integers which can be solved uniquely. Specifi-
cally, we use the LLL [13] algorithm in order to obtain
a reduced basis B for the lattice L. Now because B =
{w j} is a basis, the vectors of B are linearly indepen-
dent. The key observation is that the lattice definition
implies that w j ·x=w j ·(xunknown+xknown) = d j ·m for
some unknown d j. Now as long as xunknown ·w j < m/2
(this is the critical condition for solvability) we can
solve for d j and hence recover k equations for xunknown
which will uniquely determine it.

The original paper provided a relation between the
size of xknown and the number of leaks required from
the generator so that the upper bound of m/2 is ensured
given the level of basis reduction achieved by LLL. In
the case of LCGs the paper demanded the modulo m to
be squarefree. However, as shown above, in the gen-
erators used it holds that m = 232 and thus their argu-
ments do not apply. In addition, the lattice of the addi-
tive generator of glibc is different than the one gener-
ated by an LCG and thus needs a different analysis.

We conducted a thorough experimental analysis of
the framework focusing on the two types of generators
above. In each case we tested the maximum possible
value of xknown to see if the m/2 bound holds for the
reduced LLL basis. In the following paragraphs we
will briefly discuss the results of these experiments for
these types of generators.

In Figure 6 we show the relationship between the
number of leaks required for recovering the state with
the lattice-attack and the number of leaks that are trun-
cated for four LCGs: the Windows LCG, the glibc
LCG (which are both 32 bits), the Visual Basic LCG
(which is 24 bits) and an LCG used in the MMIX of
Knuth (which is 64 bits). It is seen that the number
of leaks required is very small but increases sharply as
more bits are truncated. In all cases the attack stops
being useful once the number of truncated bits leaves
none but the logw−1 most significant bits where w is
the size of the LCG state. The logarithm barrier seems
to be uniformly present and hints that the MSB’s of
a truncated LCG sequence may be hard to predict (at
least using the techniques considered here). A similar
logarithmic barrier was also found in the experimental
analysis that was conducted by Contini and Shparlin-
ski [3] when they were investigating Stern’s attack [17]

against truncated LCG’s with secret parameters.

Applying the attack in the glibc additive feedback
generator we found that the LLL algorithm became a
bottleneck in the algorithm running time; due to its
large state the algorithm required a large number of
leaks to recover even small truncation levels there-
fore increasing the lattice dimension that was given
to the LLL algorithm. Our testing system (a 3.2GHz
cpu with 2GB memory) ran out of memory when 7
bits were truncated. The version of LLL we em-
ployed (SageMath 4.8) has time complexity O(k5)
where k is the dimension of the lattice (which repre-
sents roughly the number of leaks). The best time-
complexity known is O(k3 logk) derived from [12];
this may enable much higher truncation levels to be re-
covered for the glibc generator, however we were not
able to test this experimentally as no implementation
of this algorithm is publicly available.

We conclude that truncated LCG type of generators
can be broken (in the sense of entirely recovering their
internal state) for all but extremely high levels of trun-
cation (e.g. in the case of 32-bit state LCG’s mod-
ulo 232 when they are truncated to 16 buckets or less).
For additive feedback type of generators, such as the
one in glibc, the situation is similar, however higher
recursion depths require more leaks (with a linear re-
lationship) that in turn affect the lattice dimension re-
sulting in longer running times. Comparing the results
between the LCGs and the additive feedback genera-
tors one may find some justification for the adoption
of the latter in recent versions of glibc : it appears that
- at least as far as lattice-based attacks are concerned -
it is harder to predict truncated glibc sequences (com-
pared to say, Windows LCG’s) due to the higher run-
ning times of LLL reduction (note though that this does
not mean that these are cryptographically secure).

6 Experimental results and Case studies

In order to evaluate the impact of our attacks on real
applications we conducted an audit to the password
reset function implementations of popular PHP appli-
cations. Figure 7 shows the results from our audit.
In each case succesfully exploiting the application re-
sulted in takeover of arbitrary user accounts5 and in
some cases, when the administrator interface was af-
fected, of the entire application. In addition to iden-
tifiying these vulnerabilities we wrote sample exploits
for some types of attack we presented, each on one af-
fected application.

5The only exception to that is the HotCRP application where
passwords were stored in cleartext thus there was no password reset
functionality. However, in this case we were able to spoof registra-
tions for arbitrary email accounts.

11

92  21st USENIX Security Symposium	 USENIX Association

Figure 6: Solving LCGs with LLL; y-axis:number of leaks; x-axis: number of bits truncated.

Application Attack Application Attack
mediawiki 4.2 4.3 5.3 • Joomla 4.3 •

Open eClass 4.2 4.3 5.4 • MyBB ATSc 4.1c 5.3c ◦
taskfreak 4.2 4.3 5.3 • IpBoard ATSc 4.1c 4.2c •
zen-cart ATS RT • phorum 4.2 4.3 5.3 •

osCommerce 2.x ATS RT • HotCRP 4.2 4.3 5.3 •
osCommerce 3.x 4.2 4.3 5.4 • gazelle 4.3 5.3 •

elgg ATSc 4.2 4.3 • tikiWiki 4.2 4.3 5.4 •
Gallery RTc 4.1c 4.2c • SMF ATSc 4.3c ◦

Figure 7: Summary of audit results. The c superscript denotes that the attack need to be used in combination with
other attacks with the same superscript. The • denotes a full attack while ◦ denotes a weakness for which the
practical exploitation is either unverified or requires very specific configurations. The number denotes the section
in which the applied attack is described in the paper.

6.1 Selected Audit Results
Many applications we audited where trivially vulnera-
ble to our attacks since they used the affected PRNG
functions in a straightforward manner, thus making it
pretty easy for an attacker to apply our techniques and
exploit them. However some applications attempted
to defend against randomness attacks by creating cus-
tom token generators. We will describe some attacks
that resulted from using our framework against custom
generators.

Gallery. PHP Gallery is a very popular web based
photo album organizer. In order for a user to reset his
password he has to click to a link, which contains the
security token. The function that generates the token is
the following:

function hash($entropy="") {

return md5($entropy . uniqid(mt_rand(), true));

}

The token is generated using three entropy sources,

namely a time measurement from uniqid(), an out-
put from the MT generator and an output from the
php combined lcg() through the extra argument in
the uniqid() function. In addition the output is
passed through the MD5 hash function so its infeasi-
ble to recover the initial values given the output of this
function. Since we do not have access to the output
of the function, the state reconstruction attack seems
an appropriate choice for attacking this token gener-
ation algorithm. Indeed, the Gallery application uses
PHP sessions thus an attacker can use them to predict
the php combined lcg() and mt rand() outputs. In
addition by utilizing the request twins technique from
section 3 the attacker can further reduce the search
space he has to cover to a few thousand requests.

Joomla. Joomla is one of the most popular CMS ap-
plications, and it also have a long history of weak-
nesses in its generation of password reset tokens [4,
11]. Until recently, the code for the random token gen-
eration was the following:

12

USENIX Association 	 21st USENIX Security Symposium  93

function genRandomPassword($length=8) {

$salt = abc...xyzABC...XYZ0123456789 ;

$len = strlen ($salt);

$makepass = ‘‘’’;

- $stat = @stat (FILE) ;

- if (empty($stat) || !isarray($stat))

- $stat=array(phpuname());

- mt_srand(crc32(microtime().implode(|,$stat)));

for($i=0;$i<$length;$i++){

$makepass .= $salt[mt_rand(0,$len1)];

}

return $makepass;

}

In addition the output of this function is
hashed using MD5 along a secret, 16 bytes, key
(config.secret) which is created at installation
using the function above. The config.secret value
was also used to create a “remember me” cookie in the
following way:

cookie = md5(config.secret+’JLOGIN REMEMBER’)

Since the second part of the string is constant
and the config.secret is generated through the gen-
RandomPassword function which has only 232 possi-
ble values for each length, one could bruteforce all
possible values and recover config.secret. All
that was left was the prediction of the output of the
genRandomPassword() function in order to predict
the security token used to reset a password. One then
observes that although the contents of the $stat vari-
able in the genRandomPassword() function are suf-
ficiently random, the fact that crc is used to convert
this value to a 4 byte seed allows one to predict the
seed generated and thus the token. This attack was
reported in 2010 in [11] and a year after, Joomla re-
leased a patch for this vulnerability which removed the
custom seeding (dashed lines) from the token gener-
ation function. The idea was that because the gener-
ator is rolling constantly without reseeding one will
be unable to recover the config.secret and thus the
generator will be secure due to its secret state. Un-
fortunately, this may not be the case. If at the instal-
lation time the process handling the installation script
is fresh, a fact quite probable if we consider dedicated
servers that do not run other PHP applications, then
the search space of the config.secret will be again
232 and thus an attacker can use the same technique
as before to recover it. After the config.secret is
recovered, exploitation of the password reset imple-
mentation is straightforward using our seed recovery
attack from section 4.3. A similar attack also holds
when mod cgi is used for script execution as each re-
quest will be handled by a fresh process again reducing
the search space for config.secret in 232 values.

However, the low entropy of the config.secret

key is not the only problem of this implementation.
Even if the key had enough entropy to be totally unpre-
dictable, the generator would still be vulnerable. No-
tice that in case the genRandomPassword() is called

with a newly initialized MT generator then there at
most 232 possible tokens, independently of the entropy
of config.secret. This gives an interesting attack
vector: We generate two tokens from a fresh process
sequentially for a user account that we control. Then
we start to connect to a fresh process and request a to-
ken for our account. If the token matches the token
generated before then we can submit a second request
for the target user’s account which, since the first to-
ken matched the token we own, will match the second
token that we requested before (recall that the tokens
are not bound to users). Observe that if we gener-
ate only one pair of tokens this attack is expected to
succeed after 232 requests, assuming that the seed is
random. Nevertheless, we can request more than one
pair of tokens thus increasing our success probability.
Specifically, if we have n pairs of tokens then at the
second phase the attack is expected to succeed after
232/n requests. Therefore, if we denote by r(n) the ex-
pected requests that the attack needs to hit a “good”
token given n initial token pairs, then we have that
r(n) = 2n+ 232/n. Our goal is to minimize the func-
tion r(n); this function obtains a positive minimum at
n = 231/2, for which we have that r(231/2) ≈ 185000.
A simple bruteforcing framework that we wrote was
able to achieve around 2500 requests per minute, a rate
at which an attacker can compromise the application
in a little more than one hour. To be fair, we have to
add the requests that are required to spawn new pro-
cesses but even if we go as far as to double the needed
requests (and this is grossly overestimating) we still
have a higly practical attack.

Gazelle. Gazelle is a torrent tracker application,
which includes a frontend for building torrent shar-
ing communities. It’s been under active development
for the last couple of years and its gaining increasing
popularity. The interesting characteristic of the appli-
cation’s password reset implementation is that it uses
two generators of the PHP system (namely rand() and
mt rand(). The code that generates a token is this:

function make_secret($Length = 32) {

$Secret = ’’;

$Chars=’abcdefghijklmnopqrstuvwxyz0123456789’;

for($i=0; $i<$Length; $i++) {

Rand = mt_rand(0, strlen($Chars)-1);

$Secret .= substr($Chars, $Rand, 1);

}

return str_shuffle($Secret);

}

The code generates a random string using
mt rand() and then shuffles the string using the
str shuffle() function which internally uses the
rand() function. If we try to apply directly the seed
recovery attack, i.e. try to ask a question of the form
“which seed produces this token” then we will run
into problems because we have to take into account
two seeds, and a total search space of 64 bits which

13

94  21st USENIX Security Symposium	 USENIX Association

is infeasible. The normal action would be to follow
the same path as we did in the Gallery application
where we had a similar problem and utilize the seed
reconstruction attack which does not require an output
of the PRNGs. However, the Gazelle application uses
custom sessions (which are generated using the same
function), and thus we cannot apply that attack either.
The solution lies into slightly mofiying the seed recov-
ery attack. Instead of asking the question “which seed
produces this mt rand() sequence”, which is shuffled
and thus affected by the second PRNG, we instead ask
which seed produces the unsorted set which contains
the characters of our string. This set is not affected by
the shuffling and thus we can effectively bruteforce
the mt rand() seed independently. After recovering
the mt rand() seed we know the initial sequence that
was produced and we can subsequently recover the
seed of rand() using the same attack.

6.2 Attacks Implementation
In addition to auditing the applications, we imple-
mented a number of our attacks targeting selected ap-
plications. In particular, we implemented a seed re-
covery attack against Mediawiki, a state reconstruction
attack against the Phorum application and the request
twins technique against Zen-cart. In the following sec-
tions we will briefly describe each vulnerability and
the results of our attacks implementation.
Mediawiki. Mediawiki is a very popular wiki appli-
cation used, among others, by Wikipedia. Mediawiki
uses mt rand() in order to generate a new password
when the user requests a password reset. In order to
predict the generated password we use the seed recov-
ery attack of section 4.3. The function f that we sam-
ple is the one used to generate a CSRF token which is
the following:

function generateToken($salt = ’’) {

$token = dechex(mt_rand()).dechex(mt_rand());

return md5($token . $salt);

}

Our function f given a seed s first seeds the
mt rand() generator and then uses that generator to
produce a token as the function above. To fully eval-
uate the practicality of the attack we implemented the
attack online, without any time-space tradeoff. Our im-
plementation was able to cover around 1300000 seed
evaluations of f per second in a dual-core laptop with
two 2.3 GHz processors. This allowed us to cover the
full 232 range in about 70 minutes. Of course, using
a time-space tradeoff the search time could be further
reduced to a few minutes.

Zen cart. Zen-Cart is a popular eCommerce applica-
tion. At the time of this writing, a sample database
which shops enter volunterily numbers about 2500 ac-
tive e-shops 6. In order to reset a user’s password

6www.zen-cart.com/index.php?main_page=showcase

zen-cart first seeds the mt rand() generator with the
microtime() function and then uses the mt rand()

function to produce a new password for the user. Thus,
there at most 106 possible passwords which could be
produced. Our exploit used the request twins tech-
nique to reset both our password and the target user’s
password. Afterwards, we bruteforced the generated
password for our account to recover the microtime()
value that produced it. This takes at most a few sec-
onds on any modern laptop. Then, our exploit brute-
forces the passwords generated by microtime() val-
ues close to the one that generated our own new pass-
word. We ran our exploit in a network with RTT
around 9 ms, and Zen-Cart was installed in a 4× 2.3
GHz server. The average difference of the two pass-
words was about 3600 microseconds, and the exploit
needed at most two times that requests since we don’t
know which password was produced first. With the
rate of 2500 requests per minute that our implementa-
tion achieves, the attack is completed in a few minutes.
Phorum. Phorum is a classic bulletin board applica-
tion. It was used, among others, by the eStream com-
petition as an online discussion platform. In order for
a user to reset his password the following function is
used:

function phorum_gen_password($charpart=4, $numpart=3)

{

$vowels = ... //[char array];

$cons = ... //[char array];

$num_vowels = count($vowels);

$num_cons = count($cons);

$password="";

for($i = 0; $i < $charpart; $i++){

$password .= $cons[mt_rand(0, $num_cons - 1)]

. $vowels[mt_rand(0, $num_vowels - 1)];

}

$password = substr($password, 0, $charpart);

if($numpart){

$max=(int)str_pad("", $numpart, "9");

$min=(int)str_pad("1", $numpart, "0");

$num=(string)mt_rand($min, $max);

}

return strtolower($password.$num);

}

What makes this function interesting in the context
of state recovery is that at if called with no arguments
(as it is in the application), at least four mt rand()

leaks are discarded in each call. We implemented
the attack having the application installed in a Win-
dows server with the Apache web server and we used
our generic technique for Windows in order to recon-
nect to the same process. On average, the attack re-
quired around 1100 requests and 11 reconnections of
our client. The running time was about 30 minutes, and
the main source of overhead was the system solving.
This fact is mainly explained from the small number
of buckets and the lost leaks of each iteration. Nev-
erthless, the attack remained highly practical, as we

14

USENIX Association 	 21st USENIX Security Symposium  95

were able to compormise any user account (including
the administrator) within half an hour.

7 Defending against the Attacks

We believe that a major shortcoming of the PHP core
is that it does not provide a native cryptographically
secure PRNG and token generator. In fact, a pseu-
dorandom function (PRF) would be the most suitable
cryptographic primitive for generating random tokens
based on program defined labels; PRF’s can be con-
structed by PRNG’s [7]. We feel that this is a short-
coming since developers tend to prefer functions from
the core as they are compatible with every different
enviroment PHP is running in. A possible solution
would be to introduce a secure PRNG in the PHP
core (as a new function). We proposed this solu-
tion to the PHP development team which informed us
that the development overhead would be too big for
supporting such a function and the solution of using
openssl random pseudo bytes() (which requires
OpenSSL) is their recommendation.

On the other hand, administrators can take a num-
ber of precautions to defend against randomness at-
tacks using current PHP versions. The Suhosin ex-
tension provides a secure seed in the mt rand() and
rand() functions. The seed exploits the fact that the
Mersenne Twister has a large state and fills that state
using a hash function. Because rand() may have a
small state and is dependent from the operating sys-
tem, the Suhosin extension replaces rand() with a
Mersenne twister generator with a different state from
mt rand(). The hashed values of the seed used are
a concatenation of predictable values such as process
identifiers and timestamps, along with, potentially, un-
predictable ones such as memory addresses of vari-
ables and input from /dev/urandom. Because the
addresses in any modern operating system are ran-
domized through ASLR, as a security precaution, us-
ing them as a seed should provide enough additional
entropy to make the two seed attacks (sections 4.2,
4.3) infeasible (assuming ASLR addresses are un-
predictable). In addition, the suhosin extension ig-
nores the calls to the seeding functions mt srand(),

srand() in order to defend against weak seeding from
the application. Although this may introduce a state re-
covery vulnerability, in the majority of our case stud-
ies, custom seeding was pretty weak and this mea-
sure (of securely seeding once and ignoring applica-
tion based reseeding) increases security. We strongly
believe that securely seeding the generators, when pos-
sible, is a very useful exploit mitigation for the attacks
we presented. Although state recovery attacks would
still be possible, these attacks are more complex than
the seed attacks which require a handful of requests
and commodity hardware to compromise the applica-
tions. Furthermore, creating a secure seed from such
sources has a negligible performance overhead. There-

fore, such measures should be employed by the PHP
system as safeguards for applications that misuse the
PHP core PRNGs.

Our session preimage attack (section 4.1) can be
mitigated by utilizing an option (disabled by default)
of PHP to add extra entropy, from a file, in the ses-
sion identifier. By specifying /dev/urandom as the
entropy file, a user can increase the entropy of a
session arbitrarily thus making it infeasible for an
attacker to obtain a preimage. In Windows, be-
cause /dev/urandom is not available this option
gathers entropy using the same algorithm as in the
openssl random pseudo bytes() function. The
PHP developement team informed us that the above
option will be enabled by default in the upcoming ver-
sion, PHP 5.4.

The above workarounds, if employed, will kill our
seed attacks and the generic process distinguisher we
devised. However, state recovery attacks would still be
possible either through some application specific leak,
or using the generic technique described for Windows
operating systems (section 5.2). In addition, we find
the possibility of the existence of other process distin-
guishers very probable; after all, the process identifier
is not considered a cryptographic secret and could be
leaked either through the application or the web server
or even the operating system itself. Therefore, we feel
that even using these workarounds, one should con-
sider state recovery attacks practical.

With the present state of the PHP system, developers
should avoid using directly the PRNGs of the PHP core
for security purposes. Any application that requires
a security token should employ a custom generator,
that will either use the functions from the PHP exten-
sions such as the openssl random pseudo bytes(),
if available, or it will use other entropy sources. We
give an example of one such function in [1].

8 Related Work

The first randomness attack in PHP that we are aware
of appeared in a blog post by Stefan Esser [5, 6], where
he described basic system properties such as keep-
alive connection handling by web server processes,
and described how misusing mt srand() could re-
sult in security vulnerabilities that he demonstrated in
some popular applications. Shortly after, the same
author released an update of the Suhosin extension
which included the randomness features for strong
seeding mentioned above. Our preimage attack on
PHP sessions was insipired by an attack introduced by
Samy Kamkar [10], in which he described some cases
where an adversary would be able to guess a PHP ses-
sion. However these attacks assumed a side-channel
of server information. Finally Gregor Kopf [11] de-
scribed, along other attacks, the vulnerability in the
password reset implementation of Joomla. This work
describes some type of seed recovery attacks but only

15

96  21st USENIX Security Symposium	 USENIX Association

for the case that a fresh seeding occurs within the PHP
script executed.

9 Conclusions

We find the fact that the most popular programming
language in a domain that has a clear need for cryp-
tographically strong randomness does not have such a
generator within its core system to be a security hazard.
Still, even if such a generator existed in the language,
the misuse of other functions would not disappear im-
mediately as API misusage is a very common security
problem in modern systems. Therefore, we believe
that research in the practical exploitation of such in-
secure functions should be continued and extended to
other environments even if they do offer better secu-
rity features in their API than PHP. In this paper we
explored the case of PHP installed in the Apache web
server along with mod php. We also showed the ap-
plicability of some of our attacks in cgi mode where
each request is handled by a new process. However,
the case of fast cgi needs further investigation as its
behavior depends highly on its configuration. In addi-
tion, it would be interesting to check other languages
and web servers, such as PHP on an IIS web server, or
Python and Ruby on Rails web applications in Apache.
A problem that is also of theoretical interest is the
development of faster algorithms for recovering trun-
cated linear variables and finding an explanation for
the logarithmic barrier we encountered when experi-
menting with the Håstad-Shamir framework. To con-
clude, despite the fact that linear generators are cryp-
tographically insecure, the fact that developers misuse
them for security critical features makes the analysis
of their practical security within a certain application
context an interesting research question which we be-
lieve needs further attention and awareness.

References

[1] George Argyros and Aggelos Kiayias. I forgot
your password: randomness attacks against php
applications. http://crypto.di.uoa.gr/

CRYPTO.SEC/Randomness_Attacks.html,
2012.

[2] Unknown Author.
openssl random pseudo bytes() painfully
slow. PHP Bug # 51636, https:

//bugs.php.net/bug.php?id=51636, 2010.

[3] Scott Contini and Igor Shparlinski. On stern’s
attack against secret truncated linear congru-
ential generators. In Colin Boyd and Juan
Manuel González Nieto, editors, ACISP, vol-
ume 3574 of Lecture Notes in Computer Science,
pages 52–60. Springer, 2005.

[4] Stefan Esser. Joomla weak random password re-
set token vulnerability. SektionEins GmbH, Se-
curity Advisory 2008/09/11, 2008.

[5] Stefan Esser. Lesser known security problems in
php applications. In Zend Conference, 2008.

[6] Stefan Esser. mt srand and not
so random numbers. http://

www.suspekt.org/2008/08/17/mt_

srand-and-not-so-random-numbers/,
2008.

[7] Oded Goldreich, Shafi Goldwasser, and Silvio
Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

[8] Johan Håstad and Adi Shamir. The cryptographic
security of truncated linearly related variables. In
Robert Sedgewick, editor, STOC, pages 356–362.
ACM, 1985.

[9] Robert ”Hackajar” Imhoff-Dousharm. Eco-
nomics of password cracking in the gpu era. In
DEFCON 19, 2011.

[10] Samy Kamkar. phpwn: Attacking sessions and
pseudo-random numbers in php. In Blackhat
USA, Las Vegas, NV 2010, 2010.

[11] Gregor Kopf. Non-obvious bugs by example.
In 27th Chaos Communication Congress CCC,
2010.

[12] Henrik Koy and Claus-Peter Schnorr. Segment
lll-reduction of lattice bases. In Joseph H. Sil-
verman, editor, CaLC, volume 2146 of Lec-
ture Notes in Computer Science, pages 67–80.
Springer, 2001.

[13] A.K. Lenstra, H.W.jun. Lenstra, and Lászlo
Lovász. Factoring polynomials with rational co-
efficients. Math. Ann., 261:515–534, 1982.

[14] Arjen K. Lenstra, James P. Hughes, Maxime
Augier, Joppe W. Bos, Thorsten Kleinjung, and
Christophe Wachter. Ron was wrong, whit
is right. IACR Cryptology ePrint Archive,
2012:064, 2012.

[15] Makoto Matsumoto and Takuji Nishimura.
Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number genera-
tor. ACM Trans. Model. Comput. Simul., 8(1):3–
30, 1998.

[16] HD Moore and Valsmith. Tactical exploitation.
In DEFCON 15, 2007.

[17] Jacques Stern. Secret linear congruential gener-
ators are not cryptographically secure. In FOCS,
pages 421–426. IEEE Computer Society, 1987.

16

USENIX Association 	 21st USENIX Security Symposium  97

An Evaluation of the Google Chrome Extension Security Architecture

Nicholas Carlini, Adrienne Porter Felt, and David Wagner
University of California, Berkeley

nicholas.carlini@berkeley.edu, apf@cs.berkeley.edu, daw@cs.berkeley.edu

Abstract

Vulnerabilities in browser extensions put users at risk by
providing a way for website and network attackers to
gain access to users’ private data and credentials. Exten-
sions can also introduce vulnerabilities into the websites
that they modify. In 2009, Google Chrome introduced
a new extension platform with several features intended
to prevent and mitigate extension vulnerabilities: strong
isolation between websites and extensions, privilege sep-
aration within an extension, and an extension permission
system. We performed a security review of 100 Chrome
extensions and found 70 vulnerabilities across 40 exten-
sions. Given these vulnerabilities, we evaluate how well
each of the security mechanisms defends against exten-
sion vulnerabilities. We find that the mechanisms mostly
succeed at preventing direct web attacks on extensions,
but new security mechanisms are needed to protect users
from network attacks on extensions, website metadata at-
tacks on extensions, and vulnerabilities that extensions
add to websites. We propose and evaluate additional de-
fenses, and we conclude that banning HTTP scripts and
inline scripts would prevent 47 of the 50 most severe vul-
nerabilities with only modest impact on developers.

1 Introduction

Browser extensions can introduce serious security vul-
nerabilities into users’ browsers or the websites that ex-
tensions interact with [20, 32]. In 2009, Google Chrome
introduced a new extension platform with several secu-
rity mechanisms intended to prevent and mitigate ex-
tension vulnerabilities. Safari and Mozilla Firefox have
since adopted some of these mechanisms for their own
extension platforms. In this paper, we evaluate the se-
curity of the widely-deployed Google Chrome extension
platform with the goal of understanding the practical suc-
cesses and failures of its security mechanisms.

Most extensions are written by well-meaning devel-
opers who are not security experts. These non-expert

developers need to build extensions that are robust to at-
tacks originating from malicious websites and the net-
work. Extensions can read and manipulate content from
websites, make unfettered network requests, and access
browser userdata like bookmarks and geolocation. In the
hands of a web or network attacker, these privileges can
be abused to collect users’ private information and au-
thentication credentials.

Google Chrome employs three mechanisms to prevent
and mitigate extension vulnerabilities:

• Privilege separation. Chrome extensions adhere to
a privilege-separated architecture [23]. Extensions
are built from two types of components, which are
isolated from each other: content scripts and core
extensions. Content scripts interact with websites
and execute with no privileges. Core extensions do
not directly interact with websites and execute with
the extension’s full privileges.

• Isolated worlds. Content scripts can read and mod-
ify website content, but content scripts and websites
have separate program heaps so that websites can-
not access content scripts’ functions or variables.

• Permissions. Each extension comes packaged with
a list of permissions, which govern access to the
browser APIs and web domains. If an extension has
a core extension vulnerability, the attacker will only
gain access to the permissions that the vulnerable
extension already has.

In this work, we provide an empirical analysis of
these security mechanisms, which together comprise a
state-of-the-art least privilege system. We analyze 100
Chrome extensions, including the 50 most popular ex-
tensions, to determine whether Chrome’s security mech-
anisms successfully prevent or mitigate extension vulner-
abilities. We find that 40 extensions contain at least one
type of vulnerability. Twenty-seven extensions contain
core extension vulnerabilities, which give an attacker full
control over the extension.

98  21st USENIX Security Symposium	 USENIX Association

Based on this set of vulnerabilities, we evaluate the
effectiveness of each of the three security mechanisms.
Our primary findings are:

• The isolated worlds mechanism is highly successful
at preventing content script vulnerabilities.

• The success of the isolated worlds mechanism ren-
ders privilege separation unnecessary. However,
privilege separation would protect 62% of exten-
sions if isolated worlds were to fail. In the remain-
ing 38% of extensions, developers either intention-
ally or accidentally negate the benefits of privilege
separation. This highlights that forcing developers
to divide their software into components does not
automatically achieve security on its own.

• Permissions significantly reduce the severity of half
of the core extension vulnerabilities, which demon-
strates that permissions are effective at mitigating
vulnerabilities in practice. Additionally, dangerous
permissions do not correlate with vulnerabilities:
developers who write vulnerable extensions use per-
missions the same way as other developers.

Although these mechanisms reduce the rate and scope
of several classes of attacks, a large number of high-
privilege vulnerabilities remain.

We propose and evaluate four additional defenses. Our
extension review demonstrates that many developers do
not follow security best practices if they are optional, so
we propose four mandatory bans on unsafe coding prac-
tices. We quantify the security benefits and functional-
ity costs of these restrictions on extension behavior. Our
evaluation shows that banning inline scripts and HTTP
scripts would prevent 67% of the overall vulnerabilities
and 94% of the most dangerous vulnerabilities at a rela-
tively low cost for most extensions. In concurrent work,
Google Chrome implemented Content Security Policy
(CSP) for extensions to optionally restrict their own be-
havior. Motivated in part by our study [5], future versions
of Chrome will use CSP to enforce some of the manda-
tory bans that we proposed and evaluated.

Contributions. We contribute the following:

• We establish the rate at which extensions contain
different types of vulnerabilities, which should di-
rect future extension security research efforts.

• We perform the first large-scale study of the ef-
fectiveness of privilege separation when developers
who are not security experts are required to use it.

• Although it has been assumed that permissions mit-
igate vulnerabilities [12, 14, 10], we are the first to
evaluate the extent to which this is true in practice.

• We propose and evaluate new defenses. This study
partially motivated Chrome’s adoption of a new
mandatory security mechanism.

2 Extension Security Background

2.1 Threat Model

In this paper, we focus on non-malicious extensions that
are vulnerable to external attacks. Most extensions are
written by well-meaning developers who are not secu-
rity experts. We do not consider malicious extensions;
preventing malicious extensions requires completely dif-
ferent tactics, such as warnings, user education, security
scans of the market, and feedback and rating systems.
Benign-but-buggy extensions face two types of attacks:

• Network attackers. People who use insecure net-
works (e.g., public WiFi hotspots) may encounter
network attackers [26, 21]. A network attacker’s
goal is to obtain personal information or credentials
from a target user. To achieve this goal, a network
attacker will read and alter HTTP traffic to mount
man-in-the-middle attacks. (Assuming that TLS
works as intended, a network attacker cannot com-
promise HTTPS traffic.) Consequently, data and
scripts loaded over HTTP may be compromised.

If an extension adds an HTTP script – a JavaScript
file loaded over HTTP – to itself, a network attacker
can run arbitrary JavaScript within the extension’s
context. If an extension adds an HTTP script to
an HTTPS website, then the website will no longer
benefit from the confidentiality, integrity, and au-
thentication guarantees of HTTPS. Similarly, insert-
ing HTTP data into an HTTPS website or extension
can lead to vulnerabilities if the untrusted data is al-
lowed to execute as code.

• Web attackers. Users may visit websites that host
malicious content (e.g., advertisements or user com-
ments). A website can launch a cross-site script-
ing attack on an extension if the extension treats the
website’s data or functions as trusted. The goal of
a web attacker is to gain access to browser userdata
(e.g., history) or violate website isolation (e.g., read
another site’s password).

Extensions are primarily written in JavaScript and
HTML, and JavaScript provides several methods for con-
verting strings to code, such as eval and setTimeout.
If used improperly, these methods can introduce code
injection vulnerabilities that compromise the extension.
Data can also execute if it is written to a page as
HTML instead of as text, e.g., through the use of
document.write or document.body.innerHTML. Ex-
tension developers need to be careful to avoid passing
unsanitized, untrusted data to these execution sinks.

USENIX Association 	 21st USENIX Security Symposium  99

Extension

Content Script Core Extension

Browser API

ServersWebsite
[attacker]

Network attacker
(if website is HTTP)

Network attacker
(if connection is HTTP)

Figure 1: The architecture of a Google Chrome extension.

2.2 Chrome Extension Security Model
Many Firefox extensions have publicly suffered from
vulnerabilities [20, 32]. To prevent this, the Google
Chrome extension platform was designed to protect users
from vulnerabilities in benign-but-buggy extensions [4].
It features three primary security mechanisms:

• Privilege separation. Every Chrome extension is
composed of two types of components: zero or
more content scripts and zero or one core extension.
Content scripts read and modify websites as needed.
The core extension implements features that do not
directly involve websites, including browser UI el-
ements, long-running background jobs, an options
page, etc. Content scripts and core extensions run in
separate processes, and they communicate by send-
ing structured clones over an authenticated channel.
Each website receives its own separate, isolated in-
stance of a given content script. Core extensions can
access Chrome’s extension API, but content scripts
cannot. Figure 1 illustrates the relationship between
components in a Chrome extension.

The purpose of this architecture is to shield the priv-
ileged part of an extension (i.e., the core extension)
from attackers. Content scripts are at the highest
risk of attack because they directly interact with
websites, so they are low-privilege. The sheltered
core extension is higher-privilege. As such, an at-
tack that only compromises a content script does
not pose a significant threat to the user unless the
attack can be extended across the message-passing
channel to the higher-privilege core extension.

1.4% of extensions also include binary plugins in
addition to content scripts and core extensions [12].
Binary plugins are native executables and are not
protected by any of these security mechanisms. We
do not discuss the security of binary plugins in this
paper because they are infrequently used and must
undergo a manual security review before they can
be posted in the Chrome Web Store.

• Isolated worlds. The isolated worlds mechanism is
intended to protect content scripts from web attack-
ers. A content script can read or modify a website’s
DOM, but the content script and website have sepa-
rate JavaScript heaps with their own DOM objects.
Consequently, content scripts and websites never
exchange pointers. This should make it more dif-
ficult for websites to tamper with content scripts.1

• Permissions. By default, extensions cannot use
parts of the browser API that impact users’ privacy
or security. In order to gain access to these APIs, a
developer must specify the desired permissions in a
file that is packaged with the extension. For exam-
ple, an extension must request the bookmarks per-
mission to read or alter the user’s bookmarks. Per-
missions also restrict extensions’ use of cross-origin
XMLHttpRequests; an extension needs to specify
the domains that it wants to interact with. Only the
core extension can use permissions. Content scripts
cannot invoke browser APIs or make cross-origin
XHRs.2 A content script has only two privileges:
it can access the website it is running on, and send
messages to its core extension.

Permissions are intended to mitigate core extension
vulnerabilities.3 An extension is limited to the per-
missions that its developer requested, so an attacker
cannot request new permissions for a compromised
extension. Consequently, the severity of a vulnera-
bility in an extension is limited to the API calls and
domains that the permissions allow.

1Although isolated worlds separates websites from content scripts,
it not a form of privilege separation; privilege separation refers to tech-
niques that isolate parts of the same application from each other.

2In newer versions of Chrome, content scripts can make cross-
origin XHRs. However, this was not permitted at the time of our study.

3Extension permissions are shown to users during installation, so
they may also have a role in helping users avoid malicious extensions;
however, we focus on benign-but-buggy extensions in this work.

100  21st USENIX Security Symposium	 USENIX Association

Google Chrome was the first browser to implement
privilege separation, isolated worlds, and permissions for
an extension system. These security mechanisms were
intended to make Google Chrome extensions safer than
Mozilla Firefox extensions or Internet Explorer browser
helper objects [4]. Subsequently, Safari adopted an iden-
tical extension platform, and Mozilla Firefox’s new Add-
on SDK (Jetpack) privilege-separates extension mod-
ules. All of our study findings are directly applicable to
Safari’s extension platform, and the privilege separation
evaluation likely translates to Firefox’s Add-on SDK.

Contemporaneously with our extension review, the
Google Chrome extension team began to implement
a fourth security mechanism: Content Security Policy
(CSP) for extensions. CSP is a client-side HTML pol-
icy system that allows website developers to restrict what
types of scripts can run on a page [29]. It is intended to
prevent cross-site scripting attacks by blocking the exe-
cution of scripts that have been inserted into pages. By
default, CSP disables inline scripts: JavaScript will not
run if it is in a link, between <script> tags, or in an
event handler. The page’s policy can specify a set of
trusted servers, and only scripts from these servers will
execute. Consequently, any attacker that were to gain
control of a page would only be able to add code from
the trusted servers (which should not lead to harm). CSP
can also restrict the use of eval, XHR, and iframes. In
Chrome, CSP applies to extensions’ HTML pages [28].

3 Extension Security Review

We reviewed 100 Google Chrome extensions from the
official directory. This set is comprised of the 50 most
popular extensions and 50 randomly-selected extensions
from June 2011.4 Section 3.1 presents our extension re-
view methodology. Our security review found that 40%
of the extensions contain vulnerabilities, and Section 3.2
describes the vulnerabilities. Section 3.3 presents our ob-
servation that 31% of developers do not follow even the
simplest security best practices. We notified most of the
authors of vulnerable extensions (Section 3.4).

3.1 Methodology
We manually reviewed the 100 selected extensions, using
a three-step security review process:

1. Black-box testing. We exercised each extension’s
user interface and monitored its network traffic to
observe inputs and behavior. We looked for in-
stances of network data being inserted into the

4We excluded four extensions because they included binary plugins;
they were replaced with the next popular or random extensions. The
directory’s popularity metric is primarily based on the number of users.

DOM of a page. After observing an extension, we
inserted malicious data into its network traffic (in-
cluding the websites it interacts with) to test poten-
tial vulnerabilities.

2. Source code analysis. We examined extensions’
source code to determine whether data from an
untrusted source could flow to an execution sink.
After manually reviewing the source code, we
used grep to search for any additional sources or
sinks that we might have missed. For sources,
we looked for static and dynamic script inser-
tion, XMLHttpRequests, cookies, bookmarks, and
reading websites’ DOMs. For sinks, we looked
for uses of eval, setTimeout, document.write,
innerHTML, etc. We then manually traced the call
graph to find additional vulnerabilities.

3. Holistic testing. We matched extensions’ source
code to behaviors we identified during black-box
testing. With our combined knowledge of an ex-
tension’s source code, network traffic, and user in-
terface, we attempted to identify any additional be-
havior that we had previously missed.

We then verified that all of the vulnerabilities could occur
in practice by building attacks. Our goal was to find all
vulnerabilities in every extension.

During our review, we looked for three types of vul-
nerabilities: vulnerabilities that extensions add to web-
sites (e.g., HTTP scripts on HTTPS websites), vulnera-
bilities in content scripts, and vulnerabilities in core ex-
tensions. Some content script vulnerabilities may also
be core extension vulnerabilities, depending on the ex-
tensions’ architectures. Core extension vulnerabilities
are the most severe because the core is the most privi-
leged extension component. We do not report vulnera-
bilities if the potential attacker is a trusted website (e.g.,
https://mail.google.com) and the potentially mali-
cious data is not user-generated; we do not believe that
well-known websites are likely to launch web attacks.

After our manual review, we applied a well-known
commercial static analysis tool to six extensions, with
custom rules. However, our manual review identified
significantly more vulnerabilities, and the static analysis
tool did not find any additional vulnerabilities because of
limitations in its ability to track strings. Prior research
has similarly found that a manual review by experts un-
covers more bugs than static analysis tools [30]. Our
other alternative, VEX [3], was not built to handle several
of the types of attacks that we reviewed. Consequently,
we did not pursue static analysis further.

USENIX Association 	 21st USENIX Security Symposium  101

Web Network
Vulnerable Component Attacker Attacker

Core extension 5 50
Content script 3 1
Website 6 14

Table 1: 70 vulnerabilities, by location and threat model.

Vulnerable Component Popular Random Total

Core extension 12 15 27
Content script 1 2 3
Website 11 6 17

Any 22 18 40

Table 2: The number of extensions with vulnerabilities,
of 50 popular and 50 randomly-selected extensions.

3.2 Vulnerabilities

We found 70 vulnerabilities across 40 extensions. The
appendix identifies the vulnerable extensions. Table 1
categorizes the vulnerabilities by the location of the vul-
nerability and the type of attacker that could exploit it.
More of the vulnerabilities can be leveraged by a net-
work attacker than by a web attacker, which reflects the
fact that two of the Chrome extension platform’s secu-
rity measures were primarily designed to prevent web at-
tacks. A bug may be vulnerable to both web and network
attacks; we count it as a single vulnerability but list it in
both categories in Table 1 for illustrative purposes.

The vulnerabilities are evenly distributed between
popular and randomly-selected extensions. Table 2
shows the distribution. Although popular extensions are
more likely to be professionally written, this does not
result in a lower vulnerability rate in the set of popular
extensions that we examined. We hypothesize that pop-
ular extensions have more complex communication with
websites and servers, which increases their attack sur-
face and neutralizes the security benefits of having been
professionally developed. The most popular vulnerable
extension had 768,154 users in June 2011.

3.3 Developer Security Effort

Most extension developers are not security experts.
However, there are two best practices that a security-
conscious extension developer can follow without any
expertise. First, developers can use HTTPS instead of
HTTP when it is available, to prevent a network attacker
from inserting data or code into an extension. Second,
developers can use innerText instead of innerHTML

when adding untrusted, non-HTML data to a page;
innerText does not allow inline scripts to execute. We
evaluate developers’ use of these best practices in order
to determine how security-conscious they are.

We find that 31 extensions contain at least one vulner-
ability that was caused by not following these two sim-
ple best practices. This demonstrates that a substantial
fraction of developers do not make use of optional se-
curity mechanisms, even if the security mechanisms are
very simple to understand and use. As such, we advocate
mandatory security mechanisms that force developers to
follow best security practices (Section 7).

3.4 Author Notification

We disclosed the extensions’ vulnerabilities to all of the
developers that we were able to contact. We found con-
tact information for 80% of the vulnerable extensions.5

Developers were contacted between June and September
2011, depending on when we completed each review. We
sent developers follow-up e-mails if they did not respond
to our initial vulnerability disclosure within a month.

Of the 32 developers that we contacted, 19 acknowl-
edged and fixed the vulnerabilities in their extensions,
and 7 acknowledged the vulnerabilities but have not
completely fixed them as of February 7, 2012. Two of
the un-patched extensions are official Google extensions.
As requested, we provided guidance on how the security
bugs could be fixed. None of the developers disputed the
legitimacy of the vulnerabilities, although one developer
argued that a vulnerability was too difficult to fix.

The appendix identifies the extensions that have been
fixed. However, the “fixed” extensions are not necessar-
ily secure despite our review. While checking on the sta-
tus of vulnerabilities, we discovered that developers of
several extensions have introduced new security vulner-
abilities that were not present during our initial review.
We do not discuss the new vulnerabilities in this paper.

4 Evaluation of Isolated Worlds

The isolated worlds mechanism is intended to pro-
tect content scripts from malicious websites, includ-
ing otherwise-benign websites that have been altered by
a network attacker. We evaluate whether the isolated
worlds mechanism is sufficient to protect content scripts
from websites. Our security review indicates that iso-
lated worlds largely succeeds: only 3 of the 100 exten-
sions have content script vulnerabilities, and only 2 of
the vulnerabilities allow arbitrary code execution.

Developers face four main security challenges when
writing extensions that interact with websites. We dis-
cuss whether and how well the isolated worlds mecha-
nism helps prevent these vulnerability classes.

5For the remaining 20%, contact information was unavailable, the
extension had been removed from the directory, or we were unable to
contact the developer in a language spoken by the developer.

102  21st USENIX Security Symposium	 USENIX Association

Data as HTML. One potential web development mis-
take is to insert untrusted data as HTML into a page,
thereby allowing untrusted data to run as code. The iso-
lated worlds mechanism mitigates this type of error in
content scripts. When a content script inserts data as
HTML into a website, any scripts in the data are executed
within the website’s isolated world instead of the exten-
sion’s. This means that an extension can read data from a
website’s DOM, edit it, and then re-insert it into the page
without introducing a content script vulnerability. Alter-
nately, an extension can copy data from one website into
another website. In this case, the extension will have in-
troduced a vulnerability into the edited website, but the
content script itself will be unaffected.

We expect that content scripts would exhibit a higher
vulnerability rate if the isolated worlds mechanism did
not mitigate data-as-HTML bugs. Six extensions’ con-
tent scripts contained data-as-HTML errors that resulted
in web site vulnerabilities, instead of the more-dangerous
content script vulnerabilities. Furthermore, we found
that 20 of the 50 (40%) core extension vulnerabilities are
caused by inserting untrusted data into HTML; core ex-
tensions do not have the benefit of the isolated worlds
mechanism to ameliorate this class of error. Since it is
unlikely that developers exercise greater caution when
writing content scripts than when writing core exten-
sions, we conclude that the isolated worlds mechanism
reduces the rate of content script vulnerabilities by miti-
gating data-as-HTML errors.

Eval. Developers can introduce vulnerabilities into their
extensions by using eval to execute untrusted data. If an
extension reads data from a website’s DOM and evals
the data in a content script, the resulting code will run in
the content script’s isolated world. As such, the isolated
worlds mechanism does not prevent or mitigate vulnera-
bilities due to the use of eval in a content script.

We find that relatively few developers use eval, possi-
bly because its use has been responsible for well-known
security problems in the past [8, 27]. Only 14 extensions
use eval or equivalent constructs to convert strings to
code in their content scripts, and most of those use it
only once in a library function. However, we did find
two content script vulnerabilities that arise because of an
extension’s use of eval in its content script. For exam-
ple, the Blank Canvas Script Handler extension can be
customized with supplemental scripts, which the exten-
sion downloads from a website and evals in a content
script. Although the developer is intentionally running
data from the website as code, the integrity of the HTTP
website that hosts the supplemental scripts could be com-
promised by a network attacker.

Click Injection. Extensions can register event handlers
for DOM elements on websites. For example, an ex-
tension might register a handler for a button’s onClick
event. However, extensions cannot differentiate between
events that are triggered by the user and events that are
generated by a malicious web site. A website can launch
a click injection attack by invoking an extension’s event
handler, thereby tricking the extension into performing
an action that was not requested by the user. Although
this attack does not allow the attacker to run arbitrary
code in the vulnerable content script, it does allow the
website to control the content script’s behavior.

The isolated worlds mechanism does not prevent or
mitigate click injection attacks at all. However, the at-
tack surface is small because relatively few extensions
register event handlers for websites’ DOM elements. Of
the 17 extensions that register event handlers, most are
for simple buttons that toggle UI state. We observed only
one click injection vulnerability, in the Google Voice ex-
tension. The extension changes phone numbers on web-
sites into links. When a user clicks a phone number
link, Google Voice inserts a confirmation dialog onto the
DOM of the website to ensure that the user wants to place
a phone call. Google Voice will place the call following
the user’s confirmation. However, a malicious website
could fire the extension’s event handlers on the link and
confirmation dialog, thereby placing a phone call from
the user’s Google Voice account without user consent.

Prototypes and Capabilities. In the past, many vulner-
abilities due to prototype poisoning and capability leaks
have been observed in bookmarklets and Firefox exten-
sions [20, 32, 2]. The isolated worlds mechanism pro-
vides heap separation, which prevents both of these types
of attacks. Regardless of developer behavior, these at-
tacks are not possible in Chrome extensions as long as
the isolation mechanism works correctly.

Based on our security review, the isolated worlds
mechanism is highly effective at shielding content scripts
from malicious websites. It mitigates data-as-HTML er-
rors, which we found were very common in the Chrome
extensions that we reviewed. Heap separation also pre-
vents prototype poisoning and capability leaks, which are
common errors in bookmarklets and Firefox extensions.
Although the isolated worlds mechanism does not pre-
vent click injection or eval-based attacks, we find that
developers rarely make these mistakes. We acknowledge
that our manual review could have missed some content
script vulnerabilities. However, we find it unlikely that
we could have missed many, given our success at find-
ing the same types of vulnerabilities in core extensions.
We therefore conclude that the isolated worlds mecha-
nism is effective, and other extension platforms should
implement it if they have not yet done so.

USENIX Association 	 21st USENIX Security Symposium  103

5 Evaluation of Privilege Separation

Privilege separation is intended to shield the privileged
core extension from attacks. The isolated worlds mecha-
nism serves as the first line of defense against malicious
websites, and privilege separation is supposed to protect
the core extension when isolated worlds fails. We eval-
uate the effectiveness of extension privilege separation
and find that, although it is unneeded, it would be par-
tially successful at accomplishing its purpose if the iso-
lated worlds mechanism were to fail.

5.1 Cross-Component Vulnerabilities

Some developers give content scripts access to core
extension permissions, which removes the defense-in-
depth benefits of privilege separation. We evaluate the
impact of developer behavior on the effectiveness of ex-
tension privilege separation.

Vulnerable Content Scripts. The purpose of privilege
separation is to limit the impact of content script vulner-
abilities. Even if a content script is vulnerable, privi-
lege separation should prevent an attacker from execut-
ing code with the extension’s permissions. We iden-
tified two extensions with content script vulnerabilities
that permit arbitrary code execution; these two exten-
sions could benefit from privilege separation.

Despite privilege separation, both of the vulnerabili-
ties yield access to some core extension privileges. The
vulnerable content scripts can send messages to their
respective core extensions, requesting that the core ex-
tensions exercise their privileges. In both extensions,
the core extension makes arbitrary XHRs on behalf of
the content script and returns the result to the content
script. This means that the two vulnerable content scripts
could trigger arbitrary HTTP XHRs even though con-
tent scripts should not have access to a cross-origin
XMLHttpRequest object. These vulnerable extensions
represent a partial success for privilege separation be-
cause the attacker cannot gain full privileges, but also
a partial failure because the attacker can gain the ability
to make cross-origin XHRs.

Hypothetical Vulnerabilities. Due to the success of
the isolated worlds mechanism, our set of vulnerabilities
only includes two extensions that need privilege separa-
tion as a second line of defense. To expand the scope of
our evaluation of privilege separation, we explore a hy-
pothetical scenario: if the currently-secure extensions’
content scripts had vulnerabilities, would privilege sepa-
ration mitigate these vulnerabilities?

Of the 98 extensions that do not have content script
vulnerabilities, 61 have content scripts. We reviewed the
message passing boundary between these content scripts

Permissions Number of Scripts

All of the extension’s permissions 4
Partial: Cross-origin XHRs2 9
Partial: Tab control 5
Partial: Other 5

Table 3: 61 extensions have content scripts that do not
have code injection vulnerabilities. If an attacker were
hypothetically able to compromise the content scripts,
these are the permissions that the attacker could gain ac-
cess to via the message-passing channel with the cores.

and their core extensions. We determined that 38% of
content scripts can leverage communication with their
core extensions to abuse some core extension privileges:
4 extensions’ content scripts can use all of their cores’
permissions, and 19 can use some of their cores’ permis-
sions. Table 3 shows which permissions attackers would
be able to obtain via messages if they were able to com-
promise the content scripts. This demonstrates that privi-
lege separation could be a relatively effective layer of de-
fense, if needed: we can expect that privilege separation
would be effective at limiting the damage of a content
script vulnerability 62% of the time.

Example. The AdBlock extension allows its content
script to execute a set of pre-defined functions in the core
extension. To do this, the content script sends a mes-
sage to the core extension. A string in the message is
used to index the window object, allowing the content
script to select a pre-defined function to run. Unfortu-
nately, this also permits arbitrary code execution because
the window object provides access to eval. As such,
a compromised content script would have unfettered ac-
cess to the core extension’s permissions.

Example. A bug in the Web Developer extension unin-
tentionally grants its content script full privileges. Its
content script can post small notices to the popup page,
which is part of the core extension. The notices are in-
serted using innerHTML. The notices are supposed to be
text, but a compromised content script could send a no-
tice with an inline script that would execute in the popup
page with full core extension permissions.

5.2 Web Site Metadata Vulnerabilities

The Chrome extension platform applies privilege separa-
tion with the expectation that malicious website data will
first enter an extension via a vulnerable content script.
However, it is possible for a website to attack a core ex-
tension without crossing the privilege separation bound-
ary. Website-controlled metadata such as titles and URLs
can be accessed by the core extension through browser

104  21st USENIX Security Symposium	 USENIX Association

Type Vulnerabilities

Website content 2
Website metadata 5
HTTP XHR 16
HTTP script 28

Total 50

Table 4: The types of core extension vulnerabilities.

managers (e.g., the history, bookmark, and tab man-
agers). This metadata may include inline scripts, and
mishandled metadata can lead to a core extension vulner-
ability. Website metadata does not flow through content
scripts, so privilege separation does not impede it. We
identified five vulnerabilities from metadata that would
allow an attacker to circumvent privilege separation.

Example. The Speeddial extension replicates Chrome’s
built-in list of recently closed pages. Speeddial keeps
track of the tabs opened using the tabs manager and does
not sanitize the titles of these pages before adding them
to the HTML of one of its core extension pages. If a title
were to contain an inline script, it would execute with the
core extension’s permissions.

5.3 Direct Network Attacks

Privilege separation is intended to protect the core exten-
sion from web attackers and HTTP websites that have
been compromised by network attackers. However, the
core extension may also be subject to direct network at-
tacks. Nothing separates a core extension from code
in HTTP scripts or data in HTTP XMLHttpRequests.
HTTP scripts in the core extension give a network at-
tacker the ability to execute code with the extension’s
full permissions, and HTTP XHRs cause vulnerabilities
when extensions allow the HTTP data to execute.

Direct network attacks comprise the largest class
of core extension vulnerabilities, as Table 4 illus-
trates. Of the 50 core extension vulnerabilities, 44 vul-
nerabilities (88%) stem from HTTP scripts or HTTP
XMLHttpRequests, as opposed to website data. For ex-
ample, many extensions put the HTTP version of the
Google Analytics script in the core extension to track
which of the extensions’ features are used.

Example. Google Dictionary allows a user to look up
definitions of words by double clicking on a word. The
desired definition is fetched by making a HTTP request
to google.com servers. The response is inserted into
one of the core extension’s pages using innerHTML. A
network attacker could modify the response to contain
malicious inline scripts, which would then execute as
part of the privileged core extension page.

5.4 Implications

The isolated worlds mechanism is so effective at protect-
ing content scripts from websites that privilege separa-
tion is rarely needed. As such, privilege separation is
used to address a threat that almost does not exist, at
the cost of increasing the complexity and performance
overhead of extensions. (Privilege separation requires an
extra process for each extension, and communication be-
tween content scripts and core extensions is IPC.) We
find that network attackers are the real threat to core ex-
tension security, but privilege separation does not miti-
gate or prevent these attacks. This shows that although
privilege separation can be a powerful security mecha-
nism [23], its placement within an overall system is an
important determining factor of its usefulness.

Our study also has implications for the use of privi-
lege separation in other contexts. All Chrome extension
developers are required to privilege separate their exten-
sions, which allows us to evaluate how well developers
who are not security experts use privilege separation. We
find that privilege separation would be fairly effective at
preventing web attacks in the absence of isolated worlds:
privilege separation would fully protect 62% of core ex-
tensions. However, in more than a third of extensions,
developers created message passing channels that allow
low-privilege code to exploit high-privilege code. This
demonstrates that forcing developers to privilege sepa-
rate their software will improve security in most cases,
but a significant fraction of developers will accidentally
or intentionally negate the benefits of privilege separa-
tion. Mandatory privilege separation could be a valuable
line of defense for another platform, but it should not be
relied on as the only security mechanism; it should be
coupled with other lines of defense.

6 Evaluation of the Permission System

The Chrome permission system is intended to reduce
the severity of core extension vulnerabilities. If a web-
site or network attacker were to successfully inject mali-
cious code into a core extension, the severity of the at-
tack would be limited by the extension’s permissions.
However, permissions will not mitigate vulnerabilities
in extensions that request many dangerous permissions.
We evaluate the extent to which permissions mitigate the
core extension vulnerabilities that we found.

Table 5 lists the permissions that the vulnerable ex-
tensions request. Ideally, each permission should be re-
quested infrequently. We find that 70% of vulnerable ex-
tensions request the tabs permission; an attacker with
access to the tabs API can collect a user’s browsing his-
tory or redirect pages that a user views. Fewer than half
of extensions request each of the other permissions.

USENIX Association 	 21st USENIX Security Symposium  105

Permissions Times Requested Percentage

tabs (browsing history) 19 70%
all HTTP domains 12 44%
all HTTPS domains 12 44%
specific domains 10 37%
notifications 5 19%
bookmarks 4 15%
no permissions 4 15%
cookies 3 11%
geolocation 1 4%
context menus 1 4%
unlimited storage 1 4%

Table 5: The permissions that are requested by the 27
extensions with core extension vulnerabilities.

None
15%

Low
11%

Medium
30%

High
44%

Figure 2: The 27 extensions with core vulnerabilities,
categorized by the severity of their worst vulnerabilities.

To summarize the impact of permissions on extension
vulnerabilities, we categorized all of the vulnerabilities
by attack severity. We based our categorization on the
Firefox Security Severity Ratings [1], which has been
previously used to classify extension privileges [4]:

• Critical: Leaks the permission to run arbitrary code
on the user’s system

• High: Leaks permissions for the DOM of all
HTTP(S) websites

• Medium: Leaks permissions for private user data
(e.g., history) or the DOM of specific websites that
contain financial or important personal data (e.g.,
https://*.google.com/*)

• Low: Leaks permissions for the DOM of spe-
cific websites that do not contain sensitive data
(e.g., http://*.espncricinfo.com) or permis-
sions that can be used to annoy the user (e.g., fill up
storage or make notifications)

• None: Does not leak any permissions

We did not find any critically-vulnerable extensions.
This is a consequence of our extension selection method-
ology: we did not review any extensions with binary plu-
gins, which are needed to obtain critical privileges.

Figure 2 categorizes the 27 vulnerable extensions by
their most severe vulnerabilities. In the absence of a per-
mission system, all of the vulnerabilities would give an

attacker access to all of the browser’s privileges (i.e., crit-
ical privileges). With the permission system, less than
half of the vulnerable extensions yield access to high-
severity permissions. As such, our study demonstrates
that the permission system successfully limits the sever-
ity of most vulnerabilities.

We hypothesized that permissions would positively
correlate with vulnerabilities. Past work has shown that
many extensions are over-permissioned [12, 14], and we
thought that developers who are unwilling to follow se-
curity best practices (e.g., use HTTPS) would be unwill-
ing to take the time to specify the correct set of permis-
sions. This would result in vulnerable extensions re-
questing dangerous permissions at a higher rate. How-
ever, we do not find any evidence of a positive correlation
between vulnerabilities and permissions. The 27 exten-
sions with core vulnerabilities requested permissions at
a lower rate than the other 73 extensions, although the
difference was not statistically significant. Our results
show that developers of vulnerable extensions can use
permissions well enough to reduce the privileges of their
insecure extensions, even though they lack the expertise
or motivation required to secure their extensions.

Permissions are not only used by the Google Chrome
extension system. Android implements a similar permis-
sion system, and future HTML5 device APIs will likely
be guarded with permissions. Although it has been as-
sumed that permissions mitigate vulnerabilities [10, 12,
14], our study is the first to evaluate whether this is true
for real-world vulnerabilities or measure quantitatively
how much it helps mitigate these vulnerabilities in prac-
tice. Our findings indicate that permissions can have a
significant positive impact on system security and are
worth including in a new platform as a second line of
defense against attacks. However, they are not effective
enough to be relied on as the only defense mechanism.

7 Defenses

Despite Google Chrome’s security architecture, our se-
curity review identified 70 vulnerabilities in 40 exten-
sions. Based on the nature of these vulnerabilities, we
propose and evaluate four additional defenses. The de-
fenses are bans on unsafe coding practices that lead to
vulnerabilities. We advocate mandatory bans on unsafe
coding practices because many developers do not fol-
low security best practices when they are optional (Sec-
tion 3.3). We quantify the security benefits and com-
patibility costs of each of these defenses to determine
whether they should be adopted. Our main finding is that
a combination of banning HTTP scripts and banning in-
line scripts would prevent 94% of the core extension vul-
nerabilities, with only a small amount of developer effort
to maintain full functionality in most cases.

106  21st USENIX Security Symposium	 USENIX Association

In concurrent work, Google Chrome implemented
Content Security Policy (CSP) for extensions. CSP can
be used to enforce all four of these defenses. Initially,
the use of CSP was wholly optional for developers. As
of Chrome 18, extensions that take advantage of new fea-
tures will be subject to a mandatory policy; this change
was partially motivated by our study [5].

7.1 Banning HTTP Scripts

Scripts fetched over HTTP are responsible for half of the
vulnerabilities that we found. All of these vulnerabili-
ties could be prevented by not allowing extensions to add
HTTP scripts to their core extensions [15] or to HTTPS
websites. Extensions that currently violate this restric-
tion could be easily modified to comply by packaging the
script with the extension or using a HTTPS URL. Only
vulnerable extensions would be affected by the ban be-
cause any extension that uses HTTP scripts will be vul-
nerable to man-in-the-middle attacks.

Core Extension Vulnerabilities. Banning HTTP scripts
from core extensions would remove 28 core extension
vulnerabilities (56% of the total core extension vulner-
abilities) from 15 extensions. These 15 extensions load
HTTP scripts from 13 domains, 10 of which already offer
the same script over HTTPS. The remaining 3 scripts are
static files that could be downloaded once and packaged
with the extensions.

Website Vulnerabilities. Preventing extensions from
adding HTTP scripts to HTTPS websites would re-
move 8 website vulnerabilities from 8 extensions (46%
of the total website vulnerabilities). These vulnerabili-
ties allow a network attacker to circumvent the protec-
tion that HTTPS provides for websites. The extensions
load HTTP scripts from 7 domains, 3 of which offer an
HTTPS option. The remaining 4 scripts are static scripts
that could be packaged with the extensions.

7.2 Banning Inline Scripts

Untrusted data should not be added to pages as
HTML because it can contain inline scripts (e.g., in-
line event handlers, links with embedded JavaScript, and
<script> tags). For example, untrusted data could
contain an image tag with an inline event handler:
. We find that 40%
of the core extension vulnerabilities are caused by adding
untrusted data to pages as HTML. These vulnerabilities
could be prevented by not allowing any inline scripts to
execute: the untrusted data will still be present as HTML,
but it would be static. JavaScript will only run on a page
if it is in a separate .js file that is stored locally or loaded
from a trusted server that the developer has whitelisted.

Banning inline scripts from extension HTML would
eliminate 20 vulnerabilities from 15 extensions. All of
these vulnerabilities are core extension vulnerabilities.
Content script vulnerabilities cannot be caused by inline
scripts, and we cannot prevent extensions from adding
inline scripts to HTTPS websites because existing en-
forcement mechanisms cannot differentiate between a
website’s own inline scripts and extension-added scripts.

However, banning inline scripts has costs. Developers
use legitimate inline scripts for several reasons, such as
to define event handlers. In order to maintain function-
ality despite the ban, all extensions would need to delete
their inline scripts from HTML and move them to sepa-
rate .js files. Inline event handlers (e.g., onclick) can-
not simply be copied and pasted; they need to be rewrit-
ten as programmatically using the DOM API.

We reviewed the 100 extensions to determine what
changes would be needed to comply with a ban on in-
line scripts. Applying this ban breaks 79% of the exten-
sions. However, all of the extensions could be retrofitted
to work without inline scripts without significant changes
to the extension. Most of the compatibility costs pertain
to moving the extensions’ inline event handlers. The ex-
tensions contain an average of 7 event handlers, with a
maximum of 98 and a minimum of 0 event handlers.

7.3 Banning Eval
Dynamic code generation converts strings to code, and
its use can lead to vulnerabilities if the strings are un-
trusted data. Disallowing the use of dynamic code gen-
eration (e.g., eval and setTimeout) would eliminate
three vulnerabilities: one core extension vulnerability,
and two vulnerabilities that are both content script and
core extension vulnerabilities.

We reviewed the 100 extensions and find that dynamic
code generation is primarily used in three ways:

1. Developers sometimes pass static strings to
setTimeout instead of functions. This coding pat-
tern cannot be exploited. It would be easy to alter
instances of this coding pattern to comply with a
ban on dynamic code generation; the strings simply
need to be replaced with equivalent functions.

2. Some developers use eval on data instead of
JSON.parse. We identified one vulnerability that
was caused by this practice. In the absence of dy-
namic code generation, developers could simply use
the recommended JSON.parse.

3. Two extensions use eval to run user-specified
scripts that extend the extensions. In both cases,
their error is that they fetch the extra scripts over
HTTP instead of HTTPS. For these two extensions,
a ban on eval would prevent the vulnerabilities but
irreparably break core features of the extensions.

USENIX Association 	 21st USENIX Security Symposium  107

Security Broken, Broken And
Restriction Benefit But Fixable Unfixable

No HTTP scripts in core 15% 15% 0%
No HTTP scripts on HTTPS websites 8% 8% 0%
No inline scripts 15% 79% 0%
No eval 3% 30% 2%
No HTTP XHRs 17% 29% 14%

All of the above 35% 86% 16%
No HTTP scripts and no inline scripts 32% 80% 0%
Chrome 18 policy 27% 85% 2%

Table 6: The percentage of the 100 extensions that would be affected by the restrictions. The “Security Benefit”
column shows the number of extensions that would be fixed by the corresponding restriction.

Richards et al. present additional uses of eval in a large-
scale study of web applications [24].

We find that 32 extensions would be broken by a ban
on dynamic code generation. Most instances can easily
be replaced, but 2 extensions would be permanently bro-
ken. Overall, a ban on eval would fix three vulnerabili-
ties at the cost of fundamentally breaking two extensions.

7.4 Banning HTTP XHR
Network attacks can occur if untrusted data from
an HTTP XMLHttpRequest is allowed to flow to a
JavaScript execution sink. 30% of the 70 vulnerabilities
are caused by allowing data from HTTP XHRs to exe-
cute. One potential defense is to disallow HTTP XHRs;
all XHRs would have to use HTTPS. This ban would re-
move vulnerabilities from 17 extensions.

However, banning HTTP XHRs would have a high
compatibility cost. The only way to comply with an
HTTPS-only XHR policy is to ensure that the server sup-
ports HTTPS; unlike scripts, remote data cannot be pack-
aged with extensions. Developers who do not control
the servers that their extensions interact with will not be
able to adapt their extensions. Extension developers who
also control the domains may be able to add support for
HTTPS, although this can be a prohibitively expensive
and difficult process for a novice developer.

We reviewed the 100 extensions and found that 29%
currently make HTTP XHRs. All of these would need
to be changed to use HTTPS XHRs. However, not all of
the domains offer HTTPS. Ten extensions request data
from at least one HTTP-only domain. Additionally, four
extensions make HTTP XHRs to an unlimited number of
domains based on URLs provided by the user; these ex-
tensions would have permanently reduced functionality.
For example, Web Developer lets users check whether a
website is valid HTML. It fetches the user-specified web-
site with an XHR and then validates it. Under a ban on
HTTP XHRs, the extension would not be able to validate
HTTP websites. In total, 14% of extensions would have
some functionality permanently disabled by the ban.

7.5 Recommendations
Table 6 summarizes the benefits and costs of the de-
fenses. If the set of 100 extensions were subject to all
four bans, only 5 vulnerable extensions would remain,
and 16 extensions would be permanently broken. Based
on this evaluation, we conclude:

• We strongly recommend banning HTTP scripts and
inline scripts; together, they would prevent 47 of the
50 core extension vulnerabilities, and no extension
would be permanently broken. The developer effort
required to comply with these restrictions is modest.

• Banning eval would have a neutral effect: neither
the security benefits nor the costs are large. Conse-
quently, we advise against banning eval.

• We do not recommend banning HTTP XHRs, given
the number of extensions that would be permanently
disabled by the ban. Of the 20 vulnerabilities that
the ban on HTTP XHRs would prevent, 70% could
also be prevented by banning inline scripts. We do
not feel that the ban on HTTP XHRs adds enough
value to justify breaking 14% of extensions.

Starting with Chrome 18, extensions will be subject to
a CSP that enforces some of these bans [13]. Our study
partially motivated their decision to adopt the bans [5],
although the policy that they adopted is slightly stricter
than our recommendations. The mandatory policy in
Chrome 18 will ban HTTP scripts in core extensions, in-
line scripts, and dynamic code generation. Due to tech-
nical limitations, they are not adopting a ban on adding
HTTP scripts to HTTPS websites. The policy will re-
move all of the core extension vulnerabilities that we
found. The only extensions that the policy will perma-
nently break are the two extensions that rely on eval.

108  21st USENIX Security Symposium	 USENIX Association

8 Related Work

Extension vulnerabilities. To our knowledge, our work
is the first to evaluate the efficacy of the Google Chrome
extension platform, which is widely deployed and ex-
plicitly designed to prevent and mitigate extension vul-
nerabilities. Vulnerabilities in other extension platforms,
such as Firefox, have been investigated by previous re-
searchers [20, 3]. We found that 40% of Google Chrome
extensions are vulnerable, which is in contrast to a pre-
vious study that found that 0.24% of Firefox extensions
contain vulnerabilities [3]. This does not necessarily im-
ply that Firefox extensions are more secure; rather, our
scopes and methodologies differ. Unlike the previous
study, we considered network attackers as well as web
attackers. We find that 5% of Google Chrome exten-
sions have the types of web vulnerabilities that the pre-
vious study covered. The remaining discrepancy could
be accounted for by our methodology: we employed ex-
pert human reviewers whereas previous work relied on
a static analysis tool that does not model dynamic code
evaluation, data flow through the extension API, data
flow through DOM APIs, or click injection attacks.

Privilege separation. Privilege separation is a fundamen-
tal software engineering principle proposed by Saltzer
and Schroeder [25]. Numerous works have applied this
concept to security, such as OpenSSH [23] and qmail [6].
Recently, researchers have built several tools and frame-
works to help developers privilege separate their appli-
cations [7, 11, 17, 18, 22]. Studies have established that
privilege separation has value in software projects that
employ security experts (e.g., browsers [9]). However,
we focus on the effectiveness of privilege separation in
applications that are not written by security experts.

In concurrent and independent work, Karim et al. stud-
ied the effectiveness of privilege separation in Mozilla
Jetpack extensions [16]. Like Chrome extensions, Jet-
pack extensions are split into multiple components with
different permissions. They statically analyzed Jetpack
extensions and found several capability leaks in mod-
ules. Although none of these capability leaks are tied to
known vulnerabilities, the capability leaks demonstrate
that developers can make errors in a privilege-separated
environment. Their findings support the results of our
analysis of privilege separation in Chrome extensions.

Extension permissions. Previous researchers have es-
tablished that permissions can reduce the privileges of
extensions without negatively impacting the extensions’
functionality [4, 12]. Studies have also shown that some
extensions request unnecessary permissions, which is
undesirable because it unnecessarily increases the scope
of a potential vulnerability [12, 14]. All of these past
studies asserted that the correct usage of permissions

could reduce the severity of attacks on extensions. How-
ever, they did not study whether this is true in practice
or quantify the benefit for deployed applications. To our
knowledge, we are the first to test whether permissions
mitigate vulnerabilities in practice.

CSP compatibility. Adapting websites to work with CSP
can be a challenging undertaking for developers, primar-
ily due to the complexities associated with server-side
templating languages [31]. However, extensions do not
use templating languages. Consequently, applying CSP
to extensions is easier than applying it to websites in
most cases. We expect that our CSP compatibility find-
ings for extensions will translate to packaged JavaScript
and packaged web applications.

Malicious extensions. Extension platforms can be
used to build malware (e.g., FFsniFF and Infos-
tealer.Snifula [33]). Mozilla and Google employ several
strategies to prevent malicious extensions, such as do-
main verification, fees, and security reviews. Liu et al.
propose changes to Chrome to make malware easier to
identify [19]. Research on extension malware is orthog-
onal to our work, which focuses on external attackers that
leverage vulnerabilities in benign-but-buggy extensions.

9 Conclusion

We performed a security review on a set of 100 Google
Chrome extensions, including the 50 most popular, and
found that 40% have at least one vulnerability. Based
on this set of vulnerabilities, we evaluated the effective-
ness of Chrome’s three extension security mechanisms:
isolated worlds, privilege separation, and permissions.

We found that the isolated worlds mechanism is highly
effective because it prevents common developer errors
(i.e., data-as-HTML errors). The effectiveness of iso-
lated worlds means that privilege separation is rarely
needed. Privilege separation’s infrequent usefulness may
not justify the complexity and communication overhead
that it adds to extensions. However, our study shows that
privilege separation would improve security in the ab-
sence of isolated worlds. We also found that permissions
can have a significant positive impact on system security;
developers of vulnerable extensions can use permissions
well enough to reduce the scope of their vulnerabilities.

Although we demonstrated that privilege separation
and permissions can mitigate vulnerabilities, developers
do not always use them optimally. We identified sev-
eral instances in which developers accidentally negated
the benefits of privilege separation or intentionally cir-
cumvented the privilege separation boundary to imple-
ment features. Similarly, extensions sometimes ask for
more permissions than they need [12]. Automated tools
for privilege separation and permission assignment could

USENIX Association 	 21st USENIX Security Symposium  109

help developers better use these security mechanisms,
thereby rendering them even more effective.

Despite the successes of these security mechanisms,
extensions are widely vulnerable. The vulnerabilities oc-
cur because the system was designed to address only one
threat: websites that attack extensions through direct in-
teraction. There are no security mechanisms to prevent
direct network attacks on core extensions, website meta-
data attacks, or attacks on websites that have been altered
by extensions. This finding should serve as a reminder
that multiple threats should be considered when initially
designing a system. We propose to prevent these addi-
tional threats by banning insecure coding practices that
commonly lead to vulnerabilities; bans on HTTP scripts
and inline scripts would remove 94% of the most serious
attacks with a tractable developer cost.

Acknowledgements

We would like to thank Prateek Saxena and Adam Barth
for their insightful comments. This material is based
upon work supported by Facebook and National Sci-
ence Foundation Graduate Research Fellowships. Any
opinions, findings, conclusions, or recommendations ex-
pressed here are those of the authors and do not neces-
sarily reflect the views of Facebook or the National Sci-
ence Foundation. This work is also partially supported
by National Science Foundation grant CCF-0424422, a
gift from Google, and the Intel Science and Technology
Center for Secure Computing.

References

[1] L. Adamski. Security severity ratings.
https://wiki.mozilla.org/Security_

Severity_Ratings.

[2] B. Adida, A. Barth, and C. Jackson. Rootkits for
JavaScript Environments. In Web 2.0 Security and
Privacy (W2SP), 2009.

[3] S. Bandhakavi, S. T. King, P. Madhusudan, and
M. Winslett. VEX: Vetting Browser Extensions
For Security Vulnerabilities. In USENIX Security,
2010.

[4] A. Barth, A. P. Felt, P. Saxena, and A. Boodman.
Protecting Browsers from Extension Vulnerabili-
ties. In Network and Distributed System Security
Symposium (NDSS), 2010.

[5] Adam Barth. More secure extensions, by de-
fault. http://blog.chromium.org/2012/02/

more-secure-extensions-by-default.html,
February 2012.

[6] D. J. Bernstein. The qmail security guarantee.
http://cr.yp.to/qmail/guarantee.html.

[7] A. Bittau, P. Marchenko, M. Handley, and
B. Karp. Wedge: splitting applications into
reduced-privilege compartments. In USENIX Sym-
posium on Networked Systems Design and Imple-
mentation, 2008.

[8] B. Chess, Y. T. O’Neil, and J. West. JavaScript Hi-
jacking. Technical report, Fortify, 2007.

[9] J. Drake, P. Mehta, C. Miller, S. Moyer, R. Smith,
and C. Valasek. Browser Security Comparison: A
Quantitative Approach. Technical report, Accuvant
Labs, 2011.

[10] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wag-
ner. Android Permissions Demystified. In ACM
Conference on Computer and Communication Se-
curity (CCS), 2011.

[11] A. P. Felt, M. Finifter, J. Weinberger, and D. Wag-
ner. Diesel: Applying Privilege Separation to
Database Access. In ACM Symposium on Informa-
tion, Computer and Communications Security (Asi-
aCCS), 2011.

[12] A. P. Felt, K. Greenwood, and D. Wagner. The Ef-
fectiveness of Application Permissions. In USENIX
Conference on Web Application Development (We-
bApps), 2011.

[13] Google Chrome Extensions. Content Se-
curity Policy (CSP). http://code.

google.com/chrome/extensions/trunk/

contentSecurityPolicy.html.

[14] A. Guha, M. Fredrikson, B. Livshits, and
N. Swamy. Verified security for browser exten-
sions. In IEEE Symposium on Security and Privacy,
2011.

[15] C. Jackson. Block chrome-extension:// pages
from importing script over non-https connec-
tions. http://code.google.com/p/chromium/
issues/detail?id=29112.

[16] Rezwana Karim, Mohan Dhawan, Vinod Ganapa-
thy, and Chung chiech Shan. An Analysis of the
Mozilla Jetpack Extension Framework. In Proceed-
ings of the 26th European Conference on Object-
Oriented Programming (ECOOP), 2012.

[17] A. Krishnamurthy, A. Mettler, and D. Wagner.
Fine-grained privilege separation for web applica-
tions. In International Conference on World Wide
Web (WWW), 2010.

110  21st USENIX Security Symposium	 USENIX Association

[18] M. Krohn, P. Efstathopoulos, C. Frey, F. Kaashoek,
E. Kohler, D. Mazières, R. Morris, M. Osborne,
S. VanDeBogart, and D. Ziegler. Make Least Priv-
ilege a Right (Not a Privilege). In Conference on
Hot Topics in Operating Systems, 2005.

[19] L. Liu, X. Zhang, G. Yan, and S. Chen. Chrome
Extensions: Threat Analysis and Countermeasures.
In Network and Distributed System Security Sym-
posium (NDSS), 2012.

[20] R. S. Liverani and N. Freeman. Abusing Firefox
Extensions. Defcon17.

[21] A. Mikhailovsky, K. V. Gavrilenko, and
A. Vladimirov. The Frame of Decep-
tion: Wireless Man-in-the-Middle Attacks
and Rogue Access Points Deployment.
http://www.informit.com/articles/

article.aspx?p=353735&seqNum=7, 2004.

[22] D. Murray and S. Hand. Privilege separation made
easy: trusting small libraries not big processes.
In European Workshop on System Security (EU-
ROSEC), 2008.

[23] N. Provos, M. Friedl, and P. Honeyman. Preventing
Privilege Escalation. In USENIX Security Sympo-
sium, 2003.

[24] G. Richards, C.Hammer, B. Burg, and J. Vivek.
The Eval that Men Do: A Large-scale Study of
the Use of Eval in JavaScript Applications. In Eu-
ropean Conference on Object-Oriented Program-
ming, 2012.

[25] J. Saltzer and M. D. Schroeder. The Protection of
Information in Computer Systems. In IEEE 63,
1975.

[26] R. Saltzman and A. Sharabani. Active Man in the
Middle Attacks: A Security Advisory. Technical
report, IBM, 2009.

[27] StackOverflow. Why is using JavaScript eval func-
tion a bad idea? http://stackoverflow.com/

questions/86513/why-is-using-javascript

-eval-function-a-bad-idea.

[28] B. Sterne and A. Barth. Content secu-
rity policy. https://dvcs.w3.org/hg/

content-security-policy/raw-file/tip/

csp-specification.dev.html.

[29] Brandon Sterne and Adam Barth. Content se-
curity policy 1.1. https://dvcs.w3.org/hg/

content-security-policy/raw-file/tip/

csp-specification.dev.html, May 2012.

[30] S. Wagner, J. Jurgens, C. Koller, and
P. Trischberger. Comparing Bug Finding
Tools with Reviews and Tests. Lecture Notes
in Computer Science, 2005.

[31] J. Weinberger, A. Barth, and D. Song. Towards
Client-side HTML Security Policies. In Workshop
on Hot Topics on Security (HotSec), 2011.

[32] S. Willison. Understanding the Greasemonkey vul-
nerability. http://simonwillison.net/2005/

Jul/20/vulnerability/.

[33] C. Wuest and E. Florio. Firefox and Malware:
When Browsers Attack. Technical report, Syman-
tec, 2009.

A. List of Extensions

We selected 100 extensions from the official Chrome ex-
tension directory. We have coded extensions as follows:
vulnerable and fixed (†), vulnerable but not fixed (‡), and
created by Google (*). We last checked whether exten-
sions are still vulnerable on February 7, 2012.

Most Popular Extensions
The 50 most popular extensions (and versions) that we
reviewed are as follows: AdBlock 2.4.6, FB Photo Zoom
1.1105.7.2, FastestChrome - Browse Faster 4.0.6†, Ad-
block Plus for Google Chrome? (Beta) 1.1.3†, Google
Translate 1.2.3.1*‡, Google Dictionary (by Google)
3.0.0*†, Downloads 1, Turn Off the Lights 2.0.0.7,
Google Chrome to Phone Extension 2.3.0*, Firebug Lite
for Google Chrome 1.3.2.9761†, Docs PDF/PowerPoint
Viewer (by Google) 3.5*, RSS Subscription Exten-
sion (by Google) 2.1.3*‡, Webpage Screenshot 5.2†,
Mail Checker Plus for Google Mail 1.2.3.3, Awesome
Screenshot: Capture & Annotate 3.0.4‡, Google Voice
(by Google) 2.2.3.4*†, Speed Dial 2.1‡, Smooth Ges-
tures 0.15.2, Xmarks Bookmark Sync 1.0.14, Send from
Gmail (by Google) 1.12*, SocialPlus! 2.5.4‡, Flash-
Block 0.9.31, AddThis - Share & Bookmark (new) 2.1†,
WOT 1.1, Add to Amazon Wish List 1.0.0.4†, Stumble-
Upon 3.5.18.1†, Google Calendar Checker (by Google)
1.2.1*, Clip to Evernote 5.0.14.9248, Google Quick
Scroll 1.8*, Stylish 0.7, Silver Bird 1.9.7.9†, Smooth-
Scroll 1.0.1, Browser Button for AdBlock 0.0.13, TV
2.0.5, Fast YouTube Search 1.2‡, Slideshow 1.2.9†, bit.ly
— a simple URL shortener 1.2.1.9, Web Developer
0.3.1, LastPass 1.73.2, SmileyCentral 1.0.0.3‡, Select
To Get Maps 1.1.1‡, TooManyTabs for Chrome 1.6.5,
Blog This! (by Google) 0.1.1*, TinEye Reverse Im-
age Search 1.1, ESPN Cricinfo 1.8.3†, MegaUpload
DownloadHelper 1.2, Forecastfox 2.0.10‡, PanicButton

USENIX Association 	 21st USENIX Security Symposium  111

0.13.1†, AutoPager Chrome 0.6.2.12, RapidShare Down-
loadHelper 1.1.1.

Randomly Selected Extensions
The 50 randomly selected extensions (and versions) that
we reviewed are as follows: The Independent 1.7.0.3†,
Deposit Files Download Helper 1.2, The Huffington Post
1.0.5‡, Bookmarks Menu 3.4.6, X-notifier (Gmail, Hot-
mail, Yahoo, AOL ...) 0.8.2‡, SmartVideo For YouTube
0.94, PostRank Extension 0.1.7, Bookmark Sentry
1.6.5†, Print Plus 1.0.5.0‡, 4chan 4chrome 9001.47‡,
HootSuite Hootlet 1.5, Cortex 1.8.3, ScribeFire 1.7‡,
Chrome Dictionary Lite 0.2.6†, Taberareloo 2.0.17, SEO
Status Pagerank/Alexa Toolbar 1.6, ChatVibes Facebook
Video Chat! 1.0.7†, PHP Console 2.1.4, Blank Can-
vas Script Handler 0.0.17‡, Reddit Reveal 0.2, Greplin
1.7.3, DropBox 1.1.5, Speedtest.or.th 1, Happy Status
1.0.1‡, New Tab Favorites 0.1, Ricks Domain Cleaner for
Chrome 1.1.1, Fazedr 1.6†, LL Bonus Comics First! 2.2,
Better Reddit 0.0.4, (non-English characters) 1, turl.im
url shortener 1.1, Wooword Bounce 1.2, ntust Library
0.7, me2Mini 0.0.81‡, Back to Top 1.1, Favstar Tally by
@paul shinn 1.0.0.0, ChronoMovie 0.1.0, AutoPagerize
0.3.1, Rlweb’s Bitcoin Generator 0.1, Nooooo button 1‡,
The Bass Buttons 1.95, Buttons 1.4, OpenAttribute 0.6†,
Nu.nl TV gids 1.1.3‡, Hide Sponsored Links in Gmail?
1.4, Short URL 4, Smart Photo Viewer on Facebook
1.3.0.1‡, Airline Checkin (mobile) 1.2102, Democracy
Now! 1.1‡, Coworkr.net Chrome 0.9.

USENIX Association 	 21st USENIX Security Symposium  113

Establishing Browser Security Guarantees
through Formal Shim Verification

Dongseok Jang
UC San Diego

Zachary Tatlock
UC San Diego

Sorin Lerner
UC San Diego

Abstract

Web browsers mediate access to valuable private data in
domains ranging from health care to banking. Despite
this critical role, attackers routinely exploit browser vul-
nerabilities to exfiltrate private data and take over the un-
derlying system. We present QUARK, a browser whose
kernel has been implemented and verified in Coq. We
give a specification of our kernel, show that the imple-
mentation satisfies the specification, and finally show
that the specification implies several security properties,
including tab non-interference, cookie integrity and con-
fidentiality, and address bar integrity.

1 Introduction

Web browsers increasingly dominate computer use as
people turn to Web applications for everything from busi-
ness productivity suites and educational software to so-
cial networking and personal banking. Consequently,
browsers mediate access to highly valuable, private data.
Given the browser’s sensitive, essential role, it should be
highly secure and robust in the face of adversarial attack.

Unfortunately, security experts consistently discover
vulnerabilities in all popular browsers, leading to data
loss and remote exploitation. In the annual Pwn2Own
competition, part of the CanSecWest security confer-
ence [4], security experts demonstrate new attacks on up-
to-date browsers, allowing them to subvert a user’s ma-
chine through the click of a single link. These vulnera-
bilities represent realistic, zero-day exploits and thus are
quickly patched by browser vendors. Exploits are also
regularly found in the wild; Google maintains a Vulner-
ability Reward Program, publishing its most notorious
bugs and rewarding the cash to their reporters [2].

Researchers have responded to the problems of
browser security with a diverse range of techniques, from
novel browser architectures [10, 42, 17, 41, 31] and de-
fenses against specific attacks [26, 20, 22, 8, 36] to al-

ternative security policies [25, 40, 21, 8, 39, 5] and im-
proved JavaScript safety [14, 23, 38, 6, 44]. While all
these techniques improve browser security, the intricate
subtleties of Web security make it very difficult to know
with full certainty whether a given technique works as in-
tended. Often, a solution only “works” until an attacker
finds a bug in the technique or its implementation. Even
in work that attempts to provide strong guarantees (for
example [17, 13, 41, 12]) the guarantees come from ana-
lyzing a model of the browser, not the actual implemen-
tation. Reasoning about such a simplified model eases
the verification burden by omitting the gritty details and
corner cases present in real systems. Unfortunately, at-
tackers exploit precisely such corner cases. Thus, these
approaches still leave a formality gap between the theory
and implementation of a technique.

There is one promising technique that could mini-
mize this formality gap: fully formal verification of the
browser implementation, carried out in the demanding
and foundational context of a mechanical proof assistant.
This severe discipline forces the programmer to specify
precisely how their code should behave and then pro-
vides the tools to formally guarantee that it does, all in
fully formal logic, building from basic axioms up. For
their trouble, the programmer is rewarded with a ma-
chine checkable proof that the implementation satisfies
the specification. With this proof in hand, we can avoid
further reasoning about the large, complex implementa-
tion, and instead consider only the substantially smaller,
simpler specification. In order to believe that such a
browser truly satisfies its specification, one needs only
trust a very small, extensively tested proof checker. By
reasoning about the actual implementation directly, we
can guarantee that any security properties implied by the
specification will hold in every case, on every run of the
actual browser.

Unfortunately, formal verification in a proof assistant
is tremendously difficult. Often, those systems which we
can formally verify are severely restricted, “toy” versions

114  21st USENIX Security Symposium	 USENIX Association

of the programs we actually have in mind. Thus, many
researchers still consider full formal verification of real-
istic, browser-scale systems an unrealistic fantasy. Fortu-
nately, recent advances in fully formal verification allow
us to begin challenging this pessimistic outlook.

In this paper we demonstrate how formal shim verifi-
cation radically reduces the verification burden for large
systems to the degree that we were able to formally
verify the implementation of a modern Web browser,
QUARK, within the demanding and foundational context
of the mechanical proof assistant Coq.

At its core, formal shim verification addresses the
challenge of formally verifying a large system by clev-
erly reducing the amount of code that must be con-
sidered; instead of formalizing and reasoning about gi-
gantic system components, all components communi-
cate through a small, lightweight shim which ensures the
components are restricted to only exhibit allowed behav-
iors. Formal shim verification only requires one to rea-
son about the shim, thus eliminating the tremendously
expensive or infeasible task of verifying large, complex
components in a proof assistant.

Our Web browser, QUARK, exploits formal shim ver-
ification and enables us to verify security properties for
a million lines of code while reasoning about only a few
hundred. To achieve this goal, QUARK is structured sim-
ilarly to Google Chrome [10] or OP [17]. It consists
of a small browser kernel which mediates access to sys-
tem resources for all other browser components. These
other components run in sandboxes which only allow the
component to communicate with the kernel. In this way,
QUARK is able to make strong guarantees about a million
lines of code (e.g., the renderer, JavaScript implementa-
tion, JPEG decoders, etc.) while only using a proof as-
sistant to reason about a few hundred lines of code (the
kernel). Because the underlying system is protected from
QUARK’s untrusted components (i.e., everything other
than the kernel) we were free to adopt state-of-the-art
implementations and thus QUARK is able to run popu-
lar, complex Web sites like Facebook and GMail.

By applying formal shim verification to only reason
about a small core of the browser, we formally establish
the following security properties in QUARK, all within a
proof assistant:

1. Tab Non-Interference: no tab can ever affect how
the kernel interacts with another tab

2. Cookie Confidentiality and Integrity: cookies for
a domain can only be accessed/modified by tabs of
that domain

3. Address Bar Integrity and Correctness: the ad-
dress bar cannot be modified by a tab without the

user being involved, and always displays the correct
address bar.

To summarize, our contributions are as follows:

• We demonstrate how formal shim verification en-
abled us to formally verify the implementation of
a modern Web browser. We discuss the techniques,
tools, and design decisions required to formally ver-
ify QUARK in detail.

• We identify and formally prove key security prop-
erties for a realistic Web browser.

• We provide a framework that can be used to further
investigate and prove more complex policies within
a working, formally verified browser.

The rest of the paper is organized as follows. Section 2
provides background on browser security techniques and
formal verification. Section 3 presents an overview of
the QUARK browser. Section 4 details the design of the
QUARK kernel and its implementation. Section 5 ex-
plains the tools and techniques we used to formally ver-
ify the implementation of the QUARK kernel. Section 6
evaluates QUARK along several dimensions while Sec-
tion 7 discusses lessons learned from our endeavor.

2 Background and Related Work

This section briefly discusses both previous efforts to im-
prove browser security and verification techniques to en-
sure programs behave as specified.

Browser Security As mentioned in the Introduction,
there is a rich literature on techniques to improve browser
security [10, 42, 17, 41, 31, 13, 12]. We distinguish our-
selves from all previous techniques by verifying the ac-
tual implementation of a modern Web browser and for-
mally proving that it satisfies our security properties, all
in the context of a mechanical proof assistant. Below, we
survey the most closely related work.

Previous browsers like Google Chrome [10],
Gazelle [42], and OP [17] have been designed using
privilege separation [35], where the browser is divided
into components which are then limited to only those
privileges they absolutely require, thus minimizing the
damage an attacker can cause by exploiting any one
component. We follow this design strategy.

Chrome’s design compromises the principles of priv-
ilege separation for the sake of performance and com-
patibility. Unfortunately, its design does not protect the
user’s data from a compromised tab which is free to
leak all cookies for every domain. Gazelle [42] adopts
a more principled approach, implementing the browser

2

USENIX Association 	 21st USENIX Security Symposium  115

as a multi-principal OS, where the kernel has exclusive
control over resource management across various Web
principals. This allows Gazelle to enforce richer policies
than those found in Chrome. However, neither Chrome
nor Gazelle apply any formal methods to make guaran-
tees about their browser.

The OP [17] browser goes beyond privilege separa-
tion. Its authors additionally construct a model of their
browser kernel and apply the Maude model checker to
ensure that this model satisfies important security prop-
erties such as the same origin policy and address bar cor-
rectness. As such, the OP browser applies insight similar
to our work, in that OP focuses its formal reasoning on
a small kernel. However, unlike our work, OP does not
make any formal guarantees about the actual browser im-
plementation, which means there is still a formality gap
between the model and the code that runs. Our formal
shim verification closes this formality gap by conducting
all proofs in full formal detail using a proof assistant.

Formal Verification Recently, researchers have begun
using proof assistants to fully formally verify imple-
mentations for foundational software including Operat-
ing Systems [27], Compilers [28, 1], Database Man-
agement Systems [29], Web Servers [30], and Sand-
boxes [32]. Some of these results have even experimen-
tally been shown to to drastically improve software relia-
bility: Yang et al. [43] show through random testing that
the CompCert verified C compiler is substantially more
robust and reliable than its non-verified competitors like
GCC and LLVM.

As researchers verify more of the software stack, the
frontier is being pushed toward higher level platforms
like the browser. Unfortunately, previous verification re-
sults have only been achieved at staggering cost; in the
case of seL4, verification took over 13 person years of
effort. Based on these results, verifying a browser-scale
platform seemed truly infeasible.

Our formal verification of QUARK was radically
cheaper than previous efforts. Previous efforts were
tremendously expensive because researchers proved
nearly every line of code correct. We avoid these costs in
QUARK by applying formal shim verification: we struc-
ture our browser so that all our target security properties
can be ensured by a very small browser kernel and then
reason only about that single, tiny component. Leverag-
ing this technique enabled us to make strong guarantees
about the behavior of a million of lines of code while rea-
soning about only a few hundred in the mechanical proof
assistant Coq.

We use the Ynot library [34] extensively to reason
about imperative programming features, e.g., impure
functions like fopen, which are otherwise unavailable in
Coq’s pure implementation language. Ynot also provides

Input
sand
b

TabInput boxProc

NetworkQuark
Kernel

Output
sand
box

Cookie
Proc

Figure 1: QUARK Architecture. This diagram shows how QUARK
factors a modern browser into distinct components which run in sep-
arate processes; arrows indicate information flow. We guarantee our
security properties by formally verifying the QUARK Kernel in the Coq
proof assistant, which allows us to avoid reasoning about the intricate
details of other components.

features which allow us to verify QUARK in a familiar
style: invariants expressed as pre- and post-conditions
over program states, essentially a variant of Hoare Type
Theory [33]. Specifically, Ynot enables trace-based ver-
ification, used extensively in [30] to prove properties of
servers. This technique entails reasoning about the se-
quence of externally visible actions a program may per-
form on any input, also known as traces. Essentially,
our specification delineates which sequences of system
calls the QUARK kernel can make and our verification
consists of proving that the implementation is restricted
to only making such sequences of system calls. We go
on to formally prove that satisfying this specification im-
plies higher level security properties like tab isolation,
cookie integrity and confidentiality, and address bar in-
tegrity and correctness. Building QUARK with a different
proof assistant like Isabelle/HOL would have required
essentially the same approach for encoding imperative
programming features, but we chose Coq since Ynot is
available and has been well vetted.

Our approach is fundamentally different from pre-
vious verification tools like ESP [16], SLAM [7],
BLAST [18] and Terminator [15], which work on ex-
isting code bases. In our approach, instead of trying
to prove properties about a large existing code base ex-
pressed in difficult-to-reason-about languages like C or
C++, we rewrite the browser inside of a theorem prover.
This provides much stronger reasoning capabilities.

3 QUARK Architecture and Design

Figure 1 diagrams QUARK’s architecture. Similar to
Chrome [10] and OP [17], QUARK isolates complex and
vulnerability-ridden components in sandboxes, forcing

3

116  21st USENIX Security Symposium	 USENIX Association

them to access all sensitive resources through a small,
simple browser kernel. Our kernel, written in Coq, runs
in its own process and mediates access to resources in-
cluding the keyboard, disk, and network. Each tab runs a
modified version of WebKit in its own process. WebKit
is the open source browser engine used in Chrome and
Safari. It provides various callbacks for clients as Python
bindings which we use to implement tabs. Since tab pro-
cesses cannot directly access any system resources, we
hook into these callbacks to re-route WebKit’s network,
screen, and cookie access through our kernel written in
Coq. QUARK also uses separate processes for display-
ing to the screen, storing and accessing cookies, as well
reading input from the user.

Throughout the paper, we assume that an attacker can
compromise any QUARK component which is exposed to
content from the Internet, except for the kernel which we
formally verified. This includes all tab processes, cookie
processes, and the graphical output process. Thus, we
provide strong formal guarantees about tab and cookie
isolation, even when some processes have been com-
pletely taken over (e.g., by a buffer overflow attack in
the rendering or JavaScript engine of WebKit).

3.1 Graphical User Interface

The traditional GUI for Web browsers manages several
key responsibilities: reading mouse and keyboard input,
showing rendered graphical output, and displaying the
current URL. Unfortunately, such a monolithic compo-
nent cannot be made to satisfy our security goals. If
compromised, such a GUI component could spoof the
current URL or send arbitrary user inputs to the kernel,
which, if coordinated with a compromised tab, would vi-
olate tab isolation. Thus QUARK must carefully separate
GUI responsibilities to preserve our security guarantees
while still providing a realistic browser.

QUARK divides GUI responsibilities into several com-
ponents which the kernel orchestrates to provide a tradi-
tional GUI for the user. The most complex component
displays rendered bitmaps on the screen. QUARK puts
this component in a separate process to which the kernel
directs rendered bitmaps from the currently selected tab.
Because the kernel never reads input from this graphi-
cal output process, any vulnerabilities it may have can-
not subvert the kernel or impact any other component
in QUARK. Furthermore, treating the graphical output
component as a separate process simplifies the kernel and
proofs because it allows the kernel to employ a uniform
mechanism for interacting with the outside world: mes-
sages over channels.

To formally reason about the address bar, we designed
our kernel so that the current URL is written directly to
the kernel’s stdout. This gives rise to a hybrid graphi-

Figure 2: QUARK Screenshot. This screenshot shows QUARK run-
ning a Google search, including an interactive drop-down suggesting
query completions and an initial set of search results from a JavaScript
event handler dispatching an “instant search” as well as a page preview
from a search result link. (Location blurred for double-blind review.)

cal/text output as shown in Figure 2 where the kernel has
complete control over the address bar. With this design,
the graphical output process is never able to spoof the
address bar.

QUARK also uses a separate input process to support
richer inputs, e.g., the mouse. The input process is a
simple Python script which grabs keyboard and mouse
events from the user, encodes them as user input mes-
sages, and forwards them on to the kernel’s stdin. For
keystrokes, the input process simply writes characters in
ASCII format to the kernel’s stdin. We use several “un-
printable” ASCII values (all smaller than 60 and all un-
typeable from the keyboard) to pass special information
from the input process to the kernel. For example, the in-
put process maps keys F1-F12 to such un-printable char-
acters, which allows the kernel to use F11 for “new tab”,
and F1-F10 for selecting tabs 1-10. Mouse clicks are also
sent to the kernel through un-printable ASCII values. Be-
cause the input process only reads from the keyboard and
mouse, and never from the kernel or any other QUARK
components, it cannot be exposed any attacks originating
from the network.

3.2 Example of Message Exchanges
To illustrate how the kernel orchestrates all the com-
ponents in QUARK, we detail the steps from startup
to a tab loading http://www.google.com. The user
opens QUARK by starting the kernel which in turn
starts three processes: the input process, the graph-
ical output process, and a tab process. The ker-
nel establishes a two-way communication channel with
each process it starts. Next, the kernel then sends a

4

USENIX Association 	 21st USENIX Security Symposium  117

(Go "http://www.google.com") message to the tab
indicating it should load the given URL (for now, assume
this is normal behavior for all new tabs).

The tab process comprises our modified version of
WebKit wrapped by a thin layer of Python to handle
messaging with the kernel. After recieving the Go mes-
sage, the Python wrapper tells WebKit to start process-
ing http://www.google.com. Since the tab process is
running in a sandbox, WebKit cannot directly access the
network. When it attempts to, our Python wrapper in-
tervenes and sends a GetURL request to the kernel. As
long as the request is valid, the kernel responds with a
ResDoc message containing the HTML document the tab
requested.

Once the tab process has received the necessary re-
sources from the kernel and rendered the Web pages, it
sends a Display message to the kernel which contains a
bitmap to display. When the kernel receives a Display

message from the current tab, it forwards the message on
to the graphical output process, which in turn displays
the bitmap on the screen.

When the kernel reads a printable character c from
standard input, it sends a (KeyPress c) message to the
currently selected tab. Upon receiving such a message,
the tab calls the appropriate input handler in WebKit. For
example, if a user types “a” on Google, the “a” character
is read by the kernel, passed to the tab, and then passed
to WebKit, at which point WebKit adds the “a” charac-
ter to Google’s search box. This in turn causes WebKit’s
JavaScript engine to run an event handler that Google has
installed on their search box. The event handler performs
an “instant search”, which initiates further communica-
tion with the QUARK kernel to access additional network
resources, followed by another Display message to re-
paint the screen. Note that to ease verification, QUARK
currently handles all requests synchronously.

3.3 Efficiency

With a few simple optimizations, we achieve perfor-
mance comparable to WebKit on average (see Section 6
for measurements). Following Chrome, we adopt two
optimizations critical for good graphics performance.
First, QUARK uses shared memory to pass bitmaps from
the tab process through the kernel to the output process,
so that the Display message only passes a shared mem-
ory ID instead of a bitmap. This drastically reduces the
communication cost of sending bitmaps. To prevent a
malicious tab from accessing another tab’s shared mem-
ory, we run each tab as a different user, and set access
controls so that a tab’s shared memory can only be ac-
cessed by the output process. Second, QUARK uses
rectangle-based rendering: instead of sending a large
bitmap of the entire screen each time the display changes,

the tab process determines which part of the display has
changed, and sends bitmaps only for the rectangular re-
gions that need to be updated. This drastically reduces
the size of the bitmaps being transferred, and the amount
of redrawing on the screen.

For I/O performance, the original Ynot library used
single-character read/write routines, imposing significant
overhead. We defined a new I/O library which uses size
n reads/writes. This reduced reading an n byte message
from n I/O calls to just three: reading a 1 byte tag, fol-
lowed by a 4 byte payload size, and then a single read for
the entire payload.

We also optimized socket connections in QUARK. Our
original prototype opened a new TCP connection for each
HTTP GET request, imposing significant overhead. Mod-
ern Web servers and browsers use persistent connections
to improve the efficiency of page loading and the respon-
siveness of Web 2.0 applications. These connections are
maintained anywhere from a few seconds to several min-
utes, allowing the client and server can exchange mul-
tiple request/responses on a single connection. Services
like Google Chat make use of very long-lived HTTP con-
nections to support responsive interaction with the user.

We support such persistent HTTP connections via
Unix domain sockets which allow processes to send open
file descriptors over channels using the sendmsg and
recvmsg system calls. When a tab needs to open a
socket, it sends a GetSoc message to the kernel with the
host and port. If the request is valid, the kernel opens
and connects the socket, and then sends an open socket
file descriptor to the tab. Once the tab gets the socket file
descriptor, it can read/write on the socket, but it cannot
re-connect the socket to another host/port. In this way,
the kernel controls all socket connections.

Even though we formally verify our browser kernel in
a proof assistant, we were still able to implement and
reason about these low-level optimizations.

3.4 Socket Security Policy

The GetSoc message brings up an interesting security
issue. If the kernel satisfied all GetSoc requests, then a
compromised tab could open sockets to any server and
exchange arbitrary amounts of information. The kernel
must prevent this scenario by restricting socket connec-
tions.

To implement this restriction, we introduce the idea
of a domain suffix for a tab which the user enters when
the tab starts. A tab’s domain suffix controls several se-
curity features in QUARK, including which socket con-
nections are allowed and how cookies are handled (see
Section 3.5). In fact, our address bar, located at the very
top of the browser (see Figure 2), displays the domain
suffix, not just the tab’s URL. We therefore refer to it as

5

118  21st USENIX Security Symposium	 USENIX Association

the “domain bar”.
For simplicity, our current domain suffixes build on

the notion of a public suffix, which is a top-level domain
under which Internet users can directly register names,
for example .com, .co.uk, or .edu – Mozilla main-
tains an exhaustive list of such suffixes [3]. In particu-
lar, we require the domain suffix for a tab to be exactly
one level down from a public suffix, e.g., google.com,
amazon.com, etc. In the current QUARK prototype the
user provides a tab’s domain suffix separately from its
initial URL, but one could easily compute the former
from the later. Note that, once set, a tab’s domain suf-
fix never changes. In particular, any frames a tab loads
do not affect its domain suffix.

We considered using the tab’s origin (which includes
the URL, scheme, and port) to restrict socket creation,
but such a policy is too restrictive for many useful
sites. For example, a single GMail tab uses frames
from domains such as static.google.com and mail.

google.com. However, our actual domain suffix checks
are modularized within QUARK, which will allow us to
experiment with finer grained policies in future work.

To enforce our current socket creation policy, we first
define a subdomain relation ≤ as follows: given domain
d1 and domain suffix d2, we use d1 ≤ d2 to denote that
d1 is a subdomain of d2. For example www.google.com
≤ google.com. If a tab with domain suffix t requests
to open a connection to a host h, then the kernel allows
the connection if h ≤ t. To load URLs that are not a
subdomain of the tab suffix, the tab must send a GetURL
message to the kernel – in response, the kernel does not
open a socket but, if the request is valid, may provide the
content of the URL. Since the kernel does not attach any
cookies to the HTTP request for a GetURL message, a
tab can only access publicly available data using GetURL.
In addition, GetURL requests only provide the response
body, not HTTP headers.

Note that an exploited tab could leak cookies by en-
coding information within the URL parameter of GetURL
requests, but only cookies for that tab’s domain could be
leaked. Because we do not provide any access to HTTP
headers with GetURL, we consider this use of GetURL
to leak cookies analogous to leaking cookie data over
timing channels.

Although we elide details in the current work, we also
slightly enhanced our socket policy to improve perfor-
mance. Sites with large data sets often use content dis-
tribution networks whose domains will not satisfy our
domain suffix checks. For example facebook.com uses
fbcdn.net to load much of its data. Unfortunately, the
simple socket policy described above will force all this
data to be loaded using slow GetURL requests through
the kernel. To address this issue, we associate whitelists
with the most popular sites so that tabs for those do-

mains can open sockets to the associated content distri-
bution network. The tab domain suffix remains a sin-
gle string, e.g. facebook.com, but behind the scenes, it
gets expanded into a list depending on the domain, e.g.,
[facebook.com, fbcdn.net]. When deciding whether
to satisfy a given socket request, QUARK considers this
list as a disjunction of allowed domain suffixes. Cur-
rently, we provide these whitelists manually.

3.5 Cookies and Cookie Policy
QUARK maintains a set of cookie processes to handle
cookie accesses from tabs. This set of cookie processes
will contain a cookie process for domain suffix S if S is
the domain suffix of a running tab. By restricting mes-
sages to and from cookie processes, the QUARK kernel
guarantees that browser components will only be able to
access cookies appropriate for their domain.

The kernel receives cookie store/retrieve requests from
tabs and directs the requests to the appropriate cookie
process. If a tab with domain suffix t asks to store a
cookie with domain c, then our kernel allows the oper-
ation if c ≤ t, in which case it sends the store request to
the cookie process for domain t. Similarly, if a tab with
domain suffix t wants to retrieve a cookie for domain c,
then our kernel allows the operation if c ≤ t, in which
case it sends the request to the cookie process for domain
t and forwards any response to the requesting tab.

The above policy prevents cross-domain cookie reads
from a compromised tab, and it prevents a compro-
mised cookie process from leaking information about
its cookies to another domain; yet it also allows dif-
ferent tabs with the same domain suffix (but different
URLs) to communicate through cookies (for example,
mail.google.com and calendar.google.com).

3.6 Security Properties of QUARK

We provide intuitive descriptions of the security prop-
erties we proved for QUARK’s kernel; formal defini-
tions appear later in Section 4. A tab in the kernel is a
pair, containing the tab’s domain suffix as a string and
the tab’s communication channel as a file descriptor. A
cookie process is also a pair, containing the domain suffix
that this cookie process manages and its communication
channel. We define the state of the kernel as the cur-
rently selected tab, the list of tabs, and the list of cookie
processes. Note that the kernel state only contains strings
and file descriptors.

We prove the following main theorems in Coq:

1. Response Integrity: The way the kernel responds
to any request only depends on past user “control
keys” (namely keys F1-F12). This ensures that one

6

USENIX Association 	 21st USENIX Security Symposium  119

browser component (e.g., a tab or cookie process)
can never influence how the kernel responds to an-
other component, and that the kernel never allows
untrusted input (e.g., data from the web) to influ-
ence how the kernel responds to a request.

2. Tab Non-Interference: The kernel’s response to a
tab’s request is the same no matter how other tabs
interact with the kernel. This ensures that the kernel
never provides a direct way for one tab to attack an-
other tab or steal private information from another
tab.

3. No Cross-domain Socket Creation: The kernel
disallows any cross-domain socket creation (as de-
scribed in Section 3.4).

4. Cookie Integrity/Confidentiality: The kernel dis-
allows any cross-domain cookie stores or retrieves
(as described in Section 3.5).

5. Domain Bar Integrity and Correctness: The do-
main bar cannot be compromised by a tab, and is
always equal to the domain suffix of the currently
selected tab.

4 Kernel Implementation in Coq

QUARK’s most distinguishing feature is its kernel, which
is implemented and proved correct in Coq. In this section
we present the implementation of the main kernel loop.
In the next section we explain how we formally verified
the kernel.

Coq enables users to write programs in a small, simple
functional language and then reason formally about them
using a powerful logic, the Calculus of Constructions.
This language is essentially an effect-free (pure) subset
of popular functional languages like ML or Haskell with
the additional restriction that programs must always ter-
minate. Unfortunately, these limitations make Coq’s de-
fault implementation language ill-suited for writing sys-
tem programs like servers or browsers which must be ef-
fectful to perform I/O and by design may not terminate.

To address the limitations of Coq’s implementation
language, we use Ynot [34]. Ynot is a Coq library
which provides monadic types that allow us to write ef-
fectful, non-terminating programs in Coq while retain-
ing the strong guarantees and reasoning capabilities Coq
normally provides. Equipped with Ynot, we can write
our browser kernel in a fairly straightforward style whose
essence is shown in Figure 3.

Single Step of Kernel. QUARK’s kernel is essentially
a loop that continuously responds to requests from the
user or tabs. In each iteration, the kernel calls kstep

Definition kstep(ctab, ctabs) :=

chan <- iselect(stdin, tabs);

match chan with

| Stdin =>

c <- read(stdin);

match c with

| "+" =>

t <- mktab();

write_msg(t, Render);

return (t, t::tabs)

| ...

end

| Tab t =>

msg <- read_msg(t);

match msg with

| GetSoc(host, port) =>

if(safe_soc(host, domain_suffix(t)) then

send_soc(t, host, port);

return (ctab, tabs)

else

write_msg(t, Error);

return (ctab, tabs)

| ...

end

end

Figure 3: Body for Main Kernel Loop. This Coq code shows how our
QUARK kernel receives and responds to requests from other browser
components. It first uses a Unix-style select to choose a ready input
channel, reads a request from that channel, and responds to the message
appropriately. For example, if the user enters “+”, the kernel creates
a new tab and sends it the Render message. In each case, the code
returns the new kernel state resulting from handling this request.

which takes the current kernel state, handles a single re-
quest, and returns the new kernel state as shown in Fig-
ure 3. The kernel state is a tuple of the current tab (ctab),
the list of tabs (tabs), and a few other components which
we omit here (e.g., the list of cookie processes). For
details regarding the loop and kernel initialization code
please see [24].
kstep starts by calling iselect (the “i” stands for

input) which performs a Unix-style select over stdin

and all tab input channels, returning Stdin if stdin is
ready for reading or Tab t if the input channel of tab
t is ready. iselect is implemented in Coq using a
select primitive which is ultimately just a thin wrap-
per over the Unix select system call. The Coq extraction
process, which converts Coq into OCaml for execution,
can be customized to link our Coq code with OCaml im-
plementations of primitives like select. Thus select
is exposed to Coq essentially as a primitive of the ap-
propriate monadic type. We have similar primitives for
reading/writing on channels, and opening sockets.

Request from User. If stdin is ready for reading,
the kernel reads one character c using the read primi-
tive, and then responds based on the value of c. If c is
“+”, the kernel adds a new tab to the browser. To achieve
this, it first calls mktab to start a tab process (another

7

120  21st USENIX Security Symposium	 USENIX Association

primitive implemented in OCaml). mktab returns a tab
object, which contains an input and output channels to
communicate with the tab process. Once the tab t is
created, the kernel sends it a Render message using the
write_msg function – this tells t to render itself, which
will later cause the tab to send a Display message to
the kernel. Finally, we return an updated kernel state
(t, t::tabs), which sets the newly created tab t as
the current tab, and adds t to the list of tabs.

In addition to “+” the kernel handles several other
cases for user input, which we omit in Figure 3. For
example, when the kernel reads keys F1 through F10,
it switches to tabs 1 through 10, respectively, if the tab
exists. To switch tabs, the kernel updates the currently
selected tab and sends it a Render message. The ker-
nel also processes mouse events delivered by the input
process to the kernel’s stdin. For now, we only han-
dle mouse clicks, which are delivered by the input pro-
cess using a single un-printable ASCII character (adding
richer mouse events would not fundamentally change our
kernel or proofs). The kernel in this case calls a primi-
tive implemented in OCaml which gets the location of
the mouse, and it sends a MouseClick message using
the returned coordinates to the currently selected tab. We
use this two-step approach for mouse clicks (un-printable
character from the input process, followed by primitive
in OCaml), so that the kernel only needs to processes a
single character at a time from stdin, which simplifies
the kernel and proofs.

Request from Tab. If a tab t is ready for reading, the
kernel reads a message m from the tab using read_msg,
and then sends a response which depends on the mes-
sage. If the message is GetSoc(host, port), then the
tab is requesting that a socket be opened to the given
host/port. We apply the socket policy described in Sec-
tion 3.4, where domain_suffix t returns the domain
suffix of a tab t, and safe_soc(host, domsuf) ap-
plies the policy (which basically checks that host is a
sub-domain of domsuf). If the policy allows the socket
to be opened, the kernel uses the send_socket to open
a socket to the host, and send the socket over the chan-
nel to the tab (recall that we use Unix domain sockets to
send open file descriptors from one process to another).
Otherwise, it returns an Error message.

In addition to GetSoc the kernel handles several other
cases for tab requests, which we omit in Figure 3. For
example, the kernel responds to GetURL by retrieving a
URL and returning the result. It responds to cookie store
and retrieve messages by checking the security policy
from Section 3.5 and forwarding the message to the ap-
propriate cookie process (note that for simplicity, we did
not show the cookie processes in Figure 3). The kernel
also responds to cookie processes that are sending cookie
results back to a tab, by forwarding the cookie results

to the appropriate tab. The kernel responds to Display

messages by forwarding them to the output process.
Monads in Ynot. The code in Figure 3 shows how

Ynot supports an imperative programming style in Coq.
This is achieved via monads which allow one to en-
code effectful, non-terminating computations in pure
languages like Haskell or Coq. Here we briefly show
how monads enable this encoding. In the next section we
extend our discussion to show how Ynot’s monads also
enable reasoning about the kernel using pre- and post-
conditions as in Hoare logic.

We use Ynot’s ST monad which is a parameterized
type where ST T denotes computations which may per-
form some I/O and then return a value of type T. To use
ST, Ynot provides a bind primitive which has the fol-
lowing dependent type:

bind : forall T1 T2,

ST T1 -> (T1 -> ST T2) -> ST T2

This type indicates that, for any types T1 and T2, bind
will take two parameters: (1) a monad of type ST T1 and
(2) a function that takes a value of type T1 and returns a
monad of type ST T2; then bind will produce a value
in the ST T2 monad. The type parameters T1 and T2

are inferred automatically by Coq. Thus, the expression
bind X Y returns a monad which represents the compu-
tation: run X to get a value v; run (Y v) to get a value
v’; return v’.

To make using bind more convenient, Ynot
also defines Haskell-style “do” syntactic sugar us-
ing Coq’s Notation mechanism, so that x <- a;b

is translated to bind a (fun x => b), and a;b is
translated to bind a (fun _ => b). Finally, the
Ynot library provides a return primitive of type
forall T (v: T), ST T (where again T is inferred by
Coq). Given a value v, the monad return v represents
the computation that does no I/O and simply returns v.

5 Kernel Verification

In this section we explain how we verified QUARK’s ker-
nel. First, we specify correct behavior of the kernel in
terms of traces. Second, we prove the kernel satisfies this
specification using the full power of Ynot’s monads. Fi-
nally, we prove that our kernel specification implies our
target security properties.

5.1 Actions and Traces
We verify our kernel by reasoning about the sequences of
calls to primitives (i.e., system calls) it can make. We call
such a sequence a trace; our kernel specification (hence-
forth “spec”) defines which traces are allowed for a cor-
rect implementation as in [30].

8

USENIX Association 	 21st USENIX Security Symposium  121

Definition Trace := list Action.

Inductive Action :=

| ReadN : chan -> positive -> list ascii -> Action

| WriteN : chan -> positive -> list ascii -> Action

| MkTab : tab -> Action

| SentSoc : tab -> list ascii -> list ascii -> Action

| ...

Definition Read c b :=

ReadN c 1 [c]

Figure 4: Traces and Actions. This Coq code defines the type of
externally visible actions our kernel can take. A trace is simply a list
of such actions. We reason about our kernel by proving properties of
the traces it can have. Traces are like other Coq values; in particular,
we can write functions that return traces. Read is a helper function to
construct a trace fragment corresponding to reading a single byte.

We use a list of actions to represent the trace the
kernel produces by calling primitives. Each action in
a trace corresponds to the kernel invoking a particular
primitive. Figure 4 shows a partial definition of the
Action datatype. For example: ReadN f n l is an
Action indicating that the n bytes in list l were read
from input channel f; MkTab t indicates that tab t was
created; SentSoc t host port indicates a socket was
connected to host/port and passed to tab t.

We can manipulate traces and Actions like any other
values in Coq. For example, we can define a function
Read c b to encode the special case that a single byte
b was read on input channel c. Though not shown here,
we also define similar helper functions to build up trace
fragments which correspond to having read or written
a particular message to a given component. For exam-
ple, ReadMsg t (GetSoc host port) corresponds to
the trace fragment that results from reading a GetSoc re-
quest from tab t.

5.2 Kernel Specification

Figure 5 shows a simplified snippet of our kernel spec.
The spec is a predicate tcorrect over traces with two
constructors, stating the two ways in which tcorrect

can be established: (1) tcorrect_nil states that the
empty trace satisfies tcorrect (2) tcorrect_step

states that if tr satisfies tcorrect and the kernel
takes a single step, meaning that after tr it gets a
request req, and responds with rsp, then the trace
rsp ++ req ++ tr (where ++ is list concatenation)
also satisfies tcorrect. By convention the first action
in a trace is the most recent.

The predicate step_correct defines correctness
for a single iteration of the kernel’s main loop:
step_correct tr req rsp holds if given the past
trace tr and a request req, the response of the
kernel should be rsp. The predicate has several
constructors (not all shown) enumerating the ways

Inductive tcorrect : Trace -> Prop :=

| tcorrect_nil:

tcorrect nil

| tcorrect_step: forall tr req rsp,

tcorrect tr ->

step_correct tr req rsp ->

tcorrect (rsp ++ req ++ tr).

Inductive step_correct :

Trace -> Trace -> Trace -> Prop :=

| step_correct_add_tab: forall tr t,

step_correct tr

(MkTab t :: Read stdin "+" :: nil)

(WroteMsg t Render)

| step_correct_socket_true: forall tr t host port,

is_safe_soc host (domain_suffix t) = true ->

step_correct tr

(ReadMsg t (GetSoc host port))

(SentSoc t host port)

| step_correct_socket_false: forall tr t host port,

is_safe_soc host (domain_suffix t) <> true ->

step_correct tr

(ReadMsg t (GetSoc host port) ++ tr)

(WroteMsg t Error ++ tr)

| ...

Figure 5: Kernel Specification. step correct is a predicate over
triples containing a past trace, a request trace, and a response trace; it
holds when the response is valid for the given request in the context of
the past trace. tcorrect defines a correct trace for our kernel to be a
sequence of correct steps, i.e., the concatenation of valid request and
response trace fragments.

step_correct can be established. For example,
step_correct_add_tab states that typing “+” on
stdin leads to the creation of a tab and sending the
Render message. The step_correct_socket_true

case captures the successful socket creation case,
whereas step_correct_socket_false captures the
error case.

5.3 Monads in Ynot Revisited

In the previous section, we explained Ynot’s ST monad
as being parameterized over a single type T. In re-
ality, ST takes two additional parameters representing
pre- and post-conditions for the computation encoded by
the monad. Thus, ST T P Q represents a computation
which, if started in a state where P holds, may perform
some I/O and then return a value of type T in a state
where Q holds. For technical reasons, these pre- and post-
conditions are expressed using separation logic, but we
defer details to a tech report [24].

Following the approach of Malecha et al. [30], we de-
fine an opaque predicate (traced tr) to represent the
fact that at a given point during execution, tr captures
all the past activities; and (open f) to represent the fact
that channel f is currently open. An opaque predicate
cannot be proven directly. This property allows us to
ensure that no part of the kernel can forge a proof of
(traced tr) for any trace it independently constructs.

9

122  21st USENIX Security Symposium	 USENIX Association

Axiom readn:

forall (f: chan) (n: positive) {tr: Trace},

ST (list ascii)

{traced tr * open f}

{fun l =>

traced (ReadN f n l :: tr) *

[len l = n] * open f }.

Definition read_msg:

forall (t: tab) {tr: Trace},

ST msg

{traced tr * open (tchan t)}

{fun m =>

traced (ReadMsg t m ++ tr) * open (tchan t)} :=

...

Figure 6: Example Monadic Types. This Coq code shows the
monadic types for the readn primitive and for the read msg func-
tion which is implemented in terms of readn. In both cases, the first
expression between curly braces represents a pre-condition and the sec-
ond represents a post-condition. The asterisk (*) may be read as normal
conjunction in this context.

Thus (traced tr) can only be true for the current trace
tr.

Figure 6 shows the full monadic type for the readn

primitive, which reads n bytes of data and returns it.
The * connective represents the separating conjunc-
tion from separation logic. For our purposes, con-
sider it as a regular conjunction. The precondition of
(readn f n tr) states that tr is the current trace and
that f is open. The post-condition states that the trace
after readn will be the same as the original, but with
an additional (ReadN f n l) action at the beginning,
where the length of l is equal to n (len l = n is a reg-
ular predicate, which is lifted using square brackets into
a separation logic predicate). After the call, the channel
f is still open.

The full type of the Ynot bind operation makes sure
that when two monads are sequenced, the post-condition
of the first monad implies the pre-condition of the sec-
ond. This is achieved by having bind take an additional
third argument, which is a proof of this implication. The
syntactic sugar for x <- a;b is updated to pass the wild-
card “_” for the additional argument. When processing
the definition of our kernel, Coq will enter into an inter-
active mode that allows the user to construct proofs to
fill in these wildcards. This allows us to prove that the
post-condition of each monad implies the pre-condition
of the immediately following monad in Coq’s interactive
proof environment.

5.4 Back to the Kernel

We now return to our kernel from Figure 3 and show how
we prove that it satisfies the spec from Figure 5. We
augment the kernel state to additionally include the trace
of the kernel so far, and we update our kernel code to
maintain this tr field. By using a special encoding in

Ynot for this trace, the tr field is not realized at run-
time, it is only used for proof purposes.

We define the kcorrect predicate as follows (s.tr
projects the current trace out of kernel state s):

Definition kcorrect (s: kstate) :=

traced s.tr * [tcorrect s.tr]

Now we want to show that kcorrect is an invariant that
holds throughout execution of the kernel. Essentially we
must show that (kcorrect s) is a loop invariant on the
kernel state s for the main kernel loop, which boils down
to showing that (kcorrect s) is valid as both the pre-
and post-condition for the loop body, kstep as shown in
Figure 3.

As mentioned previously, Coq will ask us to prove im-
plications between the post-condition of one monad and
the pre-condition of the next. While these proofs are ul-
timately spelled out in full formal detail, Coq provides
facilities to automate a substantial portion of the proof
process. Ynot further provides a handful of sophisticated
tactics which helped automatically dispatch tedious, re-
peatedly occurring proof obligations. We had to manu-
ally prove the cases which were not handled automati-
cally. While we have only shown the key kernel invari-
ant here, in the full implementation there are many ad-
ditional Hoare predicates for the intermediate goals be-
tween program points. We defer details of these predi-
cates and the manual proof process to [24], but discuss
proof effort in Section 6.

5.5 Security Properties
Our security properties are phrased as theorems about the
spec. We now prove that our spec implies these key secu-
rity properties, which we intend to hold in QUARK. Fig-
ure 7 shows these key theorems, which correspond pre-
cisely to the security properties outlined in Section 3.6.

State Integrity. The first security property,
kstate dep user, ensures that the kernel state only
changes in response to the user pressing a “control key”
(e.g. switching to the third tab by pressing F3). The
theorem establishes this property by showing its contra-
positive: if the kernel steps by responding with rsp to re-
quest req after trace tr and no “control keys” were read
from the user, then the kernel state remains unchanged
by this step. The function proj_user_control, not
shown here, simply projects from the trace all actions
of the form (Read c stdin) where c is a control key.
The function kernel_state, not shown here, just com-
putes the kernel state from a trace. We also prove that at
the beginning of any invocation to kloop in Figure 3, all
fields of s aside from tr are equal to the corresponding
field in (kernel_state s.tr).

Response Integrity. The second security property,
kresponse dep kstate, ensures that every kernel re-

10

USENIX Association 	 21st USENIX Security Symposium  123

Theorem kstate_dep_user:

forall tr req rsp,

step_correct tr req rsp ->

proj_user_control tr

= proj_user_control (rsp ++ req ++ tr) ->

kernel_state tr = kernel_state (rsp ++ req ++ tr).

Theorem kresponse_dep_kstate:

forall tr1 tr2 req rsp,

kernel_state tr1 = kernel_state tr2 ->

step_correct tr1 req rsp ->

step_correct tr2 req rsp.

Theorem tab_NI:

forall tr1 tr2 t req rsp1 rsp2,

tcorrect tr1 -> tcorrect tr2 ->

from_tab t req ->

(cur_tab tr1 = Some t <-> cur_tab tr2 = Some t) ->

step_correct tr1 req rsp1 ->

step_correct tr2 req rsp2 ->

rsp1 = rsp2 \/

(exists m, rsp1 = WroteCMsg (cproc_for t tr1) m /\

rsp2 = WroteCMsg (cproc_for t tr2) m).

Theorem no_xdom_sockets: forall tr t,

tcorrect tr ->

In (SendSocket t host s) tr ->

is_safe_soc host (domain_suffic t).

Theorem no_xdom_cookie_set: forall tr1 tr2 cproc,

tcorrect (tr1 ++ SetCookie key value cproc :: tr2) ->

exists tr t,

(tr2 = (SetCookieRequest t key value :: tr) /\

is_safe_cook (domain cproc) (domain_suffix t))

Theorem dom_bar_correct: forall tr,

tcorrect tr -> dom_bar tr = domain_suffix (cur_tab tr).

Figure 7: Kernel Security Properties. This Coq code shows how
traces allow us to formalize QUARK’s security properties.

sponse depends solely on the request and the kernel state.
This delineates which parts of a trace can affect the ker-
nel’s behavior: for a given request req, the kernel will
produce the same response rsp, for any two traces that
induce the same kernel state, even if the two traces have
completely different sets of requests/responses (recall
that the kernel state only includes the current tab and
the set of tabs, and most request responses don’t change
these). Since the kernel state depends only the user’s
control key inputs, this theorem immediately establishes
the fact that our browser will never allow one component
to influence how the kernel treats another component un-
less the user intervenes.

Note that kresponse dep kstate shows that the ker-
nel will produce the same response given the same re-
quest after any two traces that induce the same kernel
state. This may seem surprising since many of the ker-
nel’s operations produce nondeterministic results, e.g.,
there is no way to guarantee that two web fetches of the
same URL will produce the same document. However,
such nondeterminism is captured in the request, which

is consistent with our notion of requests as inputs and
responses as outputs.

Tab Non-Interference. The second security property,
tab NI, states that the kernel’s response to a tab is not
affected by any other tab. In particular, tab NI shows
that if in the context of a valid trace, tr1, the kernel
responds to a request req from tab t with rsp1, then
the kernel will respond to the same request req with an
equivalent response in the context of any other valid trace
tr2 which also contains tab t, irrespective of what other
tabs are present in tr2 or what actions they take. Note
that this property holds in particular for the case where
trace tr2 contains only tab t, which leads to the follow-
ing corollary: the kernel’s response to a tab will be the
same even if all other tabs did not exist

The formal statement of the theorem in Figure 7 is
made slightly more complicated because of two issues.
First, we must assume that the focused tab at the end of
tr1 (denoted by cur tab tr1) is t if and only if the
focused tab at the end of tr2 is also t. This additional
assumption is needed because the kernel responds differ-
ently based on whether a tab is focused or not. For exam-
ple, when the kernel receives a Display message from a
tab (indicating that the tab wants to display its rendered
page to the user), the kernel only forwards the message
to the output process if the tab is currently focused.

The second complication is that the communication
channel underlying the cookie process for t’s domain
may not be the same between tr1 and tr2. Thus, in
the case that kernel responds by forwarding a valid re-
quest from t to its cookie process, we guarantee that the
kernel sends the same payload to the cookie process cor-
responding to t’s domain.

Note that, unlike kresponse dep kstate, tab NI

does not require tr1 and tr2 to induce the same ker-
nel state. Instead, it merely requires the request req to
be from a tab t, and tr1 and tr2 to be valid traces that
both contain t (indeed, t must be on both traces other-
wise the step correct assumptions would not hold).
Other than these restrictions, tr1 and tr2 may be arbi-
trarily different. They could contain different tabs from
different domains, have different tabs focused, different
cookie processes, etc.

Response Integrity and Tab Non-Interference provide
different, complimentary guarantees. Response Integrity
ensures the response to any request req is only affected
by control keys and req, while Tab Non-Interference
guarantees that the response to a tab request does not leak
information to another tab. Note that Response Integrity
could still hold for a kernel which mistakenly sends re-
sponses to the wrong tab, but Tab Non-Interference pre-
vents this. Similarly, Tab Non-Interference could hold
for a kernel which allows a tab to affect how the kernel
responds to a cookie process, but Response Integrity pre-

11

124  21st USENIX Security Symposium	 USENIX Association

cludes such behavior.
It is also important to understand that tab NI proves

the absence of interference as caused by the kernel, not
by other components, such as the network or cookie pro-
cesses. In particular, it is still possible for two websites to
communicate with each other through the network, caus-
ing one tab to affect another tab’s view of the web. Sim-
ilarly, it is possible for one tab to set a cookie which is
read by another tab, which again causes a tab to affect an-
other one. For the cookie case, however, we have a sep-
arate theorem about cookie integrity and confidentiality
which states that cookie access control is done correctly.

Note that this property is an adaptation of the tra-
ditional non-interference property. In traditional non-
interference, the program has ”high” and ”low” inputs
and outputs; a program is non-interfering if high inputs
never affect low outputs. Intuitively, this constrains the
program to never reveal secret information to untrusted
principles.

We found that this traditional approach to non-
interference fits poorly with our trace-based verification
approach. In particular, because the browser is a non-
terminating, reactive program, the ”inputs” and ”out-
puts” are infinite streams of data.

Previous research [11] has adapted the notion of non-
interference to the setting of reactive programs like
browsers. They provide a formal definition of non-
interference in terms of possibly infinite input and out-
put streams. A program at a particular state is non-
interfering if it produces similar outputs from similar in-
puts. The notion of similarity is parameterized in their
definition; they explore several options and examine the
consequences of each definition for similarity.

Our tab non-interference theorem can be viewed in
terms of the definition from [11], where requests are “in-
puts” and responses are “outputs”; essentially, our the-
orem shows the inductive case for potentially infinite
streams. Adapting our definition to fit directly in the
framework from [11] is complicated by the fact that we
deal with a unified trace of input and output events in the
sequence they occur instead of having one trace of input
events and a separate trace of output events. In future
work, we hope to refine our notion of non-interference
to be between domains instead of tabs, and we believe
that applying the formalism from [11] will be useful in
achieving this goal. Unlike [11], we prove a version of
non-interference for a particular program, the QUARK
browser kernel, directly in Coq.

No Cross-domain Socket Creation. The third secu-
rity property, no xdom sockets, ensures that the ker-
nel never delivers a socket bound to domain d to a tab
whose domain does not match d. This involves check-
ing URL suffixes in a style very similar to the cookie
policy as discussed earlier. This property forces a tab to

Component Language Lines of code
Kernel Code Coq 859
Kernel Security Properties Coq 142
Kernel Proofs Coq 4,383
Kernel Primitive Specification Coq 143
Kernel Primitives Ocaml/C 538
Tab Process Python 229
Input Process Python 60
Output Process Python 83
Cookie Process Python 135
Python Message Lib Python 334
WebKit Modifications C 250
WebKit C/C++ 969,109

Figure 8: QUARK Components by Language and Size.

use GetURL when accessing websites that do not match
its domain suffix, thus restricting the tab to only access
publicly available data from other domains.

Cookie Integrity/Confidentiality. The fourth secu-
rity property states cookie integrity and confidentiality.
As an example of how cookies are processed, consider
the following trace when a cookie is set:

SetCookie key value cproc ::

SetCookieRequest tab key value :: ...

First, the SetCookieRequest action occurs, stat-
ing that a given tab just requested a cookie (in
fact, SetCookieRequest is just defined in terms of a
ReadMsg action of the appropriate message). The ker-
nel responds with a SetCookie action (defined in terms
of WroteMsg), which represents the fact that the kernel
sent the cookie to the cookie process cproc. The ker-
nel implementation is meant to find a cproc whose do-
main suffix corresponds to the tab. This requirement is
given in the theorem no xdom cookie set, which en-
codes cookie integrity. It requires that, within a correct
trace, if a cookie process is ever asked to set a cookie,
then it is in immediate response to a cookie set request
for the same exact cookie from a tab whose domain
matches that of the cookie process. There is a similar
theorem no xdom cookie get, not shown here, which
encodes cookie confidentiality.

Domain Bar Integrity and Correctness. The fifth
property states that the domain bar is equal to the domain
suffix of the currently selected tab, which encodes the
correctness of the address bar.

6 Evaluation

In this section we evaluate QUARK in terms of proof ef-
fort, trusted computing base, performance, and security.

Proof Effort and Component Sizes. QUARK com-
prises several components written in various languages;
we summarize their sizes in Figure 8. All Python com-
ponents share the “Python Message Lib” for messaging

12

USENIX Association 	 21st USENIX Security Symposium  125

with the kernel. Implementing QUARK took about 6 per-
son months, which includes several iterations redesign-
ing the kernel, proofs, and interfaces between compo-
nents. Formal shim verification saved substantial effort:
we guaranteed our security properties for a million lines
of code by reasoning just 859.

Trusted Computing Base. The trusted computing
base (TCB) consists of all system components we as-
sume to be correct. A bug in the TCB could invalidate
our security guarantees. QUARK’s TCB includes:

• Coq’s core calculus and type checker
• Our formal statement of the security properties
• Several primitives used in Ynot
• Several primitives unique to QUARK

• The Ocaml compiler and runtime
• The underlying Operating System kernel
• Our chroot sandbox

Because Coq exploits the Curry-Howard Isomor-
phism, its type checker is actually the “proof checker” we
have mentioned throughout the paper. We assume that
our formal statement of the security properties correctly
reflects how we understand them intuitively. We also as-
sume that the primitives from Ynot and those we added in
QUARK correctly implement the monadic type they are
axiomatically assigned. We trust the OCaml compiler
and runtime since our kernel is extracted from Coq and
run as an OCaml program. We also trust the operating
system kernel and our traditional chroot sandbox to pro-
vide process isolation, specifically, our design assumes
the sandboxing mechanism restricts tabs to only access
resources provided by the kernel, thus preventing com-
promised tabs from commuting over covert channels.

Our TCB does not include WebKit’s large code base or
the Python implementation. This is because a compro-
mised tab or cookie process can not affect the security
guarantees provided by kernel. Furthermore, the TCB
does not include the browser kernel code, since it has
been proved correct.

Ideally, QUARK will take advantage of previous for-
mally verified infrastructure to minimize its TCB. For
example, by running QUARK in seL4 [27], compiling
QUARK’s ML-like browser kernel with the MLCom-
pCert compiler [1], and sandboxing other QUARK com-
ponents with RockSalt [32], we could drastically reduce
our TCB by eliminating its largest components. In this
light, our work shows how to build yet another piece of
the puzzle (namely a verified browser) needed to for a
fully verified software stack. However, these other ver-
ified building blocks are themselves research prototypes
which, for now, makes them very difficult to stitch to-
gether as a foundation for a realistic browser.

0

1

2

3

4

5 not optimized + socket (same origin) + socket (whitelist) + cookie cache

Lo
ad

 T
im

e
(N

or
m

al
iz

ed
 to

 W
eb

Ki
t)

Figure 9: QUARK Performance. This graph shows QUARK load
times for the Alexa Top 10 Web sites, normalized to stock WebKit’s
load times. In each group, the leftmost bar shows the unoptimized load
time, the rightmost bar shows the load time in the final, optimized ver-
sion of QUARK, and intermediate bars show how additional optimiza-
tions improve performance. Smaller is better.

Performance. We evaluate our approach’s perfor-
mance impact by comparing QUARK’s load times to
stock WebKit. Figure 9 shows QUARK load times for
the top 10 Alexa Web sites, normalized to stock We-
bKit. QUARK’s overhead is due to factoring the browser
into distinct components which run in separate processes
and explicitly communicate through a formally verified
browser kernel.

By performing a few simple optimizations, the final
version of QUARK loads large, sophisticated websites
with only 24% overhead. This is a substantial improve-
ment over a naı̈ve implementation of our architecture,
shown by the left-most “not-optimized” bars in Figure 9.
Passing bound sockets to tabs, whitelisting content distri-
bution networks for major websites, and caching cookie
accesses, improves performance by 62% on average.

The WebKit baseline in Figure 9 is a full-featured
browser based on the Python bindings to WebKit. These
bindings are simply a thin layer around WebKit’s C/C++
implementation which provide easy access to key call-
backs. We measure 10 loads of each page and take the
average. Over all 10 sites, the average slowdown in load-
time is 24% (with a minimum of 5% for blogger and a
maximum of 42% for yahoo).

We also measured load-time for the previous version
of QUARK, just before rectangle-based rendering was
added. In this previous version, the average load-time
was only 12% versus 24% for the current version. The
increase in overhead is due to additional communica-
tion with the kernel during incremental rendering. De-
spite this additional overhead in load time, incremental
rendering is preferable because it allows QUARK to dis-
play content to the user as it becomes available instead
of waiting until an entire page is loaded.

Security Analysis. QUARK provides strong, formal
guarantees for security policies which are not fully com-
patible with traditional web security policies, but still

13

126  21st USENIX Security Symposium	 USENIX Association

provide some of the assurances popular web browsers
seek to provide.

For the policies we have not formally verified, QUARK
offers exactly the same level of traditional, unverified
enforcement WebKit provides. Thus, QUARK actually
provides security far beyond the handful policies we for-
mally verified. Below we discuss the gap between the
subset of policies we verified and the full set of common
browser security policies.

The same origin policy [37] (SOP) dictates which re-
sources a tab may access. For example, a tab is allowed
to load cross-domain images using an img tag, but not
using an XMLHttpRequest.

Unfortunately, we cannot easily verify this policy
since restricting how a resource may be used after it has
been loaded (e.g., in an img tag vs. as a JavaScript value)
requires reasoning across abstraction boundaries, i.e., an-
alyzing the large, complex tab implementation instead of
treating it as a black box.

The SOP also restricts how JavaScript running in dif-
ferent frames on the same page may access the DOM. We
could formally reason about this aspect of the SOP by
making frames the basic protection domains in QUARK
instead of tabs. To support this refined architecture,
frames would own a rectangle of screen real estate which
they could subdivide and delegate to sub-frames. Com-
munication between frames would be coordinated by the
kernel, which would allow us to formally guarantee that
all frame access to the DOM conforms with the SOP.

We only formally prove inter-domain cookie isolation.
Even this coarse guarantee prohibits a broad class of at-
tacks, e.g., it protects all Google cookies from any non-
Google tab. QUARK does enforce restrictions on cookie
access between subdomains; it just does so using WebKit
as unverified cookie handling code within our cookie
processes. Formally proving finer-grained cookie poli-
cies in Coq would be possible and would not require sig-
nificant changes to the kernel or proofs.

Unfortunately, Quark does not prevent all cookie exfil-
tration attacks. If a subframe is able to exploit the entire
tab, then it could steal the cookies of its top-level parent
tab, and leak the stolen cookies by encoding the informa-
tion within the URL parameter of GetURL requests. This
limitation arises because tabs are principles in Quark in-
stead of frames. This problem can be prevented by refin-
ing Quark so that frames themselves are the principles.

Our socket security policy prevents an important sub-
set of cross-site request forgery attacks [9]. Quark guar-
antees that a tab uses a GetURL message when request-
ing a resource from sites whose domain suffix doesn’t
match with the tab’s one. Because our implementa-
tion of GetURL does not send cookies, the resources re-
quested by a GetURL message are guaranteed to be pub-
licly available ones which do not trigger any privileged

actions on the server side. This guarantee prohibits a
large class of attacks, e.g., cross-site request forgery at-
tacks against Amazon domains from non-Amazon do-
mains. However, this policy cannot prevent cross-site
request forgery attacks against sites sharing the same
domain suffix with the tab, e.g., attacks from a tab on
www.ucsd.edu against cse.ucsd.edu since the tab on
www.ucsd.edu can directly connect to cse.ucsd.edu

using a socket and cookies on cse.ucsd.edu are also
available to the tab.

Compatibility Issues. QUARK enforces non-standard
security policies which break compatibility with some
web applications. For example, Mashups do not work
properly because a tab can only access cookies for its
domain and subdomains, e.g., a subframe in a tab can-
not properly access any page that needs user creden-
tials identified by cookies if the subframe’s domain suf-
fix does not match with the tab’s one. This limitation
arises because tabs are the principles of Quark as op-
posed to subframes inside tabs. Unfortunately, tabs are
too coarse grained to properly support mashups and re-
tain our strong guarantees.

For the same reason as above, Quark cannot currently
support third-party cookies. It is worth noting that third-
party cookies have been considered a privacy-violating
feature of the web, and there are even popular browser
extensions to suppress them. However, many websites
depend on third party cookies for full functionality, and
our current Quark browser does not allow such cookies
since they would violate our non-interference guarantees.

Finally, Quark does not support communications like
“postMessage” between tabs; again, this would violate
our tab non-interference guarantees.

Despite these incompatibilities, Quark works well on a
variety of important sites such as Google Maps, Amazon,
and Facebook since they mostly comply with Quarks’
security policies. More importantly, our hope is that in
the future Quark will provide a foundation to explore all
of the above features within a formally verified setting.

In particular, adding the above features will require fu-
ture work in two broad directions. First, frames need
to become the principles in Quark instead of tabs. This
change will require the kernel to support parent frames
delegating resources like screen region to child frames.
Second, finer grained policies will be required to retain
appropriate non-interference results in the face of these
new features, e.g. to support interaction between tabs
via ”postMessage”. Together, these changes would pro-
vide a form of ”controlled” interference, where frames
are allowed to communicate directly, but only in a sanc-
tioned manner. Even more aggressively, one may attempt
to re-implement other research prototypes like Mashu-
pOS [19] within Quark, going beyond the web standards
of today, and prove properties of its implementation.

14

USENIX Association 	 21st USENIX Security Symposium  127

There are also several other features that Quark does
not currently support, and would be useful to add, includ-
ing local storage, file upload, browser cache, browser his-
tory, etc. However, we believe that these are not funda-
mental limitations of our approach or Quark’s current de-
sign. Indeed, most of these features don’t involve inter-
tab communication. For the cases where they do (for ex-
ample history information is passed between tabs if vis-
ited links are to be correctly rendered), one would again
have to refine the non-interference definition and theo-
rems to allow for controlled flow of information.

7 Discussion

In this section we discuss lessons learned while develop-
ing QUARK and verifying its kernel in Coq. In hindsight,
these guidelines could have substantially eased our ef-
forts. We hope they prove useful for future endeavors.

Formal Shim Verification. Our most essential tech-
nique was formal shim verification. For us, it reduced
the verification burden to proving a small browser kernel.
Previous browsers like Chrome, OP, and Gazelle clearly
demonstrate the value of kernel-based architectures. OP
further shows how this approach enables reasoning about
a model of the browser. We take the next step and for-
mally prove the actual browser implementation correct.

Modularity through Trace-based Specification. We
ultimately specified correct browser behavior in terms
of traces and proved both that (1) the implementation
satisfies the spec and (2) the spec implies our secu-
rity properties. Splitting our verification into these two
phases improved modularity by separating concerns. The
first proof phase reasons using monads in Ynot to show
that the trace-based specification correctly abstracts the
implementation. The second proof phase is no longer
bound to reasoning in terms of monads – it only needs to
reason about traces, substantially simplifying proofs.

This modularity aided us late in development
when we proved address bar correctness (Theorem
dom_bar_correct in Figure 7). To prove this theorem,
we only had to reason about the trace-based specifica-
tion, not the implementation. As a result, the proof of
dom_bar_correct was only about 300 lines of code,
tiny in comparison to the total proof effort. Thus, prov-
ing additional properties can be done with relatively little
effort over the trace-based specification, without having
to reason about monads or other implementation details.

Implement Non-verified Prototype First. Another
approach we found effective was to write a non-verified
version of the kernel code before verifying it. This al-
lowed us to carefully design and debug the interfaces be-
tween components and to enable the right browsing func-
tionality before starting the verification task.

Iterative Development. After failing to build and ver-

ify the browser in a single shot, we found that an itera-
tive approach was much more effective. We started with
a text-based browser, where the tab used lynx to gener-
ate a text-based version of QUARK. We then evolved this
browser into a GUI-based version based on WebKit, but
with no sockets or cookies. Then we added sockets and
finally cookies. When combined with our philosophy of
“write the non-verified version first”, this meant that we
kept a working version of the kernel written in Python
throughout the various iterations. Just for comparison,
the Python kernel which is equivalent to the Coq version
listed in Figure 8 is 305 lines of code.

Favor Ease of Reasoning. When forced to choose be-
tween adding complexity to the browser kernel or to the
untrusted tab implementation, it was always better keep
the kernel as simple as possible. This helped manage the
verification burden which was the ultimate bottleneck in
developing QUARK. Similarly, when faced with a choice
between flexibility/extensibility of code and ease of rea-
soning, we found it best to aim for ease of reasoning.

8 Conclusions

In this paper, we demonstrated how formal shim verifica-
tion can be used to achieve strong security guarantees for
a modern Web browser using a mechanical proof assis-
tant. We formally proved that our browser provides tab
noninterference, cookie integrity and confidentiality, and
address bar integrity and correctness. We detailed our
design and verification techniques and showed that the
resulting browser, QUARK, provides a modern browsing
experience with performance comparable to the default
WebKit browser. For future research, QUARK furnishes
a framework to easily experiment with additional web
policies without re-engineering an entire browser or for-
malizing all the details of its behavior from scratch.

9 Acknowledgments

We thank Kirill Levchenko for many fruitful conversa-
tions regarding shim verification. We would also like to
thank our shepherd, Anupam Datta, and the anonymous
reviewers for helping us improve our paper.

References
[1] http://gallium.inria.fr/~dargaye/mlcompcert.html.

[2] Chrome security hall of fame. http://dev.chromium.org/

Home/chromium-security/hall-of-fame.

[3] Public suffix list. http://publicsuffix.org/.

[4] Pwn2own. http://en.wikipedia.org/wiki/Pwn2Own.

[5] AKHAWE, D., BARTH, A., LAMY, P. E., MITCHELL, J., AND
SONG, D. Towards a formal foundation of web security. In
Proceedings of CSF 2010 (July 2010), M. Backes and A. Myers,
Eds., IEEE Computer Society, pp. 290–304.

15

128  21st USENIX Security Symposium	 USENIX Association

[6] ANSEL, J., MARCHENKO, P., ERLINGSSON, Ú., TAYLOR, E.,
CHEN, B., SCHUFF, D. L., SEHR, D., BIFFLE, C., AND YEE,
B. Language-independent sandboxing of just-in-time compila-
tion and self-modifying code. In PLDI (2011), pp. 355–366.

[7] BALL, T., MAJUMDAR, R., MILLSTEIN, T., AND RAJAMANI,
S. K. Automatic predicate abstraction of C programs. In Pro-
ceedings of the ACM SIGPLAN 2001 Conference on Program-
ming Language Design and Implementation (Snowbird, Utah,
June 2001).

[8] BARTH, A., JACKSON, C., AND MITCHELL, J. C. Robust de-
fenses for cross-site request forgery. In ACM Conference on Com-
puter and Communications Security (2008), pp. 75–88.

[9] BARTH, A., JACKSON, C., AND MITCHELL, J. C. Robust de-
fenses for cross-site request forgery. In To appear at the 15th
ACM Conference on Computer and Communications Security
(CCS 2008) (2008).

[10] BARTH, A., JACKSON, C., REIS, C., AND THE GOOGLE
CHROME TEAM. The security architecture of the Chromium
browser. Tech. rep., Google, 2008.

[11] BOHANNON, A., PIERCE, B. C., SJÖBERG, V., WEIRICH, S.,
AND ZDANCEWIC, S. Reactive noninterference. In Proceedings
of the 16th ACM conference on Computer and communications
security (2009).

[12] CHEN, E. Y., BAU, J., REIS, C., BARTH, A., AND JACKSON,
C. App isolation: get the security of multiple browsers with just
one. In Proceedings of the 18th ACM conference on Computer
and communications security (2011).

[13] CHEN, S., MESEGUER, J., SASSE, R., WANG, H. J., AND MIN
WANG, Y. A systematic approach to uncover security flaws in
GUI logic. In IEEE Symposium on Security and Privacy (2007).

[14] CHUGH, R., MEISTER, J. A., JHALA, R., AND LERNER, S.
Staged information flow for javascript. In PLDI (2009).

[15] COOK, B., PODELSKI, A., AND RYBALCHENKO, A. Termina-
tor: Beyond safety. In CAV (2006).

[16] DAS, M., LERNER, S., AND SEIGLE, M. ESP: Path-sensitive
program verification in polynomial time. In PLDI (2002).

[17] GRIER, C., TANG, S., AND KING, S. T. Secure web browsing
with the OP web browser. In IEEE Symposium on Security and
Privacy (2008).

[18] HENZINGER, T. A., JHALA, R., MAJUMDAR, R., AND SUTRE,
G. Lazy abstraction. In POPL (2002).

[19] HOWELL, J., JACKSON, C., WANG, H. J., AND FAN, X.
MashupOS: operating system abstractions for client mashups. In
HotOS (2007).

[20] HUANG, L.-S., WEINBERG, Z., EVANS, C., AND JACKSON,
C. Protecting browsers from cross-origin css attacks. In ACM
Conference on Computer and Communications Security (2010),
pp. 619–629.

[21] JACKSON, C., AND BARTH, A. Beware of finer-grained origins.
In In Web 2.0 Security and Privacy (W2SP 2008) (May 2008).

[22] JACKSON, C., BARTH, A., BORTZ, A., SHAO, W., AND
BONEH, D. Protecting browsers from dns rebinding attacks.
In ACM Conference on Computer and Communications Security
(2007), pp. 421–431.

[23] JANG, D., JHALA, R., LERNER, S., AND SHACHAM, H. An em-
pirical study of privacy-violating information flows in JavaScript
Web applications. In Proceedings of the ACM Conference Com-
puter and Communications Security (CCS) (2010).

[24] JANG, D., TATLOCK, Z., AND LERNER, S. Establishing browser
security guarantees through formal shim verification. Tech. rep.,
UC San Diego, 2012.

[25] JANG, D., VENKATARAMAN, A., SAWKA, G. M., AND
SHACHAM, H. Analyzing the cross-domain policies of flash ap-
plications. In In Web 2.0 Security and Privacy (W2SP 2011) (May
2011).

[26] JIM, T., SWAMY, N., AND HICKS, M. Defeating script injec-
tion attacks with browser-enforced embedded policies. In WWW
(2007), pp. 601–610.

[27] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,
COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,
KOLANSKI, R., NORRISH, M., SEWELL, T., TUCH, H., AND
WINWOOD, S. seL4: formal verification of an OS kernel. In
SOSP (2009).

[28] LEROY, X. Formal certification of a compiler back-end, or: pro-
gramming a compiler with a proof assistant. In PLDI (2006).

[29] MALECHA, G., MORRISETT, G., SHINNAR, A., AND WIS-
NESKY, R. Toward a verified relational database management
system. In POPL (2010).

[30] MALECHA, G., MORRISETT, G., AND WISNESKY, R. Trace-
based verification of imperative programs with I/O. J. Symb.
Comput. 46 (February 2011), 95–118.

[31] MICKENS, J., AND DHAWAN, M. Atlantis: robust, extensible
execution environments for web applications. In SOSP (2011),
pp. 217–231.

[32] MORRISETT, G., TAN, G., TASSAROTTI, J., TRISTAN, J.-B.,
AND GAN, E. Rocksalt: Better, faster, stronger sfi for the x86. In
PLDI (2012).

[33] NANEVSKI, A., MORRISETT, G., AND BIRKEDAL, L. Poly-
morphism and separation in Hoare type theory. In ICFP (2006).

[34] NANEVSKI, A., MORRISETT, G., SHINNAR, A., GOVEREAU,
P., AND BIRKEDAL, L. Ynot: Dependent types for imperative
programs. In ICFP (2008).

[35] PROVOS, N., FRIEDL, M., AND HONEYMAN, P. Preventing
privilege escalation. In Proceedings of the 12th conference on
USENIX Security Symposium - Volume 12 (2003), USENIX As-
sociation.

[36] RATANAWORABHAN, P., LIVSHITS, V. B., AND ZORN, B. G.
Nozzle: A defense against heap-spraying code injection attacks.
In USENIX Security Symposium (2009), pp. 169–186.

[37] RUDERMAN, J. The same origin policy, 2001.
http://www.mozilla.org/projects/security/ components/same-
origin.html.

[38] SAXENA, P., AKHAWE, D., HANNA, S., MAO, F., MCCA-
MANT, S., AND SONG, D. A symbolic execution framework for
javascript. In IEEE Symposium on Security and Privacy (2010),
pp. 513–528.

[39] SINGH, K., MOSHCHUK, A., WANG, H. J., AND LEE, W. On
the incoherencies in web browser access control policies. In IEEE
Symposium on Security and Privacy (2010), pp. 463–478.

[40] STAMM, S., STERNE, B., AND MARKHAM, G. Reining in the
web with content security policy. In Proceedings of the 19th in-
ternational conference on World wide web (2010), WWW ’10,
pp. 921–930.

[41] TANG, S., MAI, H., AND KING, S. T. Trust and protection in the
illinois browser operating system. In OSDI (2010), pp. 17–32.

[42] WANG, H. J., GRIER, C., MOSHCHUK, A., KING, S. T.,
CHOUDHURY, P., AND VENTER, H. The multi-principal OS
construction of the gazelle web browser. Tech. Rep. MSR-TR-
2009-16, MSR, 2009.

[43] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Finding and
understanding bugs in C compilers. In PLDI (2011).

[44] YU, D., CHANDER, A., ISLAM, N., AND SERIKOV, I.
Javascript instrumentation for browser security. In POPL (2007),
pp. 237–249.

16

USENIX Association 	 21st USENIX Security Symposium  129

Neuroscience Meets Cryptography:
Designing Crypto Primitives Secure Against Rubber Hose Attacks

Hristo Bojinov Daniel Sanchez, Paul Reber Dan Boneh Patrick Lincoln
Stanford University Northwestern University Stanford University SRI

Abstract
Cryptographic systems often rely on the secrecy of cryp-
tographic keys given to users. Many schemes, however,
cannot resist coercion attacks where the user is forcibly
asked by an attacker to reveal the key. These attacks,
known as rubber hose cryptanalysis, are often the easiest
way to defeat cryptography. We present a defense against
coercion attacks using the concept of implicit learning
from cognitive psychology. Implicit learning refers to
learning of patterns without any conscious knowledge of
the learned pattern. We use a carefully crafted computer
game to plant a secret password in the participant’s brain
without the participant having any conscious knowledge
of the trained password. While the planted secret can
be used for authentication, the participant cannot be co-
erced into revealing it since he or she has no conscious
knowledge of it. We performed a number of user studies
using Amazon’s Mechanical Turk to verify that partici-
pants can successfully re-authenticate over time and that
they are unable to reconstruct or even recognize short
fragments of the planted secret.

1 Introduction

Consider the following scenario: a high security facility
employs a sophisticated authentication system to check
that only persons who know a secret key, possess a hard-
ware token, and have an authorized biometric can enter.
Guards ensure that only people who successfully authen-
ticate can enter the facility. Now, suppose a clever at-
tacker captures an authenticated user. The attacker can
steal the user’s hardware token, fake the user’s biomet-
rics, and coerce the victim into revealing his or her secret
key. At this point the attacker can impersonate the victim
and defeat the expensive authentication system deployed
at the facility.

So-called rubber hose attacks have long been the bane
of security systems and are often the easiest way to de-

feat cryptography [22]. The problem is that an authen-
ticated user must possess authentication credentials and
these credentials can be extracted by force [19] or by
other means.

In this work we present a new approach to preventing
rubber hose attacks using the concept of implicit learn-
ing [5, 17] from cognitive psychology. Implicit learn-
ing is believed to involve the part of the brain called the
basal ganglia that learns tasks such as riding a bicycle or
playing golf by repeatedly performing those tasks. Ex-
periments designed to trigger implicit learning show that
knowledge learned this way is not consciously accessible
to the person being trained [17]. An everyday example
of this phenomenon is riding a bicycle: we know how to
ride a bicycle, but cannot explain how we do it. Section 2
gives more background of the relevant neuroscience.

Implicit learning presents a fascinating tool for design-
ing coercion-resistant security systems. In this paper we
focus on user authentication where implicit learning is
used to plant a password in the human brain that can be
detected during authentication, but cannot be explicitly
described by the user. Such a system avoids the problem
that people can be persuaded to reveal their password.
To use this system, participants would be initially trained
to do a specific task called Serial Interception Sequence
Learning (SISL), described in the next section. Training
is done using a computer game that results in implicit
learning of a specific sequence of key strokes that func-
tions as an authentication password. In our experiments,
training sessions last approximately 30 to 45 minutes and
participants learn a random password that has about 38
bits of entropy. We conducted experiments to show that
after training, participants cannot reconstruct the trained
sequence and cannot even recognize short fragments of
it.

To be authenticated at a later time, a participant is pre-
sented with multiple SISL tasks where one of the tasks
contains elements from the trained sequence. By ex-
hibiting reliably better performance on the trained ele-

1

130  21st USENIX Security Symposium	 USENIX Association

ments compared to untrained, the participant validates
his or her identity within 5 to 6 minutes. An attacker
who does not know the trained sequence cannot exhibit
the user’s performance characteristics measured at the
end of training. Note that the authentication procedure
is an interactive game in which the server knows the
participant’s secret training sequence and uses it to au-
thenticate the participant. Readers who want to play
with the system can check out the training game at
brainauth.com/testdrive.

While in this paper we focus on coercion-resistant
user authentication systems, authentication is just the tip
of the iceberg. We expect that many other coercion-
resistant security primitives can be designed using im-
plicit learning.

Threat model. The proposed system is designed to be
used as a local password mechanism requiring physical
presence. That is, we consider authentication at the en-
trance to a secure location where a guard can ensure that
a real person is taking the test without the aid of any elec-
tronics.

To fool the authentication test the adversary is allowed
to intercept one or more trained users and get them to re-
veal as much as they can, possibly using coercion. Then
the adversary, on his own, engages in the live authentica-
tion test and his goal is to pass the test.

We stress that as with standard password authentica-
tion, the system is not designed to resist eavesdropping
attacks such as shoulder surfing during the authentica-
tion process. While challenge-response protocols are a
standard defense against eavesdropping, it is currently
an open problem to design a challenge-response proto-
col based on implicit learning. We come back to this
question at the end of the paper.

Benefits over biometric authentication. The trained
secret sequence can be thought of as a biometric key
authenticating the trained participant. However, unlike
biometric keys the authenticating information cannot be
surreptitiously duplicated and participants cannot reveal
the trained secret even if they want to. In addition, if
the trained sequence is compromised, a new identifying
sequence can be trained as a replacement, resulting in a
change of password.

We discuss other related work in Section 6, but briefly
mention here a related result of Denning et al. [4] that
uses images to train users to implicitly memorize pass-
words. This approach is not as resistant to rubber hose
attacks since users will remember images they have seen
versus ones they have not, giving an attacker informa-
tion that can be used for authentication. Additionally,
image-based methods require large sets of images to be
prepared and used only once per user making the system
difficult to deploy. Our combinatorial approach lets us

lower bound the entropy of the learned secrets, is simple
to set up, and is designed to leave no conscious trace of
the trained sequences.

User studies. To validate our proposal we performed
a number of user studies using Amazon’s Mechanical
Turk. We asked the following core questions that explore
the feasibility of authentication via implicit learning:

• Is individual identification reliable? That is, can
trained users re-authenticate and can they do it over
time?

• Can an attacker reverse engineer the sequence from
easily obtained performance data from a trained par-
ticipant?

Across three experiments, we present promising initial
results supporting the practical implementation of our
design. First, we show that identification is possible
with relatively short training and a simple test. Second,
the information learned by the user persists over delays
of one and two weeks: while there is some forgetting
over a week, there is little additional forgetting at two
weeks suggesting a long (exponentially shaped) forget-
ting curve. Finally, in a third experiment we examined an
attack based on having participants complete sequences
containing all minimal-length fragments needed to try to
reconstruct the identification sequence: our results show
that participants do not express reliable sequence knowl-
edge under this condition, indicating that the underlying
sequence information is resistant to attack until longer
subsequences are guessed correctly by the attacker.

2 An Overview of the Human Memory
System

The difference between knowing how to perform a well-
learned skill and being able to explain that performance
is familiar to anyone who has acquired skilled expertise.
This dissociation reflects the multiple memory systems
in the human brain [14]. Memory for verbally reportable
facts, events and episodes depends on the medial tem-
poral lobe memory system (including the hippocampus).
Damage to this system due to stroke, Alzheimer’s dis-
ease neuropathology, or aging leads to impairments in
conscious, explicit memory. However, patients with im-
pairments to explicit memory often show an intact abil-
ity to acquire new information implicitly, including ex-
hibiting normal learning of several kinds of skills. The
types of learning preserved in memory-disordered pa-
tients are those learned incidentally through practice:
even in healthy participants the information thus ac-
quired cannot be easily verbally described.

Several decades of experimental cognitive psychology
have led to the development of tasks that selectively de-

2

USENIX Association 	 21st USENIX Security Symposium  131

pend on this type of implicit, non-conscious learning sys-
tem. These tasks typically present information covertly
with embedded structure in a set of experimental stim-
uli. Although participants are not attempting to learn this
structure, evidence for learning can be observed in their
performance.

The covertly embedded information often takes the
form of a statistical structure to a sequence of responses.
Participants exhibit improved performance when the re-
sponses follow this sequence and performance declines
if the structure is changed [12]. The improvement in
performance can occur completely outside of awareness,
that is, participants do not realize there is any structure
nor can they recognize the structure when shown [17].
The lack of awareness of learning indicates the mem-
ory system supporting learning is not part of the explicit,
declarative memory system and instead is hypothesized
to depend on the basal ganglia and connections to motor
cortical areas [6].

Less is known about the information processing char-
acteristics of the cortico-striatal memory system oper-
ating in the connections between the basal ganglia and
motor cortical areas. Most prior research has examined
learning of simple structures with small amounts of in-
formation, typically repeating sequences of actions 10-
12 items in length. However, more recent studies have
found that long, complex sequences can be learned fairly
rapidly by this memory system and that learning is rela-
tively unaffected by noise [18]. The ability to learn re-
peating sequences that are at least 80 items long rela-
tively rapidly and the fact that this training can be hid-
den within irrelevant responses (noise) during training
suggests an intriguing possibility for covertly embedding
non-reportable cryptographic data within the cortico-
striatal memory system in the human brain.

2.1 The SISL Task and Applet

The execution of the Serial Interception Sequence Learn-
ing (SISL) task is central to the authentication system
that we have developed. Here we introduce the SISL task
in the context of the human memory system in order to
provide background for describing our design and prac-
tical experiments.

Originally introduced in [17], SISL is a task in
which human participants develop sensitivity to struc-
tured information without being aware of what they have
learned. The task requires participants to intercept mov-
ing objects (circles) delivered in a pre-determined se-
quence, much like this is done in the popular game “Gui-
tar Hero”. Initially each object appears at the top of one
of four different columns, and falls vertically at a con-
stant speed until it reaches the “sink” at the bottom, at
which point it disappears. The goal for the player is to

intercept every object as it nears the sink. Interception
is performed by pressing the key that corresponds to the
object’s column when the object is in the correct verti-
cal position. Pressing the wrong key or not pressing any
key results in an incorrect outcome for that object. In
a typical training session of 30-60 minutes, participants
complete several thousand trials and the order of the cues
follows a covertly embedded repeating sequence on 80%
of trials. The game is designed to keep each user at (but
not beyond) the limit of his or her abilities by gradually
varying the speed of the falling circles to achieve a hit
rate of about 70%. Knowledge of the embedded repeat-
ing sequence is assessed by comparing the performance
rate (percent correct) during times when the cues follow
the trained sequence to that during periods when the cues
follow an untrained sequence.

All of the sequences presented to the user are de-
signed to prevent conspicuous, easy to remember pat-
terns from emerging. Specifically, training as well as
random sequences are designed to contain every ordered
pair of characters exactly once with no character appear-
ing twice in a row, and thus the sequence length must
be 4× 3 = 12 when four columns (characters) are used.
The result is that while the trained sequence is performed
better than an untrained sequence, the participant usually
does not consciously recognize the trained sequence. In
order to confirm this in experimental work, after SISL
participants are typically asked to complete tests of ex-
plicit recognition in which they specify how familiar var-
ious sequences look to them.

Figure 1: Screenshot of the SISL task in progress.

For the current application, we extended the traditional
definition of the SISL task in order to accommodate its
use as an authentication mechanism. First, we increased
the number of columns to six, which increases the poten-
tial complexity of the trained sequence. Using the same
constraints on sequence order as the 4-column version of
the task, the training sequences are 30 items long. As a
result, the number of possible sequences that can be used

3

132  21st USENIX Security Symposium	 USENIX Association

as a secret key is increased exponentially from only 256
to nearly 248 billion, as explained in the next section.
Second, we added an empty column in the middle of the
layout (Figure 1). In early experimental testing we found
out that the empty column facilitates the visual percep-
tion of the falling objects and helps the user to “map”
them to the correct hand, especially for objects in the
middle columns which are otherwise easily confused at
high speed.

The SISL task is delivered to users as a Flash appli-
cation via a web browser. Participants navigate to our
web site, www.brainauth.com, and are presented with a
consent form. Once they agree to participate, the ap-
plet downloads a random training sequence and starts the
game. Upon completion of the training and test trials, the
explicit recognition test is administered, and results are
uploaded to the server. Once we describe our authenti-
cation system, we will return to describe how the SISL
applet functions in the bigger scheme of our experiments
with multiple users.

3 The Basic Authentication System Using
Implicit Learning

The SISL task provides a method for storing a secret key
within the human brain that can be detected during au-
thentication, but cannot be explicitly described by the
user. Such a system avoids the problem that people can
be persuaded to reveal their password and can form the
basis of a coercion-resistant authentication protocol. If
the information is compromised, a new identifying se-
quence can be trained as a replacement—resulting in a
change of password.

The identification system operates in two steps: train-
ing followed by authentication. In the training phase, the
secret key learned by the user is as in the expanded SISL
task, namely a sequence of 30 characters over the set
S = {s,d, f , j,k, l}. We only use 30-character sequences
that correspond to an Euler cycle in the graph shown in
Figure 2 (i.e. a cycle where every edge appears exactly
once). These sequences have the property that every non-
repeating bigram over S (such as ‘sd’, ‘dj’, ’fk’) appears
exactly once. In order to anticipate the next item (e.g., to
show a performance advantage), it is necessary to learn
associations among groups of three or more items. This
eliminates learning of letter frequencies or common pairs
of letters, which reduces conscious recognition of the
embedded repeating sequence [5].

Let Σ denote the set of all possible secret keys, namely
the set of 30-character sequences corresponding to Eu-
ler cycles in Figure 2. The number of Euler cycles in
this graph can be computed using the BEST theorem [20]

Figure 2: The secret key we generate is a random 30-
character sequence from the set of Euler cycles in this
directed graph. The resulting sequence contains all bi-
grams exactly once, excluding repeating characters.

which gives

#keys = 64 ·246 ≈ 237.8 .

Hence the learned random secret has about 38 bits of
entropy which is far more than the entropy of standard
memorized passwords.

Training. Users learn a random 30-item secret key k ∈ Σ
by playing the SISL game in a trusted environment. To
train users we experimented with the following proce-
dure:

• While performing the SISL task the trainee is pre-
sented with the 30-item secret key sequence re-
peated three times followed by 18 items selected
from a random other sequence (subject to the con-
straint that there will be no back-to-back repetitions
of the same cue), for a total of 108 items.

• This sequence is repeated five times, so that the
trainee is presented with a total of 540 items.

• At the end of this sequence there is a short pause in
the SISL game and then the entire sequence of 540
items (including the pause at the end) is repeated six
more times.

During the entire training session the trainee is presented
with 7× 540 = 3780 items which takes approximately
30-45 minutes to complete. After the training phase
completes, the trainee runs through the authentication
test described next to ensure that training succeeded.
The system records the final playing speed that the user
achieved.

4

USENIX Association 	 21st USENIX Security Symposium  133

SISL Authentication. To authenticate at a later time, a
trained user is presented with the SISL game where the
structure of the cues contains elements from the trained
authentication sequence and untrained elements for com-
parison. By exhibiting reliably better performance on
the trained elements compared to untrained, the partic-
ipant validates his or her identity. Specifically we exper-
imented with the following authentication procedure:

• Let k0 be the trained 30-item sequence and let k1,k2
be two additional 30-item sequences chosen at ran-
dom from Σ. The same sequences (k0,k1,k2) are
used for all authentication sessions.

• The system chooses a random permutation π
of (0,1,2,0,1,2) (e.g., π = (2,1,0,0,2,1)) and
presents the user with a SISL game with the fol-
lowing sequence of 540 = 18×30 items:

kπ1 ,kπ1 ,kπ1 , . . . ,kπ6 ,kπ6 ,kπ6 .

That is, each of k0,k1,k2 is shown to the user ex-
actly six times (two groups of three repetitions), but
ordering is random. The game begins at the speed
at which the training for that user ended.

• For i = 0,1,2 let pi be the fraction of correct keys
the user entered during all plays of the sequence ki.
The system declares that authentication succeeded
if

p0 > average(p1, p2)+σ (3.1)

Where σ > 0 is sufficiently large to minimize the
possibility that this gap occurred by chance, but
without causing authentication failures.

In the above, preliminary formulation, the authenti-
cation process is potentially vulnerable to an attack by
which an untrained user degrades his performance across
two blocks hoping to exhibit an artificial performance
difference in favor of the trained sequence (and obtain-
ing a 1/3 chance of passing authentication). We discuss
a robust defense against this in Section 5, but for now
we mention that two simple precautions offer some pro-
tection, even for this simple assessment procedure. First,
verifying that the authenticator is a live human makes it
difficult to consistently change performance across the
foil blocks k1,k2. Second, the final training speed ob-
tained during acquisition of the sequence is known to
the authentication server and the attacker is unlikely to
match that performance difference between the trained
and foil blocks. A performance gap that is substantially
different from the one obtained after training indicates an
attack.

Analysis. The next two sections discuss two critical as-
pects of this system:

• Usability: can a trained user complete the authenti-
cation task reliably over time?

• Security: can an attacker who intercepts a trained
user coerce enough information out of the user to
properly authenticate?

4 Usability Experiments

We report on preliminary experiments that demonstrate
feasibility and promise of the SISL authentication sys-
tem. We carried out the experiments in three stages.
First, we established that reliable learning was observed
with the new expanded version of the SISL task using
Mechanical Turk. Second, we verified that users retain
the knowledge of the trained sequence after delays of one
and two weeks. Finally, we investigated the effectiveness
of an attack on participants’ sequence knowledge based
on sampling the smallest fragments from which the orig-
inal sequence could potentially be reconstructed.

The experiments were carried out online within Ama-
zon’s Mechanical Turk platform. The advantages of Me-
chanical Turk involve a practically unlimited base of par-
ticipants, and a relatively low cost. One drawback of run-
ning the experiments online is the relative lack of control
we had over users coming back at a later time for repeat
evaluations. We discuss all of these considerations to-
wards the end of the section.

4.1 Experiment 1: Implicit and Explicit
Learning

Our first experiment confirmed that implicit learning can
be clearly detected while explicit conscious sequence
knowledge was minimal. Experimental data from 35 par-
ticipants were included in the analysis.

The experiment used the training procedure described
in the previous section where the training phase con-
tained 3780 total trials and took approximately 30-45
minutes to complete. Recall that training consists of
seven 540-trial training blocks. After the training ses-
sion, participants completed a SISL authentication test
that compares performance on the trained sequence to
performance on two random test sequences.

Learning of the trained sequence is shown in Figure 3
as a function of the performance advantage (increase in
percent correct responses) for the trained sequence com-
pared with the randomly occurring noise segments. On
the test block following training, participants performed
the SISL task at an average rate of 79.2% correct for
the trained sequence and 70.6% correct for the untrained
sequence. The difference of 8.6% correct (SE 2.4%)1

1SE is short hand for Standard Error.

5

134  21st USENIX Security Symposium	 USENIX Association

Figure 3: Across training participants gradually begin
to express knowledge of the repeating sequence by ex-
hibiting a performance advantage for the trained se-
quence compared to randomly interspersed noise seg-
ments. Note that overall performance on the task stays
at around 70% throughout due to the adaptive nature of
the task by which the speed is increased as participants
become better at general SISL performance.

indicated reliably better performance for the trained se-
quence. By one-sample t-test versus zero, the expected
difference between trained and untrained if there was no
learning2 would be t(34) = 3.55, p < .01.

Group-level differences in performance are commonly
seen on tests of implicit learning, but being able to reli-
ably assess individual learning is necessary for an au-
thentication method. On an individual participant ba-
sis, performance on the trained sequence could be dis-
criminated from the untrained sequence on the 540 test
trials (by chi-squared analysis at p < .05) in 25 of 35
cases. For authentication purposes, the individual relia-
bility of the assessment will need to be further improved
by longer training to establish the implicitly learned se-
quence. However, the ability to identify learning in a
large fraction of individuals with relatively short train-
ing is a feature of the SISL task not seen in most tests of
implicit learning.

Explicit recognition test. After the training and test
blocks, participants were presented with five different an-
imated sequences and asked how familiar each looked on
a scale of 0 to 10). Of the five sequences, one was the
trained sequence and the other four were randomly se-
lected foils. This test assessed explicit recognition mem-
ory for the trained sequence.

On the recognition test, participants rated the trained

2In other words, if the percent correct measurements for trained
and untrained sequences followed the same normal distribution, the t-
value calculated with N = 35 samples (and thus N − 1 = 34 degrees
of freedom), should be near zero—less than 3.55 with 99% probability
(p = 0.01); in contrast, the value we obtained was 8.6. The t-test is a
standard statistical method used to confirm that the manipulated vari-
able (here, sequence type) affects the measured variable (performance
correct).

sequence as familiar at an average of 6.5 (SE 0.4) on the
0-10 scale and rated novel untrained sequences at 5.15
(SE 0.3). The modestly higher recognition of the trained
sequence was reliable across the group, t(34) = 3.69,
p < .01, but did not correlate with SISL performance
(r = 0.13) indicating that it did not contribute to the im-
plicit test. Slightly higher recognition of the trained se-
quence is often seen in implicit learning experiments as
healthy participants find some parts of the training se-
quence familiar after practice. It is worth noting that
implicit memory does not transform into explicit knowl-
edge, even with repeated use, and the structure and length
of the training and test sequences specifically aim to re-
duce the possibility that explicit knowledge is accumu-
lated over time.

The general small difference in recognition ratings
(5.15 vs. 6.5) indicates that participants would not be
able to recall the 30-item sequence meaning that they
could not consciously produce the training information
(e.g. to compromise the security of the authentication
method). One participant remarked in a follow-up email
message:

“... To be honest I was not that sure of the quizzes
at the end. When I played the tempo was so high it
was incredibly difficult to keep a track of the circles.
Most of the time my fingers moved by themselves, at
least it felt that way. I noticed two repeating pat-
terns over all the levels. (I’m not totally sure what
the buttons were, was it DFG JKL?) One was D-
F-G-F-D I think and the other I’m not quite sure
the sequence but it was a four or five button series
which went from the left to the right and back to the
left...”.

We discuss the reconstruction question further in our
third experiment.

4.2 Experiment 2: Recall Over Time
An authentication mechanism is only useful if authen-
tication can still be accurately performed at some time
after the password is memorized. In Experiment 2,
we confirmed that sequence-specific knowledge acquired
by users was retained over prolonged periods of time.
Although skill learning generally persists over time, a
SISL-based test had never been conducted with a sub-
stantial delay and a sufficient number of participants.

In Experiment 2, participants agreed to perform the
SISL task over two sessions. In the first session, par-
ticipants completed a training sequence which the same
structure as the one in Experiment 1. The training was
immediately followed by the same SISL test to assess
sequence knowledge before the delay. A group of 32
participants returned to the online applet after 1 week to

6

USENIX Association 	 21st USENIX Security Symposium  135

Figure 4: Across training participants gradually begin
to express knowledge of the repeating sequence by ex-
hibiting a performance advantage for the trained se-
quence compared to randomly interspersed noise seg-
ments. Learning performance was similar across both
groups and similar to Experiment 1, as expected.

perform a retention test and recognition assessment for
the trained sequence. A separate group of 80 participants
returned after a 2 week delay for the retention and recog-
nition tests. For the 1-week group, the test session con-
sisted of a 540-trial implicit sequence learning assess-
ment. For the 2-week group, the test session was doubled
in length to additionally evaluate whether a longer test
provided better sensitivity to individual sequence knowl-
edge. For both groups, the initial speed of the test on the
delay session was set to match the speed with which the
participants had been performing the task at the end of
the training session. A short warm-up block of 180 trials
was used to adjust this initial speed so that participants
were performing at around the target 70% correct at the
beginning of the retention test.

Figure 4 shows gradual learning of the trained se-
quence during the first session for both groups as in Ex-
periment 1. Implicit sequence knowledge at both im-
mediate and delayed tests is shown in Figure 5. On
all five assessments, participants exhibited reliable se-
quence learning as a group, ts > 4.3, ps < .01. On the
one-week delay test, 15 of 32 participants exhibited in-
dividually reliable sequence knowledge. However, for
the two-week delay group, 49 of 80 participants exhib-
ited reliable sequence knowledge reflecting the increased
sensitivity in the longer assessment test used. Future
research will examine both increased training time and
assessment tests with increased sensitivity to individual
knowledge to provide a reliable and accurate identifica-
tion method by SISL performance.

Even at one and two weeks delay, participants exhib-
ited the same modest tendency for better recognition of
the trained sequence, ts > 2.8, ps < .05. Again, recog-
nition performance did not correlate with expression of
sequence knowledge, rs < .16 and did not suggest any

Figure 5: Participants exhibited reliable sequence knowl-
edge on both immediate assessments (shown for Exper-
iment 1 and both conditions of Experiment 2) shown by
a performance advantage for the trained sequence com-
pared with untrained, novel sequences at test. Sequence
knowledge is retained at both the 1 and 2 week delay
test sessions. While there is some reduction in expressed
knowledge after either delay, the lack of significant ad-
ditional decay from 1 to 2 weeks suggests that informa-
tion is likely to persist for significant periods following 2
weeks (exponential or power-law decay curves are com-
monly observed for many types of memory).

ability to recall the entire 30-item trained sequences.

4.3 Mechanical Turk

Running our experiments over Mechanical Turk required
considerable thought and effort to ensure that the experi-
ments do not suffer from selection bias and are conducted
fairly for both participants and researchers.

One of the early initial questions was that of setting the
price for user participation. The training block, which
comprises the bulk of the initial session, takes approxi-
mately 30-40 minutes to complete depending on player
skill. We wanted to motivate our participants to per-
form to the best of their abilities, and thus set a price
of $5.00 for standalone sessions, assuming a total of
approximately one hour of work involved. Apart from
isolated complaints from users who thought the game
moved too slowly (likely due to them not pressing keys,
or playing incorrectly), most users were happy to partic-
ipate and even solicited additional work. We defined our
HIT (Human Intelligence Task) such that each worker
could participate only once in it and we believe that there
were few—if any—cases where the same user submitted
multiple responses.

We had to design special incentives for participants to
return and complete the second part in the case of two-
session experiments. The approach that worked well for

7

136  21st USENIX Security Symposium	 USENIX Association

us was to price the initial (much lengthier) part at $2.00
and the follow-up 15-minute session at $6.00. We also
explained clearly that this is a two-HIT sequence, and
that payment for both parts will only be processed once
the second part is done. No-shows at the second ses-
sion would get no payment at all. Additionally we used
Amazon’s command line tools to automatically send re-
minders to participants when the second session was
available and due. As a result, we saw over 90% of the
people who completed the first session return and finish
the second part.

Due to the special requirements of the SISL applica-
tion we had to create what is considered to be an “ex-
ternal HIT”, exposing the task as a public website. In
order to make sure that results submitted in Amazon cor-
respond to valid submissions in our system, we designed
a system that involves a receipt code for every success-
fully completed session. The code is a 6-digit number
between 100000 and 999999—we chose this size to pre-
vent people from easily guessing the code, but not make
it difficult for them to write it down (especially useful
in two-session experiments, where we also have to fetch
the correct follow-up sequence that matches the user’s
first visit). After follow-up sessions we provided the user
with a second code that needed to be submitted to the
separate second HIT in order to receive payment.

Naturally we were concerned about the security of our
system, so we took measures to only accept limited types
of input as parameters, leaving the website open mostly
to denial of service attacks which we had no reason to
expect. In comparison, our fear of legitimate users trying
to cheat the system and getting paid without completing
quality work was somewhat more justified. We saw some
limited instances of behavior in this category:

• There were users who, against the instructions, sub-
mitted an invalid receipt code. We immediately re-
jected any such submissions.

• Some users submitted sequences that were so long
that they did not fit in our generous allowance on the
server. Upon examination we found out that these
were due primarily to excessive wrong key presses
(sometimes 5 or more key presses for the same ob-
ject, which suggests that possibly an automated tool
was used to complete the task).

• In relatively few situations we noticed users who
had unusually long intervals of inactivity. We ex-
cluded the most outrageous submissions but leaned
towards including the rest in the results of the study
in order to avoid biasing our data towards people
who did well.

The scope of these abuses never amounted to more
than 5% of the submissions, and we believe that the

Submissions
Experiment Part All Paid Used
baseline 46 39 34
1 week delay initial 35 32 32
1 week delay follow-up 45 32 32
2 week delay initial 100 95 (a) 82
2 week delay follow-up 111 84 (b) 82
trigrams 37 34 32

Table 1: Total number of participants in each experi-
ment. The higher number of submissions on follow-up
session are due to more failed opportunistic attempts by
users to get paid $6.00 for no work because HIT assign-
ments were remaining available longer, waiting for eli-
gible users to show up. Notes: (a) we paid more people
than necessary due to the 16-day auto-approval config-
uration of the HIT; (b) we paid, but did not evaluate a
submission which came in after the cut-off time; (c) the
variation in number of participants across experiments
was due to varying response and acceptance rates—our
primary goal was to collect enough data to be able to
make statistical inferences, and we deliberately collected
more data for the most difficult experiment (the 2-week
delay).

organization of the Mechanical Turk system is at least
partially to thank: workers need to register, and provide
some sort of payment account which makes their identity
relatively easy to track; moreover, rejected work nega-
tively affects a worker’s score and as a result most users
genuinely try to do the best they can, get entertained
if possible, and earn some extra money in the process.
Overall, we consider our use of Mechanical Turk to have
been a big success: it allowed us to conduct each exper-
iment practically overnight, drawing on the huge avail-
able pool of participants.

5 Security Analysis

In this section we analyze the security of the basic au-
thentication protocol from Section 3 and propose a num-
ber of extensions that improve security. We also experi-
ment with a particular attack that attempts to extract the
secret sequence from the user one fragment at a time.
Our Mechanical Turk experiment shows that this attack
works poorly on humans.

5.1 Implicit Learning as a Cryptographic
Primitive

We begin with an abstract model of the new function-
ality enabled by implicit learning. Traditional modeling

8

USENIX Association 	 21st USENIX Security Symposium  137

of participants in a cryptographic protocol are as enti-
ties who hold secrets unknown to the adversary. These
assumptions fall apart in the face of coercion since all
secrets can be extracted from the participant.

Implicit learning provides the following new abstract
functionality: the training phase embeds a predicate

p : Σ →{0,1}

in the user’s brain for some large set Σ. Anyone can ask
the user to evaluate his or her predicate p at a point k ∈
Σ. The predicate evaluates to 1 when k has been learned
by the user and evaluates to 0 otherwise. The number
of inputs at which p evaluates to 1 is relatively small.
Most often p will only evaluate to 1 at a single point
meaning that the user has been trained on only one secret
sequence.

The key feature of implicit learning is that even under
duress it is impossible to extract a point k ∈ Σ from the
user for which p(k) = 1. This abstract property captures
the fact that the secret sequence k is implicitly learned by
the user and not consciously accessible. In this paper, we
use the implicit learning primitive to construct an authen-
tication system, but one can imagine it being used more
broadly in security systems.

The authentication procedure described in Section 3
provides an implementation of the predicate p(·) for
some sequence k0 in Σ. If the procedure declares suc-
cess we say that p(k0) = 1 and otherwise p(k0) = 0. The
predicate p is embedded in the user’s brain during the
training session.

The basic coercion threat model. The SISL authenti-
cation system from Section 3 is designed to resist an ad-
versary who tries to fool the authentication test. We as-
sume the test requires physical presence and begins with
a liveness check to ensure that a real person is taking the
test without the aid of any instruments. To fool the au-
thentication test the adversary is allowed the following
sequence of steps:

• Extraction phase: intercept one or more trained
users and get them to reveal as much as they can,
possibly using coercion.

• Test phase: the adversary, on his own, submits to
the authentication test and his or her goal is to pass
the test. In real life this could mean that the adver-
sary shows up at the entrance to a secure facility and
attempts to pass the authentication test there. If he
fails he could be detained for questioning.

This basic threat model gives the attacker a single
chance at the authentication test. We consider a model
where the attacker may iterate the extraction and test

phases, alternating between extraction and testing, later
on in this section.

We also note that the basic threat model assumes that
during the training phase, when users are taught the cre-
dential, users are following the instructions and are not
deliberately trying to mislead the training process. In ef-
fect, the adversary is only allowed to coerce a user after
the training process completes.

It is straight-forward to show that the system of Sec-
tion 3 is secure under this basic threat model, assum-
ing the training procedure embeds an implicitly learned
predicate p in the user’s brain. Indeed, if the attacker
intercepts u trained users and subjects each one to q
queries, his chances of finding a valid sequence is at
most qu/|Σ|. Since each test takes about five minutes,
we can assume an upper bound of q = 105 trials per
captured user (this amounts to about one year of non-
stop testing per user which will either interfere with the
user’s learned password rendering the user useless to
the attacker, or alert security administrators due to the
user’s absence prompting a revocation of the creden-
tials). Hence, even after capturing u = 100 users, the
attacker’s success probability is only

100×105/|Σ| ≈ 2−16 .

Further complicating the attacker’s life is the fact that
subjecting a person to many random SISL games may
obliterate the learned sequence or cause the person to
learn an incorrect sequence thereby making extraction
impossible.

We note that physical presence is necessary in authen-
tication systems designed to resist coercion attacks. If
the system supported remote authentication then an at-
tacker could coerce a trained user to authenticate to a re-
mote server and then hijack the session.

Security enhancements. The security model above
gives the attacker one chance to authenticate and the at-
tacker must succeed with non-negligible probability. If
the attacker is allowed multiple authentication attempts
— iterating the extraction and test phases, alternating be-
tween the two — then the protocol may become insecure.
The reason is that during an authentication attempt the at-
tacker sees the three sequences k0,k1,k2 and could mem-
orize one of them (30 symbols). He would then train
offline on that sequence so that at the next authentica-
tion attempt he would have a 1/3 chance in succeeding.
If the attacker could memorize all three sequences (90
symbols), he could offline subject a trained user to all
three sequences and reliably determine which is the cor-
rect one and then train himself on that sequence. He is
then guaranteed success at the next authentication trial.
We note that this attack is non-trivial to pull off since

9

138  21st USENIX Security Symposium	 USENIX Association

it can be difficult for a human attacker to memorize an
entire sequence at the speed the game is played.

Another potential attack, already discussed in Sec-
tion 3, is an attacker who happens to be an expert player,
but deliberately degrades his performance on two of the
sequences presented. With probability 1/3 he will show
a performance gap on the correct sequence and pass the
authentication test. We described a number of defenses
in Section 3. Here we describe a more robust defense.

Both attacks above can be defeated with combina-
torics. Instead of training the user on a single sequence,
we train the user on a small number of sequences, say
four. Experiments [18] suggest that the human brain can
learn multiple sequences and these learned sequences do
not interfere with one another. Equivalently we could
train the user on a longer sequence and use its fragments
during authentication. While this will increase training
time, we show that it can enhance security.

During authentication, instead of using one correct se-
quence and two foils, we use the four correct sequences
randomly interspersed within 8 foils. Authentication
succeeds if the attacker shows a measurable performance
gap on the correct 4 out of 12 presented sequences. An
attacker who slows down on random sequences will now
have at most a 1/

(12
4

)
≈ 1/500 chance in passing the test.

The number of trained sequences (4) and the number of
foils (8) can be adjusted to achieve an acceptable tradeoff
between security and usability.

Similarly, a small number of authentication attempts
will not help a direct attacker pass the test. However,
memorizing the authentication test (360 symbols) and
later presenting it to a coerced user could give the adver-
sary an advantage. To further defend against this memo-
rization attack we add one more step to the authentication
procedure: once the authentication server observes that
the user failed to demonstrate a measurable gap on some
of the trained sequences, all remaining trained sequences
are replaced with random foils. This ensures that an
attacker who tries to authenticate with no prior knowl-
edge will not see all the trained sequences and therefore
cannot extract all trained sequences from a coerced user.
Consequently, a one-shot attack on a coerced user is not
possible. Nevertheless, by iterating this process — tak-
ing the authentication test, memorizing the observed se-
quences, and then testing them out on a coerced trained
user — the attacker may eventually learn all trained se-
quences and succeed in fooling the authentication test.
During this process, however, the attacker must engage
in the authentication test where he demonstrates knowl-
edge of a strict subset of the trained sequences, but can-
not demonstrate knowledge of all sequences. This is a
clear signal to the system that it is under attack at which
point the person engaging in the authentication test could

be detained for questioning and the legitimate user is
blocked from authenticating with the system until he or
she is retrained on a new set of sequences.

Eavesdropping security. Traditional password authen-
tication is vulnerable to eavesdropping (either via client-
side malware or shoulder surfing) and so is the authenti-
cation system presented here. An eavesdropper who ob-
tains a number of valid authentication transcripts with a
trained user will be able to reconstruct the learned se-
quence(s). It is a fascinating direction for future research
to devise a coercion-resistant system where an implicitly
learned secret is used in a challenge-response protocol
with the server. We come back to this question at the end
of the paper.

5.2 An Experiment: Extracting Sequence
Fragments

One of the potential attacks on our system involves a
malicious party profiling the legitimate user’s knowledge
and using that information to reverse engineer the trained
sequence to be able to pass the authentication test. Al-
though the number of possible trained sequences is too
large to exhaustively test on any single individual each
sequence is constructed according to known constraints
and knowledge of subsequence fragments might enable
the attacker to either reconstruct the original sequence or
enough of it to pass an authentication test.

The training sequences are constrained to use all 6 re-
sponse keys equally often, so analysis of individual re-
sponse probabilities cannot provide information about
the trained sequence. Likewise all 30 possible response
key pairs (6 ∗ 5 = 30, since keys are not repeated) occur
equally often during training meaning that bigram fre-
quency also provides no information about the trained se-
quence. However, each 30-item sequence has 30 unique
trigrams (of 150 possible). If the specific training trigram
fragments could be identified, the underlying training se-
quence could be reconstructed.

An attack based on this information would be to have
a trained user perform a SISL test that contains all 150
trigrams equally often. If the user exhibited better perfor-
mance on the 30 trained trigrams than the 120 untrained,
the sequence could be reconstructed. This attack would
weaken the method’s relative resistance to external pres-
sure to reveal the authentication information.

However, while the sequence information can be de-
termined at the trigram level it is not known if partici-
pants reliably exhibit sequence knowledge in such short
fragments. In Experiment 3, we evaluated performance
on this type of trigram test to assess whether the sequence
information could be reconstructed.

10

USENIX Association 	 21st USENIX Security Symposium  139

Participants were again recruited through Mechanical
Turk and completed the same training sessions used in
Experiments 1 and 2. At test, participants performed a
sequence constructed to provide each of the 150 trigrams
exactly 10 times by constructing ten different 150-trial
units that each contain all possible trigrams in varying
order. Performance on each trigram was measured by
percent correct as a function of the current response and
two responses prior.

To evaluate whether these data could be used to recon-
struct the sequence, the percent correct on each trigram
was individually calculated and a rank order of all tri-
grams was created for each individual. If performance
on the trained trigrams was superior to others, the trained
trigram ranks should tend to be lower (e.g., performance
expression would lead the sequence trigrams to be the 30
best performed responses). However, average rank and
average percent correct on the trained trigrams was in-
distinguishable from untrained trigrams. Participants did
not exhibit their trained sequence knowledge on this type
of test, indicating that their sequence knowledge cannot
be attacked with a trigram-based method. More specifi-
cally, for each user we compared the average percent cor-
rect measurements for the 30 trained-sequence trigrams
to those for the 120 remaining trigrams. The 34 par-
ticipants averaged 73.9% correct (SE 1.2%) for trigrams
from the trained sequence and 73.2% correct (SE 1.1%)
for the rest. The difference was not reliable.

While the trigram test did not lead to expression of se-
quence knowledge, it is likely that participants’ sequence
knowledge could be assessed for some longer fragments.
However, the number of fragments to assess grows ex-
ponentially with the length to be assessed and the abil-
ity to test all fragments is limited by the need to rely
on human performance to do the assessment. For exam-
ple, for length 4 fragments (quad-grams), there are 750
fragments to assess multiple times each to try to identify
which ones had been trained.

Future work. In future work we will assess sequence
expression at various lengths to find the minimal length
at which sequence knowledge can be expressed. This
minimal length likely reflects a basic operating charac-
teristic of the brain regions that support implicit sequen-
tial skill learning. If this length suggests the possibility
of attack, the sequence can be increased in complexity by
increasing the number of characters, using inter-response
timing (known to be important to learning [7]) or more
complex sequence structures than simple repeating se-
quences.

Recall that in our experiments we assumed that users
are honest during the training phase and the adversary
only gets to coerce users after they have been trained.

We leave it for future work to design a coersion-resistant
authentication protocol that remains secure when users
can be coerced during the training phase.

6 Related Work

There is a large body of related work in user authenti-
cation and biometrics for user access control. The work
can been broken down into biometrics (“who you are”),
tokens (“what you have”), and passwords (“what you
know”). There is significant past work in each of the
three main areas. Our work may fall into a new cate-
gory of implicit learning (“what you know you know but
do not know”), or could be categorized as a subclass of
behavioral biometric measurement.

Classic biometrics identifying a user based on who
they physically are can be grouped into physiologi-
cal and behavior categories. Physiological characteris-
tics include fingerprint, face recognition, DNA prints,
palm print, hand geometry, iris recognition, and retinal
scans. Behavioral characteristics include measurements
of typing rhythm and other dynamics, dynamic signa-
ture, walking gait, voiceprints, and eye movement pat-
terns [11, 10, 2, 15]. Our work differs from these in en-
abling quick training in new randomly seeded patterns.
It might be very difficult to learn to walk a new way,
and nearly impossible to change one’s iris pattern, but it
should be easy to learn a new cortical crypto sequence
with a modest training regime. Further, if one relies on
retinal patterns for identification, each system could cap-
ture all the information content of the retina, and thus a
single compromised retina reader could reveal to an ad-
versary the entire set of information. Our approach en-
ables key revocation and multiple keys per user for dif-
ferent systems where there need not be any information
leakage from one system to the next.

Denning et al. [4] propose an authentication model
based on implicit learning of sets of images. An ear-
lier study [21] compared the learning of images, artifi-
cial words, and outputs from finite-state automata. Both
of these works develop authentication systems that al-
low users to easily memorize strong passwords, how-
ever the resulting systems are not as resistant to rubber
hose attacks because they depend on the user consciously
studying sets of images or strings and as a result the
user retains some conscious knowledge of the creden-
tial. When using the SISL task we were able to verify
that little conscious knowledge of the trained secret is
retained. Image-based authentication mechanisms also
require curated image sets in order to reduce errors in the
authentication process; in contrast SISL-based authenti-
cation uses automatically generated sequences sampled
from a well-defined high entropy combinatorial space.

11

140  21st USENIX Security Symposium	 USENIX Association

Deniable encryption. In the context of encryption, de-
niable encryption [3, 13] enables a user who encrypts a
message to open the ciphertext in multiple ways to pro-
duce different cleartexts from the same ciphertext. Such
systems enable a user to reveal an encryption key, which
produces a document that contains plausible cleartext,
but which is different from the actual document the user
wishes to protect. This technique protects encrypted doc-
uments, but does not apply to authentication credentials.
Further, a properly motivated user of deniable encryp-
tion could choose to reveal the correct decryption key,
enabling the coercive adversary offline access to all ver-
sions of the document. Our approach develops a sys-
tem where the user cannot, even if strongly motivated,
reveal to another any information useful for an adver-
sary to replicate the user’s access without the user being
present. Deniability has also been studied in the context
of elections [9].

Coercion detection. Since our aim is to prevent users
from effectively transmitting the ability to authenticate
to others, there remains an attack where an adversary
coerces a user to authenticate while they are under ad-
versary control. It is possible to reduce the effective-
ness of this technique if the system could detect if the
user is under duress. Some behaviors such as timed re-
sponses to stimuli may detectably change when the user
is under duress. Alternately, we might imagine other
modes of detection of duress, including video monitor-
ing, voice stress detection, and skin conductance moni-
toring [8, 16, 1]. The idea here would be to detect by
out-of-band techniques the effects of coercion. Together
with in-band detection of altered performance, we may
be able to reliably detect coerced users.

7 Conclusions and Future Work

We have presented a new approach to protecting against
coercion attacks using the concept of implicit learning
from cognitive psychology. We described a proof of
concept protocol and preliminary experiments conducted
through Mechanical Turk demonstrating a basis for con-
fidence that it is possible to construct rubber hose resis-
tant authentication.

Much work remains. We hope to further analyze the
rate at which implicitly learned passwords are forgotten,
and the required frequency of refresher sessions. In ad-
dition we would like to find methods to detect or predict
when individual users reliably learn (collecting more de-
mographic data about our users might be a good first step
in this direction, along with multi-session long-term ex-
periments). We also hope to explore some of the limits of
the approach, for example by finding out the minimum
lengths at which parts of learned sequences are distin-

guishable to an attacker versus a legitimate authenticator,
as well as by strengthening the test procedures and analy-
sis to increase reliability across a larger fraction of users,
or reduce the required testing time, false positives, and
false negatives. Using variable timing between cues and
measuring user performance as a function of game speed
can further help in making the test protocol more reli-
able. Implicit learning of multiple credentials is yet an-
other area that can benefit from additional experiments,
building upon prior work that has so far found no evi-
dence of interference when users learn distinct 12-item
sequences, while also being capable of learning implic-
itly sequences as long as 80 items.

Another future direction for this work is in testing
whether more complex structures—for example Markov
models—can be learned implicitly. We would like to use
such learning to build challenge-response authentication
which is resistant to eavesdropping in addition to coer-
cion. Finally, beyond authentication, we would like to
investigate the construction of a variety of cryptographic
primitives based on implicit learning.

Acknowledgment

We would like to thank all the paid volunteers who have
contributed to our user studies through their participa-
tion. This work was funded by NSF and a MURI grant.

References

[1] J. Benaloh and D. Tuinstra. Uncoercible communi-
cation. Technical Report TR-MCS-94-1, Clarkson
University, 1994.

[2] Christoph Bregler. Learning and recognizing hu-
man dynamics in video sequences. In IEEE Conf.
on Computer Vision and Pattern Recognition, pages
568–574, 1997.

[3] Ran Canetti, Cynthia Dwork, Moni Naor, and
Rafail Ostrovsky. Deniable encryption. In
CRYPTO, pages 90–104, 1997.

[4] Tamara Denning, Kevin D. Bowers, Marten van
Dijk, and Ari Juels. Exploring implicit memory
for painless password recovery. In Desney S. Tan,
Saleema Amershi, Bo Begole, Wendy A. Kellogg,
and Manas Tungare, editors, CHI, pages 2615–
2618. ACM, 2011.

[5] A. Destrebecqz and A. Cleeremans. Can sequence
learning be implicit? new evidence with the pro-
cess dissociation procedure. Psychonomic Bulletin
& Review, 8:343–350, 2001.

12

USENIX Association 	 21st USENIX Security Symposium  141

[6] Julien Doyon, Pierre Bellec, Rhonda Amsel,
Virginia Penhune, Oury Monchi, Julie Carrier,
Stéphane Lehéricy, and Habib Benali. Contribu-
tions of the basal ganglia and functionally related
brain structures to motor learning. Behavioural
Brain Research, 199(1):61–75, April 2009.

[7] E. Gobel, D. Sanchez, and P. Reber. Integration
of temporal and ordinal information during serial
interception sequence learning. Journal of Exper-
imental Psychology: Learning, Memory & Cogni-
tion, 37:994–1000, 2011.

[8] Payas Gupta and Debin Gao. Fighting coercion
attacks in key generation using skin conductance.
In USENIX Security Symposium, pages 469–484,
2010.

[9] Ari Juels, Dario Catalano, and Markus Jakobsson.
Coercion-resistant electronic elections. In Proceed-
ings of the 2005 ACM workshop on Privacy in the
electronic society, WPES ’05, pages 61–70, New
York, NY, USA, 2005. ACM.

[10] A. Kale, A.N. Rajagopalan, N. Cuntoor,
V. Krueger, and R. Chellappa. Identification
of humans using gait. IEEE Transactions on Image
Processing, 13:1163–1173, 2002.

[11] Fabian Monrose, Michael Reiter, and Susanne Wet-
zel. Password hardening based on keystroke dy-
namics. Int. J. of Inf. Sec., 1(2):69–83, 2002.

[12] Mary J. Nissen and Peter Bullemer. Attentional
requirements of learning: Evidence from perfor-
mance measures. Cognitive Psychology, 19(1):1–
32, January 1987.

[13] Adam O’Neill, Chris Peikert, and Brent Waters.
Bi-deniable public-key encryption. In Proc. of
Crypto’11, volume 6841 of LNCS, pages 525–542,
2011.

[14] Paul Reber. Cognitive neuroscience of declarative
and non-declarative memory. Parallels in Learning
and Memory, Eds. M.Guadagnoli, M.S. deBelle, B.
Etnyre, T. Polk, A. Benjamin, pages 113–123, 2008.

[15] Douglas A. Reynolds, Thomas F. Quatieri, and
Robert B. Dunn. Speaker verification using adapted
gaussian mixture models. In Digital Signal Pro-
cessing, 2000.

[16] Robert Ruiz, Claude Legros, and Antonio Guell.
Voice analysis to predict the psychological or phys-
ical state of a speaker, 1990.

[17] D. Sanchez, E. Gobel, and P. Reber. Performing the
unexplainable: Implicit task performance reveals
individually reliable sequence learning without ex-
plicit knowledge. Psychonomic Bulletin & Review,
17:790–796, 2010.

[18] D.J. Sanchez and P.J. Reber. Operating character-
istics of the implicit learning system during serial
interception sequence learning. Journal of Experi-
mental Psychology: Human Perception and Perfor-
mance, in press.

[19] Chris Soghoian. Turkish police may have
beaten encryption key out of TJ Maxx sus-
pect, 2008. news.cnet.com/8301-13739_
3-10069776-46.html.

[20] T. van Aardenne-Ehrenfest and N. G. de Bruijn.
Circuits and trees in oriented linear graphs. Simon
Stevin, 28:203–217, 1951.

[21] Daphna Weinshall and Scott Kirkpatrick. Pass-
words you’ll never forget, but can’t recall. In CHI
Extended Abstracts, pages 1399–1402, 2004.

[22] Wikipedia. Rubber-hose cryptanalysis, 2011.

13

USENIX Association 	 21st USENIX Security Symposium  143

On the Feasibility of Side-Channel Attacks with Brain-Computer Interfaces

Ivan Martinovic∗, Doug Davies†, Mario Frank†, Daniele Perito†, Tomas Ros‡, Dawn Song†

University of Oxford∗ UC Berkeley† University of Geneva‡

Abstract
Brain computer interfaces (BCI) are becoming in-

creasingly popular in the gaming and entertainment in-
dustries. Consumer-grade BCI devices are available for
a few hundred dollars and are used in a variety of appli-
cations, such as video games, hands-free keyboards, or as
an assistant in relaxation training. There are application
stores similar to the ones used for smart phones, where
application developers have access to an API to collect
data from the BCI devices.

The security risks involved in using consumer-grade
BCI devices have never been studied and the impact of
malicious software with access to the device is unex-
plored. We take a first step in studying the security impli-
cations of such devices and demonstrate that this upcom-
ing technology could be turned against users to reveal
their private and secret information. We use inexpensive
electroencephalography (EEG) based BCI devices to test
the feasibility of simple, yet effective, attacks. The cap-
tured EEG signal could reveal the user’s private informa-
tion about, e.g., bank cards, PIN numbers, area of living,
the knowledge of the known persons. This is the first
attempt to study the security implications of consumer-
grade BCI devices. We show that the entropy of the pri-
vate information is decreased on the average by approx-
imately 15 % - 40 % compared to random guessing at-
tacks.

1 Motivation

Brain-Computer Interfaces (BCIs) enable a non-
muscular communication between a user and an exter-
nal device by measuring the brain’s activities. In the last
decades, BCIs have been primarily applied in the med-
ical domain with the goal to increase the quality of life
of patients with severe neuromuscular disorders. Most
BCIs are based on electroencephalography (EEG) as it
provides a non-invasive method for recording the elec-

trical fields directly produced by neuronal synaptic ac-
tivity. The EEG signal is recorded from scalp electrodes
by a differential amplifier in order to increase the Signal-
to-Noise Ratio of the electrical signal that is attenuated
by the skull. This signal is continuously sampled (typ-
ically 128 Hz - 512 Hz) to provide a high temporal res-
olution, making EEG an ideal method for capturing the
rapid, millisecond-scale dynamics of brain information
processing with a simple setup.

Particular patterns of brain waves have been found to
differentiate neurocognitive states and to offer a rich fea-
ture space for studying neurological processes of both
disabled and healthy users. For example, EEG has
not only been used for neurofeedback therapy in atten-
tion deficit hyperactivity disorder (ADHD) [20], epilepsy
monitoring [6], and sleep disorders [28], but also to study
underlying processes of skilled performance in sports
and changes in vigilance [14, 31], in estimating alertness
and drowsiness in drivers [22] and the mental workload
of air-traffic control operators [39].

Besides medical applications, BCI devices are becom-
ing increasingly popular in the entertainment and gaming
industries. The ability to capture a user’s cognitive activ-
ities enables the development of more adaptive games
responsive to the user’s affective states, such as satis-
faction, boredom, frustration, confusion, and helps to
improve the gaming experience [26]. A similar trend
can be seen in popular gaming consoles such as Mi-
crosoft’s Xbox 360, Nintendo’s Wii, or Sony’s Playsta-
tion3, which already include different sensors to in-
fer user’s behavioral and physiological states through
pressure, heartbeat, facial and voice recognition, gaze-
tracking, and motion.

In the last couple of years, several EEG-based gam-
ing devices have made their way onto the market and be-
came available to the general public. Companies such
as Emotiv Systems [5] and NeuroSky [25] are offering
low-cost EEG-based BCI devices (e.g., see Figure 1) and
software development kits to support the expansion of

144  21st USENIX Security Symposium	 USENIX Association

(a) An EPOC device (Emotiv Systems)

(b) A MindSet device (NeuroSky)

Figure 1: Popular consumer-grade BCI devices are avail-
able as multi-channel (EPOC) or single-channel (Mind-
Set) wireless headsets using bluetooth transmitters.

tools and games available from their application mar-
kets. Currently, there are more than 100 available appli-
cations ranging from accessibility tools, such as a mind-
controlled keyboard and mouse and hands-free arcade
games, to so-called serious games, i.e., games with a pur-
pose other than pure entertainment, such as attention and
memory training games. For example, in [2], the authors
used the Emotiv BCI device to implement a hands-free
brain-to-mobile phone dialing application.

Marketing is another field that has shown increas-
ing interest in commercial applications of BCI devices.
In 2008, The Nielsen Company (a leading market re-
search company) acquired NeuroFocus, a company spe-
cialized in neuroscience research, and it has recently de-
veloped an EEG-based BCI device called Mynd such that
“...market researchers will be able to capture the highest
quality data on consumers’ deep subconscious responses
in real time wirelessly, revolutionizing mobile in-market
research and media consumption at home.”1

In light of the progress of this technology, we be-
lieve that the trend in using EEG-based BCI devices for
non-medical applications, in particular gaming, enter-
tainment, and marketing, will continue. Given that this
technology provides information on our cognitive pro-

1NeuroFocus Press Release (March 21, 2011):
www.neurofocus.com/pdfs/Mynd NeuroFocus.pdf

Figure 2: Example photo of a videogame controlled with
the Emotiv Device.

cessing and allows inferences to be made with regard
to our intentions, conscious and unconscious interests,
or emotional responses, we are concerned with its secu-
rity and privacy aspects. More specifically, we are in-
terested in understanding how easily this technology can
be turned against its users to reveal their private infor-
mation, that is, information they would not knowingly or
willingly share. In particular, we investigate how third-
party EEG applications could infer private information
about the users, by manipulating the visual stimuli pre-
sented on screen and by analyzing the corresponding re-
sponses in the EEG signal.

1.1 Contributions

To justify how crucial the security and privacy concerns
of this upcoming technology are, we provide some con-
crete answers in terms of demonstrating practical at-
tacks using existing low-cost BCI devices. More specifi-
cally, the main contributions of this paper are:

• We explore, for the first time, EEG gaming devices
as a potential attack vector to infer secret and pri-
vate information about their users. This attack vec-
tor is entirely unexplored and qualitatively different
from previously explored side-channels. This calls
for research to analyze their potential to leak private
information before these devices gain widespread
adoption.

• We design and implement BCI experiments that
show the possibility of attacks to reveal a user’s pri-
vate and secret information. The experiments are
implemented and tested using a Emotiv EPOC BCI
device. Since 2009, this consumer-grade device has
been available on the market for the entertainment
and gaming purposes.

2

USENIX Association 	 21st USENIX Security Symposium  145

• In a systematic user study, we analyze the feasibility
of these attacks and show that they are able to reveal
information about the user’s month of birth, area of
living, knowledge of persons known to the user, PIN
numbers, name of the user’s bank, and the user’s
preferred bank card.

2 A Brief Introduction to P300 Event-
Related Potentials

In this section, we provide a brief introduction to the
specifics of the EEG signal that are required to under-
stand the rationale behind this work.

An important neurophysiological phenomenon used in
studies of EEG signals is the Event-Related Potential
(ERP). An ERP is detected as a pattern of voltage change
after a certain auditory or visual stimulus is presented to
a subject. Every ERP is time-locked to the stimulus, i.e.,
the time frame at which an EEG voltage change is ex-
pected to occur is known given the timing of the stimuli.

The most prominent ERP component which is sen-
sitive to complex cognitive processing is the P300, so-
called because it can be detected as an amplitude peak
in the EEG signal at ≈ 300 ms after the stimulus (see
Figure 3). The complexity of the stimulus and individ-
ual differences contribute to the variability of the ampli-
tude and latency (e.g., the latency varies between 250 -
500 ms), yet the P300 is considered to be a fundamental
physiological component and is reliably measured (for
a recent overview of the P300 from a neuroscience per-
spective, please see, e.g., [27]). While there are two sub-
components of the P300, called P3a and P3b, both are
related to complex cognitive processing, such as recog-
nition and classification of external stimuli. In this paper,
we take advantage of the subcomponent P3b of the P300,
and for the sake of simplicity we will refer to it as the
P300, which is also a convention in neuroscience.

The P300 is elicited when subjects discriminate be-
tween task-relevant and task-irrelevant stimuli using a
so-called “oddball paradigm” (for more information, see,
e.g., [16]). During an oddball task the number of task-
relevant stimuli (called target stimuli) is less frequent
than the number of task-irrelevant stimuli (called non-
target). Probably the most well-known application of the
P300 in an oddball task is the P300-Speller. In this ap-
plication the alphanumeric characters are arranged in a
matrix where rows and columns flash on the screen in
a rapid succession. The target stimulus is the charac-
ter that a subject desires to spell and the P300 is evoked
each time the target letter is flashed due to a neuronal
response triggered by increased attention of recognition.
This application has been used to establish a communi-
cation channel for patients with locked-in syndrome or

with severe neurodegenerative disorders.

−200 0 200 400 600 800 1000
−1

0

1

2

3

4

time [ms]

po
te

nt
ia

l [
µ

V]

EEG signal of one channel for one stimulus

target stimulus
non−target−stimulus

Figure 3: The P300 ERP elicited as a brain response to
a target stimuli (in this experiment the non-target stimuli
were pictures of unknown faces, while the target stimuli
was the picture showing President Obama).

The P300 is seen in response to target stimuli defined
by the task, but it has also been observed to be elicited
during stimuli that are personally meaningful to partic-
ipants. For example, if a random sequence of personal
names is presented to a subject, the P300 will be the
largest during the presentation of the subject’s own name
[32]. Likewise, it has been shown that the P300 discrim-
inates familiar from unfamiliar faces within randomly
presented sequences [24].

3 BCI Attacks: Threat Model and
Assumptions

In this section, we explore a number of possible scenar-
ios in which consumer EEG devices could be abused to
capture sensitive or private information from users. Cur-
rently, both Emotiv and NeuroSky have “App Stores”
where the users can download a wide variety of appli-
cations. Similarly to application stores for smart phones,
the applications are developed by third parties that rely
on a common API to access the devices. In the case of
the EEG devices, this API provides unrestricted access to
the raw EEG signal. Furthermore, such applications have
complete control over the stimuli that can be presented to
the users.

In this scenario, the attacker is a malicious third-party
developer of applications that are using EEG-based BCI
devices. Its goal is to learn as much information as pos-
sible about the user. Hence, we are neither assuming any
malware running on the machine of the victim nor a tam-
pered device, just “brain spyware”, i.e., a software in-
tentionally designed to detect private information. Our
attacker model cannot access more computer resources
than any third party application for the respective BCI
device. The attacker can read the EEG signal from the

3

146  21st USENIX Security Symposium	 USENIX Association

device and can display text, videos, and images on the
screen. Therefore, the attacker can specifically design
the videos and images shown to the user to maximize the
amount of information leaked while trying to conceal the
attacks.

The type of information that could be discovered by
such an attack is only bound by the quality of the signal
coming from the EEG device and the techniques used
to extract the signal. We note that all involved parties
(users of BCI devices, their developers, and also attack-
ers) share the same objective: to maximize the signal
quality in order to best perform their task. Hence, it is
expected that the signal and the measurement processes
will improve and, as a result, facilitate the attacks.

In this work we will focus on categorization tasks, in
which the mind of the user is probed to detect whether
certain stimuli (faces, banks, locations) are familiar to or
relevant for the user. However, we note that in the future
such attack could be extended to include other sensitive
information. For instance, EEG devices have been used,
under optimized lab conditions, to study prejudices, sex-
ual orientation, religious beliefs [18], and deviant sexual
interests [38, 10].

At the moment, low-cost devices are still very noisy
and need a calibration phase to work properly (three min-
utes in our experiments). However, we note that the at-
tacker could find a natural situation in which to expose
the user to target stimuli to extract information and thus
gather enough data to succeed in an unnoticed way. Also,
such a calibration phase can be concealed in the normal
training phase that EEG applications require for proper
functioning and that the user is willing to support. More-
over, we expect that BCI devices will become increas-
ingly robust and accurate in the future, resolving many
current technical problems.

The experiments presented in this study are meant to
show feasibility in favorable conditions. The subjects
were partially cooperating in an attack situation and were
following our instructions. However, we minimized the
interaction between the supervisor and subjects to sim-
ulate a realistic environment, where a user is only inter-
acting with his computer (see Appendix A).

4 Experimental Design and Results

The main question, which this paper attempts to answer
is: Can the signal captured by a consumer-grade EEG
device be used to extract potentially sensitive informa-
tion from the users? In the following, we detail the tech-
nical setup, the experimental design, and the analytical
methods of our experiments.

Figure 4: Experimental setup. The instructor sits be-
hind the curtain to minimize interaction during the ex-
periments. In this case, a sequence of credit cards is pre-
sented to the user.

4.1 The Setup

After obtaining the approval of the Institutional Review
Board (IRB), we recruited 30 Computer Science students
for the experiments. For two participants, the experi-
ments could not be conducted due to faulty equipment
(low battery on the EEG device). Of the 28 participants
remaining, 18 were male and 10 female. In total, the ex-
periment lasted about 40 minutes. The participants were
informed that they were going to participate in an exper-
iment involving the privacy implications of using gam-
ing EEG devices, but we explained neither the details of
the experiment nor our objectives. Each participant was
seated in front of the computer used for the experiments
(see Figure 4). The operator then proceeded to mount the
Emotiv EEG device on the participants.

4.2 The Protocol

After the initial setup, the participants were asked to try
to remain relaxed for the entire duration of the experi-
ments, as blinking or other face movements cause signif-
icant noise. The exact script used during the experiments
can be found in Appendix A. The interaction with the
participants was kept as short and concise as possible.
The order of the experiments was kept fixed in the order
found in Appendix A.

Each experiment consisted of three main steps:

1. (Optional) Brief verbal explanation of the task by
the operator;

2. (Optional) Message on screen for 2 seconds;

3. Images being flashed in random order for the dura-
tion of the experiment.

4

USENIX Association 	 21st USENIX Security Symposium  147

(a) ATM (b) Debit Card

(c) Geolocation (d) People

Figure 5: Layout of four of the experiments: Bank
ATMs, Debit Cards, Geolocation and People. Each
frame shows how the stimuli were flashed on the screen.

Each image was shown to the users for a fixed duration
of 250ms. On the screen in Figure 4, a photo is being
shown to a test participant.

The time of the target and non-target stimuli and the
stimulus identifiers were recorded alongside the raw sig-
nal coming from the EEG device. After the experiment,
we used the classification techniques detailed in Sec-
tion 4.4 to infer information about the secrets of the par-
ticipant.

4.3 The Experimental Scenarios
In this section, we describe the calibration of the device
and six different experiments. In each experiment, the
attacker tries to gain information about a different secret.
Each experiment lasted approximately 90 seconds.

4.3.1 Training Phase

This experiment was set up to learn a model to detect the
P300 signal from each user. The users were presented
with a randomly permuted sequence of numbers from 0
to 9 and were asked by the operator to count the number
of occurrences of a target number x. Each number was
shown 16 times, with a stimulus duration of 250ms and a
pause between stimuli randomly chosen between 250ms
and 375ms. At the end of experiment the participants
were asked for their count to check for correctness.

We also developed a method to calibrate the classifier
without this active training phase. This could be used for
a concealed attack in cases where the intended applica-
tion of the user does not require the detection of P300.
We explain this on-the-fly calibration phase in Section 5.

4.3.2 Experiment 1: Pin Code

This experiment has the goal to gather partial informa-
tion about a user’s chosen 4-digit PIN. Given the sen-
sitivity in studying the users’ real PINs, we asked the
participants to choose and memorize a randomly gener-
ated PIN just for the experiment. Furthermore, the par-
ticipants were asked not to reveal the PIN until after the
end of the experiment session. The participants were told
that there were no special instructions for the experiment,
e.g., no counting numbers. They were just informed that,
at the end of the experiment, they would be asked to enter
the first digit of their PIN (refer to Appendix A for the
exact script). In this way, we bring the information of in-
terest to the attention of the user which makes the subject
focus on the desired stimulus without requiring their ac-
tive support of the classifier. After the instructions were
given, the operator started the experiment. There was no
on-screen message shown at the beginning of the exper-
iment. The experiment images consisted of a sequence
of randomly permuted numbers between 0 and 9 that
were shown on the screen one by one. Each number was
shown 16 times and the experiment lasted approximately
90 seconds.

4.3.3 Experiment 2: Bank Information

The aim of this experiment was to obtain the name of the
bank of the participant by reading their response to visual
stimuli that involved photos related to banks. The first it-
eration of this experiment, whose results are not reported,
consisted of showing the logo of 10 different banks2. The
intuition was that the participants would show a higher
response when seeing the logo of their bank. However,
this attack was unsuccessful. After de-briefing with the
early test participants, we realized that they simply rec-
ognized the logos of all the banks.

In the second and final iteration of the experiment, we
showed two different sets of images: automatic teller ma-
chines (ATMs) and credit cards. Rationale for choosing
to display ATM or credit card photos, rather than logo
images, is that while users might be familiar with all lo-
gos, they might be only familiar with the look of their
own local bank ATM and debit card. The results are re-
ported in Section 5.

The protocol for this experiment was as follows. Each
participant was asked by the operator whether they were
a customer of one of the banks in a list. Four partici-
pants answered negatively, therefore the experiment was
skipped. In case of an affirmative answer, the experi-
ment was started. The screen in front of the participants
showed the question “What is the name of your bank?”

2List of banks: Bank of America, Chase, Wells Fargo, ING, Bar-
clays, Citi Bank, Postbank, Unicredit, Deutsche Bank

5

148  21st USENIX Security Symposium	 USENIX Association

Figure 6: Stimuli for the debit card experiment. Each
card was shown separately, full-screen, for the short
stimulus duration.

for 2 seconds. Then, for the ATM experiment, images of
teller machines were flashed on the screen. For the credit
card experiment, images of credit cards were flashed.

4.3.4 Experiment 3: Month of Birth

The operator did not give any specific instructions to the
participants and only informed them that the instructions
would be provided on the screen. The participants were
simply asked in which month they were born by an on-
screen message that lasted for 2 seconds, then, a ran-
domly permuted sequence of the names of the months
was shown on the screen.

In many access-restricted websites the date of birth or
similar information serves as a backup function for re-
setting a user’s password. If an attacker needs this infor-
mation, the BCI device could provide a potential attack
vector.

4.3.5 Experiment 4: Face Recognition

For this experiment, the operator again did not give
any specific instruction to the participants and only in-
formed them that the instructions would be provided on
the screen. The participants were simply asked “Do you
know any of these people?” by an on-screen message
that lasted 2 seconds. Then the images of people were
randomly flashed for the duration of the experiment.

The goal of this experiment was to understand whether
we could infer who the participants knew by reading their
EEG response when being showed a sequence of photos
of known and unknown people. We used photos of 10
unknown persons and one photo of the current President
of the United States of America, Barack Obama. The
photo of the president was chosen because, being in a
US institution, we were confident that each participant
would recognize the President.

One interesting application of such an attack would be
scenarios in which the knowledge of particular individ-
ual is used as a form of authentication. For example,
in recent years, Facebook has started showing photos of
friends for the purpose of account verification 3.

4.3.6 Experiment 5: Geographic Location

The purpose of this experiment was to accurately pin-
point the geographic location of the residence of the par-
ticipants. Each participant was asked if they lived in an
area close to campus. Eight participants in total did not
live close to campus and did not complete this experi-
ment. In case of an affirmative answer, the participants
were shown a sequence of highlighted maps of an area of
approximately 4 square kilometers around campus. Each
image showed the same area overall, but with a different
highlighted zone on the map.

While IP addresses provide a rather accurate way to
localize the location of a user, there are cases in which
the users actively try to hide their geographic location
using proxies. Even though our experiment showed only
a predefined map of a rather small geographic area, we
envision possible future attacks in which the true geo-
graphic location of a user is leaked by showing maps or
landmarks with increased accuracy.

While for all the other experiments we did not instruct
the user to do particular things except for watching the
screen, here we asked the users to count how often their
region was highlighted. This experiment was devised to
study the influence of active user support, as counting
assures a higher attention from the user which is known
to improve the detection of P300.

4.4 Analysis Methodology
In this section, we detail how the attacker processes and
analyzes the data and provide the specification of the data
recorded by the BCI device.

Data characteristics and acquisition The data con-
sists of several parts. The amplitudes of the EEG signal
are recorded with 14 different electrodes. Each electrode
represents one ‘channel’ of the signal. According to the
standard 10-20 system [19], the 14 channels are called 1:
‘AF3’, 2: ‘F7’, 3: ‘F3’, 4: ‘FC5’, 5: ‘T7’, 6: ‘P7’, 7:
‘O1’, 8: ‘O2’, 9: ‘P8’, 10: ‘T8’, 11: ‘FC6’, 12: ‘F4’,
13: ‘F8’, and 14: ‘AF4’. The location of the channel
electrodes can be seen in Figure 7.

Each channel is recorded at a sampling rate of 128Hz.
The software for showing stimuli to the user outputs the
time stamp for each stimulus and the indicator of the

3http://www.facebook.com/help/search/?q=
security+verification

6

USENIX Association 	 21st USENIX Security Symposium  149

stimulus. In this way, the EEG signal can be related to
the stimuli.

F7 F8

O1 O2

P7 P8

T7 T8

FC5 FC6

F3 F4

AF3 AF4

Figure 7: Position of the electrodes of the EPOC device.

As explained in Section 3, our attack vector exploits
the occurrence of P300 peaks in the EEG signal triggered
by target-stimuli. This requires the attacker to be able to
reliably detect these peaks and to discriminate them from
all other EEG signals measured on non-target stimuli.
This task is very similar to the P300-Speller, where the
EEG signal for the intended letter must be discriminated
from the signal of unintended letters (as described in Sec-
tion 2). However, in contrast to the spelling scenario the
attacker is dealing with a passive user. This makes an at-
tack much harder than spelling. In our case, the user does
not intend to provide a discriminative signal for the target
stimulus. This means that the user does not support the
classifier with increased attention on the target stimulus,
as can be achieved, for instance, by counting the number
of occurrences of this stimulus. As a consequence, the
data available to the attacker is less discriminative be-
tween target and non-target stimuli than in the spelling
scenario.

An additional challenge for our attack is that the gam-
ing device we are using is not made for detecting P300.
For instance, they have more electrodes on the frontal
part of the scalp (see Figure 7). This enables them to rec-
ognize facial expressions which provide a stronger sig-
nal than the EEG signal itself and thus are more robust
for controlling games. The P300 is mostly detected at
the parietal lobe, optimally with electrodes attached at
Pz position, which is a centered on the median line at
the top of the head. As we want to investigate the attack
in a realistic home-use scenario we did not use other de-
vices optimized for P300 detection and did not adapt the
gaming device (for instance by turning it around, which
would provide more sampling points in the Pz area).

Classification of target stimuli Detecting P300 in
EEG data is a binary classification task. The input is a
set of epochs. Each epoch is associated with a stimulus.
In our setting a stimulus is an image depicted on a com-
puter screen in front of the user. Let nc be the number of
EEG channels and let f be the sampling rate of the de-
vice (in our case the signal is sampled with 128 Hz). An
epoch consists of nc time series starting tp milliseconds
prior to the stimulus and ending ta milliseconds after the
stimulus. The number of measurements per time series is
then q = (tp + ta)f . Typically, tp is a few hundred mil-
liseconds and ta is between 800 ms and 1500 ms. The
signals of all channels are concatenated and each epoch
is represented as a real vector x ∈ Rp, where p = qnc is
the dimensionality of the vector space.

The classification task consists of two phases, the
training phase and the classification phase. The in-
put of the training phase is a set of epochs Xtr =
{xtr

i ∈ Rp, i = 1...n1} and a vector of labels y ∈
{0, 1}n1 , where each label yi indicates whether the
epoch xtr

i corresponds to a target stimulus (yi = 1) or
not (yi = 0). The signal of each epoch has been recorded
while the corresponding stimulus was shown to the user
on the screen for a short time (we used 500 ms). The
stimuli labels y are known to the classifier as the sys-
tem knows what it shows to the user. Given this input,
the classifier must learn a function g that maps epochs to
target stimuli labels:

g : Rp → {0, 1} (1)
x �→ y

In the beginning of Section 5, we explain how to practi-
cally carry out the training phase with users that actively
support this training phase and with passive users.

In the classification phase the classifier gets a collec-
tion of n2 new epochs Xtest = {xtest

i ∈ Rp, i = 1, ..., n2}
as an input and must output an estimate ŷ =
{ŷi = g(xtest

i), i=1, ..., n2} of the corresponding labels.
This means, for each of the new epochs, the classifier
must decide whether the epoch is associated with the tar-
get stimulus or not.

The test labels ŷ provide a ranking of the K unique
stimuli presented to the user. We sort all stimuli in de-
scending order according to the number of their positive
classifications. For stimulus k this number is N

(+)
k =∑

i∈Ek
ŷi. The set Ek is the set of epoch indices contain-

ing all epochs that are associated with stimulus k. In this
notation i ∈ Ek means that we sum over all epochs of
stimulus k. For instance, if there are three different stim-
uli repeatedly shown to the user in random order (three
different faces, say), then the classifier would guess that
the true face (the one familiar to the user) is the face
where the most associated epochs have been classified as

7

150  21st USENIX Security Symposium	 USENIX Association

Tr
ia

ls

O1

10

20

−100 0 100 200 300 400 500 600
−6
−4
−2

0
2
4
6

Time (ms)

µ
V

(a) target stimulus

Tr
ia

ls

O1

10

20

−100 0 100 200 300 400 500 600
−6
−4
−2

0
2
4
6

Time (ms)

µ
V

(b) non-target stimulus

Figure 8: Event-related potentials for two different stimuli. Both signals have been recorded on the left back-side of
the scalp (Channel 7: ‘O1’). The plots have been produced with EEGlab [4]. The scale of the averaged plots (bottom)
as well as the colorscale of the heatmap plots (top) are constant over the two stimuli.

target-stimulus. Figure 8 depicts event-related potentials
(ERP) for one channel and two different stimuli (target
and non-target). In this example one row of one plot rep-
resents an epoch and all rows of one plot constitute the
set Ek of epochs associated with event k.

The stimulus with the topmost positive classifications
is the estimated target-stimulus, the stimulus with the
second most positively classified epochs is ranked sec-
ond, and so on. Most classifiers output a continuous
score si for each epoch instead of binary labels ŷi. For
instance, this could be a probability si = p(yi = 1).
In such a case, we sum over all scores of each unique
stimulus k to get its vote N

(+)
k =

∑
i∈Ek

si. In the ex-
periments, we will use this ranking to decide which of
the presented stimuli is the target stimulus, that is which
of the answers is the true answer for the current user.

In the following we explain two different classifiers
that we used in our experiments. The first classifier is
a boosting algorithm for logistic regression (bLogReg)
and was proposed for P300 spelling in [17]. The second
classifier is the publicly available BCI2000 P300 classi-
fier. BCI2000 uses stepwise linear discriminant analysis
(SWLDA). In [21] a set of different P300 classifiers, in-
cluding linear and non-linear support vector machines,
was compared and SWLDA performed best.

4.4.1 Boosted logistic regression

This method uses a logistic regression model as the clas-
sifier function g. The model is trained on the training
data by minimizing the negative Bernoulli log-likelihood

of the model in a stepwise fashion as proposed in [11,
12].

As follows, we briefly describe a variant, proposed in
[17], where the method has been used to design a P300
speller. The classifier consists of an ensemble of M weak
learners. Each weak learner fm is a regression function
minimizing a quadratic cost function:

fm = argmin
f

n1∑
i=1

(
ỹi − f(xtr

i ;w)
)2

, (2)

where f(xtr
i ;w) = wTxtr

i with coefficients w ∈ Rp. The
score ỹi in Equation (2) is obtained from the first-order
condition of maximizing the logarithm of the Bernoulli
likelihood

L(gm;Xtr,y)=

n1∏
i=1

p(yi=1|xtr
i)

yi(1−p(yi=1|xtr
i))

1−yi

(3)
with

p(yi=1|xtr
i) =

exp(gm(xtr
i))

exp(gm(xtr
i)) + exp(−gm(xtr

i))
(4)

In step m of the algorithm, the current classifier gm−1

is updated by adding the new weak classifier fm: gm =
gm−1 + γmfm. Thereby, the weight γm is selected such
that the likelihood Eq. (3) is maximized.

The number of weak classifiers M controls the trade-
off between overfitting and underfitting. This number is
determined by cross-validation on random subsets of the
training data Xtr.

8

USENIX Association 	 21st USENIX Security Symposium  151

Data preprocessing Before training the classifier and
prior applying it to each new observation, we process
the data in the following way. The input data consists
of nc different time series, whereas nc is the number of
channels. First we epochize the signal with a time frame
around the stimuli that starts 200 ms before the respective
stimulus and ends 1000 ms after the stimulus. Then, for
each epoch, we subtract the mean amplitude of the first
200 ms from the entire epoch as it represents the base-
line.

In order to reduce the high-frequency noise, we apply
a low-pass FIR filter with a pass band between 0.35 and
0.4 in normalized frequency units. An example of such a
preprocessed signal is depicted in Figure 3.

4.4.2 Stepwise Linear Discriminant Analysis

The BCI2000 P300 classifier uses stepwise linear dis-
criminant analysis, an extension of Fisher’s linear dis-
criminant analysis. As follows, we briefly explain these
two methods.

Fisher’s linear discriminant analysis (LDA) LDA
was first proposed in [9]. This classifier is a linear hyper-
plane that separates the observations of the two classes.
The hyperplane is parameterized by the coefficient vec-
tor w ∈ Rp which is orthogonal to the hyperplane.
A new observation xi is labeled to belong to either of
the two classes by projecting it on the class separation
wTxi. LDA assumes observations in both classes to be
Gaussian distributed with parameters (µj ,Σj), j = 1, 2
and computes the optimally separating coefficients by
w = (µtr

1 − µtr
2)(Σ

tr
1 +Σtr

2)
−1.

Stepwise Linear Discriminant Analysis (SWLDA)
SWLDA extends LDA with a feature selection mecha-
nism that sets many of the coefficients in w to zero. This
classifier is supposedly more robust to noise and was
first applied to P300 spelling in [7]. The algorithm it-
eratively adds or removes components of the coefficient
vector according to their statistical significance for the
label outcome as measured by their p-value. The thresh-
olds (padd, prem) for adding or removing features as well
as the total number of features must be pre-defined.

In our experiments we used the default configuration
of the the BCI2000 P300 classifier with 60 features and
(padd, prem) = (0.1, 0.15). The algorithm uses the 800 ms
period after the stimulus for classification.

For each stimulus presented, we sum up the scores
wTxi of the corresponding epochs in order to obtain a
ranking of the stimuli. Then, the highest ranked stimulus
is presumably the target-stimulus.

5 Results

In this section, we evaluate the classification results on
each of the experiments described in Section 4.3.

User-supported calibration and on-the fly calibration
We calibrate the classifiers on a set of training observa-
tions. Thereby, we distinguish two training situations.

In the first situation we have a partially cooperating
user, that is, a user who actively supports the training
phase of the BCI but then does not actively provide evi-
dence for the target stimulus later. This is a realistic sce-
nario. Each gamer has a strong incentive to support the
initial calibration phase of his device, because he will
benefit from a high usability and a resulting satisfying
gaming experience. The attacker can use the training
data to train his own classifier. Despite the user support-
ing the calibration phase, we do not assume that the user
actively supports the detection of target stimuli when the
attacker later carries out his attack by suddenly present-
ing new stimuli on the screen.

In the second training situation, the user is passive.
This means that the user does not support the training
phase but also does not actively try to disturb it. As a
consequence, the attacker must present a set of stimuli
where, with high probability, the user is familiar with
one of the stimuli and unfamiliar with all other stim-
uli. In this way the attacker can provide a label vector
y ∈ {0, 1}n1 that can be used for training. We used the
people experiment as training data. We showed 10 im-
ages of random people to the user as well as one image
of President Barack Obama. Assuming that i) every user
knows Obama and that ii) it is unlikely that a user knows
one of the random face images downloaded from the in-
ternet, we can use the Obama image as a target stimulus
and the others as non-target stimuli.

Success statistics We report the results of all experi-
ments in Figure 9. Each plot corresponds to one ex-
perimental scenario. The black crosses depict the re-
sults of the SWLDA classifier used by the BCI2000 P300
speller. The red diamonds are the results of boosted log-
arithmic regression (bLogReg) trained by the counting
experiment, and the blue crosses show the results for
bLogReg when trained on the people experiment. The
dashed black line depicts the expected result of a random
guess.

We depict the results in terms of a cumulative statistic
of the rank of the correct answer. This measure provides
the accuracy together with a confidence interval at the
same time as it includes the probability distribution of
the deviation from the optimal rank. The plots read as
follows. The x-axis of each plot is the rank of the correct

9

152  21st USENIX Security Symposium	 USENIX Association

2 4 6 8 10
20

30

40

50

60

70

80

90

100

position of correct answer

fra
ct

io
n

of
 e

xp
er

im
en

ts
 [%

]

SWLDA
bLogReg
bLogReg passive user
random guess

(a) 1st digit PIN

2 4 6 8 10
20

30

40

50

60

70

80

90

100

position of correct answer

fra
ct

io
n

of
 e

xp
er

im
en

ts
 [%

]

SWLDA
bLogReg
bLogReg passive user
random guess

(b) Debit card

2 4 6 8 10 12 14
20

30

40

50

60

70

80

90

100

position of correct answer

fra
ct

io
n

of
 e

xp
er

im
en

ts
 [%

]

SWLDA
bLogReg
bLogReg passive user
random guess

(c) Location

2 4 6 8 10 12
20

30

40

50

60

70

80

90

100

position of correct answer

fra
ct

io
n

of
 e

xp
er

im
en

ts
 [%

]

SWLDA
bLogReg
bLogReg passive user
random guess

(d) Month of birth

2 4 6 8 10
20

30

40

50

60

70

80

90

100

position of correct answer

fra
ct

io
n

of
 e

xp
er

im
en

ts
 [%

]

SWLDA
bLogReg
random guess

(e) People

2 4 6 8 10
20

30

40

50

60

70

80

90

100

position of correct answer

fra
ct

io
n

of
 e

xp
er

im
en

ts
 [%

]

SWLDA
bLogReg
bLogReg passive user
random guess

(f) ATM machine

Figure 9: Cumulative statistics of the ranking of the correct answer according to the classification result. The faster this
measure converges towards 100%, the better the classifier. One can directly read the confidence intervals as follows:
In more than 20% of the experiments the bLogReg classifier ranked the correct face at the first position. In more than
40% it had the correct face among the first three guesses. Please note that for the passive user, the classifier was trained
on the people experiment and the corresponding curve in Fig. 9(e) would depict the training error.

answer as estimated by the respective classifier. For in-
stance, if the correct answer in the month of birth exper-
iment is ‘April’ and the classifier ranks this month at the
third position in the classification output, then x is 3. The
y-axis is the fraction (in %) of the users having the cor-
rect answer in at most ranking position x. In our exam-
ple with the month of birth, the point (x; y) = (3; 80%)
of the SWLDA classifier means that for 80% of the users
the correct bank was among the first three guesses of
SWLDA. Please note that we truncated the y-axis at 20%
to get a better resolution of the dynamic range.

Overall, one can observe that the attack does not al-
ways reveal the correct information on the first guess.
However, the classifiers perform significantly better than
the random attack. The SWLDA classifier provided the
most accurate estimates, except for the experiment on the
PIN and the debit card.

The correct answer was found by the first guess in
20% of the cases for the experiment with the PIN, the
debit cards, people, and the ATM machine. The location
was exactly guessed for 30% of users, month of birth for
almost 60% and the bank based on the ATM machines
for almost 30%. All classifiers performed consistently
good on the location experiment where the users actively

concentrated by counting the occurrence of the correct
answer. SWLDA performed exceptionally good on the
month of birth experiment, even though this experiment
was carried out without counting.

Relative reduction of entropy In order to quantify the
information leak that the BCI attack provides, we com-
pare the Shannon entropies of guessing the correct an-
swer for the classifiers against the entropy of the random
guess attack.

This measure models the guessing attack as a random
experiment with the random variable X . Depending of
the displayed stimuli, X can take different values. For in-
stance, in the PIN experiment, the set of hypotheses con-
sists of the numbers 0 to 9 and the attack guess would
then take one out of these numbers. Now, let’s assume
we have no other information than the set of hypotheses.
Then we would guess each answer with equal probabil-
ity. This is the random attack. Let the number of possible
answers (the cardinality of the set of hypotheses) be K,
then the entropy of the random attack is log2(K).

More formally, let the ranking of a classifier clf be
a(clf) =

{
a(clf)
1 , ..., a(clf)

K

}
, where the first-ranked answer

is a(clf)
1 , the second-ranked answer is a(clf)

2 , and so on. Let

10

USENIX Association 	 21st USENIX Security Symposium  153

p(a(clf)
k) := p(X = a(clf)

k |a(clf)) be the probability that
the classifier ranks the correct answer at position k ∈ K.
Please note that the p(X = a(clf)

k) that we will use are
empirical relative frequencies obtained from the exper-
iments instead of true probability distributions. Using
these probabilities, the empirical Shannon entropy is

H(X|a(clf)) = −
K∑

k=1

p(a(clf)
k) log2

(
p(a(clf)

k)
)

(5)

In case of the random attack, the position of the cor-
rect answer is uniformly distributed, which results in the
said entropy H(X|a(rand)) = log2(K). In case of at-
tacking with a classifier, the attacker would pick a1, the
answer ranked highest, to maximize his success. As our
empirical results, depicted in Figure 9, suggest, the rank-
ings are not fully reliable, i.e. the answer ranked highest
is not always the correct answer. However, the ranking
statistics provide a new non-uniform distribution over the
set of possible answers. For instance, we know that for
bLogReg the empirical probability that the first-ranked
location is the correct one is p(X = a(bLogReg)

1) = 0.2,
the probability of the second-ranked answer to be correct
is also p(X = a(bLogReg)

2) = 0.2, and so on.
The redistributed success probabilities reduce the en-

tropy of the guessing experiment. We take the random
guess attack as the baseline and compare the entropies
of all other attacks against its entropy H(X|a(rand)). We
evaluate to what extent a generic classifier clf reduces the
entropy relative to H(X|a(rand)). The relative reduction
of entropy with respect to the random guess attack (in %)
is then:

r(clf) := 100
H(X|a(rand))−H(X|a(clf))

H(X|a(rand))

= 100

(
1− H(X|a(clf))

log2(K)

)
(6)

A perfect classifier always has the correct answer at
the first position, resulting in zero entropy and a relative
reduction r of 100%. A poor classifier provides a uni-
form distribution of the position of the correct rank. As a
consequence, its entropy would be maximal and the rel-
ative reduction r would be 0%. The entropy difference
directly measures the information leaked by an attack.
Thereby, comparing the classifier entropies in a relative
way enables one to compare results over different exper-
iments with different numbers of possible answers.

We report the relative reduction of entropy for each
experimental setting and for each classifier in Figure 10.
As one can see, the reduction approximately ranges from
15% to 40% for SWLDA and from 7% to 18% for the
two bLogReg variants. Please note that the plot does not
report the result of the classifier that has been trained on

the people experiment for this very experiment, as this
entropy reduction merely refers to the training error of
the classifier and provides no information on how well
the classifier generalizes to unseen data.

0 10 20 30 40 50

maps

pin

atm

debit

month

people

Reduction of entropy relative to random guess [%]

SWLDA
bLogReg
bLogreg, passive

Figure 10: Relative reduction of entropy with respect to
the random guess attack. The scale reaches from 0% (no
advantage over random guessing) to 100% (correct an-
swer always found). Please note that ’bLogReg, passive’
has been trained on the people experiment. We do not re-
port its score on this experiment, as it refers to the train-
ing error.

For most scenarios, the information leaked corre-
sponds to approximately 10% to 20% for the best clas-
sifier SWLDA with peaks for maps (32%) and month
(43%). The average information leak over all classifiers
in the maps experiment stands out compared to the other
result. The reason for this is that the maps experiment is
a counting experiment, in which the users were asked to
count the number of occurrences of the target stimulus.
This experiment was included to underline the improve-
ment in accuracy with a cooperative user.

Using Prior Knowledge to Improve Accuracy For
some secrets there exist global statistics that can improve
the success chances of the attack. For instance, often the
distribution of customers of different banks in a popula-
tion is approximately known. Also there might be prior
knowledge about the area someone lives in. We did not
include such prior knowledge in our experiments. How-
ever, such information could improve both the random
guess as well as the classifier guesses. Prior probabili-
ties could be included to Bayesian classifiers or could be
used for heuristically post-processing classifier output.

For some experiments such as the PINs and the month
of birth, the possible answers are approximately uni-
formly distributed, such that prior knowledge would pro-
vide no information. For other experiments prior knowl-
edge might simply be unavailable and thus can not be
used for more sophisticated models.

11

154  21st USENIX Security Symposium	 USENIX Association

6 Related work

In this section, we overview related papers that use EEG
signals in security-relevant applications.

EEG-based identification and authentication EEG
signal has successfully been used for user identification
(selecting the user identity out of a set of identities) and
user authentication (verifying if a claimed user identity
is true). In [30], the authors provide an overview of
cognitive biometrics, an emerging research area that in-
vestigates how different biosignals can be used for the
purpose of authentication and identification. The au-
thors cover recent papers on biometrics based on EEG,
the electrocardiogram (ECG), and the skin conductance,
also called electrodermal response (EDR). An identifi-
cation mechanism based on the alpha rhythm has been
proposed in [29]. The mechanism uses convex polygon
intersections to map new observations to a user iden-
tity. The authors report a high true positive rate of 95 %
and a true negative rate of 87 % for experiments on 79
users. In method proposed in [23] uses Gaussian mixture
models for user authentication. The authors test their
method with different authentication protocols and report
that with increasing temporal distance from the sign-up
phase, the accuracy degrades. Using a sign-up phase
over several days improves the accuracy. In [36] the
authors describe pass-thoughts, another authentication
mechanism that instead of typing a password requires the
user to think of a password. The idea is very similar to
the conventional P300-Speller scenario we mentioned in
Section 2. A matrix containing characters is shown to a
user and he focuses on the characters required to spell
the password. This way, many shoulder-surfing attacks
could be avoided. The main drawback of this authenti-
cation method (also mentioned by the authors) is a very
low throughput rate of the spelling, which is ≈ 5 char-
acters per minute for the 90% accuracy. Another prob-
lem is that the user gets no feedback until the complete
passphrase is spelled, and hence the whole process must
be repeated if a single character is wrongly classified.

More recently, in [15], the authors introduce a key-
generation technique resistant against coercion attacks.
The idea is to incorporate the user’s emotional status
through skin conductance measurements into the cryp-
tographic key generation. This way, the generated keys
contain a dynamic component that can detect whether a
user is forced to grant an access to the system. Skin con-
ductance is used as an indicator of the person’s overall
arousal state, i.e., the skin conductance of the victim in
a stressful scenario significantly changes compared to a
situation when the keys were generated.

Another highly related work to ours is described in
[37]. The authors exploit an ERP called N400 to detect

if a person is actively thinking about a certain stimuli
without explicitly looking at it. In contrast to the P300
which is related to attention, the N400 has been associ-
ated with semantic processing of words. For example,
in an experiment where subjects are shown incongruent
sentences like “I drink coffee with milk and socks”, the
amplitude of the N400 would be maximal at the last (in-
correct) word. This phenomenon is then used to detect
which out of several possible objects the user is actively
thinking of. While this paper is not focusing on security
issues but rather on assisting a user in efficient search,
the N400 could serve as another attack vector for similar
attacks as those described in this work.

While all listed contributions support our belief that
such devices may be used in everyday tasks, they fol-
low an orthogonal approach by considering how to assist
users in various tasks like, for instance, authentication.
Contrary to that, our objective is to turn the table and
to demonstrate that such technology might create signif-
icant threats to the security and privacy of the users.

Guilty-Knowledge Test The most closely related
work on EEG signals addresses using P300 in lie de-
tection, particularly in the so-called Guilty-Knowledge
Test (GKT) [3]. The operating hypothesis of the GKT is
that familiar items will evoke different responses when
viewed in the context of similar unfamiliar items. It has
been shown that the P300 can be used as a discriminative
feature in detecting whether or not the relevant informa-
tion is stored in the subject’s memory. For this reason,
a GKT based on the P300 has a promising use within
interrogation protocols that enable detection of poten-
tial criminal details held by the suspect, although some
data suggest low detection rates [13]. In contrast, recent
GKT experiments based on the P300 have reported de-
tection accuracies as high as 86% [1]. Of course, as with
the polygraph-based GKT, the P300-GKT is vulnerable
to specific countermeasures, but to a much lesser extent
[33, 34].

Such applications in interrogation protocols have quite
a number of differences from our work. For instance, we
concentrate on consumer-grade devices that have con-
siderably lower signal-to-noise ratios, therefore are more
difficult to analyze. The largest difference between our
approach and in the GTK is the attacker model. While
the GKT-interrogator has full control over the BCI user,
in that he can can attach high-precision electrodes in a
supportive way and force user to collaborate, our attacker
must use the low-cost gaming device selected and at-
tached by the user herself. This makes our attack consid-
erably harder. Moreover, while the GTK victim clearly
knows that she is interrogated and can prepare for that,
in our case the user does not know that she is attacked.
This might increase the validity of revealed information.

12

USENIX Association 	 21st USENIX Security Symposium  155

7 Discussion and Future Directions

In this section we discuss possible ways to defend against
the investigated attacks and describe potential future di-
rections.

Conscious Defenses Users of the BCI devices could
actively try to hinder probing by, for instance, concen-
trating on non-target stimuli. To give a concrete exam-
ple, users could count the number of occurrences of an
unfamiliar face in our people experiment. The effec-
tiveness of such defensive techniques has been tested in
the context of guilty knowledge tests, however, there is
no definitive conclusion on whether efforts to conceal
knowledge are effective [35] or ineffective [8]. It is im-
portant to notice that, as we mentioned before, our sce-
nario differs considerably from the GKT scenario. In our
case, we assume that the EEG application has control
of the user input for extended periods of time and that
it conceals the attack in the normal interaction with the
application. It would be difficult to imagine a realistic
scenario in which a concerned user could try to conceal
information from the EEG application for extended peri-
ods of normal usage.

An alternative to limiting the scope of the attacks pre-
sented in this paper is not to expose the raw data from
EEG devices to third-party applications. In this model,
the EEG vendor would create a restricted API that could
only access certain features of the EEG signal. For ex-
ample, applications could be restricted to accessing only
movement related information (reflected in the spectral
power). On the other hand, this poses higher perfor-
mance demands on the device and limits the potential of
developing third-party software.

Another possible way to deal with leaking informa-
tion through the P300 signal would be adding noise to
the EEG raw data before making it available to the appli-
cations that must use it. However, it would be difficult to
strike a balance between the security of such an approach
and the drawbacks in terms of decrease in accuracy of le-
gitimate applications.

Future Directions The overall success of these attacks
highly depends on the user’s attention to the stimuli.
Hence, there are still many open questions concerning
the trade-off between obtrusiveness (in order to increase
the user’s attention during the classification task) and
concealment to avoid the discovery of the attacker’s true
intentions. As part of our future work we intend to ex-
plore this trade-off in more detail. Specifically, by ask-
ing what is the impact of an uncooperative user who at-
tempts to “lie” during the attack, e.g., similar to guilty-
knowledge test settings? How can these attacks be made
more stealthy, i.e., to what extent can they be integrated

into some benign everyday tasks, games, or videos? How
effective is the social engineering approach? For exam-
ple, by offering fake monetary awards or by simply con-
fusing the user (such as asking him to verify whether his
PIN is truly random and telling him to count the number
of the PIN occurrences).

8 Conclusion

The broad field of possible applications and the techno-
logical progress of EEG-based BCI devices indicate that
their pervasiveness in our everyday lives will increase.
In this paper, we focus on the possibility of turning this
technology against the privacy of its users. We believe
that this is an important first step in understanding the
security and privacy implications of this technology.

In this paper, we designed and carried out a number of
experiments which show the feasibility of using a cheap
consumer-level BCI gaming device to partially reveal
private and secret information of the users. In these ex-
periments, a user takes part in classification tasks made
of different images (i.e., stimuli). By analyzing the cap-
tured EEG signal, we were able to detect which of the
presented stimuli are related to the user’s private or se-
cret information, like information related to credit cards,
PIN numbers, the persons known to the user, or the user’s
area of residence, etc. The experiments demonstrate that
the information leakage from the user, measured by the
information entropy is 10 %-20 % of the overall informa-
tion, which can increase up to ≈ 43 %.

The simplicity of our experiments suggests the pos-
sibility of more sophisticated attacks. For example, an
uninformed user could be easily engaged into “mind-
games” that camouflage the interrogation of the user and
make them more cooperative. Furthermore, with the ever
increasing quality of devices, success rates of attacks will
likely improve. Another crucial issue is that current APIs
available to third-party developers offer full access to the
raw EEG signal. This cannot be easily avoided, since the
complex EEG signal processing is outsourced to the ap-
plication. Consequently, the development of new attacks
can be achieved with relative ease and is only limited by
the attacker’s own creativity.

Acknowledgements
This work was supported in part by the National Sci-
ence Foundation under grants TRUST CCF-0424422 and
grant No. 0842695, by the Intel ISTC for Secure Com-
puting, and by the Carl-Zeiss Foundation.

Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
National Science Foundation.

13

156  21st USENIX Security Symposium	 USENIX Association

References

[1] ABOOTALEBI, V., MORADI, M. H., AND
KHALILZADEH, M. A. A new approach for
EEG feature extraction in P300-based lie detection.
Computer Methods and Programs in Biomedicine
94 (April 2009), 48–57.

[2] CAMPBELL, A., CHOUDHURY, T., HU, S.,
LU, H., MUKERJEE, M. K., RABBI, M., AND
RAIZADA, D. Neurophone: brain-mobile phone
interface using a wireless EEG headset. In Pro-
ceedings of the Second ACM SIGCOMM Workshop
on Networking, Systems, and Applications on Mo-
bile Handhelds (2010), MobiHeld ’10, pp. 3–8.

[3] COMMITTEE TO REVIEW THE SCIENTIFIC EVI-
DENCE ON THE POLYGRAPH. The Polygraph and
Lie Detection. Board on Behavioral Cognitive and
Sensory Sciences, National Research Council. The
National Academies Press, 2003.

[4] DELORME, A., AND MAKEIG, S. EEGLAB: an
open source toolbox for analysis of single-trial eeg
dynamics including independent component anal-
ysis. Journal of Neuroscience Methods 134, 1
(2004), 9–21.

[5] EMOTIV SYSTEMS. www.emotiv.com. (last ac-
cessed: Feb. 12 2012).

[6] ENGEL, J., KUHL, D. E., PHELPS, M. E., AND
CRANDALL, P. H. Comparative localization of foci
in partial epilepsy by PCT and EEG. Annals of Neu-
rology 12, 6 (1982), 529–537.

[7] FARWELL, L., AND DONCHIN, E. Talking off
the top of your head: toward a mental prosthesis
utilizing event-related brain potentials. Electroen-
cephalography and Clinical Neurophysiology 70, 6
(1988), 510 – 523.

[8] FARWELL, L., AND SMITH, S. Using brain mer-
mer testing to detect knowledge despite efforts to
conceal. Journal of Forensic Sciences 46, 2 (Jan
2001), 135–43.

[9] FISCHER, R. A. The use of multiple measurements
in taxonomic problems. Annals of Human Genetics
7, 2 (1936), 179–188.

[10] FLOR-HENRY, P., LANG, R., KOLES, Z., AND
FRENZEL, R. Quantitative EEG studies of pe-
dophilia. International Journal of Psychophysiol-
ogy 10, 3 (1991), 253 – 258.

[11] FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI,
R. Additive logistic regression: a statistical view
of boosting. Annals of Statistics 28 (1998), 2000.

[12] FRIEDMAN, J. H. Greedy function approximation:
A gradient boosting machine. Annals of Statistics
29 (2000), 1189–1232.

[13] GAMER, M. Does the guilty actions test allow for
differentiating guilty participants from informed in-
nocents? a re-examination. International Journal
of Psychophysiology 76 (apr 2010), 19–24.

[14] GRUZELIER, J., EGNER, T., AND VERNON, D.
Validating the efficacy of neurofeedback for opti-
mising performance. Event-Related Dynamics of
Brain Oscillations: Progress in Brain Research 159
(2006), 421–431.

[15] GUPTA, P., AND GAO, D. Fighting coercion at-
tacks in key generation using skin conductance. In
Proceedings of the 19th USENIX Conference on Se-
curity (2010), USENIX Security’10, pp. 30–30.

[16] HALGREN, E., MARINKOVIC, K., AND CHAU-
VEL, P. Generators of the late cognitive potentials
in auditory and visual oddball tasks. Electroen-
cephalography and Clinical Neurophysiology 106,
2 (1998), 156 – 164.

[17] HOFFMANN, U., GARCIA, G., VESIN, J.-M.,
DISERENS, K., AND EBRAHIMI, T. A boost-
ing approach to P300 detection with application
to brain-computer interfaces. In 2nd International
IEEE EMBS Conference on Neural Engineering
(2005), pp. 97 –100.

[18] INZLICHT, M., MCGREGOR, I., HIRSH, J. B.,
AND NASH, K. Neural markers of religious con-
viction. Psychological Science 20, 3 (2009), 385–
392.

[19] J. MALMIVUO AND R. PLONSEY. Bioelectromag-
netism: Principles and applications of bioelectric
and biomagnetic fields. http://www.bem.fi/book/
(last accessed: Feb. 16 2012).

[20] KROPOTOV, J. D., GRIN-YATSENKO, V. A.,
PONOMAREV, V. A., CHUTKO, L. S.,
YAKOVENKO, E. A., AND NIKISHENA, I. S.
ERPs correlates of EEG relative beta training
in ADHD children. International Journal of
Psychophysiology 55 (2004), 23–34.

[21] KRUSIENSKI, D. J., SELLERS, E. W.,
CABESTAING, F., BAYOUDH, S., MCFAR-
LAND, D. J., VAUGHAN, T. M., AND WOLPAW,
J. R. A comparison of classification techniques for
the P300 Speller. Journal of Neural Engineering
3, 4 (Dec. 2006), 299–305.

14

USENIX Association 	 21st USENIX Security Symposium  157

[22] LIN, C.-T., WU, R.-C., LIANG, S.-F., CHAO,
W., CHEN, Y.-J., AND JUNG, T.-P. EEG-based
drowsiness estimation for safety driving using in-
dependent component analysis. IEEE Transactions
On Circuits and Systems. Part I: Regular Papers
(2005), 2726–2738.

[23] MARCEL, S., AND MILLAN, J. Person authen-
tication using brainwaves (EEG) and maximum a
posteriori model adaptation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 29, 4
(April 2007), 743 –752.

[24] MEIJER, E., SMULDERS, F., AND WOLF, A. The
contribution of mere recognition to the P300 ef-
fect in a concealed information test. Applied Psy-
chophysiology and Biofeedback 34 (2009), 221–
226.

[25] NEUROSKY INC. www.neurosky.com. (last ac-
cessed: Feb. 11 2012).

[26] NIJHOLT, A. BCI for games: A ‘state of the art’
survey. In Proceedings of the 7th International
Conference on Entertainment Computing (2009),
ICEC ’08, pp. 225–228.

[27] POLICH, J. Updating P300: An integrative theory
of P3a and P3b. Clinical Neurophysiology 118, 10
(2007), 2128 – 2148.

[28] PORTAS, C. M., KRAKOW, K., ALLEN, P.,
JOSEPHS, O., ARMONY, J. L., AND FRITH, C. D.
Auditory processing across the sleep-wake cycle:
Simultaneous EEG and fMRI monitoring in hu-
mans. Neuron 28, 3 (2000), 991 – 999.

[29] POULOS, M., RANGOUSSI, M., CHRISSIKOPOU-
LOS, V., AND EVANGELOU, A. Parametric person
identification from the EEG using computational
geometry. In The 6th IEEE International Con-
ference on Electronics, Circuits and Systems (Sep
1999), vol. 2, pp. 1005 –1008 vol.2.

[30] REVETT, K., AND MAGALHES, S. T. Cognitive
biometrics: Challenges for the future. In Global
Security, Safety, and Sustainability, vol. 92. 2010,
pp. 79–86.

[31] ROS, T., MOSELEY, M. J., BLOOM, P. A., BEN-
JAMIN, L., PARKINSON, L. A., AND GRUZELIER,
J. H. Optimizing microsurgical skills with EEG
neurofeedback. BMC Neuroscience, 1 (2009), 10–
87.

[32] ROSENFELD, J. P., BIROSCHAK, J. R., AND
FUREDY, J. J. P300-based detection of concealed

autobiographical versus incidentally acquired in-
formation in target and non-target paradigms. Inter-
national Journal of Psychophysiology 60, 3 (2006),
251 – 259.

[33] ROSENFELD, J. P., AND LABKOVSKY, E. New
P300-based protocol to detect concealed informa-
tion: Resistance to mental countermeasures against
only half the irrelevant stimuli and a possible ERP
indicator of countermeasures. Psychophysiology
47, 6 (2010), 1002–1010.

[34] ROSENFELD, J. P., SOSKING, M., BOSH, G.,
AND RYAN, A. Simple, effective countermeasures
to P300-based tests of detection of concealed infor-
mation. Psychophysiology 41, 1 (2004), 205–219.

[35] ROSENFELD, J. P., SOSKINS, M., BOSH, G., AND
RYAN, A. Simple, effective countermeasures to
P300-based tests of detection of concealed infor-
mation. Psychophysiology 41 (mar 2004), 208.

[36] THORPE, J., VAN OORSCHOT, P. C., AND SO-
MAYAJI, A. Pass-thoughts: authenticating with
our minds. In Proceedings of the 2005 Workshop
on New Security Paradigms (New York, NY, USA,
2005), NSPW ’05, ACM, pp. 45–56.

[37] VAN VLIET, M., MHL, C., REUDERINK, B., AND
POEL, M. Guessing what’s on your mind: Using
the n400 in brain computer interfaces. vol. 6334.
2010, pp. 180–191. 10.1007/978-3-642-15314-
3 17.

[38] WAISMANN, R., FENWICK, P., WILSON, G.,
HEWETT, D., AND LUMSDEN, J. EEG responses
to visual erotic stimuli in men with normal and
paraphilic interests. Archives of Sexual Behavior
32 (2003), 135–144. 10.1023/A:1022448308791.

[39] WILSON, G. F., AND RUSSELL, C. A. Operator
functional state classification using multiple psy-
chophysiological features in an air traffic control
task. The Journal of the Human Factors and Er-
gonomics 45, 3 (2003), 381–389.

A Session Script

Preparation. “We will now run a series of experi-
ments. Each one of them takes approximately 1.30 min-
utes. Please find a comfortable position. Please try to
stay still and not move your face.” (Participants are
shown EEG feed and show the effects if the participants
move their body and face)

15

158  21st USENIX Security Symposium	 USENIX Association

Training. “We will now run through a basic experi-
ment to train our software. The system will display a ran-
dom sequence of digits zero through nine. Please count
the number of times [x] is shown. Please do not count the
occurrences of a different number or otherwise attempt to
fool the system.”

Password. “Please choose and write down a 4 digit
PIN and keep it by yourself. Do not show it to me and
do not use a PIN code that you normally use.”

“There are no special instructions for this experiment.
However, at the end of this experiment, you will have to
enter the first digit of the PIN you just chose.”

Banks ATM. “Are you a customer of any of those ten
banks on the list?”
“Are you a customer with just one?”
(If yes to both) “For this experiment, instructions are dis-
played on-screen”

Message on screen: What is the name of your bank?

Banks Debit Cards. “For this experiment, instructions
are displayed on-screen”
Message on screen: What is the name of your bank?

Geographic Location. “Do you live close to campus?”
If yes: “Instructions are displayed on-screen.”
Message on screen: Where do you live? Count the num-
ber of occurrences.

Month of Birth. “Instructions are displayed on-
screen”
Message on screen: When were you born?

People “For this experiment, instructions are displayed
on-screen”
Message on screen: Do you know any of these people?

16

USENIX Association 	 21st USENIX Security Symposium  159

Whispers in the Hyper-space:
High-speed Covert Channel Attacks in the Cloud

Zhenyu Wu Zhang Xu Haining Wang
The College of William and Mary
{adamwu, zxu, hnw}@cs.wm.edu

Abstract
Information security and privacy in general are major
concerns that impede enterprise adaptation of shared or
public cloud computing. Specifically, the concern of vir-
tual machine (VM) physical co-residency stems from the
threat that hostile tenants can leverage various forms of
side channels (such as cache covert channels) to exfil-
trate sensitive information of victims on the same physi-
cal system. However, on virtualized x86 systems, covert
channel attacks have not yet proven to be practical, and
thus the threat is widely considered a “potential risk”.
In this paper, we present a novel covert channel attack
that is capable of high-bandwidth and reliable data trans-
mission in the cloud. We first study the application of
existing cache channel techniques in a virtualized envi-
ronment, and uncover their major insufficiency and dif-
ficulties. We then overcome these obstacles by (1) re-
designing a pure timing-based data transmission scheme,
and (2) exploiting the memory bus as a high-bandwidth
covert channel medium. We further design and imple-
ment a robust communication protocol, and demonstrate
realistic covert channel attacks on various virtualized x86
systems. Our experiments show that covert channels do
pose serious threats to information security in the cloud.
Finally, we discuss our insights on covert channel miti-
gation in virtualized environments.

1 Introduction

Cloud vendors today are known to utilize virtualization
heavily for consolidating workload and reducing man-
agement and operation cost. However, due to the relin-
quished control from data owners, data in the cloud is
more susceptible to leakage by operator errors or theft
attacks. Cloud vendors and users have used a number
of defense mechanisms to prevent data leakage, ranging
from network isolation to data encryption. Despite the
efforts being paid on information safeguarding, there re-

main potential risks of data leakage, namely the covert
channels in the cloud [14, 18, 22, 24, 30, 31].

Covert channels exploit imperfections in the isolation
of shared resources between two unrelated entities, and
enable communications between them via unintended
channels, bypassing mandatory auditing and access con-
trols placed on standard communication channels. Pre-
vious research has shown that on a non-virtualized sys-
tem, covert channels can be constructed using a variety of
shared media [3, 12, 16, 19, 23]. However, to date there
is no known practical exploit of covert channels on vir-
tualized x86 systems.

Exposing cloud computing to the threat of covert
channel attacks, Ristenpart et al. [18] have implemented
an L2 cache channel in Amazon EC2 [18], achieving a
bandwidth of 0.2 bps (bits-per-second), far less than the
one bps “acceptable” threshold suggested by the Trusted
Computer System Evaluation Criteria (TCSEC, a.k.a. the
“Orange Book”) [5]. A subsequent measurement study
of cache covert channels [30] has achieved slightly im-
proved speeds—a theoretical channel capacity of 1.77
bps1. Given such low reported channel capacities from
previous research, it is widely believed that covert chan-
nel attacks could only do very limited harm in the cloud
environment. Coupled with the fact that the cloud ven-
dors impose non-trivial extra service charges for provid-
ing physical isolation, one might be tempted to disregard
the concerns of covert channels as only precautionary,
and choose the lower cost solutions.

In this paper, we show that the threat of covert channel
attacks in the cloud is real and practical. We first study
existing cache covert channel techniques and their ap-
plications in a virtualized environment. We reveal that
these techniques are rendered ineffective by virtualiza-
tion, due to three major insufficiency and difficulties,
namely, addressing uncertainty, scheduling uncertainty,

1This value is derived from the results presented in the original
paper—a bandwidth of 3.20 bps with an error rate of 9.28%, by as-
suming a binary symmetric channel.

160  21st USENIX Security Symposium	 USENIX Association

and cache physical limitations. We tackle the address-
ing and scheduling uncertainty problems by designing
a pure timing-based data transmission scheme with re-
laxed dependencies on precise cache line addressing and
scheduling patterns. Then, we overcome the cache phys-
ical limitations by discovering a high-bandwidth mem-
ory bus covert channel, exploiting the atomic instructions
and their induced cache–memory bus interactions on x86
platforms. Unlike cache channels, which are limited to a
physical processor or a silicon package, the memory bus
channel works system-wide, across physical processors,
making it a very powerful channel for cross–VM covert
data transmission.

We further demonstrate the real world exploitability
of the memory bus covert channel by designing a ro-
bust data transmission protocol and launching realistic
attacks on our testbed server as well as in the Amazon
EC2 cloud. We observe that the memory bus covert chan-
nel can achieve (1) a bandwidth of over 700 bps with
extremely low error rate in a laboratory setup, and (2) a
real world transmission rate of over 100 bps in the Ama-
zon EC2 cloud. Our experimental results show that, con-
trary to previous research and common beliefs, covert
channels are able to achieve high bandwidth and reliable
transmission on today’s x86 virtualization platforms.

The remainder of this paper is structured as follows.
Section 2 surveys related work on covert channels. Sec-
tion 3 describes our analysis of the reasons that existing
cache covert channels are impractical in the cloud. Sec-
tion 4 details our exploration of building high-speed, re-
liable covert channels in a virtualized environment. Sec-
tion 5 presents our evaluation of launching covert chan-
nel attacks using realistic setups. Section 6 provides a
renewed view of the threats of covert channels in the
cloud, and discusses plausible mitigation avenues. Sec-
tion 7 concludes this paper.

2 Related Work

Covert channel is a well known type of security attack
in multi-user computer systems. Originated in 1972 by
Lampson [12], the threats of covert channels are preva-
lently present in systems with shared resources, such
as file system objects [12], virtual memory [23], net-
work stacks and channels [3, 19, 20], processor caches
[16, 24], input devices [21], etc. [5, 13].

Compared to other covert channel media, the proces-
sor cache is more attractive for exploitation, because
its high operation speed could yield high channel band-
width and the low level placement in the system hierar-
chy can bypass many high level isolation mechanisms.
Thus, cache-based covert channels have attracted serious
attention in recent studies.

Percival [16] introduced a technique to construct inter-
process high bandwidth covert channels using the L1 and
L2 caches, and demonstrated a cryptographic key leak-
age attack through the L1 cache side channel. Wang and
Lee [24] deepened the study of processor cache covert
channels, and pointed out that the insufficiency of soft-
ware isolation in virtualization could lead to cache-based
cross–VM covert channel attacks. Ristenpart et al. [18]
further exposed cloud computing to covert channel at-
tacks by demonstrating the feasibility of launching VM
co-residency attacks, and creating an L2 cache covert
channel in the Amazon EC2 cloud. Xu et al. [30] con-
ducted a follow up measurement study on L2 cache
covert channels in a virtualized environment. Based on
their measurement results, they concluded that the harm
of data exfiltration from cache covert channels is quite
limited due to low achievable channel capacity.

In response to the discovery of cache covert channel
attacks, a series of architectural solutions have been pro-
posed to limit cache channels, including RPcache [24],
PLcache [11], and Newcache [25]. RPcache and New-
cache employ randomization to prevent data transmis-
sion by establishing a location-based coding scheme.
PLcache, however, is based on enforcing resource iso-
lation by cache partitioning.

One drawback of hardware-based solutions is their
high adaptation cost and latency. With the goal of of-
fering immediately deployable protection, HomeAlone
[31] proposes to proactively detect the co-residence of
unfriendly VMs. Leveraging the knowledge of existing
cache covert channel techniques [16, 18], HomeAlone
detects the presence of a malicious VM by acting like
a covert channel receiver and observing cache timing
anomalies caused by another receiver’s activities.

The industry has taken a more pragmatic approach
to mitigating covert channel threats. The Amazon EC2
cloud provides a featured service called dedicated in-
stances [1], which ensures VMs belonging to each tenant
of this service do not share physical hardware with any
other cloud tenants’ VMs. This service effectively elimi-
nates various covert channels induced by the shared plat-
form hardware, including cache covert channel. How-
ever, in order to enjoy this service, the cloud users have
to pay a significant price premium2.

Of historical interest, the study of covert channels in
virtualized systems is far from a brand new research
topic—legacy research that pioneered this field dates
back over 30 years. During the development of the VAX
security kernel, a significant amount of effort has been

2As of the time of writing (January, 2012), each dedicated instance
incurs a 23.5% higher per-hour cost than regular usage. In addition,
there is a $10 fee per hour/user/region. Thus, for a user of 20 small
instances, the overall cost of using dedicated instances is 6.12 times
more than that of using regular instances.

USENIX Association 	 21st USENIX Security Symposium  161

Algorithm 1 Classic Cache Channel Protocol
Cache[N]: A shared processor cache, conceptually divided into N regions;
Cache[N]: Each cache region can be put in one of two states, cached or flushed.
DSend [N], DRecv[N]: N bit data to transmit and receive, respectively.
Sender Operations: Receiver Operations:

(Wait for receiver to initialize the cache)

for i := 0 to N −1 do
{Put Cache[i] into the cached state}
Access memory maps to Cache[i];

end for

for i := 0 to N −1 do
if DSend [i] = 1 then

{Put Cache[i] into the flushed state}
Access memory maps to Cache[i];

end if
end for

(Wait for sender to prepare the cache)

(Wait for receiver to read the cache)

for i := 0 to N −1 do
Timed access memory maps to Cache[i];
{Detect the state of Cache[i] by latency}
if AccessTime > T hreshold then

DRecv[i] := 1; {Cache[i] is flushed}
else

DRecv[i] := 0; {Cache[i] is cached}
end if

end for

paid to limit covert channels within the Virtual Machine
Monitor (VMM). Hu [8, 9] and Gray [6, 7] have pub-
lished a series of follow up research on mitigating cache
channels and bus contention channels, using timing noise
injection and lattice scheduling techniques. However,
this research field has lost its momentum until recently,
probably due to the cancellation of the VAX security ker-
nel project, as well as the lack of ubiquity of virtualized
systems in the past.

3 Struggles of the Classic Cache Channels

Existing cache covert channels (namely, the classic cache
channels) employ variants of Percival’s technique, which
uses a hybrid timing and storage scheme to transmit in-
formation over a shared processor cache, as described in
Algorithm 1.

The classic cache channels work very well on hyper-
threaded systems, achieving transmission rates as high as
hundreds of kilobytes per second [16]. However, when
applied in today’s virtualized environments, the achiev-
able rates drop drastically, to only low single-digit bits
per second [18, 30]. The multiple orders of magnitude
reduction in channel capacity clearly indicates that the
classic cache channel techniques are no longer suit-
able for cross–VM data transmission. In particular, we
found that on virtualized platforms, the data transmis-

sion scheme of a classic cache channel suffers three ma-
jor obstacles—addressing uncertainty, scheduling uncer-
tainty, and cache physical limitation.

3.1 Addressing Uncertainty
Classic cache channels modulate data by the states of
cache regions, and hence a key factor affecting chan-
nel bandwidth is the number of regions a cache being
divided. From information theory’s perspective, a spe-
cific cache region pattern is equivalent to a transmitted
symbol. And the number of regions in a cache thus cor-
responds to the number of symbols in the alphabet set.
The higher symbol count in an alphabet set, the more in-
formation can be passed per symbol.

On hyper-threaded single processor systems, for
which classic cache channels are originally designed, the
sender and receiver are executed on the same processor
core, using the L1 cache as the transmission medium.
Due to its small capacity, the L1 cache has a special
property that its storage is addressed purely by virtual
memory addresses, a technique called VIVT (virtually
indexed, virtually tagged). With a VIVT cache, two pro-
cesses can impact the same set of associative cache lines
by performing memory operations with respect to the
same virtual addresses in their address spaces, as illus-
trated in Figure 1(a). This property enables processes to
precisely control the status of the cache lines, and thus

162  21st USENIX Security Symposium	 USENIX Association



 















L1 Cache

(VIVT)

(a)




L2 Cache

(VIPT / PIPT)



Host

Physical

Address

Host

Physical

Address



 Guest

Physical

Address

Guest

Physical

Address

(b)

Figure 1: Memory Address to Cache Line Mappings for L1 and L2 Caches

allows for the L1 cache to be finely divided, such as 32
regions in Percival’s cache channel [16].

However, on today’s production virtualization sys-
tems, hyper-threading is commonly disabled for security
reasons (i.e., eliminating hyper-threading induced covert
channels). Therefore, the sender and receiver could only
communicate by interleaving their executions. Since the
L1 cache is completely flushed at context switches, only
those higher level caches (e.g., the L2 cache) whose con-
tents are preserved across a context switch can be lever-
aged for classic cache channel transmission. Unlike the
L1 cache, the storage in these higher level caches is
not addressed purely by virtual memory addresses, but
either by physical memory addresses (PIPT, physically
indexed, physically tagged), or by a mixture of virtual
and physical memory addresses (VIPT, virtually indexed,
physically tagged). With physical memory addresses in-
volved in cache line addressing, given only knowledge of
its virtual address space, a process cannot be completely
certain of the cache line a memory access would affect
due to address translation.

Server virtualization has further complicated the ad-
dressing uncertainty by adding another layer of indirec-
tion to memory addressing. As illustrated in Figure 1(b),
the “physical memory” of a guest VM is still virtualized,
and access to it must be further translated. As a result, it
is very difficult, if not impossible, for a process in a guest
VM (especially for a full virtualization VM) to discover
the actual physical memory addresses of a memory re-
gion. Due to the addressing uncertainty, for classic covert
channels on virtualized systems, the number of cache re-
gions is reduced to a minimum of only two [18, 30].

3.2 Scheduling Uncertainty
Classic cache channel data transmission depends on a
cache pattern “round-trip”—the receiver completely re-
sets the cache and correctly passes it to the sender; and
the sender completely prepares the cache pattern and cor-

rectly passes it back to the receiver. Therefore, to suc-
cessfully transmit one cache pattern, the sender and re-
ceiver must be strictly round-robin scheduled.

However, without special scheduling arrangements
(i.e., collusion) from the hypervisor, such idealistic
scheduling rarely happens. On production virtualized
systems, the physical processors are usually oversub-
scribed in order to increase utilization. In other words,
each physical processing core serves more than one vir-
tual processor from different VMs. As a result, there exist
many scheduling patterns that prevent successful cache
pattern “round-trip”, such as:

∗ Channel not cleared for send: The receiver is de-
scheduled before it finishes resetting the cache.

∗ Channel invalidated for send: The receiver finishes
resetting the cache, but another unrelated VM is
scheduled to run immediately after.

∗ Sending incomplete: The sender is de-scheduled be-
fore it finishes preparing the cache.

∗ Symbol destroyed: The sender finishes preparing the
cache, but another unrelated VM is scheduled to run
immediately after.

∗ Receiving incomplete: The receiver is de-scheduled
before it finishes reading the cache.

∗ Channel access collision: The sender and receiver
are executed in parallel on processor cores that share
the L2 cache.

Xu et al. [30] have clearly illustrated the problem of
scheduling uncertainty in two of their measurements.
First, in a laboratory setup, the error rate of their covert
channel increases from near 1% to 20–30% after adding
just one non-participating VM with moderate workload.
Second, in the Amazon EC2 cloud, they have discov-
ered that only 10.5% of the cache measurements at the
receiver side are valid for data transmission, due to the
fact that the hypervisor’s scheduling is different from the
idealistic scheduling.

USENIX Association 	 21st USENIX Security Symposium  163

Algorithm 2 Timing-based Cache Channel Protocol
CLines: Several sets of associative cache lines picked by both the sender and the receiver;
CLines: These cache lines can be put in one of two states, cached or flushed.
DSend [N], DReceive[N]: N bit data to transmit and receive, respectively.
Sender Operations: Receiver Operations:
for i := 0 to N −1 do

if DSend [i] = 1 then
for an amount of time do

{Put CLines into the flushed state}
Access memory maps to CLines;

end for
else

{Leave CLines in the cached state}
Sleep of an amount of time;

end if
end for

for i := 0 to N −1 do
for an amount of time do

Timed access memory maps to CLines;
end for
{Detect the state of CLines by latency}
if Mean(AccessTime)> T hreshold then

DReceive[i] := 1; {CLines is flushed}
else

DReceive[i] := 0; {CLines is cached}
end if

end for

3.3 Cache Physical Limitation

Besides the two uncertainties, classic cache channels also
face an insurmountable limitation—the necessity of a
shared and stable cache.

If the sender and receiver of classic cache channels are
executed on processor cores that do not share any cache,
obviously no communication could be established. On a
multi-processor system, it is quite common to have pro-
cessor cores that do not share any cache, since there is
usually no shared cache between different physical pro-
cessors. And sometimes even processor cores residing on
the same physical processor do not share any cache, such
as an Intel Core2 Quad processor, which contains two
dual-core silicon packages with no shared cache in be-
tween.

Even if the sender and receiver could share a cache,
external interferences can make the cache unstable. Mod-
ern multi-core processors often include a large last-level
cache (LLC) shared between all processor cores. To fa-
cilitate a simpler cache coherence protocol, the LLC usu-
ally employs an inclusive principle, which requires that
all data contained in the lower level caches must also
exist in the LLC. In other words, when a cache line
is evicted from the LLC, it must also be evicted from
all the lower level caches. Thus, any non-participating
processes executing on those processor cores that share
the LLC with the sender and receiver can interfere with
the communication by indirectly evicting the data in the
cache used for the covert channel. The more cores on a
processor, the higher the interference.

Overall, virtualization induced changes to cache oper-
ations and process scheduling render the data transmis-
sion scheme of classic cache channels obsolete. First, the
effectiveness of data modulation is severely reduced by
addressing uncertainty. Second, the critical procedures of

signal generation, delivery, and detection are frequently
interrupted by less-than-ideal scheduling patterns. And
finally, the fundamental requirement of stably shared
cache is hard to satisfy as processors are having more
cores.

4 Covert Channel in the Hyper-space

In this section, we present our techniques to tackle the ex-
isting difficulties and develop a high-bandwidth, reliable
covert channel on virtualized x86 systems. At first, we
describe our redesigned, pure timing-based data trans-
mission scheme, which overcomes the negative effects of
addressing and scheduling uncertainties with a simplified
design. After that, we detail our findings of a powerful
covert channel medium, exploiting the atomic instruc-
tions and their induced cache–memory bus interactions
on x86 platforms. And finally, we specify our designs of
a high error-tolerance transmission protocol for cross–
VM covert channels.

4.1 A Stitch In Time
We first question the reasoning behind using cache state
patterns for data modulation. Originally, Percival [16]
designed this transmission scheme mainly for the use
of side channel cryptographic key stealing on a hyper-
threaded processor. In this specific usage context, the
critical information of memory access patterns are re-
flected by the states of cache regions. Therefore, cache
region-based data modulation is an important source of
information. However, in a virtualized environment, the
regions of the cache no longer carry useful informa-
tion due to addressing uncertainty, making cache region-
based data modulation a great source of interference.

We therefore redesign a data transmission scheme for
the virtualized environment. Instead of using the cache

164  21st USENIX Security Symposium	 USENIX Association



 

















    













Figure 2: Timing-based Cache Channel Bandwidth Test

region-based encoding scheme, we modulate the data
based on the state of cache lines over time, resulting in a
pure timing-based transmission protocol, as described in
Algorithm 2.

Besides removing cache region-based data modula-
tion, the new transmission scheme also features a signif-
icant change in the scheduling requirement, i.e., signal
generation and detection are performed instantaneously,
instead of being interleaved. In other words, data are
transmitted while the sender and receiver run in parallel.
This requirement is more lenient than strict round-robin
scheduling, especially with the trend of increasing num-
ber of cores on a physical processor, making two VMs
more likely to run in parallel than interleaved.

We conduct a simple raw bandwidth estimation exper-
iment to demonstrate the effectiveness of the new cache
covert channel. In this experiment, interleaved bits of ze-
ros and ones are transmitted, and the raw bandwidth of
the channel can thus be estimated by manually counting
the number of bits transmitted over a period of time.

We build the cache covert channel on an Intel Core2
system with two processor cores sharing a 2 MB 8-way
set-associative L2 cache. Using a simple profiling test,
accessing a random3 sequence of memory addresses sep-
arated by multiples of 256KB, we observe that these
memory addresses can be mapped to up to 64 cache
lines. Therefore, we select CLines as a set of 64 cache
lines mapped by memory addresses following the pattern
M+X ·256K, where M is a small constant and X is a ran-
dom positive integer. The sender puts these cache lines
into the flushed state by accessing a sequence of CLines-
mapping memory addresses. The receiver times the ac-
cess latency of another sequence of CLines-mapping
memory addresses. The length of the receivers access se-
quence should be smaller than, but not too far away from
the cache line set size, for example, 48.

As shown in Figure 2, the x-value of each sample
point is the observed memory access latency by the re-
ceiver, and the trend line is created by plotting the mov-

3The randomness is introduced to avoid the interference of hard-
ware prefetching.

ing average of two samples. According to the measure-
ment results, 39 bits can be transmitted over a period
of 200 micro-seconds, yielding a raw bandwidth of over
190.4 kilobits per second, about five orders of magni-
tude higher than the previously studied cross–VM cache
covert channels.

Having resolved the negative effects of addressing and
scheduling uncertainties and achieved a high raw band-
width, our new cache covert channel, however, still per-
forms poorly on the system with non-participating work-
loads. We discover that the sender and receiver have dif-
ficulty in establishing a stable communication channel.
And the cause of instability is that the hypervisor fre-
quently migrates the virtual processors across physical
processor cores, which is also observed by Xu et al.
[30]. The outgrowth of this behavior is that the sender
and receiver frequently reside on processor cores that do
not share any cache, making our cache channel run into
the insurmountable cache physical limitation just like the
classic cache channels.

4.2 Aria on the B-String
The prevalence of virtual processor core migration hand-
icaps cache channels in cross–VM covert communica-
tion. In order to reliably establish covert channels across
processor cores that do not share any cache, a commonly
shared and exploitable resource is needed as the commu-
nication medium. And the memory bus comes into our
sight as we extend our scope beyond the processor cache.

4.2.1 Background

Interconnecting the processors and the system main
memory, the memory bus is responsible for delivering
data between these components. Because contention on
the memory bus results in a system-wide observable ef-
fect of increased memory access latency, a covert chan-
nel can be created by programmatically triggering con-
tention on the memory bus. Such a covert channel is
called a bus-contention channel.

The bus contention channels have long been studied
as a potential security threat for virtual machines on the
VAX VMM, on which a number of techniques have been
developed [6–8] to effectively mitigate this threat. How-
ever, the x86 platforms we use today are significantly
different from the VAX systems, and we suspect similar
exploits can be found by probing previously unexplored
techniques. Unsurprisingly, by carefully examining the
memory related operations of the x86 platform, we have
discovered a bus-contention exploit using atomic instruc-
tions with exotic operands.

Atomic instructions are special x86 memory manipu-
lation instructions, designed to facilitate multi-processor

USENIX Association 	 21st USENIX Security Symposium  165

Algorithm 3 Timing-based Memory Bus Channel Protocol
MExotic: An exotic configuration of a memory region that spans two cache lines.
DSend [N], DRecv[N]: N bit data to transmit and receive, respectively.
Sender Operations: Receiver Operations:
for i := 0 to N −1 do

if DSend [i] = 1 then
for an amount of time do

{Put memory bus into contended state}
Perform atomic operation with MExotic;

end for
else

{Leave memory bus in contention-free state}
Sleep of an amount of time;

end if
end for

for i := 0 to N −1 do
for an amount of time do

Timed uncached memory access;
end for
{Detect the state of memory bus by latency}
if Mean(AccessTime)> T hreshold then

DRecv[i] := 1; {Bus is contended}
else

DRecv[i] := 0; {Bus is contention-free}
end if

end for

synchronization, such as implementing mutexes and
semaphores—the fundamental building blocks for par-
allel computation. Memory operations performed by
atomic instructions (namely, atomic memory operations)
are guaranteed to complete uninterrupted, because ac-
cesses to the affected memory regions by other proces-
sors or devices are temporarily blocked from execution.

4.2.2 Analysis

Atomic memory operations, by their design, generate
system-wide observable contentions in the target mem-
ory regions they operate on. And this particular feature
of atomic memory operations caught our attention. Ide-
ally, contention generated by an atomic memory oper-
ation is well bounded, and is only evident when the
affected memory region is accessed in parallel. Thus,
atomic memory operations are not exploitable for cross–
VM covert channels, because VMs normally do not im-
plicitly share physical memory. However, we have found
out that the hardware implementations of atomic mem-
ory operations do not match the idealistic specification,
and memory contentions caused by atomic memory op-
erations could propagate much further than expected.

Early generations (before Pentium Pro) of x86 proces-
sors implement atomic memory operations by using bus
lock, a dedicated hardware signal that provides exclusive
access of the memory bus to the device who asserts it.
While providing a very convenient means to implement
atomic memory operations, the sledgehammer-like ap-
proach of locking the memory bus results in system-wide
memory contention. In addition to being exploitable
for covert channels, the bus-locking implementation of
atomic memory operations also causes performance and
scalability problems.

Modern generations (before Intel Nehalem and AMD
K8/K10) of x86 processors improve the implementa-
tion of atomic memory operations by significantly re-

ducing the likelihood of memory bus locking. In par-
ticular, when an atomic operation is performed on a
memory region that can be entirely cached by a cache
line, which is a very common case, the corresponding
cache line is locked, instead of asserting the memory bus
lock [10]. However, on these platforms, atomic mem-
ory operations can still be exploited for covert chan-
nels, because the triggering conditions for bus-locking
are not eliminated. Specifically, when atomic opera-
tions are performed on memory regions with an exotic4

configuration—unaligned addresses that span two cache
lines, atomicity cannot be ensured by cache line locking,
and bus lock signals are thus asserted.

Remarkable architecture evolutions have taken place
in the latest generations (Intel Nehalem and AMD
K8/K10) of x86 processors, one of which is the removal
of the shared memory bus. On these platforms, instead
of having a unified central memory storage for the entire
system, the main memory is divided into several pieces,
each assigned to a processor as its local storage. While
each processor has direct access to its local memory,
it can also access memory assigned to other processors
via a high-speed inter-processor link. This non-uniform
memory access (NUMA) design eliminates the bottle-
neck of a single shared memory bus, and thus greatly
improves processor and memory scalability. As a side
effect, the removal of the shared memory bus has seem-
ingly invalidated memory bus covert channel techniques
at their foundation. Interestingly, however, the exploit
of atomic memory operation continues to work on the
newer platforms, and the reason for this requires a bit
more in-depth explanation.

On the latest x86 platforms, normal atomic memory
operations (i.e., operating on memory regions that can be

4The word “exotic” here only means that it is very rare to encounter
such an unaligned memory access in modern programs, due to auto-
matic data field alignments by the compilers. However, manually gen-
erating such an access pattern is very easy.

166  21st USENIX Security Symposium	 USENIX Association



 















     













(a) Intel Core2, Hyper-V, Windows Guest VMs


 



















     













(b) Intel Xeon (Nehalem), Xen, Linux Guest VMs

Figure 3: Timing-based Memory Bus Channel Bandwidth Tests

cached by a single cache line) are handled by the cache
line locking mechanism similar to that of the previous
generation processors. However, for exotic atomic mem-
ory operations (i.e., operating on cache-line-crossing
memory regions), because there is no shared memory bus
to lock, the atomicity is achieved by a set of much more
complex operations: all processors must coordinate and
completely flush in-flight memory transactions that are
previously issued. In a sense, exotic atomic memory op-
erations are handled on the newer platform by “emulat-
ing” the bus locking behavior of the older platforms. As
a result, the effect of memory access delay is still observ-
able, despite the absence of the shared memory bus.

4.2.3 Verification

With the memory bus exploit, we can easily build a mem-
ory bus covert channel by adapting our timing-based
cache transmission scheme with minor modifications, as
shown in Algorithm 3.

Compared with Algorithm 2, there are only two dif-
ferences in the memory bus channel protocol. First, we
substitute the set of cache lines (CLines) with the mem-
ory bus as the transmission medium. Similar to the cache
lines, the memory bus can also be put in two states, con-
tended and contention-free, depending on whether ex-
otic atomic memory operations are performed. Second,
instead of trying to evict contents of the selected cache
lines, the sender changes the memory bus status by per-
forming exotic atomic memory operations. And corre-
spondingly, the receiver must make uncached memory
accesses to detect contentions.

We demonstrate the effectiveness of the memory bus
channel by performing bandwidth estimation experi-
ments, similar to the one in Section 4.1, on two sys-
tems running different generations of platforms, hyper-
visors and guest VMs. Specifically, the first system uses
an older shared memory bus platform and runs Hyper-V
with Windows guest VMs, while the second system uti-
lizes the newer platform without a shared memory bus

and runs Xen with Linux guest VMs. As Figure 3 shows,
the x-value of each sample point is the observed mem-
ory access latency by the receiver, and the trend lines are
created by plotting the moving average of two samples.
According to the measurement results, on both systems,
39 bits can be transmitted over a period of 1 millisec-
ond, yielding a raw bandwidth of over 38 kilobits per
second. Although an order of magnitude lower in band-
width than our cache channel, the memory bus channel
enjoys its unique advantage of working across different
physical processors. And notably, the same covert chan-
nel implementation works on both systems, regardless of
the guest operating systems, hypervisors, and hardware
platform generations.

4.3 Whispering into the Hyper-space

We have demonstrated that the memory bus channel is
capable of achieving high speed data transmission on vir-
tualized systems. However, the preliminary protocol de-
scribed in Algorithm 3 is prone to errors and failures in a
realistic environment, because the memory bus is a very
noisy channel, especially on virtualized systems running
many non-participating workloads.

Figure 4 presents a realistic memory bus channel
sample, taken using a pair of physically co-resident
VMs in the Amazon EC2 cloud. From this figure, we
can observe that both the “contention free” and “con-
tended” signals are subject to frequent interferences. The
“contention free” signals are intermittently disrupted by
workloads of other non-participating VMs, causing the
memory access latency to moderately raise above the
baseline. In contrast, the “contended” signals experience
much heavier interferences, which originate from two
sources: scheduling and non-participating workloads.
The scheduling interference is responsible for the peri-
odic drop of memory access latency. In particular, con-
text switches temporarily de-schedule the sender process
from execution, and thereby briefly relieving memory
bus contention. The non-participating workloads exe-

USENIX Association 	 21st USENIX Security Symposium  167



 















    

















Figure 4: Memory Bus Channel Quality Sample in EC2

cuted in parallel with the sender process worsen memory
bus contention and cause the spikes in the figure, while
non-participating workloads executed concurrently with
the sender process reduce memory bus contention, and
result in the dips in the figure. All these interferences can
degrade the signal quality in the channel, and make what
the receiver observes different from what the sender in-
tends to generate, which leads to bit-flip errors.

Besides the observable interferences shown in Fig-
ure 4, there are also unobservable interferences, i.e., the
scheduling interferences to the receiver, which can cause
an entirely different phenomenon. When the receiver is
de-scheduled from execution, there is no observer in the
channel, and thus all data being sent is lost. And to
make matters worse, the receiver could not determine
the amount of information being lost, because the sender
may also be de-scheduled during that time. As a result,
the receiver suffers from random erasure errors.

Therefore, three important issues need to be addressed
by the communication protocol in order to ensure reli-
able cross–VM communication: receiving confirmation,
clock synchronization, and error correction.
Receiving Confirmation: The random erasure errors
can make the transmitted data very discontinuous, signif-
icantly reducing its usefulness. To alleviate this problem,
it is very important for the sender to be aware of whether
the data it sent out has been received.

We avoid using message based “send-and-ack”, a
commonly employed mechanism for solving this prob-
lem, since this mechanism requires the receiver to ac-
tively send data back to the sender, reversing the roles
of sending and receiving, and subjects the acknowledg-
ment sender (i.e., the data receiver) to the same problem.
Instead, we leverage the system-wide effect of memory
bus contention to achieve simultaneous data transmis-
sion and receiving confirmation. Here the sender infers
the presence of receiver by observing increased memory
access latencies generated by the receiver.

The corresponding changes to the data transmission
protocol include:

1. Instead of making uncached memory accesses, the
receiver performs exotic atomic memory operations,
just like the sender transmitting a one bit.

2. Instead of sleeping when transmitting a zero bit, the
sender performs uncached memory accesses. In ad-
dition, the sender always times its memory accesses.

3. While the receiver is in execution, the sender should
always observe high memory access latencies; oth-
erwise, the sender can assume the data has been par-
tially lost, and retry at a later time.

Clock Synchronization: Since the sender and receiver
belong to two independent VMs, scheduling differences
between them tend to make the data transmission and
detection procedures de-synchronized, which can cause
a significant problem to pure timing-based data mod-
ulation. We overcome clock de-synchronization by us-
ing self-clocking coding—a commonly used technique
in telecommunications. Here we choose to transmit data
bits using differential Manchester encoding, a standard
network coding scheme [28].
Error Correction: Even with self-clocking coding, bit-
flip errors are expected to be common. Similar to re-
solving the receiving confirmation problem, we again
avoid using acknowledgment-based mechanisms. As-
suming only a one-way communication channel, we re-
solve the error correction problems by applying forward
error correction (FEC) to the original data, before apply-
ing self-clocking coding. More specifically, we use the
Reed-Solomon coding [17], a widely applied block FEC
code with strong multi-bit error correction performance.

In addition, we strengthen the communication proto-
col’s resilience to clock drifting and scheduling inter-
ruption by employing data framing. We break the data
into segments of fixed-length bits, and frame each seg-
ment with a start-and-stop pattern. The benefits of data
framing are twofold. First, when the sender detects trans-
mission interruption, instead of retransmitting the whole
piece of data, only the affected data frame is retried. Sec-
ond, some data will inevitably be lost during transmis-
sion. With data framing, the receiver can easily local-
ize the erasure errors and handle them well through the
Reed-Solomon coding.

The finalized protocol with all the improvements in
place is presented in Algorithm 4.

5 Evaluation

We evaluate the exploitability of memory bus covert
channels by implementing the reliable Cross–VM com-
munication protocol, and demonstrate covert channel at-
tacks on our in-house testbed server, as well as on the
Amazon EC2 cloud.

168  21st USENIX Security Symposium	 USENIX Association

Algorithm 4 Reliable Timing-based Memory Bus Channel Protocol
MExoticS, MExoticR: Exotic memory regions for the sender and the receiver, respectively.
DSend , DRecv: Data to transmit and receive, respectively.
Sender Prepares DSend by: Receiver Recovers DRecv by:
{DMSend []: Segmented encoded data to send}
RSSend := ReedSolomonEncode(DSend);
FDSend [] := Break RSSend into segments;
DMSend [] := DiffManchesterEncode(FDSend []);

{DMRecv[]: Segmented encoded data received}
FDRecv[] := DiffManchesterDecode(DMRecv[]);
RSRecv := Concatenate FDRecv[];
DRecv := ReedSolomonDecode(RSRecv);

Sending Encoded Data in a Frame: Receiving Encoded Data in a Frame:
{Data: A segment of encoded data to send}
{FrmHead, FrmFoot: Unique bit patterns
{signifying start and end of frame, respectively}
Result := SendBits(FrmHead);
if Result is not Aborted then

Result := SendBits(Data);
if Result is not Aborted then

{Ignore error in sending footer}
SendBits(FrmFoot);
return Succeed;

end if
end if
return Retry;

{Data: A segment of encoded data to receive}
Wait for frame header;
Result := RecvBits(Data);
if Result is Aborted then

return Retry;
end if
Result := Match frame footer;
if Result is not Matched then

{Clock synchronization error, discard Data}
return Erased;

else
return Succeed;

end if

Sending a Block of Bits: Receiving a Block of Bits:
{Block: A block of bits to send}
{Base1, Base0: Mean contention-free access
{time for sending bit 1 and 0, respectively}
for each Bit in Block do

if Bit = 1 then
for an amount of time do

Timed atomic operation with MExoticS;
end for
Latency := Mean(AccessTime)−Base1;

else
for an amount of time do

Timed uncached memory access;
end for
Latency := Mean(AccessTime)−Base0;

end if
if Latency < T hreshold then

{Receiver not running, abort}
return Aborted;

end if
end for
return Succeed;

{Block: a block of bits to receive}
for each Bit in Block do

for an amount of time do
Timed atomic operation with MExoticR;

end for
{Detect the state of memory by latency}
if Mean(AccessTime)> T hreshold then

Bit := 1; {Bus is contended}
else

Bit := 0; {Bus is contention-free}
end if
{Detect sender de-schedule}
if too many consecutive 0 or 1 bits then

{Sender not running}
Sleep for some time;
{Sleep makes sender abort, then we abort}
return Aborted;

end if
end for
return Succeed;

USENIX Association 	 21st USENIX Security Symposium  169

5.1 In-house Experiments
We launch covert channel attacks on our virtualization
server equipped with the latest generation x86 platform
(i.e., with no shared memory bus). The experimental
setup is simple and realistic. We create two Linux VMs,
namely VM-1 and VM-2, each with a single virtual
processor and 512 MB of memory. The covert channel
sender runs as an unprivileged user program on VM-1,
while the covert channel receiver runs on VM-2, also as
an unprivileged user program.

We first conduct a quick profiling to determine the op-
timal data frame size and error correction strength. And
we find out that a data frame size of 32 bits (includ-
ing an 8 bit preamble), and a ratio of 4 parity symbols
(bytes) per 4 data bytes works well. Effectively, each data
frame transmits 8 bits of preamble, 12 bits of data, and
12 bits of parity, yielding an efficiency of 37.5%. In or-
der to minimize the impact of burst errors, such as multi-
ple frame losses, we group 48 data and parity bytes, and
randomly distribute them across 16 data frames using a
linear congruential generator (LCG).

We then assess the capacity (i.e., bandwidth and error
rate) of the covert channel by performing a series of data
transmissions using these parameters. For each transmis-
sion, a one kilobyte data block is sent from the sender to
the receiver. With 50 repeated transmissions, we observe
a stable transmission rate of 746.8±10.1 bps. Data errors
are observed, but at a very low rate of 0.09%.

5.2 Amazon EC2 Experiments
We prepare the Amazon EC2 experiments by spawning
physically co-hosted Linux VMs. Thanks to the opera-
tional experiences presented in [18, 30], using only two
accounts, we successfully uncover two pairs of physi-
cally co-hosted VMs (micro instances) in four groups of
40 VMs (i.e. each group consists of 20 VMs spawned by
each account). Information disclosed in /proc/cpuinfo
shows that these servers use the shared-memory-bus plat-
form, one generation older than our testbed server used
in the previous experiment.

Similar to our in-house experiments, we first conduct
a quick profiling to determine the optimal data frame
size and error correction strength. Compared to our in-
house system profiles, memory bus channels on Ama-
zon EC2 VMs have a higher tendency of clock de-
synchronization. We compensate for this deficiency by
reducing the data frame size to 24 bits. The error cor-
rection strength of 4 parity symbols per 4 data bytes still
works well. And the overall transmission efficiency thus
becomes 33.3%.

We again perform a series of data transmissions and
measure the bandwidth and error rates. Our initial results



 

































  























 

Figure 5: Memory Bus Channel Capacities in EC2

are astonishingly good. A transmission rate of 343.5±
66.1 bps is achieved, with error rate of 0.39%. However,
as we continue to repeat the measurements, we observe
an interesting phenomenon. As illustrated in Figure 5,
three distinct channel performances are observed through
our experiment. The best performance is achieved dur-
ing the initial 12–15 transmissions. After that, for the
next 5–8 transmissions, the performance degrades. The
bandwidth slightly reduces, and the error rate slightly in-
creases. Finally, for the rest of the transmissions, the per-
formance becomes very bad. While the bandwidth is still
comparable to that of the best performance, the error rate
becomes unacceptably high.

By repeating this experiment, we uncover that the
three-staged behavior can be repeatedly observed after
leaving both VMs idle for a long period of time (e.g.,
one hour). Therefore, we believe that the cause of this
behavior can be explained by scheduler preemption [29]
as discussed in [30]. During the initial transmissions,
the virtual processors of VMs at both the sender and
receiver sides have high scheduling priorities, and thus
they are very likely to be executed in parallel, resulting
in a very high channel performance. Then, the sender
VM’s virtual processor consumes all its scheduling cred-
its and is throttled back by the Xen scheduler, causing the
channel performance to degrade. Soon after that, the re-
ceiver VM’s virtual processor also uses up its scheduling
credits. Since both the sender and receiver are throttled
back, their communication is heavily interrupted. This
“offensive” scheduling pattern subjects the communica-
tion channel to heavy random erasures beyond the cor-
rection capability of the FEC mechanism.

Fortunately, our communication protocol is designed
to handle very unreliable channels. We adapt to the
scheduler preemption by tuning two parameters to be
more “defensive”. First, we increase the ratio of parity
bits to 4 parity symbols per 2 data bytes. Although it re-
duces transmission efficiency by 11.1%, the error correc-
tion capability of our FEC is increased by 33.3%. Sec-
ond, we reduce the transmission symbol rate by about
20%. By lengthening the duration of the receiving confir-

170  21st USENIX Security Symposium	 USENIX Association

















      






















Figure 6: Reliable Transmission with Adaptive Rates

mation, we effectively increase the probability of discov-
ering scheduling interruptions. After the parameter ad-
justment, we can achieve a transmission rate of 107.9±
39.9 bps, with an error rate of 0.75%, even under sched-
uler preemption.

Figure 6 depicts the adjusted communication proto-
col in action. During the first period of preemption-free
scheduling, the transmission rate can be as high as 250
bps. However, when preemption starts, the sender re-
sponds to frequent transmission failures with increased
retries, allowing the receiver continue to receive and de-
code data without uncorrectable error. And correspond-
ingly, the transmission rate drops to below 50 bps. Fi-
nally, when the harsh scheduling condition is alleviated,
the transmission rate is automatically restored. The capa-
bility of adaptively adjusting transmission rates to chan-
nel conditions, evidences the versatility of our reliable
communication protocol.

6 Discussion

In this section, we first reassess the threat of covert chan-
nel attacks based on our experimental results. Then, we
discuss possible means to mitigate the covert channel at-
tacks in virtualized environments.

6.1 Damage Assessment
We extrapolate the threat of the memory bus covert
channel from four different aspects—attack scenario,
achievable bandwidth, mitigation difficulties, and cross-
platform applicability.

6.1.1 Attack Scenario

Covert channel attacks are distinct from a seemingly sim-
ilar threat, side channel attacks. Side channels extrap-
olate information by observing an unknowing sender,
while covert channels transfer data between two collab-
orating parities. As a result, a successful covert channel
attack requires an “insider” to function as a data source.

However, this additional requirement does not signifi-
cantly reduce the usefulness of covert channels in data
theft attacks.

Data theft attacks are normally launched in two steps,
infiltration and exfiltration. In the infiltration step, attack-
ers leverage multiple attack vectors, such as buffer over-
flow [4], VM image pollution [2, 26], and various social
engineering techniques [15, 27], to place “insiders” in the
victim and gain partial control over it. And then, in the
exfiltration step, the “insiders” try to traffic sensitive in-
formation from the victim back to the attackers. Because
the “insiders” usually would only have very limited con-
trol of the victim, their behaviors are subjected to strict
security surveillance, e.g., firewall, network intrusion de-
tection, traffic logging, etc. Therefore, covert channels
become ideal choices for secret data transmissions under
such circumstances.

6.1.2 Achievable Bandwidth

Due to their very low channel capacities [18, 30], previ-
ous studies conclude that covert channels can only cause
very limited harms in a virtualized environment. How-
ever, the experimental results of our covert channel lead
us to a different conclusion that covert channels indeed
pose realistic and serious threats to information security
in the cloud.

With over 100 bits-per-second high speed and reliable
transmission, covert channel attacks can be applied to
a wide range of mass-data theft attacks. For example, a
hundred byte credit card data entry can be silently stolen
in less than 30 seconds; and a thousand byte private key
file can be secretly transmitted under 3 minutes. Work-
ing continuously, over 1 MB of data, equivalent to tens
of thousands of credit card entries or hundreds of private
key files, can be trafficked every 24 hours.

6.1.3 Mitigation Difficulties

In addition to high channel capacity, the memory bus
covert channel has two other intriguing properties which
make it difficult to be detected or prevented:
◦ Stealthiness: Because processor cache is not used as

channel medium, the memory bus covert channel in-
curs negligible impact on cache performance, mak-
ing it totally transparent to cache based covert chan-
nel detection, such as HomeAlone [31].

◦ “Future proof”: Our in-house experiment shows
that even on a platform that is one generation ahead
of Amazon EC2’s systems, the memory bus covert
channel continues to perform very well.

USENIX Association 	 21st USENIX Security Symposium  171

6.1.4 Cross-platform Applicability

Due to hardware availability, we have only evaluated
memory bus covert channels on the Intel x86 platforms.
On one hand, we make an intuitive inference that simi-
lar covert channels can also be established on the AMD
x86 platforms, since they share compatible specifica-
tions on atomic instructions with the Intel x86 plat-
forms. On the other hand, the atomic instruction ex-
ploits may not be applicable on platforms that use al-
ternative semantics to guarantee operation atomicity. For
example, MIPS and several other platforms use the load-
linked/store-conditional paradigm, which does not result
in high memory bus contention as atomic instructions do.

6.2 Mitigation Techniques
The realistic threat of covert channel attacks calls for ef-
fective and practical countermeasures. We discuss sev-
eral plausible mitigation approaches from three different
perspectives—tenants, cloud providers, and device man-
ufactures.

6.2.1 Tenant Mitigation

Mitigating covert channels on the tenant side has the ad-
vantages of trust and deployment flexibility. With the
implementation of mitigation techniques inside a ten-
ant owned VMs, the tenant has the confidence of covert
channel security, regardless whether the cloud provider
addresses this issue.

However, due to the lack of lower level (hypervisor
and/or hardware) support, the available options are very
limited, and the best choice is performance anomaly de-
tection. Although not affecting the cache performances,
memory bus covert channels do cause memory perfor-
mance degradation. Therefore, an approach similar to
that of HomeAlone [31] could be taken. In particular,
the defender continuously monitors memory access la-
tencies, and asserts alarms if significant anomalies are
detected. However, since memory accesses incur much
higher cost and non-determinism than cache probing, this
approach may suffer from high performance overhead
and high false positive rate.

6.2.2 Cloud Provider Mitigation

Compared to their tenants, cloud providers are much
more resourceful. They control not only the hypervisor
and hardware platform on a single system, but also the
entire network and systems in a data center. As a result,
cloud providers can tackle covert channels through either
preventative or detective countermeasures.

The preventative approaches, e.g., the dedicated in-
stances service provided by the Amazon EC2 cloud [1],

thwart covert channel attacks by eliminating the exploit-
ing factors of covert channels. As the significant extra
service charge of the dedicated instance service reduces
its attractiveness, the “no-sharing” guarantee may be too
strong for covert channel mitigation. We envision a low
cost alternative solution that allows tenants to share sys-
tem resources in a controlled and deterministic manner.
For example, the cloud provider may define a policy that
each server might be shared by up to two tenants, and
each tenant could only have a predetermined neighbor.
Although this solution does not eliminate covert chan-
nels, it makes attacking arbitrary tenants in the cloud
very difficult.

In addition to preventative countermeasures, cloud
providers can easily take the detective approach by im-
plementing low overhead detection mechanisms, be-
cause of their convenient access to the hypervisor and
platform hardware. For both cache and memory bus
covert channels, being able to generate observable per-
formance anomalies is the key to their success in data
transmission. However, modern processors have pro-
vided a comprehensive set of mechanisms to monitor and
discover performance anomalies with very low overhead.
Instead of actively probing cache or accessing memory,
cloud providers can leverage the hypervisor to infer the
presence of covert channels, by keeping track of the in-
crement rates of the cache miss counters or memory bus
lock counters [10]. Moreover, when suspicious activities
are detected, cloud providers can gracefully resolve the
potential threat by migrating suspicious VMs onto phys-
ically isolated servers. Without penalizing either the sus-
pect or the potential victims, the negative effects of false
positives are minimized.

6.2.3 Device Manufacture Mitigation

The defense approaches of both tenant and cloud
providers are only secondary in comparison to mitiga-
tion by the device manufactures, because the root causes
of the covert channels are imperfect isolation of the hard-
ware resources.

The countermeasures at the device manufacture side
are mainly preventative, and they come in various forms
of resource isolation improvements. For example, instead
of handling exotic atomic memory operations in hard-
ware and causing system-wide performance degradation,
the processor may be redesigned to trap these rare situ-
ations for the operating systems or hypervisors to han-
dle, without disrupting the entire system. A more general
solution is to tag all resource requests from guest VMs,
enabling the hardware to differentiate requests by their
owner VMs, and thereby limiting the scope of any per-
formance impact. While incurring high cost in hardware
upgrades, the countermeasures at the device manufacture

172  21st USENIX Security Symposium	 USENIX Association

side are transparent to cloud providers and tenants, and
can potentially yield the lowest performance penalty and
overall cost compared to other mitigation approaches.

7 Conclusion and Future Work

Covert channel attacks in the cloud have been proposed
and studied. However, the threats of covert channels tend
to be down-played or disregarded, due to the low achiev-
able channel capacities reported by previous research. In
this paper, we presented a novel construction of high-
bandwidth and reliable cross–VM covert channels on the
virtualized x86 platform.

With a study on existing cache channel techniques, we
uncovered their application insufficiency and limitations
in a virtualized environment. We then addressed these
obstacles by designing a pure timing-based data trans-
mission scheme, and discovering the bus locking mech-
anism as a powerful covert channel medium. Leverag-
ing the memory bus covert channel, we further designed
a robust data transmission protocol. To demonstrate the
real-world exploitability of our proposed covert chan-
nels, we launched attacks on our testbed system and in
the Amazon EC2 cloud. Our experimental results show
that, contrary to previous research and common beliefs,
covert channel attacks in a virtualized environment can
achieve high bandwidth and reliable transmission. There-
fore, covert channels pose formidable threats to informa-
tion security in the cloud, and they must be carefully an-
alyzed and mitigated.

For the future work, we plan to explore various miti-
gation techniques we have proposed. Especially, we view
the countermeasures at the cloud provider side a highly
promising field of research. Not only do cloud providers
have control of rich resources, they also have strong in-
centive to invest in covert channel mitigation, because
ensuring covert channel security gives them a clear edge
over their competitors.

References

[1] Amazon Web Services. Amazon EC2 ded-
icated instances. http://aws.amazon.com/

dedicated-instances/.

[2] S. Bugiel, S. Nürnberger, T. Pöppelmann, A.-R.
Sadeghi, and T. Schneider. AmazonIA: when elas-
ticity snaps back. In Proceedings of the 18th ACM
conference on Computer and communications se-
curity (CCS’11), pages 389–400, 2011.

[3] S. Cabuk, C. E. Brodley, and C. Shields. IP covert
timing channels: design and detection. In Proceed-
ings of the 11th ACM conference on Computer and

communications security (CCS’04), pages 178–
187, 2004.

[4] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. StackGuard: automatic adaptive detec-
tion and prevention of buffer-overflow attacks. In
Proceedings of the 7th conference on USENIX Se-
curity Symposium, pages 63–78, 1998.

[5] Department of Defense. TCSEC: Trusted com-
puter system evaluation criteria. Technical Report
5200.28-STD, U.S. Department of Defense, 1985.

[6] J. W. Gray III. On introducing noise into the
bus-contention channel. In Proceedings of the
1993 IEEE Symposium on Security and Privacy
(S&P’93), pages 90–98, 1993.

[7] J. W. Gray III. Countermeasures and tradeoffs for
a class of covert timing channels. Technical report,
Hong Kong University of Science and Technology,
1994.

[8] W. Hu. Reducing timing charmers with fuzzy time.
In Proceedings of the 1991 IEEE Symposium on Se-
curity and Privacy (S&P’91), pages 8–20, 1991.

[9] W. Hu. Lattice scheduling and covert channels. In
Proceedings of the IEEE Symposium on Security
and Privacy (S&P’92), pages 52–61, 1992.

[10] Intel. The Intel 64 and IA-32 architectures soft-
ware developer’s manual. http://www.intel.

com/products/processor/manuals/.

[11] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou.
Hardware-software integrated approaches to de-
fend against software cache-based side channel at-
tacks. In Proceedings of the IEEE 15th Interna-
tional Symposium on High Performance Computer
Architecture (HPCA’09), pages 393–404, 2009.

[12] B. W. Lampson. A note on the confinement prob-
lem. Communications of the ACM, 16:613–615,
1973.

[13] F. G. G. Meade. A guide to understanding covert
channel analysis of trusted systems. Manual
NCSC-TG-030, U.S. National Computer Security
Center, 1993.

[14] D. G. Murray, S. H, and M. A. Fetterman. Satori:
Enlightened page sharing. In Proceedings of the
USENIX Annual Technical Conference (ATC’09),
pages 1–14, 2009.

USENIX Association 	 21st USENIX Security Symposium  173

[15] G. L. Orgill, G. W. Romney, M. G. Bailey, and
P. M. Orgill. The urgency for effective user privacy-
education to counter social engineering attacks on
secure computer systems. In Proceedings of the
5th conference on Information technology educa-
tion (CITC5’04), pages 177–181, 2004.

[16] C. Percival. Cache missing for fun and profit. In
Proceedings of the BSDCan 2005, 2005.

[17] I. S. Reed and G. Solomon. Polynomial codes over
certain finite fields. Journal of the Society for In-
dustrial and Applied Mathematics, 8(2):300–304,
1960.

[18] T. Ristenpart, E. Tromer, H. Shacham, and S. Sav-
age. Hey, you, get off of my cloud: exploring in-
formation leakage in third-party compute clouds.
In Proceedings of the 16th ACM conference on
Computer and communications security (CCS’09),
pages 199–212, 2009.

[19] C. H. Rowland. Covert channels in the TCP/IP pro-
tocol suite. First Monday, 2, 1997.

[20] G. Shah and M. Blaze. Covert channels through
external interference. In Proceedings of the
3rd USENIX conference on Offensive technologies
(WOOT’09), pages 1–7, 2009.

[21] G. Shah, A. Molina, and M. Blaze. Keyboards and
covert channels. In Proceedings of the 15th confer-
ence on USENIX Security Symposium, pages 59–
75, 2006.

[22] K. Suzaki, K. Iijima, T. Yagi, and C. Artho. Soft-
ware side channel attack on memory deduplication.
page Poster, 2011.

[23] T. V. Vleck. Timing channels. Poster session, IEEE
TCSP conference, 1990.

[24] Z. Wang and R. B. Lee. Covert and side channels
due to processor architecture. In Proceedings of
the 22nd Annual Computer Security Applications
Conference (ACSAC’06), pages 473–482, 2006.

[25] Z. Wang and R. B. Lee. A novel cache archi-
tecture with enhanced performance and security.
In Proceedings of the 41st annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MI-
CRO’41), pages 83–93, 2008.

[26] J. Wei, X. Zhang, G. Ammons, V. Bala, and
P. Ning. Managing security of virtual machine im-
ages in a cloud environment. In Proceedings of the
2009 ACM workshop on Cloud computing security
(CCSW’09), pages 91–96, 2009.

[27] I. S. Winkler and B. Dealy. Information security
technology?...don’t rely on it: a case study in social
engineering. In Proceedings of the 5th conference
on USENIX UNIX Security Symposium, pages 1–5,
1995.

[28] J. Winkler and J. Munn. Standards and architec-
ture for token-ring local area networks. In Proceed-
ings of 1986 ACM Fall joint computer conference
(ACM’86), pages 479–488, 1986.

[29] XenSource. Xen credit scheduler. http://wiki.
xensource.com/xenwiki/CreditScheduler.

[30] Y. Xu, M. Bailey, F. Jahanian, K. Joshi,
M. Hiltunen, and R. Schlichting. An explo-
ration of L2 cache covert channels in virtualized
environments. In Proceedings of the 3rd ACM
workshop on Cloud computing security workshop
(CCSW’11), pages 29–40, 2011.

[31] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter.
Homealone: Co-residency detection in the cloud
via side-channel analysis. In Proceedings of the
2011 IEEE Symposium on Security and Privacy
(S&P’11), pages 313–328, 2011.

USENIX Association 	 21st USENIX Security Symposium  175

Policy-Sealed Data: A New Abstraction for Building Trusted Cloud Services
Nuno Santos, Rodrigo Rodrigues†, Krishna P. Gummadi, Stefan Saroiu‡

MPI-SWS, †CITI/Universidade Nova de Lisboa, ‡Microsoft Research

Abstract
Accidental or intentional mismanagement of cloud soft-
ware by administrators poses a serious threat to the in-
tegrity and confidentiality of customer data hosted by
cloud services. Trusted computing provides an im-
portant foundation for designing cloud services that
are more resilient to these threats. However, current
trusted computing technology is ill-suited to the cloud
as it exposes too many internal details of the cloud in-
frastructure, hinders fault tolerance and load-balancing
flexibility, and performs poorly. We present Excal-
ibur, a system that addresses these limitations by en-
abling the design of trusted cloud services. Excalibur
provides a new trusted computing abstraction, called
policy-sealed data, that lets data be sealed (i.e., en-
crypted to a customer-defined policy) and then unsealed
(i.e., decrypted) only by nodes whose configurations
match the policy. To provide this abstraction, Excalibur
uses attribute-based encryption, which reduces the over-
head of key management and improves the performance
of the distributed protocols employed. To demonstrate
that Excalibur is practical, we incorporated it in the Eu-
calyptus open-source cloud platform. Policy-sealed data
can provide greater confidence to Eucalyptus customers
that their data is not being mismanaged.

1 Introduction
Managing cloud computing services is complex and
error-prone. Cloud providers therefore delegate this task
to skilled cloud administrators who manage the cloud
infrastructure software. However, it is difficult to assure
that their actions are error-free. In particular, an acci-
dental or, in some cases, intentional action from a cloud
administrator could leak, corrupt, or lose customer data.
The threat of potential violations to the integrity and
confidentiality of customer data is often cited as a key
barrier to the adoption of cloud services [2,15]. Further-
more, publicized incidents involving the loss of confi-
dentiality or integrity of customer data [1, 4, 7, 23, 25]
and the growing amount of security-sensitive data out-
sourced to the cloud [3,6] only heightens these concerns.

Recently, several proposals [22,39,45,53] have advo-
cated leveraging trusted computing technology to make
cloud services more resilient to integrity and confiden-
tiality concerns. This technology relies on a secure co-
processor – typically a Trusted Platform Module (TPM)
chip [17] – deployed on every node in the cloud. Each

TPM chip would store a strong identity (unique key) and
a fingerprint (hash) of the software stack that booted on
the cloud node. TPMs could then restrict the upload of
customer data to cloud nodes whose identities or finger-
prints are considered trusted. This capability offers a
building block in the design of trusted cloud services by
securing data confidentiality and integrity against insid-
ers, or confining the data location to a desired geograph-
ical or jurisdictional boundary.

Despite their benefits, current trusted computing ab-
stractions are ill-suited to the requirements of cloud ser-
vices for three main reasons. First, TPM abstractions
were designed to protect data and secrets on a stan-
dalone machine; they are thus cumbersome to use in
a multi-node datacenter environment where data mi-
grates across multiple nodes with potentially different
configurations. Second, TPM abstractions over-expose
the cloud infrastructure by revealing the identity and
software fingerprint of individual cloud nodes; external
agents could use this information to exploit vulnerabil-
ities in the cloud infrastructure or gain business advan-
tage [40]. Third, the current implementation of TPM
abstractions is inefficient and can introduce scalability
bottlenecks to cloud services.

This paper presents Excalibur, a system that provides
cloud service designers with new trusted computing ab-
stractions that overcome these barriers. These abstrac-
tions provide another critical building block for con-
structing services that offer better guarantees regarding
data integrity, confidentiality, or location. Excalibur’s
design includes two main innovations crucial to over-
coming the concerns posed by using TPMs in the cloud.

First, Excalibur provides a new trusted computing
abstraction, called policy-sealed data, that allows cus-
tomer data to be encrypted according to a customer-
chosen policy and guarantees that only the cloud nodes
whose configuration satisfies that policy can decrypt and
retrieve the data. We devised this abstraction to address
the first two limitations of current TPM abstractions;
the abstraction permits multiple nodes with or without
identical configurations to flexibly access data as long
as they satisfy the customer policies. Moreover, since it
allows policies to be specified using human-readable at-
tributes, policy-sealed data hides the low-level identities
and software fingerprints of nodes.

Second, Excalibur implements the policy-sealed data
abstraction in a way that overcomes the inefficiency hur-

1

176  21st USENIX Security Symposium	 USENIX Association

dles of current TPMs and scales to the demand of cloud
services. To do this, we designed a centralized moni-
tor that checks the integrity of cloud nodes and acts as
a single point-of-contact for customers to bootstrap trust
in the cloud infrastructure. To prevent the potential scal-
ability challenges associated with a centralized monitor,
we designed a set of distributed protocols to efficiently
implement the new abstractions. Our protocols use the
Ciphertext Policy Attribute-Based Encryption (CPABE)
encryption scheme [11], which drastically reduces the
communication needs between the monitor and produc-
tion nodes by requiring each node contact the monitor
only once during a boot cycle, a relatively infrequent
operation. We validated the correctness of Excalibur’s
cryptographic protocols using a protocol verifier [12].

To demonstrate the practicality of Excalibur, we built
a proof-of-concept compute service akin to EC2. Based
on the Eucalyptus open source cloud management plat-
form [36], our service leveraged Excalibur to give users
better guarantees regarding the type of hypervisor or the
location where their VM instances run. Our experience
shows that Excalibur’s primitive is simple and versatile:
our changes required minimal modifications to the Eu-
calyptus codebase.

Our evaluation suggests that Excalibur scales well.
Due to CPABE, the monitor’s load scales independent of
the workload. In addition, according to our simulations,
one server acting as a monitor was sufficient to manage
a large cluster; for example, a server took ∼15 seconds
to check the node configurations of a cluster with 10K
nodes that all rebooted simultaneously. Finally, offer-
ing trusted computing guarantees to the EC2-like ser-
vice added modest overhead during VM management
operations only.

2 Trusted Computing Concepts
The success of a cloud provider hinges on its customers
being willing to entrust the provider with their data [2,
15]. A key factor in strengthening customers’ trust is
providing strong assurances about the integrity of the
cloud infrastructure. TPMs can play a fundamental role
in providing these assurances.

The integrity of the cloud infrastructure depends on
the security of its hardware and software components.
For hardware security, cloud providers already rely on
surveillance devices and physical access control that
severely restrict physical access to cloud nodes, even by
cloud provider staff [19]. In certain cases, by deploy-
ing cloud nodes in sealed containers, they ensure that
physical access is fully disallowed [19]. For software
security, providers could take advantage of techniques
that reduce the size of the TCB [53], narrow the man-
agement interfaces [34], and verify the TCB code [24].
These techniques help designers build secure software

platforms (e.g., secure hypervisors) to host customers’
data and computations.

However, current cloud architectures provide scant
assurances that the data that customers ship to the cloud
is being handled by integrity-protected nodes running
secure software platforms. Insecure software platforms
(e.g., ones that have been tampered with or that run un-
patched software versions) put at risk cloud service in-
tegrity and thus customer data. Trusted computing tech-
nology addresses this problem by providing customers
with integrity guarantees of the cloud nodes themselves.

Trusted computing technology provides the hardware
support needed to bootstrap trust in a computer [38]. To
do so, it offers system designers four main abstractions.
First, strong identities let the computer be uniquely iden-
tified without having to trust the OS or the software run-
ning on the computer. Second, trusted boot produces a
unique fingerprint of the software platform running on
the computer; the fingerprint consists of hashes of soft-
ware platform components (e.g., BIOS, firmware con-
trolling the computer’s devices, bootloader, OS) com-
puted at boot time. Third, this fingerprint can be se-
curely reported to a remote party using a remote attesta-
tion protocol; this protocol lets the remote party authen-
ticate both the computer and the software platform so it
can assess whether the computer is trustworthy, e.g., if it
is a trusted platform that is designed to protect the con-
fidentiality and integrity of data [20, 32]. Fourth, sealed
storage allows the system to protect persistent secrets
(e.g., encryption keys) from an attacker with the ability
to reboot the machine and install a malicious OS that can
inspect the disk; the secrets are encrypted so that they
can be decrypted only by the same computer running
the trusted software platform specified upon encryption.

An important instance of trusted computing hard-
ware is the Trusted Platform Module (TPM) [17], a se-
cure co-processor widely deployed on desktops, laptops
and increasingly on servers. To offer a strong iden-
tity, the TPM uses an Attestation Identity Key (AIK).
To track the hash values that constitute a fingerprint, the
TPM uses special registers called Platform Configura-
tion Registers (PCRs). Whenever a reboot occurs, the
PCRs are reset and updated with new hash values. To
perform remote attestation, the TPM can issue a quote,
which includes the PCR values signed by the TPM with
an AIK. For sealed storage, the TPM offers two prim-
itives, called seal and unseal, to encrypt and decrypt
secrets, respectively. Seal encrypts the input data and
binds it to the current set of PCR values. Unseal val-
idates the identity and fingerprint of the software plat-
form before decrypting sealed data.

2

USENIX Association 	 21st USENIX Security Symposium  177

3 Threat Model
Our premise is that the attacker seeks to compromise
customer data by extracting it from integrity-protected
cloud nodes. An attack is successful if either the data
is accessible on a machine running an insecure software
platform or is moved outside the provider’s premises.

The attacker is assumed to be an agent with privileged
access to the cloud nodes’ management interface. Such
an agent is typically a cloud provider’s employee who
manages cloud software and behaves inappropriately
due either to negligence (e.g., misconfiguring the nodes
where a computation should run) or to malice (e.g., de-
sire to steal customer data). The management interface
is accessible only from a remote site. Therefore, we
assume the attacker cannot launch physical attacks. In
fact, software and hardware management roles are usu-
ally differentiated and assigned to different teams.

The management interface grants the attacker privi-
leges to the software platform running on the node (e.g.,
access to the root account) and to a dedicated hard-
ware component for power cycling the nodes. These
privileges empower him to access customer data on the
nodes: he can reboot any node, access its local disk af-
ter rebooting, install arbitrary software on the node, and
eavesdrop the network. However, whenever cloud nodes
boot a secure software platform whose TCB we assume
to be correct, the attacker can no longer exploit vulnera-
bilities through the software platform’s interface.

Multiple trusted parties perform all other manage-
ment tasks in the cloud provider’s infrastructure. These
tasks include, e.g., procuring and deploying the hard-
ware, securing the premises, developing the software
platforms, managing the provider’s private keys, endors-
ing whether a software platform is secure, certifying the
software and hardware, etc. Trusted parties can be em-
ployees of the cloud provider or external trusted organi-
zations. Due to the nature of their roles, however, trusted
parties do not have access to the cloud nodes’ manage-
ment interface.

We assume that the TPMs are correct, and we do not
consider side-channel attacks.

4 Policy-sealed Data
This section makes the case for our new trusted com-
puting abstraction, called policy-sealed data. We first
discuss the limitations of existing TPM abstractions in
the context of the design of a strawman trusted cloud
service. We then describe how policy-sealed data ad-
dresses these limitations.

4.1 Strawman Design of a Trusted Cloud
Service

Our strawman trusted cloud service offers features sim-
ilar to Amazon’s EC2 but aims to provide better pro-

tection against the inspection or corruption of customer
VMs by a cloud administrator.

The first step in designing the strawman is to protect
the state of customer VMs running on cloud nodes. To
do this, we use recent proposals from research and in-
dustry that offer such guarantees but on a single node
only. For example, CloudVisor [53] retrofits Xen so that
the hypervisor guarantees the integrity and confidential-
ity of data and software running in guest VMs even in
the presence of a malicious system administrator. Cus-
tomers can leverage the TPM’s remote attestation capa-
bility to verify that a cloud node is running CloudVisor
before uploading data to it.

However, this verification step checks these guaran-
tees only for the cloud node on which the data is first
uploaded. Once in the cloud, the customer’s data and
VMs often migrate from one node to another, or are
suspended to disk and resumed at a later time. To of-
fer end-to-end protection, the checks must be repeated
upon such events.

Thus, to accommodate VM migration, the strawman
design of a trusted EC2 must perform remote attesta-
tion each time a customer’s VM migrates to verify that:
(1) the destination node’s identity is signed by the cloud
provider, and (2) the fingerprint matches that of Cloud-
Visor. To protect the VM upon suspension to disk, the
VM state must be encrypted using sealed storage before
suspension occurs.

4.2 Limitations of TPM Abstractions
The strawman design highlights some shortcomings of
current TPM abstractions stemming from a fundamen-
tal principle upon which TPMs were built: they were
designed to offer guarantees about one single computer.
In particular, TPMs suffer from three major problems
when they are used to build trusted cloud services.

First, the sealed storage abstraction was not designed
for a distributed and dynamic environment like the dat-
acenters where cloud services operate. It precludes the
application developer from encrypting and storing sen-
sitive data in an untrusted medium (e.g., a local hard
drive, or the Amazon S3 service) and retrieving it from
a different node or from the same node running a soft-
ware configuration that differs from that in place when
the data was encrypted. However, developers might be
interested in suspending the VM to disk and resuming it
later on a different node (e.g., if, in the interim, the orig-
inal node was shut down to save power) or on the same
node running a different configuration (e.g., if, in the
interim, the hypervisor was upgraded to a more recent
version).

Second, today’s TPMs are not built for high perfor-
mance. TPMs can execute only one command at a time,
and many TPM commands, such as remote attestation,

3

178  21st USENIX Security Symposium	 USENIX Association

Attribute Value Description
service “EC2” service name
version “1” version of the service
vmm “Xen”, “CloudVisor” virtual machine monitor
type “small”, “large” resources of a VM
country “US”, “DE” country of deployment
zone “Z1”, “Z2”, “Z3”, “Z4” availability zone

Table 1: Example of service attributes. In this case, EC2
supports two types of VM instances, two types of VMMs, and
four availability zones (datacenters) in the US and Germany.

Node Configuration
N service : “EC2” ; version : “1” ; type : “small” ; country

: “DE” ; zone : “Z2” ; vmm : “CloudVisor”
Table 2: Example of a node configuration. This configura-
tion contains the values for the attributes that characterize the
hardware and software of a specific node N .

Policy Policy Specification
P1 service = “EC2” and vmm = “CloudVisor” and

version ≥ “1” and instance = “large”
P2 service = “EC2” and vmm = “CloudVisor” and

(zone = “Z1” or zone = “Z3”)
P3 service = “EC2” and vmm = “CloudVisor” and

country = “DE”
Table 3: Examples of policies. P1 expresses version and VM
instance type requirements, P2 specifies a zone preference for
different sites, and P3 expresses a regional preference.

take approximately one second to complete. This inef-
ficiency hampers the scalability of cloud services that
use the TPM and can even open avenues for denial of
service attacks if the TPM abstractions were invoked by
customer-accessible operations.

Finally, the cloud infrastructure may be overexposed.
By revealing TPM node identities and allowing cus-
tomers to remotely attest the nodes, any outsider could
learn, for instance: (1) the number of cloud nodes that
constitute the infrastructure of the cloud provider, and
(2) the distribution of different platforms they run. This
information could be used by external attackers to trace
vulnerabilities in the infrastructure, or by competitors to
learn business secrets. Handing over such information
is often unacceptable to cloud providers.

Recent proposals for TPMs in the cloud do not com-
pletely address these TPM limitations. Systems like
Nexus [50] or CloudVisor [53] use TPMs to allow cus-
tomers to remotely attest only a single cloud node and
therefore do not address the preceding issues. Essen-
tially, these systems address the complementary prob-
lem of securing the platform running on a single node.
Our previous workshop paper [45] took preliminary
steps to address some of these issues, but its solution
did not handle situations where sensitive data needed to
be secured persistently, which is unrealistic to assume
on real-world cloud services; our prior solution also suf-
fered from scalability limitations.

4.3 The Policy-sealed Data Abstraction
To overcome these limitations, we propose the new
policy-sealed data abstraction. This abstraction allows
customer data to be bound to cloud nodes whose con-
figuration is specified by a customer-defined policy.
Policy-sealed data offers two primitives for securing
customer data: seal and unseal. Seal can be invoked
anywhere – either on the customer’s computer or on the
cloud nodes. It takes as input the customer’s data and
a policy and outputs ciphertext. The reverse operation,
unseal, can be invoked only on the cloud nodes that need
to decrypt the data. Unseal takes as input the sealed data
and decrypts it if and only if the node’s configuration
satisfies the policy specified upon seal; otherwise, de-
cryption fails.

With our abstraction, each cloud node has a configu-
ration, which is a set of human-readable attributes. At-
tributes express features that refer to the node’s software
(e.g., “vmm”, “version”) or hardware (e.g., “location”).
A policy expresses a logical condition over the attributes
supported by the provider (e.g., “vmm=Xen and loca-
tion=US”). Table 1 shows an example of the attributes
of a hypothetical deployment of a service akin to EC2.
Table 2 illustrates the configuration of a particular node,
and Table 3 lists example policies over node configura-
tions in that deployment.

Our primitive can replace the existing remote attesta-
tion and sealed storage calls for securing customer data
on the cloud. In particular, to protect data upon upload
or migration, the customer needs only to seal the data to
a policy: if the destination cannot unseal the data, then
its configuration does not match the policy; therefore,
the node is not trusted from the perspective of the cus-
tomer who originally specified the policy.

5 Excalibur Design
This section presents Excalibur, a system that provides
policy-sealed data support for building trusted cloud ser-
vices.

5.1 Design Goals & Assumptions
Our central goal is to design and implement a system
that offers the policy-sealed data primitive by making
use of commodity TPMs. Furthermore, the system de-
sign must overcome the preceding limitations of the in-
terface offered by current TPMs.

We focus on the design of the primitive used by the
cloud platforms running on individual nodes. There-
fore, we are not concerned with securing these plat-
forms themselves. In particular, our goal is not to pre-
vent the management interface exposed to cloud ad-
ministrators from leaking or corrupting sensitive data
(e.g., direct memory inspection of VM memory). Simi-
larly, we require that the individual cloud platforms pro-

4

USENIX Association 	 21st USENIX Security Symposium  179

Figure 1: Excalibur deployment. The dashed lines show the
flow of policy-sealed data, and the solid lines represent inter-
actions between clients and the monitor. The monitor checks
the configuration of cloud nodes. After a one-time monitor at-
testation step, clients can seal data. Data can be unsealed only
on nodes that satisfy the policy (unshaded boxes).

tect certain key material used to seal and unseal data,
and that the system interface does not allow the finger-
print stored in the TPM to be changed so that it be-
comes inconsistent with the current system state. To
address these complementary goals, applications must
make use of a series of existing systems and hardening
techniques [20, 24, 33, 53].

5.2 System Overview
The design of Excalibur is based on a centralized com-
ponent, called a monitor. The monitor is a dedicated
service running on a single cloud node (or, as we will
explain, on a small set of nodes for fault tolerance and
scalability). It coordinates the enforcement of policy-
sealed data on the entire cloud infrastructure by map-
ping TPM identities and fingerprints of the cloud nodes
to policy-sealed data attributes. Only the monitor can
trigger TPM primitives on the cloud nodes, minimizing
the negative performance impact of TPM operations and
preventing the exposure of infrastructure details.

Figure 1 illustrates a deployment of Excalibur, high-
lighting the separation between the two main system
components: the client and the monitor. The client con-
sists of a library that allows the implementation of a
trusted cloud service to use the policy-sealed data prim-
itives. This library can be used on both the customer
side (e.g., before uploading data) and by the software
platforms running on the cloud nodes (e.g., before mi-
grating data between nodes). The customer-side client
does not expose the unseal primitive since the notion of
a configuration applies to cloud nodes only.

Whenever a cloud node reboots, the monitor runs a
special remote attestation protocol to obtain the finger-
print and identity of the node and translates these to a
node configuration by consulting an internal database.
The node configuration — which expresses physical
characteristics, like hardware or location, and software
features as a set of attributes — is then encoded as cre-

dentials that are sent to the node. These credentials are
required by cloud nodes to unseal policy-sealed data and
are destroyed whenever the nodes reboot.

The monitor exposes a narrow management interface
that lets the cloud administrator configure the mappings
between attributes and identities (i.e., fingerprints). This
is necessary for routing system maintenance as new soft-
ware platforms and cloud nodes are deployed on the
infrastructure. The management interface also allows
multiple clones of the monitor to be securely spawned
in order to scale up the system. To assure customers that
it is properly maintained, the monitor accepts only map-
pings that are vouched for by special certificates; cus-
tomers can directly attest the monitor in order to check
its authenticity and integrity.

Though our high-level design is simple, we still need
to overcome two main challenges: 1) to cryptographi-
cally enforce policies in a scalable, fault tolerant and ef-
ficient way, and 2) to assure customers that the monitor
operates correctly despite the fact that it is managed by
untrusted cloud administrators. To address these chal-
lenges, we: 1) use CPABE cryptography to enforce poli-
cies, and 2) devise certificates and a scalable monitor at-
testation mechanism to ensure that the monitor is trust-
worthy. We next explain these design choices in more
detail.

5.3 Cryptographic Enforcement of
Policies

The main challenge in implementing the seal and un-
seal primitives is avoiding scalability bottlenecks. A
possible design is for the monitor itself to evaluate the
policies: upon sealing, the client encrypts the data with
a symmetric key and sends this key and the policy to
the monitor; the monitor then encrypts this key and the
policy with a secret key and returns the outcome to the
client. To unseal, the encrypted key is sent to the moni-
tor, which internally recovers the original symmetric key
and policy, evaluates the policy, and releases the sym-
metric key if the node satisfies the policy. Although this
solution implements the necessary functionality, it in-
volves the monitor in every seal and unseal operation
and thereby introduces a scalability bottleneck.

An alternative design is to evaluate the policies on
the client side using public-key encryption. Each cloud
node receives from the monitor a set of private keys that
match its configuration; in this scheme, each key cor-
responds to an attribute-value pair of the configuration.
Sealing is done by encrypting the data with the corre-
sponding public keys according to the attributes defined
in the policies. This solution avoids the bottlenecks of
the first approach because all cryptographic operations
take place on the client side, without involving the mon-
itor. Its main shortcoming is complicated key manage-

5

180  21st USENIX Security Symposium	 USENIX Association

ment due to the number of key-pairs that nodes must
handle to reflect all possible attribute combinations us-
able by policies.

The solution we chose uses a cryptographic scheme
called Ciphertext Policy Attribute-Based Encryption
(CPABE) [11]. This scheme first generates a pair of
keys: a public encryption key and a secret master key.
Unlike traditional public key schemes, the encryption
key allows a piece of data to be encrypted and bound to
a policy. A policy is a logical expression that uses con-
junction and disjunction operations over a set of terms.
Each term tests a condition over an attribute, which can
be a string or a number; both types support the equality
operation, but the numeric type also supports inequali-
ties (e.g., a = x or b > y). CPABE can then create
an arbitrary number of decryption keys from the same
master key, each of which can embed a set of attributes
specified at creation time. The encrypted data can be
decrypted only by a decryption key whose attributes sat-
isfy the policy (e.g., keys embedding the attribute a = x
can decrypt a piece of data encrypted with the preceding
example policy).

Excalibur uses CPABE to encode the runtime config-
urations of the cloud nodes into decryption keys. At
setup time, the monitor generates a CPABE encryption
and master key pair and secures the master key. When-
ever it checks the identity and software fingerprint of
a cloud node, the monitor sends the appropriate creden-
tials to the node, which include a CPABE decryption key
embedding the attributes that correspond to the config-
uration of the node; the decryption key is created from
the master key and forwarded to all the nodes featuring
the same configuration. Sealing is done by encrypting
the data using the encryption key and a policy, and un-
sealing is done by decrypting the sealed data using the
decryption key. Policies are expressed in the CPABE
policy language used to specify the examples in Table 3
as well as more elaborate policies.

The security of the system then depends on the se-
curity of the CPABE keys. The monitor protects the
master key by: 1) ensuring that it cannot be released
through the monitor’s management interface, and 2) en-
crypting it before storing it on disk, as described in
Section 6.3. Additionally, cloud platforms must pro-
tect decryption keys. A software platform must pre-
vent leakage or corruption of key material through its
management interface (e.g., by direct memory inspec-
tion of VM memory); it must hold the key in volatile
memory so that key material is destroyed upon reboot.
Moreover, the software platform must force a reboot af-
ter changing TCB components that get measured during
a trusted boot (e.g., subsequent to upgrading the hyper-
visor). These properties ensure that the CPABE decryp-
tion keys of cloud nodes remain consistent with their

TPM fingerprints and therefore reflect current node con-
figurations.

The benefits of using CPABE are twofold. First, it lets
the system scale independently of the workload since
the seal and unseal primitives do not interact with the
monitor (and run entirely on the client side). Second,
it permits the creation of expressive policies directly
supported by the CPABE policy specification language
while only requiring two keys – the CPABE encryption
and decryption keys – to be sent to the nodes.

The cost using CPABE is a performance hit when
compared to traditional cryptographic schemes. Sec-
tion 6 explains how this impact can be minimized. A
second cost of using CPABE is key revocation, which is
typically difficult in identity- and attribute-based cryp-
tosystems. Since Excalibur assumes that the TCB of
nodes’ software platforms is secure, any TCB vulner-
ability accessible through the administrator’s interface
will invalidate the guarantees provided by our system.
To handle revocation of decryption keys, our current de-
sign requires that all sealed data whose original policy
satisfies the attributes of the compromised keys be re-
sealed. This operation can be done efficiently by re-
encrypting only a symmetric key, not the data itself.

5.4 Trusting the Monitor
Since the monitor is managed by the cloud administra-
tor, mismanagement threats that affect any cloud node
could also affect the monitor. Thus, another challenge
is to ensure that the monitor operates correctly and to
efficiently convey this guarantee to customers.

To meet this challenge, we must first prevent the mon-
itor from accepting flawed attribute mappings. For ex-
ample, a mapping would be flawed if the attribute “lo-
cation=DE” were mapped to the identity of a node lo-
cated in the US, or if the attribute “vmm=Xen” were
mapped to the fingerprint of CloudVisor. To prevent
this, the monitor only accepts attribute mappings that
are vouched for by a certificate. A certificate is issued
by one or multiple certifiers, which validate the correct-
ness of mappings. For example, a certifier checks the
location of nodes and the fingerprints of software plat-
forms. This role could be played by the provider itself,
or by external trusted parties akin to Certification Au-
thorities.

Since anyone can issue certificates, the monitor must
let customers know the certifier’s identity so they can
judge the certifier’s trustworthiness and thereby be con-
fident that the attribute mappings are correct. Fur-
thermore, even if the certifier were judged trustworthy,
the system must nevertheless provide additional guar-
antees about the authenticity and integrity of the mon-
itor: only in this case can the customer be sure that
the certificate-based protections and the security proto-

6

USENIX Association 	 21st USENIX Security Symposium  181

cols implemented by the monitor are correct. To pro-
vide these guarantees, customers must directly attest the
monitor when first using the system.

5.5 Monitor Scalability and Fault
Tolerance

To improve scalability and make Excalibur resilient to
faults, we enable several monitor replicas (clones) to be
spawned, and we optimize the monitor attestation pro-
tocol.

Monitor clones can be elastically launched and termi-
nated by the administrator, using the protocol described
in Section 6.7. The cloud provider can then use standard
load balancers to evenly distribute client attestation re-
quests from clients among clones. Each clone can serve
requests without communicating with other clones.

To eliminate critical bottlenecks within a clone, we
introduce two optimizations. The first improves the
throughput of clone attestations triggered by customers.
Due to TPM inefficiencies, the maximum throughput of
a monitor clone using a standard attestation protocol is
close to one attestation per second, clearly insufficient
even when spawning a reasonable number of clones. We
therefore enhance the attestation protocol with a tech-
nique based on Merkle trees that can batch a large num-
ber of attestation requests into a single TPM quote (see
Section 6).

A second optimization improves the throughput of
decryption key requests issued by the cloud nodes. The
algorithm for decryption key generation is also inef-
ficient, which could significantly slow down servicing
keys to the cloud nodes if a new key were to be gener-
ated per request. Since many machines in the datacenter
share the same configuration (e.g., machines that belong
to the same cluster), the monitor clone can instead se-
curely cache the decryption keys and send them to all
the nodes with the same profile.

6 Detailed Design
This section presents the design of Excalibur in more
detail. We first introduce certificates, which constitute
the root-of-trust of the system. We then describe the in-
terfaces offered by Excalibur for building cloud services
and managing the system. Finally, we present the secu-
rity protocols that enforce policy-sealed data.
Notation. For CPABE keys, KM, KE and KD denote
master, encryption, and decryption keys, respectively.
For asymmetric cryptography, K and KP denote pri-
vate and public keys, respectively. For symmetric keys,
we drop the superscript. Notation 〈x〉K indicates data x
encrypted with key K , and {y}K indicates data y signed
with key K . We represent nonces as n. Session keys and
nonces are randomly generated. Notation D, P , E, and

Figure 2: Example certificate tree. The certificates in light
colored boxes form the manifest that validates the monitor’s
authenticity and integrity.

M denote data, policy, envelope, and manifest; these
terms are clarified in Section 6.2.

6.1 Certificate Specification
Excalibur uses certificates to validate mappings between
attributes specific to a trusted cloud service and identi-
ties, i.e., fingerprints of cloud nodes. Certificates are
used both by the monitor, to check the configuration
of cloud nodes and attest new monitor clones, and by
the customer-side client, to attest the monitor. Our cer-
tificate specification supports multiple certifiers since a
single certifier may not have the expertise to assess all
the attributes of the cloud service, or simply to increase
customer trust. Therefore, certificates form a hierarchi-
cal tree. Figure 2 shows how a provider P can use the
certificates that correspond to the internal nodes in the
tree to delegate the certification of different attributes to
two certifiers, A and B. Additionally, each leaf in the
certificate tree vouches for a mapping between the at-
tributes that appear in node configurations and low-level
measurements, namely software fingerprints (PCRs) or
hardware identities (AIK keys).

Due to space limitations, we defer a discussion of the
details regarding the certification procedure, certificate
expiration, certificate revocation, and certificate man-
agement to a separate technical report [46].

6.2 System Interfaces
Excalibur’s interface has two parts: a service interface,
which supports the implementation of cloud services,
and a management interface, which lets cloud admin-
istrators maintain the system.

The service interface exported by the client library
supports three operations, summarized in Table 4. Be-
fore the data can be sealed on the customer-side, attest-
monitor must be invoked to check the monitor’s authen-
ticity and integrity. It returns the encryption key KE

7

182  21st USENIX Security Symposium	 USENIX Association

attest-monitor(mon-addr) → (KE,M) or FAIL
seal(KE, P,D) → E = 〈P,D〉K, 〈K〉KE

unseal(KE,KD, E) → (D,P) or FAIL
Table 4: Excalibur service interface.

needed for sealing and a manifest M , which contains
the certificates needed to validate the monitor’s identity
and fingerprint (see Figure 2). The manifest is passed
to the customer, who learns from it which attributes can
be used in policies and identifies the provider and cer-
tifier identities needed to decide whether the service is
trustworthy. Since the client saves the manifest and en-
cryption key for sealing, this operation needs to be per-
formed only when the cloud service is first used.

The core primitives are seal and unseal. Seal can be
invoked by both cloud nodes and customers; it takes as
arguments the encryption key KE, a policy P , and the
data D and produces an envelope E. This envelope is
passed to unseal, which returns the decrypted data D or
fails if its caller does not satisfy the policy. In addition to
the decryption key KD, unseal receives as an argument
the encryption key KE, which is required by CPABE
decryption; the cloud node that invokes unseal must ob-
tain this key from the monitor. Unseal also returns the
original policy P so that a cloud node can re-seal the
data with the customer’s policy. The CPABE policy lan-
guage is used to express policies.

The management interface lets the cloud administra-
tor remotely maintain the monitor using a console. Its
main operations permit the administrator to initialize the
system, manage certificates, and spawn monitor clones.

6.3 System Initialization

Before the system can be used, the monitor must be ini-
tialized by binding a unique CPABE key pair to the ser-
vice. To do this, the cloud administrator loads the cer-
tificates that validate the service attributes into the mon-
itor and instructs the monitor to generate the key pair.
If these certificates form a consistent certificate tree, the
monitor creates unique encryption and master keys and
binds them to the tree’s root certificate (see Figure 2).
To permit for system maintenance, the administrator can
remove or add certificates as long as they form a valid
certificate tree.

The monitor maintains its persistent state in a cer-
tificate store and a key store. Both stores keep their
contents in XML files on a local disk. The certificate
store contains the certificates loaded into the monitor.
The key store contains all the CPABE keys. To secure
the key material, the key store is sealed using the TPM
seal primitive, which ensures that the key store can be
accessed only under a trusted monitor configuration in
case the monitor reboots.

Monitor Node
1. AIKP

node

2. n

3. {n,PCRnode, K
P

session}AIKnode

4a. OK, 〈KE,KD〉KP

session 4b. FAIL

Figure 3: Node attestation protocol.

6.4 Node Attestation Protocol
Once the setup is complete, the monitor delivers to each
cloud node a credential that reflects the boot time config-
uration of that node, which will allow the node to unseal
and re-seal data. The goal of the node attestation proto-
col is to deliver these credentials securely. Recall that,
under our assumptions, when a cloud node reboots, the
credentials kept by the node in volatile memory are lost.
Therefore, this protocol must be executed each time a
cloud node reboots so it can obtain a fresh credential.

The monitor first obtains a quote from the node that is
signed by the node’s AIK and contains the current PCRs.
Then, the monitor looks in the certificate database for
certificates that match the node’s PCRs and AIK. If any
are found, the monitor obtains the node configuration
by combining all the attributes of the matching certifi-
cates into a list like that shown in Table 2. Next, the
monitor sends the credentials to the node; these include
the encryption and decryption keys embedding these at-
tributes. Since generating a new decryption key is ex-
pensive, the monitor caches these keys in the key store
so they can be resent to nodes with the same configura-
tion.

Figure 3 shows the precise messages exchanged be-
tween the monitor and the customer-side client. The
protocol is based on a standard remote attestation in
which a nonce n is sent to the node (message 2), and
the node replies with a quote (message 3); the nonce is
used to check the freshness of the attestation request.
Message 3 includes a session key KP

session that is used in
message 4 to securely send credentials KE and KD to
the node. Since the session key is ephemeral, an adver-
sary could not perform a TOCTOU attack by rebooting
the machine after finishing attestation (message 3) but
before receiving the decryption key (message 4).

Note that the node does not need to authenticate the
monitor to preserve the security of policy-sealed data. In
the worst case, a node may receive a compromised de-
cryption key from an attacker. However, given that cus-
tomers seal their data with the encryption key obtained
from the legitimate monitor, unseal would fail in such a
scenario, and this attack would fail to compromise cus-
tomer data.

8

USENIX Association 	 21st USENIX Security Symposium  183

Figure 4: Batch attestation example. The tree is built from
4 nonces. A summary for nonce n10 comprises its tag and the
hashes in the path to the root.

Monitor Customer-side
1. n

2. s(n),AIKP

mon, {h(n),M,KE,PCRmon}AIKmon

Figure 5: Monitor attestation protocol.

6.5 Monitor Attestation Protocol
The monitor attestation protocol is triggered by the
attest-monitor operation, which lets customers detect if
the monitor is legitimate by checking its authenticity and
integrity. In addition, this protocol obtains: 1) the en-
cryption key, which is used for sealing data, and 2) the
set of certificates that form the manifest, which let the
customer check the identity of certifiers and learn the
attributes that are available. The monitor is legitimate if
its identity and fingerprint are validated by the manifest.

The main challenge in designing this protocol is scal-
ability. If every customer-side client were to run a stan-
dard remote attestation, then the throughput of the mon-
itor would be extremely low due to TPM inefficiency.

To overcome this scalability problem, we batch mul-
tiple attestation requests into a single quote operation
using a Merkle tree, as shown in Figure 4. The Merkle
tree lets the monitor quote a batch of N nonces ni ex-
pressed as an aggregate hash h(nN

i=0
) and send an evi-

dence – summary s(ni) – to each customer-side client
that its nonce ni is included in the aggregate hash in a
network-efficient manner (i.e., instead of sending all N
nonces, it sends just a summary of size O(log(N))).

The detailed monitor attestation protocol is shown in
Figure 5. In the first message, the customer-side client
sends nonce n for freshness and then uses the informa-
tion returned in message 2 to validate the monitor in two
steps. First, it checks in the manifest M for the certifi-
cates with attribute “monitor”; it uses them to authen-
ticate the monitor key AIKP

mon and to validate the fin-
gerprint of the monitor’s software platform PCRmon (see
Figure 2). Second, to validate the freshness of the re-
ceived messages, it compares nonce n and the summary
s(n) against the aggregate hash h(n) produced by batch
attestation. If all tests pass, the monitor is trustworthy,

and the encryption key KS is authentic. The customer
can then seal data securely.

6.6 Seal and Unseal Protocols
The use of CPABE lets seal and unseal execute without
contacting the monitor. In implementing these primi-
tives, we take into account two aspects of CPABE re-
lated to performance and functionality. First, since
CPABE is significantly more inefficient than symmetric
encryption, seal encrypts the data with a randomly gen-
erated symmetric key and uses CPABE to encrypt the
symmetric key. Second, given that CPABE decryption
does not return the original policy (which unseal must
return to let cloud nodes re-seal the data), we include in
the envelope the original policy and a digest for integrity
protection (see Table 4).

6.7 Clone Attestation Protocol
To scale the monitor elastically, the cloud administrator
can create multiple monitor clones. To do so, an existing
monitor instance must share the CPABE master key with
the new clone so the latter can generate and distribute
decryption keys to the cloud nodes. However, this can
be done only if the new clone can be trusted to secure the
key and to comply with the specification of Excalibur
protocols.

To enforce this condition, the existing monitor in-
stance and the clone candidate run a clone attestation
protocol analogous to that shown in Figure 3, but with
two differences. First, after message 3, the monitor
assesses if the candidate is trustworthy by checking
whether its AIK and PCR values map to the “moni-
tor” attribute contained in the manifest; if not, cloning
is aborted. Second, if the test passes, the monitor autho-
rizes cloning and sends the master key, the encryption
key, and a digest to the candidate. The digest identifies
the head of the certificate tree associated with the keys.
The new clone refrains from using the keys until the ad-
ministrator uploads the corresponding certificates to it.

7 Implementation
We implemented Excalibur in about 22,000 lines of C.
This included the monitor, a client-side library provid-
ing the service interface, a client-side daemon for se-
curing the CPABE decryption key on the cloud nodes, a
management console, and a certificate toolkit for issuing
certificates. The console communicates with the moni-
tor over SSL, and all other protocols used UDP mes-
sages. We used the OpenSSL crypto library [37] and
the CPABE toolkit [8] for all cryptographic operations,
and we used the Trousers software stack and its related
tools [51] to interact with TPMs.

We extended a cloud service so it could use Excalibur
to help us understand the effort needed to adapt services

9

184  21st USENIX Security Symposium	 USENIX Association

1324 sock.send(” r e c e i v e\n”)
1325 sock.recv(80)
1326
1327 pipe = subprocess.Popen(” / xen−/ b i n / s e a l ”,
1328 stdin=subprocess.PIPE,
1329 stdout=sock.fileno())
1330 fd_pipe = pipe.stdin.fileno()
1331
1332 XendCheckpoint.save(fd_pipe, dominfo, True,
1333 live, dst)
1334 os.close(fd_pipe)
1335 sock.close()

Figure 6: Hook to intercept migration (from file XendDo-
main.py.) We redirect the state of the VM through a pro-
cess that seals the data before it proceeds to the destination
on socket sock (lines 1327-1330).

for Excalibur and to estimate the performance impact of
Excalibur on cloud services.

The example cloud service we adapted is an elastic
VM service where customer VMs can be deployed in
compute clusters in multiple locations, similar to Ama-
zon’s EC2 service. Our extension used Excalibur to bet-
ter assure customers that their VMs would not be acci-
dentally or intentionally moved outside of a cluster in a
certain area (e.g., the EU).

Our base platform was Eucalyptus [36], an open
source system that provides an elastic VM service with
an EC2-compatible interface. Eucalyptus supports vari-
ous VMMs; we used Xen [9] because it is open source.

Our implementation modified Xen to invoke seal and
unseal when the customer’s VM was created on a new
node, migrated from one node to another, or suspended
on one node and resumed on another. An attempt to
migrate the VM to a node outside the specified locations
would fail because the node would lack the credentials
to unseal the policy-sealed VM.

Implementing these changes was straightforward. In-
tegration with Excalibur required modifications to Xen,
in particular to a Xen daemon called xend, which man-
ages guest VMs on the machine and communicates with
the hypervisor through the OS kernel of Domain 0. In
particular, the VM operations create, save, restore, and
migrate sealed or unsealed the VM memory footprint
whenever the VM was unloaded from or loaded to phys-
ical memory, respectively. To streamline this imple-
mentation, we took advantage of the fact that xend al-
ways transfers VM state between memory and the disk
or the network in a uniform manner using file descrip-
tors. Therefore, we located the relevant file descriptors
and redirected their operations through an OS process
that sealed or unsealed according to the transfer direc-
tion. Figure 6 shows a snippet of xend that illustrates
this technique applied to migration. Overall, our code
changes were minimal: we added/modified 52 lines of
Python code to xend.

The other two changes we made included: (1) hard-
ening the software interfaces to prevent the system ad-

ministrator from invoking any VM operations other than
the four noted above, and (2) using a TPM-aware boot-
loader [5] to measure software integrity and to extend a
TPM register with the Xen configuration fingerprint.

8 Evaluation
This section evaluates the correctness of Excalibur pro-
tocols using an automated tool. We also assess the per-
formance of Excalibur and our example service.

8.1 Protocol Verification
We verified the correctness of our protocols using an au-
tomated theorem prover. We used a state-of-the-art tool,
ProVerif [12], which supports the specification of secu-
rity protocols for distributed systems in concurrent pro-
cess calculus (pi-calculus).

To use the tool, we specified all protocols used by our
system, which included all cryptographic operations (in-
cluding CPABE operations), a simplified model of the
TPM identity and fingerprint, the format of all certificate
types in the system, the monitor protocols, and seal and
unseal operations. In total, the specification contained
approximately 250 lines of code in pi-calculus.

ProVerif proved the semantics of policy-sealed data
in the presence of an attacker with unrestricted network
access. The attacker could listen to messages, shuffle
them, decompose them, and inject new messages into
the network; this model covers, for example, eavesdrop-
ping, replay, and man-in-the-middle attacks. ProVerif
proved that whenever a customer sealed data, the result-
ing envelope could be unsealed only by a node whose
configuration matched the policy. We provide the spec-
ification and proof online [35].

8.2 Performance Evaluation
To evaluate Excalibur’s performance, we first evaluated
the monitor’s scalability by measuring its performance
overhead as well as its throughput for its three main ac-
tivities: generating CPABE decryption keys, delivering
these keys to nodes, and serving monitor attestation re-
quests. We then measured the performance overhead of
seal and unseal on the client side.
8.2.1 Setup and Methodology
We used two different experimental setups. The first
used a two-node testbed; one node acted as a moni-
tor, and the other acted as a regular cloud node mak-
ing requests to the monitor. The second setup was used
to evaluate the monitor throughput for attesting cloud
nodes and serving customer attestation requests. For at-
testing cloud nodes, we simulated 1,000 nodes by using
one machine acting as the monitor and five machines
acting as cloud nodes, all running parallel instances of
the node attestation protocol. For monitor attestations,
we used a single machine acting as customers running

10

USENIX Association 	 21st USENIX Security Symposium  185

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 10 20 30 40 50Ti
m

e
to

 g
en

er
at

e
ke

y
(s

)

Attributes in key (#)

 0
 10
 20
 30
 40
 50
 60
 70

 1 2 3 4 5 6 7 8

Ke
y

ge
ne

ra
tio

n
th

ro
ug

hp
ut

 (o
ps

/s
)

Number of cores (#)
Figure 7: Performance of decryption key generation. Time
to generate key as we vary the number of attributes (left), and
throughput for 10 attributes as we vary the number of cores
(right).

parallel instances of the monitor attestation protocol.
This number of nodes was sufficient to exhaust moni-
tor resources and ensure that there were no bottlenecks
in the client nodes.

Both setups used Intel Xeon machines, each one
equipped with 2.83GHz 8-core CPUs, 1.6GB of RAM,
and TPM version 1.2 manufactured by Winbond. All
machines ran Linux 2.6.29 and were connected to a
10Gbps network. We repeated each experiment ten
times and reported median results; the standard devia-
tion was negligible.

8.2.2 Decryption Key Generation
The overhead of generating a CPABE decryption key
depends on the number of attributes embedded in the
key. We measured the time to generate a decryption key
stemming from the same master key, in which we var-
ied the number of attributes from one to 50. This range
seemed reasonable to characterize a node configuration.

Figure 7 shows the results, which confirm two rele-
vant findings of the original authors of CPABE. First,
the overhead of generating keys grows linearly with the
number of attributes present in the key. Second, gener-
ating CPABE keys is expensive, e.g., a key with ten at-
tributes took 0.12 seconds to create, which corresponds
to a maximum rate of 8.33 keys/sec on a single core.

Although CPABE key generation is inherently inef-
ficient, we consider that its performance is acceptable
when throughput pressure on the monitor is relatively
low because large groups of machines are likely to have
the same configuration. The latency to generate a key
is experienced only by the first node that reboots with
a configuration new to the monitor. Since the key is
cached, it is reused in future identical requests without
additional costs.

8.2.3 Node Attestation
The latency of the node attestation protocol took 0.82
seconds. The bulk of the attestation cost (96%) was due
to the node’s performing a TPM quote operation neces-
sary for remote attestation. This result is not surprising
since such operations are known to be inefficient [31].

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 10 20 30 40 50

Ti
m

e
to

 s
ea

l (
s)

Leaf nodes in policy (#)

 0

 0.05

 0.1

 0.15

 0.2

 0 10 20 30 40 50

Ti
m

e
to

 u
ns

ea
l (

s)

Attributes used by policy (#)
Figure 8: Performance overhead of sealing and unsealing
data as a function of the complexity of the policy, with in-
put data of constant size (1K bytes).

Most of the work required by this protocol is car-
ried out by cloud nodes. Therefore, the attestation la-
tency should not represent a bottleneck to the coordina-
tor. To confirm this, we evaluated the monitor’s through-
put when running multiple parallel instances of this pro-
tocol. Results showed that the monitor could deliver up
to 632.91 keys per second, which is efficient and would
allow a single monitor machine to scale to serve a large
number of nodes.

8.2.4 Monitor Attestation

We measured the performance of the monitor attesta-
tion protocol. This protocol had a latency of 1.21 sec-
onds and a throughput of approx. 4800 reqs/sec on a
single node. The quote operation performed by the
monitor’s local TPM accounted for the bulk of the la-
tency (0.82 seconds), and the remaining time was due to
cryptographic operations and network latency. The high
peak throughput we observed was enabled by batch at-
testation. When we disabled batching, the throughput
dropped sharply to 0.82 reqs/sec. Thus, this technique
is crucial to the scalability of the monitor and delivered
a throughput speedup of over 5000x.

8.2.5 Sealing and Unsealing

The performance overhead of the seal and unseal opera-
tions performed by Excalibur clients was dominated by
the two cryptographic primitives: CPABE and symmet-
ric cryptography (which uses AES with a 256-bit key
size). We study their effects in turn.

To understand the overall performance overhead of
CPABE, we set the input data to a small, constant size.
Figure 8 shows the performance overhead of sealing and
unsealing 1KB of data as a function of policy complex-
ity. On the left is the cost of a seal operation as a func-
tion of the number of tests contained in the policy. For
instance, policy A=x and (B=y or B=z) contains three
comparisons. Our findings show that the sealing cost
grows linearly with the number of attributes. The cost
of sealing for a policy with 10 attributes was about 128
milliseconds.

On the right, Figure 8 shows the cost of an unseal op-
eration. Unlike encryption, CPABE decryption depends

11

186  21st USENIX Security Symposium	 USENIX Association

0%
20%
40%
60%
80%

100%

1K 10K 100K 1M 10M 100M

C
PA

BE
 fr

ac
tio

n
in

 s
ea

lin
g

tim
e

Data size (bytes)
Figure 9: CPABE fraction in the performance overhead of
sealing, varying the size of the input data.

0%
20%
40%
60%
80%

100%

1K 10K 100K 1M 10M 100MC
PA

BE
 ti

m
e

fra
ct

io
n

in
 u

ns
ea

lin
g

tim
e

Data size (bytes)
Figure 10: CPABE fraction in the performance overhead
of unsealing, varying the size of the input data.

on the number of attributes in the decryption key that
are used to satisfy the policy. For example, consider a
decryption key with attributes A:x and B:y, and policies
P1 : A=x, and P2 : A=x and B=y. Policy P1 uses one
attribute, whereas P2 uses two. As before, the perfor-
mance overhead of unseal grows linearly with the size
of the policy. The time required to unseal a policy with
10 attributes was 51 milliseconds.

To study the relative effect of CPABE on the overall
performance of Excalibur primitives, we varied the size
of the input data. Figures 9 and 10 show the fraction
of overhead due to CPABE, and Table 5 lists the abso-
lute operation times. Our findings show that CPABE ac-
counts for the most significant fraction of performance
overhead. Sealing 1 MB of data with a policy contain-
ing 10 leaf nodes took 134 milliseconds, and 87% of
the total cost of sealing was due to CPABE encryption.
For unsealing, the fraction of CPABE was slightly lower
than for sealing, but it was still very significant. Unseal-
ing 1 MB of data with a policy satisfying 10 attributes
of the private key took 68 milliseconds, where 68% of
the latency was due to CPABE.

In summary, our evaluation of Excalibur showed
these results: the costs of generating decryption keys
and the node attestation protocol were reasonable when
taking into account how infrequently they are required;
the monitor scaled well with the number of cloud cus-
tomers that used the service for the first time and with
the number of cloud nodes that were attested upon re-
boot; the monitor could be further scaled up using
cloning, and the latency of seal and unseal was reason-
able and dominated by the cost of symmetric key en-
cryption for large data items.

Data Latency (ms)
(bytes) Sealing Unsealing
1K 120 50
10K 120 49
100K 121 51
1M 134 68
10M 264 243
100M 1522 1765

Table 5: Performance overhead of sealing and unsealing
data, varying the size of the input data.

 0

 2

 4

 6

 8

 10

Create Save Restore Migrate

La
te

nc
y

(s
)

Symmetric encryption
CPABE

Xen base

Figure 11: Latency of VM operations in Xen. Encrypting
the VM state accounts for the largest fraction of the overhead,
while the execution time of CPABE is relatively small. En-
cryption runs AES with 256-bit key size.

8.3 Cloud Compute Service
We now evaluate the performance overhead that the
changes to Xen incur on its VM management opera-
tions, namely create, save, restore and migrate. We
measured the time to complete each operation using an
example VM for 10 trials. The example VM ran a De-
bian Lenny distribution, with Linux-xen 2.6.26, used a
4GB disk image, and its memory footprint was 128MB.

Figure 11 shows the results of our experiments. The
performance impact is noticeable, especially for the
save, restore, and migrate operations, where the com-
pletion time roughly doubled. The overhead, however,
came from encrypting the VM’s entire memory foot-
print; using Excalibur to secure or recover the encryp-
tion key added a small delay. Unlike the other opera-
tions, create experienced a small overhead increase of
only 4%. This is because the system only decrypted
the kernel image, which occupied 4.6MB, instead of the
larger VM footprint as it did for the other operations.

As the results show, seal and unseal introduced no-
ticeable overhead to the VM operations due to the sym-
metric encryption of the VM image. However, given
that these operations occur infrequently, and consider-
ing the additional benefits to data security, we argue that
these results reflect an acceptable trade-off between se-
curity and performance.

9 Related Work
Over the past several years, there has been considerable
work on trusted computing [38]. Most of this work tar-
gets single computers with the goal of enforcing appli-
cation runtime protection [16,20,26,30,31], virtualizing

12

USENIX Association 	 21st USENIX Security Symposium  187

trusted computing hardware [10], and devising remote
attestation solutions based on both software [18,48] and
hardware [13, 21, 42–44, 49]. Other work, focusing on
distributed environments, provides integrity protection
on shared testbeds [14] or distributed mandatory access
control [29]. More recently, trusted computing primi-
tives have been adapted to mobile scenarios to provide
increased assurances about the authenticity of data gen-
erated by sensor-equipped smartphones [27]. Our work
concentrates on the specific challenges of cloud comput-
ing environments, which fall outside the scope of these
prior efforts.

Excalibur shares some ideas with property-based at-
testation [42], whose goal is to make hash-based soft-
ware fingerprints more meaningful to humans. Like Ex-
calibur, property-based attestation maps low-level fin-
gerprints to high level attributes (properties) and relies
on a monitor (controller) to perform this mapping. How-
ever, this prior work offers an abstract model without
an associated system. Moreover, Excalibur extends this
work by proposing new trusted computing primitives.

Nexus [50], a new operation system for trustworthy
computing, introduces active attestation, which allows
attesting a program’s application-specific runtime prop-
erties and supports access control policies per applica-
tion. Both Nexus policies and policy-sealed data can
bind data based on attributes. However, the two systems
target complementary problems: Nexus policies focus
on nodes running Nexus and restrict the applications that
can access the data; Excalibur policies focus on multi-
node settings and restrict the cloud nodes that can access
the data, supporting multiple software platforms. Thus,
Nexus would be a good candidate to use as an attribute
in an Excalibur policy.

The work by Schiffman et al. [47] aims to improve
the transparency of IaaS cloud services by providing
customers with integrity proofs of their VMs and un-
derlying VMMs. Like Excalibur, a central compo-
nent, called cloud verifier (CV), mediates attestations of
nodes and uses high-level properties (attributes) for rea-
soning about node configurations. However, the scope
of this work is narrower than ours: while the CV pro-
vides only integrity proofs, Excalibur builds on these
proofs to enforce policy-sealed data, which is a general,
data-centric abstraction for protecting customer data in
the cloud. In addition, the CV administrator is assumed
to be trustworthy, representing a weaker threat model;
in our view, this assumption does not address an im-
portant class of problems that occur in cloud services
today. Finally, their system does not address the short-
comings of sealed storage TPM primitives, which could
raise concerns of data management inflexibility and iso-
lation crippling if these primitives need to be used by
cloud services to secure persistent data.

Multiple software systems have been proposed to in-
crease the security of sensitive data. At the OS layer,
hypervisors and OSes can protect the confidentiality and
integrity of data using isolation [24, 30, 39, 53] or in-
formation flow control [52] techniques. At the middle-
ware layer, frameworks that build Web services to of-
fer their users strict control over their data hosted at the
provider site [22] enable controlled sharing of sensitive
data using differential privacy [41] or provide general-
purpose encapsulation mechanisms for data [28]. These
proposals are complementary to our work: despite their
potential to increase security and control over data in
the cloud, these proposals lack a scalable mechanism
for bootstrapping trust in the multi-node cloud environ-
ment. By combining these platforms with Excalibur,
cloud providers could build new trusted cloud services.

10 Conclusion
This paper presented Excalibur, a system that imple-
ments policy-sealed data. This new abstraction ad-
dresses the limitations of trusted computing when used
in the cloud and enables the design of trusted cloud ser-
vices. Excalibur leverages TPMs, a novel architecture
with a set of associated protocols, and CPABE to offer
developers two new primitives, seal and unseal, for con-
structing cloud services with stronger protection over
how data is managed. We demonstrated the simplicity
and flexibility of policy-sealed data by using Excalibur
to build an elastic VM cloud computing service based
on Xen and Eucalyptus, which accesses customer’s data
only on customer-approved platform configurations.

Acknowledgements: We would like to thank Peter
Drushel, Pedro Fonseca, Aniket Kate, Jay Lorch, Massi-
miliano Marcon, Bryan Parno, Himanshu Raj, and Alec
Wolman for their valuable comments and conversations
that improved our work. We are also grateful to the
anonymous reviewers and Mihai Christodorescu, our
shepherd, for their feedback.

References
[1] Blippy Users Credit Card Numbers Exposed in Google

Search Results. http://mashable.com/2010/04/23/
blippy-credit-card-numbers.

[2] Cloudcamp: Five key concerns raised about cloud comput-
ing. http://www.itnews.com.au/News/223980,
cloudcamp-five-key-concerns-raised-about-
cloud-computing.aspx.

[3] Federal Government’s Cloud Plans: A $20 Billion Shift.
http://www.cio.com/article/671013/Federal_
Government_s_Cloud_Plans_A_20_Billion_
Shift.

[4] T-mobile: All your sidekick data has been lost for-
ever. http://mashable.com/2009/10/10/
t-mobile-sidekick-data.

[5] Trusted GRUB. http://trousers.sourceforge.
net/grub.html.

13

188  21st USENIX Security Symposium	 USENIX Association

[6] Verizon to Put Medical Records in the Cloud. http://
www.networkcomputing.com/cloud-computing/
229501444.

[7] Insecurity of Privileged Users: Global Survey of IT Practition-
ers. Technical report, Ponem Institute and HP, 2011. http:
//h30507.www3.hp.com/hpblogs/attachments/
hpblogs/666/62/1/HP%20Privileged%20User%
20Study%20FINAL%20December%202011.pdf.

[8] Advanced Crypto Software Collection. http://acsc.cs.
utexas.edu.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In SOSP, 2003.

[10] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and
L. van Doorn. vTPM: virtualizing the trusted platform module.
In USENIX Security Symposium, 2006.

[11] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy
attribute-based encryption. In Symposium on Security and Pri-
vacy, 2007.

[12] B. Blanchet. An Efficient Cryptographic Protocol Verifier Based
on Prolog Rules. In CSFW, 2001.

[13] E. Brickell, J. Camenisch, and L. Chen. Direct Anonymous At-
testation. In CCS, 2004.

[14] C. Cutler, M. Hibler, E. Eide, and R. Ricci. Trusted disk loading
in the Emulab network testbed. In WCSET, 2010.

[15] ENISA. Cloud Computing - SME Survey, 2009.
http://www.enisa.europa.eu/act/rm/files/
deliverables/cloud-computing-sme-survey/.

[16] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A Virtual Machine-Based Platform for Trusted Comput-
ing. In SOSP, 2003.

[17] T. C. Group. TPM Main Specification Level 2 Version 1.2, Re-
vision 130, 2006.

[18] V. Haldar, D. Chandra, and M. Franz. Semantic Remote Attesta-
tion - A Virtual Machine directed approach to Trusted Comput-
ing. In VM, 2004.

[19] J. Hamilton. An Architecture for Modular Data Centers. In
CIDR, 2007.

[20] H. Härtig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski,
F. Mehnert, and M. Peter. The Nizza secure-system architecture.
CollaborateCom, 2005.

[21] T. Jaeger, R. Sailer, and U. Shankar. PRIMA: policy-reduced
integrity measurement architecture. In SACMAT, 2006.

[22] J. Kannan, P. Maniatis, and B.-G. Chun. Secure data preservers
for web services. In WebApps, 2011.

[23] M. Keeney. Insider Threat Study: Computer System Sabotage
in Critical Infrastructure Sectors. Technical report, U.S. Secret
Service and CMU, 2005. http://www.secretservice.
gov/ntac/its_report_050516.pdf.

[24] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. seL4: Formal verification
of an OS kernel. In SOSP, 2009.

[25] E. Kowalski. Insider Threat Study: Illicit Cyber Ac-
tivity in the Information Technology and Telecommuni-
cations Sector. Technical report, U.S. Secret Service
and CMU, 2008. http://www.secretservice.gov/
ntac/final_it_sector_2008_0109.pdf.

[26] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. C.
Mitchell, and M. Horowitz. Architectural support for copy and
tamper resistant software. In ASPLOS, 2000.

[27] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Software abstractions
for trusted sensors. In MobiSys, 2012.

[28] P. Maniatis, D. Akhawe, K. Fall, E. Shi, S. McCamant, and
D. Song. Do You Know Where Your Data Are? Secure Data
Capsules for Deployable Data Protection. In HotOS, 2011.

[29] J. M. McCune, T. Jaeger, S. Berger, R. Caceres, and R. Sailer.
Shamon: A System for Distributed Mandatory Access Control.

In ACSAC, 2006.
[30] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. D. Gligor, and

A. Perrig. TrustVisor: Efficient TCB Reduction and Attestation.
In IEEE Symposium on Security and Privacy, 2010.

[31] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An Execution Infrastructure for TCB Minimization. In
EuroSys, 2008.

[32] Microsoft. BitLocker Drive Encryption. http:
//www.microsoft.com/whdc/system/platform/
hwsecurity/default.mspx.

[33] A. G. Miklas, S. Saroiu, A. Wolman, and A. D. Brown. Bunker:
a privacy-oriented platform for network tracing. In NSDI, 2009.

[34] D. G. Murray, G. Milos, and S. Hand. Improving Xen security
through disaggregation. In VEE, 2008.

[35] N. Santos. ProVerif scripts for the Excalibur proto-
cols, 2011. http://www.mpi-sws.org/˜nsantos/
excalibur/xcproverif.zip.

[36] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov. Eucalyptus: A Technical Re-
port on an Elastic Utility Computing Architecture Linking Your
Programs to Useful Systems. Technical Report 2008-10, UCSB.

[37] OpenSSL. http://www.openssl.org.
[38] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping trust

in commodity computers. In IEEE Symposium on Security and
Privacy, 2010.

[39] H. Raj, D. Robinson, T. B. Tariq, P. England, S. Saroiu, and
A. Wolman. Credo: Trusted Computing for Guest VMs with a
Commodity Hypervisor. Technical Report MSR-TR-2011-130,
Microsoft Research, 2011.

[40] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, You,
Get Off of My Cloud! Exploring Information Leakage in Third-
Party Compute Clouds. In CCS, 2009.

[41] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel. Aira-
vat: Security and privacy for mapreduce. In NSDI, 2010.

[42] A.-R. Sadeghi and C. Stüble. Property-based attestation for com-
puting platforms: caring about properties, not mechanisms. In
NSPW, 2004.

[43] R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn. Attestation-
based policy enforcement for remote access. In CCS, 2004.

[44] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and im-
plementation of a tcg-based integrity measurement architecture.
In USENIX Security Symposium, 2004.

[45] N. Santos, K. P. Gummadi, and R. Rodrigues. Towards trusted
cloud computing. In HotCloud, 2009.

[46] N. Santos, R. Rodrigues, K. Gummadi, and S. Saroiu. Excalibur:
Building Trustworthy Cloud Services. Technical Report MPI-
SWS-2011-004, MPI-SWS, 2011.

[47] J. Schiffman, T. Moyer, H. Vijayakumar, T. Jaeger, and P. Mc-
Daniel. Seeding clouds with trust anchors. In WCCS, 2010.

[48] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt:
Software-based attestation for embedded devices. IEEE Sympo-
sium on Security and Privacy, 2004.

[49] E. Shi, A. Perrig, and L. V. Doorn. Bind: A fine-grained attesta-
tion service for secure distributed systems. In IEEE Symposium
on Security and Privacy, 2005.

[50] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, and F. B. Schneider. Logical Attestation: An Au-
thorization Architecture for Trustworthy Computing. In SOSP,
2011.

[51] TrouSerS. http://trousers.sourceforge.net.
[52] S. Vandebogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey,

D. Ziegler, F. Kaashoek, R. Morris, and D. Mazières. Labels and
event processes in the asbestos operating system. ACM Trans.
Comput. Syst., 2007.

[53] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor:
Retrofitting protection of virtual machines in multi-tenant cloud
with nested virtualization. In SOSP, 2011.

14

USENIX Association 	 21st USENIX Security Symposium  189

STEALTHMEM: System-Level Protection Against Cache-Based Side
Channel Attacks in the Cloud

Taesoo Kim
MIT CSAIL

Marcus Peinado
Microsoft Research

Gloria Mainar-Ruiz
Microsoft Research

Abstract
Cloud services are rapidly gaining adoption due to the
promises of cost efficiency, availability, and on-demand
scaling. To achieve these promises, cloud providers share
physical resources to support multi-tenancy of cloud plat-
forms. However, the possibility of sharing the same hard-
ware with potential attackers makes users reluctant to off-
load sensitive data into the cloud. Worse yet, researchers
have demonstrated side channel attacks via shared mem-
ory caches to break full encryption keys of AES, DES,
and RSA.

We present STEALTHMEM, a system-level protection
mechanism against cache-based side channel attacks in
the cloud. STEALTHMEM manages a set of locked cache
lines per core, which are never evicted from the cache,
and efficiently multiplexes them so that each VM can load
its own sensitive data into the locked cache lines. Thus,
any VM can hide memory access patterns on confiden-
tial data from other VMs. Unlike existing state-of-the-art
mitigation methods, STEALTHMEM works with exist-
ing commodity hardware and does not require profound
changes to application software. We also present a novel
idea and prototype for isolating cache lines while fully
utilizing memory by exploiting architectural properties
of set-associative caches. STEALTHMEM imposes 5.9%
of performance overhead on the SPEC 2006 CPU bench-
mark, and between 2% and 5% overhead on secured AES,
DES and Blowfish, requiring only between 3 and 34 lines
of code changes from the original implementations.

1 Introduction

Cloud services like Amazon’s Elastic Compute Cloud
(EC2) [5] and Microsoft’s Azure Service Platform
(Azure) [26] are rapidly gaining adoption because they of-
fer cost-efficient, scalable and highly available computing
services to their users. These benefits are made possible
by sharing large-scale computing resources among a large

number of users. However, security and privacy concerns
over off-loading sensitive data make many end-users, en-
terprises and government organizations reluctant to adopt
cloud services [18, 20, 25].

To offer cost reductions and efficiencies, cloud
providers multiplex physical resources among multiple
tenants of their cloud platforms. However, such sharing
exposes multiple side channels that exist in commod-
ity hardware and that may enable attacks even in the
absence of software vulnerabilities. By exploiting side
channels that arise from shared CPU caches, researchers
have demonstrated attacks extracting encryption keys of
popular cryptographic algorithms such as AES, DES, and
RSA. Table 1 summarizes some of these attacks.

Unfortunately, the problem is not limited to cryptog-
raphy. Any algorithm whose memory access pattern de-
pends on confidential information is at risk of leaking
this information through cache-based side channels. For
example, attackers can detect the existence of sshd and
apache2 via a side channel that results from memory
deduplication in the cloud [38].

There is a large body of work on countermeasures
against cache-based side channel attacks. The main direc-
tions include the design of new hardware [12, 23, 24, 41–
43], application specific defense mechanisms [17, 28, 30,
39] and compiler-based techniques [11]. Unfortunately,
we see little evidence of general hardware-based defenses
being adopted in mainstream processors. The remaining
proposals often lack generality or have poor performance.

We solve the problem by designing and implementing a
system-level defense mechanism, called STEALTHMEM,
against cache-based side channel attacks. The system (hy-
pervisor or operating system) provides each user (virtual
machine or application) with small amounts of memory
that is largely free from cache-based side channels. We
first design an efficient software method for locking the
pages of a virtual machine (VM) into the shared cache,
thus guaranteeing that they cannot be evicted by other
VMs. Since different processor cores might be running

190  21st USENIX Security Symposium	 USENIX Association

Type Enc. Year Attack description Victim machine Samples Crypt. key
Active Time-driven [9] AES 2006 Final Round Analysis UP Pentium III 213.0 Full 128-bit key
Active Time-driven [30] AES 2005 Prime+Evict (Synchronous Attack) SMP Athlon 64 218.9 Full 128-bit key
Active Time-driven [40] DES 2003 Prime+Evict (Synchronous Attack) UP Pentium III 226.0 Full 56-bit key

Passive Time-driven [4] AES 2007 Statistical Timing Attack (Remote) SMT Pentium 4 with HT 220.0 Full 128-bit key
Passive Time-driven [8] AES 2005 Statistical Timing Attack (Remote) UP Pentium III 227.5 Full 128-bit key

Trace-driven [14] AES 2011 Asynchronous Probe UP Pentium 4 M 26.6 Full 128-bit key
Trace-driven [29] AES 2007 Final Round Analysis UP Pentium III 24.3 Full 128-bit key
Trace-driven [3] AES 2006 First/Second Round Analysis - - 23.9 Full 128-bit key
Trace-driven [30] AES 2005 Prime+Probe (Synchronous Attack) SMP Pentium 4 with HT 213.0 Full 128-bit key
Trace-driven [32] RSA 2005 Asynchronous Probe SMT Xeon with HT - 310-bit of 512-bit key

Table 1: Overview of cache-based side channel attacks: UP, SMT and SMP stand for uniprocessor, simultaneous
multithreading and symmetric multiprocessing, respectively.

different VMs at the same time, we assign a set of locked
cache lines to each core, and keep the pages of the cur-
rently running VMs on those cache lines. Therefore each
VM can use its own special pages to store sensitive data
without revealing its usage patterns. Whenever a VM
is scheduled, STEALTHMEM ensures the VM’s special
pages are loaded into the locked cache lines of the cur-
rent core. Furthermore, we describe a method for locking
pages without sacrificing utilization of cache and memory
by exploiting an architectural property of caches (set asso-
ciativity) and the cache replacement policy (pseudo-LRU)
in commodity hardware.

We apply this locking technique to the last level caches
(LLC) of modern x64-based processors (usually the L2
or L3 cache). These caches are particularly critical as
they are typically shared among several cores, enabling
one core to monitor the memory accesses of other cores.
STEALTHMEM prevents this for the locked pages. The
LLC is typically so large that the fraction of addresses
that maps to a single cache line is very small, making
it possible to set aside cache lines without introducing
much overhead. In contrast, the L1 cache of a typical x64
processor is not shared and spans only a single 4 kB page.
Thus, we do not attempt to lock it.

We use the term “locking” in a conceptual sense. We
have no hardware mechanism for locking cache lines on
mass market x64 processors. Instead, we use a hypervi-
sor to control memory mappings such that the protected
memory addresses are guaranteed to stay in the cache,
irrespective of the sequence of memory accesses made by
software. While the cloud was our main motivation, our
techniques are not limited to the cloud and can be used
to defend against cache-based side channel attacks in a
general setting.

Our experiments show that our prototype of the idea on
Windows Hyper-V efficiently mitigates cache-based side
channel attacks. It imposes a 5.9% performance overhead
on the SPEC 2006 CPU benchmark running with 6 VMs.
We also adapted standard implementations of three com-
mon block ciphers to take advantage of STEALTHMEM.
The code changes amounted to 3 lines for Blowfish, 5
lines for DES and 34 lines for AES. The overheads of the
secured versions were 3% for DES, 2% for Blowfish and

Level Shared Type Line size Assoc. Size
L1 No Inst./Data 64 Bytes 4/8 32 kB/32 kB
L2 No Unified 64 Bytes 8 256 kB
L3 Yes Unified 64 Bytes 16 8 MB

Table 2: Caches in a Xeon W3520 processor

5% for AES.

2 Background

This section provides background on the systems
STEALTHMEM is intended to protect, focusing on CPU
caches and the channels through which cache information
can be leaked. It also provides an overview of known
cache-based side channel attacks.

2.1 System Model

We target modern virtualized server systems. The hard-
ware is a shared memory multiprocessor whose process-
ing cores share a cache (usually the last level cache). The
CPUs may support simultaneous multi-threading (Hyper-
Threading). The system software includes a hypervisor
that partitions the hardware resources among multiple
tenants, running in separate virtual machines (VMs). The
tenants are not trusted and may not trust each other.

2.1.1 Cache Structure

The following short summary of caches is specific to typ-
ical x64-based CPUs, which are the target of our work.
The CPU maps physical memory addresses to cache ad-
dresses (called cache indices) in n-byte aligned units.
These units are called cache lines, and mapped physi-
cal addresses are called pre-image sets of each cache line
as in Figure 1. A typical value of n is 64. We call the
number of possible cache indices the index range. We
call the index range times the line size, the address range
of the cache.

On x64 systems, caches are typically set associative.
Every cache index is backed by cache storage for some
number w > 1 of cache lines. Thus, up to w different
lines of memory that map to the same cache index can

2

USENIX Association 	 21st USENIX Security Symposium  191

Figure 1: Cache structure and terminology

be retained in the cache simultaneously (see Figure 1).
The number w is called the wayness or set associativity,
and typical values are 8 and 16, as in Table 2. Since w
cache lines have the same pre-image sets (correspondingly
mapped physical memory), we refer to all w cache lines
as a cache line set.

CPUs typically implement a logical hierarchy of
caches, called L1, L2 and L3 depending on where they
are located. L1 is physically closest to CPU, so it is the
fastest (about 4 cycles), but has the smallest capacity (e.g.,
32 kB). In multi-core architectures (e.g., Xeon), each
core has its own L1 and backed L2 cache. The L3 cache,
usually the last level cache, is the slowest (about 40 cy-
cles) and largest cache (e.g., 8 MB). It is shared by all
cores of a processor. The L3 is particularly interesting
because it can be shared among virtual machines running
concurrently on different cores.

2.1.2 Cache Properties

This section lists two well-known properties of caches
that our algorithms rely on. The first condition is the
basis for our main algorithm. We will also describe an
optimization that is possible if the cache has the second
property.

Inertia No cache line of a cache line set will be evicted
unless there is an attempt to add another item to the cache
line set. In other words, the current contents of each cache
line set stay in the cache until an address is accessed that
is not in the cache and that maps to the same cache line
set. That is, cache lines are not spontaneously forgotten.
The only exceptions are CPU instructions to flush the
cache such as invd or wbinvd on x64 CPUs. However,
such instructions are privileged and can be controlled by
a trusted hypervisor.

k-LRU Cache lines are typically evicted according to a
pseudo-LRU cache replacement policy. Under an LRU
replacement policy, the least recently used cache line is
evicted, assuming that cache line is not likely to be uti-
lized in the near future. Pseudo-LRU is an approximation
to LRU which is cheaper to implement in hardware. We
say that an associative cache has the k-LRU property if
the replacement algorithm will never evict the k most re-
cently used copies. The k is not officially documented by
major CPU vendors and may also differ by micro archi-
tectures and their implementations. We will perform an
experiment to find the proper k for our Xeon W3520 in
Section 5.

2.1.3 Leakage Channels

This section summarizes the different ways in which in-
formation can leak through caches (see Figure 2). These
leakage channels form the basis for active time-driven
attacks and trace-driven attacks that we will define in the
next section.

Preemptive scheduling An attacker’s VM and a vic-
tim’s VM may share a single CPU core (and its cache).
The system uses preemptive scheduling to switch the CPU
between the different VMs. Upon each context switch
from the victim to the attacker, the attacker can observe
the cache state as the victim had left it.

Hyper-Threading Hyper-Threading is a hardware tech-
nology that allows multiple (typically two) hardware
threads to run on a single CPU core. The threads share
a number of CPU resources, including the ALU and all
of the core’s caches. This gives rise to a number of side
channels, and scheduling potentially adversarial VMs on
Hyper-Threading of the same core is generally considered
to be unsafe.

Multicore The attacker and the victim may be running
concurrently on separate CPU cores with a shared L3
cache. In this case, the attacker can try to probe the
L3 cache for accesses by the victim while the victim is
running.

2.2 Cache-based Side Channel Attacks
In this section, we summarize and classify well-known
cache-based side channel attacks. Following Page [31],
we distinguish between time-driven and trace-driven
cache attacks, based on the information that is leaked
in the attacks. Furthermore, we classify time-driven at-
tacks as passive or active, depending on the scope of the
attacks.

3

192  21st USENIX Security Symposium	 USENIX Association

Figure 2: Leakage channels in three VM settings—uniprocessor, Hyper-Threading and multicore architectures. Modern
commodity multicore machines suffer from all of three types of cache-based side channels. The letters (I) and (D)
indicate instruction-cache and data-cache, respectively.

2.2.1 Time-driven Cache Attacks

The first class of attacks are time-driven cache attacks,
also known as timing attacks. Memory access times de-
pend on the state of the cache. This can result in measur-
able differences in execution times for different inputs.
Such timing differences could be converted into mean-
ingful attacks such as inferring cryptographic keys. For
example, the number of cache lines accessed by a block
cipher during encryption may depend on the key and on
the plaintext, resulting in differences in execution times.
Such differences may allow an attacker to derive the key
directly or to reduce the possible key space, making it pos-
sible to extract the complete key within a feasible amount
of time by brute force search.

Depending on the location of the attacker, the time-
driven cache attacks fall into two categories: passive and
active attacks. A passive attacker has no direct access to
the victim’s machine. Thus the attacker cannot manipulate
or probe the victim’s cache directly. Furthermore, he does
not have access to precise timers on the victim’s machine.
An active attacker, on the other hand, can run code on
the same machine as the victim. Thus, the attacker can
directly manipulate the cache on the victim’s machine.
He can also access precise timers on that machine.

Passive time-driven cache attacks The time measure-
ments in passive attacks are subject to two sources of
noise. The initial state of the cache, which passive attack-
ers cannot directly manipulate or observe, may influence
the running time. Furthermore, since the victim’s running
time cannot be measured locally with a high precision
timer, the measurement itself is subject to noise (e.g. due
to network delays). Passive attacks, therefore, generally
require more samples and try to reduce the noise by means
of statistical methods.

For example, Bernstein’s AES attack [8] exploits the

fact that the execution time of AES encryption varies
with the number of cache misses caused by S-box table
lookups during encryption. The indices of the S-box
lookups depend on the cryptographic key and the plaintext
chosen by the attacker. After measuring the execution
times for a sufficiently large number of carefully chosen
plaintexts, the attacker can infer the key after performing
further offline analysis.

Active time-driven cache attacks Active attackers can
directly manipulate the cache state, and thus can induce
collisions with the victim’s cache lines. They can also
measure the victim’s running time directly using a high
precision timer of the victim. This eliminates much of the
noise faced by passive attackers, and makes active attacks
more efficient. For example, Osvik et al. [30] describe an
active timing attack on AES which can recover the com-
plete 128-bit AES key from only 500,000 measurements.
In contrast, Bernstein’s passive timing attack required
227.5 measurements.

2.2.2 Trace-driven Cache Attacks

The second type of cache-based side channel attacks are
trace-driven attacks. These attacks try to observe which
cache lines the victim has accessed by probing and ma-
nipulating the cache. Thus, like active timing attacks,
trace-driven attacks require attackers to access the same
machine as the victim. Given the additional information
about access patterns of cache lines, trace-driven attacks
have the potential of being more efficient and sophisticate
than time-driven attacks.

A typical attack strategy (Prime+Probe) is for the at-
tacker to access certain memory addresses, thus filling the
cache with its own memory contents (Prime). Later, the
attacker measures the time required to access the same
memory addresses again (Probe). A large access time

4

USENIX Association 	 21st USENIX Security Symposium  193

indicates a cache miss which, in turn, may indicate that
the victim accessed a pre-image of the same cache line.

Trace-driven attacks were considered harmful espe-
cially with simultaneous multi-threading technologies,
such as Hyper-Threading, that enable one CPU to exe-
cute multiple hardware threads at the same time without
a context switch. By exploiting the fact that both threads
share the same processor resources, such as caches, Perci-
val [32] experimentally demonstrated a trace-driven cache
attack against RSA. The attacker’s process monitoring L1
activity of RSA encryption can easily distinguish the foot-
prints of modular squaring and modular multiplications
based on the Chinese Remainder Theorem, which is used
by various RSA implementations to compute modular
operations on the private key of RSA [32].

More severely, Neve [29] introduced another trace-
driven attack even without requiring multi-threading tech-
nologies. Within a single-threaded processor, Neve an-
alyzed the last round of AES encryption with multiple
footprints of the AES process. To gain a footprint, Neve’s
attack exploits the preemptive scheduling policy of com-
modity operating systems. Gullasch et al. similarly used
the Completely Fair Scheduler of Linux to extract full
AES encryption keys. This is the first fully functional
asynchronous attack in a real-world setting.

More quantitative research on trace-driven cache-based
side channel attacks was conducted by Osvik, Shamir
and Tromer [30, 39]. They demonstrated two interesting
AES attacks by analyzing the first and second round of
AES. The first attack (Prime+Probe) was able to recover
a complete 128-bit AES key after only 8,000 encryptions.
The second attack is asynchronous and allows an attacker
to recover parts of an AES key when the victim is run-
ning concurrently on the same machine. The attack was
applied to a Hyper-Threading processor. However, it is in
principle also applicable to modern multicore CPUs with
a shared last level cache.

3 Threat Model and Goals

With the move from private computing hardware toward
cloud computing, the dangers of cache-based side chan-
nels become more acute. The sharing of hardware re-
sources, especially CPU caches, exposes cloud tenants
to both active time-driven and trace-driven cache attacks
by co-located attackers. Neither of these attack types is
typically a concern in a private computing environment
which does not admit arbitrary code of unknown origin.

In contrast, passive time-driven attacks do not require
the adversary to execute code on the victim’s machine
and thus apply equally to both environments. This class
of attacks depends on the design, implementation, and
behavior of the victim’s algorithms.

The goal of this paper is to reduce the exposure of cloud

systems to cache-based side channels to that of private
computing environments. This requires defenses against
active time-driven and trace-driven attacks.

We aim to design a practical system-level mechanism
that provides such defenses. The design should be practi-
cal in the sense that it is compatible with existing commod-
ity server hardware. Furthermore, its impact on system
performance should be minimal, and it should not require
significant changes to tenant software.

4 Design

We have designed the STEALTHMEM system to meet the
aforementioned goals. The high-level idea is to provide
users with a limited amount of private memory that can be
accessed as if caches were not shared with other tenants.
We call this abstraction stealth memory [13]. Tenants can
use stealth memory to store data, such as the S-boxes of
block ciphers, that are known to be the target of cache-
based side channel attacks.

We describe our design and implementation for virtu-
alized systems that are commonly used in public clouds.
However, our design could also be applied to regular op-
erating systems running directly on a physical machine.
STEALTHMEM extends a hypervisor, such that each VM
can access small amounts of memory whose cache lines
are not shared.

Let p be the maximum number of CPU cores that can
share a cache. This number depends on the CPU model.
However, it is generally a small constant, such as p = 4
or p = 6. In particular, systems with larger numbers of
processors typically consist of independent CPUs without
shared caches among them.

The hypervisor selects p pre-image sets arbitrarily and
assigns one page (or a few pages) from each set to one of
the cores such that any two cores that share a cache are
assigned pages from different pre-image sets and such that
no page is assigned to more than one core. These pages
are the cores’ stealth pages, and they will be exposed
to virtual machines running on the cores. At boot or
initialization time, the hypervisor sets up the page tables
for each core, such that each stealth page is mapped only
to the core to which it was assigned. We will call the p
pre-image sets from which the stealth pages were chosen
the collision sets of the stealth pages.

Figure 3 shows an example of a CPU with four cores
sharing an L3 cache. Thus, p = 4. STEALTHMEM would
pick four pages from four different pre-image sets and set
the page tables such that the i-th core has exclusive access
to the i-th page.

In the rest of this section, we will refine the design and
describe how STEALTHMEM disables the three leakage
channels of Section 2.

5

194  21st USENIX Security Symposium	 USENIX Association

Figure 3: STEALTHMEM on a typical multicore machine: Each VM has its own stealth page. When a VM is scheduled
on a core, the core will lock the VM’s stealth page into the shared cache. In one version, the hypervisor will not use the
collision sets in order to avoid cache collisions.

4.1 Context Switching

In general, cores are not assigned exclusively to a single
VM, but are time-shared among multiple VMs. STEALTH-
MEM will save and restore stealth pages of VMs dur-
ing context switches. In the notation of Figure 3, when
VM5 is scheduled to a core currently executing VM4,
the STEALTHMEM hypervisor will save the stealth pages
of the core into VM4’s context, and restore them from
VM5’s context. STEALTHMEM will thus ensure that all of
VM4’s stealth pages are removed from the cache and all of
VM5’s stealth pages are loaded into the cache. STEALTH-
MEM performs this step at the very end of the context
switch—right before control is transferred from VM4 to
VM5. This way, all of VM5’s stealth pages will be in the
L1 cache (in addition to being in L2 and L3) when VM5
starts executing.

Guest operating systems can use the same technique to
multiplex their stealth memory to an arbitrary number of
applications.

4.2 Hyper-Threading

In order to avoid asynchronous cache side channels be-
tween hyperthreads on the same CPU core, STEALTH-
MEM gang schedules them. In other words, the hyper-
threads of a core are never simultaneously assigned to
different VMs. Some widely used hypervisors such as
Hyper-V already implement this policy. Given the tight
coupling of hyperthreads through shared CPU compo-
nents, it is hard to envision how the hyperthreads of a core
could be simultaneously assigned to multiple VMs with-
out giving rise to a multitude of side channels. Another
option is to disable Hyper-Threading.

4.3 Multicore

STEALTHMEM has to prevent an attacker running on one
core from using the shared cache to gain information
about the stealth memory accesses of a victim running
concurrently on another core. For this purpose, STEALTH-
MEM has to remove or tightly control access to any page
that maps to the same cache lines as the stealth pages;
i.e., to the p pre-image sets from which the stealth pages
were originally chosen. We consider two options: a)
STEALTHMEM makes these pages inaccessible and b)
STEALTHMEM makes the pages available to VMs, but
mediates access to them carefully.

Under the first option, STEALTHMEM ensures at the
hypervisor level that, beyond the stealth pages, no pages
from the p pre-image sets from which the stealth pages
were taken are mapped in the hardware page tables. Thus,
these pages are not used and are physically inaccessible
to any VM. There is no accessible page in the system
that maps to the same cache lines as the stealth pages.
Code running on one core cannot probe or manipulate
the cache lines of another core’s stealth page because it
cannot access any page that maps to the same cache lines.

The total amount of memory that is sacrificed in this
way depends on the shared cache configuration of the
processor. It is about 3% for all CPU models we have
examined. For example, the Xeon W3520 of Table 2 has
an 8 MB 16-way set associative L3 cache that is shared
among 4 cores (p = 4). Dividing 8 MB by the wayness
(16) and the page size (4096 bytes), yields 128 page-
granular pre-image sets. Removing p = 4 of them corre-
sponds to a memory overhead of 4/128 = 3.125%. The
available shared cache is reduced by the same amount.

One could consider the option of reducing the overhead
by letting trusted system software (e.g. the hypervisor,
or root partition) use the reserved pages, rather than not

6

USENIX Association 	 21st USENIX Security Symposium  195

assigning them to guest VMs. However, this would make
it hard to argue about the security of the resulting system.
For example, if the pages were used to store system code,
one would have to ensure that attackers could not access
the cache lines of stealth pages indirectly by causing the
execution of certain system functions.

4.4 Page Table Alerts

The second option is to use the memory from the p pre-
image sets, but to carefully mediate access to them. This
option eliminates the memory and cache overhead at the
expense of maintenance cost.

STEALTHMEM maintains the invariant that the stealth
pages never leave the shared cache. The shared cache is
w-way set associative. Intuitively, STEALTHMEM tries
to reserve one of the w slots for the stealth cache line,
while the remaining w − 1 slots can be used by other
pages. STEALTHMEM interposes itself on accesses that
might cause stealth cache lines to be evicted by setting
up the hardware page mappings for most of the colliding
pages, such that attempts to access them result in page
faults and, thus, invocation of the hypervisor. We call this
mechanism a page table alert (PTA).

Rather than simply not using the pre-image sets, the
hypervisor maps all their pages to VMs like regular pages.
However, the hypervisor sets up PTAs in the hardware
page mappings for most of these pages.

More precisely, the hypervisor ensures that there will
never be more than w− 1 pages (other than one stealth
page) from any of the p pre-image sets without a PTA.
The w−1 pages without PTAs are effectively a cache of
pages that can be accessed directly without incurring the
overhead of a PTA.

At initialization, the hypervisor places a PTA on every
page of each of the p pre-image sets. Upon a page fault,
the handler in the hypervisor will determine if the page
fault was caused by a PTA. If so, it will determine the
pre-image set of the page that triggered the page fault
and perform the following steps: (a) If the pre-image set
already contains w−1 pages without a PTA then one of
these pages is chosen (according to some replacement
strategy), and a PTA is placed on it. (b) The hypervi-
sor ensures that all cache lines of the stealth page and
of the up to w− 1 colliding pages without PTAs are in
the cache. This can be done by accessing these cache
lines—possibly repeatedly. On most modern processors,
the hypervisor can verify that the lines are indeed in the
cache by querying the CPU performance counters for the
number of L3 cache misses that occurred while accessing
the w pages. If this number is zero then all required lines
are in the cache. (c) The hypervisor removes the PTA
from the page that caused the page fault. (d) The hypervi-
sor resumes execution of the virtual processor that caused

the page fault. The hypervisor executes steps (b) and (c)
atomically—preemption is disabled.

The critical property of these steps is that all accesses
to the w pages without PTAs will always hit the cache and,
by the inertia property, not cause any cache evictions. Any
accesses to other pages from the same pre-image set are
guarded by PTAs and will be mediated by STEALTHMEM.

In order to improve scalability, we maintain a separate
set of PTAs for each group of p processors that share
the cache. Steps (a) to (d) are performed only locally for
the set of PTAs of the processor group that contains the
processor on which the page fault occurred. Thus, only
the local group of p processors needs to be involved in the
TLB shootdown, and different processor groups can have
different sets of pages on which the PTAs are disabled.
This comes at the expense of additional memory for page
tables.

k-LRU If the CPU’s cache replacement algorithm has
the k-LRU property (see Section 2) for some k > 1, the
following simplification is possible in step (b). Rather
than loading the cache lines from all pages without PTAs
from the pre-image set, STEALTHMEM only needs to
access once each cache line of the stealth page. This
reduces the overhead per PTA.

Furthermore, the maximum number of pages without
PTAs must now be set to k− 1, which may be smaller
than w−1. This may lead to more PTAs in this variant of
the algorithm.

The critical property of this variant of the algorithm is
that, at any time, the only pages in the stealth page’s pre-
image set that could have been accessed more recently
than the stealth page are the k− 1 pages without PTAs.
Thus, by the k-LRU property, the stealth page will never
be evicted from the cache. Figure 4 illustrates this for
k = 4.

4.5 Optimizations
Our design to expose stealth pages to arbitrary numbers
of VMs adds work to context switches. Early experiments
showed that this overhead can be significant. We use the
following optimizations to minimize this cost.

We associate physical stealth pages with cores, rather
than VMs, in order to minimize the need for shared data
structures and the resulting lock contention. STEALTH-
MEM virtualizes these physical stealth pages and exposes
a (virtual) stealth page associated with each virtual pro-
cessor of a guest. This requires copying the contents
of a virtual processor’s stealth page and acquiring inter-
processor locks whenever the hypervisor’s scheduler de-
cides to move a virtual processor to a different core. This
event, however, is relatively rare and costly in itself. Thus,
the work we add is only a small fraction of the total cost.

7

196  21st USENIX Security Symposium	 USENIX Association

Figure 4: Page table alerts on accessing pages 1, 2, 3, 4 and 1, which are the pre-images of the same cache line set.
When getting a page fault on accessing page 4, STEALTHMEMPTA reloads the stealth page to lock its cache lines. The
k-LRU policy (k = 4) guarantees that the stealth page will not be evicted from the cache. Extra page faults come from
accessing PTA-guarded pages. Accessing the tracked cache lines (pages without PTAs) will not generate extra page
faults and, thus, no extra performance penalty.

With this optimization, each guest still has its own pri-
vate stealth pages (one per virtual processor). A potential
difficulty of this approach is that guest code sees different
stealth pages, depending on which virtual processor it
runs on. However, this problem is immaterial for the stan-
dard application of STEALTHMEM, in which the stealth
pages store S-box tables that never change.

Furthermore, we use several optimizations to minimize
the cost of copying stealth pages and flushing their cache
lines during context switches. Rather than backing the
contents of a core’s stealth page to a regular VM context
page, we give each VM a separate set of stealth pages.
Each VM has its own stealth page from pre-image set i
for core i. Thus, if a VM is preempted and later resumes
execution on the same set of cores, it is only necessary to
refresh the cache lines of its stealth pages. The contents
of a stealth page only have to be saved and restored if a
virtual processor moves to a different core.

A frequent special case are transitions between a VM
and the root partition. When a VM requires a service,
such as access to the disk or the network, the root parti-
tion needs to be invoked. After the requested service is
complete, control is returned to the VM—typically on the
same cores on which it was originally running. Thus, it is
not necessary to copy the stealth page contents on either
transition. Furthermore, since we do not assign stealth
pages to the root partition, it is not even necessary to flush
caches.

4.6 Extensions
As long as the machine has sufficient memory, we do
not use the pages from the collision sets. This will help
STEALTHMEM to avoid the performance overhead of
maintaining PTAs. If, at some point, the machine is
short of memory, STEALTHMEM can start assigning PTA-
guarded pages to VMs, making all memory accessible.

STEALTHMEM can, in principle, provide more than
one page of stealth memory per core. In order to ensure
that stealth pages are not evicted from the cache, the
number of stealth pages per core can be at most k−1 for
variants that rely on the k-LRU property and at most w−1
for other variants, where w is the wayness of the cache.

4.7 API
VM level STEALTHMEM exposes stealth pages as ar-
chitectural features of virtual processors. The guest oper-
ating system can find out the physical address of a virtual
processor’s stealth page by making a hypercall, which is
a common interface to communicate with the hypervisor.

Application level Application code has to be modified
in order to place critical data on stealth pages. STEALTH-
MEM provides programmers with two simple APIs for
requesting and releasing stealth memory as shown in Ta-
ble 3: sm alloc() and sm free(). Programmers can pro-
tect important data structures, such as the S-boxes of
encryption algorithms, by requesting stealth memory and
then copying the S-boxes to the allocated space. In Sec-
tion 6, we will evaluate the API design by modifying
popular cryptographic algorithms, such as DES, AES and
Blowfish, in order to protect their S-boxes with STEALTH-
MEM.

5 Implementation

We have implemented the STEALTHMEM design on Win-
dows Server 2008 R2 using Hyper-V for virtualization.
The STEALTHMEM implementation consists of 5,000
lines of C code that we added to the Hyper-V hypervisor.
We also added 500 lines of C code to the Windows boot
loader modules (bootmgr and winloader).

8

USENIX Association 	 21st USENIX Security Symposium  197

API Description
void ∗ sm alloc(size t size) Allocate dynamic memory of size bytes and return a corresponding pointer
void sm free(void ∗ptr) Free allocated memory pointed to by the given pointer, ptr

Table 3: APIs to allocate and free stealth memory

STEALTHMEM exposes stealth pages to applications
through a driver that runs in the VMs and that produces
the user mode mappings necessary for sm alloc() and
sm free(). We did not have to modify the guest operating
system to use STEALTHMEM.

We implemented two versions of STEALTHMEM. In
the first implementation, Hyper-V makes the unused
pages from the p pre-image sets inaccessible. We will
refer to this implementation as STEALTHMEM. The sec-
ond implementation maps those pages to VMs, but guards
them with PTAs. We will explicitly call this version
STEALTHMEMPTA.

Hyper-V configures the hardware virtualization exten-
sions to trap into the hypervisor when VM code executes
invd instructions. We extended the handler to reload the
stealth cache lines immediately after executing invd. We
proceeded similarly with wbinvd.

5.1 Root Partition Isolation

Hyper-V relies on Windows to boot the machine. First,
Windows boots on the physical machine. Hyper-V is
launched only after that. The Windows instance that
booted the machine becomes the root partition (equiva-
lent to dom0 in Xen). In general, by the time Hyper-V is
launched, the root partition will be using physical pages
from all pre-image sets. It would be hard or impossible
to free up complete pre-image sets by evicting the root
partition from selected physical pages. The reasons in-
clude the use of large pages which span all pre-image sets
or the use of pages by hardware devices that operate on
physical addresses.

We obtain pre-image sets that are not used by the sys-
tem by marking all pages in these sets as bad pages in the
boot configuration data using bcdedit. This causes the
system to ignore these pages and cuts physical memory
into many small chunks. We had to adapt the Windows
boot loader to enable Windows to boot under this unusual
memory configuration.

As a result of this change there are no contiguous large
(2 MB or 4 MB) pages on the machine. Both the Windows
kernel and Hyper-V attempt to use large pages to improve
performance. Large page mappings reduce the translation
depth from virtual to physical addresses. Furthermore,
they reduce pressure on the TLB. We will evaluate the
impact of not using large pages on the performance of
STEALTHMEM in Section 6).

5.2 k-LRU

Major CPU vendors implement pseudo-LRU replacement
policies as an approximation of the LRU policy [14].
However, this is neither officially documented nor ex-
plicitly stated in CPU developer manuals [6, 16]. We
conducted the following experiment to find a k value for
which our target Xeon W3520 CPU has the k-LRU prop-
erty.

We selected a set of pages that mapped to the same
cache lines. Then, we loaded one page into the L3 cache
by reading the contents of the page. After that, we loaded
k′ other pages of the same pre-image set. Then, we turned
on the performance counter and checked L3 cache misses
after reading the first page again. We ran this experiment
in a device driver (ring0) on one core, while the other
cores were spinning on a shared lock. Interrupts were
disabled. We varied k′ from 1 to 16 (set associativity).
We started seeing L3 misses at k′ = 15 and concluded that
our CPU has the 14-LRU property.

6 Evaluation

We ask three questions to evaluate STEALTHMEM. First,
how effective is STEALTHMEM against cache-based side
channel attacks? Second, what is the performance over-
head of STEALTHMEM and its characteristics? And fi-
nally, how easy is it to adopt STEALTHMEM in existing
applications?

6.1 Security

6.1.1 Basic Algorithm

We consider the basic algorithm (without the optimiza-
tions of Section 4.5) first. STEALTHMEM guarantees that
all cache lines of stealth pages are always in the shared
(L3) cache. In the version that makes colliding pages in-
accessible, this is the case simply because on each group
of cores that share a cache, the only accessible pages from
the collision sets of the stealth pages are the stealth pages
themselves. We load all stealth pages into the shared
cache at initialization. Since Section 4.6 limits the num-
ber of stealth pages per collision set to w− 1 , this will
result in all stealth pages being in the cache simultane-
ously. It is impossible to generate collisions. Thus, by the
inertia property, these cache lines will never be evicted.

In the PTA version, it is theoretically possible for
stealth cache lines to be evicted very briefly from the

9

198  21st USENIX Security Symposium	 USENIX Association

cache during PTA handling while the w − 1 colliding
pages without PTAs are loaded into the cache. The stealth
cache line would be reloaded immediately as part of the
same operation, and the time outside the shared cache
could be limited to one instruction by accessing the stealth
cache line immediately after accessing a colliding line.

Leakage channels This property together with other
properties of STEALTHMEM prevents trace-driven and
active time-driven attacks on stealth pages. We consider
each of the three leakage channels in turn:

Multicore: Attackers running concurrently on other
cores cannot directly manipulate (prime) or probe stealth
cache lines of the victim’s core. This holds for the shared
cache because, as observed above, all stealth lines always
remain in the shared (L3) cache irrespective of the actions
of victims or attackers. It also holds for the other caches
(L1 and L2) because they are not shared.

Time sharing: Attackers who time-share a core with a
victim cannot directly manipulate or probe stealth cache
lines either because we load all stealth cache lines into the
cache (including L1 and L2) at the very end of a context
switch. Thus, no matter what the adversary or the victim
did before the context switch, all stealth lines will be in
all caches after a context switch. Thus, direct priming and
probing the cache should yield no information.

Hyper-Threading: STEALTHMEM gang schedules hy-
perthreads to prevent side channels across them.

Limitations While STEALTHMEM locks stealth lines
into the last level shared (L3) cache, it has no such con-
trol over the upper level caches (L1 and L2) other than
reloading stealth pages while context switching. Accord-
ingly, STEALTHMEM cannot hide the timing differences
coming out of L1 and L2 cache. Passive timing attacks
may arise by exploiting the timing differences between
L1 and L3 from a different VM. As stated earlier, passive
timing attacks are not our focus since they are not a new
threat that results from hardware sharing in the cloud.

6.1.2 Extensions and Optimizations

Per-VM stealth pages Section 4.5 describes an opti-
mization that maintains a separate set of per-core stealth
pages for each VM. With this optimization, stealth cache
lines are not guaranteed to stay in the shared cache perma-
nently. However, by loading the stealth page contents into
the cache at the end of context switches, STEALTHMEM
guarantees that the contents of a VM’s per-core stealth
pages are reloaded in the shared cache, whenever the core
executes the VM. Thus, the situation for attackers running
concurrently on different cores is the same as for the basic
algorithm. Our observations regarding context switches
and Hyper-Threading also carry over directly.

k-LRU In the PTA variant that relies on the k-LRU
property, the stealth page is kept in the cache because at
most k−1 colliding pages can be accessed without PTAs.
Since STEALTHMEM accesses the stealth page at the end
of every page fault that results in a PTA update, the stealth
cache lines are always at least the k-least recently used
lines in their associative set. Thus, on a CPU with the
k-LRU property, they will not be evicted.

6.1.3 Denial of Service

VMs do not have to (and cannot) request or release stealth
pages. Instead, STEALTHMEM provides every VM with
its own set of stealth pages as part of the virtual machine
interface. This set is fixed from the point of view of the
VM. Accesses by a VM to its stealth pages do not affect
other VMs. Thus, there should be no denial of service
attacks involving stealth pages at the VM interface level.

Guest operating systems running inside VMs may have
to provide stealth pages to multiple processes. The details
of this lie outside the scope of this paper. As noted above,
the techniques used in STEALTHMEM can also be applied
to operating systems. Operating systems that choose to
follow the STEALTHMEM approach virtualize their VM-
level stealth pages and provide a fixed independent set of
stealth pages to each process. Again, this type of stealth
memory should not give rise to denial of service attacks.
The APIs of Table 3 would be merely convenient syntax
for a process to obtain a pointer to its stealth pages.

6.2 Performance

We have measured the performance of our STEALTHMEM
implementation to assess the efficiency and practicality
of STEALTHMEM. The experiments ran on an HP Z400
workstation with a 2.67 GHz 4 core Intel Xeon W3520
CPU with 16 GB of DDR3 RAM. The cores were running
at 2.8 GHz. Each CPU core has a 32 kB 8-way L1 D-
cache, a 32 kB 4-way L1 I-cache and a 256 kB 8-way L2
cache. In addition, the four cores share an 8 MB 16-way
L3 cache. The machine ran a 64-bit version of Windows
Server 2008 R2 HPC Edition (no service pack). We con-
figured the power settings to run the CPU always at full
speed in order to reduce measurement noise. The virtual
machines used in the experiments ran the 64-bit version
of Windows 7 Enterprise Edition and had 2 GB of RAM.
This was the recommended minimum amount of memory
for running the SPEC 2006 CPU benchmark [37].

6.2.1 Performance Overhead

Our first goal was to estimate the overhead of STEALTH-
MEM and STEALTHMEMPTA. We have measured exe-
cution times for three configurations: Baseline—an un-

10

USENIX Association 	 21st USENIX Security Symposium  199

Benchmark Baseline Stealth Stealth PTA BaselineNLP
time st.dev. time st.dev. overhead time st.dev. overhead time st.dev. overhead

perlbench 508 0.1% 537 0.3% 5.7% 538 0.5% 5.9% 532 0.5% 4.7%
bzip2 610 2.0% 618 0.2% 1.3% 624 1.8% 2.3% 617 2.0% 1.1%
gcc 430 0.1% 466 0.3% 8.4% 476 0.2% 10.7% 462 0.3% 7.4%
milc 257 0.1% 289 0.7% 12.5% 298 0.5% 16.0% 284 1.6% 10.5%
namd 498 0.0% 500 0.1% 0.4% 500 0.1% 0.4% 499 0.1% 0.2%
dealII 478 0.1% 492 0.3% 2.9% 495 0.2% 3.6% 490 0.1% 2.5%
soplex 361 1.9% 401 0.4% 11.1% 412 0.3% 14.1% 394 0.2% 9.1%
povray 228 0.1% 229 0.6% 0.4% 229 0.1% 0.4% 228 0.2% 0.0%
calculix 360 0.2% 366 0.3% 1.7% 366 0.3% 1.7% 363 0.8% 0.8%
astar 454 0.1% 501 0.3% 10.4% 508 1.3% 11.9% 495 0.2% 9.0%
wrf 307 1.9% 331 0.8% 7.8% 336 1.2% 9.4% 329 0.6% 7.2%
sphinx3 602 0.1% 654 0.4% 8.6% 662 0.7% 10.0% 639 0.2% 6.1%
xalancbmk 307 0.2% 324 0.2% 5.5% 329 0.3% 7.2% 321 0.0% 4.6%
average 5.9% 7.2% 4.9%

Table 4: Running time in seconds (time), error bound (st.dev.) and overhead on 13 SPEC2006 CPU benchmarks for
Baseline, STEALTHMEM, STEALTHMEMPTA and BaselineNLP.

modified version of Windows with an unmodified ver-
sion of Hyper-V—and our respective implementations of
STEALTHMEM and STEALTHMEMPTA.

In the first experiment, we ran each configuration with
two VMs. One VM ran the SPEC 2006 CPU bench-
mark [37]. Another VM was idle. Table 4 displays the
execution times for 13 applications from the SPEC bench-
mark suite. We repeated each run ten times, obtaining
ten samples for each time measurement. The running
times in the table are the sample medians. The table also
displays the sample standard deviation as a percentage
of the sample average as an indication of the noise in the
sample. The sample standard deviation is typically less
than one percent of the sample average.

The overhead of STEALTHMEM varies between close
to zero for about one third of the SPEC applications
and 12.5% for milc. The average overhead is 5.9%. As
expected, the overhead of STEALTHMEMPTA (7.2%) is
larger than that of STEALTHMEM because of the extra
cost of handling PTA page faults. Server operators can
choose either variant, depending on the memory usage of
their servers.

We also attempted to find the source of the overhead
of STEALTHMEM. Possible sources are the cost of virtu-
alizing stealth pages, the 3% reduction in the size of the
available cache and the cost of not being able to use large
pages. We repeated the experiment with a configuration
that is identical to the Baseline configuration, except that
it does not use large pages. It is labeled BaselineNLP (for
‘no large pages’) in Table 4. The overheads for Baseli-
neNLP across the different SPEC applications correlate
with the overheads of STEALTHMEM. The overhead due
to not using large pages (4.9% on average) accounts for
more than 80% of the overhead of STEALTHMEM.

We constructed BaselineNLP using the same binaries
as Baseline. However, at hypervisor startup, we disabled

one Hyper-V function by using the debugger to overwrite
its first instruction with a ret. This function is responsible
for replacing regular mappings by large mappings in the
extended page tables. Without it, Hyper-V will not use
large page mappings irrespective of the actions of the root
partition or other guests.

6.2.2 Comparison with Page Coloring

Page coloring [33] isolates VMs from cache-related de-
pendencies by partitioning physical memory pages among
VMs such that no VM shares cache lines with any other
VM. We modified one of the Hyper-V support drivers in
the root partition (vid.sys) to assign physical memory to
VMs accordingly.

In this simple implementation of Page Coloring, the
VMs still share cache lines with the root partition. The
same holds for the system in [33]. In contrast, our
STEALTHMEM implementation isolates stealth pages also
from the root partition. While this difference makes the
Page Coloring configuration less secure, it should work
to its advantage in the performance comparison.

The next experiment compares the overheads of
STEALTHMEM and Page Coloring as the number of VMs
increases. We ran BaselineNLP, STEALTHMEM and Page
Coloring with between 2 and 7 VMs, running the SPEC
workload in one VM and leaving the remaining VMs idle.
The root partition is not included in the VM count. Again,
each time measurement is the median of ten SPEC runs.
The sample standard deviation was typically less than1%
and in no case more than 2.5% of the sample mean.

Figure 5 displays the overheads over BaselineNLP of
STEALTHMEM (left) and Page Coloring (right) as a func-
tion of the number of VMs. We chose to display the
overhead over BaselineNLP, rather than Baseline, in or-
der to eliminate the constant cost of not using large pages,

11

200  21st USENIX Security Symposium	 USENIX Association

0%

10%

20%

30%

40%

50%

 2 3 4 5 6 7

O
v

er
h

ea
d

 (
%

)

#VM

perlbench
bzip2

gcc
milc

namd
dealII

soplex
povray

calculix
astar

wrf
sphinx3

xalancbmk

0%

10%

20%

30%

40%

50%

 2 3 4 5 6 7

O
v

e
rh

e
a
d

 (
%

)

#VM

Figure 5: Overhead of STEALTHMEM (left) and Page Coloring (right) over BaselineNLP. The x-axis is the number of
VMs.

which affects STEALTHMEM and Page Coloring similarly.
Using Baseline adds an application dependent constant to
each curve.

Overall, the overhead of STEALTHMEM is significantly
smaller than the overhead of Page Coloring. The lat-
ter grows with the number of VMs, as each VM gets a
smaller fraction of the cache. In contrast, the overhead of
STEALTHMEM remains largely constant as the number
of VMs increases.

Figure 5 also shows significant differences between
the individual benchmarks. For eight benchmarks, Page
Coloring shows a large and rising overhead. The most ex-
treme case of this is sphinx3 with a maximum overhead of
almost 50%. For four benchmarks, the overhead of Page
Coloring is close to zero. Finally, the milc benchmark
stands out, as Page Coloring runs it consistently faster
than BaselineNLP and STEALTHMEM.

These observations are roughly consistent with the
cache sensitivity analysis of Jaleel [19]. The applications
with low overhead (namd, povray and calculix) appear to
have very small working sets that fit into the L3 cache of
all configurations we used in the experiment (including
Page Coloring with 7 VMs). For the eight benchmarks
with higher overhead, the number of cache misses appears
to be sensitive to lower cache sizes in the range covered
by our Page Coloring experiment (8/7 MB to 8 MB). For
the milc application, the data reported by Jaleel indicate
a working set size of more than 64 MB. This suggests
that milc may be thrashing the L3 cache as well as the
TLB even when given the entire cache of the machine
under BaselineNLP. The performance improvement under
Page Coloring may be the result of the CPU being able
to resolve certain events (such as page table walks) faster
when a large part of the cache is not being thrashed by
milc.

0s

1s

2s

3s

4s

5s

6s

7s

8s

 2 4 6 8 10 12

E
x
ec

u
ti

o
n
 t

im
e

(s
)

Working Set Size (MB)

Baseline
Baseline (NLP)

Stealth
Stealth (PTA)
Page Coloring

Figure 6: Running times of a micro-benchmark as a
function of its working set size.

6.2.3 Overhead With Various Working Set Sizes

The following experiment shows overhead as a function
of working set size. Given the working set of an ap-
plication, developers can estimate the expected perfor-
mance overhead when they modify an application to use
STEALTHMEM.

In the experiment, we used a synthetic application that
makes a large number of accesses to an array whose size
we varied (the working set size). The working set size
is the input to the application. It allocates an array of
that size and reads memory from the array in a tight loop.
The memory accesses start at offset zero and move up
the array in a quasi-linear pattern of increasing the offset
for the next read operation by 192 bytes (three cache line
sizes) and reducing the following offset by 64 bytes (one
cache line size). This is followed by another 192 byte
increase and another 64 byte reduction etc. When the end
of the array is reached, the process is repeated, starting

12

USENIX Association 	 21st USENIX Security Symposium  201

0%

2%

4%

6%

8%

10%

 1 2 3 4 5 6 7 8

O
v

er
h

ea
d

 (
%

)

#Stealth Pages per VM

perlbench
bzip2

gcc
milc

namd
dealII

soplex
povray

calculix
astar
wrf

sphinx3
xalancbmk

Figure 7: Overhead of STEALTHMEM as a function of
the number of stealth pages

again at offset zero.
We ran the application for several configurations. In

each case, we ran seven VMs. One VM was running
our application. The remaining six VMs were idle. We
varied the working set sizes from 100 kB to 12.5 MB and
measured for each run the time needed by the application
to make three billion memory accesses. The results are
displayed in Figure 6. The time measurements in the
figure are the medians over five runs. The sample standard
deviations were less than 0.5% of the sample means for
most working set sizes. However, where the slope of
a curve was very steep, the sample standard deviations
could be up to 5% of the sample means.

Most configurations show a sharp rise in the running
times as the working set size increases past the size of the
L3 cache (8 MB). For Page Coloring, this jump occurs for
much smaller working sets since the VM can access only
one seventh of the CPU’s cache. Most configurations also
display a second, smaller increase around 2 MB. This
may be the result of TLB misses. The processor’s L2
TLB has 512 entries which can address up to 2 MB based
on regular 4 kB page mappings.

For very large workload sizes, BaselineNLP and
STEALTHMEM become slower than Page Coloring. This
appears to be the same phenomenon that caused Page
Coloring to outperform BaselineNLP and STEALTHMEM
on the milc benchmark.

6.2.4 Overhead With Various Stealth Pages

This experiment attempts to estimate how the overhead
of STEALTHMEM depends on the number of stealth
pages that the hypervisor provides to each VM. We ran
STEALTHMEM with one VM running the SPEC bench-
marks and varied the number of stealth pages per VM. As
before, the times we report are the medians over ten runs.

The sample standard deviations were less than 0.4% of
the sample means in all cases.

Figure 7 displays the overhead with respect to
STEALTHMEM with one stealth page per VM. There is no
noticeable increase in the running time as the number of
stealth pages increases. This is the result of the optimiza-
tions described earlier that eliminate the need to copy the
contents of stealth pages or to load them into the cache
frequently.

6.3 Block Ciphers

The goal of this experiment is to evaluate performance for
real-world applications that heavily use stealth pages. We
choose three popular block ciphers: AES [2], DES [1] and
Blowfish [35]. Efficient implementations of each of these
ciphers perform a number of lookups in a table during
encryption and decryption. We picked Bruce Schneier’s
implementation of Blowfish [36], and standard commer-
cial implementations of AES and DES and adapted them
to use stealth pages (as described in Section 6.4).

We measured the encryption speeds of each of the ci-
phers for (a) the baseline configuration (unmodified Win-
dows 7, Hyper-V and cipher implementation), (b) our
STEALTHMEM configuration using the modified versions
of the cipher implementations just described and (c) an
uncached configuration, which places the S-box tables
on a page that is not cached. Configuration (c) runs the
modified version of the block cipher implementations on
an unmodified version of Windows and an essentially un-
modified version of the hypervisor. We added a driver in
the Windows 7 guest that creates an uncached user mode
mapping to a page. We also had to add one hypercall to
Hyper-V to ensure that this page was indeed mapped as
uncached in the physical page tables. We included this
configuration in our experiments since using an uncached
page is the simplest way to eliminate cache side channels.

We measured the time required to encrypt 5 million
bytes for each configuration. In order to reduce mea-
surement noise, we raised the scheduling priority of the
encryption process to the HIGH PRIORITY CLASS of
the Windows scheduler. We ran the experiment in a small
buffer configuration (50,000 byte buffer encrypted 1,000
times) and a large buffer configuration (5 million byte
buffer encrypted once) to show performance overheads
with different workloads.

The numbers in Table 5 are averaged over 1,000 runs.
The sample standard deviation lies between 1 and 4 per-
cent of the sample averages. The overhead of using a
stealth page with respect to baseline performance lies be-
tween 2% and 5%, while the overhead of the uncached
version lies between 97.9% and 99.9%.

13

202  21st USENIX Security Symposium	 USENIX Association

A small buffer (50,000 bytes) A large buffer (5,000,000 bytes)
Cipher Baseline Stealth Uncached Baseline Stealth Uncached

DES 60 58 -3% 0.83 -99% 59 57 -3% 0.83 -99%
AES 150 143 -5% 1.33 -99% 142 135 -5% 1.32 -99%

Blowfish 77 75 -2% 1.65 -98% 75 74 -2% 1.64 -98%

Table 5: Block cipher encryption speeds in MB/s for small and large buffers. We mapped the S-box of each encryption
algorithm to cached, stealth and uncached pages.

Source code
Original static unsigned long S[4][256];

typedef unsigned long UlongArray[256];
static UlongArray *S;

Modified // in the initialization function
S = sm alloc(4*256);

Table 6: Modified Blowfish to use STEALTHMEM

Encryption Size of S-box LoC Changes
DES 256 B * 8 = 2 kB 5 lines
AES 1024 B * 4 = 4 kB 34 lines

Blowfish 1024 B * 4 = 4 kB 3 lines

Table 7: Size of S-box in various encryption algorithms,
and corresponding changes to use STEALTHMEM

6.4 Ease-of-use

We had to make only minor changes to the block cipher
implementations to adapt them to STEALTHMEM. These
changes amounted to replacing the global array variables
that hold the encryption tables by pointers to the stealth
page. In the case of Blowfish, this change required only
3 lines. We replaced the global array declaration by a
pointer and assigned the base of the stealth page to it in
the initialization function (see Table 6).

Adapting DES required us to change a total of 5 lines.
In addition to a change of the form just described, we had
to copy the table contents (constants in the source code)
to the stealth page. This was not necessary for Blowfish
which read these data from a file. Adapting AES required
a total of 34 lines. This large number is the result of the
fact that our AES implementation declares its table as 8
different variables, which forced us to repeat 8 times the
simple adaptation we did for DES. Table 7 summarizes
the S-box layouts and the required code changes for the
three ciphers.

7 Related Work

Kocher [22] presented the initial idea of exploiting tim-
ing differences to break popular cryptosystems. Even
though Kocher speculated about the possibility of ex-
ploiting cache side channels, the first theoretical model
of cache attacks was described by Page [31] in 2002.

Around that time, researchers started investigating cache-
based side channels against actual cryptosystems and
broke popular cryptosystems such as AES [4, 8, 9, 30],
and DES [40]. With the emergence of simultaneous multi-
threading, researchers discovered a new type of cache
attacks, classified as trace-driven attacks in our paper,
against AES [3, 30] and RSA [32] by exploiting the new
architectural feature of an L1 cache that is shared by two
hyperthreads. Recently, Osvik et al. [30, 39] executed
more quantitative research on cache attacks and classified
possible attack methods. The new cloud computing en-
vironments have also gained the attention of researchers
who have explored the possibility of cache-based side
channel attacks in the cloud [7, 34, 44], or inversely their
use in verifying co-residency of VMs [45].

Mitigation methods against cache attacks have been
studied in three directions: suggesting new cache hard-
ware with security in mind, designing software-only de-
fense mechanism, and developing application specific
mitigation methods.

Hardware-based mitigation methods focus on reduc-
ing or obfuscating cache accesses [23, 24, 41–43] by de-
signing new caches, or partitioning caches with dynamic
or other efficient methods [12, 21, 27, 42, 43]. Wang
and Lee [42, 43] proposed PLcache to hide cache access
patterns by locking cache lines, and RPcache to obfus-
cate patterns by randomizing cache mappings. These
hardware-based approaches, however, will not provide
practical defenses until CPU makers integrate them into
mainstream CPUs and cloud providers purchase them.
Our defense mechanism not only provides similar secu-
rity guarantee as these methods, but also allows cloud
providers to utilize existing commodity hardware.

Software-only defenses [7,11,13,15,33] also have been
actively proposed. Against time-drive attacks, Coppens
et al. [11] demonstrated a mitigation method by modi-
fying a compiler to remove control-flow dependencies
on confidential data, such as secret keys. This compiler
technique, however, leaves applications still vulnerable
to trace-driven cache attacks in the cloud. Against trace-
driven attacks, static partitioning techniques, such as page
coloring [33], provide a general mitigation solution by
partitioning pre-image sets among VMs. Since static par-
titioning divides the cache by the number of VMs, its
performance overhead becomes significantly larger when
cloud providers run more VMs, as we demonstrated in

14

USENIX Association 	 21st USENIX Security Symposium  203

Section 6. Our solution, however, assigns unique cache
line sets to virtual processors and flexibly loads stealth
pages of each VM if necessary, and thus demonstrates
better performance.

Erlingsson and Abadi [13] proposed the abstraction of
“stealth memory” and sketched techniques for implement-
ing it. We have realized the abstraction in a virtualized
multiprocessor environment by designing and implement-
ing a complete defense system against cache side channel
attacks and evaluating it across system layers (from the
hypervisor to cryptographic applications) in a concrete
security model.

Since existing hardware-based and software-only de-
fenses are not practical because they require new CPU
hardware or because of their performance overhead,
researchers have been exploring mitigation methods
for particular algorithms or applications. The design
and implementation of AES has been actively revisited
by [8–10, 14, 30, 39], focusing on eliminating or control-
ling access patterns on S-Boxes, or not placing S-Boxes
into memory [28], but into registers of x64 CPUs. Re-
cently, Intel [17] introduced a special instruction for AES
encryption and decryption. These approaches may secure
AES from cache side channels, but it is not realistic to
introduce new CPU instructions for every software algo-
rithm that might be subject to leaking information via
cache side channels. In contrast, STEALTHMEM provides
a general system-level protection solution that every ap-
plication can take advantage of if it wants to protect its
confidential data in the cloud.

8 Conclusion

We design and implement STEALTHMEM, a system-level
protection mechanism against cache-based side channel
attacks, specifically against active time-driven and trace-
driven cache attacks, which cloud platforms suffer from.
STEALTHMEM helps cloud service providers offer bet-
ter security against cache attacks, without requiring any
hardware modifications.

With only a few lines of code changes, we can mod-
ify popular encryption schemes such as AES, DES and
Blowfish to use STEALTHMEM. Running the SPEC 2006
CPU benchmark shows an overhead of 5.9%, and our
micro-benchmark shows that the secured AES, DES, and
Blowfish have between 2% and 5% performance over-
head, while making extensive use of STEALTHMEM.

Acknowledgments

We thank the anonymous reviewers, and our shepherd,
David Lie, for their feedback. We would also like to thank
Úfar Erlingsson and Martı́n Abadi for several valuable

conversations. Taesoo Kim is partially supported by the
Samsung Scholarship Foundation.

References
[1] Data Encryption Standard (DES). In FIPS PUB 46, Federal

Information Processing Standards Publication (1977).

[2] Advanced Encryption Standard (AES). In FIPS PUB 197, Federal
Information Processing Standards Publication (2001).

[3] ACIIÇMEZ, O., AND ÇETIN KAYA KOÇ. Trace-driven cache
attacks on AES. Cryptology ePrint Archive, Report 2006/138,
2006.

[4] ACIIÇMEZ, O., SCHINDLER, W., AND ÇETIN K. KOÇ. Cache
based remote timing attack on the AES. In Topics in Cryptology –
CT-RSA 2007, The Cryptographers’ Track at the RSA Conference
2007 (2007), Springer-Verlag, pp. 271–286.

[5] AMAZON, INC. Amazon Elastic Compute Cloud (EC2). http:
//aws.amazon.com/ec2, 2012.

[6] AMD, INC. AMD64 Architecture Programmer’s Manual.
No. 24594. December 2011.

[7] AVIRAM, A., HU, S., FORD, B., AND GUMMADI, R. Deter-
minating timing channels in compute clouds. In Proceedings
of the 2010 ACM Cloud Computing Security Workshop (2010),
pp. 103–108.

[8] BERNSTEIN, D. J. Cache-timing attacks on AES. Available at:
http://cr.yp.to/antiforgery/cachetiming-20050414.

pdf, 2005.

[9] BONNEAU, J., AND MIRONOV, I. Cache-collision timing attacks
against AES. In Proceedings of the 8th International Workshop on
Cryptographic Hardware and Embedded Systems (2006), pp. 201–
215.

[10] BRICKELL, E., GRAUNKE, G., NEVE, M., AND SEIFERT, J.-
P. Software mitigations to hedge AES against cache-based soft-
ware side channel vulnerabilities. IACR ePrint Archive, Report
2006/052, 2006.

[11] COPPENS, B., VERBAUWHEDE, I., BOSSCHERE, K. D., AND
SUTTER, B. D. Practical mitigations for timing-based side-
channel attacks on modern x86 processors. In Proceedings of
the 2009 IEEE Symposium on Security and Privacy (2009), pp. 45–
60.

[12] DOMNITSER, L., JALEEL, A., LOEW, J., ABU-GHAZALEH,
N., AND PONOMAREV, D. Non-monopolizable caches: Low-
complexity mitigation of cache side channel attacks. ACM Trans-
actions on Architecture and Code Optimization 8, 4 (Jan. 2012),
35:1–35:21.

[13] ERLINGSSON, Ú., AND ABADI, M. Operating system protection
against side-channel attacks that exploit memory latency. Tech.
Rep. MSR-TR-2007-117, Microsoft Research, August 2007.

[14] GULLASCH, D., BANGERTER, E., AND KRENN, S. Cache
Games – bringing access-based cache attacks on AES to practice.
In Proceedings of the 2011 IEEE Symposium on Security and
Privacy (May 2011), pp. 490 –505.

[15] HU, W. M. Reducing timing channels with fuzzy time. In Pro-
ceedings of the 1991 IEEE Symposium on Security and Privacy
(1991), pp. 8–20.

[16] INTEL, INC. Intel R© 64 and IA-32 Architectures Software Devel-
oper’s Manual. No. 253669-033US. December 2009.

[17] INTEL, INC. Advanced Encryption Standard (AES) Instructions
Set. http://software.intel.com/file/24917, 2010.

15

204  21st USENIX Security Symposium	 USENIX Association

[18] ION, I., SACHDEVA, N., KUMARAGURU, P., AND ČAPKUN,
S. Home is safer than the cloud! Privacy concerns for consumer
cloud storage. In Proceedings of the Seventh Symposium on Usable
Privacy and Security (2011), pp. 13:1–13:20.

[19] JALEEL, A. Memory characterization of workloads using
instrumentation-driven simulation – a pin-based memory charac-
terization of the SPEC CPU2000 and SPEC CPU2006 benchmark
suites. Tech. rep., VSSAD, 2007.

[20] JANSEN, W., AND GRANCE, T. Guidelines on security and
privacy in public cloud computing. NIST Special Publication
800-144, December 2011.

[21] KIM, S., CHANDRA, D., AND SOLIHIN, Y. Fair cache sharing
and partitioning in a chip multiprocessor architecture. In Proceed-
ings of the 13th International Conference on Parallel Architectures
and Compilation Techniques (2004), pp. 111–122.

[22] KOCHER, P. C. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In Advances in Cryptol-
ogy (1996), pp. 104–113.

[23] KONG, J., ACIIÇMEZ, O., SEIFERT, J.-P., AND ZHOU, H. De-
constructing new cache designs for thwarting software cache-
based side channel attacks. In Proceedings of the 2nd ACM Work-
shop on Computer Security Architectures (2008), pp. 25–34.

[24] KONG, J., ACIIÇMEZ, O., SEIFERT, J.-P., AND ZHOU, H.
Hardware-software integrated approaches to defend against soft-
ware cache-based side channel attacks. In Proceedings of the
15th International Conference on High Performance Computer
Architecture (2009), pp. 393–404.

[25] MANGALINDAN, J. Is user data safe in the cloud?
http://tech.fortune.cnn.com/2010/09/24/

is-user-data-safe-in-the-cloud, September 2010.

[26] MICROSOFT, INC. Microsoft Azure Services Platform. http:

//www.microsoft.com/azure/.

[27] MOSCIBRODA, T., AND MUTLU, O. Memory performance at-
tacks: denial of memory service in multi-core systems. In Proceed-
ings of the 16th USENIX Security Symposium (2007), pp. 257–274.

[28] MÜLLER, T., DEWALD, A., AND FREILING, F. C. AESSE: a
cold-boot resistant implementation of AES. In Proceedings of the
Third European Workshop on System Security (2010), pp. 42–47.

[29] NEVE, M., AND SEIFERT, J.-P. Advances on access-driven cache
attacks on AES. In Selected Areas in Cryptography, vol. 4356.
2007, pp. 147–162.

[30] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache attacks
and countermeasures: the case of AES. In Topics in Cryptology -
CT-RSA 2006, The Cryptographers Track at the RSA Conference
2006 (2005), pp. 1–20.

[31] PAGE, D. Theoretical use of cache memory as a cryptanalytic
side-channel. Tech. Rep. CSTR-02-003, Department of Computer
Science, University of Bristol, June 2002.

[32] PERCIVAL, C. Cache missing for fun and profit. In BSDCan 2005
(Ottawa, 2005).

[33] RAJ, H., NATHUJI, R., SINGH, A., AND ENGLAND, P. Resource
management for isolation enhanced cloud services. In Proceedings
of the 2009 ACM Cloud Computing Security Workshop (2009),
pp. 77–84.

[34] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,
S. Hey, you, get off of my cloud: exploring information leakage
in third-party compute clouds. In Proceedings of the 16th ACM
Conference on Computer and Communications Security (2009),
pp. 199–212.

[35] SCHNEIER, B. The Blowfish encryption algorithm. http://www.
schneier.com/blowfish.html.

[36] SCHNEIER, B. The Blowfish source code. http://www.

schneier.com/blowfish-download.html.

[37] (SPEC), S. P. E. C. The SPEC CPU 2006 Benchmark Suite.
http://www.specbench.org.

[38] SUZAKI, K., IIJIMA, K., YAGI, T., AND ARTHO, C. Memory
deduplication as a threat to the guest OS. In Proceedings of the
Fourth European Workshop on System Security (EUROSEC ’11)
(2011), pp. 1:1–1:6.

[39] TROMER, E., OSVIK, D. A., AND SHAMIR, A. Efficient cache
attacks on AES, and countermeasures. Journal of Cryptology 23,
2 (2010), 37–71.

[40] TSUNOO, Y., SAITO, T., SUZAKI, T., AND SHIGERI, M. Crypt-
analysis of DES implemented on computers with cache. In Pro-
ceedings of the 2003 Cryptographic Hardware and Embedded
Systems (2003), pp. 62–76.

[41] WANG, Z., AND LEE, R. B. Covert and side channels due
to processor architecture. In Proceedings of the 22nd Annual
Computer Security Applications Conference (December 2006),
pp. 473 –482.

[42] WANG, Z., AND LEE, R. B. New cache designs for thwarting
software cache-based side channel attacks. In Proceedings of the
34th International Symposium on Computer Architecture (2007),
pp. 494–505.

[43] WANG, Z., AND LEE, R. B. A novel cache architecture with
enhanced performance and security. In Proceedings of the 41st
annual IEEE/ACM International Symposium on Microarchitecture
(2008), pp. 83–93.

[44] XU, Y., BAILEY, M., JAHANIAN, F., JOSHI, K., HILTUNEN,
M., AND SCHLICHTING, R. An exploration of L2 cache covert
channels in virtualized environments. In Proceedings of the 2011
ACM Cloud Computing Security Workshop (2011), pp. 29–40.

[45] ZHANG, Y., JUELS, A., OPREA, A., AND REITER, M. K. Home-
Alone: Co-residency detection in the cloud via side-channel analy-
sis. In Proceedings of the 2011 IEEE Symposium on Security and
Privacy (2011), pp. 313–328.

16

USENIX Association 	 21st USENIX Security Symposium  205

Mining Your Ps and Qs: Detection of
Widespread Weak Keys in Network Devices

Nadia Heninger†∗ Zakir Durumeric‡∗ Eric Wustrow‡ J. Alex Halderman‡

† University of California, San Diego
nadiah@cs.ucsd.edu

‡ The University of Michigan
{zakir, ewust, jhalderm}@umich.edu

Abstract
RSA and DSA can fail catastrophically when used with
malfunctioning random number generators, but the extent
to which these problems arise in practice has never been
comprehensively studied at Internet scale. We perform
the largest ever network survey of TLS and SSH servers
and present evidence that vulnerable keys are surprisingly
widespread. We find that 0.75% of TLS certificates share
keys due to insufficient entropy during key generation,
and we suspect that another 1.70% come from the same
faulty implementations and may be susceptible to com-
promise. Even more alarmingly, we are able to obtain
RSA private keys for 0.50% of TLS hosts and 0.03% of
SSH hosts, because their public keys shared nontrivial
common factors due to entropy problems, and DSA pri-
vate keys for 1.03% of SSH hosts, because of insufficient
signature randomness. We cluster and investigate the vul-
nerable hosts, finding that the vast majority appear to be
headless or embedded devices. In experiments with three
software components commonly used by these devices,
we are able to reproduce the vulnerabilities and identify
specific software behaviors that induce them, including
a boot-time entropy hole in the Linux random number
generator. Finally, we suggest defenses and draw lessons
for developers, users, and the security community.

1 Introduction and Roadmap

Randomness is essential for modern cryptography, where
security often depends on keys being chosen uniformly at
random. Researchers have long studied random number
generation, from both practical and theoretical perspec-
tives (e.g., [8, 13, 15, 17, 21, 23]), and a handful of major
vulnerabilities (e.g., [5, 19]) have attracted considerable
scrutiny to some of the most critical implementations.
Given the importance of this problem and the effort and
attention spent improving the state of the art, one might

∗The first two authors both made substantial contributions.

expect that today’s widely used operating systems and
server software generate random numbers securely. In this
paper, we test that proposition empirically by examining
the public keys in use on the Internet.

The first component of our study is the most compre-
hensive Internet-wide survey to date of two of the most
important cryptographic protocols, TLS and SSH (Sec-
tion 3.1). By scanning the public IPv4 address space,
we collected 5.8 million unique TLS certificates from
12.8 million hosts and 6.2 million unique SSH host keys
from 10.2 million hosts. This is 67% more TLS hosts
than the latest released EFF SSL Observatory dataset [18].
Our techniques take less than 24 hours to scan the entire
address space for listening hosts and less than 96 hours
to retrieve keys from them. The results give us a macro-
scopic perspective of the universe of keys.

Next, we analyze this dataset to find evidence of several
kinds of problems related to inadequate randomness. To
our surprise, at least 5.57% of TLS hosts and 9.60% of
SSH hosts use the same keys as other hosts in an appar-
ently vulnerable manner (Section 4.1). In the case of TLS,
at least 5.23% of hosts use manufacturer default keys that
were never changed by the owner, and another 0.34%
appear to have generated the same keys as one or more
other hosts due to malfunctioning random number gener-
ators. Only a handful of the vulnerable TLS certificates
are signed by browser-trusted certificate authorities.

Even more alarmingly, we are able to compute the
private keys for 64,000 (0.50%) of the TLS hosts and
108,000 (1.06%) of the SSH hosts from our scan data
alone by exploiting known weaknesses of RSA and DSA
when used with insufficient randomness. In the case of
RSA, distinct moduli that share exactly one prime factor
will result in public keys that appear distinct but whose
private keys are efficiently computable by calculating
the greatest common divisor (GCD). We implemented
an algorithm that can compute the GCDs of all pairs of
11 million distinct public RSA moduli in less than 2 hours
(Section 3.3). Using the resulting factors, we are able to

206  21st USENIX Security Symposium	 USENIX Association

obtain the private keys for 0.50% of TLS hosts and 0.03%
of SSH hosts (Section 4.2). In the case of DSA, if a DSA
key is used to sign two different messages with the same
ephemeral key, an attacker can efficiently compute the
signer’s long-term private key. We find that our SSH scan
data contain numerous DSA signatures that used the same
ephemeral keys during signing, allowing us to compute
the private keys for 1.6% of SSH DSA hosts (Section 4.3).

To understand why these problem are occurring, we
manually investigated hundreds of the vulnerable hosts,
which were representative of the most commonly repeated
keys as well as each of the private keys we obtained
(Section 3.2). Nearly all served information identifying
them as headless or embedded systems, including routers,
server management cards, firewalls, and other network de-
vices. Such devices typically generate keys automatically
on first boot, and may have limited entropy sources com-
pared to traditional PCs. Furthermore, when we examined
clusters of hosts that shared a key or factor, in nearly all
cases these appeared to be linked by a manufacturer or
device model. These observations lead us to conclude
that the problems are caused by specific defective imple-
mentations that generate keys without having collected
sufficient entropy. We identified vulnerable devices and
software from dozens of manufacturers, including some of
the largest names in the technology industry, and worked
to notify the responsible parties.

In the final component of our study, we experimen-
tally explore the root causes of these vulnerabilities by
investigating several of the most common open-source
software components from the population of vulnerable
devices (Section 5). Based on the devices we identified, it
is clear that no one implementation is solely responsible,
but we are able to reproduce the vulnerabilities in plau-
sible software configurations. Every software package
we examined relies on /dev/urandom to generate cryp-
tographic keys; however, we find that Linux’s random
number generator (RNG) can exhibit a boot-time entropy
hole that causes urandom to produce deterministic output
under conditions likely to occur in headless and embed-
ded devices. In experiments with OpenSSL and Dropbear
SSH, we show how repeated output from the system RNG
can lead not only to repeated long-term keys but also to
factorable RSA keys and repeated DSA ephemeral keys
due to the behavior of application-specific entropy pools.

Given the diversity of the devices and software im-
plementations involved, mitigating these problems will
require action by many different parties. We draw lessons
and recommendations for developers of operating sys-
tems, cryptographic libraries, and applications, and for de-
vice manufacturers, certificate authorities, end users, and
the security and cryptography communities (Section 7).
We have also created an online key-check service to allow
users to test whether their keys are vulnerable.

It is natural to wonder whether these results should
call into question the security of every RSA or DSA key.
Based on our analysis, the margin of safety is slimmer
than we might like, but we have no reason to doubt the
security of most keys generated interactively by users on
traditional PCs. While we took advantage of the details
of specific cryptographic algorithms in this paper, we con-
clude that the blame for these vulnerabilities lies chiefly
with the implementations. Ultimately, the results of our
study should serve as a wake-up call that secure random
number generation continues to be an unsolved problem
in important areas of practice.

Online resources For an extended version of this paper,
partial source code, and our online key-check service, visit
https://factorable.net.

2 Background

In this section, we review the RSA and DSA public-key
cryptosystems and discuss the known weaknesses of each
that we used to compromise private keys. We then discuss
how an adversary might exploit compromised keys to
attack SSH and TLS in practice.

2.1 RSA review

An RSA [35] public key consists of two integers: an ex-
ponent e and a modulus N. The modulus N is the product
of two randomly chosen prime numbers p and q. The
private key is the decryption exponent

d = e−1 mod (p−1)(q−1).

Anyone who knows the factorization of N can efficiently
compute the private key for any public key (e,N) using
the preceding equation. When p and q are unknown, the
most efficient known method to calculate the private key
is to factor N into p and q and use the above equation to
calculate d [9].

Factorable RSA keys No one has been publicly
known to factor a well-generated 1024-bit RSA mod-
ulus; the largest known factored modulus is 768 bits,
which was announced in December 2009 after a multi-
year distributed-computing effort [28]. In contrast, the
greatest common divisor (GCD) of two 1024-bit integers
can be computed in microseconds. This asymmetry leads
to a well-known vulnerability: if an attacker can find two
distinct RSA moduli N1 and N2 that share a prime factor
p but have different second prime factors q1 and q2, then
the attacker can easily factor both moduli by computing
their GCD, p, and dividing to find q1 and q2. The attacker
can then compute both private keys as explained above.

USENIX Association 	 21st USENIX Security Symposium  207

2.2 DSA review

A DSA [32] public key consists of three so-called do-
main parameters (two prime moduli p and q and a gener-
ator g of the subgroup of order q mod p) and an integer
y = gx mod p, where x is the private key. The domain
parameters may be shared among multiple public keys
without compromising security. A DSA signature con-
sists of a pair of integers (r,s): r = gk mod p mod q and
s = (k−1(H(m)+xr)) mod q, where k is a randomly cho-
sen ephemeral private key and H(m) is the hash of the
message.

Low-entropy DSA signatures DSA is known to fail
catastrophically if the ephemeral key k used in the signing
operation is generated with insufficient entropy [4]. (El-
liptic curve DSA (ECDSA) is similarly vulnerable. [11])
If k is known for a signature (r,s), then the private key
x can be computed from the signature and public key as
follows:

x = r−1(ks−H(m)) mod q.

If a DSA private key is used to sign two different messages
with the same k, then an attacker can efficiently compute
the value k from the public key and signatures and use
the above equation to compute the private key x [29]. If
two messages m1 and m2 were signed using the same
ephemeral key k to obtain signatures (r1,s1) and (r2,s2),
then this will be immediately clear as r1 and r2 will be
equal. The ephemeral key k can be computed as:

k = (H(m1)−H(m2))(s1 − s2)
−1 mod q.

2.3 Attack scenarios

The weak key vulnerabilities we describe in this paper can
be exploited to compromise two of the most important
cryptographic transport protocols used on the Internet,
TLS and SSH, both of which commonly use RSA or DSA
to authenticate servers to clients.

TLS In TLS [16], the server sends its public key in a
TLS certificate during the protocol handshake. The key
is used either to provide a signature on the handshake
(when Diffie-Hellman key exchange is negotiated) or to
encrypt session key material chosen by the client (when
RSA-encrypted key exchange is negotiated).

If the key exchange is RSA encrypted, a passive eaves-
dropper with the server’s private key can decrypt the mes-
sage containing the session key material and use it to
decrypt the entire session. If the session key is negoti-
ated using Diffie-Hellman key exchange, then a passive
attacker will be unable to compromise the session key
from just a connection transcript. However, in both cases,
an active attacker who can intercept and modify traffic
between the client and server can man-in-the-middle the
connection in order to decrypt or modify the traffic.

SSH In SSH, host keys allow a server to authenticate
itself to a client by providing a signature during the pro-
tocol handshake. There are two major versions of the
protocol. In SSH-1 [38], the client encrypts session key
material using the server’s public key. SSH-2 [39] uses a
Diffie-Hellman key exchange to establish a session key.
The user manually verifies the host key fingerprint the
first time she connects to an SSH server. Most clients then
store the key locally in a known_hosts file and automati-
cally trust it for all subsequent connections.

As in TLS, a passive eavesdropper with a server’s pri-
vate key can decrypt an entire SSH-1 session. However,
because SSH-2 uses Diffie-Hellman, it is vulnerable only
to an active man-in-the-middle attack. In the SSH user au-
thentication protocol, the user-supplied password is sent
in plaintext over the encrypted channel. An attacker who
knows a server’s private key can use the above attacks
to learn a user’s password and escalate an attack to the
system.

3 Methodology

In this section, we explain how we performed our Internet-
wide survey of public keys, how we attributed vulnerable
keys to devices, and how we efficiently factored poorly
generated RSA keys.

3.1 Internet-wide scanning

We performed our data collection in three phases: dis-
covering IP addresses accepting connections on TCP
port 443 (HTTPS) or 22 (SSH); performing a TLS or
SSH handshake and storing the presented certificate chain
or host key; and parsing the collected certificates and
host keys into a relational database. Table 1 summarizes
the results.

Host discovery In the first phase, we scanned the
public IPv4 address space to find hosts with port 443
or 22 open. We used the Nmap 5 network exploration
tool [33]. We executed our first host discovery scan be-
ginning on October 6, 2011 from 25 Amazon EC2 Micro
instances spread across five EC2 regions (Virginia, Cali-
fornia, Japan, Singapore, and Ireland). The scan ran at an
average of 40,566 IPs/second and finished in 25 hours.

Certificate and host-key retrieval For TLS, we imple-
mented a certificate fetcher in Python using the Twisted
event-driven network framework. We fetched TLS cer-
tificates using an EC2 Large instance with five processes
each maintaining 800 concurrent connections. We started
fetching certificates on October 11, 2011.

To efficiently collect SSH host keys, we implemented
a simple SSH client in C, which is able to process up-
wards of 1200 hosts/second by concurrently performing

208  21st USENIX Security Symposium	 USENIX Association

SSL Observatory Our TLS scan Our SSH scans
(12/2010) (10/2011) (2-4/2012)

Hosts with open port 443 or 22 ≈16,200,000 28,923,800 23,237,081
Completed protocol handshakes 7,704,837 12,828,613 10,216,363

Distinct RSA public keys 3,933,366 5,656,519 3,821,639
Distinct DSA public keys 1,906 6,241 2,789,662
Distinct TLS certificates 4,021,766 5,847,957 —

Trusted by major browsers 1,455,391 1,956,267 —

Table 1: Internet-wide scan results — We exhaustively scanned the public IPv4 address space for TLS and SSH
servers listening on ports 443 and 22, respectively. Our results constitute the largest such network survey reported to
date. For comparison, we also show statistics for the EFF SSL Observatory’s most recent public dataset [18].

protocol handshakes using libevent. Initially, we ran the
fetcher from an EC2 Large instance in a run that started
on February 12, 2012. This run targeted only RSA-based
host keys. In two later runs, we targeted DSA-based host
keys, and rescanned those hosts that had offered DSA
keys in the first SSH scan. For these, we also stored the
authentication signature provided by the server; we varied
the client string to ensure that each signature would be
distinct. The first DSA run started on March 26, 2012
from a host at UCSD. The second run, from a host at the
University of Michigan, started on April 1, 2012; it took
3 hours to complete.

TLS certificate processing For TLS, we performed a
third processing stage in which we parsed the previously
fetched certificate chains and generated a database from
the X.509 fields. We implemented a certificate parser in
Python and C primarily based on the M2Crypto SWIG
interface to the OpenSSL library.

3.2 Identifying vulnerable device models

We attempted to determine what hardware and software
generated or served the weak keys we identified using
manual detective work. The most straightforward method
was based on TLS certificate information—predominately
the X.509 subject and issuer fields. In many cases, the
certificate identified a specific manufacturer or device
model. Other certificates contained less information; we
attempted to identify these devices through Nmap host
detection or by inspecting the public contents of HTTPS
sites or other IP services hosted on the IP addresses.

When we could identify a pattern in vulnerable TLS
certificates that appeared to belong to a device model or
product line, we constructed regular expressions to find
other similar devices in our scan results. Under the theory
that the keys were vulnerable because of a problem with
the design of the devices (where they were most likely
generated), this allows us to estimate the total population
of devices that might be potentially vulnerable, beyond
those serving immediately compromised keys.

Identifying SSH devices was more problematic, as SSH
keys do not include descriptive fields and the server iden-
tification string used in the protocol often indicated only
a common build of a popular SSH server. We were able
to classify many of the vulnerable SSH hosts using a
combination of TCP/IP fingerprinting and examination of
information served over HTTP and HTTPS.

The device names and manufacturers that we report
here have been identified with moderate or high confi-
dence given the available information. However, because
we do not have physical access to the hosts, we cannot
state with certainty that all our identifications are correct.

3.3 Efficiently computing all-pairs GCDs

We now describe how we efficiently computed the pair-
wise GCD of all distinct RSA moduli in our multimillion-
key dataset. This allowed us to calculate RSA private
keys for 66,540 vulnerable hosts that shared one of their
RSA prime factors with another host in our survey.

The fastest known factoring method for general integers
is the number field sieve, which has heuristic complex-
ity O(2n1/3(logn)2/3

) for n-bit numbers [30]. In contrast
to factoring, the greatest common divisor (GCD) of two
integers can be computed very efficiently using Euclid’s
algorithm. Using fast integer arithmetic, the complexity
of GCD can be improved to O(n(lgn)2 lg lgn) [7]. Com-
puting the GCD of two 1024-bit RSA moduli using the
GMP library [20] takes approximately 15 µs on a current
mid-range computer.

The naïve way to compute the GCDs of every pair of
integers in a large set would be to apply a GCD algorithm
to each pair individually. There are 6 × 1013 distinct
pairs of RSA moduli in our data; at 15 µs per pair, this
calculation would take 30 years. We can do much better
by using a more efficient algorithm.

To accomplish this, we implemented a quasilinear-time
algorithm for factoring a collection of integers into co-
primes, based on Bernstein [6]. The relevant steps, illus-
trated in Figure 1, are as follows:

USENIX Association 	 21st USENIX Security Symposium  209

N1N2N3N4

×

N4N3

×

N2N1

N1N2N3N4

mod N2
1 N2

2

mod N2
1

/N1

·

mod N2
2

/N2

·

mod N2
3 N2

4

mod N2
3

/N3

·

mod N2
4

/N4

·gcd(,N1) gcd(,N2)gcd(,N3) gcd(,N4)

product
tree

remainder
tree

Figure 1: Computing all-pairs GCDs efficiently — We
computed the GCD of every pair of RSA moduli in our
dataset using an algorithm due to Bernstein [6].

Algorithm 1 Quasilinear GCD finding

Input: N1, . . . ,Nm RSA moduli
1: Compute P = ∏Ni using a product tree.
2: Compute zi = (P mod N2

i) for all i
using a remainder tree.

Output: gcd(Ni,zi/Ni) for all i.

A product tree computes the product of m numbers by
constructing a binary tree of products. A remainder tree
computes the remainder of an integer modulo many inte-
gers by successively computing remainders for each node
in their product tree. For further discussion, see [7].

The final output of the algorithm is the GCD of each
modulus with the product of all the other moduli. We
are interested in the moduli for which this GCD is not 1.
However, if a modulus shares both of its prime factors
with two other distinct moduli, then the GCD will be
the modulus itself rather than one of its prime factors.
This occurred in a handful of instances in our dataset; we
factored these moduli using the naïve quadratic algorithm
for pairwise GCDs.

We implemented the algorithm in C using the GMP
library for the arithmetic operations and ran it on the
11,170,883 distinct RSA moduli from our TLS and SSH
datasets and the EFF SSL Observatory [18] dataset.

The entire computation finished in 5.5 hours using a
single core on a machine with a 3.30 GHz Intel Core i5
processor and 32 GB of RAM. The remainder tree took
approximately ten times as long to process as the product
tree. Parallelized across sixteen cores on an EC2 Cluster
Compute Eight Extra Large Instance with 60.5 GB of
RAM and using EBS-backed storage for scratch data, the
same computation took 1.3 hours at a cost of about $5.

4 Vulnerabilities

We analyzed the data from our TLS and SSH scans and
identified several patterns of vulnerability that would have
been difficult to detect without a macroscopic view of
the Internet. This section discusses the details of these
problems, as summarized in Table 2.

4.1 Repeated keys

We found that 7,770,232 of the TLS hosts (61%) and
6,642,222 of the SSH hosts (65%) served the same key
as another host in our scans. To understand why, we
clustered certificates and host keys that shared the same
public key and manually inspected representatives of the
largest clusters. In all but a few cases, the TLS certificate
subjects, SSH version strings, or WHOIS information
were identical within a cluster, or pointed to a single
manufacturer or organization. This sometimes suggested
an explanation for the shared keys.

Not all of the repeated keys were due to vulnerabili-
ties. For instance, many of the most commonly repeated
keys appeared in shared hosting situations. Six of the ten
most common DSA host keys and three of the ten most
common RSA host keys were served by large hosting
providers (see Figure 2). Another frequent reason for
repeated keys was distinct TLS certificates all belonging
to the same organization. For example, TLS hosts at
google.com, appspot.com, and doubleclick.net all served
distinct certificates with the same public key. We excluded
these cases and attributed remaining clusters of shared
keys to several classes of problems.

Default keys A common reason for hosts to share
the same key that we do consider a vulnerability is

104

105

50 most repeated RSA SSH keys

N
um

be
ro

fr
ep

ea
ts

Devices
Hosting providers
Unknown/other

Figure 2: Commonly repeated SSH keys — We investi-
gated the 50 most repeated SSH host keys for both RSA
and DSA. Nearly all of the repeats appeared to be due
either to hosting providers using a single key on many IP
addresses or to devices that used a default key or gener-
ated keys using insufficient entropy. Note log scale.

210  21st USENIX Security Symposium	 USENIX Association

Our TLS Scan Our SSH Scans

Number of live hosts 12,828,613 (100.00%) 10,216,363 (100.00%)

. . . using repeated keys 7,770,232 (60.50%) 6,642,222 (65.00%)
. . . using vulnerable repeated keys 714,243 (5.57%) 981,166 (9.60%)

. . . using default certificates or default keys 670,391 (5.23%)

. . . using low-entropy repeated keys 43,852 (0.34%)
. . . using RSA keys we could factor 64,081 (0.50%) 2,459 (0.03%)
. . . using DSA keys we could compromise 105,728 (1.03%)
. . . using Debian weak keys 4,147 (0.03%) 53,141 (0.52%)
. . . using 512-bit RSA keys 123,038 (0.96%) 8,459 (0.08%)

. . . identified as a vulnerable device model 985,031 (7.68%) 1,070,522 (10.48%)
. . . model using low-entropy repeated keys 314,640 (2.45%)

Table 2: Summary of vulnerabilities — We analyzed our TLS and SSH scan results to measure the population of
hosts exhibiting several entropy-related vulnerabilities. These include use of repeated keys, use of RSA keys that were
factorable due to repeated primes, and use of DSA keys that were compromised by repeated signature randomness.
Under the theory that vulnerable repeated keys were generated by embedded or headless devices with defective designs,
we also report the number of hosts that we identified as these device models. Many of these hosts may be at risk even
though we did not specifically observe repeats of their keys.

manufacturer-default keys. These are preconfigured in
the firmware of many devices, such that every device of
a given model shares the same key pair unless the user
changes it. The private keys to these devices may be
accessible through reverse engineering, and published
databases of default keys such as littleblackbox [24] con-
tain private keys for thousands of firmware releases.

At least 670,391 (5.23%) of the TLS hosts appeared
to serve manufacturer-default certificates or keys. We
classified a certificate as a manufacturer default if nearly
all the devices of a given model used identical certificates,
or if the certificate was labeled as a default certificate.

The most common default certificate that we could
ascribe to a particular device belonged to a model of
consumer router. Our scan uncovered 90,779 instances
of this device model sharing a single certificate. We also
found a variety of enterprise products serving default keys,
including server management devices, network storage
devices, routers, remote access devices, and VoIP devices.

For most of the repeated SSH keys, the lack of uniquely
identifying host information prevents us from distinguish-
ing default keys from keys generated with insufficient
entropy, so we address these together in the next section.

Repeated keys due to low entropy Another common
reason that hosts share the same key appears to be entropy
problems during key generation. In these instances, when
we investigated a key cluster, we would typically see
thousands of hosts across many address ranges, and, when
we checked the keys corresponding to other instances of
the same model of device, we would see a long-tailed
distribution in their frequencies. Intuitively, this type of

distribution suggests that the key generation process may
be using insufficient entropy, with distinct keys due to
relatively rare events. For TLS, our investigations began
with the keys that occurred in at least 100 distinct self-
signed certificates. For SSH, we started from the 50 most
commonly repeated keys for each of RSA (appearing on
more than 8000 hosts) and DSA (more than 4000 hosts).

With this process, we identified 43,852 TLS hosts
(0.34%) that served repeated keys due apparently to low
entropy during key generation. 27,545 certificates (98%)
containing these repeated keys were self-signed; all 577
CA-signed certificates identified Iomega StorCenter net-
work storage devices. For most SSH hosts we were unable
to distinguish between default keys and keys repeated
due to entropy problems, but 981,166 of the SSH hosts
(9.60%) served keys repeated for one of these reasons.

We used the techniques described in Section 3.2 to iden-
tify apparently vulnerable devices from 27 manufacturers.
These include enterprise-grade routers from Cisco and
Juniper; server management cards from Dell, Hewlett-
Packard, and IBM; virtual-private-network (VPN) de-
vices; building security systems; network attached storage
devices; and several kinds of consumer routers and VoIP
products.

Duplicated keys are a red flag that calls the security
of the device’s key generation process into question, and
all keys generated with the same model device should be
considered suspect. For 14 of the TLS devices generating
repeated keys, we were able to infer a fingerprint for the
device model and estimate the total population of the de-
vice in our scan. The prevalence of duplicated keys varied
greatly for different device models, from as low as 0.2%

USENIX Association 	 21st USENIX Security Symposium  211

100

101

102

103

M
od

ul
us

fr
eq

ue
nc

y

(a) Primes generated by Juniper SSG 20 firewall

0

50

100

M
od

ul
us

fr
eq

ue
nc

y

(b) Primes generated by IBM Remote Supervisor Adapter

Figure 3: Visualizing RSA common factors — Different implementations displayed different patterns of vulnerable
keys. These plots depict the distribution of vulnerable keys divisible by common factors generated by two different
device models. Each column represents a collection of RSA moduli divisible by a single prime factor p. The color
and internal rectangles show, for each p, the frequencies of each distinct prime factor q. The Juniper device (left; note
log-log scale) follows a long-tailed distribution that is typical of many of the devices we identified. In contrast, the IBM
remote access device (right) was unique among those we observed in that it generates RSA moduli roughly uniformly
distributed among nine distinct prime factors.

in the case of one router to 98% for one thin client. The
total population of these identified, potentially vulnerable
TLS devices was 314,640 hosts, which represents 2.45%
of the TLS hosts in our scan.

In the above analyses, we excluded repeated keys that
were due to the infamous Debian weak-key vulnerabil-
ity [5, 37], which we report separately in Table 2.

4.2 Factorable RSA keys

A second way that entropy problems might manifest them-
selves during key generation is if an RSA modulus shares
one of its prime factors p or q with another key. As ex-
plained in Section 2.1, finding such a pair immediately
allows an adversary to efficiently factor both moduli and
obtain their private keys. In order to find such keys, we
computed the GCD of all pairs of distinct RSA moduli by
applying the algorithm described in Section 3.3.

The 11,170,883 distinct RSA moduli yielded 2,314
distinct prime divisors, which divided 16,717 distinct
public keys. This allowed us to obtain private keys for
23,576 (0.40%) of the TLS certificates in our scan data,
which were served on 64,081 (0.50%) of the TLS hosts,
and 1,013 (0.02%) of the RSA SSH host keys, which were
served on 2,459 (0.027%) of the RSA SSH hosts.

The vast majority of the vulnerable keys appeared to be
system-generated certificates and SSH host keys used by
routers, firewalls, remote administration cards, and other
types of headless or embedded network devices. Only
two of the factorable TLS certificates had been signed by

a browser trusted authority and both have expired. Some
devices generated factorable keys both for TLS and SSH,
and a handful of devices shared common factors across
SSH and TLS keys.

We classified these factorable keys in a similar manner
to the repeated keys. We found that, in all but a small
number of cases, the TLS certificates and SSH host keys
divisible by a common factor all belonged to a particular
manufacturer, which we were able to identify in most
cases using the techniques described in Section 3.2.

We identified devices from 41 manufacturers in this
way, which constituted 99% of the hosts that generated
RSA keys we could factor. The devices range from 100%
(576 of 576 devices) vulnerable to 0.01% vulnerable
(2 out of 10,932). As with repeated keys, we would
not expect to see well-generated cofactorable keys; any
device model observed generating factorable keys should
be treated as potentially vulnerable.

The majority of the devices serving factorable keys
were Juniper firewalls. We identified 46,993 of these
devices in our dataset, and we factored the keys for 12,688
(27%). Of these keys, 7,510 (59%) share a single common
divisor. The distribution of common factors among its
moduli is shown in Figure 3a.

The most remarkable devices were IBM Remote Server
Administration cards and BladeCenter devices, which
displayed a distribution of factors unlike any of the other
vulnerable devices we found. There were only 9 distinct
prime factors that had been used to generate the keys for
576 devices. Each device’s key was the product of two

212  21st USENIX Security Symposium	 USENIX Association

100 101 102 103
100

102

104

Private key index

Fr
eq

ue
nc

y
Keys compromised by
repeated signature randomness

Figure 4: Vulnerable DSA keys for one SSH device —
We identified 18,684 SSH DSA keys that appeared to
have been generated by Gigaset DSL routers, of which
16,575 were repeated at least once. Shown in red in this
log-log plot are 12,378 keys further compromised due to
repeated DSA signature values.

different primes from this list. The 36 possible moduli
that could be generated with this process were roughly
uniformly distributed, as shown in Figure 3b. In addition,
this was the only device we observed to generate RSA
moduli where both prime factors were shared with other
keys.

4.3 DSA signature weaknesses

The third class of entropy-related vulnerability that we
searched for was repeated ephemeral keys in DSA signa-
tures. As explained in Section 2.2, if a DSA key is used
to sign two different messages using the same ephemeral
key, then the long-term private key is immediately com-
putable from the public key and the signatures. The pres-
ence of this vulnerability indicates entropy problems at
later phases of operation, after initial key generation. We
searched for signatures from identical keys containing re-
peated r values. Then we used the method in Section 2.2
to compute the corresponding private keys.

Our combined SSH DSA scans collected 9,114,925
signatures (in most cases, two from each SSH host serving
a DSA-based key) of which 4,365 (0.05%) contained the
same r value as at least one other signature. 4,094 of
these signatures (94%) used the same r value and the
same public key. This allowed us to compute the 281
distinct private keys used to generate these signatures.
These compromised keys were served by 105,728 (1.6%)
of the SSH DSA hosts in our combined scans.

We clustered the vulnerable signatures by r values
and manufacturer. 2,026 (46%) of the colliding r val-
ues appeared to have been generated by Gigaset SX762
consumer-grade DSL routers and revealed private keys
for 17,349 (66%) of the 26,374 hosts we identified as
this device model (see Figure 4). Another 934 signa-

ture collisions appeared to be from ADTran Total Access
business-grade phone/network routers and revealed pri-
vate keys for 62,807 (73%) out of 86,301 such hosts. Sev-
eral vulnerable device models, including the IBM RSA II
remote administration cards and Juniper NetScreen, also
generated factorable RSA keys.

While we collected multiple signatures from some SSH
hosts, 3,917 (89.7%) out of 4,365 of the collisions were
from different hosts that had generated the same long-
term key and also used the same ephemeral key during
the key exchange protocol. This problem compounds the
danger of the repeated key vulnerability: a single signa-
ture collision between any pair of hosts sharing the same
key at any point during runtime reveals the private key for
every host using that key. In our dataset we observed tens
of thousands of hosts using the same public key. While a
single host may never repeat an ephemeral key, two hosts
sharing a private key due to poor entropy can put each
others’ keys at risk.

We note that any estimation of vulnerability based on
our data is an extreme lower bound, as we gathered at
most two signatures from each host in our scans. It is
likely that many more private keys would be revealed if
we collected additional signatures.

5 Experimental Investigation

Based on the results the previous section, we conjectured
that the problems we observed were an implementational
phenomenon. To more deeply understand the causes, we
augmented our data analysis with experimental investiga-
tion of specific implementations. While there are many
independently vulnerable implementations, we chose to
examine three open-source cryptographic software com-
ponents that appeared frequently in the vulnerable popu-
lations.

5.1 Weak entropy and the Linux RNG

We conjectured that the cause for many of the entropy
problems we observed began with insufficient random-
ness provided by the operating system. This led us to take
an in-depth look at the Linux random number generator
(RNG). We note that not every vulnerable key was gen-
erated on Linux; we also observed vulnerable keys on
FreeBSD and Windows systems, and similar vulnerabil-
ities to those we describe here have been reported with
BSD’s arc4random [36].

The Linux RNG maintains three entropy pools, each
with an associated counter that estimates how much
fresh entropy it has available. Fresh entropy from un-
predictable kernel sources is periodically mixed into the
Input pool. When processes read from /dev/random or
/dev/urandom, the kernel extracts the requested amount

USENIX Association 	 21st USENIX Security Symposium  213

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

50

100

150

200

250

SSH urandom read(32)

Threshold to add kernel randomness

Time since boot (s)

In
pu

tp
oo

le
nt

ro
py

(b
its

)

0

5,000

10,000

15,000

20,000

25,000

B
yt

es
re

ad
fr

om
no

nb
lo

ck
in

g
po

ol

Input pool entropy estimate
Input threshold to update entropy pool
Bytes read from nonblocking pool
SSH process seeds from /dev/urandom

Figure 5: Linux urandom boot-time entropy hole — We instrumented an Ubuntu Server 10.04 system to record its
estimate of the entropy contained in the Input entropy pool during a typical boot. Linux does not mix Input pool
entropy into the Nonblocking pool that supplies /dev/urandom until the Input pool exceeds a threshold of 192 bits
(blue horizontal line), which occurs here at 66 seconds post-boot. For comparison, we show the cumulative number
of bytes generated from the Nonblocking entropy pool; the vertical red line marks the time when OpenSSH seeds its
internal PRNG by reading from urandom, well before this facility is ready for secure use.

of entropy from the Input pool and mixes it into the Block-
ing or Nonblocking pool, respectively, and then extracts
bytes from the respective pool to return. If the input pool
does not contain enough entropy to satisfy the request,
the read from the Blocking pool blocks; the Nonblocking
pool read is satisfied immediately.

Entropy sources We experimented with the Linux
2.6.35 kernel to exhaustively determine the sources of
entropy used by the RNG. To do this, we traced through
the kernel source code and systematically disabled en-
tropy sources until the RNG output was repeatable. All of
the entropy sources we found are greatly weakened under
certain operating conditions.

The explicit entropy sources we observed are the unini-
tialized contents of the pool buffers when the kernel starts,
the startup clock time in nanosecond resolution, input
event and disk access timings, and entropy saved across
boots to a local file. Surprisingly, modern Linux systems
no longer collect entropy from IRQ timings.

The final and most interesting entropy source was one
that we have not seen documented elsewhere. The devel-
opers chose not to put a lock around the mixing procedure
when entropy is extracted from the pool, and, as a re-
sult, if two threads extract entropy concurrently, the pool
contents may change anywhere in the middle of the hash
computation, resulting in the introduction of significant
(but uncredited) entropy to the pool.

The removal of IRQs as an entropy source has likely
exacerbated RNG problems in headless and embedded
devices, which often lack human input devices, disks, and
multiple cores. If they do, the only source of entropy—if
there are any at all—may be the time of boot.

Experiment To test whether Linux’s /dev/urandom
can produce repeatable output in conditions resembling
the initial boot of a headless or embedded networked de-
vice, we modified the 2.6.35 kernel to add instrumentation
to the RNG and disable certain entropy sources to simu-
late a cold boot on a low-end machine without a working
clock.

We experimented with this kernel on a Dell Optiplex
980 system using a fresh installation of Ubuntu server
10.04.4. The machine was configured with a Core i7 CPU,
4 GB RAM, a 32 GB SSD, and a USB keyboard. It was
attached to a university office LAN and obtained an IP ad-
dress using DHCP. With this configuration, we performed
1,000 unattended boots. Each time, we read 32 bytes
from urandom at the point in the initialization process
where the SSH server would normally start. Under these
conditions, we found that the output of /dev/urandom
was entirely predictable and repeatable.

The kernel maintains a reserve threshold for the Input
pool, and no data is copied into the Nonblocking pool un-
til the Input pool has been credited with at least that much
entropy (192 bits, for our kernel). Figure 5 shows the
cumulative amount of entropy credited to the Input pool
during a typical bootup from our tests. (Note that none
of the entropy sources we disabled would have resulted
in more entropy being credited to the pool.) The credited
entropy does not cross this reserve threshold until more
than a minute after boot, well after the SSH server and
other startup processes have launched. Although Ubuntu
tries to restore entropy saved during the last shutdown,
this happens slightly after the point when sshd first reads
from urandom. With no entropic inputs, urandom pro-
duces a deterministic output stream.

214  21st USENIX Security Symposium	 USENIX Association

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

8

16

24

32

Starting clock time t0 (seconds)

Ti
m

e
di

la
tio

n
fa

ct
or

(s
lo

w
er

→
)

Fraction of keys generated that we could factor

0

0.2

0.4

0.6

clock tick

Figure 6: OpenSSL generating factorable keys — We hypothesized that OpenSSL can generate factorable keys under
low-entropy conditions due to slight asynchronicity between the key generation process and the real-time clock, we
generated 14 million RSA keys using controlled entropy sources for a range of starting clock times. Each square in the
plot indicates the fraction of 100 generated keys that could we could factor. In many cases (white), keys are repeated
but never share primes. After a sudden phase change, factorable keys occur during a range leading up to the second
boundary, and that range increases as we simulate machines with slower execution speeds.

Boot-time entropy hole The entropy sources we dis-
abled would likely be missing in some headless and em-
bedded systems, particularly on first boot. This means that
there is a window of vulnerability—a boot-time entropy
hole—during which Linux’s urandom may be entirely
predictable, at least for single-core systems. If processes
generate long-term cryptographic keys or maintain their
own entropy pools seeded only with entropy gathered
during this window, those keys are likely to be vulnerable.
The risk is particularly high for unattended systems that
ship with preconfigured operating systems and generate
SSH or TLS keys the first time the respective daemons
start during the initial boot.

On stock Ubuntu systems, these risks are somewhat
mitigated: TLS keys must be generated manually, and
OpenSSH host keys are generated during package installa-
tion, which is likely to be late in the install process, giving
the system time to collect sufficient entropy. However, on
the Fedora, Red Hat Enterprise Linux (RHEL), and Cen-
tOS Linux distributions, OpenSSH is installed by default,
and host keys are generated on first boot. We experi-
mented further with RHEL 5 and 6 to determine whether
host keys on these systems might be compromised, and
observed that sufficient entropy had been collected at the
time of key generation by a slim margin. We believe
that most server systems running these distributions are
safe, particularly since they likely have multiple cores
and gather additional entropy from physical concurrency.
However, it is possible that other distributions and cus-
tomized installations do not collect sufficient entropy on
startup and generate weak keys on first boot.

5.2 Factorable RSA keys and OpenSSL

One interesting question raised by our vulnerability re-
sults is why factorable RSA keys occur at all. A naïve
implementation of RSA key generation would simply
seed a PRNG from the operating system’s entropy pool
and then use it to generate p and q. In this approach, we
would expect to see duplicate keys if the OS provided
the same seed, but factorable keys would be extremely
unlikely. What we see instead is that some devices seem
prone to generating keys with common factors. Another
curious feature is that although some of the most common
prime factors divided hundreds of different moduli, in
nearly all of these cases the second prime factor did not
divide any other keys.

One explanation for this pattern is that implementa-
tions updated their entropy pools in the middle of key
generation. In this case, the entropy pool states might
be identical as distinct key generation processes generate
the first prime p and diverge while generating the second
prime q. In order to explore this theory, we studied the
source code of OpenSSL [14], one of the most widely
used open-source cryptographic libraries. OpenSSL is not
the only software library responsible for the problems we
observed, but we chose to examine it because the source
code is freely available and because of its popularity.

OpenSSL RSA key generation OpenSSL’s built-in
RSA key generator relies on an internal entropy pool main-
tained by OpenSSL. The entropy pool is seeded on first
use with (on Linux) 32 bytes read from /dev/urandom,
the process ID, user ID, and the current time in seconds.

USENIX Association 	 21st USENIX Security Symposium  215

OpenSSL provides a function named bnrand() to gen-
erate cryptographically-sized integers from the entropy
pool, which, on each call, mixes into the entropy pool the
current time in seconds, the process ID, and the possibly
uninitialized contents of a destination buffer.

The RSA key generation algorithm generates the
primes p and q using a randomized algorithm. During this
process, OpenSSL extracts entropy from the entropy pool
dozens to hundreds of times. Since we observed many
keys with one prime factor in common, we can conjecture
that multiple systems are starting with urandom and the
time in the same state and that the entropy pool states
diverge due to the addition of time during intermediate
steps of the key generation process.

We hypothesized that this process is hypersensitive to
small variations in where the boundary between seconds
falls. Slight variations in execution speed might cause the
wall clock tick to fall between different calls to bnrand(),
resulting in different execution paths. This can result in
several different behaviors, with three simple cases:

p q
t t+1

If the second never changes while
computing p and q, every execu-
tion will generate identical keys.

p q
t t+1

If the clock ticks while generating
p, both p and q diverge, yielding
distinct keys with no shared factors.

If instead the clock advances to the next second during the
generation of the second prime q, then two executions will

p q
t t+1

generate identical primes p but can
generate distinct primes q based on
exactly when the second changes.

Experiment To test our hypothesis, we modified
OpenSSL 1.0.0g to control all the entropy inputs used
during key generation, generated a large number of RSA
keys, and determined how many were identical or fac-
torable. To simulate the effects of slower clock speeds,
we dilated the clock time returned by time() and re-
peated the experiment using dilation multipliers of 1–32.
In all, we generated 14 million keys. We checked for
common factors within each batch of 100 keys.

The results we obtained, illustrated in Figure 6, are
consistent with our hypothesis. No factorable keys are
generated for low starting offsets, as both p and q are
generated before the second changes. As the initial off-
set increases, there is a rapid phase change to generat-
ing factorable keys, as generation of q values begins to
overlap the second boundary. Eventually, the fraction of
factorable keys falls as the second boundary occurs dur-
ing the generation of more p values, resulting in distinct
moduli with no common factors.

5.3 DSA signature weaknesses and Dropbear

The DSA signature vulnerabilities we observed indicate
that entropy problems impact not only key generation but
also the continued runtime behavior of server software
during normal usage. This is somewhat surprising, since
we might expect the operating system to collect suffi-
cient entropy eventually, even in embedded devices. We
investigated Dropbear, a popular light-weight SSH imple-
mentation. It maintains its own entropy pools seeded from
the operating system at launch, on Linux with 32 bytes
read from urandom. This suggests a possible explanation
for the observed problems: the operating system had not
collected enough entropy when the SSH server started,
and, from then on, even though the system entropy pool
may have had further entropy, the running SSH daemon
did not.

To better understand why these programs produce vul-
nerable DSA signatures, we examined the source code
for the current version of Dropbear, 0.55. The ephemeral
key is generated as output from an internal entropy pool.
Whenever Dropbear extracts data from its entropy pool, it
increments a static counter and hashes the result into the
pool state. No additional randomness is added until the
counter (a 32-bit integer) overflows. This implies that, if
two Dropbear servers are initially seeded with the same
value from urandom, they will provide identical signature
randomness as long as their counters remain synchronized
and do not overflow.

(We note that Dropbear contains a routine to generate k
in a manner dependent on the message to be signed, which
would ensure that distinct messages are always signed
with distinct k values and protect against the vulnerability
that we explore here. However, that code is disabled by
default.)

We looked for evidence of synchronized sequences
of ephemeral keys in the wild by making further SSH
requests to a handful of the Dropbear hosts from our
scan. We chose two hosts with the SSH version string
dropbear-0.39 that had used identical DSA public keys
and r values and found that the signatures followed an
identical sequence of r values. We could advance the
sequence of one host by making several SSH requests,
then cause the other host to catch up by making the same
number of requests. When probed again an hour later,
both hosts remained in sync. This suggests that the Drop-
bear code is causing vulnerabilities on real hosts in the
manner we predicted.

Several other implementations, including hosts identify-
ing OpenSSH and the Siemens Gigaset routers displayed
similar behavior when rescanned. Because OpenSSL adds
the current clock time to the entropy pool before extract-
ing these random values, this suggests that some of these
devices do not have a working clock at all.

216  21st USENIX Security Symposium	 USENIX Association

6 Discussion

6.1 RSA vs. DSA in the face of low entropy

We believe that the DSA signature vulnerabilities pose
more cause for concern than the RSA factorization vul-
nerability. The RSA key factorization vulnerability that
we investigated occurs only for certain patterns of key
generation implementations in the presence of low en-
tropy. In contrast, the DSA signature vulnerability can
compromise any DSA private key—no matter how well
generated—if there is ever insufficient entropy at the time
the key is used for signing. It is not necessary to search for
a collision, as we did; it suffices for an attacker to be able
to guess the ephemeral private key k. The most analogous
attacks against RSA of which we are aware show that
some types of padding schemes can allow an attacker to
discover the encrypted plaintext or forge signatures [10].
We are unaware of any attacks that use compromised RSA
signatures to recover the private key.

We note that our findings show a larger fraction of
SSH hosts are compromised by the DSA vulnerability
than by factorable RSA keys, even though our scanning
techniques have likely only revealed a small fraction of
the hosts prone to repeating DSA signature randomness.
In contrast, the factoring algorithm we used has found all
of the repeated RSA primes in our sample of keys.

There are specific countermeasures that implementa-
tions can use to protect against these attacks. If both
prime factors of an RSA modulus are generated from a
PRNG without adding additional randomness during key
generation, then low entropy would result in repeated but
not factorable keys. These are more readily observable,
but may be trickier to exploit, because they do not imme-
diately reveal the private key to a remote attacker. To pre-
vent DSA randomness collisions, the randomness for each
signature can be generated as a function of the message
and the pseudorandom input. (It is very important to use
a cryptographically secure PRNG for this process [4].) Of
course, the most important countermeasure is for imple-
mentations to use sufficient entropy during cryptographic
operations that require randomness, but defense-in-depth
remains the prudent course.

6.2 /dev/(u)random as a usability failure

The Linux documentation states that “[a]s a general rule,
urandom should be used for everything except long-lived
GPG/SSL/SSH keys” [1]. However, all the open-source
implementations we examined used urandom to generate
keys by default. Based on a survey of developer mailing
lists and forums, it appears that this choice is motivated by
two factors: random’s extremely conservative behavior
and the mistaken perception that urandom’s output is
secure enough.

As others have noted, Linux is very conservative at
crediting randomness added to the entropy pool [23],
and random further insists on using freshly collected ran-
domness that has not already been mixed into the output
PRNG. The blocking behavior means that applications
that read from random can hang unpredictably, and, in
a headless device without human input or disk entropy,
there may never be enough input for a read to complete.
While blocking is intended to be an indicator that the sys-
tem is running low on entropy, random often blocks even
though the system has collected more than enough entropy
to produce cryptographically strong PRNG output—in a
sense, random is often “crying wolf” when it blocks.

Our experiments suggest that many of the vulnerabil-
ities we observed may be due to the output of urandom
being used to seed entropy pools before any entropic
inputs have been mixed in. Unfortunately, the existing in-
terface to urandom gives the operating system no means
of alerting applications to this dangerous condition. Our
recommendation is that Linux should add a secure RNG
that blocks until it has collected adequate seed entropy
and thereafter behaves like urandom.

6.3 Are we seeing only the tip of the iceberg?

Nearly all of the vulnerable hosts that we were able to
identify were headless or embedded devices. This raises
the question of whether the problems we found appear
only in these types of devices, or if instead we are merely
seeing the tip of a much larger iceberg.

Based on the experiments described in Section 5.1, we
conjecture that there may exist further classes of vulnera-
ble keys that were not visible to our methods, but could be
compromised with targeted attacks. The first class is com-
posed of embedded or headless devices with an accurate
real-time clock. In these cases, keys generated during the
boot-time entropy hole may appear distinct, but depend
only on a configuration-specific state and the boot time.
These keys would not appear vulnerable in our scanning,
but an attacker may be able to enumerate some or all of
such a reduced key space for targeted implementations.

A more speculative class of potential vulnerability con-
sists of traditional PC systems that automatically generate
cryptographic keys on first boot. We observed in Sec-
tion 5.1 that an experimental machine running RHEL 5
and 6 did collect sufficient entropy in time for SSH key
generation, but that the margin of safety was slim. It is
conceivable that some lower-resource systems may be
vulnerable.

Finally, our study was only able to detect vulnerable
DSA ephemeral keys under specific circumstances where
a large number of systems shared the same long-term key
and were choosing ephemeral keys from the same small
set. There may be a larger set of hosts using ephemeral

USENIX Association 	 21st USENIX Security Symposium  217

keys that do not repeat across different systems but are
nonetheless vulnerable to a targeted attack.

We found no evidence suggesting that RSA keys from
standard implementations that were generated interac-
tively or subsequent to initial boot are vulnerable.

6.4 Directions for future work

In this work, we examined keys from two cryptographic
algorithms on two protocols visible via Internet-wide
scans of two ports . A natural direction for future work
is to broaden the scope of all of these choices. Entropy
problems can also affect the choice of Diffie-Hellman key
parameters and keying material for symmetric ciphers. In
addition, there are many more subtle attacks against RSA,
DSA, and ECDSA that we did not search for. We focused
on keys, but one might also try to search for evidence of
repeated randomness in initialization vectors in ciphertext
or salts in cryptographic hashes.

We also focused solely on services visible to our scans
of the public Internet. Similar vulnerabilities might be
found by applying this methodology to keys or other cryp-
tographic data obtained from other resource-constrained
devices that perform cryptographic operations, such as
smart cards or mobile phones.

The observation that urandom can produce predictable
output on some types of systems at boot may lead to at-
tacks on other services that automatically begin at boot
and depend on good randomness from the kernel. It war-
rants investigation to determine whether this behavior
may undermine other security mechanisms such as ad-
dress space layout randomization or TCP initial sequence
numbers.

7 Defenses and Lessons

The vulnerabilities we have identified are a reminder that
secure random number generation continues to be a chal-
lenging problem. There is a tendency for developers at
each layer of the software stack to silently shift respon-
sibility to other layers; a far better practice would be
a defense-in-depth approach where developers at every
layer apply careful security design and testing and make
assumptions clear. We suggest defensive strategies and
lessons for several important groups of stakeholders.

For OS developers:

Provide the RNG interface applications need. Typi-
cal security applications require a source of randomness
that is guaranteed to be of high quality and has pre-
dictable performance; neither Linux’s /dev/random nor
/dev/urandom strikes this balance. The operating sys-
tem should maintain a secure PRNG that refuses to return
data until it has been seeded with a minimum amount

of true randomness and is continually seeded with fresh
entropy collected during operation.

Communicate entropy conditions to applications. The
problem with /dev/urandom is that it can return data
even before it has been seeded with any entropy. The OS
should provide an interface to indicate how much entropy
it has mixed into its PRNG, so that applications can gauge
whether the state is sufficiently secure for their needs.

Test RNGs thoroughly on diverse platforms. Many of the
entropy sources that Linux supports are not available on
headless or embedded devices. These behaviors may not
be apparent to OS developers unless they routinely test
the internals of the entropy collection subsystem across
the full spectrum on platforms the system supports.

For library developers:

Default to the most secure configuration. Both OpenSSL
and Dropbear default to using /dev/urandom instead
of /dev/random, and Dropbear defaults to using a less
secure DSA signature randomness technique even though
a more secure technique is available as an option. In
general, cryptographic libraries should default to using
the most secure mechanisms available.

Use RSA and DSA defensively. Crypto libraries can
take specific steps to prevent weak entropy from resulting
in the immediate leak of private keys due to co-factorable
RSA moduli and repeated DSA signature randomness
(see Section 6.1).

For application developers:

Generate keys on first use, not on install or first boot. If
keys must be generated automatically, it may be better to
defer generation until the keys are needed.

Heed warnings from below. If the OS or cryptography
library being used raises a signal that insufficient entropy
is available (such as blocking), applications should de-
tect this signal and refuse to perform security-critical
operations until the system recovers from this potentially
vulnerable state. Developers have been known to work
around low-entropy states by ignoring or disabling such
warnings, with extremely dangerous results [22].

For device manufacturers:

Avoid factory-default keys or certificates. While some
defense is better than nothing, default keys and certificates
provide only minimal protection.

Seed entropy at the factory. Devices could be initialized
with truly random seeds at the factory. Sometimes it is al-
ready necessary to configure unique state on the assembly
line (such as to set MAC addresses), and entropy could
be added at the same time.

218  21st USENIX Security Symposium	 USENIX Association

Ensure entropy sources are effective. Embedded or head-
less devices may not have access to sources of randomness
assumed by the operating system, such as user-input de-
vices or disk timing. Device makers should ensure that
effective entropy sources are present, and that these are
being harvested in advance of cryptographic operations.

Use hardware random number generators when possible.
Security-critical devices should use a hardware random
number generator for cryptographic randomness when-
ever possible.

For certificate authorities:

Check for repeated, weak, and factorable keys Certifi-
cate authorities have a uniquely broad view of keys con-
tained in TLS certificates. We recommend that they repeat
our work against their certificate databases and take steps
to protect their customers by alerting them to potentially
weak keys.

For end users:

Regenerate default or automatically generated keys.
Cryptographic keys and certificates that were shipped
with the device or automatically generated at first boot
should be manually regenerated. Ideally, certificates and
keys should be generated on another device (such as a
desktop system) with access to adequate entropy.

Check for known weak keys. We have created a key-
check service that individuals can use to check their TLS
certificates and SSH host keys against our database of
keys we have identified as vulnerable.

For security and crypto researchers:

Secure randomness remains unsolved in practice. The
fact that all major operating systems now provide cryp-
tographic RNGs might lead security experts to believe
that any entropy problems that still occur are the fault
of developers taking foolish shortcuts. Our findings sug-
gest otherwise: entropy-related vulnerabilities can result
from complex interaction between hardware, operating
systems, applications, and cryptographic primitives. We
have yet to develop the engineering practices and princi-
ples necessary to make predictably secure use of unpre-
dictable randomness across the diverse variety of systems
where it is required.

Primitives should fail gracefully under weak entropy.
Cryptographic primitives are usually designed to be se-
cure under ideal conditions, but practice will subject them
to conditions that are less than idea. We find that RSA
and DSA, with surprising frequency, are used in practice
under weak entropy scenarios where, due to the design
of these cryptosystems, the private keys are totally com-
promised. More attention is needed to ensure that future
primitives degrade gracefully under likely failure modes
such as this.

8 Related Work

HTTPS surveys The HTTPS public-key infrastruc-
ture has been a focus of attention in recent years, and
researchers have performed several large-scale scans to
measure TLS usage and CA behavior. In contrast, our
study addresses problems that are mostly separate from
the CA ecosystem.

In 2010, the Electronic Frontier Foundation (EFF) and
iSEC Partners debuted the SSL Observatory project [18]
and released the largest public repository of TLS certifi-
cates. The authors used their data to analyze the CA
infrastructure and noted several vulnerabilities. We owe
the inspiration for our work to their fascinating dataset, in
which we first identified several of the entropy problems
we describe; however, we ultimately performed our own
scans to have more up-to-date and complete data.

In 2011, Holz et al. [26] scanned the Alexa top 1 mil-
lion domains and observed TLS sessions passing through
the Munich Scientific Research Network (MWN). Their
study recorded 960,000 certificates and was the largest
academic study of TLS data at the time. They report many
statistics gathered from their survey, mainly focusing on
the state of the CA infrastructure. We note that they ex-
amined repeated keys and dismissed them as “curious,
but not very frequent.” Yilek et al. [37] performed daily
scans of 50,000 TLS servers over several months to track
replacement time for certificates affected by the Debian
weak key bug. Our count of Debian certificates provides
another data point on this subject.

Problems with random number generation Several
significant vulnerabilities relating to weak random num-
ber generation have been found in widely used software.
In 1996, the Netscape browser’s SSL implementation
was found to use fewer than a million possible seeds for
its PRNG [19]. In May 2008, Bello discovered that the
version of OpenSSL included in the Debian Linux distri-
bution contained a bug that caused keys to be generated
with only 15 bits of entropy [5]. The problem caused only
294,912 distinct keys to be generated per key size during
a two year period before the error was found [37].

Gutmann [22] draws lessons about secure software
design from the example of developer responses to an
OpenSSL update intended to ensure that the entropy
pool was properly seeded before use. He observes that
many developers responded by working around the safety
checks in ways that supplied no randomness whatso-
ever. The root cause, according to Gutmann, was that
the OpenSSL design left the difficult job of supplying suf-
ficient entropy to library users. He concludes that PRNGs
should handle entropy-gathering themselves.

Gutterman, Pinkas, and Reinmann analyzed the Linux
random number generator in 2006 [23]. In contrast to

USENIX Association 	 21st USENIX Security Symposium  219

our analysis, which focuses on empirical measurement of
an instrumented Linux kernel, theirs was based mainly
on a review of the LRNG design. They point out several
weaknesses from a cryptographic perspective, some of
which have since been remedied. In a brief experimental
section, they observe that the only entropy source used by
the OpenWRT Linux distribution was network interrupts..

Weak entropy and cryptography In 2004, Bauer and
Laurie [2] computed the pairwise GCDs of 18,000 RSA
keys from the PGP web of trust and discovered a pair with
a common factor of 9, demonstrating that the keys had
been generated with broken (or omitted) primality testing.

The DSA signature weakness we investigate is well
known and appears to be folklore. In 2010, the hacking
group fail0verflow computed the ECDSA private key used
for code signing on the Sony PS3 after observing that the
signatures used repeated ephemeral keys [12]. Several
more sophisticated attacks against DSA exist: Bellare,
Goldwasser, and Miccancio [4] show that the private key
is revealed if the ephemeral key is generated using a lin-
ear congruential generator, and Howgrave-Graham and
Smart [27] give a method to compute the private key from
a fraction of the bits of the ephemeral key.

Ristenpart and Yilek [34] developed “virtual ma-
chine reset” attacks in 2010 that induce repeated DSA
ephemeral keys after a VM reset, and they implement
“hedged” cryptography to protect against this type of ran-
domness failure. Hedged public key encryption was intro-
duced by Bellare et al. in 2009 and is designed to fail as
gracefully as possible in the face of bad randomness [3].

As we were preparing this paper for submission, an in-
dependent group of researchers uploaded a preprint [31]
reporting that they had computed the pairwise GCD of
RSA moduli from the EFF SSL Observatory dataset and
a database of PGP keys. Their work is concurrent and in-
dependent to our own; we were unaware of these authors’
efforts before their work was made public. They declined
to report the GCD computation method they used. We
responded by publishing a blog post [25] describing our
GCD computation approach and summarizing some of
the key findings we detail in this paper.

The authors of the concurrent work report similar re-
sults to our own on the fraction of keys that were able to
be factored, and thus the two results provide validation for
each other. In their paper, however, the authors draw very
different conclusions than we do. They do not analyze the
source of these entropy failures, and they conclude that
RSA is “significantly riskier” than DSA. In contrast, we
performed original scans that targeted SSH as well as TLS,
and we looked for DSA repeated signature weaknesses as
well as cofactorable RSA keys. We find that SSH DSA
private keys are compromised at a higher rate than RSA
keys, and we conclude that the fundamental problem is an
implementational issue rather than a cryptographic one.

Furthermore, the authors of the concurrent work state
that they “cannot explain the relative frequencies and
appearance” of the weak keys they observed and report
no attempt to determine their source. In this work, we
performed extensive investigation to trace the vulnerable
keys back to specific devices and software implementa-
tions, and we have notified the responsible developers
and manufacturers. We find that the weak keys can be ex-
plained by specific design and implementation failures at
various levels of the software stack, and we make detailed
recommendations to developers and users that we hope
will lessen the occurrence of these problems in the future.

9 Conclusion

In this work, we investigated the security of random num-
ber generation on a broad scale by performing and an-
alyzing the most comprehensive Internet-wide scans of
TLS certificates and SSH host keys to date. Using the
global view provided by our data, we discovered that inse-
cure RNGs are in widespread use, leading to a significant
number of vulnerable RSA and DSA keys.

Our experiences suggest that the type of scanning and
analysis we performed can be a useful tool for finding sub-
tle flaws in cryptographic implementations, and we hope
it will be applied more broadly in future work. Previous
examples of random number generation flaws were found
by painstakingly reverse engineering individual devices
or implementations, or through luck when a collision was
observed by a single user. Our scan data allowed us to
essentially mine for vulnerabilities and detect problems
in dozens of different devices and implementations in a
single shot. Many of the collisions we found were too rare
to ever have been observed by a single user but quickly
became apparent with a near-global view of the universe
of public keys. The results are a reminder to all that
vulnerabilities can sometimes be hiding in plain sight.

Acknowledgments

The authors thank Dan Bernstein and Tanja Lange for dis-
cussion of batch factorization and OpenSSL, and Hovav
Shacham for advice on many aspects of this work. We
also thank Jake Appelbaum, Michael Bailey, Kevin Bor-
ders, Keith Brautigam, Ransom Briggs, Jesse Burns, Alek-
sander Durumeric, Prabal Dutta, Peter Eckersley, Andy
Isaacson, James Kasten, Ben Laurie, Stephen Schultze,
Ron Rivest, and David Robinson.

This material is based upon work supported by the
National Science Foundation under Award No. DMS-
1103803, the MURI program under AFOSR Grant No.
FA9550-08-1-0352, and a National Science Foundation
Graduate Research Fellowship.

220  21st USENIX Security Symposium	 USENIX Association

References
[1] random(4) Linux manual page. http://www.kernel.org/doc/man-

pages/online/pages/man4/random.4.html.

[2] BAUER, M., AND LAURIE, B. Factoring silly keys from
the keyservers. In The Shoestring Foundation Weblog (July
2004). http://shoestringfoundation.org/cgi-bin/blosxom.cgi/2004/
07/01#non-pgp-key.

[3] BELLARE, M., BRAKERSKI, Z., NAOR, M., RISTENPART, T.,
SEGEV, G., SHACHAM, H., AND YILEK, S. Hedged public-key
encryption: How to protect against bad randomness. In Proc.
Asiacrypt 2009 (Dec. 2009), M. Matsui, Ed., pp. 232–249.

[4] BELLARE, M., GOLDWASSER, S., AND MICCIANCIO, D.
“Pseudo-random” generators within cryptographic applications:
the DSS case. In Advances in Cryptology—CRYPTO ’97 (Aug.
1997), B. S. Kaliski Jr., Ed., pp. 277–291.

[5] BELLO, L. DSA-1571-1 OpenSSL—Predictable random number
generator, 2008. Debian Security Advisory. http://www.debian.
org/security/2008/dsa-1571.

[6] BERNSTEIN, D. J. How to find the smooth parts of integers.
http://cr.yp.to/papers.html#smoothparts.

[7] BERNSTEIN, D. J. Fast multiplication and its applications. Algo-
rithmic Number Theory (May 2008), 325–384.

[8] BLUM, M., AND MICALI, S. How to generate cryptographically
strong sequences of pseudo-random bits. SIAM J. Comput. 13, 4
(1984), 850–864.

[9] BONEH, D. Twenty years of attacks on the RSA cryptosystem.
Notices of the AMS 46, 2 (1999), 203–213.

[10] BRIER, E., CLAVIER, C., CORON, J., AND NACCACHE, D.
Cryptanalysis of RSA signatures with fixed-pattern padding. In
Advances in Cryptology—Crypto 2001, pp. 433–439.

[11] BROWN, D. R. L. Standards for efficient cryptography 1: Elliptic
curve cryptography, 2009. http://www.secg.org/download/aid-
780/sec1-v2.pdf.

[12] BUSHING, MARCAN, SEGHER, AND SVEN. Console hacking
2010: PS3 epic fail. Talk at 27th Chaos Communication Congress
(2010). http://events.ccc.de/congress/2010/Fahrplan/attachments/
1780_27c3_console_hacking_2010.pdf.

[13] CHOR, B., AND GOLDREICH, O. Unbiased bits from sources of
weak randomness and probabilistic communication complexity. In
Proc. 26th IEEE Symposium on Foundations of Computer Science
(1985), pp. 429–442.

[14] COX, M., ENGELSCHALL, R., HENSON, S., LAURIE, B., ET AL.
The OpenSSL project. http://www.openssl.org.

[15] DAVIS, D., IHAKA, R., AND FENSTERMACHER, P. Crypto-
graphic randomness from air turbulence in disk drives. In Ad-
vances in Cryptology—CRYPTO ’94 (1994), pp. 114–120.

[16] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
(TLS) Protocol, Version 1.2. RFC 5246.

[17] DORRENDORF, L., GUTTERMAN, Z., AND PINKAS, B. Crypt-
analysis of the Windows random number generator. In Proc. 14th
ACM Conference on Computer and Communications Security
(2007), CCS ’07, pp. 476–485.

[18] ECKERSLEY, P., AND BURNS, J. An observatory for the
SSLiverse. Talk at Defcon 18 (2010). https://www.eff.org/files/
DefconSSLiverse.pdf.

[19] GOLDBERG, I., AND WAGNER, D. Randomness and the Netscape
browser. Dr. Dobb’s Journal 21, 1 (1996), 66–70.

[20] GRANLUND, T., ET AL. The GNU multiple precision arithmetic
library. http://gmplib.org/.

[21] GUTMANN, P. Software generation of random numbers for cryp-
tographic purposes. In Proc. 7th USENIX Security Symposium
(1998), pp. 243–257.

[22] GUTMANN, P. Lessons learned in implementing and deploying
crypto software. In Proc. 11th USENIX Security Symposium
(2002), pp. 315–325.

[23] GUTTERMAN, Z., PINKAS, B., AND REINMAN, T. Analysis
of the Linux random number generator. In Proc. 2006 IEEE
Symposium on Security and Privacy (May 2006), pp. 371–385.

[24] HEFFNER, C., ET AL. LittleBlackBox: Database of private SS-
L/SSH keys for embedded devices. http://code.google.com/p/
littleblackbox/.

[25] HENINGER, N., ET AL. There’s no need to panic over factorable
keys–just mind your Ps and Qs. Freedom to Tinker weblog (2012).
https://freedom-to-tinker.com/blog/nadiah/new-research-theres-
no-need-panic-over-factorable-keys-just-mind-your-ps-and-qs.

[26] HOLZ, R., BRAUN, L., KAMMENHUBER, N., AND CARLE, G.
The SSL landscape—A thorough analysis of the X. 509 PKI using
active and passive measurements. In Proc. 2011 ACM SIGCOMM
Internet Measurement Conference (2011), pp. 427–444.

[27] HOWGRAVE-GRAHAM, N., AND SMART, N. Lattice attacks on
digital signature schemes. Designs, Codes and Cryptography 23,
3 (2001), 283–290.

[28] KLEINJUNG, T., AOKI, K., FRANKE, J., LENSTRA, A., THOMÉ,
E., BOS, J., GAUDRY, P., KRUPPA, A., MONTGOMERY, P.,
OSVIK, D., TE RIELE, H., TIMOFEEV, A., AND ZIMMERMANN,
P. Factorization of a 768-bit RSA modulus. In Advances in
Cryptology—CRYPTO 2010 (2010), T. Rabin, Ed., pp. 333–350.

[29] LAWSON, N. DSA requirements for random k value,
2010. http://rdist.root.org/2010/11/19/dsa-requirements-for-
random-k-value/.

[30] LENSTRA, A., LENSTRA, H., MANASSE, M., AND POLLARD, J.
The number field sieve. In The development of the number field
sieve, A. Lenstra and H. Lenstra, Eds., vol. 1554 of Lecture Notes
in Mathematics. 1993, pp. 11–42.

[31] LENSTRA, A. K., HUGHES, J. P., AUGIER, M., BOS, J. W.,
KLEINJUNG, T., AND WACHTER, C. Ron was wrong, Whit is
right. Cryptology ePrint Archive, Report 2012/064, 2012. http://
eprint.iacr.org/2012/064.pdf.

[32] LOCKE, G., AND GALLAGHER, P. FIPS PUB 186-3: Digital Sig-
nature Standard (DSS). Federal Information Processing Standards
Publication (2009).

[33] LYON, G. F. Nmap Network Scanning: The Official Nmap Project
Guide to Network Discovery and Security Scanning. Insecure,
USA, 2009.

[34] RISTENPART, T., AND YILEK, S. When good randomness goes
bad: Virtual machine reset vulnerabilities and hedging deployed
cryptography. In Proc. ISOC Network and Distributed Security
Symposium (2010).

[35] RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. A method for
obtaining digital signatures and public-key cryptosystems. Com-
mun. ACM 21 (Feb. 1978), 120–126.

[36] WOOLLEY, R., MURRAY, M., DOUNIN, M., AND ER-
MILOV, R. FreeBSD security advisory FreeBSD-SA-
08:11.arc4random, 2008. http://lists.freebsd.org/pipermail/
freebsd-security-notifications/2008-November/000117.html.

[37] YILEK, S., RESCORLA, E., SHACHAM, H., ENRIGHT, B., AND
SAVAGE, S. When private keys are public: Results from the 2008
Debian OpenSSL vulnerability. In Proc. 2009 ACM SIGCOMM
Internet Measurement Conference, pp. 15–27.

[38] YLONEN, T. SSH—secure login connections over the internet. In
Proc. 6th USENIX Security Symposium (1996), pp. 37–42.

[39] YLÖNEN, T., AND LONVICK, C. The secure shell (SSH) protocol
architecture. http://merlot.tools.ietf.org/html/rfc4251.

USENIX Association 	 21st USENIX Security Symposium  221

TARDIS: Time and Remanence Decay in SRAM to Implement Secure
Protocols on Embedded Devices without Clocks

Amir Rahmati
UMass Amherst

Mastooreh Salajegheh
UMass Amherst

Dan Holcomb
UC Berkeley

Jacob Sorber
Dartmouth College

Wayne P. Burleson
UMass Amherst

Kevin Fu
UMass Amherst

Abstract
Lack of a locally trustworthy clock makes security

protocols challenging to implement on batteryless em-
bedded devices such as contact smartcards, contactless
smartcards, and RFID tags. A device that knows how
much time has elapsed between queries from an untrusted
reader could better protect against attacks that depend on
the existence of a rate-unlimited encryption oracle.

The TARDIS (Time and Remanence Decay in SRAM)
helps locally maintain a sense of time elapsed with-
out power and without special-purpose hardware. The
TARDIS software computes the expiration state of a timer
by analyzing the decay of existing on-chip SRAM. The
TARDIS enables coarse-grained, hourglass-like timers
such that cryptographic software can more deliberately
decide how to throttle its response rate. Our experiments
demonstrate that the TARDIS can measure time ranging
from seconds to several hours depending on hardware
parameters. Key challenges to implementing a practi-
cal TARDIS include compensating for temperature and
handling variation across hardware.

Our contributions are (1) the algorithmic building
blocks for computing elapsed time from SRAM decay; (2)
characterizing TARDIS behavior under different tempera-
tures, capacitors, SRAM sizes, and chips; and (3) three
proof-of-concept implementations that use the TARDIS
to enable privacy-preserving RFID tags, to deter double
swiping of contactless credit cards, and to increase the
difficulty of brute-force attacks against e-passports.

1 Introduction

“Timestamps require a secure and accurate
system clock—not a trivial problem in itself.”
–Bruce Schneier, Applied Cryptography [43]

Even a perfect cryptographic protocol can fail without
a trustworthy source of time. The notion of a trustworthy
clock is so fundamental that security protocols rarely state

Platform Attack #Queries
MIFARE Classic Brute-force [15] ≥1,500
MIFARE DESFire Side-channel [35] 250,000
UHF RFID tags Side-channel [34] 200
TI DST Reverse eng. [7, 8] ∼75,000
GSM SIM card Brute-force [16] 150,000

Table 1: Practical attacks on intermittently powered de-
vices. These attacks require repeated interactions between
the reader and the device. Throttling the reader’s attempts
to query the device could mitigate the attacks.

this assumption. While a continuously powered computer
can maintain a reasonably accurate clock without trusting
a third party, a batteryless device has no such luxury.
Contact smartcards, contactless smartcards, and RFIDs
can maintain a locally secured clock during the short
duration of a power-up (e.g., 300 ms), but not after the
untrusted external reader removes power.

It’s Groundhog Day! Again. Unawareness of time has
left contactless payment cards vulnerable to a number
of successful attacks (Table 1). For instance, Kasper et
al. [35] recently demonstrated how to extract the 112-bit
key from a MIFARE DESFire contactless smartcard (used
by the Clipper all-in-one transit payment card1). The
side channel attack required approximately 10 queries/s
for 7 hours. Some RFID credit cards are vulnerable to
replay attacks because they lack a notion of time [21].
Oren and Shamir [34] show that power analysis attacks
on UHF RFID tags can recover the password protecting
a “kill” command with only 200 queries. At USENIX
Security 2005, Bono et al. [8] implemented a brute-force
attack against the Texas Instruments Digital Signature
Transponder (DST) used in engine immobilizers and the
ExxonMobile SpeedPass

TM
. The first stage of the attack

required approximately 75,000 online “oracle” queries to

1No relation to the Clipper Chip [27].

222  21st USENIX Security Symposium	 USENIX Association

SRAM cells decay

...

TARDIS
initializes

SRAM

power-up power-off power-up

TARDIS
computes

SRAM decay

Vo
lta

ge

Figure 1: TARDIS estimates time by counting the number
of SRAM cells that have a value of zero in power-up (com-
putes SRAM decay). Initially, a portion of SRAM cells
are set to one (initializes SRAM) and their values decay
during power-off. The dots in the power-off indicate the
arbitrary and unpredictable duration of power-off.

recover the proprietary cipher parameters [7].
A batteryless device could mitigate the risks of brute-

force attacks, side-channel attacks, and reverse engineer-
ing by throttling its query response rate. However, the
tag has no access to a trustworthy clock to implement
throttling. A smartcard does not know whether the last
interrogation was 5 seconds ago or 5 days ago.

Enter the TARDIS. To enable security protocols on in-
termittently powered devices without clocks, we propose
Time and Remanence Decay in SRAM (TARDIS) to keep
track of time without a power source and without addi-
tional circuitry. The TARDIS relies on the behavior of
decaying SRAM circuits to estimate the duration of a
power failure (Figure 1). Upon power-up, the TARDIS
initializes a region in SRAM of an intermittently powered
device. Later, during power-off, the SRAM starts to de-
cay. Upon the next power-up, the TARDIS measures the
fraction of SRAM cells that retain their state. In many
ways, TARDIS operation resembles the functioning of an
hourglass: the un-decayed, decaying, and fully decayed
stages of SRAM are analogous to full, emptying, and
empty hourglass states.

Contributions. Our primary contributions are:

• Algorithmic building blocks to demonstrate the fea-
sibility of using SRAM for a trustworthy source of
time without power.

• Empirical evaluation that characterizes the behavior
of SRAM-based timekeeping under the effects of
temperature, capacitance, and SRAM size.

• Enabling three security applications using SRAM-
based TARDIS: sleepy RFID tags, squealing credit
cards, and forgiving e-passports.

State of the Art. Today, batteryless devices often im-
plement monotonically increasing counters as a proxy
for timekeeping. RFID credit cards occasionally include
transaction counters to defend against replay attacks. Yet

the counters introduce vulnerabilities for denial of service
and are difficult to reset based on time elapsed; one credit
card ceases to function after the counter rolls over [21].
While one can maintain a real-time clock (RTC) with
a battery on low-power mobile devices [40], battery-
less platforms do not support RTCs across power fail-
ures [31, 41, 9] because of the quiescent current draw.

While a timer of just a few seconds would suffice to
increase the difficulty of brute-force attacks (Table 1), our
experimental results indicate that an SRAM timer can
reliably estimate the time of power failures from a few
seconds up to several hours. For example, using a 100 µF
capacitor at room temperature, the TARDIS expiration
time can exceed 2 hours of time. We evaluate the energy
and time overhead of the TARDIS, its security against
thermal and power-up attacks, and its precision across
different platforms.

The primary novelty of the TARDIS is that a moder-
ately simple software update can enable a sought-after
security primitive on existing hardware without power.
While data remanence is historically considered an un-
desirable security property [19], the TARDIS uses rema-
nence to improve security. At the heart of the TARDIS are
SRAM cells, which are among the most common building
blocks of digital systems. The ubiquity of SRAM is due
in part to ease of integration: in contrast with flash mem-
ory and DRAM, SRAM requires only a simple CMOS
process and nominal supply voltage.

2 Intermittently Powered Devices: Back-
ground, Observations, and Challenges

New mobile applications with strict size and cost con-
straints, as well as recent advances in low-power micro-
controllers, have given rise to a new class of intermittently
powered device that is batteryless and operates purely on
harvested energy. These devices—including contact and
contactless smart cards and computational RFID tags (CR-
FIDs) [38, 41, 56, 55]— typically have limited com-
putational power, rely on wireless transmissions from a
reader both for energy and for timing information, and
lose power frequently due to minimal energy storage. For
example, when a contactless transit card is brought suffi-
ciently close to a reader in a subway, the card gets enough
energy to perform the requested tasks. As soon as the card
is out of the reader range, it loses power and is unable
to operate until presented to another reader. Since a tag
loses power in the absence of a reader, it doesn’t have any
estimation of time between two interactions with a reader.

A typical secure communication between a reader and a
tag is shown in Figure 2. The tag will only respond to the
reader’s request if it has authenticated itself by correctly
answering the challenge sent by the tag. Two problems

2

USENIX Association 	 21st USENIX Security Symposium  223

SRAM DRAM
Purpose Fast local memory Large main memory
Location Usually on-chip w/ CPU Usually off-chip
Applications CPU caches, microcontrollers Desktop computers, notebooks, servers
Storage technology Cross-coupled transistors Capacitors
Normal operation Constantly powered Intermittently refreshed
Decay state 50% zero/one bits All zero bits

Table 2: Because CPUs of embedded devices generally do not have on-chip DRAM, the TARDIS operates on SRAM.
SRAM and DRAM differ fundamentally in their manufacture, operation, intended use, and state of decay.

Reader

Tag

ch
al
le
ng
e

Time? Time?

request

ac
k

response

request

Figure 2: The tag cannot determine the time between a
challenge and a response or the time between two sessions.
The reader could respond to the tag as tardily as it likes
or query the tag as quickly as it wants.

arise in this scheme:

• The tag is unaware of the amount of time spent by
the reader to answer the challenge, so an adversary
has an unlimited amount of time to crack a challenge.

• The tag is unaware of the time between two different
queries, so an adversary can send a large number of
queries to the tag in a short time space. This can
make various brute-force attacks possible on these
devices.

Traditionally, computing devices have either had a di-
rect connection to a reliable power supply or large bat-
teries that mask disconnections and maintain a constant
supply of power to the circuit. In either case, a reliable
sense of time can be provided using an internal clock.
Time measurement errors, due to clock drift or power
failures, can be corrected by synchronizing with a trusted
peer or other networked time source. Current embed-
ded systems address the timekeeping issue in one of the
following ways:

1. A system can power a real-time clock (RTC); how-
ever, this is not practical on intermittently powered
devices due to their tight energy budget. Even if the

system uses a low-power RTC (e.g., NXP PCF2123
RTC chip [32]), the RTC component has to be con-
stantly powered (for example, using a battery). This
choice also increases the cost of manufacturing and
it does not benefit devices that are already deployed.

2. A system can keep time by accessing an external
device (e.g., an RFID tag reader) or by secure time
synchronization [14, 46]. This option introduces
security concerns and may either require significant
infrastructure or severely limit range and mobility.

2.1 Threat Model and Assumptions
“...if the attack surface includes an awful lot of
clocks that you do not control, then it’s worth
some effort to try and make your system not de-
pend on them anymore.”–Ross Anderson [30]

The primary goal of the adversary in our model is to dis-
tort the TARDIS timekeeping. Our threat model considers
semi-invasive attacks common to smart cards [15, 35]. We
will not discuss attacks such as buffer overflows which
are against the systems that would integrate the TARDIS;
we focus on the attacks aimed at the TARDIS itself. Our
adversarial model considers two classes of attacks: (1)
thermal attacks that use heating and cooling [19] to distort
the speed of memory decay; and (2) power-up attacks that
keep the tag partially powered to prevent memory decay.

3 The TARDIS Algorithms

The TARDIS exploits SRAM decay during a power-off to
estimate time. An example of the effect of time on SRAM
decay in the absence of power is visualized in Figure 3.
In this experiment, a 100× 135 pixel bitmap image of
a different TARDIS [1] was stored into the SRAM of a
TI MSP430 microcontroller. The contents of the memory
were read 150, 190, and 210 seconds after the power was
disconnected. The degree of image distortion is a function
of the duration of power failure.2

2The 14.6 KB image was too large to fit in memory, and therefore
was divided into four pieces with the experiment repeated for each to

3

224  21st USENIX Security Symposium	 USENIX Association

Figure 1 shows the general mechanism of the TARDIS.
When a tag is powered up, the TARDIS initializes a region
in SRAM cells to 1. Once the power is cut off, the SRAM
cells decay and their value might reset from 1 to 0. The
next time the tag is powered up, the TARDIS tracks the
time elapsed after the power loss based on the percentage
of cells remaining 1. Algorithm 1 gives more details about
the implementation of the TARDIS.

MEASURE TEMPERATURE: To detect and compensate
for temperature changes that could affect the decay rate
(Section 6), the TARDIS uses the on-board tempera-
ture sensor found on most microcontrollers. The pro-
cedure MEASURE TEMPERATURE stores inside-the-chip
temperature in the flash memory upon power-up. The pro-
cedure DECAY calls the TEMPERATURE ANALYZE func-
tion to decide if the temperature changes are normal.

TIME: The TARDIS TIME procedure returns time and
decay. The precision of the time returned can be derived
from the decay. If the memory decay has not started
(decay = 0), the procedure returns {time,0} meaning that
the time duration is less than time. If the SRAM decay
has started but has not finished yet (0 ≤ decay ≤ 50%),
the return value time is an estimate of the elapsed time
based on the decay. If the SRAM decay has finished
(decay � 50%), the return result is {time,50} meaning
that the time elapsed is greater than time.

ESTIMATION: The procedure ESTIMATE uses a lookup
table filled with entries of decay, temperature, and time
stored in non-volatile memory. This table is computed
based on a set of experiments on SRAM in different tem-
peratures. Once the time is looked up based on the mea-
sured decay and the current temperature, the result is
returned as time by the ESTIMATE procedure. The pre-
compiled lookup table does not necessarily need to be
calibrated for each chip as we have observed that chip-to-
chip variation affects decay only negligibly (Section 6).

3.1 TARDIS Performance
The two most resource-consuming procedures of the
TARDIS are INIT (initializing parts of the SRAM as well
as measuring and storing the temperature) and DECAY
(counting the zero bits and measuring the temperature).
Table 3 shows that energy consumed in total by these two
procedures is about 48.75 µJ and it runs in 15.20 ms.

Our experiments of time and energy measurements
are performed on Moo RFID[56] sensor tags that use an
MSP430F2618 microcontroller with 8 KB of memory,
and a 10 µF capacitor. A tag is programmed to perform
one of the procedures, and the start and end of the task
is marked by toggling a GPIO pin. The tag’s capacitor is

get the complete image. The microcontroller was tested in a circuit
shown in Figure 6 with a 10 µF capacitor at 26◦C. No block transfer
computation was necessary.

Algorithm 1 TARDIS Implementation

INIT(addr,size)

1 for i ← 1 to size
2 do memory(addr+ i−1)← 0xFF
3 temperature ← MEASURE TEMPERATURE()

DECAY(addr,size)

1 decay ← COUNT0S(addr,size)
2 � Proc. COUNT0S counts the number of 0s in a byte.
3 if TEMPERATURE ANALYZE(temperature)
4 � This procedure decides if the temperature changes

are expected considering the history of temperature
values stored in flash memory.

5 then return decay
6 else return error

EXPIRED(addr,size)

1 � Checks whether SRAM decay has finished.
2 decay ← DECAY(addr,size)
3 if (decay ≥ %50×8× size)
4 then return true
5 else return false

TIME(addr,size, temperature)

1 � Estimate the passage of time by comparing the
percentage of decayed bits to a precompiled table.

2 decay ← DECAY(addr,size)/(8× size)
3 time ← ESTIMATE(decay,temperature)
4 return {time,decay}

charged up to 4.5 V using a DC power supply and then
disconnected from the power supply so that the capacitor
is the only power source for the tag. In the experiments,
the DC power supply is used instead of an RF energy
supply because it is difficult to disconnect the power har-
vesting at a precise capacitor voltage. We measured the
voltage drop of the capacitor and the GPIO pin toggling
using an oscilloscope. The energy consumption of the
task is the difference of energy (1

2 ×CV 2) at the start and
end of the task. The reported measurement is the average
of ten trials.

4 Securing Protocols with the TARDIS

There are many cases where the security of real-world
applications has been broken because the adversary could
query the device as many times as required for attack.
Table 1 gives a summary of today’s practical attacks on in-
termittently powered devices. By integrating the TARDIS,
these applications could throttle their response rates and

4

USENIX Association 	 21st USENIX Security Symposium  225

0 150 190 210
Time (sec)

Figure 3: Programs without access to a trustworthy clock can determine time elapsed during a power failure by
observing the contents of uninitialized SRAM. These bitmap images of the TARDIS [1] represent four separate trials of
storing the bitmap in SRAM, creating an open circuit across the voltage supply for the specified time at 26◦C, then
immediately returning a normal voltage supply and reading uninitialized SRAM upon reboot. The architecture of a
contactless card is modeled using a 10 µF capacitor and a diode in series with the MSP430 microcontroller’s voltage
supply pin. The degree of decay is a function of the duration of power failure, enabling hourglass-like timekeeping
precision without power. No TARDIS was harmed or dematerialized in this experiment.

Procedure Energy Cost Exec. Time

INIT 11.53 µJ±2.47 2.80 ms±0.00̄
DECAY 37.22 µJ±9.31 12.40 ms±1.10

Table 3: Overhead of TARDIS INIT and DECAY proce-
dures measured for TARDIS size of 256 bytes.

improve their security.
We discuss six security protocols that could strengthen

their defense against brute-force attacks by using the
TARDIS. To demonstrate the ease of integrating the
TARDIS, we have implemented and tested three of
these security protocols on the Moo, a batteryless
microcontroller-based RFID tag with sensors but without
a clock [56]. Our prototypes demonstrate the feasibility
of the TARDIS and its capabilities in practice.

Sleepy RFID Tags: To preserve the users privacy and pre-
vent traceability, one could use a “kill” command to per-
manently deactivate RFID tags on purchased items [25].
However, killing a tag disables many features that a cus-
tomer could benefit from after purchase. For example,
smart home appliances (e.g., refrigerators or washing ma-
chines) may no longer interact with related items even
though they have RFID tags in them. One could tem-
porarily deactivate RFID tags by putting them to “sleep.”
However, lack of a simple and practical method to wake
up the tags has made this solution inconvenient [25]. By
providing a secure notion of time, the TARDIS makes it
possible to implement sleepy tags that can sleep temporar-
ily without requiring additional key PINs or cryptographic

solutions. We consider a time resolution on the order of
hours more appropriate for this application.

To extend the sleep time of sleepy tags, one could use a
counter along with the TARDIS as follows: upon power-
up, the tag checks the TARDIS timer, and it does not
respond to the reader if the timer has not expired. If the
TARDIS timer has expired, the tag decreases the counter
by one and initializes the TARDIS again. This loop will
continue while the counter is not zero. For example, using
a counter initially set to 1000 and a TARDIS resolution
time of 10 seconds, the tag could maintain more than 2
hours of delay. Since the tag exhausts its counter every
time it wakes up, the reader interacting with the tag has
to query the tag intermittently.

The TARDIS could prevent yet another attack on Elec-
tronic Product Code (EPC) tags that use “kill” commands.
To prevent accidental deactivation of tags, a reader must
issue the right PIN to kill a tag [12]. An adversary could
brute-force the PIN (32 bits for EPC Class1 Gen2 tags).
The TARDIS enables the RFID tag to slow down the unau-
thorized killing of a tag by increasing the delay between
queries and responses.

Squealing Credit Cards: Today, a consumer cannot de-
termine if her card has been used more than once in a
short period of time unless she receives a receipt. This
is because a card cannot determine the time elapsed be-
tween two reads as the card is powered on only when it
communicates with the reader. The TARDIS enables a
“time lock” on the card such that additional reads would be
noticed. Thus a consumer could have some assurance that
after exposing a card to make a purchase, an accidental
second read or an adversary trying to trick the card into

5

226  21st USENIX Security Symposium	 USENIX Association

S
ec
on
ds

Requests
0 2 4 6 8 10 12 14 16 18 20

Personal Communication About French Passports

Gildas Avoine

Universit́e catholique de Louvain, Belgium

We performed some experiments on the Basic Access Control of a French passport issued in
2010. We noticed that once a BAC execution fails (we provided a wrong MRZ to the passport),
the behavior of the passport is modified as follows: the time taken by the passport to answer to
the next Mutual Authenticate command (ie the command used in the BAC) increases. It actually
increases up to 14 seconds after 14 unsuccessful executions. At this point, the response time remains
14 seconds as long as the BACexecutions fail. Figure 1 represents the response time of the passport
during our experiment (we always sent a wrong MRZ).

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20

Seconds

Requests

Fig.1. Response time of a French passport when a wrong MRZ is sent. The
experiments have been done with an Omnikey 5321.

An interesting point is that, when the passport enters into this kind of “protecting mode”, it
stays in this mode till a correct MRZ is provided. This means that removing the passport from
the reader’s field, even for several days, does not change anything. For example, let’s consider that
we perform 14 unsuccessfull BACexecutions. Several days later, we perform a 15th execution with
a correct MRZ. During this 15th execution, the passport will take about 14 seconds to answer
but will leave the“protecting mode”, meaning that it will no longer delay its response in the next
executions. This means that the idea suggested in [1] (Section 4.1) has been implemented in the
French passport (issued in 2010) we experimented.

References

1. Gildas Avoine, Kassem Kalach, and Jean-Jacques Quisquater. ePassport: Securing International Contacts with
Contactless Chips. In Gene Tsudik, editor, Financial Cryptography and Data Security – FC’08 , volume 5143 of
Lecture Notes in Computer Science , pages 141–155, Cozumel, Mexico, January 2008. IFCA, Springer.

2
4
6
8
10
12
14
16

Figure 4: Measured response time of a 2010-issued
French passport [5]. The passport imposes up to 14 sec-
onds of delay on its responses after unsuccessful execu-
tion. The delay will remain until a correct reading happens
even if the passport were removed from the reader’s field
for a long time.

responding would be revealed. Squealing credit cards
would work similarly to today’s credit cards, but they are
empowered by the TARDIS to estimate the time between
queries and warn the user audibly (a cloister bell) if a
second read is issued to the card too quickly. A time lock
of about one minute can be considered enough for these
applications.

Forgiving E-passports: RFID tags are used in e-
passports to store holder’s data such as name, date of
birth, biometric ID, and a unique chip ID number. E-
passports are protected with techniques such as the Basic
Access Control (BAC) protocol, shielding, and passive
authentication. However, in practice, e-passports are not
fully protected. An adversary can brute-force the BAC
key in real time by querying the passport 400 times per
minute for a few weeks [6]. Another attack can accurately
trace a specific passport by sending hundreds of queries
per minute [11].

To mitigate the effect of brute-force attacks, French
e-passports have implemented a delay mechanism—we
imagine using a counter—to throttle the read rate [5].
This delay increases to 14 seconds after 14 unsuccessful
attempts (Figure 4) and would occur even if the passport
was removed from the RF field for several days. Once the
tag is presented with an authorized reader, the delay will
be enforced and then reset to zero. The TARDIS provides
a time-aware alternative that delays unauthorized access
but ignores the previous false authentication attempts if
the passport has been removed from the reader’s range
for an appropriate duration. A time duration matching
the maximum implemented delay (14 seconds for French
passports) would be enough to implement this function.

Passback - Double-tap Prevention: In mass transporta-
tion and other similar card entry systems, the goal of the

operator is to prevent multiple people from accessing the
system simultaneously using the same card. To achieve
this goal, systems are typically connected to a central
database that prevents a card from being used twice in
a short time frame.3 Using the TARDIS, a card could
implement delay before permitting re-entry rather than
requiring the system to check a central database.

Resurrecting Duckling: Secure communication in ad-
hoc wireless networks faces many obstacles because of
the low computing power and scarce energy resources of
these devices. Stajano et al. [45] proposed a policy in
which these devices would transiently accept a new owner.
The devices will later return to an unprogrammed status
when the owner no longer needs them, they receive a kill
command, or another predefined reset condition is met.
Later, others can reclaim and reuse these devices.

For wirelessly powered devices, the TARDIS can pro-
vide a sense of time, allowing them to be “reborn” with a
new owner only if there is an extended power outage. A le-
gitimate user can continue to power the device wirelessly,
but if she wishes to transfer ownership to another entity,
she must power it down for a long enough time (defined
by the user). Otherwise, the RFID tag refuses to interact
with anyone not possessing the present cryptographic key.
An example of this application is secure pairing for com-
putational contact lenses [22]. The controller could be
cryptographically bound until power disappears for more
than a few minutes. Another use of this application is to
make stealing SIM cards difficult [16]. The card could
refuse to boot if it has been unpowered for a fair amount
of time.

Time-out in Authentication Protocols: Because RFID
tags rely on a reader as their source of energy, they can-
not measure the delay between a request to the reader
and its corresponding response. The tag ignorance gives
the reader virtually unlimited time to process the request
and response in an authentication algorithm. Having un-
limited response time enables the adversary to employ
various attacks on the request message with the goal of
breaking it. Using the TARDIS will limit the adversary
time frame for a successful attack. An example of these
protocols can be seen in the e-passport BAC protocol
where the reader and passport create a session key for
communication. Using The TARDIS would enable pass-
ports to enforce expiration of these keys.

4.1 Implementation and Evaluation
For the implementation of sleepy tags, squealing credit
cards, and forgiving e-passports, we have chosen the Moo,
a batteryless microcontroller-based RFID tag. We have

3Houston METRO system: http://www.ridemetro.org/

fareinfo/default.aspx

6

USENIX Association 	 21st USENIX Security Symposium  227

RFID Reader

UHF computational
RFID tags augmented
with piezo elements

RFID Antenna

Figure 5: Our applications are implemented and tested
on the Moo RFID sensors and are remotely powered by a
RFID reader (ThingMagic M5 [51]).

Algorithm 2 An example of TARDIS usage in a protocol.

TARDIS EXAMPLE(addr,size)

1 if EXPIRED(addr,size)
2 then RESPOND TO READER()
3 INIT(addr,size)
4 else BUZZ PIEZO ELEMENT()

augmented this tag with a piezo-element [20] so that it
can audibly alert the user to events.

Implementation: We have implemented a TARDIS li-
brary that provides the procedures INIT and EXPIRE listed
in Algorithm 1. For the three implemented protocols,
a 1-bit precision of time–whether or not the timer had
expired–was enough. The programs used for all three
protocols are similar and are shown in Algorithm 2. The
tag was programmed to call the EXPIRE procedure upon
power-up; if the timer had expired, it would respond to
the reader and call INIT; otherwise, the tag would buzz its
piezo-element. In the case of the squealing credit cards
protocol the tag was programmed to respond to the reader
after buzzing, but for the two other applications, the tag
stopped communicating with the reader.

We used a ThingMagic reader [51] and its correspond-
ing antenna to query the tag. When the tag was queried for
the first time upon removal from the RF field, it buzzed.
The tag stayed quiet whenever it was queried constantly
or too quickly.

Experimental Setup: To measure the TARDIS resolu-
tion time on this platform, we powered up the tag to 3.0 V
using an external power supply and then disconnected it.
We observed the voltage drop over time on an oscilloscope
and measured the elapsed time between loss of power and
when SRAM decay has finished.4 We conducted our ex-
periments on five tags, which use a 10 µF capacitor as its

4Our experiments (Section 6) have shown that SRAM decay finishes
when the tag voltage reaches 50 mV .

primary power source. The TARDIS resolution time on
average was 12.03 seconds with a standard deviation of
0.11 seconds. A similar tag, which uses 100 mF, yields a
TARDIS resolution time of 145.85 seconds. These time
measurements are specific to the platform we have chosen
for our experiment. The resolution could potentially be
extended to hours using additional capacitors (Table 5).

5 Security Analysis

Depending on the application, the adversary may wish
either to slow down or to speed up the expiration of the
TARDIS. We discuss four different attacks that try to
distort the TARDIS interpretation of time.

Cooling Attacks. An adversary might try to reduce the
system’s temperature, aiming to slow down the memory
decay rate. Other works [19] have used this technique
to prevent data decay in DRAM for the purpose of data
extraction. Cooling attacks might target the TARDIS
timer in cases where the adversary needs to slow the pas-
sage of time. As explained in Algorithm 1, the TARDIS
measures and records a device’s temperature over time
and therefore it can prevent cooling attacks by observing
unexpected temperature changes.

Heating Attacks. In contrast to cooling attacks, an at-
tacker might need to speed up the TARDIS timer. For ex-
ample, someone might try to decrease the delay between
queries in order to speed up brute-force attacks. Simi-
larly to the defense against cooling attacks, the TARDIS
will report an error indicating unexpected temperature
changes.

Pulse Attacks. A more sophisticated attack is a combi-
nation of the cooling and heating attacks such that the
temperature would remain the same in the beginning and
the end of the attack. It should be noted that this is not
a trivial attack because the adversary needs to restore
the original internal temperature to prevent the thermal
sensor from noticing any difference. A defense against
pulse attacks is to implement a thermal fuse [10] on the
chip that will activate when the chip is exposed to a high
temperature. The activation of this fuse will then either
notify the TARDIS of temperature tampering on the next
boot-up or possibly prevent the system from booting up
at all.

Voltage Control Attack. Another possible attack sce-
nario would be to power up the system wirelessly to a
minimum voltage that is not sufficient for booting up but
sufficient for stopping the memory decay. This would pre-
vent the device from noticing the unauthorized reader and
it would stop the memory from decaying further (see Fig-
ure 8). The voltage control attack can freeze the TARDIS
timer at a specific time as long as it sustains the power sup-

7

228  21st USENIX Security Symposium	 USENIX Association

ply. We imagine that this attack is difficult to implement
because of the inherent design of the readers. Many fac-
tors (e.g., distance) affect the voltage received by the tags
and tags are very sensitive to environmental effects. The
readers are also generally designed to flood the targeted
environment with energy to provide the tags in range with
more than the maximum required power [54]. Excessive
power that may have been generated by these devices is
then filtered out in tags using voltage regulators. To im-
plement this attack, we imagine the adversary would need
to control the input voltage to the tag with a very high pre-
cision. If the tag voltage for any reason drops, the SRAM
will decay irreversibly. At the same time, the adversary
would need to prevent the tags from fully powering up
and noticing the unauthorized reader.

6 Factors Affecting SRAM Decay

In our evaluation of the TARDIS, we examine the de-
cay behavior of SRAM and three factors that have major
effects on this behavior. All experiments use the same
circuit (Figure 6), and follow the same general procedure.

Experimental Setup: A microcontroller runs a program
that sets all available memory bits to 1. The power is
then effectively disconnected for a fixed amount of time
(off -time). When power is reapplied to the chip, the pro-
gram records the percentage of remaining 1-bits to mea-
sure memory decay, and then it resets all bits to 1 in prepa-
ration for the next time power is disconnected. A Data
Acquisition (DAQ) unit from Agilent (U2541A series)
precisely controls the timing of power-ups and power-
downs between 3 and 0 Volts, and also measures the volt-
age across the microcontroller throughout the experiment.
An inline diode between the power supply and micro-
controller models the diode at the output of the power
harvesting circuit in RFIDs; it also prevents the DAQ
from grounding VCC during the off-time when the DAQ
is still physically connected but is not supplying power.
In all experiments, microcontrollers from the TI MSP430
family are used to ensure maximum consistency. The
microcontroller used in all experiments is MSP430F2131
with 256 B of SRAM unless stated otherwise.

In all of the experiments, temperature is controlled by
conducting all tests inside of a Sun Electronics EC12 En-
vironmental Chamber [47] capable of creating a thermally
stable environment from −184◦C to +315◦C with 0.5◦C
precision. We use an OSXL450 infrared non-contact
thermometer [33] with ±2◦C accuracy to verify that our
microcontroller has reached thermal equilibrium within
the chamber before testing. For all the experiments, we
have collected at least 10 trials.

Defining Stages of Decay: Three distinct stages of de-
cay are observed in all experiments. Figure 7 illus-

Microcontroller

DAQ

+
-

Figure 6: General circuit used during the experiments.
The microcontroller is held in an environmental chamber
to ensure consistent temperature during the tests. The
Data Acquisition (DAQ) unit both provides power to the
microcontroller and records the voltage decay.

Term Definition

SRAM Decay Change of value in SRAM cells because
of power outage

Decay Stage 1 Time before the first SRAM cell decays
Decay Stage 2 Time between the decay of first SRAM

cell and last one
Decay Stage 3 Time after the last SRAM cell decays
Ground State The state that will be observed in an

SRAM cell upon power-up, after a very
long time without power

DRV Data Retention Voltage, minimum volt-
age at which each cell can store a datum

DRV Probabil-
ity(v)

Probability that a randomly chosen cell
will have a DRV equal to v and a written
state that is opposite its ground state.

Table 4: Definition of the terms used to explain the behav-
ior of SRAM decay and the theory behind it.

trates the three stages of SRAM decay measured on a TI
MSP430F2131 with 256 B of SRAM and a 10 µF capac-
itor, at 26◦C. We vary the off -time from 0 to 400 seconds
in 20-second increments. In the first stage, no memory
cells have decayed; during the second stage, a fraction of
the cells, but not all, have decayed; by the third stage the
cells have decayed completely (see Table 4 for a summary
of term definitions). Observations made during Stages 1
or 3 provide a single bit of coarse information, indicating
only that Stage 2 has not yet begun or else that Stage 2
has already been completed. Observations made during
Stage 2 can provide a more accurate notion of time based
on the percentage of decayed bits.

Decay vs. Voltage: The decay rate of SRAM is expected
to depend only on its voltage level (Section 7). Temper-
ature, SRAM size, and circuit capacitance all affect the
rate of voltage depletion and thus only have secondary
effects on memory decay. Our experimental results (Fig-
ure 8) for five sets of tests (each at least 10 trials) support
this hypothesis. The same setup as explained before was

8

USENIX Association 	 21st USENIX Security Symposium  229

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

TARDIS tells that
less than 175s
have elapsed

since power−down

Stage 1

TARDIS
estimates
elapsed

time

Stage 2

TARDIS tells that
greater than 225s

have elapsed
since power−down

Stage 3

Seconds without Power

%
 M

em
or

y
D

ec
ay

26° C, 10µF

Figure 7: The TARDIS presents a three-stage response pattern according to its amount of decay. Before 175 seconds,
the percentage of bits that retain their 1-value across a power-off is 100%. For times exceeding 225 seconds, the
TARDIS memory has fully decayed. The decay of memory cells between these two thresholds can provide us with a
more accurate measurement of time during that period. This graph presents our results measured on a TI MSP430F2131
with 256 B of SRAM and a 10 µF capacitor at 26◦C.

used and five different temperatures (one with a 10 mF
capacitor and four of them without) were tested.

Impact of Temperature: The work of Skoroboga-
tov [44] shows that low temperature can increase the
remanence time of SRAM, and the work of Halderman
et al. [19] similarly shows that low temperature can ex-
tend the remanence time of DRAM. For the TARDIS
using SRAM decay to provide a notion of time, the in-
teresting question is the opposite case of whether high
temperature can decrease remanence. We use the same
experimental setup as before (without using capacitors)
to investigate how decay time varies across five different
elevated temperatures (in the range of 28◦C−50◦C). The
off-time of the microcontroller varied from 0 to a maxi-
mum of 5 seconds. Figure 9 shows that the decay time
is non-zero across all temperatures. This indicates that
the TARDIS could work at various temperatures as long
as changes in the temperature are compensated for. For
the TARDIS, this compensation is done by using temper-
ature sensors which are available in many of the today’s
microcontrollers.5

Impact of Additional Capacitance: Capacitors can
greatly extend the resolution time of the TARDIS. In our
experiment, we have tested five different capacitors rang-
ing from 10 µF to 10 mF at 26.5◦C. For this experiment,
the capacitors were fully charged in the circuit and their
voltage decay traces were recorded. These traces were
later used in conjunction with our previous remanence-
vs.-decay results (Section 6) to calculate the time frame

5According to the TI website, 37% of their microcontrollers are
equipped with temperature sensors.

Cap. Size Stage 1 (s) Stage 2 (s)

0 µF 1.22e0 8.80e-1
10 µF 1.75e2 5.00e1
100 µF 1.13e3 8.47e2
1000 µF 1.17e4 9.50e3
10000 µF 1.43e5 >5.34e4∗

∗ Test was interrupted.

Table 5: Estimated time in Stage 1 and Stage 2 of the
TARDIS increases as capacitor size increases. The ex-
periments are done on a MSP430F2131 microcontroller
at 26.5◦C and an SRAM size of 256 B. Stage 1 is the time
after the power failure but before the SRAM decay. Stage
2 represents the duration of SRAM decay.

achievable with each capacitor. Table 5 summarizes the
results for the duration of TARDIS Stage 1 and 2 based on
capacitor size. The voltage decay traces, our conversion
function (DRV Prob.), and the resulting SRAM-decay-
over-time graph can be seen in Figure 10.

Results ranging from seconds to days open the path for
a wide variety of applications for the TARDIS, as it can
now be tweaked to work in a specific time frame. Current
RFID-scale devices generally use capacitors ranging from
tens of picofarads to tens of microfarads (e.g., [2] [3]).
Although a 10 mF capacitor size might be large compared
to the size of today’s transiently powered devices, the
progress in capacitors’ size and capacity may very well
make their use possible in the near future.

Impact of SRAM Size: Our hypothesis is that SRAM
size has an inverse relation with decay time. This is ex-

9

230  21st USENIX Security Symposium	 USENIX Association

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

Seconds without Power

V C
C

26.5° C, 10µF
26.5° C, 100µF
26.5° C, 180µF
26.5° C, 1000µF
26.5° C, 10000µF

0 0.05 0.1 0.15 0.2
0

10

20

Voltage

D
R

V
Pr

ob
.

10
2

10
3

10
4

10
5

0

10

20

30

40

50

Seconds without Power

%
 M

em
or

y
D

ec
ay

Figure 10: For five different capacitor values, measured supply voltage traces are combined with a pre-characterized
DRV distribution to predict decay as a function of time. The decaying supply voltages after power is turned off are
shown at left. The known DRV probabilities (Equation 4) for 26.5◦C are shown at center. Equation 5 maps every supply
voltage measurement to a predicted decay, thus creating the memory-decay-vs.-time plots shown at right. The two
horizontal lines in the left image at approximately 150 and 50 mV are the voltages where the first and last bits of SRAM
will respectively decay.

pected because a larger SRAM will have a larger leakage
current and thus will drain the capacitor more quickly.
We tested three different models of MSP430 microcon-
troller with SRAM sizes of 256 B, 2 KB, and 8 KB at
28◦C with no capacitor. The DAQ sweeps off-time from
0 to a maximum of 5 seconds. The experiment results
are consistent with our hypothesis and are shown in Fig-
ure 11. It should be noted that SRAM size is not the only
difference between these three models, as they also have
slightly different power consumptions.

Impact of Chip Variation: The chip-to-chip variation
of the same microcontroller model is not expected to
have a major effect on the TARDIS. We tested three in-
stances of the MSP430F2131 with 256 B of memory and
no capacitor at 27◦C. The off-time changes from 0 to a
maximum of 2.5 seconds with increments of 0.2 seconds.
The result shown in Figure 12 matches our expectation
and shows that changes in decay time due to chip-to-chip
variation are insignificant (notice that no capacitor is used
and the temperature for one of the chips is one degree
higher). This result indicates that TARDIS would work
consistently across different chips of the same platform
and can be implemented on a system without concern for
chip-to-chip variation.

TARDIS Simulation: We verified the TARDIS mecha-
nism using SPICE simulation of a small SRAM array of
50 cells; the transistor models are 65 nm PTM, the power
pin is connected to VCC through a D1N4148 diode, and the
decoupling capacitor is 70 nF . Each transistor is assigned
a random threshold voltage deviation chosen uniformly
from range ±100 mV . Each line in Figure 13 plots the
voltage difference across the two state nodes A and B for
a single SRAM cell. Because all state nodes remain be-

tween 0V and VCC during the discharge, the differential
voltage is roughly enveloped by ±VCC as shaded in grey.
A positive differential voltage indicates a stored state of 1
(the written state), and a negative differential is a state of
0. Some of the nodes are observed to flip state, starting
when VCC reaches 200 mV at 0.55 seconds after power is
disconnected. As VCC discharges further, more cells decay
by crossing from state 1 to 0. When VCC is powered again
at 1.05 seconds, each cell locks into its current state by
fully charging either A or B and discharging the other; this
is observed in Figure 13 as an increase in the magnitude
of the differential voltage of each cell.

7 Inside an SRAM Cell

Each SRAM cell holds state using two cross-coupled
inverters as shown in Figure 14; the access transistors
that control reading and writing to the cell are omitted
from the figure. The cross-coupled inverters are powered
via connections to the chip’s power supply node. The
two states of the SRAM cell, representing a logical 1 and
logical 0, are symmetrical. In each state, under normal
conditions, the voltage of either A or B is approximately
Vcc while the voltage of the other is approximately 0V .

Data Retention Voltage: The minimum voltage at which
each cell can store either a 0 or 1 is referred to as the cell’s
data retention voltage (DRV) [36]. Since DRV depends
on random process variation, any set of SRAM cells will
have a distribution of DRVs. Although the actual DRV
distribution depends on process and design parameters,
typical values fall within the range of 50 mV to 250 mV ;
a published design in 0.13 µm has a distribution of DRVs
ranging from 80 mV to 250 mV , and our own analysis in

10

USENIX Association 	 21st USENIX Security Symposium  231

0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

Minimum Supply Voltage

%
 M

em
or

y
D

ec
ay

50° C, 0µF
40° C, 0µF
25° C, 0µF

0 0.05 0.1 0.15 0.2
0

5

10

15

Voltage

D
R

V
Pr

ob
.

Figure 8: Regardless of temperature, the amount of decay
depends almost entirely on the minimum supply voltage
reached during a power-down. The bottom graph shows
the 3-parameter DRV probabilities (Equation 4) that best
predict the observed relationships between decay and min-
imum supply voltage for each of the three temperatures.
The fit lines in the upper graph show the relationships
between decay and minimum supply voltage that are pre-
dicted by these DRV models (Section 10).

this work estimates a majority of DRVs to be in the range
of 50 mV to 160 mV (Figure 8).

7.1 Memory Decay Mechanisms
Memory decay occurs in SRAM when a cell loses its
state during a power cycle and subsequently initializes
to the opposite state upon restoration of power. Given
that each cell typically favors one power-up state over
the other [23, 17], memory decay can be observed only
when the last-written state opposes the favored power-up
state. We denote the favored power-up state as the ground
state, since this is the value an SRAM cell will take at
power-up after a very long time without power. We say
that a cell written with the value opposite its ground state
is eligible for memory decay. Each eligible cell will decay
once the supply voltage falls below the cell’s DRV. Cells
that are randomly assigned very low DRVs thus do not
decay until the supply voltage is very low. With sufficient
capacitance, it can take days for all eligible cells to decay.

Supply voltage decays according to Equation 1, where
VCC, ICC, and CCC represent the supply voltage, current,

0 1 2 3 4 5
0

10

20

30

40

50

Seconds without Power

%
 M

em
or

y
D

ec
ay

50° C, 0µF
40° C, 0µF
39° C, 0µF
32° C, 0µF
28° C, 0µF

Figure 9: The duration of SRAM decay is non-zero across
all temperatures even when no capacitor is used. For
any given temperature, the duration of SRAM decay is
consistent across trials. Increasing the temperature from
28◦C to 50◦C reduces the duration of both Stage 1 and
Stage 2 decay by approximately 80%.

0 1 2 3 4 5 6
0

10

20

30

40

50

Seconds without Power

%
 M

em
or

y
D

ec
ay

8KB 28° C, 0µF
2KB 28° C, 0µF
256B 28° C, 0µF

Figure 11: Different microcontrollers within the
TI MSP430 family with different SRAM sizes exhibit
different decay times, but follow the same general trend.
The MSP430F2618, MSP430F169, and MSP430F2131
respectively have 8 KB, 2 KB, and 256 B of SRAM.

and capacitance of the power supply node. The voltage
decay is slowed by a large capacitance and low current,
and the following paragraphs explain why both are present
in our TARDIS application.

dvCC

dt
=

ICC

CCC
(1)

Large Capacitance: The large amount of charge stored
on the power supply node is due to the decoupling capac-
itance that designers add between VCC and gnd. During
normal operation, this capacitance serves to stabilize the
supply voltage to the functional blocks of the chip, in-
cluding SRAM. In some experiments, the time ranges
measurable by the TARDIS are further extended by sup-
plementing the standard decoupling capacitors with addi-
tional explicit capacitance.

11

232  21st USENIX Security Symposium	 USENIX Association

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

Seconds without Power

%
 M

em
or

y
D

ec
ay

A: 27° C, 0µF
B: 27° C, 0µF
C: 28° C, 0µF

Figure 12: Decay versus time in 3 different instances of
the MSP430F2131 microcontroller at similar tempera-
tures. The durations of Stage 1 and Stage 2 decay match
closely across instances.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

State =1

State =0

Seconds without Power

D
iff

er
en

tia
l V

ol
ta

ge
 V

A
 −

 V
B

Figure 13: The differential voltage of SRAM cells during
decay. The envelope of ±VCC is shaded in grey. All cells
are in the 1 state when power is first turned off. As VCC
decays, some cells flip from 1 to 0. The cells stabilize
when power is restored. The number of zeros after the
restoration of power is used to estimate the duration of
the power outage.

Low Leakage Current: The total current ICC comprises
the operating current of the microcontroller and the
SRAM’s data-retention current; both currents are func-
tions of the supply voltage. The current during the voltage
decay is shown in Figure 15, and explained here:

Immediately after power is disconnected, supply volt-
ages are above 1.4 V and the microcontroller is oper-
ational. The observed current is between 250 μA and
350 μA, consistent with the 250 μA current specified
for the lowest-power operating point (1.8 V with 1 MHz
clock) of the MSP430F2131 [50]. The SRAM current is
negligible by comparison. The high current consumption
causes the voltage to decay quickly while the microcon-
troller remains active.

As the voltage drops below 1.4 V , the microcontroller
deactivates and kills all clocks to enter an ultra-low power
RAM-retention mode in an attempt to avoid losing data.

GND

VCC

A ≈ VCC

B ≈ 0V

PMOS

Transistors

NMOS

Transistors

Figure 14: The state-holding portion of an SRAM cell
consists of two cross-coupled inverters tied to the chip’s
power and ground nodes.

The nominal current consumed in this mode is only the
data-retention current, specified to be 0.1 μA for the 256 B
of SRAM in the MSP430F2131 [50]. In our observations,
ICC is between 0.5 μA and 10 μA during the time that VCC
is between 0.5 V and 1.4 V . This current is 1.5−3 orders
of magnitude smaller than the current when the microcon-
troller is active. With so little current being consumed, the
supply voltage decays very slowly. The current further
decreases as the supply voltage drops into subthreshold,
and cells begin to experience memory decay.6

Impact of Temperature: Increasing the temperature
leads to more rapid memory decay for two reasons. First,
increasing the temperature increases the leakage currents
that persist through data-retention mode. Increased leak-
age currents lead to a faster supply voltage decay, causing
the supply voltage to drop below DRVs sooner. Sec-
ond, temperature expedites memory decay by increasing
the DRV of SRAM cells [36], causing them to decay at
slightly higher supply voltages. Prior work shows a mod-
est 13mV increase in DRV when temperature increases
from 27◦C to 100◦C [36].

7.2 Choosing a State to Write

It is possible to increase the maximum observable memory
decay by making every cell eligible for decay. This would
be accomplished by characterizing the ground state of
each SRAM cell over many remanence-free trials [17, 23],
and then writing each cell with its non-ground state in
order to make its memory decay observable. In contrast
to writing a uniform 1 to all cells, this approach can
extract more timing information from the same collection
of SRAM cells. However, this alternative requires storing
the ground states in non-volatile memory (or equivalently
storing written states in non-volatile memory) in order to

6Note that setting VCC to 0 V during the power-down, instead of
leaving it floating, reduces voltage and memory decay times by at least
an order of magnitude [44] by providing a low impedance leakage path
to rapidly drain the capacitance; we have observed this same result in
our experiments as well.

12

USENIX Association 	 21st USENIX Security Symposium  233

1m 10m 100m 1 10 100 1k
0

0.5

1

1.5

2

2.5

3

Seconds without Power

V
C

C

27° C, 10µF
28° C, 100µF

0.1u
1u

10u
100u

I C
C

Figure 15: Supply voltage and current during two power-
down events with different capacitors. The voltage VCC
is measured directly, and the current ICC is calculated per
Equation 1 using the measured dVCC

dt and known capac-
itor values. The voltage initially decays rapidly due to
the high current draw of the microcontroller. When VCC
reaches 1.40V the microcontroller turns off and ICC drops
by several orders of magnitude, leading to a long and
slow voltage decay. At the time when VCC crosses the
horizontal line at 0.09V, approximately half of all eligible
cells will have decayed.

evaluate whether or not a cell has decayed. Our approach
of writing a uniform 1 to all cells makes it possible to
evaluate memory decay without this overhead simply by
evaluating the Hamming Weight of the SRAM state.

8 Alternative Approaches

The more general question of how to keep time without a
power source is fundamental and has numerous applica-
tions in security and real-time computing. Techniques for
keeping time without power or with very reduced power
typically rely on physical processes with very long time
constants. In CMOS, the most obvious process with a
long time constant is the leakage of charge off of a large
capacitor through a reverse-biased diode or MOSFET in
the cut-off region.

An unexplored alternative to the TARDIS is charging a
capacitor whenever the device is active, and checking the
capacitor’s voltage at a subsequent power-up to determine
whether the device has been active recently. The power-up
measurement can be performed using an ADC if available,
or else by checking whether or not the remaining voltage
is sufficient to register as a logical 1. This approach dif-
fers from the TARDIS in incurring monetary and power
costs due to the use of a dedicated capacitor and dedi-

cated input-output pins for charging the capacitor and
sensing its voltage. Furthermore, the capacitor voltage
is still dynamic after power-up, leaving the measurement
sensitive to timing variations caused by interrupts. By
comparison, the TARDIS uses no dedicated capacitor or
input-output pins; its measurement materializes in SRAM
at power-up and remains static thereafter until being read
and subsequently overwritten.

The EPC Gen2 protocol [12] requires UHF RFID tags
to maintain four floating-gate based “inventorial flags”
used to support short power gaps without losing the se-
lected/inventoried status. An interesting alternative ap-
proach could co-opt these flags to provide a notion of
time; however, the flags only persist between 500ms and
5s across power failures. In comparison, the SRAM-
based approach in the TARDIS has a resolution time from
seconds to hours and has a temperature compensation
mechanism. Another advantage of the TARDIS is that
it works on any SRAM-based device regardless of the
existence of special circuits to support inventorial flags.

9 Related Work

RFID Security and Privacy: The inability of intermit-
tently powered devices to control their response rates has
made them susceptible to various attacks. An RFID tag
could be easily “killed” by exhausting all possible 32-bit
“kill” keys. Such unsafe “kill” commands could be re-
placed with a “sleep” command [25]; however, lack of a
timer to wake up the tag in time has made the use of the
“sleep” command inconvenient. The key to e-passports
can be discovered in real time by brute-force attacks [6].
The attack could be slowed down if the e-passport had a
trustworthy notion of time. The minimalist model [24] of-
fered for RFID tags assumes a scheme that enforces a low
query-response rate. This model could be implemented
using the TARDIS.

Secure Timers: To acquire a trustworthy notion of time,
multiple sources of time can be used to increase the se-
curity level of a timer [40]; but this requires the device
to interact actively with more than one source of time,
which is not practical for RFID tags that use passive radio
communication. The same issues prevent us from using
the Lamport clock and other similar mechanisms that pro-
vide order in distributed systems [26]. This inability to
acquire secure time precludes the use of many crypto-
graphic protocols, including timed-release cryptography
[29] [39]

Ultra-low Power Clocks: With the rise of pervasive com-
puting come a need for low-power clocks and counters.
Two example applications for low-power clocks are times-
tamping secure transactions and controlling when a device

13

234  21st USENIX Security Symposium	 USENIX Association

should wake from a sleep state. The lack of a rechargeable
power source in some pervasive platforms requires ultra-
low power consumption. Low voltage and subthreshold
designs have been used to minimize power consumption
of digital circuits since the 1970s [48]. Circuits in wrist-
watches combine analog components and small digital
designs to operate at hundreds of nW [53]. A counter
designed for smart cards uses adiabatic logic to oper-
ate at 14KHz while consuming 11nW of power [49]. A
gate-leakage-based oscillator implements a temperature-
invariant clock that operates at sub-Hz frequencies while
consuming 1pW at 300mV [28]. A TI-recommended
technique [37] for the MSP430 is to charge a dedicated
external capacitor from the microcontroller while in a
low-power sleep mode with clocks deactivated; the mi-
crocontroller is triggered to wake up when the capacitor
voltage surpasses a threshold. But all of these solutions,
while very low-power, still require a constant supply volt-
age and hence a power source in the form of a battery or a
persistently charged storage capacitor. However, embed-
ded systems without reliable power and exotic low-power
timers may still benefit from the ability to estimate time
elapsed since power-down.

Attacks Based on Memory Remanence: Processes with
long time constants can also raise security concerns by
allowing data to be read from supposedly erased memory
cells. Drowsy caches [13] provide a good background on
the electrical aspects of data retention. Gutmann stated
that older SRAM cells can retain stored state for days
without power [18]. Gutmann also suggest exposing the
device to higher temperatures to decrease the retention
time. Anderson and Kuhn first proposed attacks based on
low-temperature SRAM data remanence [4]. Experimen-
tal data demonstrating low-temperature data remanence
on a variety of SRAMs is provided by Skorobogatov [44],
who also shows that remanence is increased when the sup-
ply during power-down is left floating instead of grounded.
More recent freezing attacks have been demonstrated on a
90nm technology SRAM [52], as well as on DRAM [19].
Data remanence also imposes a fundamental limit on the
throughput of true random numbers that can be generated
using power-up SRAM state as an entropy source [42].
The TARDIS, in finding a constructive use for remanence
and decay, can thus be seen as a counterpoint to the at-
tacks discussed in this section. The TARDIS is the first
constructive method that takes advantage of SRAM rema-
nence to increase the security and privacy of intermittently
powered devices.

10 Conclusions

A trustworthy source of time on batteryless devices could
equip cryptographic protocols for more deliberate defense
against semi-invasive attacks such as differential power

analysis and brute-force attacks. The TARDIS uses rema-
nence decay in SRAM to compute the time elapsed during
a power outage—ranging from seconds to hours depend-
ing on hardware parameters. The mechanism provides
a coarse-grained notion of time for intermittently pow-
ered computers that otherwise have no effective way of
measuring time. Applications using the TARDIS primar-
ily rely on timers with hourglass-like precision to throttle
queries. The TARDIS consists purely of software, making
the mechanism easy to deploy on devices with SRAM. A
novel aspect of the TARDIS is its use of memory decay or
data remanence for improved security rather than attack-
ing security. Without the TARDIS, batteryless devices are
unlikely to give you the time of day.

Acknowledgments

The authors would like to thank our shepherd Jonathan
McCune; Gesine Hinterwalter, Karsten Nohl, David Os-
wald, and Joshua Smith for their feedback on applications;
Gildas Avoine for information on passport communica-
tion and feedback on applications; Matt Reynolds for
information on the EPC gen2 protocol; Quinn Stewart for
proofreading; and members of the UMass SPQR lab for
reviewing early versions of this paper.

This research is supported by NSF grants CNS-
0831244, CNS-0845874, CNS-0923313, CNS-0964641,
SRC task 1836.074, Gigascale Systems Research Center,
and a Sloan Research Fellowship. Any opinions, findings,
conclusions, and recommendations expressed in these
materials are those of the authors and do not necessarily
reflect the views of the sponsors. Portions of this work
are patent pending.

References
[1] The TARDIS, British Broadcasting Channel. http://www.bbc.

co.uk/doctorwho/characters/tardis.shtml, November
1963.

[2] Hpc0402b/c - high performance, high precision wire-bondable
0402 capacitor for smartcard, high-frequency and substrate-
embedded applications. http://www.vishay.com/docs/

10120/hpc0402b.pdf, Dec. 2008.

[3] An introduction to the architecture of Moo 1.0. https://spqr.
cs.umass.edu/moo/Documents/Moo_01242011.pdf, May
2011.

[4] ANDERSON, R., AND KUHN, M. Tamper resistance: a cautionary
note. In Proceedings of the 2nd USENIX Workshop on Electronic
Commerce (1996).

[5] AVOINE, G. Personal communication on French passports. 2012.

[6] AVOINE, G., KALACH, K., AND QUISQUATER, J.-J. ePass-
port: Securing international contacts with contactless chips. In
Financial Cryptography and Data Security (2008), G. Tsudik, Ed.,
Springer-Verlag, pp. 141–155.

[7] BONO, S., February 2012. Personal communication.

14

USENIX Association 	 21st USENIX Security Symposium  235

[8] BONO, S. C., GREEN, M., STUBBLEFIELD, A., JUELS, A.,
RUBIN, A. D., AND SZYDLO, M. Security analysis of a
cryptographically-enabled RFID device. In Proceedings of the
14th USENIX Security Symposium (2005).

[9] BUETTNER, M., GREENSTEIN, B., WETHERALL, D., AND
SMITH, J. R. Revisiting smart dust with RFID sensor networks,
2008.

[10] CANTHERM. Thermal cut-offs. http://www.cantherm.com/
products/thermal_fuses/sdf.html, 2011. Last Viewed
May 14, 2012.

[11] CHOTHIA, T., AND SMIRNOV, V. A traceability attack against
e-Passports. In 14th International Conference on Financial Cryp-
tography and Data Security (2010), Springer.

[12] EPCGLOBAL. EPC Radio-Frequency Identity Protocols Class-1
Generation-2 UHF RFID Protocol for Communication at 860
MHZ–960 MHZ, Version 1.2.0.

[13] FLAUTNER, K., KIM, N. S., MARTIN, S., BLAAUW, D., AND
MUDGE, T. Drowsy caches: simple techniques for reducing
leakage power. In Proc. 29th IEEE/ACM International Symposium
on Computer Architecture (2002), pp. 148–157.

[14] GANERIWAL, S., ČAPKUN, S., HAN, C.-C., AND SRIVASTAVA,
M. B. Secure time synchronization service for sensor networks.
In Proceedings of the 4th ACM Workshop on Wireless Security
(2005), WiSe ’05, pp. 97–106.

[15] GARCIA, F. D., ROSSUM, P. V., VERDULT, R., AND SCHREUR,
R. Wirelessly pickpocketing a MIFARE Classic card. In IEEE
Symposium on Security and Privacy (May 2009), pp. 3–15.

[16] GOLDBERG, I., AND BRICENCO, M. GSM cloning. http://
www.isaac.cs.berkeley.edu/isaac/gsm-faq.html, 1999.
Last Viewed February 19, 2012.

[17] GUAJARDO, J., KUMAR, S., SCHRIJEN, G., AND TUYLS, P.
FPGA intrinsic PUFs and their use for IP protection. In Crypto-
graphic Hardware and Embedded Systems (CHES) (2007), pp. 86–
80.

[18] GUTMANN, P. Secure deletion of data from magnetic and solid-
state memory. In Proceedings of the 6th USENIX Security Sympo-
sium (Jan 1996).

[19] HALDERMAN, J., SCHOEN, S., HENINGER, N., CLARKSON,
W., PAUL, W., CALANDRINO, J., FELDMAN, A., APPELBAUM,
J., AND FELTEN, E. Lest we remember: Cold boot attacks on
encryption keys. In Proceedings of the 17th USENIX Security
Symposium (2008).

[20] HALPERIN, D., HEYDT-BENJAMIN, T. S., RANSFORD, B.,
CLARK, S. S., DEFEND, B., MORGAN, W., FU, K., KOHNO,
T., AND MAISEL, W. H. Pacemakers and implantable cardiac
defibrillators: Software radio attacks and zero-power defenses. In
Proceedings of the 29th Annual IEEE Symposium on Security and
Privacy (May 2008), pp. 129–142.

[21] HEYDT-BENJAMIN, T. S., BAILEY, D. V., FU, K., JUELS, A.,
AND OHARE, T. Vulnerabilities in first-generation RFID-enabled
credit cards. In Proceedings of Eleventh International Conference
on Financial Cryptography and Data Security, Lecture Notes in
Computer Science, Vol. 4886 (February 2007), pp. 2–14.

[22] HO, H., SAEEDI, E., KIM, S., SHEN, T., AND PARVIZ, B.
Contact lens with integrated inorganic semiconductor devices. In
Micro Electro Mechanical Systems, 2008. MEMS 2008. IEEE 21st
International Conference on (Jan. 2008), pp. 403–406.

[23] HOLCOMB, D. E., BURLESON, W. P., AND FU, K. Power-
up SRAM state as an identifying fingerprint and source of true
random numbers. IEEE Transactions on Computers (2009).

[24] JUELS, A. Minimalist cryptography for low-cost RFID tags
(extended abstract). In Security in Communication Networks,
C. Blundo and S. Cimato, Eds., vol. 3352 of Lecture Notes in
Computer Science. Springer, 2005, pp. 149–164.

[25] JUELS, A. RFID security and privacy: A research survey. IEEE
Journal on Selected Areas in Communications 24, 2 (February
2006), 381–394.

[26] LAMPORT, L. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM 21, 7 (1978), 558–565.

[27] LEWIS, P. H. Of privacy and security: The clipper chip debate.
The New York Times, April 24, 1994.

[28] LIN, Y., SYLVESTER, D. M., AND BLAAUW, D. T. A sub-pW
timer using gate leakage for ultra low-power sub-Hz monitoring
systems. Custom Integrated Circuits Conference (2007).

[29] MAO, W. Timed-release cryptography. In Selected Areas in
Cryptography VIII (SAC’01 (2001), Prentice Hall, pp. 342–357.

[30] MCGRAW, G. Silver bullet podcast: Interview with Ross
Anderson. http://www.cigital.com/silver-bullet/

show-070/. Show #70, January 31, 2012.

[31] NXP Semiconductors MIFARE classic. http://www.nxp.com/
products/identification_and_security/smart_card_

ics/mifare_smart_card_ics/mifare_classic/. Last
Viewed February 18, 2012.

[32] NXP Semiconductors SPI real time clock/calendar. http://

www.nxp.com/documents/data_sheet/PCF2123.pdf. Last
Viewed February 18, 2012.

[33] OMEGA ENGINEERING, I. OSXL450 Infrared Non-Contact Ther-
mometer Manual.

[34] OREN, Y., AND SHAMIR, A. Remote password extraction from
RFID tags. Computers, IEEE Transactions on 56, 9 (Sept. 2007),
1292–1296.

[35] OSWALD, D., AND PAAR, C. Breaking MIFARE DESFire
MF3ICD40: Power analysis and templates in the real world. In
Cryptographic Hardware and Embedded Systems (CHES) (2011),
pp. 207–222.

[36] QIN, H., CAO, Y., MARKOVIC, D., VLADIMIRESCU, A., AND
RABAEY, J. SRAM leakage suppression by minimizing standby
supply voltage. In Proceedings of 5th International Symposium
on Quality Electronic Design (2004), pp. 55–60.

[37] RAJU, M. UltraLow Power RC Timer Implementation using
MSP430. In Texas Instruments Application Report SLAA119
(2000).

[38] RANSFORD, B., CLARK, S., SALAJEGHEH, M., AND FU, K.
Getting things done on computational RFIDs with energy-aware
checkpointing and voltage-aware scheduling. In USENIX Work-
shop on Power Aware Computing and Systems (HotPower ’08)
(Dec. 2008).

[39] RIVEST, R. L., SHAMIR, A., AND WAGNER, D. A. Time-lock
puzzles and timed-release crypto. Tech. rep., Cambridge, MA,
USA, 1996.

[40] ROUSSEAU, L. Secure time in a portable device. In Gemplus
Developer Conference (2001).

[41] SAMPLE, A. P., YEAGER, D. J., POWLEDGE, P. S., MAMISHEV,
A. V., AND SMITH, J. R. Design of an RFID-based battery-free
programmable sensing platform. IEEE Transactions on Instru-
mentation and Measurement 57, 11 (Nov. 2008), 2608–2615.

[42] SAXENA, N., AND VORIS, J. We can remember it for you whole-
sale: Implications of data remanence on the use of RAM for true
random number generation on RFID tags. In Proceedings of the
Conference on RFID Security (2009).

15

236  21st USENIX Security Symposium	 USENIX Association

[43] SCHNEIER, B. Applied cryptography (2nd ed.): Protocols, algo-
rithms, and source code in C. John Wiley & Sons, Inc., 1995.

[44] SKOROBOGATOV, S. Low temperature data remanence in static
RAM. Tech. Rep. UCAM-CL-TR-536, University of Cambridge
Computer Laboratory, 2002.

[45] STAJANO, F., AND ANDERSON, R. The resurrecting duckling:
Security issues for ad-hoc wireless networks. In Security Proto-
cols, B. Christianson, B. Crispo, J. Malcolm, and M. Roe, Eds.,
vol. 1796 of Lecture Notes in Computer Science. Springer, 2000,
pp. 172–182.

[46] SUN, K., NING, P., AND WANG, C. TinySeRSync: secure
and resilient time synchronization in wireless sensor networks.
In Proceedings of the 13th ACM Conference on Computer and
Communications Security (2006), CCS ’06, pp. 264–277.

[47] SUN ELECTRONIC SYSTEMS, I. Model EC1X Environmental
Chamber User and Repair Manual, 2011.

[48] SWANSON, R., AND MEINDL, J. D. Ion-implanted comple-
mentary MOS transistors in low-voltage circuits. International
Solid-State Circuits Conference (May 1972).

[49] TESSIER, R., JASINSKI, D., MAHESHWARI, A., NATARAJAN,
A., XU, W., AND BURLESON, W. An energy-aware active smart
card. IEEE Transaction on Very Large Scale Integration (VLSI)
Systems (2005).

[50] TEXAS INSTRUMENTS INC. MSP430F21x1 Mixed Signal Mi-
crocontroller. In Texas Instruments Application Report SLAS439F
(Sep. 2004, revised Aug. 2011).

[51] THINGMAGIC INC. Mercury 4/ MERCURY 5 User Guide, Febru-
ary 2007.

[52] TUAN, T., STRADER, T., AND TRIMBERGER, S. Analysis of
data remanence in a 90nm FPGA. Custom Integrated Circuits
Conference (2007).

[53] VITTOZ, E. Low-power design: Ways to approach the limits.
International Solid-State Circuits Conference (May 1994).

[54] XU, X., GU, L., WANG, J., AND XING, G. Negotiate power and
performance in the reality of RFID systems. In PerCom (2010),
IEEE Computer Society, pp. 88–97.

[55] YEAGER, D., ZHANG, F., ZARRASVAND, A., GEORGE, N.,
DANIEL, T., AND OTIS, B. A 9 µa, addressable Gen2 sensor tag
for biosignal acquisition. IEEE Journal of Solid-State Circuits 45,
10 (Oct. 2010), 2198–2209.

[56] ZHANG, H., GUMMESON, J., RANSFORD, B., AND FU, K.
Moo: A batteryless computational RFID and sensing platform.
Tech. Rep. UM-CS-2011-020, Department of Computer Science,
University of Massachusetts Amherst, Amherst, MA, June 2011.

Appendix

Model of Decay Probabilities
Knowing the DRV distribution of a collection of SRAM
cells makes it possible to predict the amount of memory
decay that will result from reaching any known minimum
supply voltage during a power cycle. We propose a simple
and intuitive 3-parameter (α,µ,σ) model to characterize
the DRV distribution. We chose the parameters such that
the model predictions agree with empirical data relating
memory decay to minimum supply voltage.

Cells eligible for memory decay after being written
with a value of 1 are those with a ground state of 0. We

use g = 0 to denote cells with a 0 ground state, and use α
to denote the fraction of cells with this ground state; α is
therefore the largest fraction of cells that can decay after
writing a 1 to all cells.

Pr(g = 0) = α (2)

Among cells that are eligible for memory decay, we
assume that DRVs are normally distributed with mean µ
and standard deviation σ (Equation 3).

DRV | (g = 0) ∼ N
(
µ,σ 2) (3)

The probability of a randomly selected cell being eli-
gible for memory decay and having DRV = v is given by
Equation 4. This is an α-scaled instance of the PDF of a
normally distributed random variable, and we refer to this
as the “DRV probability” of voltage v.

Pr((g = 0)∧ (DRV = v)) =
α

σ
√

2π
e−(v−µ)2/(2σ2) (4)

If the minimum voltage of a power cycle is known, then
the 3-parameter model can predict the memory decay. The
cells that will decay are eligible cells with a DRV that is
above the minimum supply voltage reached during the
power cycle. A closed-form equation for predicting the
memory decay from the minimum voltage and model
parameters is then given by Equation 5; this equation is 1
minus the CDF of a normally distributed random variable,
scaled by α .

DPRED(vmin,α,µ,σ) = α


1−

1+ er f
(

vmin−µ
σ
√

2

)

2




(5)
A 3-parameter model is evaluated according to how

well its predicted memory decay matches empirical data.
The evaluation is performed using a set of n observations
〈v0,D(v0)〉,〈v1,D(v1)〉, . . . ,〈vn−1,D(vn−1)〉; each obser-
vation is a measurement of the minimum supply voltage
reached during a power cycle, and the memory decay
observed across that power cycle. The prediction error of
any model is defined according to Equation 6. We initially
use the set of measurements to find the model parameters
that minimize the prediction error (see Figure 8).

ERR(α,µ,σ) =
n−1

∑
i=0

(DPRED (vi,α,µ,σ)−D(vi))
2 (6)

After measurements are used to fit the model parame-
ters to empirical data, the model is subsequently used to
predict memory-decay-vs.-time curves from voltage-vs.-
time measurements (see Figure 10).

16

USENIX Association 	 21st USENIX Security Symposium  237

Gone in 360 Seconds: Hijacking with Hitag2

Roel Verdult Flavio D. Garcia Josep Balasch

Institute for Computing and Information Sciences KU Leuven ESAT/COSIC and IBBT
Radboud University Nijmegen, The Netherlands. Kasteelpark Arenberg 10, 3001 Heverlee, Belgium

{rverdult,flaviog}@cs.ru.nl josep.balasch@esat.kuleuven.be

Abstract
An electronic vehicle immobilizer is an anti-theft device
which prevents the engine of the vehicle from starting
unless the corresponding transponder is present. Such a
transponder is a passive RFID tag which is embedded in
the car key and wirelessly authenticates to the vehicle.
It prevents a perpetrator from hot-wiring the vehicle or
starting the car by forcing the mechanical lock. Having
such an immobilizer is required by law in several coun-
tries. Hitag2, introduced in 1996, is currently the most
widely used transponder in the car immobilizer industry.
It is used by at least 34 car makes and fitted in more
than 200 different car models. Hitag2 uses a propriet-
ary stream cipher with 48-bit keys for authentication and
confidentiality. This article reveals several weaknesses
in the design of the cipher and presents three practical at-
tacks that recover the secret key using only wireless com-
munication. The most serious attack recovers the secret
key from a car in less than six minutes using ordinary
hardware. This attack allows an adversary to bypass the
cryptographic authentication, leaving only the mechan-
ical key as safeguard. This is even more sensitive on
vehicles where the physical key has been replaced by a
keyless entry system based on Hitag2. During our exper-
iments we managed to recover the secret key and start the
engine of many vehicles from various makes using our
transponder emulating device. These experiments also
revealed several implementation weaknesses in the im-
mobilizer units.

1 Introduction

In the past, most cars relied only on mechanical keys to
prevent a hijacker from stealing the vehicle. Since the
’90s most car manufacturers incorporated an electronic
car immobilizer as an extra security mechanism in their
vehicles. From 1995 it is mandatory that all cars sold in
the EU are fitted with such an immobilizer device, ac-

cording to European directive 95/56/EC. Similar regula-
tions apply to other countries like Australia, New Zeal-
and (AS/NZS 4601:1999) and Canada (CAN/ULC S338-
98). An electronic car immobilizer consists of two main
components: a small transponder chip which is embed-
ded in (the plastic part of) the car key, see Figure 1; and
a reader which is located somewhere in the dashboard of
the vehicle and has an antenna coil around the ignition,
see Figure 2.

Figure 1: Car keys with a Hitag2 transponder/chip

The transponder is a passive RFID tag that operates at a
low frequency wave of 125 kHz. It is powered up when
it comes in proximity range of the electronic field of the
reader. When the transponder is absent, the immobilizer
unit prevents the vehicle from starting the engine.

Figure 2: Immobilizer unit around the ignition barrel

A distinction needs to be made with remotely operated
central locking system, which opens the doors, is bat-
tery powered, operates at a ultra-high frequency (UHF)
of 433 MHz, and only activates when the user pushes a

1

238  21st USENIX Security Symposium	 USENIX Association

button on the remote key. More recent car keys are of-
ten deployed with a hybrid chip that supports the battery
powered ultra-high frequency as well as the passive low
frequency communication interface.

With the Hitag2 family of transponders, its manu-
facturer NXP Semiconductors (formerly Philips Semi-
conductors) leads the immobilizer market [34]. Fig-
ure 4 shows a list containing some of the vehicles that
are deployed with a Hitag2 transponder. Even though
NXP boosts “Unbreakable security levels using mutual
authentication, challenge-response and encrypted data
communication”1, it uses a shared key of only 48 bits.

Since 1988, the automotive industry has moved to-
wards the so-called keyless ignition or keyless entry in
their high-end vehicles [26]. In such a vehicle the mech-
anical key is no longer present and it has been replaced
by a start button like the one shown in Figure 3. The only
anti-theft mechanism left in these vehicles is the immob-
ilizer. Startlingly, many keyless ignition or entry vehicles
sold nowadays are still based on the Hitag2 cipher. In
some keyless entry cars Hitag2 is also used as a backup
mechanism for opening the doors, e.g., when the battery
of the remote is depleted.

Figure 3: Keyless hybrid transponder and engine
start/stop button

Related work
A similar immobilizer transponder is produced by Texas
Instruments under the name Digital Signature Transpon-
der (DST). It is protected by a different proprietary cryp-
tographic algorithm that uses a secret key of only 40 bits.
The workings of these algorithms are reversed engin-
eered by Bono et al. in [10]. Francillon et al. demon-
strated in [18] that is possible to relay in real-time the
(encrypted) communication of several keyless entry sys-
tems. The article shows that in some cases such a com-
munication can be intercepted over a distance of at least
100 meters.

1http://www.nxp.com/products/automotive/
car access immobilizers/immobilizer/

Make Models
Acura CSX, MDX, RDX, TL, TSX

Alfa Romeo 156, 159, 166, Brera, Giulietta, Mito, Spider
Audi A8

Bentley Continental
BMW Serie 1, 5, 6, 7, all bikes
Buick Enclave, Lucerne

Cadillac BLS, DTS, Escalade, SRX, STS, XLR

Chevrolet
Avanlache, Caprice, Captiva, Cobalt, Equinox, Express, HHR
Impala, Malibu, Montecarlo, Silverado, Suburban, Tahoe
Trailblazer, Uplander

Chrysler
300C, Aspen, Grand Voyager, Pacifica, Pt Cruiser, Sebring
Town Country, Voyager

Citroen
Berlingo, C-Crosser, C2, C3, C4, C4 Picasso, C5, C6, C8
Nemo, Saxo, Xsara, Xsara Picasso

Dacia Duster, Logan, Sandero
Daewoo Captiva, Windstorm

Dodge
Avenger, Caliber, Caravan, Charger, Dakota, Durango
Grand Caravan, Journey, Magnum, Nitro, Ram

Fiat
500, Bravo, Croma, Daily, Doblo, Fiorino, Grande Punto
Panda, Phedra, Ulysse, Scudo

GMC Acadia, Denali, Envoy, Savana, Siera, Terrain, Volt, Yukon

Honda
Accord, Civic, CR-V, Element, Fit, Insight, Stream,
Jazz, Odyssey, Pilot, Ridgeline, most bikes

Hummer H2, H3

Hyundai
130, Accent, Atos Prime, Coupe, Elantra, Excel, Getz
Grandeur, I30, Matrix, Santafe, Sonata, Terracan, Tiburon
Tucoson, Tuscanti

Isuzu D-Max
Iveco 35C11, Eurostar, New Daily, S-2000

Jeep
Commander, Compass, Grand Cherokee, Liberty, Patriot
Wrangler

Kia
Carens, Carnival, Ceed, Cerato, Magentis, Mentor, Optima
Picanto, Rio, Sephia, Sorento, Spectra, Sportage

Lancia Delta, Musa, Phedra
Mini Cooper

Mitsubishi
380, Colt, Eclipse, Endeavor, Galant, Grandis, L200
Lancer, Magna, Outlander, Outlander, Pajero, Raider

Nissan
Almera, Juke, Micra, Pathfinder, Primera, Qashqai, Interstar
Note, Xterra

Opel
Agila, Antara, Astra, Corsa, Movano, Signum, Vectra
Vivaro, Zafira

Peugeot
106, 206, 207, 307, 406, 407, 607, 807, 1007, 3008, 5008
Beeper, Partner, Boxer, RCZ

Pontiac G5, G6, Pursuit, Solstice, Torrent
Porsche Cayenne

Renault
Clio, Duster, Kangoo, Laguna II, Logan, Master
Megane, Modus, Sandero, Trafic, Twingo

Saturn Aura, Outlook, Sky, Vue
Suzuki Alto, Grand Vitara, Splash, Swift, Vitara, XL-7

Volkswagen Touareg, Phaeton

Figure 4: Vehicles using Hitag2 [29] – boldface indicates
vehicles we tested

The history of the NXP Hitag2 family of transpon-
ders overlaps with that of other security products de-
signed and deployed in the late nineties, such as Kee-
loq [8, 13, 27, 28], MIFARE Classic [12, 19, 22, 35],
CryptoMemory [4, 5, 23] or iClass [20, 21]. Originally,

2

USENIX Association 	 21st USENIX Security Symposium  239

information on Hitag2 transponders was limited to data
sheets with high level descriptions of the chip’s function-
ality [36], while details on the proprietary cryptographic
algorithms were kept secret by the manufacturer. This
phase, in which security was strongly based on obscur-
ity, lasted until in 2007 when the Hitag2 inner workings
were reverse engineered [47]. Similarly to its prede-
cessor Crypto1 (used in MIFARE Classic), the Hitag2
cipher consists of a 48 bit Linear Feedback Shift Register
(LFSR) and a non-linear filter function used to output
keystream. The publication of the Hitag2 cipher attrac-
ted the interest of the scientific community. Courtois et
al. [14] were the first to study the strength of the Hitag2
stream cipher to algebraic attacks by transforming the
cipher state into a system of equations and using SAT
solvers to perform key recovery attacks. Their most prac-
tical attack requires two days computation and a total of
four eavesdropped authentication attempts to extract the
secret key. A more efficient attack, requiring 16 chosen
initialization vectors (IV) and six hours of computations,
was also proposed. However, and as noted by the au-
thors themselves, chosen-IV attacks are prevented by the
Hitag2 authentication protocol (see Sect. 3.5), thus mak-
ing this attack unfeasible in practice.

In [42], Soos et al. introduced a series of optimizations
on SAT solvers that made it possible to reduce the attack
time of Curtois et al. to less than 7 hours. More recently,
Štembera and Novotný [45] implemented a brute-force
attack that could be carried out in less than two hours by
using the COPACOBANA2 high-performance cluster of
FPGAs. Note however, that such attack would require
about 4 years if carried out on a standard PC. Finally,
Sun et. al [44] tested the security of the Hitag2 cipher
against cube attacks. Although according to their results
the key can be recovered in less than a minute, this attack
requires chosen initialization vectors and thus should be
regarded as strictly theoretical.

Our contribution
In this paper, we show a number of vulnerabilities in the
Hitag2 transponders that enable an adversary to retrieve
the secret key. We propose three attacks that extract the
secret key under different scenarios. We have implemen-
ted and successfully executed these attacks in practice on
more than 20 vehicles of various make and model. On all
these vehicles we were able to use an emulating device
to bypass the immobilizer and start the vehicle.

Concretely, we found the following vulnerabilities in
Hitag2.

• The transponder lacks a pseudo-random number
generator, which makes the authentication proced-

2http://www.copacobana.org

ure vulnerable to replay attacks. Moreover, the
transponder provides known data when a read com-
mand is issued on the block where the transponder’s
identity is stored, allowing to recover keystream.
Redundancy in the commands allow an adversary
to expand this keystream to arbitrary lengths. This
means that the transponder provides an arbitrary
length keystream oracle.

• With probability 1/4 the output bit of the cipher is
determined by only 34 bits of the internal state. As
a consequence, (on average) one out of four authen-
tication attempts leaks one bit of information about
the secret key.

• The 48 bit internal state of the cipher is only ran-
domized by a nonce of 32 bits. This means that 16
bits of information over the secret key are persistent
throughout different sessions.

We exploit these vulnerabilities in the following three
practical attacks.

• The first attack exploits the malleability of the
cipher and the fact that the transponder does not
have a pseudo-random number generator. It uses a
keystream shifting attack following the lines of [16].
This allows an adversary to first get an authentica-
tion attempt from the reader which can later be re-
played to the transponder. Exploiting the malleab-
ility of the cipher, this can be used to read known
plaintext (the identity of the transponder) and re-
cover keystream. In a new session the adversary can
use this keystream to read any other memory block
(with exception of the secret key when configured
correctly) within milliseconds. When the key is not
read protected, this attack can also be used to read
the secret key. This was in fact the case for most
vehicles we tested from a French car make.

• The second attack is slower but more general in
the sense that the same attack strategy can be ap-
plied to other LFSR based ciphers. The attack uses
a time/memory tradeoff as proposed in [3, 6, 7,
11, 25, 38]. Exploiting the linear properties of the
LFSR, we are able to efficiently generate the lookup
table, reducing the complexity from 248 to 237 en-
cryptions. This attack recovers the secret key re-
gardless of the read protection configuration of the
transponder. It requires 30 seconds of communica-
tion with the transponder and another 30 seconds to
perform 2000 table lookups.

• The third attack is also the most powerful, as it only
requires a few authentication attempts from the car
immobilizer to recover the secret key (assuming that

3

240  21st USENIX Security Symposium	 USENIX Association

the adversary knows a valid transponder id). This
cryptanalytic attack exploits dependencies among
different sessions and a low degree determination
of the filter function used in the cipher. In order to
execute this attack, an adversary first gathers 136
partial authentication attempts from the car. This
can be done within one minute. Then, the adversary
needs to perform 235 operations to recover the secret
key. This takes less than five minutes on an ordinary
laptop.

Furthermore, besides looking into the security aspects of
Hitag2 we also study how it is deployed and integrated
in car immobilizer systems by different manufacturers.
Our study reveals that in many vehicles the transponder
is misconfigured by having readable or default keys, and
predictable passwords, whereas the immobilizer unit em-
ploys weak pseudo-random number generators. All cars
we tested use identifier white-listing as an additional se-
curity mechanism. This means that in order to use our
third attack to hijack a car, an adversary first needs to
eavesdrop, guess or wirelessly pickpocket a legitimate
transponder id, see Section 7.5.

Following the principle of responsible disclosure, we
have contacted the manufacturer NXP and informed
them of our findings six months ahead of publication.
We have also provided our assistance in compiling a doc-
ument to inform their customers about these vulnerabil-
ities. The communication with NXP has been friendly
and constructive. NXP encourages the automotive in-
dustry for years to migrate to more secure products that
incorporate strong and community-reviewed ciphers like
AES [15]. It is surprising that the automotive industry
is reluctant to migrate to secure products given the cost
difference of a better chip (≤ 1 USD) in relation to the
prices of high-end car models (≥ 50,000 USD).

2 Hardware setup

Before diving into details about Hitag2, this section in-
troduces the experimental platform we have developed
in order to carry out attacks in real-life deployments of
car immobilizer systems. In particular, we have built
a portable and highly flexible setup allowing us to i)
eavesdrop communications between Hitag2 readers and
transponders, ii) emulate a Hitag2 reader, and iii) emu-
late a Hitag2 transponder. Figure 5 depicts our setup in
the setting of eavesdropping communications between a
reader and a transponder.

The central element of our experimental platform
is the Proxmark III board3, originally developed by
Jonathan Westhues4, and designed to work with RFID

3http://www.proxmark.org
4http://cq.cx/proxmark3.pl

Figure 5: Experimental setup for eavesdropping

transponders ranging from low frequency (125 kHz) to
high frequency (13.56 MHz). The Proxmark III board
cost around 200 USD and comes equipped with a FPGA
and an ARM microcontroller. Low-level RF operations
such as modulation/demodulation are carried out by the
FPGA, whereas high-level operations such as encod-
ing/decoding of frames are performed in the microcon-
troller.

Hitag2 tags are low frequency transponders used in
proximity area RFID applications [36]. Communication
from reader to transponder is encoded using Binary Pulse
Length Modulation (BPLM), whereas from transponder
to reader it can be encoded using either Manchester or
Biphase coding. In order to eavesdrop, generate, and
read communications from reader to transponder, we ad-
ded support for encoding/decoding BPLM signals, see
Figure 6.

Figure 6: Reader modulation of a read command

For the transponder side, we have also added the func-
tionalities to support the Manchester coding scheme as
shown in Figure 7.

Figure 7: Communication from transponder to reader

4

USENIX Association 	 21st USENIX Security Symposium  241

3 Hitag2

This section describes Hitag2 in detail. Most of this in-
formation is in the public domain. We first describe the
Hitag2 functionality, memory structure, and communic-
ation protocols, this comes mostly from the product data
sheet [36]. Then we describe the cipher and the authen-
tication protocol which was previously reverse engin-
eered in [47]. In Section 3.7 we show that it is possible
to run the cipher backwards which we use in our attacks.

We first need to introduce some notation. Let F2 =
{0,1} the field of two elements (or the set of Booleans).
The symbol ⊕ denotes exclusive-or (XOR) and 0n de-
notes a bitstring of n zero-bits. Given two bitstrings x and
y, xy denotes their concatenation. x denotes the bitwise
complement of x. We write yi to denote the i-th bit of y.
For example, given the bitstring y = 0x03, y0 = y1 = 0
and y6 = y7 = 1. We denote encryptions by {−}.

3.1 Functionality
Access to the Hitag2 memory contents is determined by
pre-configured security policies. Hitag2 transponders of-
fer up to three different modes of operation:

1. In public mode the contents of the user data pages
are simply broadcast by the transponder once it is
powered up.

2. In password mode reader and transponder authen-
ticate each other by interchanging their passwords.
Communication is carried out in the clear, therefore
this authentication procedure is vulnerable to replay
attacks.

3. In crypto mode the reader and the transponder per-
form a mutual authentication by means of a 48-bit
shared key. Communication between reader and
transponder is encrypted using a proprietary stream
cipher. This mode is used in car immobilizer sys-
tems and will be the focus of this paper.

3.2 Memory
Hitag2 transponders have a total of 256 bits of non-
volatile memory (EEPROM) organized in 8 blocks of
4 bytes each. Figure 8 illustrates the memory contents
of a transponder configured in crypto mode. Block 0
stores the read-only transponder identifier; the secret key
is stored in blocks 1 and 2; the password and configur-
ation bits in block 3; blocks 4 till 7 store user defined
memory. Access to any of the memory blocks in crypto
mode is only granted to a reader after a successful mutual
authentication.

Block Contents
0 transponder identifier id
1 secret key low k0 . . .k31

2 secret key high k32 . . .k47 — reserved
3 configuration — password

4−7 user defined memory

Figure 8: Hitag2 memory map in crypto mode [36]

3.3 Communication
The communication protocol between the reader and
transponder is based on the master-slave principle. The
reader sends a command to the transponder, which then
responds after a predefined period of time. There are five
different commands: authenticate, read, read, write and
halt. As shown in Figure 9, the authenticate command
has a fixed length of 5 bits, whereas the others have a
length of at least 10 bits. Optionally, these 10 bits can
be extended with a redundancy message of size multiple
of 5 bits. A redundancy message is composed by the
bit-complement of the last five bits of the command. Ac-
cording to the datasheet [36] this feature is introduced to
“achieve a higher confidence level”.

In crypto mode the transponder starts in a halted state
and is activated by the authenticate command. After a
successful authentication, the transponder enters the act-
ive state in which it only accepts active commands which
are encrypted. Every encrypted bit that is transferred
consists of a plaintext bit XOR-ed with one bit of the
keystream. The active commands have a 3-bit argument
n which represents the offset (block number) in memory.
From this point we address Hitag2 active commands by
referring to commands and explicitly mention authentic-
ation otherwise.

Command Bits State
authenticate 11000 halted

read 11n0n1n200n0n1n2 . . . active
read 01n0n1n210n0n1n2 . . . active
write 10n0n1n201n0n1n2 . . . active
halt 00n0n1n211n0n1n2 . . . active

Figure 9: Hitag2 commands using block number n

Next we define the function cmd which constructs a
bit string that represents a command c on block n with r
redundancy messages.

Definition 3.1. Let c be the first 2-bit command as
defined in Figure 9, n be a 3-bit memory block number

5

242  21st USENIX Security Symposium	 USENIX Association

and r be the number of redundancy messages. Then, the
function cmd : F2

2 ×F
3
2 ×N→ F

(10+5r)
2 is defined by

cmd(c,n,0) = cncn

cmd(c,n,r+ 1) =

{
cmd(c,n,r)cn, r is odd;
cmd(c,n,r)cn, otherwise.

For example, the command to read block 0 with two re-
dundancy messages results in the following bit string.

cmd(11,0,2) = 11000 00111 11000 00111
The encrypted messages between reader and transponder
are transmitted without any parity bits. The transponder
response always starts with a prefix of five ones, see Fig-
ure 10. In the remainder of this paper we will omit this
prefix. A typical forward and backwards communication
takes about 12 ms.

{11000001111100000111}
−−−−−−−−−−−−−−−−−−−→

11111{id0 . . . id31}
←−−−−−−−−−−−−−−−−−−−

Figure 10: Message flow for reading memory block 0

3.4 Cipher
In crypto mode, the communication between transponder
and reader (after a sucessful authentication) is encrypted
with the Hitag2 stream cipher. This cipher has been re-
verse engineered in [47]. The cipher consists of a 48-bit
linear feedback shift register (LFSR) and a non-linear fil-
ter function f . Each clock tick, twenty bits of the LFSR
are put through the filter function, generating one bit of
keystream. Then the LFSR shifts one bit to the left, us-
ing the generating polynomial to generate a new bit on
the right. See Figure 11 for a schematic representation.

Definition 3.2. The feedback function L : F48
2 → F2 is

defined by L(x0 . . .x47) := x0 ⊕ x2 ⊕ x3 ⊕ x6 ⊕ x7 ⊕ x8 ⊕
x16 ⊕ x22 ⊕ x23 ⊕ x26 ⊕ x30 ⊕ x41 ⊕ x42 ⊕ x43 ⊕ x46 ⊕ x47.

The filter function f consists of three different circuits
fa, fb and fc which output one bit each. The circuits fa
and fb are employed more than once, using a total of
twenty input bits from the LFSR. Their resulting bits are
used as input for fc. The circuits are represented by three
boolean tables that contain the resulting bit for each in-
put.

Definition 3.3 (Filter function). The filter function
f : F48

2 → F2 is defined by
f (x0 . . .x47) = fc(fa(x2x3x5x6), fb(x8x12x14x15),

fb(x17x21x23x26), fb(x28x29x31x33),

fa(x34x43x44x46)),

where fa, fb : F4
2 → F2 and fc : F5

2 → F2 are
fa(i) = (0xA63C)i

fb(i) = (0xA770)i

fc(i) = (0xD949CBB0)i.

For future reference, note that each of the building blocks
of f (and hence f itself) has the property that it outputs
zero for half of the possible inputs (respectively one).

Remark 3.4 (Cipher schematic). Figure 11 is different
from the schematic that was introduced by [47] and later
used by [14, 19, 44, 45]. The input bits of the filter func-
tion in Figure 11 are shifted by one with respect to those
of [47]. The filter function in the old schematic repres-
ents a keystream bit at the previous state f (xi−1 . . .xi+46),
while the one in Figure 11 represents a keystream bit of
the current state f (xi . . .xi+47). Furthermore, we have
adapted the boolean tables to be consistent with our
notation.

3.5 Authentication protocol
The authentication protocol used in Hitag2 in crypto
mode, reversed engineered and published online in
2007 [47], is depicted in Figure 12. The reader starts the
communication by sending an authenticate command,
to which the transponder answers by sending its identi-
fier id. From this point on, communication is encryp-
ted, i.e., XOR-ed with the keystream. The reader re-
sponds with its encrypted challenge nR and the answer
aR = 0xFFFFFFFF also encrypted to prove knowledge
of the key; the transponder finishes with its encrypted
answer aT (corresponding to block 3 in Fig. 8) to the
challenge of the reader.

authenticate
−−−−−−−−−−−−−−−−−−−→

id
←−−−−−−−−−−−−−−−−−−−

{nR}{aR}
−−−−−−−−−−−−−−−−−−−→

{aT}
←−−−−−−−−−−−−−−−−−−−

Figure 12: Hitag2 authentication protocol

During the authentication protocol, the internal state
of the stream cipher is initialized. The initial state con-
sists of the 32-bits identifier concatenated with the first
16 bits of the key. Then reader nonce nR XORed with the
last 32 bits of the key is shifted in. During initialization,
the LFSR feedback is disabled. Since communication is
encrypted from nR onwards, the encryption of the later
bits of nR are influenced by its earlier bits. Authentica-
tion is achieved by reaching the same internal state of the
cipher after shifting in nR.

6

USENIX Association 	 21st USENIX Security Symposium  243

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

��

⊕
����

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��
fa = 0xA63C fb = 0xA770 fb = 0xA770 fb = 0xA770 fa = 0xA63C

�� �� �� �� ��
fc = 0xD949CBB0

keystream
��

Figure 11: Structure of the Hitag2 stream cipher, based on [47]

3.6 Cipher Initialization
The following precisely defines the initialization of the
cipher and the generation of the LFSR-stream a0a1 . . .
and the keystream b0b1

Definition 3.5. Given a key k = k0 . . .k47 ∈ F
48
2 , an

identifier id = id0 . . . id31 ∈ F
32
2 , a reader nonce nR =

nR0 . . .nR31 ∈ F
32
2 , a reader answer aR = aR0 . . .aR31 ∈

F
32
2 , and a transponder answer aT = aT0 . . .aT31 ∈ F

32
2 ,

the internal state of the cipher at time i is αi :=
ai . . .a47+i ∈ F

48
2 . Here the ai ∈ F2 are given by

ai := idi ∀i ∈ [0,31]
a32+i := ki ∀i ∈ [0,15]
a48+i := k16+i⊕ nRi ∀i ∈ [0,31]
a80+i := L(a32+i . . .a79+i) ∀i ∈ N .

Furthermore, we define the keystream bit bi ∈ F2 at time
i by

bi := f (ai . . .a47+i) ∀i ∈ N .

Define {nR},{aR}i ,{aT}i ∈ F2 by
{nR}i := nRi ⊕ bi ∀i ∈ [0,31]
{aR}i := aRi ⊕ b32+i ∀i ∈ [0,31]
{aT}i := aTi ⊕ b64+i ∀i ∈ [0,31].

Note that the ai, αi, bi, {nR}i , {aR}i , and {aT}i are form-
ally functions of k, id, and nR. Instead of making this ex-
plicit by writing, e.g., ai(k, id,nR), we just write ai where
k, id, and nR are clear from the context.

3.7 Rollback
To recover the key it is sufficient to learn the internal state
of the cipher αi at any point i in time. Since an attacker
knows id and {nR}, the LFSR can then be rolled back to
time zero.

Definition 3.6. The rollback function R : F48
2 → F2 is

defined by R(x1 . . .x48) := x2 ⊕ x3 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x16 ⊕
x22 ⊕ x23 ⊕ x26 ⊕ x30 ⊕ x41 ⊕ x42 ⊕ x43 ⊕ x46 ⊕ x47 ⊕ x48.

If one first shifts the LFSR left using L to generate a
new bit on the right, then R recovers the bit that dropped
out on the left, i.e.,

R(x1 . . .x47 L(x0 . . .x47)) = x0 . (1)

Theorem 3.7. In the situation from Definition 3.5, we
have

a32+i = R(a33+i . . .a80+i) ∀i ∈ N

ai = idi ∀i ∈ [0,31] .

Proof. Straightforward, using Definition 3.5 and Equa-
tion (1).

If an attacker manages to recover the internal state of
the LFSR αi = aiai+1 . . .ai+47 at some time i, then she
can repeatedly apply Theorem 3.7 to recover a0a1 . . .a79
and, consequently, the keystream b0b1b2 By having
eavesdropped {nR} from the authentication protocol, the
adversary can further calculate

nRi = {nR}i ⊕bi ∀i ∈ [0,31] .
Finally, the adversary can compute the secret key as fol-
lows

ki = a32+i ∀i ∈ [0,15]
k16+i = a48+i⊕nRi ∀i ∈ [0,31] .

4 Hitag2 weaknesses

This section describes three weaknesses in the design of
Hitag2. The first one is a protocol flaw while the last two
concern the cipher’s design. These weaknesses will later
be exploited in Section 5.

4.1 Arbitrary length keystream oracle
This weakness describes that without knowledge of the
secret key, but by having only one authentication at-
tempt, it is possible to gather an arbitrary length of key-
stream bits from the transponder. Section 3.3 describes
the reader commands that can modify or halt a Hitag2
transponder. As mentioned in Definition 3.1 it is pos-
sible to extend the length of such a command with a
multiple of five bits. A 10-bit command can have an op-
tional number of redundancy messages r so that the total
bit count of the message is 10+ 5r bits. Due to power
and memory constraints, Hitag2 seems to be designed

7

244  21st USENIX Security Symposium	 USENIX Association

to communicate without a send/receive buffer. There-
fore, all cipher operations are performed directly at ar-
rival or transmission of bits. Experiments show that a
Hitag2 transponder successfully accepts encrypted com-
mands from the reader which are sent with 1000 redund-
ancy messages. The size of such a command consists of
10+5×1000= 5010 bits.

Since there is no challenge from the transponder it
is possible to replay any valid {nR}{aR} pair to the
transponder to achieve a successful authentication. After
receiving aT , the internal state of the transponder is ini-
tialized and waits for an encrypted command from the
reader as defined in Figure 9. Without knowledge of the
keystream bits b96b97 . . . and onwards, all possible com-
binations need to be evaluated. A command consist of
at least 10 bits, therefore there are 210 possibilities. Each
command requires a 3-bit parameter containing the block
number. Both read and read receive a 32-bit response,
while the write and halt have a different response length.
Hence, when searching for 10-bit encrypted commands
that get a 32-bit response there are exactly 16 out of the
210 values that match. On average the first read com-
mand is found after 32 attempts, the complement of this
read and its parameters are a linear difference and there-
fore take only 15 attempts more.

cmd(11,0,0)⊕ b96 . . .b105
−−−−−−−−−−−−−−−−−−−→

id⊕ b106 . . .b137
←−−−−−−−−−−−−−−−−−−−

Figure 13: Read id without redundancy messages

One of the 16 guesses represents the encrypted bits of
the read command on the first memory block. This block
contains the id which is known plaintext since it is trans-
mitted in the clear during the authentication. Therefore,
there is a guess such that the communicated bits are equal
to the messages in Figure 13.

With the correct guess, 40 keystream bits can be re-
covered. This keystream is then used to encrypt a slightly
modified read command on block 0 with six redundancy
messages, as explained in Section 3.3. The transpon-
der responds with the next 32-bit of keystream which
are used to encrypt the identifier as shown in Figure
14. Hence the next 30 keystream bits were retrieved us-
ing previously recovered keystream and by extending the
read command.

This operation can be repeated many times. For ex-
ample, using the recovered keystream bits b96 . . .b167 it
is possible to construct a 70-bit read command with 12
redundancy messages etc. In practice it takes less than 30
seconds to recover 2048 bits of contiguous keystream.

cmd(11,6,0)⊕b96 . . .b135
−−−−−−−−−−−−−−−−−−−→

id⊕b136 . . .b167
←−−−−−−−−−−−−−−−−−−−

Figure 14: Read id using 6 redundancy messages

4.2 Dependencies between sessions

Section 3.6 shows that at cipher state α79 the cipher is
fully initialized and from there on the cipher only pro-
duces keystream. This shows that the 48-bit internal state
of the cipher is randomized by a reader nonce nR of only
32 bits. Consequently, at state α79, only LFSR bits 16
to 47 are affected by the reader nonce. Therefore LFSR
bits 0 to 15 remain constant throughout different session
which gives a strong dependency between them. These
16 session persistent bits correspond to bits k0 . . .k15 of
the secret key.

4.3 Low degree determination of the filter
function

The filter function f : F48
2 → F2 consists of three build-

ing blocks fa, fb and fc arranged in a two layer structure,
see Figure 11. Due to this particular structure, input bits
a34 . . .a47 only affect the rightmost input bit of fc. Fur-
thermore, simple inspection of fc shows that in 8 out of
32 configurations of the input bits, the rightmost input
bit has no influence on the output of fc. In those cases
the output of fc is determined by its 4-leftmost input bits.
Furthermore, this means that with probability 1/4 the fil-
ter function f is determined by the 34-leftmost bits of
the internal state. The following theorem states this pre-
cisely.

Theorem 4.1. Let X be a uniformly distributed variable
over F34

2 . Then
P[∀Y,Y ′ ∈ F

14
2 : f (XY) = f (XY ′)] = 1/4.

Proof. By inspection.

Definition 4.2. The function that checks for this property
P : F48

2 → F2 is defined by
P(x0 . . .x47) = (0x84D7)i

where
i = fa(x2x3x5x6) fb(x8x12x14x15)

fb(x17x21x23x26) fb(x28x29x31x33).

Because P(x0 . . .x47) only depends on x0 . . .x33 we shall
overload notation and see P(·) as a function F

34
2 → F2,

writing P(x0 . . .x47) as P(x0 . . .x33014).

8

USENIX Association 	 21st USENIX Security Symposium  245

5 Attacks

This section describes three attacks against Hitag2. The
first attack is straightforward and grants an adversary
read and write access to the memory of the transponder.
The cryptanalysis described in the second attack recovers
the secret key after briefly communicating with the car
and the transponder. This attack uses a general technique
that can be applied to other LFSR-like stream ciphers.
The third attack describes a custom cryptanalysis of the
Hitag2 cipher. It only requires a few authentication at-
tempts from the car and allows an adversary to recover
the secret key with a computational complexity of 235 op-
erations. The last two attacks allow a trade-off between
time/memory/data and time/traces respectively. For the
sake of simplicity we describe these attacks with con-
crete values that are either optimal or what we consider
‘sensible’ in view of currently available hardware.

5.1 Malleability attack
This attack exploits the arbitrary length keystream or-
acle weakness described in Section 4.1, and the fact that
during the authentication algorithm the transponder does
not provide any challenge to the reader. This notorious
weaknesses allow an adversary to first acquire keystream
and then use it to read or write any block on the card with
constant communication and computational complexity.
After the recovery of the keystream bits b96 . . .b137 as
shown in Figure 13 an adversary can dump the complete
memory of the transponder which includes its password.
Recovery of the keystream and creating a memory dump
from the transponder takes in total less than one second
and requires only to be in proximity distance of the vic-
tim. This shows a similar scenario to [22] where Garcia
et al. show how to wirelessly pickpocket a MIFARE
Classic card from the victim.

The memory blocks where the cryptographic key is
stored have an extra optional protection mechanism.
There is a one time programable configuration bit which
determines whether these blocks are readable or not.
If the reader tries to read a protected block, then the
transponder does not respond. In that case the adversary
can still use the attacks presented in Section 5.2 and Sec-
tion 5.3. If the transponder is not correctly configured,
it enables an adversary to read all necessary data to start
the car.

5.2 Time/memory tradeoff attack
This attack is very general and it can be applied to any
LFSR-based stream cipher as long as enough contigu-
ous keystream is available. This is in fact the case with
Hitag2 due to the weakness described in Section 4.1. It

extends the methods of similar time/memory tradeoffs
articles published over the last decades [3, 6, 7, 11, 25,
38]. This attack requires communication with the reader
and the transponder. The next proposition introduces a
small trick that makes it possible to quickly perform n
cipher steps at once. Intuitively, this proposition states
that the linear difference between a state s and its n-th
successor is a combination of the linear differences gen-
erated by each bit. This will be later used in the attack.

Proposition 5.1. Let s be an LFSR state and n ∈N. Fur-
thermore, let di = sucn(2i) i.e., the LFSR state that res-
ults from running the cipher n steps from the state 2i.
Then

sucn(s) =
47⊕

i=0
(di · si) .

To perform the attack the adversary A proceeds as fol-
lows:

1. Only once, A builds a table containing 237 entries.
Each entry in the table is of the form �ks,s� where
s ∈ F

48
2 is an LFSR state and ks ∈ F

48
2 are 48 bits

of keystream produced by the cipher when running
from s. Starting from some state where s �= 0,
the adversary generates 48 bits of keystream and
stores it. Then it uses Theorem 5.1 to quickly
jump n = 211 cipher states to the next entry in the
table. This reduces the computational complexity
of building the table from 248 to 48× 237 = 242.5

cipher ticks. Moreover, in order to improve lookup
time the table is sorted on ks and divided into
224 sub-tables encoded in the directory structure
like /ks_byte1/ks_byte2/ks_byte3.bin
where each ks_byte3.bin file has only 8 KB.
The total size of this table amounts 1.2 TB.

2. A emulates a transponder and runs an authentication
attempt with the target car. Following the authen-
tication protocol, the car answers with a message
{nR}{aR}.

3. Next, the attacker wirelessly replays this message
to the legitimate transponder and uses the weakness
described in Section 4.1 to obtain 256 bytes of key-
stream ks0 . . .ks2048. Note that this might be done
while the key is in the victim’s bag or pocket.

4. The adversary sets i = 0.

5. Then it looks up (in logarithmic time) the keystream
ksi . . .ksi+47 in the table from step 1.

6. If the keystream is not in the table then it increments
i and goes back to step 5. If there is a match, then
the corresponding state is a candidate internal state.
A uses the rest of the keystream to confirm is this is
the internal state of the cipher.

9

246  21st USENIX Security Symposium	 USENIX Association

7. Finally, the adversary uses Theorem 3.7 to rollback
the cipher state and recover the secret key.

Complexity and time. In step 1 the adversary needs to
pre-compute a 1.2 TB table which requires 242.5 cipher
ticks, which is equal to 237 encryptions. During gener-
ation, each entry is stored directly in the corresponding
.bin file as mentioned before. Each of these 8 KB files
also needs to be sorted but it only takes a few minutes
to sort them all. Computing and sorting the whole table
takes less than one day on a standard laptop. Steps 2-3
take about 30 seconds to gather the 256 bytes of key-
stream from the transponder. Steps 4-6 require (in worst
case) 2000 table lookups which take less than 30 seconds
on a standard laptop. This adds to a total of one minute
to execute the attack from begin to end.

5.3 Cryptanalytic attack

A combination of the weaknesses described in Section
4.2 and 4.3 enable an attacker to recover the secret key
after gathering a few authentication attempts from a car.
In case that identifier white-listing is used as a second-
ary security measure, which is in fact the case for all the
cars we tested, the adversary first needs to obtain a valid
transponder id, see Section 7.5.

The intuition behind the attack is simple. Suppose that
an adversary has a guess for the first 34 bits of the key.
One out of four traces is expected to have the property
from Theorem 4.1 which enables the adversary to per-
form a test on the first bit of {aR}. The dependencies
between sessions described in Section 4.2 allow the at-
tacker to perform this test many times decreasing drastic-
ally the amount of candidate (partial) keys. If an attacker
gathers 136 traces this allows her (on average) to perform
136/4 = 34 bit tests, i.e. just as much as key bits were
guessed. For the small amount of candidate keys that
pass these tests (typically 2 or 3), the adversary performs
an exhaustive search for the remaining 14 bits of the key.
A precise description of this attack follows.

1. The attacker uses a transponder emulator (like the
Proxmark III) to initiate 136 authentication attempts
with the car using a fixed transponder id. In this
way the attacker gathers 136 traces of the form
{nR}{aR}. Next the attacker starts searching for
the secret key. For this we split the key k in three
parts k= �kk̂�k where �k= k0 . . .k15, k̂ = k16 . . .k33, and
�k = k34 . . .k47.

2. for each �k = k0 . . .k15 ∈ F
16
2 the attacker builds a

table T �k containing entries
�y⊕ b0 . . .b17,b32, �ky�

for all y ∈ F
18
2 such that P(�ky014) = 1. Note that the

expected size of this table is 218 ×1/4 = 216 which
easily fits in memory.

3. For each k̂ = k16 . . .k33 ∈ F
18
2 and for each

trace {nR}{aR}, the attacker sets z := k̂ ⊕
{nR}0 . . .{nR}17 . If there is an entry in T �k for which
y⊕ b0 . . .b17 equals z but b32 �= {aR}0 then the at-
tacker learns that k̂ is a bad guess, so he tries the
next one. Otherwise, if b32 = {aR}0 then k̂ is still
a viable guess and therefore the adversary tries the
next trace.

4. Each �kk̂ that passed the test for all traces is a partial
candidate key. For each such candidate (typically 2
or 3), the adversary performs an exhaustive search
for the remaining key bits�k = k34 . . .k47. For each
full candidate key, the adversary decrypts two traces
and checks whether both {aR} decrypt to all ones as
specified in the authentication protocol. If a candid-
ate passes this test then it is the secret key. If none
of them passes then the adversary goes back to Step
2 and tries the next �k.

Complexity and time. In step 1, the adversary needs to
gather 136 partial authentication traces. This can be done
within 1 minute using the Proxmark III. In steps 2 and 3,
the adversary needs to build 216 tables. For each of these
tables the adversary needs to compute 218 encryptions
plus 218 table lookups. Step 4 has negligible complex-
ity thus we ignore it. This adds to a total complexity of
216 × (218 + 218) = 235 encryptions/lookups. Note that
it is straightforward to split up the search space of �k in
as many processes as you wish. On an standard quad-
core laptop this computation takes less than five minutes.
Therefore, the whole attack can be performed in less than
360 seconds which explains the title of the paper.

This attack is faster than other practical attacks pro-
posed in [14, 45]. The following table shows a com-
parison between this attack and other attacks from the
literature.

Attack Description Practical Computation Traces Time
[45] brute-force yes 2102400 min 2 4 years
[14] sat-solver yes 2880 min 4 2 days
[42] sat-solver no1 386 min N/A N/A
[44] cube no2 1 min 500 N/A
Our cryptanalytic yes 5 min 136 6 min

1Soos et al. require 50 bits of contiguous keystream.
2Sun et al. require control over the encrypted reader nonce {nR}

Figure 15: Comparison of attack times and requirements

10

USENIX Association 	 21st USENIX Security Symposium  247

Figure 16: Left: Authentication failure message
Right: Successful authentication using a Proxmark III

6 Starting a car

In order to elaborate on the practicality of our attacks,
this section describes our experience with one concrete
vehicle. For this we have chosen a German car, mainly
due to the fact that it has keyless ignition. Instead of
the typical mechanical key, this car has a hybrid re-
mote control which contains a Hitag2 transponder. In
the dashboard of the car there is a slot to insert the re-
mote and a button to start the engine. When a piece
of plastic of suitable size is inserted in this slot the car
repeatedly attempts to authenticate the transponder (and
fails). This car uses an identifier white-list as described
in Section 7.5. The same section explains how to wire-
lessly pickpocket a valid identifier from the victim’s re-
mote. As soon as the car receives a valid identifier, the
dashboard lights up and the LCD screen pops-up display-
ing the message shown in Figure 16-Left. Note also the
sign on the dashboard. At this point we used the Prox-
mark to quickly gather enough traces and execute the at-
tack from Section 5.3 to recover the secret key. This car
is one of the few that we tested that does not have a pre-
dictable password so we wirelessly read it from the vic-
tim’s remote. Then we use the Proxmark to emulate the
transponder. Figure 16-Right shows that the car accepts
the Proxmark as if it was the legitimate transponder. The
same picture shows (by looking at the tachometer) that at
this stage it is possible to start the engine.

7 Implementation weaknesses

To verify the practicality of our attacks, we have tested
all three of them on at least 20 different car models
from various makes. During our experiments we found
that, besides the weaknesses in cipher and protocol, the
transponder is often misconfigured and poorly integrated
in the cars. Most of the cars we tested use a default

or predictable transponder password. Some generate
nonces with a very low entropy. Most car keys have
vehicle-dependant information stored in the user defined
memory of the transponder, but none of the tested cars
actually check this data. Some cars use Hitag2 for key-
less ignition systems, which are more vulnerable because
they lack a physical key. This section summarizes some
of the weaknesses we found during our practical experi-
ments. Especially, Section 7.4 shows the implications of
the attack described in Section 5.3 when the transponder
uses a predictable password. Section 7.5 describes how
to circumvent identifier white-listing. This is an addi-
tional security mechanism which is often used in vehicle
immobilizers.

7.1 Weak random number generators
From the cars we tested, most pseudo-random number
generators (PRNG) use the time as a seed. The time in-
tervals do not have enough precision. Multiple authen-
tication attempts within a time frame of one second get
the same random number. Even worse, we came across
two cars which have a PRNG with dangerously low en-
tropy. The first one, a French car (A), produces nonces
with only 8 bits of entropy, by setting 24 of the 32 bits
always to zero as shown in Figure 17.

Origin Message Description
CAR 18 authenticate
TAG 39 0F 20 10 id
CAR 0A 00 00 00 23 71 90 14 {nR}{aR}

TAG 27 23 F8 AF {aT }

CAR 18 authenticate
TAG 39 0F 20 10 id
CAR 56 00 00 00 85 CA 95 BA {nR}{aR}

TAG 38 07 50 C5 {aT }

Figure 17: Random numbers generated by car A

11

248  21st USENIX Security Symposium	 USENIX Association

Another French car (B), produced random looking
nonces, but in fact, the last nibble of each byte was de-
termined by the last nibble of the first byte. A subset of
these nonces are shown shown in Figure 18.

{nR} {aR}

20 D1 0B 08 56 36 F3 66

70 61 1B 58 1B 18 F3 38

B0 A1 5B 98 1E 94 62 3A

D0 41 FB B8 01 3B 54 10

25 1A 3C AD 15 88 5E 19

05 7A 9C 8D F7 4D F7 70

C5 3A 5C 4D 30 B1 4A D4

E5 DA FC 6D D8 BD 79 C3

Figure 18: Random numbers generated by car B

7.2 Low entropy keys
Some cars have repetitive patterns in their keys which
makes them vulnerable to dictionary attacks. Recent
models of a Korean car (C) use the key with the lowest
entropy we came across. It tries to access the transpon-
der in password mode as well as in crypto mode. For this
it uses the default password MIKR and a key of the form
0xFFFF∗∗∗∗ ∗∗FF as shown in Figure 19.

Origin Message Description
CAR 18 authenticate
TAG E4 13 05 1A id
CAR 4D 49 4B 52 password = MIKR
CAR 18 authenticate
TAG E4 13 05 1A id
CAR DA 63 3D 24 A7 19 07 12 {nR}{aR}

TAG EC 2A 4B 58 {aT }

Figure 19: Car C authenticates using the default pass-
word and secret key 0xFFFF814632FF

7.3 Readable keys
Section 5.1 shows how to recover the memory dump
of a Hitag2 transponder. Almost all makes protect the
secret key against read operations by setting the bits of
the configuration in such a way that block one and two
are not readable. Although there are some exceptions.
For example, experiments show that most cars from a
French manufacturer have not set this protection bit. This
enables an attacker to recover the secret key in an in-
stant. Even more worrying, many of these cars have
the optional feature to use a remote key-less entry sys-
tem which have a much wider range and are therefore
more vulnerable to wireless attacks. The combination

of a transponder that is wirelessly accessible over a dis-
tance of several meters and a non protected readable key
is most worrying.

7.4 Predictable transponder passwords
The transponder password is encrypted and sent in the
transponder answer aT of the authentication protocol.
This is an additional security mechanism of the Hitag2
protocol apart from the cryptographic algorithm. Be-
sides the fact that the transponder proves knowledge of
the secret key, it sends its password encrypted. In general
it is good to have some fall back scenario and counter-
measure if the used cryptosystem gets broken. Section
5.3 demonstrates how to recover the secret key from a
vehicle. But to start the engine, it is necessary to know
the transponder password as well. Experiments show
that at least half of the cars we tested on use default or
predictable passwords.

7.5 Identifier pickpocketing
The first generation of vehicle immobilizers were
not able to compute any cryptographic operations.
These transponders were simply transmitting a constant
(unique) identifier over the RF channel. Legitimate
transponder identifiers were white-listed by the vehicle
and only those transponders in the white-list would en-
able the engine to start. Most immobilizer units in cars
still use such white-listing mechanism, which is actually
encouraged by NXP. These cars would only attempt to
authenticate transponders in their white-list. This is an
extra obstacle for an attacker, namely recovering a genu-
ine identifier from the victim before being able to execute
any attack. There are (at least) two ways for an adversary
to wirelessly pickpocket a Hitag2 identifier:

• One option is to use the low-frequency (LF) inter-
face to wirelessly pickpocket the identifier from the
victim’s key. This can be done within proximity
distance and takes only a few milliseconds. Accord-
ing to the Hitag2 datasheet [36], the communication
range of a transponder is up to one meter. Although,
Hitag2 transponders embedded into car keys are op-
timized for size and do not achieve such a commu-
nication distance. However, an adversary can use
tuned equipment with big antennas that ignore ra-
diation regulations (e.g., [17]) in order to reach a
larger reading distance. Many examples in the lit-
erature show the simplicity and low-cost of such a
setup [24, 30, 31, 43].

• Another option is to use the wide range ultra-high
frequency (UHF) interface. For this an adversary
needs to eavesdrop the transmission of a hybrid

12

USENIX Association 	 21st USENIX Security Symposium  249

Hitag2 transponder [39] when the victim presses a
button on the remote (e.g. to close the doors). Most
keyless entry transponders broadcast their identifier
in the clear on request (see for example [39]).

With respect to the LF interface, the UHF interface has
a much wider transmission range. As shown in [18] it
is not hard to eavesdrop such a transmission from a dis-
tance of 100 meters. From a security perspective, the first
generation Hitag2 transponders have a physical advant-
age over the hybrid transponders since they only support
the LF interface.

8 Mitigation

This section briefly discusses a simple but effective au-
thentication protocol for car immobilizers and it also de-
scribes a number of mitigating measures for the attacks
proposed in Section 5. For more details we refer the
reader to [1, 9].

First of all we emphasize that it is important for the
automotive industry to migrate from weak proprietary
ciphers to a peer-reviewed one such as AES [15], used
in cipher block chaining mode (CBC). A straightfor-
ward mutual authentication protocol is sketched in Fig-
ure 20. The random nonces nR, nT , secret key k and
transponder password PWDT should be at least 128 bits
long. Comparable schemes are proposed in the literat-
ure [32, 33, 46, 48, 49].

authenticate
−−−−−−−−−−−−−−−−−−−→

id,nT
←−−−−−−−−−−−−−−−−−−−

{nR,nT}k
−−−−−−−−−−−−−−−−−−−→

{nR,PWDT}k
←−−−−−−−−−−−−−−−−−−−

Figure 20: Immobilizer authentication protocol using
AES

There are already in the market immobilizer transpon-
ders which implement AES like the ATA5795[2] from
Atmel and the Hitag AES / Pro[37] from NXP. It should
be noted that, although they use a peer-reviewed encryp-
tion algorithm, their authentication protocol is still pro-
prietary and therefore lacks public and academic scru-
tiny.

In order to reduce the applicability of our crypto-
graphic attack, the automotive industry could consider
the following measures. This attack is the most sensitive
as it does not require access to the car key. These coun-
termeasures should be interpreted as palliating (but not a
solution) before migrating to a more secure and openly
designed product.

• Extend the transponder password
The transponder password is an important part of
the authentication protocol but grievously it has
only an entropy of 24 bits. Such a password is
easy to find via exhaustive search. Furthermore,
as we mentioned in Section 7.4, manufacturers of-
ten deployed their cars with predictable transpon-
der passwords. As shown in Figure 8, there are
four pages available of user defined memory in a
Hitag2 transponder. These could be used to extend
the transponder password with 128 bits of random
data to increase its entropy. This implies that an
adversary needs to get access to the transponder’s
memory before being able to steal a car.

• Delay authentication after failure
The cryptographic car-only attack explained in Sec-
tion 5.3 requires several authentication attempts to
reduce the computational complexity. Extending
the time an adversary needs to gather these traces
increases the risk of being caught. To achieve
this, the immobilizer introduces a pause before re-
authenticating that grows incrementally or exponen-
tially with the number of sequential incorrect au-
thentications. An interesting technique to imple-
ment such a countermeasure is proposed in [40].
The robustness, availability and usability of the
product is affected by this delay, but it increases the
attack time considerably and therefore reduces the
risk of car theft.

Besides these measures, it is important to improve the
pseudo-random number generator in the vehicles which
is used to generate reader nonces. Needless to say, the
same applies to cryptographic keys and transponder pass-
words. NIST has proposed a statistical test suite which
can be used to verify the quality of a pseudo-random
number generator [41].

9 Conclusions

We have found many serious vulnerabilities in the Hitag2
and its usage in the automotive industry. In particular,
Hitag2 allows replaying reader data to the transponder;
provides an unlimited keystream oracle and uses only
one low-entropy nonce to randomize a session. These
weaknesses allow an adversary to recover the secret key
within seconds when wireless access to the car and key
is available. When only communication with the car is
possible, the adversary needs less than six minutes to
recover the secret key. The cars we tested use identi-
fier white-listing. To circumvent this, the adversary first
needs to obtain a valid transponder id by other means
e.g., eavesdrop it when the victim locks the doors. This

13

250  21st USENIX Security Symposium	 USENIX Association

UHF transmission can be intercepted from a distance of
100 meters [18]. We have executed all our attacks (from
Section 5) in practice within the claimed attack times.
We have experimented with more than 20 vehicles of
various makes and models and found also several imple-
mentation weaknesses.

In line with the principle of responsible disclosure, we
have notified the manufacturer NXP six months before
disclosure. We have constructively collaborated with
NXP, discussing mitigating measures and giving them
feedback to help improve the security of their products.

10 Acknowledgments

The authors would like to thank Bart Jacobs for his
firm support in the background. We are also thankful
to E. Barendsen, L. van den Broek, J. de Bue, Y. van
Dalen, E. Gouwens, R. Habraken, I. Haerkens, S. Hop-
penbrouwers, K. Koster, S. Meeuwsen, J. Reule, J. Re-
ule, I. Roggema, L. Spix, C. Terheggen, M. Vaal, S. Ver-
nooij, U. Zeitler, B. Zwanenburg, and those who prefer to
remain anonymous for (bravely) volunteering their cars
for our experiments.

References

[1] Ross J. Anderson. Security Engineering: A guide
to building dependable distributed systems. Wiley,
2010.

[2] Atmel. Embedded avr microcontroller including rf
transmitter and immobilizer lf functionality for re-
mote keyless entry - ATA5795, 2010.

[3] Steve Babbage. A space/time tradeoff in exhaust-
ive search attacks on stream ciphers. In European
Convention on Security and Detection, volume 408
of Conference Publications, pages 161–166. IEEE
Computer Society, 1995.

[4] Josep Balasch, Benedikt Gierlichs, Roel Verdult,
Lejla Batina, and Ingrid Verbauwhede. Power ana-
lysis of Atmel CryptoMemory - recovering keys
from secure EEPROMs. In 12th Cryptograph-
ers’ Track at the RSA Conference (CT-RSA 2012),
volume 7178 of Lecture Notes in Computer Sci-
ence, pages 19–34. Springer-Verlag, 2012.

[5] Alex Biryukov, Ilya Kizhvatov, and Bin Zhang.
Cryptanalysis of the Atmel cipher in Secure-
Memory, CryptoMemory and CryptoRF. In 9th Ap-
plied Cryptography and Network Security (ACNS
2011), pages 91–109. Springer-Verlag, 2011.

[6] Alex Biryukov, Sourav Mukhopadhyay, and Palash
Sarkar. Improved time-memory trade-offs with
multiple data. In 13th International Workshop
on Selected Areas in Cryptography (SAC 2006),
volume 3897 of Lecture Notes in Computer Sci-
ence, pages 110–127. Springer-Verlag, 2006.

[7] Alex Biryukov and Adi Shamir. Cryptanalytic
time/memory/data tradeoffs for stream ciphers. In
6th International Conference on the Theory and
Application of Cryptology and Information Secur-
ity, Advances in Cryptology (ASIACRYPT 2000),
volume 1976 of Lecture Notes in Computer Sci-
ence, pages 1–13. Springer-Verlag, 2000.

[8] Andrey Bogdanov. Linear slide attacks on the Kee-
Loq block cipher. In Information Security and
Cryptology (INSCRYPT 2007), volume 4990 of
Lecture Notes in Computer Science, pages 66–80.
Springer, 2007.

[9] Andrey Bogdanov and Christof Paar. On the se-
curity and efficiency of real-world lightweight au-
thentication protocols. In 1st Workshop on Se-
cure Component and System Identification (SECSI
2008). ECRYPT, 2008.

[10] Stephen C. Bono, Matthew Green, Adam Stubble-
field, Ari Juels, Aviel D. Rubin, and Michael
Szydlo. Security analysis of a cryptographically-
enabled RFID device. In 14th USENIX Security
Symposium (USENIX Security 2005), pages 1–16.
USENIX Association, 2005.

[11] Johan Borst, Bart Preneel, Joos Vandewalle, and
Joos V. On the time-memory tradeoff between ex-
haustive key search and table precomputation. In
19th Symposium in Information Theory in the Be-
nelux, pages 111–118, 1998.

[12] Nicolas T. Courtois. The dark side of security by
obscurity - and cloning MIFARE Classic rail and
building passes, anywhere, anytime. In 4th Inter-
national Conference on Security and Cryptography
(SECRYPT 2009), pages 331–338. INSTICC Press,
2009.

[13] Nicolas T. Courtois, Gregory V. Bard, and David
Wagner. Algebraic and slide attacks on Kee-
Loq. In 15th International Workshop on Fast Soft-
ware Encryption (FSE 2000), volume 5086 of Lec-
ture Notes in Computer Science, pages 97–115.
Springer-Verlag, 2008.

14

USENIX Association 	 21st USENIX Security Symposium  251

[14] Nicolas T. Courtois, Sean O’Neil, and Jean-Jacques
Quisquater. Practical algebraic attacks on the
Hitag2 stream cipher. In 12th Information Secur-
ity Conference (ISC 2009), volume 5735 of Lec-
ture Notes in Computer Science, pages 167–176.
Springer-Verlag, 2009.

[15] Joan Daemen and Vincent Rijmen. The Design of
Rijndael: AES - The Advanced Encryption Stand-
ard. Springer-Verlag, 2002.

[16] Gerhard de Koning Gans, Jaap-Henk Hoepman,
and Flavio D. Garcia. A practical attack on the MI-
FARE Classic. In 8th Smart Card Research and Ad-
vanced Applications Conference (CARDIS 2008),
volume 5189 of Lecture Notes in Computer Sci-
ence, pages 267–282. Springer-Verlag, 2008.

[17] Federal Communications Commission FCC.
Guidelines for evaluating the environmental effects
of radio frequency radiation. Technical report,
Federal Communications Commission FCC, April
2009.

[18] Aurélien Francillon, Boris Danev, and Srdjan
Čapkun. Relay attacks on passive keyless entry
and start systems in modern cars. In 18th Network
and Distributed System Security Symposium (NDSS
2011). The Internet Society, 2011.

[19] Flavio D. Garcia, Gerhard de Koning Gans, Ruben
Muijrers, Peter van Rossum, Roel Verdult, Ronny
Wichers Schreur, and Bart Jacobs. Dismantling MI-
FARE Classic. In 13th European Symposium on
Research in Computer Security (ESORICS 2008),
volume 5283 of Lecture Notes in Computer Sci-
ence, pages 97–114. Springer-Verlag, 2008.

[20] Flavio D. Garcia, Gerhard de Koning Gans, and
Roel Verdult. Exposing iClass key diversification.
In 5th USENIX Workshop on Offensive Technolo-
gies (USENIX WOOT 2011), pages 128–136, San
Francisco, CA, USA, 2011. USENIX Association.

[21] Flavio D. Garcia, Gerhard de Koning Gans, Roel
Verdult, and Milosch Meriac. Dismantling iClass
and iClass Elite. In 17th European Symposium on
Research in Computer Security (ESORICS 2012),
Lecture Notes in Computer Science. Springer-
Verlag, 2012.

[22] Flavio D. Garcia, Peter van Rossum, Roel Verdult,
and Ronny Wichers Schreur. Wirelessly pickpock-
eting a mifare classic card. In 30th IEEE Sym-
posium on Security and Privacy (S&P 2009), pages
3–15. IEEE Computer Society, 2009.

[23] Flavio D. Garcia, Peter van Rossum, Roel Ver-
dult, and Ronny Wichers Schreur. Dismantling Se-
cureMemory, CryptoMemory and CryptoRF. In
17th ACM Conference on Computer and Commu-
nications Security (CCS 2010), pages 250–259.
ACM/SIGSAC, 2010.

[24] Gerhard P. Hancke. Practical attacks on proximity
identification systems (short paper). In 27th IEEE
Symposium on Security and Privacy (S&P 2006),
pages 328–333. IEEE Computer Society, 2006.

[25] Martin E. Hellman. A cryptanalytic time-memory
trade-off. IEEE Transactions on Information The-
ory, 26(4):401–406, 1980.

[26] Motoki Hirano, Mikio Takeuchi, Takahisa Tomoda,
and Kin-Ichiro Nakano. Keyless entry system with
radio card transponder. IEEE Transactions on In-
dustrial Electronics, 35:208–216, 1988.

[27] Sebastiaan Indesteege, Nathan Keller, Orr Dunkel-
mann, Eli Biham, and Bart Preneel. A prac-
tical attack on KeeLoq. In 27th International
Conference on the Theory and Application of
Cryptographic Techniques, Advances in Crypto-
logy (EUROCRYPT 2008), volume 4965 of Lecture
Notes in Computer Science, pages 1–8. Springer-
Verlag, 2008.

[28] Markus Kasper, Timo Kasper, Amir Moradi, and
Christof Paar. Breaking KeeLoq in a flash: on
extracting keys at lightning speed. In 2nd In-
ternational Conference on Cryptology in Africa,
Progress in Cryptology (AFRICACRYPT 2009),
volume 5580 of Lecture Notes in Computer Sci-
ence, pages 403–420. Springer-Verlag, 2009.

[29] Keyline. Transponder guide. http://www.keyline.it/
files/884/transponder guide 16729.pdf, 2012.

[30] Ziv Kfir and Avishai Wool. Picking virtual pockets
using relay attacks on contactless smartcard. In 1st
International Conference on Security and Privacy
for Emerging Areas in Communications Networks
(SecureComm 2005), pages 47–58. IEEE Computer
Society, 2005.

[31] Ilan Kirschenbaum and Avishai Wool. How to
build a low-cost, extended-range RFID skimmer.
In 15th USENIX Security Symposium (USENIX Se-
curity 2006), pages 43–57. USENIX Association,
2006.

15

252  21st USENIX Security Symposium	 USENIX Association

[32] Kerstin Lemke, Ahmad-Reza Sadeghi, and Chris-
tian Stble. An open approach for designing se-
cure electronic immobilizers. In Information Secur-
ity Practice and Experience (ISPEC 2005), volume
3439 of Lecture Notes in Computer Science, pages
230–242. Springer-Verlag, 2005.

[33] Kerstin Lemke, Ahmad-Reza Sadeghi, and Chris-
tian Stüble. Anti-theft protection: Electronic im-
mobilizers. Embedded Security in Cars, pages 51–
67, 2006.

[34] Karsten Nohl. Immobilizer security. In 8th Inter-
national Conference on Embedded Security in Cars
(ESCAR 2010), 2010.

[35] Karsten Nohl, David Evans, Starbug, and Henryk
Plötz. Reverse engineering a cryptographic RFID
tag. In 17th USENIX Security Symposium (USENIX
Security 2008), pages 185–193. USENIX Associ-
ation, 2008.

[36] Transponder IC, Hitag2. Product Data Sheet, Nov
2010. NXP Semiconductors.

[37] Hitag pro. Product Data Sheet, 2011. NXP Semi-
conductors.

[38] Philippe Oechslin. Making a faster cryptana-
lytic time-memory trade-off. In 23rd International
Cryptology Conference, Advances in Cryptology
(CRYPTO 2003), volume 2729 of Lecture Notes
in Computer Science, pages 617–630. Springer-
Verlag, 2003.

[39] Security transponder plus remote keyless entry –
Hitag2 plus, PCF7946AT. Product Profile, Jun
1999. Philips Semiconductors.

[40] Amir Rahmati, Mastooreh Salajegheh, Dan Hol-
comb, Jacob Sorber, Wayne P. Burleson, and Kevin
Fu. TARDIS: Time and remanence decay in
SRAM to implement secure protocols on embed-
ded devices without clocks. In 21st USENIX Secur-
ity Symposium (USENIX Security 2012). USENIX
Association, 2012.

[41] Andrew Rukhin, Juan Soto, James Nechvatal,
Miles Smid, Elaine Barker, Stefan Leigh, Mark
Levenson, Mark Vangel, David Banks, Alan Heck-
ert, James Dray, and San Vo. A statistical test
suite for the validation of random number generat-
ors and pseudo random number generators for cryp-
tographic applications. NIST Special Publication,
pages 800–822, 2001.

[42] Mate Soos, Karsten Nohl, and Claude Castelluc-
cia. Extending SAT solvers to cryptographic prob-
lems. In 12th International Conference on The-
ory and Applications of Satisfiability Testing (SAT
2009), volume 5584 of Lecture Notes in Computer
Science, pages 244–257. Springer-Verlag, 2009.

[43] Frank Stajano and Ross J. Anderson. The resurrect-
ing duckling: Security issues for ad-hoc wireless
networks. In 7th International Workshop on Se-
curity Protocols (WSP 2000), volume 1796 of Lec-
ture Notes in Computer Science, pages 172–182.
Springer-Verlag, 2000.

[44] Siwei Sun, Lei Hu, Yonghong Xie, and Xiangyong
Zeng. Cube cryptanalysis of Hitag2 stream cipher.
In 10th International Conference on Cryptology
and Network Security (CANS 2011), volume 7092
of Lecture Notes in Computer Science, pages 15–
25. Springer-Verlag, 2011.

[45] Petr Štembera and Martin Novotný. Breaking
Hitag2 with reconfigurable hardware. In 14th Eur-
omicro Conference on Digital System Design (DSD
2011), pages 558–563. IEEE Computer Society,
2011.

[46] Pang-Chieh Wang, Ting-Wei Hou, Jung-Hsuan Wu,
and Bo-Chiuan Chen. A security module for car ap-
pliances. International Journal of World Academy
Of Science, Engineering and Technology, 26:155–
160, 2007.

[47] I.C. Wiener. Philips/NXP Hitag2
PCF7936/46/47/52 stream cipher reference
implementation. http://cryptolib.com/ciphers/hitag2/,
2007.

[48] Marko Wolf, Andre Weimerskirch, and Thomas
Wollinger. State of the art: Embedding security in
vehicles. EURASIP Journal on Embedded Systems,
2007:074706, 2007.

[49] Jung-Hsuan Wu, Chien-Chuan Kung, Jhan-Hao
Rao, Pang-Chieh Wang, Cheng-Liang Lin, and
Ting-Wei Hou. Design of an in-vehicle anti-theft
component. In 8th International Conference on In-
telligent Systems Design and Applications (ISDA
2008), volume 1, pages 566–569. IEEE Computer
Society, 2008.

16

USENIX Association 	 21st USENIX Security Symposium  253

Taking proof-based verified computation a few steps closer to practicality
Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg, and Michael Walfish

The University of Texas at Austin

Abstract. We describe GINGER, a built system for un-
conditional, general-purpose, and nearly practical verifi-
cation of outsourced computation. GINGER is based on
PEPPER, which uses the PCP theorem and cryptographic
techniques to implement an efficient argument system (a
kind of interactive protocol). GINGER slashes the query
size and costs via theoretical refinements that are of in-
dependent interest; broadens the computational model
to include (primitive) floating-point fractions, inequality
comparisons, logical operations, and conditional control
flow; and includes a parallel GPU-based implementation
that dramatically reduces latency.

1 Introduction
We are motivated by outsourced computing: cloud com-
puting (in which clients outsource computations to re-
mote computers), peer-to-peer computing (in which
peers outsource storage and computation to each other),
volunteer computing (in which projects outsource com-
putations to volunteers’ desktops), etc.

Our goal is to build a system that lets a client outsource
computation verifiably. The client should be able to send
a description of a computation and the input to a server,
and receive back the result together with some auxiliary
information that lets the client verify that the result is cor-
rect. For this to be sensible, the verification must be faster
than executing the computation locally.

Ideally, we would like such a system to be uncondi-
tional, general-purpose, and practical. That is, we don’t
want to make assumptions about the server (trusted hard-
ware, independent failures of replicas, etc.), we want a
setup that works for a broad range of computations, and
we want the system to be usable by real people for real
computations in the near future.

In principle, the first two properties above have
been achievable for almost thirty years, using powerful
tools from complexity theory and cryptography. Interac-
tive proofs (IPs) and probabilistically checkable proofs
(PCPs) show how one entity (usually called the veri-
fier) can be convinced by another (usually called the
prover) of a given mathematical assertion—without the
verifier having to fully inspect a proof [5, 6, 19, 32]. In
our context, the mathematical assertion is that a given
computation was carried out correctly; though the proof
is as long as the computation, the theory implies—
surprisingly—that the verifier need only inspect the
proof in a small number of randomly-chosen locations
or query the prover a relatively small number of times.

The rub has been the third property: practicality. These
protocols have required expensive encoding of compu-

tations, monstrously large proofs, high error bounds,
prohibitive overhead for the prover, and intricate con-
structions that make the asymptotically efficient schemes
challenging to implement correctly.

However, a line of recent work indicates that ap-
proaches based on IPs and PCPs are closer to practicality
than previously thought [21, 44, 45, 49]. More generally,
there has been a groundswell of work that aims for poten-
tially practical verifiable outsourced computation, using
theoretical tools [11, 12, 20, 24, 25].

Nonetheless, these works have notable limitations.
Only a handful [21, 44, 45, 49] have produced work-
ing implementations, all of which impose high costs on
the verifier and prover. Moreover, their model of com-
putation is arithmetic circuits over finite fields, which
represent non-integers awkwardly, control flow ineffi-
ciently, and comparisons and logical operations only by
degenerating to verbose Boolean circuits. Arithmetic cir-
cuits are well-suited to integer computations and numeri-
cal straight line computations (e.g., multiplying matrices
and computing second moments), but the intersection of
these two domains leaves few realistic applications.

This paper describes a built system, called GINGER,
that addresses these problems, thereby taking general-
purpose proof-based verified computation several steps
closer to practicality. GINGER is an efficient argument
system [37, 38]: an interactive proof system that assumes
the prover to be computationally bounded. Its starting
point is the PEPPER protocol [45] (which is summarized
in Section 2). GINGER’s contributions are as follows.

(1) GINGER demonstrates the strength of linear com-
mitment (§3). This paper proves that PEPPER’s com-
mitment primitive [45], which generalizes the commit-
ment primitive of Ishai et al. [35], is surprisingly pow-
erful: it not only commits an untrusted entity to a func-
tion and extracts evaluations of that function (as previ-
ously shown) but also ensures that the function is linear.
(The primitive embeds a strong linearity test.) This re-
sult sharply reduces the required number of queries (from
500 to 3) and a key error bound, and hence overhead.

(2) GINGER supports a general-purpose programming
model (§4). Although the model does not handle looping
concisely, it includes primitive floating-point quantities,
inequality comparisons, logical expressions, and condi-
tional control flow. Moreover, we have a compiler (de-
rived from Fairplay [39]) that transforms computations
expressed in a general-purpose language to an executable
verifier and prover. The core technical challenge is rep-
resenting computations as additions and multiplications
over a finite field (as required by the verification proto-

1

254  21st USENIX Security Symposium	 USENIX Association

col); for instance, “not equal” and “if/else” do not obvi-
ously map to this formalism, inequalities are problematic
because finite fields are not ordered, and fractions com-
pound the difficulties. GINGER overcomes these chal-
lenges with techniques that, while not deep, require care
and detail.1 These techniques should apply to other pro-
tocols that use arithmetic constraints or circuits.

(3) GINGER exploits parallelism to slash latency (§5).
The prover can be distributed across machines, and some
of its functions are implemented in graphics hardware
(GPUs). Moreover, GINGER’s verifier can use a GPU
for its cryptographic operations. Allowing the verifier to
have a GPU models the present (many computers have
GPUs) and a plausible future in which specialized hard-
ware for cryptographic operations is common.2

We have implemented and evaluated GINGER (§6).
Compared to PEPPER [45], its base, GINGER lowers net-
work costs by 1–2 orders of magnitude (to hundreds
of KB or less in our experiments). The verifier’s costs
drop by multiples and possibly orders of magnitude, de-
pending on the cost of encryption; if we model encryp-
tion as free, the verifier can gain from outsourcing when
batch-verifying as few as 20 computations (down from
3900 in PEPPER). The prover’s CPU costs drop by 10–
15%, which is not much, but our parallel implementa-
tion reduces latency with near-linear speedup. Comput-
ing with rational numbers in GINGER is roughly three
times more expensive than computing with integers, and
arithmetic constraints permit far smaller representations
than a naive use of Boolean or arithmetic circuits.

Despite all of the above, GINGER is not quite ready
for the big leagues. However, PEPPER and GINGER have
made argument systems far more practical (in some cases
improving costs by 23 orders of magnitude over a naive
implementation). We are thus optimistic about ultimately
achieving true practicality.

2 Problem statement and background
Problem statement. A computer V , known as the veri-
fier, has a computation Ψ and some desired input x that
it wants a computer P, known as the prover, to perform.
P returns y, the purported output of the computation, and
then V and P conduct an efficient interaction. This in-
teraction should be cheaper for V than locally comput-
ing Ψ(x). Furthermore, if P returned the correct answer,
it should be able to convince V of that fact; otherwise,
V should be able to reject the answer as incorrect, with
high probability. (The converse will not hold: rejection
does not imply that P returned incorrect output, only that

1We elide some of these details for space; they are documented in a
longer version of this paper [46].

2One may wonder why, if the verifier has this hardware, it needs to
outsource. GPUs are amenable only to certain computations (which
include the cryptographic underpinnings of GINGER).

it misbehaved somehow.) Our goal is that this guarantee
be unconditional: it should hold regardless of whether
P obeys the protocol (given standard cryptographic as-
sumptions about P’s computational power). If P deviates
from the protocol at any point (computing incorrectly,
proving incorrectly, etc.), we call it malicious.

2.1 Tools

In principle, we can meet our goal using PCPs. The PCP
theorem [5, 6] says that if a set of constraints is satisfi-
able (see below), there exists a probabilistically check-
able proof (a PCP) and a verification procedure that ac-
cepts the proof after querying it in only a small number
of locations. On the other hand, if the constraints cannot
be satisfied, then the verification procedure rejects any
purported proof, with probability at least 1 − ε.

To apply the theorem, we represent the computation
as a set of quadratic constraints over a finite field. A
quadratic constraint is an equation of degree 2 that uses
additions and multiplications (e.g., A ·Z1 +Z2 −Z3 ·Z4 =
0). A set of constraints is satisfiable if the variables can
be set to make all of the equations hold simultaneously;
such an assignment is called a satisfying assignment. In
our context, a set of constraints C will have a designated
input variable X and output variable Y (this generalizes
to multiple inputs and outputs), and C(X = x, Y = y)
denotes C with variable X bound to x and Y bound to y.

We say that a set of constraints C is equivalent to a
desired computation Ψ if: for all x, y, C(X = x, Y = y) is
satisfiable if and only if y = Ψ(x). As a simple example,
increment-by-1 is equivalent to the constraint set {Y =
Z + 1, Z = X}. (For convenience, we will sometimes
refer to a given input x and purported output y implicitly
in statements such as, “If constraints C are satisfiable,
then Ψ executed correctly”.) To verify a computation y =
Ψ(x), one could in principle apply the PCP theorem to
the constraints C(X = x, Y = y).

Unfortunately, PCPs are too large to be transferred.
However, if we assume a computational bound on the
prover P, then efficient arguments apply [37, 38]: V is-
sues its PCP queries to P (so V need not receive the entire
PCP). For this to work, P must commit to the PCP be-
fore seeing V’s queries, thereby simulating a fixed proof
whose contents are independent of the queries. V thus ex-
tracts a cryptographic commitment to the PCP (e.g., with
a collision-resistant hash tree [40]) and verifies that P’s
query responses are consistent with the commitment.

This approach can be taken a step further: not even
P has to materialize the entire PCP. As Ishai et al. [35]
observe, in some PCP constructions, which they call lin-
ear PCPs, the PCP itself is a linear function: the verifier
submits queries to the function, and the function’s out-
puts serve as the PCP responses. Ishai et al. thus design
a linear commitment primitive in which P can commit to

2

USENIX Association 	 21st USENIX Security Symposium  255

a linear function (the PCP) and V can submit function
inputs (the PCP queries) to P, getting back outputs (the
PCP responses) as if P itself were a fixed function.

PEPPER [45] refines and implements the outline
above. In the rest of the section, we summarize the lin-
ear PCPs that PEPPER incorporates, give an overview of
PEPPER, and provide formal definitions. Additional de-
tails are in Appendix A.1.

2.2 Linear PCPs, applied to verifying computations

Imagine that V has a desired computation Ψ and desired
input x, and somehow obtains purported output y. To use
PCP machinery to check whether y = Ψ(x), V compiles
Ψ into equivalent constraints C, and then asks whether
C(X = x, Y = y) is satisfiable, by consulting an oracle
π: a fixed function (that depends on C, x, y) that V can
query. A correct oracle π is the proof (or PCP); V should
accept a correct oracle and reject an incorrect one.

A correct oracle π has three properties. First, π is a
linear function, meaning that π(a)+π(b) = π(a+b) for
all a, b in the domain of π. A linear function π : Fn → F
is determined by a vector w; i.e., π(a) = 〈a, w〉 for all
a ∈ Fn. Here, F is a finite field, and 〈a, b〉 denotes the
inner (dot) product of two vectors a and b. The parameter
n is the size of w; in general, n is quadratic in the number
of variables in C [5], but we can sometimes tailor the
encoding of w to make n smaller [45].

Second, one set of the entries in w must be a redundant
encoding of the other entries. Third, w encodes the actual
satisfying assignment to C(X = x, Y = y).

A surprising aspect of PCPs is that each of these prop-
erties can be tested by making a small number of queries
to π; if π is constructed incorrectly, the probability that
the tests pass is upper-bounded by ε > 0. A key test for
us—we return to it in Section 3—is the linearity test [16]:
V randomly selects q1 and q2 from Fn and checks if
π(q1) + π(q2) = π(q1 + q2). The other two PCP tests
are the quadratic correction test and the circuit test.

The completeness and soundness properties of linear
PCPs are defined in Section 2.4. A detailed explanation
of why the mechanics above satisfy those properties is
outside our scope but can be found in [5, 13, 35, 45].

2.3 Our base: PEPPER

We now walk through the three phases of PEPPER [45],
which is depicted in Figure 1. The approach is to com-
pose a linear PCP and a linear commitment primitive that
forces the prover to act like an oracle.

Specify and compute. V transforms its desired compu-
tation, Ψ, into a set of equivalent constraints, C. V sends
Ψ (or C) to P, or P may come with them installed.

To gain from outsourcing, V must amortize the costs of
compiling Ψ to C and generating queries. Thus, V verifies
computations in batches [45] (although they need not be

 x

y
Enc(r)

y ←Ψ(x)

q1, q2, ..., qµ, t

prover (P)

Enc(π(r))

consistency test

π(q1), …, π(qµ), π(t)

linear PCP verifier

linearity test

π(q1), …, π(qµ)

q1, q2, ..., qµ

r

π(r)

t

π(t)

quad. test
circuit test

verifier (V)

π

Figure 1—The PEPPER protocol [45], which is GINGER’s base.
Though not depicted, many of the protocol steps happen in par-
allel, to facilitate batching.

executed in a batch). A batch (of size β) refers to a set of
computations in which Ψ is the same but the inputs are
different; a member of the batch is called an instance.
In the protocol, V has inputs x1, . . . , xβ that it sends to
P (not necessarily all at once), which returns y1, . . . , yβ ;
for each instance i, yi is supposed to equal Ψ(xi).

For each instance i, an honest P stores a proof vector
wi that encodes a satisfying assignment to C(X = xi, Y =
yi); wi is constructed as described in Section 2.2. Being a
vector, wi can also be regarded as a linear function πi—or
an oracle of the kind described above.

Extract commitment. V cannot inspect {πi} directly
(they are functions; written out, they would have an en-
try for each value in a huge domain). Instead, V extracts a
commitment to each πi. To do so, V randomly generates a
commitment vector r ∈ Fn. V then homomorphically en-
crypts each entry of r under a public key pk to get a vector
Enc(pk, r) = (Enc(pk, r1), Enc(pk, r2), . . . , Enc(pk, rn)).
We emphasize that Enc(·) need not be fully homomor-
phic encryption [27] (which remains unfeasibly expen-
sive); PEPPER uses ElGamal [23, 45].

V sends (Enc(pk, r), pk) to P. If P is honest, then πi is
linear, so P can use the homomorphism of Enc(·) to com-
pute Enc(pk,πi(r)) from Enc(pk, r), without learning
r. P replies with (Enc(pk,π1(r)), . . . , Enc(pk,πβ(r))),
which is P’s commitment to {πi}. V then decrypts to get
(π1(r), . . . ,πβ(r)).

Verify. V now generates PCP queries q1, . . . , qµ ∈ Fn,
as described in Section 2.2. V sends these queries to P,
along with a consistency query t = r+

∑µ
j=1 αj ·qj, where

each αj is randomly chosen from F (here, · represents
scalar multiplication).

For ease of exposition, we focus on a single proof πi;
however, the following steps happen β times in parallel,
using the same queries for each of the β instances. If P
is honest, it returns (πi(q1), . . . ,πi(qµ),πi(t)). V checks
that πi(t) = πi(r) +

∑µ
j=1 αj · πi(qj); this is known as

3

256  21st USENIX Security Symposium	 USENIX Association

the consistency test. If P is honest, then this test passes,
by the linearity of π. Conversely, if this test passes then,
regardless of P’s honesty, V can treat P’s responses as the
output of an oracle (this is shown in previous work [35,
45]). Thus, V can use {πi(q1), . . . ,πi(qµ)} in the PCP
tests described in Section 2.2.

2.4 PCPs and arguments defined more formally

The definitions of PCPs [5, 6] and argument systems [19,
32] below are borrowed from [35, 45].

A PCP protocol with soundness error ε includes a
probabilistic polynomial time verifier V that has access to
a constraint set C. V makes a constant number of queries
to an oracle π. This process has the following properties:

• PCP Completeness. If C is satisfiable, then there ex-
ists a linear function π such that, after V queries π,
Pr{V accepts C as satisfiable} = 1, where the proba-
bility is over V’s random choices.

• PCP Soundness. If C is not satisfiable, then
Pr{V accepts C as satisfiable} < ε for all purported
proof functions π̃.

An argument (P, V) with soundness error ε comprises P
and V , two probabilistic polynomial time (PPT) entities
that take a set of constraints C as input and provide:

• Argument Completeness. If C is satisfiable and P has
access to a satisfying assignment z, then the interac-
tion of V(C) and P(C, z) makes V(C) accept C’s satis-
fiability, regardless of V’s random choices.

• Argument Soundness. If C is not satisfiable, then for
every malicious PPT P∗, the probability over V’s ran-
dom choices that the interaction of V(C) and P∗(C)
makes V(C) accept C as satisfiable is less than ε.

3 Protocol refinements in GINGER

In principle, PEPPER solves the problem of verified com-
putation. The reality is less attractive: PEPPER’s com-
putational burden is high, its network costs are absurd,
and its applicability is limited (to straight line numeri-
cal computations). Our system, GINGER, mitigates these
issues: it lowers costs through protocol refinements (pre-
sented in this section), and it applies to a much wider
class of computations (as we discuss in Section 4).

GINGER’s refinements eliminate many queries, by re-
lying on a new analysis of the base commitment primi-
tive. To motivate this analysis, we note that there is some-
thing seemingly redundant in the base machinery (see
Figure 1): why does the linear PCP require a linearity
test (§2.2) if an honest prover depends on the linear-
ity of its function π to pass the linear commitment pro-
tocol’s consistency test (§2.3)? Can we remove one of
these tests, or combine them somehow? The reason that

PEPPER appears to need both tests is that their guarantees
are (so far) subtly different:

• Consistency test (§2.3): First, an honest prover is
guaranteed to pass this test. Second, if the prover—
even a cheating one—passes this test, then it is very
likely bound to some function (as shown in [35, 45]).

• Linearity test (§2.2): This test is needed in case the
prover cheats—it establishes that π is linear (as re-
quired by the rest of the PCP protocol). More accu-
rately, if π is far from being linear, the test is some-
what likely to catch that case.

Yet, it seems unsatisfying that both tests are required
when composing linear commitment and the linear PCP:
can a prover really pass the consistency test systemati-
cally with a function that the linearity test would reject?
In fact, our intuitive dissatisfaction is well-founded: this
paper proves that the commitment primitive (which in-
cludes the consistency test) is far stronger than the linear-
ity test. Put simply, even a cheating prover is very likely
bound to a function that is linear, or almost so.

Practically, this result saves query generation and re-
sponse costs. For one thing, we can eliminate linearity
tests from the protocol. More significantly, we eliminate
amplification: PEPPER needed to repeat the protocol to
turn the linearity test’s guarantee of “somewhat likely”
into “very likely”. In contrast, our result already gives a
guarantee of “very likely”, so no repetition is required.

More broadly, this result means that the commit-
ment primitive is considerably more powerful than
was realized—it efficiently commits an untrusted en-
tity to a linear function and extracts evaluations of that
function—and may apply elsewhere.

Details. The protocol refinements are rooted in a
strengthened soundness analysis. Soundness error (for
example, ε in Section 2.4) refers to the probability that
a protocol or test succeeds when the condition that it is
verifying or testing is actually false. The ideal is to have
a small upper-bound on soundness error.

The soundness of the PCP protocol in Section 2.2 and
Appendix A.1 is connected to the soundness of linearity
testing [16]. Specifically, the base analysis proves that if
the prover returns y �= Ψ(x), then the prover survives all
tests (linearity, quadratic correction, circuit) with prob-
ability less than 7/9 (requiring ρ runs to make (7/9)ρ

small). The 7/9 derives from a result [8] that if the proof
oracle is not “somewhat close” to linear, then the linear-
ity test passes with probability < 7/9 (though fascinat-
ing, this result is inconveniently weak in our context).

Our analysis, detailed in Appendix A.2, establishes
that the commitment protocol binds the prover to a func-
tion that is extremely close to linear (otherwise, the
prover could break the semantic security of the homo-

4

USENIX Association 	 21st USENIX Security Symposium  257

PEPPER [45] GINGER

PCP encoding size (n) s2 + s, in general s2 + s, in general

V’s per-instance CPU costs
Issue commit queries (e + 2c) · n/β (e + 2c) · n/β
Process commit responses d d
Issue PCP queries ρ·(χ·f +�′ ·f +5c)·n/β (χ · f +� · f +2c) ·n/β
Process PCP responses ρ · (2�′ + |x|+ |y|) · f (2�+ |x|+ |y|) · f

P’s per-instance CPU costs
Issue commit responses h · n h · n
Issue PCP responses (ρ · �′ + 1) · f · n (�+ 1) · f · n

Network cost (per instance) ((ρ·�′+1)·|p|+|ξ|)·n/β ((�+1)·|p|+|ξ|)·n/β

PCP soundness error (7/9)ρ = 2.3 · 10−8 κ = 2.6 · 10−6

Overall soundness error 2.4 · 10−8 4.5 · 10−6

|x|, |y|: # of elements in input, output
n: # of components in linear function π (§2.2)
s: # of variables in constraint set (§2.1)
χ: # of constraints in constraint set (§2.1)
� = 3: # of high-order PCP queries in

GINGER (§A.2, §A.3)
�′ = 7: # of high-order PCP queries in

PEPPER (§A.1)
ρ = 70: # of PCP reps. in base scheme (§A.1)
β: batch size (# of instances) (§2.3)
e: cost of encrypting an element in F
d: cost of decrypting an encrypted element
f : cost of multiplying in F
h: cost of ciphertext add plus multiply
c: cost to generate 192-bit pseudorandom #
|p|: length of an element in F
|ξ|: length of an encrypted element in F

Figure 2—High-order costs and error in GINGER, compared to its base (PEPPER [45]), for a computation represented as χ constraints
over s variables (§2.1). The soundness error depends on field size (Appendix A.2); the table assumes |F| = 2128. Many of the
cryptographic costs enter through the commitment protocol (see Section 2.3 or Figure 12); Section 6 quantifies the parameters. The
“PCP” row include the consistency query and check. The network costs slightly underestimate by not including query responses.

morphic encryption used by GINGER and PEPPER). This
results in the PCP soundness error improving from 7/9
to κ, where κ ≈ 4 6

√
1/|F|; this analysis does not depend

on linearity tests, so they can be dropped.
The soundness error is somewhat low by crypto-

graphic standards, but in practice, a failure rate (when
the prover is malicious) of 1 in 200,000 is reasonable.

A further optimization. GINGER reuses some queries
across the quadratic correction and circuit tests; this re-
finement is detailed and justified in Appendix A.3.

Savings. Most significantly, V can take advantage of the
lower soundness error to run ρ = 1 instead of ρ = 70
repetitions of the PCP protocol. Also, per repetition,
V’s work to generate pseudorandom queries decreases
by 3/5 (2/5 coming from the elimination of linearity
tests and 1/5 from reusing queries). These gains are de-
picted in Figure 2, most notably in the reduction from
ρ · �′ ≈ 500 to � = 3 total PCP queries.

The total savings for the verifier depend on the relative
cost of pseudorandom number generation (encapsulated
by c) and encryption (encapsulated by e). These savings
show up in β∗, the minimum batch size (§2.3) at which
V gains from outsourcing. As shown in Section 6.1, the
reduction in β∗ can be several orders of magnitude (when
e is small). Finally, taking |p| = 128 bits and |ξ| = 2 ·
1024 bits, the savings in network costs are 1–2 orders of
magnitude (holding β constant).

4 Broadening the space of computations
GINGER extends to computations over floating-point
fractional quantities and to a restricted general-purpose
programming model that includes inequality tests, log-

ical expressions, conditional branching, etc. To do so,
GINGER maps computations to the constraint-over-finite-
field formalism (§2.1), and thus the core protocol in Sec-
tion 3 applies. In fact, our techniques3 apply to the many
protocols that use the constraint formalism or arithmetic
circuits. Moreover, we have implemented a compiler (de-
rived from Fairplay’s [39]) that transforms high-level
computations first into constraints and then into verifier
and prover executables.

The challenges of representing computations as con-
straints over finite fields include: the “true answer” to the
computation may live outside of the field; sign and or-
dering in finite fields interact in an unintuitive fashion;
and constraints are simply equations, so it is not obvi-
ous how to represent comparisons, logical expressions,
and control flow. To explain GINGER’s solutions, we first
present an abstract framework that illustrates how GIN-
GER broadens the set of computations soundly and how
one can apply the approach to further computations.

Framework to map computations to constraints. To
map a computation Ψ over some domain D (such as the
integers, Z, or the rationals, Q) to equivalent constraints
over a finite field, the programmer or compiler performs
three steps, as illustrated and described below:

Ψ over D
(C1)−−−−→ Ψ over U

(C2)−−−−→ θ(Ψ) over F�(C3)

C over F
3We suspect that many of the individual techniques are known. How-
ever, when the techniques combine, the material is surprisingly hard
to get right, so we will delve into (excruciating) detail, consistent with
our focus on built systems.

5

258  21st USENIX Security Symposium	 USENIX Association

C1 Bound the computation. Define a set U ⊂ D and re-
strict the input to Ψ such that the output and interme-
diate values stay in U.

C2 Represent the computation faithfully in a suitable fi-
nite field. Choose a finite field, F, and a map θ : U →
F such that computing θ(Ψ) over θ(U) ⊂ F is iso-
morphic to computing Ψ over U. (By “θ(Ψ)”, we
mean Ψ with all inputs and literals mapped by θ.)

C3 Transform the finite field version of the computation
into constraints. Write a set of constraints over F that
are equivalent (in the sense of Section 2.1) to θ(Ψ).

4.1 Signed integers and floating-point rationals

We now instantiate C1 and C2 for integer and rational
number computations; the next section addresses C3.

Consider m × m matrix multiplication over N-bit
signed integers. For step C1, each term in the output,∑m

k=1 AikBkj, has m additions of 2N-bit subterms so is
contained in [−m · 22N−1, m · 22N−1); this is our set U.

For step C2, take F = Z/p (the integers mod a prime
p, to be chosen shortly) and define θ : U → Z/p as
θ(u) = u mod p. Observe that θ maps negative integers
to { p+1

2 , p+3
2 , . . . , p − 1}, analogous to how processors

represent negative numbers with a 1 in the most signifi-
cant bit (this technique is standard [17, 50]). Of course,
addition and multiplication in Z/p do not “know” when
their operands are negative. Nevertheless, the compu-
tation over Z/p is isomorphic to the computation over
U, provided that |Z/p| > |U| (as shown in Appendix
B [46]).4 Thus, for the given U, we require p > m · 22N .
Note that a larger p brings larger costs (see Figure 2), so
there is a three-way trade-off among p, m, N.

We now turn to rational numbers. For step C1, we re-
strict the inputs as follows: when written in lowest terms,
their numerators are (Na + 1)-bit signed integers, and
their denominators are in {1, 2, 22, 23, . . . , 2Nb}. Note
that such numbers are (primitive) floating-point num-
bers: they can be represented as a · 2−q, so the decimal
point floats based on q. Now, for m×m matrix multiplica-
tion, the computation does not “leave” U = {a/b : |a| <
2N′

a , b ∈ {1, 2, 22, 23, . . . , 2N′
b}}, for N′

a = 2Na + 2Nb +
log2 m and N′

b = 2Nb [46, Appendix B].
For step C2, we take F = Q/p, the quotient field of

Z/p. Take θ(a
b) = (a mod p, b mod p). For any U ⊂ Q,

there is a choice of p such that the mapped computation
over Q/p is isomorphic to the original computation over
Q [46, Appendix B]. For our U above, p > (m + 1)2 ·
24(Na+Nb) suffices.

Limitations and costs. To understand the limitations
of GINGER’s floating-point representation, consider the
number a · 2−q, where |a| < 2Na and |q| ≤ Nq.

4For space, Appendices B–E appear only in the extended version [46].

To represent this number, the IEEE standard requires
roughly Na + logNq bits [29] while GINGER requires
2 · (max(Na, Nq) + 1) bits [46, Appendix B]. As a re-
sult, GINGER’s range is vastly more limited: with 64 bits,
the IEEE standard can represent numbers on the order of
21023 and 2−1022 (with Na = 53 bits of precision) while
64 bits buys GINGER only numbers on the order of 232

and 2−32 (with Na = 32). Moreover, unlike the IEEE
standard, GINGER does not support a division operation
or rounding.

However, comparing GINGER’s floating-point repre-
sentation to its integer representation, the extra costs are
not terrible. First, the prover and verifier take an extra
pass over the input and output (for implementation rea-
sons; see Appendix B [46] for details). Second, a larger
prime p is required. For example, m × m matrix mul-
tiplication with 32-bit integer inputs requires p to have
at least log2 m + 64 bits; if the inputs are rationals with
Na = Nq = 32, then p requires 2 log2(m + 1) + 256 bits.
Roughly speaking, the end-to-end costs are 3× those of
the integers case (see Section 6.2). Of course, the ac-
tual numbers depend on the computation. (Our compiler
computes suitable bounds with static analysis.)

4.2 General-purpose program constructs

Case study: branch on order comparison. We now il-
lustrate C3 with a case study of a computation, Ψ, that
includes a less-than test and a conditional branch; pseu-
docode for Ψ is in Figure 3. For clarity, we will restrict
Ψ to signed integers; handling rational numbers requires
additional mechanisms [46, Appendix C].

How can we represent the test x1 < x2 using con-
straint equations? The solution is to use special range
constraints that decompose a number into its bits to test
whether it is in a given range; in this case, C<, depicted
in Figure 3, tests whether e = θ(x1) − θ(x2) is in the
“negative” range of Z/p (see Section 4.1). Now, under
the input restriction x1 − x2 ∈ U, C< is satisfiable if and
only if x1 < x2 [46, Appendix C]. Analogously, we can
construct C>= that is satisfiable if and only if x1 ≥ x2.

Finally, we introduce a 0/1 variable M that encodes
a choice of branch, and then arrange for M to “pull in”
the constraints of that branch and “exclude” those of the
other. (Note that the prover need not execute the untaken
branch.) Figure 3 depicts the complete set of constraints,
CΨ; these constraints are satisfiable if and only if the
prover correctly computes Ψ [46, Appendix C].

Logical expressions and conditionals. Besides order
comparisons and if-else, GINGER can represent ==, &&,
and || as constraints. An interesting case is !=: we can
represent Z1!=Z2 with {M · (Z1 − Z2)− 1 = 0} because
this constraint is satisfiable when (Z1 − Z2) has a multi-
plicative inverse and hence is not zero. These constructs
and others are detailed in Appendix D [46].

6

USENIX Association 	 21st USENIX Security Symposium  259

Ψ :

if (X1 < X2)

Y = 3

else

Y = 4

C< =





B0(1 − B0) = 0,
B1(2 − B1) = 0,
...

...
BN−2(2N−2 − BN−2) = 0,
θ(X1)− θ(X2)− (p − 2N−1)−

∑N−2
i=0 Bi = 0





CΨ =





M{C<},
M(Y − 3) = 0,
(1 − M){C>=},
(1 − M)(Y − 4) = 0





Figure 3—Pseudocode for our case study of Ψ, and corresponding constraints CΨ. Ψ’s inputs are signed integers x1, x2; per steps
C1 and C2 (§4.1), we assume x1 − x2 ∈ U ⊂ [−2N−1, 2N−1), where p > 2N . The constraints C< test x1 < x2 by testing whether the
bits of θ(x1)− θ(x2) place it in [p − 2N−1, p). M{C} means multiplying all constraints in C by M and then reducing to degree-2.

Limitations and costs. We compile a subset of SFDL,
the language of the Fairplay compiler [39]. Thus, our
limitations are essentially those of SFDL; notably, loop
bounds have to be known at compile time.

How efficient is our representation? The program con-
structs above mostly have concise constraint representa-
tions. Consider, for instance, comp1==comp2; the equiv-
alent constraint set C consists of the constraints that rep-
resent comp1, the constraints that represent comp2, and
an additional constraint to relate the outputs of comp1
and comp2. Thus, C is the same size as its two compo-
nents, as one would expect.

However, two classes of computations are costly. First,
inequality comparisons require variables and a con-
straint for every bit position; see Figure 3. Second, the
constraints for if-else and ||, as written, seem to be
degree-3; notice, for instance, the M{C} in Figure 3. To
be compatible with the core protocol, these constraints
must be rewritten to be degree-2 (§2.1), which carries
costs. Specifically, if C has s variables and χ constraints,
an equivalent degree-2 representation of M{C} has s+χ
variables and 2 · χ constraints [46, Appendix D].

5 Parallelization and implementation
Many of GINGER’s remaining costs are in the crypto-
graphic operations in the commitment protocol (see Ap-
pendix A.1). To address these costs, we distribute the
prover over multiple machines, leveraging GINGER’s in-
herent parallelism. We also implement the prover and
verifier on GPUs, which raises two questions. (1) Isn’t
this just moving the problem? Yes, and this is good:
GPUs are optimized for the types of operations that bot-
tleneck GINGER. (2) Why do we assume that the verifier
has a GPU? Desktops are more likely than servers to have
GPUs, and the prevalence of GPUs is increasing. Also,
this setup models a future in which specialized hardware
for cryptographic operations is common.

Parallelization. To distribute GINGER’s prover, we run
multiple copies of it (one per host), each copy receiving
a fraction of the batch (Section 2.3). In this configura-
tion, the provers use the Open MPI [2] message-passing
library to synchronize and exchange data.

To further reduce latency, each prover offloads work
to a GPU (see also [49] for an independent study of GPU

hardware in the context of [21]). We exploit three levels
of parallelism here. First, the prover performs a cipher-
text operation for each component in the commitment
vector (§2.3); each operation is (to first approximation)
separate. Second, each operation computes two indepen-
dent modular exponentiations (the ciphertext of an ElGa-
mal encryption has two elements). Third, modular expo-
nentiation itself admits a parallel implementation (each
input is a multiprecision number encoded in multiple ma-
chine words). Thus, in our GPU implementation, a group
of CUDA [1] threads computes each exponentiation.

We also parallelize the verifier’s encryption work dur-
ing the commitment phase (§2.3), using the approach
above plus an optimization: the verifier’s exponentiations
are fixed base, letting us memoize intermediate squares.
We implement exponentiations for the prover and veri-
fier with the libgpucrypto library of SSLShader [36],
modified to implement the memoization.

Implementation details. Our compiler consists of two
stages, which a future publication will detail. The front-
end compiles a subset of Fairplay’s SFDL [39] to con-
straints; it is derived from Fairplay and is implemented
in 5294 lines of Java, starting from Fairplay’s 3886 lines
(per [51]). The back-end transforms constraints into C++
code that implements the verifier and prover and then in-
vokes gcc; this component is 1105 lines of Python code.

For efficiency, PEPPER [45] introduced specialized
PCP protocols for certain computations. For some exper-
iments we use specialized PCPs in GINGER also; in these
cases we write the prover and verifier manually, which
typically requires a few hundred lines of C++. Automat-
ing the compilation of specialized PCPs is future work.

The verifier and prover are separate processes that ex-
change data using Open MPI [2]. GINGER uses the El-
Gamal cryptosystem [23] with 1024-bit keys.

6 Experimental evaluation
Our evaluation answers the following questions:
• What is the effect of the protocol refinements (§3)?
• What are the costs of supporting rational numbers and

the additional program structures (§4)?
• What is GINGER’s speedup from parallelizing (§5)?

Figure 4 summarizes the results.

7

260  21st USENIX Security Symposium	 USENIX Association

GINGER’s protocol refinements reduce per-instance network costs by 25–30× (to hundreds of KBs for the computations
we study), prover CPU costs by about 10–14% (leaving them still high), and break-even batch size (β∗) by about 4×. §6.1

With accelerated encryption GINGER breaks even from outsourcing short computations at small batch sizes; for 400×400
matrix multiplication, the verifier gains from outsourcing at a batch size of 20 (tens of seconds of computation).

§6.1

Rational arithmetic costs roughly 3× integer arithmetic under GINGER (but much more than native floating-point). §6.2

Parallelizing results in near-linear reduction in the prover’s latency. §6.3

Figure 4—Summary of main evaluation results.

computation (Ψ) O(·) input domain (see §4.1) size of F s n default local

matrix mult. O(m3) 32-bit signed integers 128 bits 2m2 m3 m = 200 800 ms
matrix mult. (Q) O(m3) rationals (Na = 32, Nb = 32) 320 bits 2m2 m3 m = 100 5.90 ms
deg-2 poly. eval. O(m2) 32-bit signed integers 128 bits m m2 m = 100 0.40 ms
deg-3 poly. eval. O(m3) 32-bit signed integers 192 bits m m3 m = 200 160 ms
m-Hamming dist. O(m2) 32-bit unsigned 128 bits 2m2 + m 2m3 m = 100 0.90 ms
bisection method O(m2) rationals (Na = 32, Nb = 5) 320 bits 16 · (m + |C<|) 256 · (m + |C<|)2 m = 25 180 ms

Figure 5—Benchmark computations. s is the number of constraint variables; s affects n, which is the size of V’s queries and of P’s
linear function π (see Figure 2). Only high-order terms are reported for n. The latter two columns give our experimental defaults and
the cost of local computation (i.e., no outsourcing) at those defaults. In polynomial evaluation, V and P hold a polynomial; the input
is values for the m variables. The latter two computations exercise the program constructs in Section 4.2. In m-Hamming distance,
V and P hold a fixed set of strings; the input is a length m string, and the output is a vector of the Hamming distance between the
input and the set of strings. Bisection method refers to root-finding via bisection: both V and P hold a degree-2 polynomial in m
variables, the input is two m-element endpoints that bracket a root, and the output is a small interval that contains the root.

We use six benchmark computations, summarized in
Figure 5 (Appendix E [46] has details). For bisection
method and degree-2 polynomial evaluation, V and P
were produced by our compiler; for the other compu-
tations, we use tailored encodings (see Section 5). We
implemented and analyzed other computations (e.g., edit
distance and circle packing) but found that V gained from
outsourcing only at implausibly large batch sizes.

Method and setup. We measure latency and comput-
ing cycles used by the verifier and the prover, and the
amount of data exchanged between them. We account
for the prover’s cost in per-instance terms. Because the
verifier amortizes costs over a batch (§2.3), we focus on
the break-even batch size, β∗: the batch size at which the
verifier’s CPU cost from GINGER equals the cost of com-
puting the batch locally. We measure local computation
using implementations built on the GMP library (except
for matrix multiplication over rationals, where we use na-
tive floating-point).

For each result that we report, we run at least three ex-
periments and take the averages (the standard deviations
are always within 5% of the means). We measure CPU
time using getrusage, latency using PAPI’s real time
counter [3], and network costs by recording the number
of application-level bytes transferred.

Our experiments use a cluster at the Texas Advanced
Computing Center (TACC). Each machine is configured
identically and runs Linux on an Intel Xeon processor
E5540 2.53 GHz with 48GB of RAM. Experiments with
GPUs use machines with an NVIDIA Tesla M2070. Each

GPU has 448 CUDA cores and 6GB of memory.

Validating the cost model. We will sometimes predict
β∗, V’s costs, and P’s costs by using our cost model
(Figure 2), so we now validate this model. We run mi-
crobenchmarks to quantify the model’s parameters—e is
reported in this section; Appendix E [46] quantifies the
other parameters—and then compare the parameterized
model to GINGER’s measured performance. GINGER’s
empirical results are at most 2%–15% more than are pre-
dicted by the model. However, local computation costs
about 1.2–4.0 times more than is predicted; we think that
the divergence results from adverse caching effects that
increase the cost of a multiplication. Thus, we expect the
verifier to break even at batch sizes that are about a factor
of 1.2–4.0 smaller than predicted by the model.

6.1 The effect of GINGER’s protocol refinements

We begin with m × m matrix multiplication (m =
100, 200) and degree-3 polynomial evaluation (m =
100, 200), and batch size of β = 5000. We report per-
instance network and CPU costs: the total network and
CPU costs over the batch, divided by β.

Figure 6 depicts network costs. For matrix multipli-
cation, these are about the same as the cost to send the
inputs and receive the outputs; for polynomial evalua-
tion, these are about 10 times the size of the inputs and
outputs. Also, GINGER improves on PEPPER by 20–30×.

In this experiment, GINGER’s prover incurs about 10–
14% less CPU time compared to PEPPER (estimated us-
ing a cost model from [45]) but still takes tens of min-
utes per-instance; this is obviously a lot, but we reduce

8

USENIX Association 	 21st USENIX Security Symposium  261

10
0

10
2

10
4

10
6

matrix mult
(m=100)

matrix mult
(m=200)

d-3 poly eval
(m=100)

d-3 poly eval
(m=200)

n
et

w
o

rk
 c

o
st

s
(K

B
)

in
p

u
t+

o
u

tp
u

t

in
p

u
t+

o
u

tp
u

t

in
p

u
t+

o
u

tp
u

t

in
p

u
t+

o
u

tp
u

t

P
ep

p
er

P
ep

p
er

P
ep

p
er

P
ep

p
er

G
in

g
er

G
in

g
er

G
in

g
er

G
in

g
er

Figure 6—Per-instance network costs of GINGER and its base
(PEPPER [45]), compared to the size of the inputs and outputs.
At this batch size (β = 5000), GINGER’s refinements reduce
per-instance network costs by a factor of 25–30 compared to
PEPPER. GINGER’s network costs here are hundreds of KB or
less. The y-axis is log-scaled.

PEPPER GINGER

local 1.1 s 1.1 s

CPU

β∗ 13000 4100
verifier aggregate 3.9 hr 1.3 hr
prover aggregate 5.0 yr 1.6 yr
prover per-instance 3.5 hr 3.3 hr

GPU

β∗ 8700 2300
verifier aggregate 2.7 hr 43.4 min
prover aggregate 3.5 yr 320 days
prover per-instance 3.5 hr 3.3 hr

crypto
hardware

β∗ 3900 20
verifier aggregate 1.2 hr 22.3 s
prover aggregate 1.6 yr 2.8 days
prover per-instance 3.5 hr 3.3 hr

Figure 7—Break-even batch sizes (β∗) and predicted running
times of prover and verifier at β = β∗, for matrix multiplication
(m = 400), under three models of the encryption cost. The
verifier’s per-instance work is not depicted because it equals the
local running time, by definition of β∗. The local running time
is high in part because the local implementation uses GMP.

latency by parallelizing (§6.3). For this computation and
at this batch size (β = 5000), GINGER’s verifier takes a
few hundreds of milliseconds per-instance, less than lo-
cally computing using our baseline of GMP.

Amortizing the verifier’s costs. Batching is both a lim-
itation and a strength of GINGER: GINGER’s verifier must
batch to gain from outsourcing but can batch to drive per-
instance overhead arbitrarily low. Nevertheless, we want
break-even batch sizes (β∗) to be as small as possible.
But β∗ mostly depends on e, the cost of encryption (Fig-
ure 2), because after our refinements the verifier’s main
burden is creating Enc(pk, r) (see §2.3), the cost of which
amortizes over the batch.

What values of e make sense? We consider three sce-
narios: (1) the verifier uses a CPU for encryptions, (2)
the verifier offloads encryptions to a GPU, and (3) the
verifier has special-purpose hardware that can only per-
form encryptions. (See Section 5 for motivation.) Under
scenario (1), we measure e = 72.1µs on a 2.5 GHz CPU.

mat. mult. mat. mult. (Q)

local 17.6 ms 5.90 ms
verifier per-instance 17.6 ms 80.2 ms
verifier aggregate 76.1 s 5.7 min
prover per-instance 3.1 min 9.4 min
prover aggregate 9.3 days 28 days

Figure 8—Predicted running times of GINGER’s verifier and
prover for matrix multiplication (m = 100), under integer and
floating-point inputs, at β = 4300 (the break-even batch size
for this computation over integers). The “local” row refers to
GMP arithmetic for Z and native floating-point arithmetic for
Q. Handling rationals costs GINGER roughly 3× more than
handling integers, but both are still far from native.

computation (Ψ) # Boolean gates (est.) # constraint vars.

m-Hamming dist. 1.3 · 106 2 · 104

bisection method 3.0 · 108 1528

Figure 9—GINGER’s constraints compared to Boolean circuits,
for m-Hamming distance (m = 100) and bisection method
(m = 25). The Boolean circuits are estimated using the un-
modified Fairplay [39] compiler. GINGER’s constraints are not
concise but are far more so than Boolean circuits.

Under scenario (3), we take e = 0µs. What about sce-
nario (2)? Our cost model concerns CPU costs, so we
need an exchange rate between GPU and CPU exponen-
tations. We make a crude estimate: we measure the num-
ber of encryptions per second achievable on an NVIDIA
Tesla M2070 (which is 180,000) and on an Intel 2.5
GHz CPU (which is 13,700), normalize by the dollar
cost of the chips, and obtain that their throughput-per-
dollar ratio is 1.8×. We thus (very conservatively) take
e = 72.1/1.8 = 40µs.

We plug these three values of e into the cost model in
Figure 2, set the cost under GINGER equal to the cost of
local computing, and solve for β∗. The values of β∗ are
4150 (CPU), 2300 (crude GPU estimate), and 20 (crypto
hardware). We also use the model to predict V’s and P’s
costs at β∗, under PEPPER and GINGER. Figure 7 summa-
rizes. GINGER is very sensitive to the value of e because
its refinements have eliminated many of the other costs.
Moreover, the aggregate verifier computing time drops
significantly under all three cost models. The prover’s
per-instance work is mostly unaffected, but as the batch
size decreases, so does its aggregate work.

6.2 Evaluating GINGER’s computational model

To understand the costs of the floating-point representa-
tion (§4.1), we compare it to two baselines: GINGER’s
signed integer representation and the computation exe-
cuted locally, using the CPU’s floating point unit. Our
benchmark application is matrix multiplication (m =
100). Figure 8 details the comparison.

We also consider GINGER’s general-purpose program
constructs (§4). Our baseline is Boolean circuits (we are

9

262  21st USENIX Security Symposium	 USENIX Association

 0

 20

 40

 60

 80

matrix mult degree-2 poly eval
(compiler-output code)

degree-3 poly eval m-Hamming distance bisection method
(compiler-output code)

sp
ee

d
u
p

1
 c

o
re

1
 c

o
re

1
 c

o
re

1
 c

o
re

1
 c

o
re

4
 c

o
re

s

4
 c

o
re

s

4
 c

o
re

s

4
 c

o
re

s

4
 c

o
re

s

1
 G

P
U

1
 G

P
U

1
 G

P
U

1
 G

P
U

1
 G

P
U3
 G

P
U

s

3
 G

P
U

s

3
 G

P
U

s

3
 G

P
U

s

3
 G

P
U

s

6
0
 c

o
re

s

6
0
 c

o
re

s

6
0
 c

o
re

s

6
0
 c

o
re

s

6
0
 c

o
re

s

6
0
 c

o
re

s
 (

id
ea

l)

6
0
 c

o
re

s
 (

id
ea

l)

6
0
 c

o
re

s
 (

id
ea

l)

6
0
 c

o
re

s
 (

id
ea

l)

6
0
 c

o
re

s
 (

id
ea

l)

Figure 10—Latency speedup observed by GINGER’s verifier when the prover is parallelized. We run with m = 100,β = 150 for
matrix multiplication and degree-3 polynomial evaluation; m = 100,β = 1500 for degree-2 polynomial evaluation; m = 100,β =
15 for m-Hamming distance; and m = 25,β = 15 for bisection method. GINGER’s prover achieves near-linear speedups except
when the problem sizes are small and hence the overhead from parallelizing is significant (e.g., degree-2 polynomial evaluation).

unaware of efficient arithmetic representations of these
constructs). We compare the number of Boolean circuit
gates and the number of GINGER’s arithmetic constraint
variables, since these determine the proving and verify-
ing costs under the respective formalisms (see [5, 45]).
Taken individually, GINGER’s constructs (<=, &&, etc.)
are the same cost or more than those of Boolean cir-
cuits (e.g., || introduces auxiliary variables). However,
Boolean circuits are in general far more verbose: they
represent quantities by their bits (which GINGER does
only when computing inequalities). Figure 9 gives a
rough end-to-end comparison.

6.3 Scalability of the parallel implementation

To demonstrate the scalability of GINGER’s paralleliza-
tion, we run the prover using many CPU cores, many
GPUs, and many machines. We measure end-to-end la-
tency, as observed by the verifier. Figure 10 summarizes
the results for various computations. In most cases, the
speedup is near-linear.

7 Related work
A substantial body of work achieves two of our goals—
it is general-purpose and practical—but it makes strong
assumptions about the servers (e.g., trusted hardware).
There is also a large body of work on protocols for
special-purpose computation. We regard this work as
orthogonal to our efforts; for a survey of this land-
scape, see [45]. Herein, we focus on approaches that are
general-purpose and unconditional.

Homomorphic encryption and secure multi-party
protocols. Homomorphic encryption (which enables
computation over ciphertext) and secure multi-party pro-
tocols (in which participants compute over private data,
revealing only the result [34, 39, 52]) provide only pri-
vacy guarantees, but one can build on them for verifiable
computation. For instance, the Boneh-Goh-Nissim ho-
momorphic cryptosystem [18] can be adapted to evaluate
circuits, Groth uses homomorphic commitments to pro-
duce a zero-knowledge argument protocol [33], and Ap-
plebaum et al. use secure multi-party protocols for ver-

ifying computations [4]. Also, Gentry’s fully homomor-
phic encryption [27] has engendered protocols for verifi-
able non-interactive computation [20, 24, 26]. However,
despite striking improvements [28, 42, 47], the costs of
hiding inputs (among other expenses) prevent any of the
aforementioned verified computation schemes from get-
ting close to practical (even by our relaxed standards).

PCPs, argument systems, and interactive proofs. Ap-
plying proof systems to verifiable computation is stan-
dard in the theory community [5–7, 10, 15, 32, 37, 38,
41], and the asymptotics continue to improve [13, 14, 22,
43]. However, none of this work has paid much attention
to building systems.

Very recently, researchers have begun to explore using
this theory for practical verified outsourced computation.
In a recent preprint, Ben-Sasson et al. [12] investigate
when PCP protocols might be beneficial for outsourcing.
Since many of the protocols require representing compu-
tations as constraints, Ben-Sasson et al. [11] study im-
proved reductions to constraints from a RAM model of
computation. And Gennaro et al. [25] give a new charac-
terization of NP to provide asymptotically efficient argu-
ments without using PCPs.

However, as far as we know, only two research groups
have made serious efforts toward practical systems. Our
previous work [44, 45] built upon the efficient argument
system of Ishai et al. [35]. In contrast, Cormode, Mitzen-
macher, and Thaler [21] (hereafter, CMT) built upon the
protocol of Goldwasser et al. [31], and a follow-up effort
studies a GPU-based parallel implementation [49].

Comparison of GINGER and CMT [21, 49]. We
compared three different implementations: CMT-native,
CMT-GMP, and GINGER. CMT-native refers to the code
and configuration released by Thaler et al. [49]; it works
over a small field and thereby exploits highly efficient
machine arithmetic but restricts the inputs to the compu-
tation unrealistically (see Section 4.1). CMT-GMP refers
to an implementation based on CMT-native but modified
by us to use the GMP library for multi-precision arith-
metic; this allows more realistic computation sizes and
inputs, as well as rational numbers.

10

USENIX Association 	 21st USENIX Security Symposium  263

m domain component CMT-native CMT-GMP GINGER

256 Z verifier 40 ms 0.6 s 0.3 s
prover 22 min 2.5 hr 36 min
network 88 KB 0.3 MB 1.1 MB

128 Q verifier – 260 ms 190 ms
prover – 1.0 hr 21 min
network – 1.8 MB 1.4 MB

Figure 11—CMT [21] compared to GINGER, in terms of amor-
tized CPU and network costs (GINGER’s total costs are divided
by a batch size of β=5000 instances), for m × m matrix mul-
tiplication. CMT-native uses native data types but is restricted
to small problem sizes and domains. CMT-GMP uses the GMP
library for multi-precision arithmetic (as does GINGER).

We perform two experiments using m×m matrix mul-
tiplication. Our testbed is the same as in Section 6. In the
first one, we run with m = 256 and integer inputs. For
CMT-GMP and GINGER, the inputs are 32-bit unsigned
integers, and the prime (the field modulus) is 128 bits.
For CMT-native, the prime is 261 − 1. In the second ex-
periment, m is 128, the inputs are rational numbers (with
Na = Nb = 32; see Section 4.1), the prime is 320 bits,
and we experiment only with CMT-GMP and GINGER.

We measure total CPU time and network cost; for
CMT, we measure “network” traffic by counting bytes
(the CMT verifier and prover run in the same process
and hence the same machine). Each reported datum is an
average over 3 sample runs; there is little experimental
variation (less than 5% of the means).

Figure 11 depicts the results. CMT incurs a significant
penalty when moving from native to GMP (and hence
to realistic problem sizes). Comparing CMT-GMP and
GINGER, the network and prover costs are similar (al-
though network costs for CMT reflect high fixed over-
head for their circuit). The per-instance verifier costs
are also similar, but GINGER is batch verifying whereas
CMT does not need to do so (a significant advantage).

A qualitative comparison is as follows. On the one
hand, CMT does not require cryptography, has better
asymptotic prover and network costs, and for some com-
putations the verifier does not need batching to gain from
outsourcing [49]. On the other hand, CMT applies to a
smaller set of computations: if the computation is not ef-
ficiently parallelizable or does not naturally map to arith-
metic circuits (e.g., it has order comparisons or condi-
tionality), then CMT in its current form will be inappli-
cable or inefficient, respectively. Ultimately, GINGER and
CMT should be complementary, as one can likely ease or
eliminate some of the restrictions on CMT by incorporat-
ing the constraint formalism together with batching [48].

8 Summary and conclusion
This paper is a contribution to the emerging area of
practical PCP-based systems for unconditional verifiable

computation. GINGER has combined theoretical refine-
ments (slashing query costs and network overhead); a
general computational model (including fractions and
standard program constructs) with a compiler; and a mas-
sively parallel implementation that takes advantage of
modern hardware. Together, these changes have brought
us closer to a truly deployable system. Nevertheless,
much work remains: the efficiency of the verifier depends
on special hardware, the costs for the prover are still too
high, and looping cannot yet be handled concisely.

Acknowledgments

Detailed attention from Edmund L. Wong substantially
clarified this paper. Yuval Ishai, Mike Lee, Bryan Parno,
Mark Silberstein, Chung-chieh (Ken) Shan, Sara L. Su,
Justin Thaler, and the anonymous reviewers gave useful
comments that improved this draft. The Texas Advanced
Computing Center (TACC) at UT supplied computing
resources. We thank Jane-Ellen Long, of USENIX, for
her good nature and inexhaustible patience. The research
was supported by AFOSR grant FA9550-10-1-0073 and
by NSF grants 1055057 and 1040083.

Our code and experimental configurations are avail-
able at http://www.cs.utexas.edu/pepper

References
[1] CUDA (http://developer.nvidia.com/what-cuda).
[2] Open MPI (http://www.open-mpi.org).
[3] PAPI: Performance Application Programming Interface.
[4] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to

soundness: efficient verification via secure computation. In
ICALP, 2010.

[5] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy.
Proof verification and the hardness of approximation problems.
J. of the ACM, 45(3):501–555, May 1998.

[6] S. Arora and S. Safra. Probabilistic checking of proofs: a new
characterization of NP. J. of the ACM, 45(1):70–122, Jan. 1998.

[7] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking
computations in polylogarithmic time. In STOC, 1991.

[8] M. Bellare, D. Coppersmith, J. Håstad, M. Kiwi, and M. Sudan.
Linearity testing in characteristic two. IEEE Transactions on
Information Theory, 42(6):1781–1795, Nov. 1996.

[9] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient
probabilistically checkable proofs and applications to
approximations. In STOC, 1993.

[10] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson.
Multi-prover interactive proofs: how to remove intractability
assumptions. In STOC, 1988.

[11] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast
reductions from RAMs to delegatable succinct constraint
satisfaction problems. Feb. 2012. Cryptology eprint 071.

[12] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. On the
concrete-efficiency threshold of probabilistically-checkable
proofs. ECCC, (045), Apr. 2012.

[13] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and
S. Vadhan. Robust PCPs of proximity, shorter PCPs and
applications to coding. SIAM J. on Comp., 36(4):889–974, Dec.
2006.

11

264  21st USENIX Security Symposium	 USENIX Association

[14] E. Ben-Sasson and M. Sudan. Short PCPs with polylog query
complexity. SIAM J. on Comp., 38(2):551–607, May 2008.

[15] M. Blum and S. Kannan. Designing programs that check their
work. J. of the ACM, 42(1):269–291, 1995.

[16] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting
with applications to numerical problems. J. of Comp. and Sys.
Sciences, 47(3):549–595, Dec. 1993.

[17] D. Boneh and D. M. Freeman. Homomorphic signatures for
polynomial functions. In EUROCRYPT, 2011.

[18] D. Boneh, E. J. Goh, and K. Nissim. Evaluating 2-DNF
formulas on ciphertexts. In TCC, 2005.

[19] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure
proofs of knowledge. J. of Comp. and Sys. Sciences,
37(2):156–189, 1988.

[20] K.-M. Chung, Y. Kalai, and S. Vadhan. Improved delegation of
computation using fully homomorphic encryption. In CRYPTO,
2010.

[21] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified
computation with streaming interactive proofs. In ITCS, 2012.

[22] I. Dinur. The PCP theorem by gap amplification. J. of the ACM,
54(3), June 2007.

[23] T. ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information
Theory, 31:469–472, 1985.

[24] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In
CRYPTO, 2010.

[25] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic
span programs and succinct NIZKs without PCPs. Apr. 2012.
Cryptology eprint 215.

[26] R. Gennaro and D. Wichs. Fully homomorphic message
authenticators. May 2012. Cryptology eprint 290.

[27] C. Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009.

[28] C. Gentry, S. Halevi, and N. Smart. Homomorphic evaluation of
the AES circuit. In CRYPTO, 2012.

[29] D. Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 23(1):5–48,
Mar. 1991.

[30] O. Goldreich. Foundations of Cryptography: II Basic
Applications. Cambridge University Press, 2004.

[31] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating
computation: Interactive proofs for muggles. In STOC, 2008.

[32] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems. SIAM J. on Comp.,
18(1):186–208, 1989.

[33] J. Groth. Linear algebra with sub-linear zero-knowledge
arguments. In CRYPTO, 2009.

[34] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure
two-party computation using garbled circuits. In USENIX
Security, 2011.

[35] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient arguments
without short PCPs. In Conference on Computational
Complexity (CCC), 2007.

[36] K. Jang, S. Han, S. Han, S. Moon, and K. Park. SSLShader:
Cheap SSL acceleration with commodity processors. In NSDI,
2011.

[37] J. Kilian. A note on efficient zero-knowledge proofs and
arguments (extended abstract). In STOC, 1992.

[38] J. Kilian. Improved efficient arguments (preliminary version). In
CRYPTO, 1995.

[39] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay—a secure
two-party computation system. In USENIX Security, 2004.

[40] R. C. Merkle. Digital signature based on a conventional
encryption function. In CRYPTO, 1987.

[41] S. Micali. Computationally sound proofs. SIAM J. on Comp.,
30(4):1253–1298, 2000.

[42] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can
homomorphic encryption be practical? In ACM Workshop on
Cloud Computing Security, 2011.

[43] A. Polishchuk and D. A. Spielman. Nearly-linear size
holographic proofs. In STOC, 1994.

[44] S. Setty, A. J. Blumberg, and M. Walfish. Toward practical and
unconditional verification of remote computations. In HotOS,
2011.

[45] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish.
Making argument systems for outsourced computation practical
(sometimes). In NDSS, 2012.

[46] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish. Taking proof-based verified computation a few steps
closer to practicality (extended version). Technical Report
TR-12-14, Dept. of CS, UT Austin, June 2012.

[47] N. Smart and F. Vercauteren. Fully homomorphic SIMD
operations. Aug. 2011. Cryptology eprint 133.

[48] J. Thaler. Personal communication, June 2012.
[49] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister.

Verifiable computation with massively parallel interactive
proofs. In USENIX HotCloud Workshop, June 2012. Full paper
at http://arxiv.org/abs/1202.1350, Feb. 2012.

[50] C. Wang, K. Ren, J. Wang, and K. M. R. Urs. Harnessing the
cloud for securely outsourcing large-scale systems of linear
equations. In Intl. Conf. on Dist. Computing Sys. (ICDCS), 2011.

[51] D. A. Wheeler. SLOCCount.
[52] A. C.-C. Yao. How to generate and exchange secrets. In FOCS,

1986.

A Efficient arguments with linear PCPs
but no linearity tests

Whereas previous work [35, 45] established that the
commitment protocol in phases 2 and 3 of PEPPER (§2.3)
binds the prover to a particular function, there were no
constraints on that function. The principal result of this
section is that the prover is actually bound to a function
that is linear, or very nearly so. As a consequence, we can
eliminate linearity testing from the PCP protocol. Fur-
thermore, the error bound from one run of this modified
PCP protocol is far stronger (lower) than was known.

This section describes the base protocols (A.1), states
the refinements and proves their soundness (A.2), and de-
scribes a few other optimizations (A.3).

A.1 Base protocols

GINGER uses a linear commitment protocol that is bor-
rowed from PEPPER [45]; this protocol is depicted in Fig-
ure 12.5 As described in Section 2.3, PEPPER composes
this protocol and a linear PCP; that PCP is depicted in
Figure 13. The purpose of {γ0, γ1, γ2} in this figure is to
make a maliciously constructed oracle unlikely to pass

5Like PEPPER, GINGER verifies in batches (§2.3), which changes the
protocols a bit; see [45, Appendix C] for details.

12

USENIX Association 	 21st USENIX Security Symposium  265

Commit+Multidecommit
The protocol assumes an additive homomorphic encryption scheme (Gen, Enc, Dec) over a finite field, F.
Commit phase
Input: Prover holds a vector w ∈ Fn, which defines a linear function π : Fn → F, where π(q) = 〈w, q〉.
1. Verifier does the following:

• Generates public and secret keys (pk, sk) ← Gen(1k), where k is a security parameter.
• Generates vector r ∈R Fn and encrypts r component-wise, so Enc(pk, r) = (Enc(pk, r1), . . . , Enc(pk, rn)).
• Sends Enc(pk, r) and pk to the prover.

2. Using the homomorphism in the encryption scheme, the prover computes e ← Enc(pk,π(r)) without learning r. The prover
sends e to the verifier.

3. The verifier computes s ← Dec(sk, e), retaining s and r.

Decommit phase
Input: the verifier holds q1, . . . , qµ ∈ Fn and wants to obtain π(q1), . . . ,π(qµ).

4. The verifier picks µ secrets α1, . . . ,αµ ∈R F and sends to the prover (q1, . . . , qµ, t), where t = r + α1q1 + · · ·+ αµqµ ∈ Fn.

5. The prover returns (a1, a2, . . . , aµ, b), where ai, b ∈ F. If the prover behaved, then ai = π(qi) for all i ∈ [µ], and b = π(t).

6. The verifier checks: b ?
= s + α1a1 + · · ·+ αµaµ. If so, it outputs (a1, a2, . . . , aµ). If not, it rejects, outputting ⊥.

Figure 12—The commitment protocol of PEPPER [45], which generalizes a protocol of Ishai et al. [35]. q1, . . . , qµ are the PCP
queries, and n is the size of the proof encoding. The protocol is written in terms of an additive homomorphic encryption scheme, but
as stated elsewhere [35, 45], the protocol can be modified to work with a multiplicative homomorphic scheme, such as ElGamal [23].

the circuit test; to generate the {γi}, V multiplies each
constraint by a random value and collects like terms, a
process described in [5, 13, 35, 45]. The completeness
and soundness of this PCP are explained in those sources,
and our notation is borrowed from [45]. Here we just as-
sert that the soundness error of this PCP is ε = (7/9)ρ;
that is, if the proof π is incorrect, the verifier detects that
fact with probability greater than 1− ε. To make ε small,
PEPPER takes ρ = 70.

A.2 Stronger soundness analysis and consequences

GINGER retains the (P, V) argument system of PEP-
PER [45] but uses a modified PCP protocol (depicted in
Figure 14) that makes the following changes to the base
PCP protocol (Figure 13):

• Remove the linearity queries and tests.

• Set ρ = 1.

Theorem A.1. The (P, V) described above is an argu-
ment system with soundness εG ≈ 6

√
1/|F|. (The exact

value of εG depends on intermediate lemmas and will be
given at the end of the section.)

We will prove this theorem at the end of this section.
To build up to the proof, we first strengthen the defini-
tion of a linear commitment primitive. We note that only
the third property (linearity) in the definition is new; the
rest is taken from [45, Appendix B], which itself heavily
borrows framing, notation, and text from Ishai et al. [35].

Definition A.1 (Commitment to a function with multi-
ple decommitments (CFMD)). Define a two-phase ex-
periment between two probabilistic polynomial time ac-

tors (S, R) (a sender and receiver, which correspond to
our prover and verifier) in an environment E that gener-
ates F, w and Q = (q1, . . . , qµ). In the first phase, the
commit phase, S has w, and S and R interact, based on
their random inputs. In the decommit phase, E gives Q
to R, and S and R interact again, based on further ran-
dom inputs. At the end of this second phase, R outputs
A = (a1, . . . , aµ) ∈ Fµ or ⊥. A CFMD meets the fol-
lowing properties:

• Correctness. At the end of the decommit phase, R
outputs π(qi) = 〈w, qi〉 (for all i), if S is honest.

• εB-Binding. Consider the following experiment. The
environment E produces two (possibly distinct) µ-
tuples of queries: Q = (q1, . . . , qµ) and Q̂ =
(q̂1, . . . , q̂µ). R and a cheating S∗ run the commit
phase once and two independent instances of the de-
commit phase. In the two instances R presents the
queries as Q and Q̂, respectively. We say that S∗ wins
binding if R’s outputs at the end of the respective
decommit phases are A = (a1, . . . , aµ) and Â =
(â1, . . . , âµ), and for some i, j, we have qi = q̂j but
ai �= âj. We say that the protocol meets the εB-Binding
property if for all E and for all efficient S∗, the proba-
bility of S∗ winning binding is less than εB. The proba-
bility is taken over three sets of independent random-
ness: the commit phase and the two runnings of the
decommit phase.

• εL-Linearity. Consider the same experiment above.
We say that S∗ wins linearity if R’s outputs at the
end of the respective decommit phases are A =
(a1, . . . , aµ) and Â = (â1, . . . , âµ), and for some i, j, k,
we have q̂k = qi + qj but âk �= ai + aj. We say that

13

266  21st USENIX Security Symposium	 USENIX Association

The linear PCP from [5]

Loop ρ times:
• Generate linearity queries: Select q1, q2 ∈R Fs and

q4, q5 ∈R Fs2
. Take q3 ← q1 + q2 and q6 ← q4 + q5.

• Generate quadratic correction queries: Select q7, q8 ∈R Fs

and q10 ∈R Fs2
. Take q9 ← (q7 ⊗ q8 + q10).

• Generate circuit queries: Select q12 ∈R Fs and q14 ∈R Fs2
.

Take q11 ← γ1 + q12 and q13 ← γ2 + q14.
• Issue queries. Send q1, . . . , q14 to oracle π, getting back
π(q1), . . . ,π(q14).

• Linearity tests: Check that π(q1)+π(q2) = π(q3) and that
π(q4) + π(q5) = π(q6). If not, reject.

• Quadratic correction test: Check that π(q7) · π(q8) =
π(q9)− π(q10). If not, reject.

• Circuit test: Check that (π(q11)− π(q12)) +
(π(q13)− π(q14)) = −γ0. If not, reject.

If V makes it here, accept.

Figure 13—The linear PCP that PEPPER uses. It is from [5].
The notation x ⊗ y refers to the outer product of two vectors x
and y (meaning the vector or matrix consisting of all pairs of
components from the two vectors). The values {γ0, γ1, γ2} are
described briefly in the text.

the protocol meets the εL-linearity property if for all E
and for all efficient S∗, the probability of S∗ winning
linearity is less than εL. As with the prior property,
the probability is taken over three sets of independent
randomness: the commit phase and the two runnings
of the decommit phase.

Prior work proved that Commit+Multidecommit (Fig-
ure 12) meets the first two properties above [45]. We will
now show that it also meets the third property.

Lemma A.1. Commit+Multidecommit meets the defini-
tion of εL-linearity, with εL = 1/|F|+εS, where εS comes
from the semantic security of the homomorphic encryp-
tion scheme.

Proof. We will show that if S∗ can systematically cheat,
then an adversary A could use S∗ to break the semantic
security of the encryption scheme.

Let r ∈R Fn and Z1, Z2 ∈R F (we use ∈R to mean
“drawn uniformly at random from”). Semantic security
(see [30], definitions 5.2.2, 5.2.8 and Exercise 17) im-
plies that for all PPT A (A can be non-uniform),

Pr
Gen,Enc,r,Z1,Z2

{A(pk, Enc(pk, r), r + Z1q, r + Z2q) = Z1}

< 1/|F|+ εS. (1)

This holds for all q ∈ Fn.6

6We are being loose here. Under the actual definition of semantic secu-
rity, (a) εS should be replaced with a negligible function of n, and (b)
the claim holds only for n sufficiently large.

GINGER’s PCP protocol

• Generate quadratic correction queries: Select q1, q2 ∈R Fs

and q4 ∈R Fs2
. Define q3 ← (q1 ⊗ q2 + q4). Note that q3

will not travel, as P can derive it.
• Generate circuit queries: Take q5 ← γ1 + q1. Take q6 ←
γ2 + q4.

• Issue queries. Send (q1, q2, q4, q5, q6) to oracle π, getting
back π(q1),π(q2),π(q3),π(q4),π(q5),π(q6).

• Quadratic correction test: Check that π(q1) · π(q2) =
π(q3)− π(q4). If not, reject.

• Circuit test: Check that (π(q5)− π(q1)) +
(π(q6)− π(q4)) = −γ0. If so, accept.

Figure 14—GINGER’s PCP protocol, which refines PEPPER’s
protocol (Figure 13). This protocol eliminates linearity testing
and repetition, and recycles queries [9].

Now, assume to the contrary that Com-
mit+Multidecommit does not meet the definition of
εL-linearity. Then there exists an environment E produc-
ing qi, qj, i, j, k, Q, Q̂, S∗ (where Q has qi, qj in the ith and
jth positions and Q̂ has qi + qj in the kth position) such
that Prall 3 phases{S∗ wins linearity under E} > 1/|F|+εS.
Let q′ � q̂k = qi + qj.

We now describe an algorithm A that, when given
input I = (pk, Enc(pk, r), r + Z1q′, r + Z2q′), can re-
cover Z1 with probability more than 1/|F| + εS. A has
Q, Q̂, qi, qj, i, j, k hard-wired (because it is working under
environment E) and works as follows:
(a) A gives (pk, Enc(pk, r)) to S∗ and ignores the reply.
(b) A randomly generates α1, . . . ,αµ and sends to S∗

the input (Q, r+α1q1+· · ·+(αi+Z1)qi+· · ·+(αj+
Z1)qj+ · · ·+αµqµ). A is able to construct this input
because A was given r + Z1q′ = r + Z1qi + Z1qj. In
response, S∗ returns (b, a1, . . . , ai, . . . , aj, . . . , aµ).

(c) A randomly generates α̂1, . . . , α̂µ. A sends to S∗ the
input (Q̂, r+ α̂1q̂1 + · · ·+Z2q̂k + · · ·+ α̂µq̂µ). A is
able to construct this input because A was given r+
Z2q′ = r+Z2q̂k. A gets back (b̂, â1, . . . , âk, . . . , âµ).

At this point, A assumes that the responses from S∗

pass the decommitment phase; that is, A acts as if b =
s+α1a1+· · ·+(αi+Z1)ai+· · ·+(αj+Z1)aj+· · ·+αµaµ

and b̂ = s+ α̂1â1 + · · ·+Z2âk + · · ·+ α̂µâµ. A can write

K1 = Z2âk − Z1(ai + aj), (2)

where A can derive K1 = b̂−b−
∑

ι �=k α̂ιâι+
∑

ι αιaι.
Now, let t = r + Z1q′ and let t̂ = r + Z2q′ (both of
these were supplied as input to A). These two equations
concern vectors. However, by choosing an index ι in the
vector q′ where q′ is not zero (if the vector is zero every-
where, then r is revealed), A can derive

K2 = Z2 − Z1, (3)

14

USENIX Association 	 21st USENIX Security Symposium  267

where K2 = (̂t(ι) − t(ι))/q′(ι).
Now, observe that if âk �= ai + aj (as happens when

S∗ wins), then A can recover Z1 by solving equations (2)
and (3). Thus,

Pr
Gen,Enc,r,Z1,Z2,�α,�̂α

{A(I) = Z1}

≥ Pr
Gen,Enc,r,Z1,Z2,�α,�̂α

{S∗ wins linearity under E}

= Pr
all 3 phases

{S∗ wins linearity under E}

> 1/|F|+ εS. (4)

The equality holds because the distribution
of (α1, . . . ,αi + Z1, . . . ,αj + Z1, . . . ,αµ) and
(α̂1, . . . , Z2, . . . , α̂µ) is equivalent to the distribu-
tion from which R selects in the decommit phases of the
three-phase experiment, under Commit+Multidecommit.
Meanwhile, inequality (4) contradicts inequality (1).

The lemmas ahead show that, under Com-
mit+Multidecommit, S is bound to a nearly linear
function, f̃ (·); specifically, f̃ (·) is δ∗-close to linear for
small δ∗. By contrast, previous work [35, 45] showed
only that S was bound to some function f̃ (·).

We now give some notation and restate two claims
from [45]. Let ζ be the event that R’s output is a vec-
tor (a1, . . . , aµ); equivalently, ζ is the event that R’s out-
put is non-⊥. Below, we sometimes write Prcomm{·} or
Prdecomm{·} to mean the probability over the random
choices of the commit or decommit phases.

Lemma A.2 (Existence of an extractor function [45]).
Let (S, R) be a CFMD protocol with binding error εB. Let
εC = µ · 2 · (2 3

√
9/2 + 1) · 3

√
εB. Let v = (vS∗ , vR) rep-

resent the views of S∗ and R after the commit phase (v
captures the randomness of the commit phase). For ev-
ery efficient S∗ and for every v, there exists a function
f̃v : Fn → F such that the following holds.7 For any en-
vironment E , the output of R at the end of the decommit
phase is, except with probability εC, either ⊥ or satisfies
ai = f̃v(qi) for all i ∈ [µ], where (q1, . . . , qµ) are the de-
commitment queries generated by E , and the probability
is over the random inputs of S∗ and R in both phases.

Lemma A.3. Let ε3 = (2 3
√

9/2+1) · 3
√
εB . Label the ith

query in Q as qi and the ith response as ai. For all Q, i,
we have Prcomm,decomm{ζ ∩ {ai �= f̃v(qi)}} < 2ε3.

Proof. Follows from a claim in [45] (Claim B.4).

Lemma A.4. For all q1, q2 ∈ Fn, Prcomm{f̃v(q1) +
f̃v(q2) �= f̃v(q1 + q2)} < εF � εL + 6ε3.

7Note that after the commit phase, f̃v(·) is deterministic. (̃fv(·) is de-
fined [35, 45] to map q to the value that R is most likely to successfully
output in the decommit phase.)

Proof. Assume otherwise. Then for some q1 and q2, we
have Prcomm{f̃v(q1) + f̃v(q2) �= f̃v(q1 + q2)} ≥ εF, which
implies Prall 3 phases{f̃v(q1) + f̃v(q2) �= f̃v(q1 + q2)} ≥ εF,
since we can “add coin flips that don’t matter”, namely
those of the two decommit phases.

Now, consider the game in the definition of εL-
linearity, and set Q = (q1, q2, . . .) and Q̂ = (q1 +
q2, . . .). Let η be the event that S∗ wins in this game.
Let ν be the event that the outputs a1, a2, â1 are given
by the function f̃v(·). Then Prall 3 phases{�ν} < 6ε3, by
Lemma A.3, by the union bound, and by (again) “adding
coin flips that don’t matter” to get from a probability
over two phases to one over three phases. Now, note that
Prall 3 phases{η|ν} ≥ εF, by the contrary hypothesis. This
implies that Prall 3 phases{η} ≥ εF − 6ε3 = εL, which con-
tradicts the definition of εL-linearity.

Lemma A.4 almost talks about a linearity test [16]!
But linearity testing theory [8] relates (a) the probabil-
ity over randomly chosen queries that the test fails and
(b) the closeness-to-linearity of the tested function. Thus,
to apply the theory, we line up Lemma A.4 and (a).

Lemma A.5. With probability greater than 1−√
εF over

the commit phase, the fraction of (q1, q2) pairs that cause
f̃v(·) to fail the linearity test is ≤ √

εF.

Proof. Let Iv,q1,q2 be an indicator random variable that
equals 1 if, in view v (that is, given the randomness of
the commit phase), f̃v(q1 + q2) �= f̃v(q1) + f̃v(q2). The
lemma is equivalent to the statement

Pr
comm

{Pr
q1,q2

{Iv,q1,q2 = 1} >
√
εF} <

√
εF.

Now, define a random variable Yv = 1
Q2

∑
q1,q2

Iv,q1,q2 ,
where Q = |F|n is the number of possibilities for each
of q1 and q2. By linearity of expectation, Ecomm[Yv] =
1

Q2 · (E[Iv,1]+ · · ·+E[Iv,Q2]), where E[Iv,i] is the probabil-
ity, over the commit phase, that a particular (qj, qk) pair
causes f̃v(·) to fail the linearity test. Lemma A.4 implies
that E[Iv,i] < εF for all i; hence, Ecomm[Yv] < εF. We now
apply a Markov bound to Yv:

Pr
comm

{Yv >
√
εF} <

Ecomm[Yv]√
εF

<
εF√
εF

=
√
εF.

But Yv is equivalent to Prq1,q2{Iv,q1,q2 = 1}; making this
substitution immediately above yields the lemma.

Lemma A.6. Let δ∗ be the lesser root of 6δ2 − 3δ +√
εF = 0. If

√
εF < 2

9 , then with probability greater than
1−√

εF over the commit phase, f̃v(·) is δ∗-close to linear.

Proof. We use the linearity testing results of Bellare et
al. [8, 9] and the terminology of [8]. Define Dist(f , g)
to be the fraction of inputs on which f and g disagree.

15

268  21st USENIX Security Symposium	 USENIX Association

Define Dist(f) to be the fraction of inputs on which
f disagrees with its “closest linear function” [8]. De-
fine Rej(f) to be the probability, over uniformly random
choices of x and y from the domain of f , that f (x)+f (y) �=
f (x+ y); Rej(f) is the probability that f fails the linearity
test. As stated by Bellare et al. [8]:

• If Dist(f) = δ, then Rej(f) ≥ 3δ − 6δ2.

• If Dist(f) ≥ 1
4 , then Rej(f) ≥ 2

9 .

The above implies the following claim: for all δ′ ∈
{δ′ | 3δ′ − 6δ′2 < 2

9 and 0 ≤ δ′ ≤ 1
4}, if Rej(f) ≤ 3δ′ −

6δ′2, then Dist(f) ≤ δ′. (To see this, fix δ′. Assume to the
contrary that δ = Dist(f) > δ′. There are two cases, and
both contradict the given. If δ < 1

4 , then Rej(f) ≥ 3δ −
6δ2 > 3δ′−6δ′2. If δ ≥ 1

4 , then Rej(f) ≥ 2
9 > 3δ′−6δ′2.)

From lemma A.5, the probability is greater than 1 −√
εF over the commit phase that Rej(f̃v) ≤

√
εF. We call

such commit phases usual. Under a usual commit phase,
we can apply the claim just above. To do so, we assume
that

√
εF < 2

9 , and we set δ∗ so that
√
εF = 3δ∗ − 6δ∗2

and δ∗ ≤ 1
4 (such a δ∗ is guaranteed to exist because the

parabola is symmetric about δ = 1
4). The claim implies

that Dist(f̃v) ≤ δ∗, or that f̃v is δ∗-close to linear.

Lemma A.7. If the PCP oracle π is known to be δ∗-close
to linear, then the linear PCP (Section A.1) with linearity
testing removed has soundness error κ > max{4δ∗ +

2
|F| , 4δ∗ + 1

|F|}.

Proof. This follows from the proof flow that establishes
the soundness of linear PCPs, as in [5]. (A self-contained
example is in Appendix D of [45].) Those proofs first
establish that if the linearity test passes with probabil-
ity higher than the soundness error, then π is δ-close to
linear, for some δ. However, if we are given that π is δ∗-
close to linear, then we can start those proofs midway
and obtain the soundness of π as κ.

Proof of Theorem A.1. Lemma A.2 implies that there
exists an extractor function that determines a (possibly
incorrect) oracle π̃ such that, if V ′ does not reject during
decommit, then with all but probability εC, V ′ receives
back π̃(q1), . . . , π̃(qµ). We can thus “pay” probability
εC in the union bound (below) to assume that V ′ hears
back from π̃ itself. This allows us to apply Lemma A.6,
at which point we can “pay”

√
εF more probability (again

in the union bound below) to get that π̃ is δ∗-close to lin-
ear. (Applying the lemma requires that

√
εF < 2

9 , and we
will verify below that this bound holds.) Now, we can ap-
ply Lemma A.7 to ρ runs of the PCP protocol, giving a
PCP soundness error of κρ. Thus, the probability that V ′

wrongly accepts a proof is bounded from above by:

εG = εC +
√
εF + κρ.

By inspection (of the lemmas), the dominant contributor
to εG, namely

√
εF, is proportional to 6

√
1/|F|.

We compute a bound on εG as follows.

• εC is given in Lemma A.2. We take µ = 6 (per Fig-
ure 14). We also take εB = 1/|F| (following [45]; this
amounts to ignoring the error from the semantic se-
curity of the homomorphic encryption scheme) and
|F| = 2128, giving εC < 7.4 · 10−12.

• εF = εL + 6ε3 (from Lemma A.4). ε3 is given in
Lemma A.3. We set εL = 1/|F| (which again amounts
to ignoring εS). Again taking |F| = 2128, we get√
εF < 1.9 · 10−6. Thus,

√
εF < 2/9, as required.

• κ = 4δ∗+ 2
|F| , where δ∗ is the lesser root of 6δ2−3δ+

√
εF. This gives δ∗ = 6.4 · 10−7 and κ = 2.6 · 10−6.

Since κ and
√
εF are roughly the same, there is not

much point to taking ρ > 1. Thus, we take ρ = 1, giving
εG < 4.5 · 10−6 when |F| = 2128. When |F| = 2192, we
get εG < 2.8 · 10−9.

A.3 Optimizing out queries

GINGER’s PCP protocol includes two further refine-
ments. First, the protocol reuses q4 and q1 from test to
test. This reuse is sound because the PCP soundness
lemma [5] is of the form, “if all tests pass with proba-
bility greater than X, then the proof oracle π has a cer-
tain desired property”; meanwhile, as Bellare et al. [9]
observe, the tests need not be independent! One can ob-
serve the savings by comparing Figure 13 (minus the lin-
earity queries) to Figure 14. The protocol goes from 8
queries (the original 14 minus 6 linearity queries) to 6
queries, though the real savings for the prover is in re-
ducing the 4 high-order queries (that is, queries to the
Fs2

component of π) to 3. Moreover, the verifier saves
because it goes from generating pseudorandomness for 3
high-order queries (including γ2) to 2. Second, V avoids
transmitting a query (q3) that P can generate for itself.
This optimization offsets the consistency query, which is
computed over Z not Z/p (owing to the details of our
use of ElGamal [45, Appendix E]) and thus has roughly
twice as many bits as a PCP query.

16

USENIX Association 	 21st USENIX Security Symposium  269

Optimally Robust Private Information Retrieval∗

Casey Devet Ian Goldberg
University of Waterloo

{cjdevet,iang}@cs.uwaterloo.ca

Nadia Heninger
University of California, San Diego

nadiah@cs.ucsd.edu

Abstract
We give a protocol for multi-server information-theoretic
private information retrieval which achieves the theoret-
ical limit for Byzantine robustness. That is, the protocol
can allow a client to successfully complete queries and
identify server misbehavior in the presence of the max-
imum possible number of malicious servers. We have
implemented our scheme and it is extremely fast in prac-
tice: up to thousands of times faster than previous work.
We achieve these improvements by using decoding al-
gorithms for error-correcting codes that take advantage
of the practical scenario where the client is interested in
multiple blocks of the database.

1 Introduction and related work

Private information retrieval (PIR) is a way for a client
to look up information in an online database without let-
ting the database servers learn the query terms or re-
sponses. A simple if inefficient way to do this is for the
database server to send a copy of the entire database to
the client, and let the client look up the information for
herself. This is called trivial download. The goal of PIR
is to transmit less data while still protecting the privacy
of the query. PIR is a fundamental building block for
many proposed privacy-sensitive applications in the liter-
ature, including patent databases [2], domain name reg-
istration [28], anonymous email [33], and improving the
scalability of anonymous communication networks [26].

The simplest kind of query one can make with PIR
is to consider the database to be composed of a number
of blocks of equal size, and to retrieve a particular block
from the database by its absolute position [10]. Although
this simple type of query does not appear to be very use-
ful in practice, it turns out that it can be used as a black-
box building block to construct more complex and use-

∗An extended version of this paper is available. [13]

ful queries, such as searching for keywords [9] or private
SQL queries [28].

PIR protocols can be grouped into two classes corre-
sponding to the security guarantees they provide. One
class is computational PIR [8], in which the database
servers can learn the client’s query if they can ap-
ply sufficient computational power to break a particular
cryptographic system. The other class of protocols —
those we will consider in this work — is information-
theoretic PIR [10, 11], in which no amount of com-
putation will allow the reconstruction of the client’s
query. In these protocols, the query is protected by
splitting it among multiple database servers. (Chor et
al. [10] show that information-theoretic PIR with less
data transfer than the trivial download scheme is im-
possible with only one server.) As is common in many
distributed privacy-enhancing technologies, such as mix
networks [7], Tor [14], or some forms of electronic vot-
ing [6], we must assume that some fraction of the servers
above some threshold are not colluding against the client.

While much of the theoretical work on PIR focuses
strictly on minimizing the amount of data transferred [15,
38], in a practical setting we must take other aspects, par-
ticularly the computational performance, into account. In
2007, Sion and Carbunar [36] opined that, given trends
in computational power and network speeds, it would al-
ways be faster to send the whole database to the client
than to use PIR to process it. However, they only consid-
ered one kind of computational PIR [23] in their analysis.

In fact, recent work by Olumofin and Goldberg [29]
demonstrates that a more recent computational PIR
scheme by Aguilar Melchor and Gaborit [1] is an or-
der of magnitude faster than trivial download, while
information-theoretic (IT) PIR can be two to three or-
ders of magnitude faster. These PIR protocols are well
matched to deployment on mobile clients as they require
low data transfer, low client-side computation, and mod-
erate server-side computation [30]. For example, to re-
trieve one 32 KiB block from a 1 GiB database, an IT-

270  21st USENIX Security Symposium	 USENIX Association

PIR client would send one block of data to, and receive
one block of data from, each server. The servers each
perform about 1.4 CPU seconds of computation, and the
client performs about 140 ms of computation.

1.1 Byzantine robustness

An important practical consideration with multi-server
PIR is how to deal with servers that do not respond
to a client’s queries, or that respond incorrectly, either
through malice or error. These are respectively termed
the robustness and Byzantine robustness problems.

The main result of this paper is to improve the Byzan-
tine robustness of information-theoretic PIR. In order to
guarantee information-theoretic PIR, one must have mul-
tiple servers in the protocol; Byzantine robustness guar-
antees that the protocol still functions correctly even if
some of the servers fail to respond or give incorrect or
malicious responses. Byzantine robustness makes no
assumptions on the type of errors that can appear—the
model covers spurious or random errors as well as ma-
licious interference—and the bounds are given in terms
of the number of servers which ever give incorrect re-
sponses. The client must still be able to determine the an-
swer to her query, even when some number of the servers
fail to respond, or give incorrect answers; further, in the
latter case, the client would like to learn which servers
misbehaved so that they can be avoided in the future. (In
the single-server case, the owner of the database can pro-
vide a cryptographic signature on each block in order to
ensure integrity, as PIR-Tor [26] does. Without computa-
tional assumptions or some kind of shared secret, it does
not make much sense to consider robustness or Byzan-
tine robustness in a single-server PIR setting.)

Beimel and Stahl [3, 4] were the first to consider ro-
bustness and Byzantine robustness for PIR. Consider an
�-server information-theoretic PIR setting, where only k
of the servers respond, v of the servers respond incor-
rectly, and the system can withstand up to t colluding
servers without revealing the client’s query (t is called
the privacy level). (This is termed “t-private v-Byzantine
robust k-out-of-� PIR”.) Then the protocol of Beimel and
Stahl works when v ≤ t < k/3. Under those conditions,
the protocol will always output to the client a unique
block, which will be the correct one; this is called unique
decoding.

In 2007, Goldberg [19] observed that by allowing for
the possibility of list decoding — that is, that the protocol
may sometimes output a small number of blocks instead
of just one — the privacy level and the number of misbe-
having servers can be substantially increased, up to t < k
and v < k−�

√
kt�. He also showed that in many scenar-

ios, the probability of more than one block being output
by the protocol is vanishingly small, while in others, one

can employ standard techniques to convert list decoding
to unique decoding [25] at the cost of slightly increasing
the size of the database. The communication overhead
of Goldberg’s protocol is k + �; that is, to retrieve one
block of data (say b bits), the protocol transfers a total of
(k+ �)b bits, for the optimal choice of block size b.

1.2 Our contributions
• We change only the client side of Goldberg’s 2007

protocol to improve its Byzantine robustness from
v < k−�

√
kt� to v < k− t −1, which is the theoret-

ically maximum possible value. Depending on the
deployment scenario, the communication overhead
of our protocol ranges from a factor of k + � to a
maximum of v(k+ �).

• Our protocol is considerably faster than Goldberg’s
protocol for many reasonable parameter choices.
We implemented our protocol on top of Goldberg’s
open-source Percy++ [18] distribution and find that
our new protocol can be up to 3–4 orders of magni-
tude (thousands of times) faster than the original in
reconstructing the correct response to a query in the
presence of Byzantine servers.

The robustness and efficiency improvements to the
PIR protocol given in this paper mean that recovering
from Byzantine errors even in an extremely adversarial
or noisy setting is not just academically feasible, but is
completely reasonable for user-facing applications.

Goldberg’s protocol uses Shamir secret sharing to hide
the query; since Shamir secret sharing is based off of
polynomial interpolation, the problem of recovering the
response in the case of Byzantine failures corresponds
to noisy polynomial reconstruction, which is exactly the
problem of decoding Reed-Solomon codes. The theo-
retical contribution of this work is to observe that the
practical setting of clients performing multiple queries
allows us to use sophisticated decoding algorithms that
can decode multiple queries simultaneously and achieve
an enormous improvement in both performance and the
level of robustness.

1.3 Organization
The remainder of the paper is organized as follows.
In Section 2 we will introduce the tools that we need
to present our protocol: Shamir secret sharing, Reed-
Solomon codes, and decoding algorithms for multipoly-
nomial extensions of these codes. In Section 3 we review
the PIR protocols that form the foundation for our work.
We present our protocol and algorithms in Section 4, and
give experimental results in Section 5. We conclude the
paper in Section 6.

USENIX Association 	 21st USENIX Security Symposium  271

2 Preliminaries

2.1 Notation
We will use the following variables throughout the paper:

• � denotes the total number of servers

• t is the privacy level: no coalition of t or fewer
servers can learn the client’s query

• k is the number of servers that respond

• v is the number of Byzantine servers that respond
and h is the number of honest servers that respond
(so h+ v = k). Byzantine servers may respond with
any maliciously chosen value.

• D is the database

• r is the number of blocks in the database

• s is the number of words in each database block

• w is the number of bits per word

We denote by e j the standard basis vector
〈0, . . . ,0,1,0, . . . ,0〉 where the 1 is in the jth place.
x ∈R X means selecting the element x uniformly at
random from the space X .

2.2 Shamir secret sharing
The classic Shamir secret sharing scheme [34] allows a
dealer to choose a secret value σ , and distribute shares
of that secret to � players. If t or fewer of the players
come together, they learn no information about σ , but if
more than t pool their shares, they can easily recover the
secret. (t and � are parameters of the scheme, with t < �.)

The scheme works as follows: let σ be an arbi-
trary element of some finite field F (not necessary uni-
formly distributed). The dealer selects � arbitrary distinct
non-zero indices α1, . . . ,α� ∈ F, and selects t elements
a1, . . . ,at ∈R F uniformly at random. The dealer con-
structs the polynomial f (x) = σ +a1x+a2x2+ · · ·+atxt ,
and gives to player i the share (αi, f (αi)) ∈ F× F for
1 ≤ i ≤ �. Note that the secret σ is just f (0). Now any
t + 1 or more players can use Lagrange interpolation to
reconstruct the polynomial f , and evaluate f (0) to yield
σ . However, t or fewer players learn absolutely no infor-
mation about σ .

Complications arise during reconstruction, however,
when some of the shares being brought together to re-
construct f are incorrect. Dealing with this case involves
working with error-correcting codes, and will be dis-
cussed in Section 2.3, next.

Sharing a vector of elements in Fr rather than a single
field element is done in the straightforward way: each
coordinate of the vector is secret shared separately, using
r independent random polynomials.

2.3 Error-correcting codes

We will use error-correcting codes to handle Byzantine
robustness. In the case of servers that merely fail to
respond, we could try to use an erasure code — an
error-correcting code which can be decoded when some
symbols are erased by the channel. In order to handle
Byzantine failures, we will use error-correcting codes
that can handle both corrupted and missing symbols. Our
scheme will transform malicious errors into random er-
rors, which will allow us to achieve much higher robust-
ness (with high probability) than was efficiently possi-
ble before. In addition, the use of these error-correcting
codes allows us to identify servers that cheat during the
protocol, and not use them in the future.

The error-correcting codes that we will use in our pro-
tocol are based off of Reed-Solomon codes. [32] This is
a natural choice to use with Shamir secret sharing, as
they both use polynomial interpolation. If a message
of length t + 1 consists of elements {a0,a1, . . . ,at} in
some field F then we can define the degree-t polynomial
f (x) = a0 +a1x+ · · ·+atxt . Fix k distinct field elements
α1, . . . ,αk. A Reed-Solomon codeword consists of the
evaluations of f at each point: { f (α1), . . . , f (αk)}.

The Berlekamp-Welch [5] algorithm can efficiently
decode a Reed-Solomon codeword with up to v < (k−
t)/2 errors, which is the theoretical maximum for unique
decoding. However, if one is willing to accept the pos-
sibility of decoding to multiple valid codewords, the
Guruswami-Sudan algorithm [22] improves the decod-
ing radius to v< k−

√
kt. This is known as list decoding:

the algorithm returns a list of all valid codewords.

2.3.1 Multi-polynomial reconstruction

The above decoding algorithms all consider the case of
noisy interpolation of a single polynomial. More re-
cently, Parvaresh and Vardy [31], and Guruswami and
Rudra [21] designed codes that could be efficiently list
decoded, approaching the asymptotic limit of v < k −
t − 1. These codes are based around the idea of extend-
ing the Reed-Solomon code to evaluate multiple polyno-
mials simultaneously, and using clever constructions of
the polynomials in order to efficiently decode the code-
words. One of the main contributions of this paper is
to adapt these ideas to a cryptographic setting. We can-
not directly use their constructions, as their polynomials
have a special structure that would make them unsuit-
able for secret sharing. However, using a randomized
construction we can nonetheless efficiently decode such
multi-polynomial codes in practice with high probability,
yielding a secret sharing system robust to many errors.

The codes that we will use will reconstruct sev-
eral polynomials simultaneously from noisy evaluation

272  21st USENIX Security Symposium	 USENIX Association

points. Define m polynomials

f1(x) = a10 +a11x+ · · ·+a1t xt ,

...
fm(x) = am0 +am1x+ · · ·+amtxt .

Then a codeword will consist of the evaluations of each
of these polynomials at points α1, . . . ,αk:

f1(α1), . . . , fm(α1),

...
f1(αk), . . . , fm(αk)

This general case is considered by Cohn and
Heninger [12], who give an algorithm that heuristi-
cally reconstructs every polynomial as long as there are
no more than v < k − tm/(m+1)k1/(m+1) values of i for
which the received value of some fp(αi) is incorrect. In
our application to PIR, each polynomial will correspond
to a column of the database matrix D, and each value αi
will correspond to a PIR server; therefore, we will be
able to tolerate v dishonest servers.

2.3.2 Linear multi-polynomial decoding

The list-decoding algorithms of Guruswami-Sudan,
Parvaresh-Vardy, and Cohn-Heninger all work by con-
structing a polynomial which vanishes to high multiplic-
ity at the codeword. If one simply uses multiplicity one,
one can obtain a “linear” variant of the Cohn-Heninger
algorithm [12] which is extremely fast in practice. It re-
constructs each polynomial uniquely when no more than
v ≤ m

m+1 (k− t −1) values of i have incorrect received
values of some fp(αi). This algorithm works with high
probability in practice as long as the errors are random-
ized. We will show later how to set up our protocol to
enforce that even malicious servers can only insert ran-
dom errors.

Since this linear variant is not explicitly described in
their work, we provide a brief outline in Algorithm 1.

Polynomial lattice basis reduction. Step 4 in the al-
gorithm uses a “polynomial lattice basis row reduction
algorithm”. This is an algorithm which takes as input
a matrix M of polynomials and applies elementary row
operations over the ring of polynomials to produce a ma-
trix M′ whose coefficient polynomials have minimal de-
gree. [37] There are several polynomial-time polynomial
lattice basis reduction algorithms. (This is a refreshing
contrast to the case of integer lattices where finding ex-
act shortest vectors is NP-hard and efficient algorithms

Algorithm 1 Fast multi-polynomial reconstruction

Input: km points (αi,yip) 1 ≤ i ≤ k, 1 ≤ p ≤ m, degree
bound t, and minimum number of correct points h =
k− v.

Output: m polynomials f1, . . . , fm of degree at most t
such that for at least h values of i, fp(αi) = yip for
all 1 ≤ p ≤ m

1: Use Lagrange interpolation to construct m polyno-
mials f ∗p of degree at most k−1 s.t. f ∗p(αi) = yip for
each 1 ≤ i ≤ k.

2: Construct the degree-k polynomial

N(x) =
k

∏
i=1

(x−αi)

3: Construct the (m+1)× (m+1) polynomial matrix

M =




xt − f ∗1 (x)
xt − f ∗2 (x)

. . .
xt − f ∗m(x)

N(x)




4: Run a polynomial lattice basis row reduction algo-
rithm on M.

5: Discard the largest-degree row in the reduced matrix.
If any remaining row has degree larger than h, abort.

6: Write the remaining m × (m + 1) matrix as [A|b],
where A is an m×m matrix, and b is an m× 1 col-
umn vector.

7: Solve the linear system of equations

(
1
xt A

)



f1
f2
...
fm


= b

8: return (f1, . . . , fm)

such as LLL [24] can only obtain an exponential approx-
imation.) The algorithm of Giorgi et al. [17] runs in time
O(δnω+o(1)) where δ is the maximum degree of the in-
put basis, n is the dimension, and ω is the exponent of
matrix multiplication. Our implementation uses the al-
gorithm of Mulders and Storjohann [27] which runs in
time O(n3δ 2) but is much simpler and easier to imple-
ment, and yields excellent running times for the input
sizes we care about.

If step 5 does not abort, then there is guaranteed to be
a unique set of polynomials satisfying the requirements;
that is, we are in the unique decoding case. As we will

USENIX Association 	 21st USENIX Security Symposium  273

see later, if the errors are random, this step aborts only
with very low probability.

Without any imposed structure on the codeword poly-
nomials, the Cohn-Heninger algorithm is heuristic; that
is, they conjecture that it will succeed for sufficiently
random input. The linear version that we use here is
also heuristic: there are adversarial inputs on which it
may fail. However, we observe in experiments (see Sec-
tion 5.3) that the heuristic assumption holds with high
probability for random inputs, which is the situation we
need for our cryptographic purposes here. We conjecture
based on the experimental evidence presented in Sec-
tion 5.3 that the probability of failure depends only on
the size of the underlying field F. In particular, the algo-
rithm will work with high probability for random poly-
nomials if the errors are uncorrelated. We will see later
that we can enforce this restriction in our protocol even
in the case of Byzantine servers.

2.3.3 Optimality

Relating this to our PIR application, we will be able to
use this algorithm to correctly decode the results of t-
private PIR queries. If k servers respond to us, of which
v are Byzantine (so h = k− v are honest), then this algo-
rithm will succeed with high probability after we query
for m blocks, satisfying v ≤ m

m+1 (k− t −1), or equiva-
lently, m ≥ v

h−t−1 . That is, for m large enough, we can
handle any number of Byzantine servers v< k−t−1. We
note that this bound on v is optimal—if v = k− t −1, or
equivalently, h = t + 1, then any subset of t + 1 servers’
responses will form a polynomial of degree at most t.
This means that the number of possible valid blocks will
always be exponential, and no polynomial-time algo-
rithm could hope to address this case.

2.4 Dynamic programming

In practice, each of the algorithms we have described
above has different performance characteristics for dif-
ferent inputs. Thus in our implementation, we achieve
the best performance by assembling all of them together
into a portfolio algorithm. This algorithm optimistically
attempts to decode a given input using Lagrange inter-
polation, and if that fails, uses a dynamic program with
timing measurements to fall back to an optimal sequence
of decoding algorithms. See Section 5.2 for more details.

3 Protocols for PIR

In this section, we will introduce the ideas from previous
PIR protocols that will form the basis for our protocol.

3.1 Database queries as linear algebra
We begin with a general mathematical setting of the PIR
schemes we will be considering.

Our database D is structured as an r × s matrix with
r rows. Each row represents one block of the database,
and consists of s words of w bits each. The database D
resides on a remote server. The client wishes to retrieve
one block (row) of the database from the server.

D =




w11 w12 . . . w1s
w21 w22 . . . w2s

...
...

...
wr1 wr2 . . . wrs




One non-private protocol for the client to retrieve row
β of the database would be to transmit the vector eβ con-
sisting of all zeros except for a single 1 in coordinate β
to the server. The server considers eβ as a row vector and
computes the product eβ ·D, which it sends back to the
client.

[
0 0 . . . 1 . . . 0

]



w11 w12 . . . w1s
w21 w22 . . . w2s

...
...

...
wr1 wr2 . . . wrs




=
[
wβ1 wβ2 . . . wβ s

]

We will show how to construct two information-
theoretic PIR schemes that modify this basic scheme to
retrieve blocks from the database without revealing the
query or result to an adversary.

3.2 A simple PIR scheme due to Chor et al.
We next present a simple PIR scheme due to Chor et
al. [10] We begin with the same setup as above. In this
protocol, the words will be single bits, so w = 1, and D
is an r × s matrix of bits. Since we will be construct-
ing information-theoretic PIR, we will be querying more
than one server. We will require that not all of the servers
are colluding to reveal the client’s query. Each of the
�≥ 2 servers gets a copy of D.

A client wishing to retrieve block β of the database
generates the basis vector eβ as above to select coordi-
nate β . Then in order to hide this query vector from
the servers, the client picks �− 1 vectors v1, . . . ,v�−1
uniformly at random from GF(2)r (that is, �− 1 uni-
formly random r-bit binary strings), and computes v� =
eβ ⊕ (v1 ⊕·· ·⊕v�−1). v� will be a uniformly random
(though not independent) r-bit string, as �≥ 2.

The client sends vi to server i for each 1≤ i≤ �. Server
i computes the product ri = vi ·D, which is the same as

274  21st USENIX Security Symposium	 USENIX Association

setting ri to be the XOR of those blocks j in the database
for which the jth bit of vi is 1. Each server i returns ri to
the client.

The client XORs the results to obtain r = r1 ⊕ ·· · ⊕
r� = (v1 ⊕·· ·⊕v�) ·D = eβ ·D, which is the β th block of
the database, as required.

Note that this scheme is (�−1)-private; that is, no
combination of �− 1 or fewer servers has enough infor-
mation to determine i from the information they receive
from, or send to, the client. Choosing r = s =

√
n yields

a total communication of 2�
√

n bits to privately retrieve
a block of size

√
n bits.

3.3 Goldberg’s PIR scheme

Chor’s scheme, above, is not robust; if even one server
fails to respond, the client cannot reconstruct her answer.
Further, it is not Byzantine robust; if one server gives the
wrong answer, then the client not only will reconstruct
the wrong block, but the client will be unable to deter-
mine which server misbehaved.

Goldberg [19] modified Chor’s scheme to achieve both
robustness and Byzantine robustness. Rather than work-
ing over GF(2) (binary arithmetic), his scheme works
over a larger field F, where each element can represent
w bits (so w = �lg |F|�). The database D is then an r× s
matrix of elements of F. In Goldberg’s simplest con-
struction, as with Chor’s scheme, each of � ≥ 2 servers
gets a copy of the database.

To transform this into a t-private PIR protocol, the
client uses (�,t) Shamir secret sharing to share the vector
eβ ∈ Fr into � independent shares (α1,v1) , . . . ,(α�,v�).
That is, the client creates r random degree-t polynomials
f1, . . . , fr satisfying f j(0) = eβ [j] and chooses � distinct
non-zero elements αi ∈ F. Server i’s share will be the
vector vi = 〈 f1(αi), . . . , fr(αi)〉.

Each server then computes the product ri = vi ·D =〈
∑ j f j(αi)w j1, . . . , ∑ j f j(αi)w js

〉
∈ Fs.

[
f1(αi) . . . fr(αi)

]



w11 w12 . . . w1s
w21 w22 . . . w2s

...
...

...
wr1 wr2 . . . wrs




=
[
∑ j f j(αi)w j1 . . . ∑ j f j(αi)w js

]

By the linearity property of Shamir secret sharing,
since {(αi,vi)}�i=1 is a set of Shamir secret shares of
eβ , {(αi,ri)}�i=1 will be a set of Shamir secret shares of
eβ · D, which is the β th block of the database. Look-
ing at it another way, the vector 〈r1[q],r2[q], . . . ,r�[q]〉
is a Reed-Solomon codeword encoding the polynomial

gq = ∑ j f jw jq, and the client wishes to compute gq(0)
for each 1 ≤ q ≤ s.

However, some of the servers may be down or Byzan-
tine, so some of the shares returned by these servers may
be missing or incorrect. Goldberg’s scheme first op-
timistically assumes that all of the servers that replied
gave correct responses, and uses Lagrange interpolation
to attempt to reconstruct the database row (his EASYRE-
COVER algorithm). He bases this optimistic assump-
tion on the fact that Byzantine servers are discovered
by his scheme, which disincentivizes servers to act ma-
liciously. If the optimism is not justified, however, his
scheme then uses the Guruswami-Sudan algorithm [22]
(his HARDRECOVER algorithm) to do error correction
(see Section 2.3).

This scheme is t-private, and the Guruswami-Sudan
algorithm can correct v < k−�

√
kt� incorrect server re-

sponses. Choosing r = s =
√

n/w yields a total commu-
nication of (k+ �)

√
nw bits to privately retrieve a block

of size
√

nw bits.
Goldberg’s scheme also allows for an extension called

τ-independence [16], in which the database itself is se-
cret shared among the � servers, so that no coalition of
τ or fewer servers can learn the contents of the database.
We will omit the details for ease of presentation, but our
scheme extends naturally to this scenario as well.

4 Our algorithm

Our algorithm follows the same general idea as Gold-
berg during the client-server interaction and Shamir se-
cret sharing. We change the way that queries are ran-
domized and make improvements to the client-side pro-
cessing to greatly improve robustness and the speed of
processing.

Goldberg’s block reconstruction technique uses the
Guruswami-Sudan algorithm to reconstruct the block a
single word at a time. However, we can achieve bet-
ter error-correction bounds with the algorithm of Sec-
tion 2.3.2 by considering multiple blocks simultaneously.
This takes advantage of the observation that a server is
either Byzantine or not; if it is not, it will give correct
results for every query.

If the Reed-Solomon codewords the client expects to
receive from the servers are

〈
R∗

1[q],R
∗
2[q], . . . ,R

∗
� [q]

〉
for

1 ≤ q ≤ s, what it actually receives may differ because
some number of servers may be down, and some further
number may be Byzantine. Of the � servers, it may only
receive a response from k of them, and of those, v may
be incorrect.

If the client receives 〈R1[q],R2[q], . . . ,R�[q]〉 for 1 ≤
q ≤ s, then:

USENIX Association 	 21st USENIX Security Symposium  275




f1(α1) . . . fr(α1)

...
...

f1(α�) . . . fr(α�)







w11 w12 . . . w1s
w21 w22 . . . w2s

...
...

...
wr1 wr2 . . . wrs


=




R1[1]
...

R�[1]

R1[2] . . . R1[s]
...

...
R�[2] . . . R�[s]


=




g1(α1)
...

g1(α�)

g2(α1) . . . gs(α1)
...

...
g2(α�) . . . gs(α�)




Figure 1: Our PIR protocol illustrated. Each row of the leftmost matrix corresponds to a Shamir secret share of the
database row being queried; each column of the rightmost two matrices corresponds to a Reed-Solomon codeword
encoding a word of the queried database row. The client sends the ith row of the leftmost matrix to server i and expects
to receive the ith row of the rightmost matrix in reply.

• For �− k values of i, Ri[q] =⊥ for all q (these are
the down servers)

• For at least h = k− v values of i, Ri[q] = R∗
i [q] for

all q (these are the honest servers)

• For the remaining at most v values of i, Ri[q] =
R∗

i [q]+∆iq for error terms ∆iq (these are the Byzan-
tine servers)

4.1 Randomizing queries
In order to use the algorithm of section 2.3.2, we need to
ensure that the Byzantine servers produce random errors;
that is, that the ∆iq terms are randomly and independently
chosen in the m codewords we supply to that algorithm.
We make no a priori assumptions on the types of errors
that the Byzantine servers may produce, but we will ran-
domize the algorithm to cause any kind of spurious or
malicious error to appear random.

To accomplish this, we make the following modi-
fication to Goldberg’s protocol: the client chooses a
uniformly random non-zero element ci ∈R F∗ for each
server and sends the server a “blinded” query ciQi =
〈ci f1(αi), . . . ,ci fr(αi)〉 instead of just Qi. When the
server i returns a vector R′

i, the client unblinds it by di-
viding by ci to yield Ri = c−1

i R′
i.

This ensures that if the server’s response R′
i was the

correct response to query ciQi, then Ri will be the correct
response to query Qi. Further, for a Byzantine server,
the error ∆′

iq = R′
i[q]− ciR∗

i [q] it maliciously introduces
will be randomized unpredictably by the client to ∆iq =

c−1
i ∆′

iq = Ri[q]−R∗
i [q].

Note, however, that different errors within the same
server’s response to a single query are not independently
randomized; if a Byzantine server just adds a constant C
to each word of the correct result ciR∗

i before returning it
to the client, the client will see a result Ri that has had the
constant c−1

i C added to each word of the correct result.
Errors from different servers, or from different

queries, though, are independent, and it is this indepen-
dence we leverage to get the linear multi-polynomial al-

gorithm in Section 2.3.2 to work: after m queries, we
will have m responses each with independently random
errors, and we can use the algorithm to decode them si-
multaneously with high probability.

4.2 Reconstructing responses

After unblinding, the client possesses responses Ri from
k servers; for ease of notation, suppose they are servers
1 through k. Each Ri is a vector 〈Ri[1], . . . ,Ri[s]〉 where s
is the number of words (elements of F) in one database
block. Each 〈R1[q], . . . ,Rk[q]〉 for 1 ≤ q ≤ s is a Reed-
Solomon codeword with errors (the �−k non-responding
servers’ entries having been removed) encoding a poly-
nomial gq; see Figure 1. The client’s desired block is
〈g1(0), . . . ,gs(0)〉.

As with Goldberg’s scheme, the client first optimisti-
cally attempts to reconstruct each gq using Lagrange in-
terpolation on the points {(α1,R1[q]), . . . ,(αk,Rk[q])} to
see if the resulting polynomial has degree at most t. If
there were no Byzantine servers, this will be successful.
For any g j for which Lagrange interpolation fails, we ap-
ply an escalating sequence of error-correction algorithms
from Section 2.3 to attempt to recover g j. Our imple-
mentation ties these together in a portfolio algorithm; see
Section 5.2. If at any time, the error correction algorithm
identifies a particular server as Byzantine, that server’s
results are discarded for all future computations.

If there is still at least one g j which was not yet able to
be reconstructed, any one such unsuccessfully decoded
codeword 〈R1[q], . . . ,Rk[q]〉 is stored for later reconstruc-
tion, along with the current state of the computation. The
client’s requested block will not be available at this time.

The client can then do PIR requests for more blocks of
the database. If it was interested in multiple blocks, it can
just request those. Otherwise, it can re-request blocks it
has not yet successfully decoded. Note that the proper-
ties of PIR ensure that the servers cannot tell whether
a request is for a repeated block or a fresh one. Each
time, the client either receives its desired block (from the
Lagrange interpolation or error correcting portfolio algo-

276  21st USENIX Security Symposium	 USENIX Association

rithms) or another codeword gets stored for later recon-
struction.

When m =
⌈ v

h−t−1

⌉
≤ v such codewords have been

collected, we can apply the algorithm of Section 2.3.2.
Since the stored codewords have independent errors, the
algorithm will succeed with high probability. At that
point, all m stored computations can be concluded, the m
blocks will be returned to the client, and the v < k− t−1
Byzantine servers will be identified. The client can then
avoid those servers in the future.

Note that the decoding algorithm is randomized, so
there is a small chance of failure even when the client
has collected the results of m queries. In this case, the
client can continue to collect queries and construct new
codewords until the algorithm succeeds.

Algorithm 2 summarizes the process.

Algorithm 2 Robust PIR Protocol

Goal: Client wishes to query row β from database D
stored on � servers.

1: Client chooses � distinct non-zero elements
α1, . . . ,α� ∈ F∗.

2: Client chooses r random degree-t polynomials
f1, . . . , fr ∈R F[x] satisfying f j(0) = 1 for j = β and
f j(0) = 0 otherwise.

3: Client chooses � random non-zero elements
c1, . . . ,c� ∈R F∗.

4: Client sends the vector

Qi = 〈ci f1(αi),ci f2(αi), . . . ,ci fr(αi)〉

to server i.

5: Server i receives vector Qi.
6: Server i sends the product R′

i = Qi ·D to client.

7: Client receives R′
1, . . . ,R

′
�.

8: Client computes Ri = c−1
i R′

i for each i.
9: Client considers vectors Sq = 〈R1[q], . . . ,R�[q]〉 as re-

ceived Reed-Solomon codewords and uses the algo-
rithms from Section 2.3 to recover word q of row β
of D.

10: If the recovery algorithm fails, postpone decod-
ing until m =

⌈ v
h−t−1

⌉
≤ v blocks have been re-

quested (requesting blocks multiple times if neces-
sary). Then use the algorithm from Section 2.3.2 to
recover all of the blocks simultaneously.

5 Implementation and experiments

We implemented the algorithm described in this paper
as an extension of Goldberg’s implementation of his
protocol, available as the Percy++ project on Source-

Forge [18]. The software is implemented in C++ using
the NTL library [35].

In this paper we are concerned with the speed of the
client-side block reconstruction operation in the pres-
ence of Byzantine servers. Our work does not change
the server side of Goldberg’s protocol in any way; to see
speeds for the server-side operations, see Olumofin and
Goldberg’s 2011 paper [29].

5.1 Choice of underlying field
Goldberg’s 2007 work used a 128-bit prime field as the
field F. Subsequent releases of Percy++, however, were
able to use different fields, including prime fields of dif-
ferent sizes as well as GF(28). This last field turns out to
be a very efficient choice, as additions in this field can be
implemented as XOR operations and multiplications are
simple lookups in a 64 KB table.

Our implementation of our protocols uses C++ tem-
plates to abstract the field F, making it very easy to work
over any desired field.

5.2 Portfolio algorithms for decoding
Our implementation assembles the error correction al-
gorithms described in Section 2.3 into a portfolio algo-
rithm [20] to do efficient decoding. We use dynamic
programming to choose an optimal sequence of decod-
ing algorithms to try.

Each of the error correction algorithms we use is char-
acterized by the tuple (k, t,h) with k ≥ h > t: we wish to
find a polynomial of degree at most t that passes through
at least h of the k input points.

We have a few different choices of algorithm to solve
this problem directly:

Berlekamp-Welch: If h > k+t
2 , we can use the

Berlekamp-Welch algorithm to find the unique
polynomial solution, if it exists. This algorithm is
quite fast, and we use it whenever it is applicable.

Guruswami-Sudan: If h >
√

kt, we can use the
Guruswami-Sudan algorithm to find all solutions. It
turns out this algorithm is very inefficient if h2 − kt
is small; for the parameter sizes we care about, we
avoid this algorithm if this value is less than 10.

Brute force: Lagrange interpolate each subset of t + 1
points to form a polynomial of degree t, and see if it
passes through at least h points. This works for any
h > t, but is inefficient if

(k
t+1

)
is large.

In addition, we have three strategies to attempt to solve
a particular instance with parameters (k, t,h) by recur-
sively solving smaller instances and combining the re-
sults. Let C(k, t,h) represent the expected time cost to

USENIX Association 	 21st USENIX Security Symposium  277

solve an instance of this size; we will bound this cost as
a function of the costs of solving smaller instances.

Guess g incorrect points: If the client can guess that a
particular point is wrong (that is, that the server
that provided that point is Byzantine), then it can
just throw away the point, and solve the remaining
problem, with parameters (k − 1, t,h). In general,
it might guess g points to be wrong, and solve a
problem of size (k− g, t,h). Since at least h of the
original k points are correct, for any set of h + g
points, there exists a subset of g points that can be
removed from the original k so that there are at least
h correct points in the k−g points remaining. Thus
by recursively solving

(h+g
g

)
smaller instances and

combining the results, we are guaranteed to find all
solutions to our original problem. Thus we see that

C(k, t,h)≤ min
g

(
h+g

g

)
·C(k−g, t,h)

Guess g correct points: Conversely, the client might
guess that a particular subset of g points are all cor-
rect (that is, that the servers that provided them are
honest), and recursively try to find a polynomial of
degree at most t−g that passes through at least h−g
of the remaining k−g points.1 Similar to the above,
we get that we need to recursively solve

(k−h+g
g

)
subproblems with parameters (k−g, t−g,h−g), so
we get

C(k, t,h)≤ min
g

(
k−h+g

g

)
·C(k−g, t −g,h−g)

Guess whether d points are correct or incorrect: The
above strategies may not be helpful if the binomial
coefficients are large. Our final strategy is to pick a
fixed set of d points. For all g, and for all choices of
g correct and d − g incorrect points within that set,
we recursively try to find polynomials of degree at
most t − g that pass through at least h − g of the
remaining k−d points. As before, we get that

C(k, t,h)≤ min
d

∑
g

(
d
g

)
·C(k−d, t −g,h−g)

Given these three algorithms to directly solve the prob-
lem, and three strategies to indirectly solve it by combin-
ing solutions to smaller instances, we use dynamic pro-
gramming to build a table of the best strategy to use to

1The remaining points are actually slightly modified before solv-
ing recursively. If (α∗,y∗) is guessed to be correct, then each other
point (αi,yi) is modified to (αi,

yi−y∗
αi−α∗) before recursively solving.

If f (x) interpolates at least h − 1 points of the latter form, then
f (x) · (x−α∗)+y∗ interpolates the corresponding h−1 original points
and also the guessed point.

minimize the expected run time for inputs of each com-
bination of parameters (k, t,h). We measure the runtimes
of the direct algorithms experimentally, and compute the
times for the indirect strategies. We pick the lowest result
of the six, and set C(k, t,h) to that value. We currently do
this in a precomputation step for all k ≤ 25 and give the
PIR client access to this table.

5.3 Multi-polynomial decoding

We also implemented the linear multi-polynomial decod-
ing algorithm described in Section 2.3.2 as an extension
of Percy++ using C++ and the NTL library. For the lat-
tice reduction step, our implementation uses the lattice
reduction algorithm by Mulders and Storjohann [27]. Al-
though its theoretical runtime is not the fastest known,
we chose this algorithm because of its simplicity. Af-
ter the lattice reduction, the implementation then solves
the resulting system of linear equations using Gaussian
elimination.

As previously mentioned, if the errors are random,
then there is a very low probability that this algo-
rithm will fail. Based on experimental investigation,
we conjecture the probability of failure is, to first order,(

1
|F|

)m(h−t−1)−v+1
. (Recall from Section 2.3.3 that in or-

der for the algorithm to work, m≥ v
h−t−1 , or equivalently,

m(h− t −1)− v ≥ 0.) See the appendix for more details
on these experiments. This probability of failure falls
within the confidence intervals for all of our tests with
|F| ≥ 256. We also ran tests with an extremely small
field of |F| = 16, and found that failures in that field oc-
curred slightly (but statistically significantly) more often
than our conjecture predicts. This leads us to believe that
there is a missing second-order term in our conjecture,
which is negligible for reasonable field sizes, but signif-
icant for tiny fields. We hope to nail down the missing
term in future work.

In the cases where the linear multi-polynomial algo-
rithm does fail, our algorithm will wait until another
block is requested and then try again. This increases m
by one and reduces the probability that the algorithm will
fail by a factor of |F|h−t−1; therefore, since h− t ≥ 2, the
probability it will fail a second time is extremely tiny.

5.4 Measuring improvements to Percy++

In his 2007 paper, Goldberg measures the performance
of his protocols using a Lenovo T60p laptop com-
puter with a 2.16 GHz Intel dual-core CPU running
Ubuntu Linux [19]. For the purposes of comparison,
we have performed our measurements on a machine
of the same model and similar Ubuntu Linux config-
uration. Goldberg reports that the implementation of

278  21st USENIX Security Symposium	 USENIX Association

Table 1: Measuring improvements to Percy++’s client-side decoding algorithms. For these measurements we ran 100
trials using the parameters (k, t,h) = (20,10,15).

Implementation Algorithm Field Time

timing reported by Goldberg [19] Guruswami-Sudan in MuPAD 128-bit prime “several minutes”
Percy++ Guruswami-Sudan in C++ 128-bit prime 9000± 3000 ms
Percy++ Guruswami-Sudan in C++ GF(28) 3000± 900 ms
this work Cohn-Heninger in C++ with m = 2 blocks 128-bit prime 2.2± 0.9 ms
this work Cohn-Heninger in C++ with m = 2 blocks GF(28) 1.3± 0.4 ms

his HARDRECOVER algorithm takes “several minutes”
when using the values (k, t,h) = (20,10,15) [19].

Since the writing of that paper, the Percy++ software
has improved. The first improvement was to imple-
ment the parts of the HARDRECOVER subroutine pre-
viously written using MuPAD in native C++. We timed
HARDRECOVER 100 times using only this change, and
found the running time reduced to 9000± 3000 ms.

The other improvement in the latest version of
Percy++ is to use GF(28) as the underlying field, rather
than a 128-bit prime field. With this change, we again
measured HARDRECOVER 100 times, and found the run-
ning time further reduced to 3000± 900 ms.

Finally, using the implementation of our algorithm de-
scribed in Section 4 we further improve the running time,
again tested with 100 trials using multi-polynomial de-
coding with just m = 2 blocks. With a 128-bit prime
field, our algorithm completes in 2.2± 0.9 ms; with
GF(28), in just 1.3± 0.4 ms.

This is a reduction of over three orders of magnitude in
client-side decoding time versus the latest software, and
of over five orders of magnitude versus Goldberg’s 2007
reported measurements. This comes at a cost of fetching
just two blocks instead of one — something the client is
likely to have done anyway. The results are summarized
in Table 1.

5.5 New client-side measurements
We next outline the results of measurements taken of the
implementation of our new algorithm described in Sec-
tion 4. These measurements are only on the client-side
decoding operations. For these measurements we used
a server with a 2.40 GHz Intel dual-core CPU running
Ubuntu Linux. For each case, we ran at least 100 trials,
all using only a single core. We used the field GF(28)
for all experiments in this section.

To illustrate the improvements that our algorithm pro-
vides, we compare time measurements for four algo-
rithms in Figure 2:

• the potentially exponential-time brute force decod-
ing algorithm

• the Guruswami-Sudan list decoding algorithm from
the latest release of Percy++

• the single-polynomial dynamic programming algo-
rithm described in Section 5.2; and

• the linear multi-polynomial algorithm described in
Section 5.3

Note that the data is plotted on a log scale so that the
results can be easily compared, even though they span
five orders of magnitude.

Observe that the Guruswami-Sudan algorithm only
works when the number of Byzantine servers v = k− h
is less than k−�

√
kt�, and its running time blows up as v

nears that bound. Past that bound, with more Byzantine
servers, the only prior way for the client to decode the re-
sult was to use the brute-force decoding algorithm. Now,
we can see that our single-polynomial dynamic program-
ming algorithm and our multi-polynomial decoding al-
gorithm both outperform the brute-force algorithm, of-
ten substantially. For example, in Figure 2(c) we see
that for eight Byzantine servers with (k, t) = (20,10),
the Guruswami-Sudan algorithm is ineffective, and the
brute-force algorithm takes about 10 seconds. Mean-
while, our dynamic programming algorithm takes about
1.5 seconds, and our multi-polynomial decoding algo-
rithm takes about 6 milliseconds.

The multi-polynomial algorithm comes at a cost, how-
ever, of forcing the client to fetch multiple blocks. In
this case, m =

⌈ v
h−t−1

⌉
= 8 blocks. If the client were

going to fetch that many blocks anyway, there is no addi-
tional overhead to the scheme. Otherwise, the client may
have to request some blocks multiple times. In the worst
case, the client only wishes to fetch one block, and there
are v = k− t − 2 Byzantine servers. In this worst case,
h = t + 2, and the client must request its desired block
m = v = k− t − 2 times before it will be able to decode
it. Note that, even when multiple blocks are retrieved
from the servers, our multi-polynomial algorithm is run
only once, in order to distinguish the honest servers from
the misbehaving ones.

USENIX Association 	 21st USENIX Security Symposium  279

 0.01

 0.1

 1

 10

 100

1,000

10,000

100,000

 0 2 4 6 8 10 12 14 16

T
im

e
 (

m
s
)

v (number of Byzantine servers)

(a): (k,t) = (20,3)

 0.01

 0.1

 1

 10

 100

1,000

10,000

100,000

 0 2 4 6 8 10 12

T
im

e
 (

m
s
)

v (number of Byzantine servers)

(b): (k,t) = (20,7)

 0.01

 0.1

 1

 10

 100

1,000

10,000

100,000

 0 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

v (number of Byzantine servers)

(c): (k,t) = (20,10)

 0.01

 0.1

 1

 10

 100

1,000

10,000

100,000

 0 1 2 3 4 5

T
im

e
 (

m
s
)

v (number of Byzantine servers)

(d): (k,t) = (20,14)

brute force algorithm

latest version of Percy++ (using Guruswami-Sudan)

our single-polynomial dynamic programming algorithm (sec. 5.2)

our linear multi-polynomial decoding algorithm (sec. 5.3)

unique decoding bound (v = (k-t-1)/2)

theoretical limit for Guruswami-Sudan (v = k - √(kt))

theoretical limit for polynomial-time decoding (v = k - t - 2)

Figure 2: Timing measurements for the client-side decoding algorithms discussed in this paper for different param-
eters. We ran each algorithm 100 times for each choice of feasible parameters and plot the mean running times in
milliseconds. Note that times are plotted on a log scale.

The three vertical lines on each plot show the unique decoding radius for Reed-Solomon codes, on the left, the the-
oretical bound past which the Guruswami-Sudan algorithm used in Percy++ fails, in the middle, and the theoretical
bound past which efficient decoding with any algorithm is impossible, on the right.

The main results of this paper are to give two client-side decoding algorithms that outperform Guruswami-Sudan in
its feasible region, and allow us to extend the range of efficient client-side decoding to the region of interest between
the two vertical lines on the right. Note that the Guruswami-Sudan algorithm performs much slower in practice than
the Berlekamp-Welch algorithm used by our dynamic programming portfolio algorithm within the unique decoding
radius, and its running time blows up very quickly for parameters approaching its theoretical limit.

The running times of the brute force algorithm within the unique decoding radius have extremely high variance; we
do not plot error bars for those timings as they obscure the entire rest of the plot. We do plot error bars for all other
points, but they are generally too small to see.

280  21st USENIX Security Symposium	 USENIX Association

6 Conclusions

We have improved the client side of Goldberg’s 2007
Byzantine-robust information-theoretic private informa-
tion retrieval protocol to use state-of-the-art decoding al-
gorithms to improve the Byzantine robustness of the pro-
tocol to its theoretical limit. We did this using decoding
algorithms that are able to take advantage of decoding
information in multiple blocks of data simultaneously,
observing that in practical scenarios, clients will often be
interested in more than one block at a time.

We implemented our protocol and found that it is very
fast in practice: several thousand times faster than previ-
ous protocols, and usually less than 10 ms for the param-
eter choices in our experiments.

Combined with fast processing on the server side [29]
and scenarios in which the database servers are not in
collusion [28], we can see that information-theoretic pri-
vate information retrieval can be practical even in highly
adversarial settings.

Acknowledgements

We thank Dan Bernstein for pointing out the connections
between multi-polynomial error correction and some
kinds of PIR. We thank Mark Giesbrecht and Arne Stor-
johann for their pointers on implementing polynomial
lattice basis reduction. This material is based upon
work supported by NSERC, Mprime, the National Sci-
ence Foundation under Award No. DMS-1103803, and
the MURI program under AFOSR Grant No. FA9550-
08-1-0352. Finally, we thank the Shared Hierarchical
Academic Research Computing Network (SHARCNET)
and Compute/Calcul Canada for the computing cluster
on which we ran the experiments in Section 5.3 and the
appendix.

References

[1] C. Aguilar Melchor and P. Gaborit. A lattice-
based computationally-efficient private information
retrieval protocol. In Western European Work-
shop on Research in Cryptology (WEWoRC2007),
Bochum, Germany. Book of Abstracts, pages 50–
54, 2007.

[2] D. Asonov. Private Information Retrieval: An
overview and current trends. In ECDPvA Work-
shop, 2001.

[3] A. Beimel and Y. Stahl. Robust information-
theoretic private information retrieval. In Proceed-
ings of the 3rd International Conference on Secu-

rity in Communication Networks (SCN’02), pages
326–341, 2003.

[4] A. Beimel and Y. Stahl. Robust information-
theoretic private information retrieval. Journal of
Cryptology, 20:295–321, 2007.

[5] E. Berlekamp and L. Welch. Error correction of al-
gebraic block codes. US Patent Number 4,633,470,
1986.

[6] R. Carback, D. Chaum, J. Clark, J. Conway, A. Es-
sex, P. S. Herrnson, T. Mayberry, S. Popoveniuc,
R. L. Rivest, E. Shen, A. T. Sherman, and P. L.
Vora. Scantegrity II Municipal Election at Takoma
Park: The First E2E Binding Governmental Elec-
tion with Ballot Privacy. In 19th USENIX Security
Symposium, pages 291–306, 2010.

[7] D. L. Chaum. Untraceable electronic mail, re-
turn addresses, and digital pseudonyms. Commun.
ACM, 24(2):84–90, Feb. 1981.

[8] B. Chor and N. Gilboa. Computationally private
information retrieval (extended abstract). In 29th
annual ACM Symposium on Theory of Computing
(STOC’97), pages 304–313, 1997.

[9] B. Chor, N. Gilboa, and M. Naor. Private informa-
tion retrieval by keywords. Technical Report TR
CS0917, Department of Computer Science, Tech-
nion, Israel, 1997.

[10] B. Chor, O. Goldreich, E. Kushilevitz, and M. Su-
dan. Private information retrieval. In 36th Annual
IEEE Symposium on Foundations of Computer Sci-
ence (FOCS’95), pages 41 –50, oct 1995.

[11] B. Chor, E. Kushilevitz, O. Goldreich, and M. Su-
dan. Private information retrieval. J. ACM, 45:965–
981, November 1998.

[12] H. Cohn and N. Heninger. Approximate common
divisors via lattices. Cryptology ePrint Archive,
Report 2011/437, 2011. http://eprint.iacr.

org/.

[13] C. Devet, I. Goldberg, and N. Heninger. Optimally
Robust Private Information Retrieval. Cryptology
ePrint Archive, Report 2012/083, 2012.

[14] R. Dingledine, N. Mathewson, and P. Syverson.
Tor: the second-generation onion router. In 13th
USENIX Security Symposium, 2004.

[15] W. I. Gasarch. A survey on private information re-
trieval (column: Computational complexity). Bul-
letin of the EATCS, 82:72–107, 2004.

USENIX Association 	 21st USENIX Security Symposium  281

[16] Y. Gertner, S. Goldwasser, and T. Malkin. A
Random Server Model for Private Information Re-
trieval. In 2nd International Workshop on Random-
ization and Approximation Techniques in Computer
Science, pages 200–217, 1998.

[17] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the
complexity of polynomial matrix computations. In
2003 International Symposium on Symbolic and Al-
gebraic Computation, pages 135–142, 2003.

[18] I. Goldberg. Percy++ project on sourceforge.
http://percy.sourceforge.net. Accessed
February 2012.

[19] I. Goldberg. Improving the robustness of private
information retrieval. In 2007 IEEE Symposium on
Security and Privacy, pages 131–148, 2007.

[20] C. Gomes and B. Selman. Algorithm Portfolios.
Artificial Intelligence, 126(1):43–62, 2001.

[21] V. Guruswami and A. Rudra. Explicit codes achiev-
ing list decoding capacity: Error-correction with
optimal redundancy. IEEE Transactions on Infor-
mation Theory, 54(1):135–150, 2008.

[22] V. Guruswami and M. Sudan. Improved decoding
of Reed-Solomon and algebraic-geometric codes.
39th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’98), pages 28–39, 1998.

[23] E. Kushilevitz and R. Ostrovsky. Replication is not
needed: single database, computationally-private
information retrieval. In 38th Annual Symposium
on Foundations of Computer Science (FOCS’97),
pages 364–373, 1997.

[24] H. W. Lenstra, A. K. Lenstra, and L. Lovász. Fac-
toring polynomials with rational coeficients. Math-
ematische Annalen, 261(4):515–534, 1982.

[25] S. Micali, C. Peikert, M. Sudan, and D. A. Wilson.
Optimal Error Correction Against Computationally
Bounded Noise. In 2nd Theory of Cryptography
Conference, pages 1–16, February 2005.

[26] P. Mittal, F. Olumofin, C. Troncoso, N. Borisov,
and I. Goldberg. PIR-Tor: Scalable Anony-
mous Communication Using Private Information
Retrieval. In 20th USENIX Security Symposium,
pages 475–490, 2011.

[27] T. Mulders and A. Storjohann. On lattice reduc-
tion for polynomial matrices. Journal of Symbolic
Computation, 35(4):377 – 401, 2003.

[28] F. Olumofin and I. Goldberg. Privacy-preserving
queries over relational databases. In 10th Inter-
national Privacy Enhancing Technologies Sympo-
sium, pages 75–92, 2010.

[29] F. Olumofin and I. Goldberg. Revisiting the Com-
putational Practicality of Private Information Re-
trieval. In 15th International Conference on Finan-
cial Cryptography and Data Security, pages 158–
172, 2011.

[30] F. Olumofin, P. Tysowski, I. Goldberg, and U. Hen-
gartner. Achieving efficient query privacy for lo-
cation based services. In 10th International Pri-
vacy Enhancing Technologies Symposium, pages
93–110, 2010.

[31] F. Parvaresh and A. Vardy. Correcting errors be-
yond the Guruswami-Sudan radius in polynomial
time. In 46th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS’05), pages 285–
294, 2005.

[32] I. S. Reed and G. Solomon. Polynomial Codes
over Certain Finite Fields. Journal of the Soci-
ety for Industrial and Applied Mathematics (SIAM),
8(2):300–304, 1960.

[33] L. Sassaman, B. Cohen, and N. Mathewson. The
Pynchon Gate: a Secure Method of Pseudony-
mous Mail Retrieval. In Proceedings of the 2005
ACM Workshop on Privacy in the Electronic Soci-
ety (WPES ’05), pages 1–9, 2005.

[34] A. Shamir. How to share a secret. Commun. ACM,
22:612–613, November 1979.

[35] V. Shoup. NTL, a library for doing number theory.
http://www.shoup.net/ntl/, 2005. Accessed
February 2012.

[36] R. Sion and B. Carbunar. On the computational
practicality of private information retrieval. In Pro-
ceedings of the Network and Distributed Systems
Security Symposium, 2007.

[37] J. von zur Gathen. Hensel and Newton methods
in valuation rings. Math. Comp., 42(166):637–661,
1984.

[38] S. Yekhanin. Towards 3-query locally decodable
codes of subexponential length. J. ACM, 55(1):1–
16, 2008.

282  21st USENIX Security Symposium	 USENIX Association

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

16 256 65537

P
ro

p
o

rt
io

n
 o

f
F

a
ilu

re
s

Size of the Field

(a) Varying the Field Size

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

10 11 12

P
ro

p
o

rt
io

n
 o

f
F

a
ilu

re
s

v (Number of Byzantine Servers)

(b) Varying the Number of Byzantine Servers

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

2 3 4

P
ro

p
o

rt
io

n
 o

f
F

a
ilu

re
s

m (Number of Polynomials)

(c) Varying the Number of Polynomials (GF(2
8
))

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

3 4 5

P
ro

p
o

rt
io

n
 o

f
F

a
ilu

re
s

m (Number of Polynomials)

(d) Varying the Number of Polynomials (GF(2
4
))

Conjectured Failure Rate

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0 5 10 15 20 25 30 35 40

P
ro

p
o

rt
io

n
 o

f
F

a
ilu

re
s

m (Number of Polynomials)

(e) Varying the Number of Polynomials with Maximum Number of Byzantine Servers

Figure 3: In Section 5.3, we conjectured that the linear multi-polynomial algorithm we present will fail with probability(
1
|F|

)m(h−t−1)−v+1
. We ran several hundred million trials in order to test this conjecture. In plots (a)-(d), we varied a

single parameter, keeping other parameters fixed, and plotted the observed proportion of failures for our linear multi-
polynomial algorithm (black dots, with error bars at the 95% confidence interval) along with the conjectured value
(dotted line). For plot (e) we varied m and used the maximum possible value of v for the given number of polynomials.

USENIX Association 	 21st USENIX Security Symposium  283

Appendix: Failure rate of Algorithm 1

The linear multi-polynomial algorithm described in Sec-
tion 2.3.2 is probabilistic and may fail with some prob-
ability. We conjecture that the probability of failure is(

1
|F|

)m(h−t−1)−v+1
but do not have a proof. We ran hun-

dreds of millions of tests, varying each of the parameters
in the expression, in order to validate this conjecture ex-
perimentally. Figure 3 contains plots of the results; for
details, see the extended version of this paper [13].

We observe that for large fields (|F| ≥ 256), our con-
jectured failure rate falls into the 95% confidence interval
of our experimentally observed failure rate for all data
points except 2 of the 39 data points in Figure 3(e). This
is as expected from 95% confidence intervals. However,
for a small field (F= GF(24)) our conjecture appears to
consistently underestimate the actual failure rate. This
suggests the presence of an unknown second-order term
in the failure rate; we will be exploring this in future
work.

USENIX Association 	 21st USENIX Security Symposium  285

Billion-Gate Secure Computation with Malicious Adversaries

Benjamin Kreuter
brk7bx@virginia.edu
University of Virginia

abhi shelat
abhi@virginia.edu

University of Virginia

Chih-hao Shen
cs6zb@virginia.edu

University of Virginia

Abstract

The goal of this paper is to assess the feasibility of
two-party secure computation in the presence of a ma-
licious adversary. Prior work has shown the feasibil-
ity of billion-gate circuits in the semi-honest model, but
only the 35k-gate AES circuit in the malicious model,
in part because security in the malicious model is much
harder to achieve. We show that by incorporating the
best known techniques and parallelizing almost all steps
of the resulting protocol, evaluating billion-gate circuits
is feasible in the malicious model. Our results are in
the standard model (i.e., no common reference strings
or PKIs) and, in contrast to prior work, we do not use the
random oracle model which has well-established theoret-
ical shortcomings.

1 Introduction

Protocols for secure computation allow two or more mu-
tually distrustful parties to collaborate and compute some
function on each other’s inputs, with privacy and correct-
ness guarantees. Andrew Yao showed that secure two-
party protocols can be constructed for any computable
function [33]. Yao’s protocol involves representing the
function as a boolean circuit and having one party (called
the generator) encrypt the circuit in such a way that it
can be selectively decrypted by the other party (called
the evaluator) to compute the output, a process called
garbling. In particular, oblivious transfers are used for
the evaluator to obtain a subset of the decryption keys
that are needed to compute the output of the function.

Yao’s protocol is of great practical significance. In
many real-world situations, the inputs to a function may
be too valuable or sensitive to share. Huang et al. ex-
plored the use of secure computation for biometric iden-
tification [14] in national security applications, in which
it is desirable for individual genetic data to be kept pri-
vate but still checked against a classified list. In a similar

security application, Osadchy et al. described how face
recognition could be performed in a privacy-preserving
manner [29]. The more general case of multiparty com-
putation has already seen real-world use in computing
market clearing prices in Denmark [2].

Yao’s original protocol ensures the privacy of each
party’s input and the correctness of the output under the
semi-honest model, in which both parties follow the pro-
tocol honestly. This model has been the basis for sev-
eral scalable secure computation systems [4, 10, 12, 13,
17, 22, 26]. It is conceivable, however, that one of the
parties may deviate from the protocol in an attempt to
violate privacy or correctness. Bidders may attempt to
manipulate the auction output in their favor; spies may
attempt to obtain sensitive information; and a computer
being used for secure computation may be infected with
malware. Securing against malicious participants, who
may deviate arbitrarily from pre-agreed instructions, in
an efficient manner is of more practical importance.

There have been several attempts on practical systems
with security against active, malicious adversaries. Lin-
dell and Pinkas presented an approach based on garbled
circuits that uses the cut-and-choose technique [23], with
an implementation of this system having been given by
Pinkas et al. [30]. Nielsen et al. presented the LEGO+
system [28], which uses efficient oblivious transfers and
authenticated bits to enforce honest behaviors from par-
ticipants. shelat and Shen proposed a hybrid approach
that integrates sigma protocols into the cut-and-choose
technique [32]. The protocol compiler presented by
Ishai, Prabhakaran, and Sahai [16] also uses an approach
based on oblivious transfer, and was implemented by
Lindell, Oxman, and Pinkas [21]. In all these cases, AES
was used as a benchmark for performance tests.

Protocols for general multiparty computation with se-
curity against a malicious majority have also been pre-
sented. Canetti et al. gave a construction of a uni-
versally composable protocol in the common reference
string model [5]. The protocol compiler of Ishai et al.,

286  21st USENIX Security Symposium	 USENIX Association

mentioned above, can be used to construct a multiparty
protocol with security against a dishonest majority in the
UC model [16]. Bendlin et al. showed a construction
based on homomorphic encryption [1], which was im-
proved upon by Damgård et al. [7]; these protocols were
also proved secure in the UC model, and thus require ad-
ditional setup assumptions. The protocol of Damgård et
al. (dubbed “SPDZ” and pronounced “speedz”) is based
on a preprocessing model, which improves the amortized
performance. Damgård et al. presented an implementa-
tion of their protocol, which could evaluate the function
(x × y) + z in about 3 seconds with a 128 bit security
level, but with an amortized time of a few milliseconds.

This paper presents a scalable two-party secure com-
putation system which guarantees privacy and correct-
ness in the presence of a malicious party. The system
we present can handle circuits with hundreds of millions
or even billions of gates, while requiring relatively mod-
est computing resources. Our system follows the Fair-
play framework, allowing general purpose secure com-
putation starting from a high level description of a func-
tion. We present a system with numerous technical ad-
vantages over the Fairplay system, both in our compiler
and in the secure computation protocol. Unlike previ-
ous work, we do not rely solely on AES circuits as our
benchmark; our goal is to evaluate circuits that are orders
of magnitude larger than AES in the malicious model,
and we use AES only as a comparison with other work.
We prove the security of our protocol assuming circular
2-correlation robust hash functions and the hardness of
the elliptic curve discrete logarithm problem, and require
neither additional setup assumptions nor the random or-
acle model.

2 Contributions

Our principal contribution is to build a high perfor-
mance secure two-party computation system that inte-
grates state-of-the-art techniques for dealing with ma-
licious adversaries efficiently. Although some of these
techniques have been reported individually, we are not
aware of any attempt to incorporate them all into one sys-
tem, while ensuring that a security proof can still be writ-
ten for that system. Even though some of the techniques
are claimed to be compatible, it is not until everything is
put together and someone has gone through all the details
can a system as a whole be said to be provably secure.

System Framework We start by using Yao’s garbled
circuit [33] protocol for securely computing functions
in the presence of semi-honest adversaries, and she-
lat and Shen’s cut-and-choose-based transformation [32]
that converts Yao’s garbled circuit protocol into one that

is secure against malicious adversaries.
We then modify the above to use Ishai et al.’s obliv-

ious transfer extension [15] that has efficient amortized
computation time for oblivious transfers secure against
malicious adversaries, and Lindell and Pinkas’ random
combination technique [23] that defends against selec-
tive failure attacks. We implement Kiraz’s randomized
circuit technique [18] that guarantees that the generator
gets either no output or an authentic output, i.e., the gen-
erator cannot be tricked into accepting arbitrary output.

Optimization Techniques For garbled circuit gener-
ation and evaluation, we incorporate Kolesnikov and
Schneider’s free-XOR technique that minimizes the
computation and communication cost for XOR gates in
a circuit [20]. We also adopt Pinkas et al.’s garbled-row-
reduction technique that reduces the communication cost
for k-fan-in non-XOR gates by 1/2k [30], which means
at least a 25% communication saving in our system since
we only have gates of 1-fan-in or 2-fan-in. Finally, we
implement Goyal et al.’s technique for reducing commu-
nication as follows: during the cut-and-choose step, the
check circuits are given to the evaluator by revealing the
random seeds used to produce them rather than the check
circuits themselves [11]. Combined with the 60%-40%
check-evaluation ratio proposed by shelat and Shen [32],
this technique provides a near 60% saving in communi-
cation. As far as we know, although these techniques ex-
ist individually, ours is the first system to incorporate all
of these mutually compatible state-of-the-art techniques.

Circuit-Level Parallelism The most important new
technique that we use is to exploit the embarrassingly
parallel nature of shelat and Shen’s protocol for achiev-
ing security in the malicious model. Exploiting this,
however, requires careful engineering in order to achieve
good performance while maintaining security. We paral-
lelize all computation-intensive operations such as obliv-
ious transfers or circuit construction by splitting the
generator-evaluator pair into hundreds of slave pairs.
Each of the pairs works on an independently generated
copy of the circuit in a parallel but synchronized man-
ner as synchronization is required for shelat and Shen’s
protocol [32] to be secure.

Computation Complexity For the computation time
of a secure computation, there are two main contribut-
ing factors: the input processing time I (due to oblivi-
ous transfers) and the circuit processing time C (due to
garbled circuit construction and evaluation). In the semi-
honest model, the system’s computation time is simply
I+C. Security in the malicious model, however, requires
several extra checks. In the first instantiation of our sys-

USENIX Association 	 21st USENIX Security Symposium  287

tem, through heavy use of circuit-level parallelism, our
system needs roughly I + 2C to compute hundreds of
copies of the circuit. Thus when the circuit size is suf-
ficiently larger than the input size, our system (secure in
the malicious model) needs roughly twice as much com-
putation time as that needed by the original Yao proto-
col (secure in the semi-honest model). This is a tremen-
dous improvement over prior work [30,32] which needed
100x more time than the semi-honest Yao. In the second
instantiation of our scheme, we are able to achieve I +C
computation time, albeit at the cost of moderately more
communication overhead.

Large Circuits In the Fairplay system, a garbled cir-
cuit is fully constructed before being sent over a net-
work for the other party to evaluate. This approach is
particularly problematic when hundreds of copies of a
garbled circuit are needed against malicious adversaries.
Huang et al. [13] pointed out that keeping the whole gar-
bled circuit in memory is unnecessary, and that instead,
the generation and evaluation of garbled gates could be
conducted in a “pipelined” manner. Consequently, not
only do both parties spend less time idling, only a small
number of garbled gates need to reside in memory at one
time, even when dealing with large circuits. However,
this pipelining idea does not work trivially with other op-
timization techniques for the following two reasons:

• The cut-and-choose technique requires the gener-
ator to finish constructing circuits before the coin
flipping (which is used to determine check circuits
and evaluation circuits), but the evaluator cannot
start checking or evaluating before the coin flipping.
A naive approach would ask the evaluator to hold
the circuits and wait for the results of the coin flip-
ping before she proceeds to do her jobs. When the
circuit is of large size, keeping hundreds of copies
of such a circuit in memory is undesirable.

• Similarly, the random seed checking technique [11]
requires the generator to send the hash for each gar-
bled circuit, and later on send the random seeds for
check circuits so that the communication for check
circuits is vastly reduced. Note that the hash for an
evaluation circuit is given away before the garbled
circuit itself. However, a hash is calculated only af-
ter the whole circuit is generated. So the generation-
evaluation pipelining cannot be applied directly.

Our system, however, integrates this pipelining idea with
the optimization techniques mentioned above, and is ca-
pable of handling circuits of billions of gates.

AES-NI Besides the improvements by the algorith-
mic means, we also incorporate the Intel Advanced En-

cryption Standard Instructions (AES-NI) in our system.
While the encryption is previously suggested to be

EncX ,Y (Z) = H(X ||Y)⊕Z

in the literature [6, 20], where H is a 2-circular correla-
tion robust function instantiated either with SHA-1 [13]
or SHA-256 [30], we propose an alternative that

Enck
X ,Y (Z) = AES-256X ||Y (k)⊕Z,

where k is the index of the garbled gate. With the help
of the latest instruction set, an AES-256 operation could
take as little as 30% of the time for SHA-256. Since this
operation is heavily used in circuit operations, with the
help of AES-NI instructions, we are able to reduce the
circuit computation time C by at least 20%.

Performance To get a sense of our improvements, we
list the experimental results of the benchmark function—
AES—from the most recent literature and our system.
The latest reported system in the semi-honest model was
built by Huang et al. [13] and needs 1.3 seconds (where
I = 1.1 and C = 0.2) to complete a block of secure AES
computation. The fastest known system in the malicious
model was proposed by Nielson et al. [28] and has an
amortized performance 1.6 seconds per block (or more
precisely, I = 79 and C = 6 for 54 blocks). Our system
provides security in the malicious model and needs 1.4
(= I+2C, where I = 1.0 and C = 0.2) seconds per block.
Note that both the prior systems require the full power
of a random oracle, while ours requires a weaker crypto-
graphic primitive, 2-circular correlation robust functions,
which was recently shown to be sufficient to prove the
security of the free-XOR technique. It should also be
noted that our system benefits greatly from parallel com-
putation, which was not tested for LEGO+.

Scalable Circuit Compiler One of the major bottle-
necks that prevents large-scale secure computation is the
need for a scalable compiler that generates a circuit de-
scription from a function written in a high-level program-
ming language. Prior tools could barely handle circuits
with 50,000 gates, requiring significant computational
resources to compile such circuits. While this is just
enough for an AES circuit, it is not enough for the large
circuits that we evaluate in this paper.

We present a scalable boolean circuit compiler that
can be used to generate circuits with billions of gates,
with moderate hardware requirements. This compiler
performs some simple but highly effective optimizations,
and tends to favor XOR gates. The toolchain is flexible,
allowing for different levels of optimizations and can be
parameterized to use more memory or more CPU time
when building circuits.

288  21st USENIX Security Symposium	 USENIX Association

As a first sign that our compiler advances the state
of the art, we observe that it automatically generates a
smaller boolean circuit for the AES cipher than the hand-
optimized circuit reported by Pinkas et al. [30]. AES
plays an important role in secure computation, and obliv-
ious AES evaluation can be used as a building block in
cryptographic protocols. Not only is it one of the most
popular building blocks in cryptography and real life se-
curity, it is often used as a benchmark in secure com-
putation. With the textbook algorithm, the well-known
Fairplay compiler can generate an AES circuit that has
15,316 non-XOR gates. Pinkas et al. were able to de-
velop an optimized AES circuit that has 11,286 non-
XOR gates. By applying an efficient S-box circuit [3]
and using our compiler, we were able to construct an
AES circuit that has 9,100 non-XOR gates. As a result,
our AES circuit only needs 59% and 81% of the commu-
nication needed by the other two, respectively.

Most importantly, with our system and the scalable
compiler, we are able to run experiments on circuits with
sizes in the range of billions of gates. To the best of
our knowledge, secure computation with such large cir-
cuits has never been run in the malicious model before.
These circuits include 256-bit RSA (266,150,119 gates)
and 4095x4095-bit edit distance (5,901,194,475). As the
circuit size grows, resource management becomes cru-
cial. A circuit of billions of gates can easily result in
several GB of data stored in memory or sent over the
network. Special care is required to handle these diffi-
culties.

Paper Organization The organization of this paper is
as follows. A variety of security decisions and optimiza-
tion techniques will be covered in Section 3 and Sec-
tion 4, respectively. Then, our system, including a com-
piler, will be introduced in Section 5. Finally, the experi-
mental results are presented in Section 6 followed by the
conclusion and future work in Section 7.

3 Techniques Regarding Security

The Yao protocol, while efficient, assumes honest behav-
ior from both parties. To achieve security in the mali-
cious model, it is necessary to enforce honest behavior.
The cut-and-choose technique is one of the most efficient
methods in the literature and is used in our system. Its
main idea is for the generator to prepare multiple copies
of the garbled circuit with independent randomness, and
the evaluator picks a random fraction of the received cir-
cuits, whose randomness is then revealed. If any of the
chosen circuits (called check circuits) is not consistent
with the revealed randomness, the evaluator aborts; oth-
erwise, she evaluates the remaining circuits (called eval-

uation circuits) and takes the majority of the outputs, one
from each evaluation circuit, as the final output.

The intuition is that to pass the check, a malicious gen-
erator can only sneak in a few faulty circuits, and the
influence of these (supposedly minority) faulty circuits
will be eliminated by the majority operation at the end.
On the other hand, if a malicious generator wants to ma-
nipulate the final output, she needs to construct faulty
majority among evaluation circuits, but then the chance
that none of the faulty circuits is checked will be negli-
gible. So with the help of the cut-and-choose method,
a malicious generator either constructs many faulty cir-
cuits and gets caught with high probability, or constructs
merely a few and has no influence on the final output.

However, the cut-and-choose technique is not a cure-
all. Several subtle attacks have been reported and would
be a problem if not properly handled. These attacks in-
clude the generator’s input inconsistency attack, the se-
lective failure attack, and the generator’s output authen-
ticity attack, which are discussed in the following sec-
tions. Note that in this section, n denotes the input size
and s denotes the number of copies of the circuit.

Generator’s Input Consistency Recall that in the cut-
and-choose step, multiple copies of a circuit are con-
structed and then evaluated. A malicious generator
is therefore capable of providing altered inputs to dif-
ferent evaluation circuits. It has been shown that for
some functions, there are simple ways for the gen-
erator to extract information about the evaluator’s in-
put [23]. For example, suppose both parties agree
to compute the inner-product of their input, that is,
f ([a2,a1,a0], [b2,b1,b0]) �→ a2b2 +a1b1 +a0b0 where ai
and bi is the generator’s and evaluator’s i-th input bit,
respectively. Instead of providing [a2,a1,a0] to all eval-
uation circuits, the generator could send [1,0,0], [0,1,0],
and [0,0,1] to different copies of the evaluation circuits.
After the majority operation from the cut-and-choose
technique, the generator learns major(b2,b1,b0), the ma-
jority bit in the evaluator’s input, which is not what the
evaluator agreed to reveal in the first place.

There exist several approaches to deter this attack.
Mohassel and Franklin [27] proposed the equality-
checker that needs O(ns2) commitments to be computed
and exchanged. Lindell and Pinkas [23] developed an
approach that also requires O(ns2) commitments. Later,
Lindell and Pinkas [24] proposed a pseudorandom syn-
thesizer that relies on efficient zero-knowledge proofs
for specific hardness assumptions and requires O(ns)
group operations. shelat and Shen [32] suggested the
use of malleable claw-free collections, which also uses
O(ns) group operations, but they showed that witness-
indistinguishability suffices, which is more efficient than
zero-knowledge proofs by a constant factor.

USENIX Association 	 21st USENIX Security Symposium  289

In our system, we incorporate the malleable claw-free
collection approach because of its efficiency. Although
the commitment-based approaches can be implemented
using lightweight primitives such as collision-resistant
hash functions, they incur high communication overhead
for the extra complexity factor s, that is, the number of
copies of the circuit. On the other hand, the group-based
approach could be more computationally intensive, but
this discrepancy is compensated again due to the param-
eter s.1 Hence, with similar computation cost, group-
based approaches enjoy lower communication overhead.

Selective Failure A more subtle attack is selective fail-
ure [19, 27]. A malicious generator could use inconsis-
tent keys to construct the garbled gate and OT so that
the evaluator’s input can be inferred from whether or not
the protocol completes. In particular, a cheating genera-
tor could assign (K0,K1) to an input wire in the garbled
circuit while using (K0,K∗

1) instead in the corresponding
OT, where K1 �= K∗

1 . As a result, if the evaluator’s input
is 0, she learns K0 from OT and completes the evalu-
ation without complaints; otherwise, she learns K∗

1 and
gets stuck during the evaluation. If the protocol expects
the evaluator to share the result with the generator at the
end, the generator learns whether or not the evaluation
failed, and therefore, the evaluator’s input is leaked.

Lindell and Pinkas [23] proposed the random input re-
placement approach that involves replacing each of the
evaluator’s input bits with an XOR of s additional in-
put bits, so that whether the evaluator aborts due to a se-
lective failure attack is almost independent (up to a bias
of 21−s) of her actual input value. Both Kiraz [18] and
shelat and Shen [32] suggested a solution that exploits
committing OTs so that the generator commits to her in-
put for the OT, and the correctness of the OTs can later
be checked by opening the commitments during the cut-
and-choose. Lindell and Pinkas [24] also proposed a so-
lution to this problem using cut-and-choose OT, which
combines the OT and the cut-and-choose steps into one
protocol to avoid this attack.

Our system is based on the random input replacement
approach due to its scalability. It is a fact that the com-
mitting OT or the cut-and-choose OT does not alter the
circuit while the random input replacement approach in-
flates the circuit by O(sn) additional gates. However,
it has been shown that max(4n,8s) additional gates suf-
fice [30]. Moreover, both the committing OT and the cut-

1To give concrete numbers, with an Intel Core i5 processor and
4GB DDR3 memory, a SHA-256 operation (from OpenSSL) requires
1,746 cycles, while a group operation (160-bit elliptic curve from the
PBC library with preprocessing) needs 322,332 cycles. It is worth-
mentioning that s is at least 256 in order to achieve security level 2−80.
The gap between a symmetric operation and an asymmetric one be-
comes even smaller when modern libraries such as RELIC are used
instead of PBC.

and-choose OT require O(ns) group operations, while
the random input replacement approach needs only O(s)
group operations. Furthermore, we observe that the ran-
dom input replacement approach is in fact compatible
with the OT extension technique. Therefore, we were
able to build our system which has the group operation
complexity independent of the evaluator’s input size, and
as a result, our system is particularly attractive when han-
dling a circuit with a large evaluator input.

Generator’s Output Authenticity It is not uncommon
that both the generator and evaluator receive outputs
from a secure computation, that is, the goal function is
f (x,y) = (f1, f2), where the generator with input x gets
output f1, and the evaluator with input y gets f2.2 In
this case, the security requires that both the input and
output are hidden from each other. In the semi-honest
setting, the straightforward solution is to let the gener-
ator choose a random number c as an extra input, con-
vert f (x,y) = (f1, f2) into a new function f ∗((x,c),y) =
(λ ,(f1⊕c, f2)), run the original Yao protocol for f ∗, and
instruct the evaluator to pass the encrypted output f1 ⊕ c
back to the generator, who can then retrieve her real out-
put f1 with the secret input c chosen in the first place.
However, the situation gets complicated when either of
the participants could potentially be malicious. In partic-
ular, a malicious evaluator might claim an arbitrary value
to be the generator’s output coming from the circuit eval-
uation. Note that the two-output protocols we consider
are not fair since the evaluator always learns her own out-
put and may refuse to send the generator’s output. How-
ever, they can satisfy the notion that the evaluator cannot
trick the generator into accepting arbitrary output.

Many approaches have been proposed to ensure the
generator’s output authenticity. Lindell and Pinkas [23]
proposed a solution similar to the aforementioned so-
lution in the semi-honest setting, where the goal func-
tion is modified to compute f1 ⊕ c and its MAC so that
the generator can verify the authenticity of her output.
This approach incurs a cost of adding O(n2) gates to
the circuit. Kiraz [18] presented a two-party computa-
tion protocol in which a zero knowledge proof of size
O(s) is conducted at the end. shelat and Shen [32] sug-
gested a signature-based solution which, similar to Ki-
raz’s, adds n gates to the circuit, and requires a proof of
size O(s+ n) at the end. However, they observed that
witness-indistinguishable proofs are sufficient.

Lindell and Pinkas’ approach, albeit straightforward,
might introduce greater communication overhead than
the description function itself. We therefore employ the
approach that takes the advantages of the remaining two
solutions. In particular, we implement Kiraz’s approach

2Here f1 and f2 are short for f1(x,y) and f2(x,y) for simplicity.

290  21st USENIX Security Symposium	 USENIX Association

(smaller proof size), but only a witness-indistinguishable
proof is performed (weaker security property).

4 Techniques Regarding Performance

Yao’s garbled circuit technique has been studied for
decades. It has drawn significant attention for its sim-
plicity, constant round complexity, and computational ef-
ficiency (since circuit evaluation only requires fast sym-
metric operations). The fact that it incurs high communi-
cation overhead has provoked interest that has led to the
development of fruitful results.

In this section, we will first briefly present the Yao
garbled circuit, and then discuss the optimization tech-
niques that greatly reduce the communication cost while
maintaining the security. These techniques include free-
XOR, garbled row reduction, random seed checking, and
large circuit pre-processing. In addition to these original
ideas, practical concerns involving large circuits and par-
allelization will be addressed.

4.1 Baseline Yao’s Garbled Circuit
Given a circuit that consists of 2-fan-in boolean gates,
the generator constructs a garbled version as follows: for
each wire w, the generator picks a random permutation
bit πw ∈ {0,1} and two random keys w0,w1 ∈ {0,1}k−1.
Let W0 = w0||πw and W1 = w1||(πw ⊕ 1), which are as-
sociated with bit value 0 and 1 of wire w, respectively.
Next, for gate g ∈ { f | f : {0,1}×{0,1} �→ {0,1}} that
has input wire x with (X0,X1,πx), input wire y with
(Y0,Y1,πy), and output wire z with (Z0,Z1,πz), the gar-
bled truth table for g has four entries:

GT Tg




Enc(X0⊕πx ||Y0⊕πy , Zg(0⊕πx,0⊕πy))

Enc(X0⊕πx ||Y1⊕πy , Zg(0⊕πx,1⊕πy))

Enc(X1⊕πx ||Y0⊕πy , Zg(1⊕πx,0⊕πy))

Enc(X1⊕πx ||Y1⊕πy , Zg(1⊕πx,1⊕πy)).

Enc(K,m) denotes the encryption of message m under
key K. Here the encryption key is a concatenation of two
labels, and each label is a random key concatenated with
its permutation bit. Intuitively, πx and πy permute the
entries in GT Tg so that for ix, iy ∈ {0,1}, the (2ix + iy)-th
entry represents the input pair (ix⊕πx, iy⊕πy) for gate g,
in which case the label associated with the output value
g(ix ⊕πx, iy ⊕πy) could be retrieved. More specifically,
to evaluate the garbled gate GT Tg, suppose X ||bx and
Y ||by are the retrieved labels for input wire x and wire
y, respectively, the evaluator will use X ||bx||Y ||by to de-
crypt the (2bx + by)-th entry in GT Tg and retrieve label
Z||bz, which is then used to evaluate the gates at the next
level. The introduction of the permutation bit helps to
identify the correct entry in GT Tg, and thus, only one,
rather than all, of the four entries will be decrypted.

4.2 Free-XOR
Kolesnikov and Schneider [20] proposed the free-XOR
technique that aims for removing the communication
cost and decreasing the computation cost for XOR gates.

The idea is that the generator first randomly picks a
global key R, where R = r||1 and r ∈ {0,1}k−1. This
global key has to be hidden from the evaluator. Then
for each wire w, instead of picking both W0 and W1 at
random, only one is randomly chosen from {0,1}k, and
the other is determined by Wb = W1⊕b ⊕ R. Note that
πw remains the rightmost bit of W0. For an XOR gate
having input wire x with (X0,X0 ⊕ R,πx), input wire y
with (Y0,Y0 ⊕R,πy), and output wire z, the generator lets
Z0 = X0 ⊕Y0 and Z1 = Z0 ⊕R. Observe that

X0 ⊕Y1 = X1 ⊕Y0 = X0 ⊕Y0 ⊕R = Z0 ⊕R = Z1

X1 ⊕Y1 = X0 ⊕R⊕Y0 ⊕R = X0 ⊕Y0 = Z0.

This means that while evaluating an XOR gate, XORing
the labels for the two input wires will directly retrieve
the label for the output wire. So no garbled truth table
is needed, and the cost of evaluating an XOR gate is re-
duced from a decryption operation to a bitwise XOR.

This technique is only secure when the encryption
scheme satisfies certain security properties. The solution
provided by the authors is

Enc(X ||Y,K) = H(X ||Y)⊕Z,

where H : {0,1}2k �→ {0,1}k is a random oracle. Re-
cently, Choi et al. [6] have further shown that it is
sufficient to instantiate H(·) with a weaker crypto-
graphic primitive, 2-circular correlation robust func-
tions. Our system instantiates this primitive with
H(X ||Y) = SHA-256(X ||Y). However, when AES-NI
instructions are available, our system instantiates it with
Hk(X ||Y) =AES-256(X ||Y,k), where k is the gate index.

4.3 Garbled Row Reduction
The GRR (Garbled Row Reduction) technique suggested
by Pinkas et al. [30] is used to reduce the communication
overhead for non-XOR gates. In particular, it reduces the
size of the garbled truth table for 2-fan-in gates by 25%.

Recall that in the baseline Yao’s garbled circuit, both
the 0-key and 1-key for each wire are randomly chosen.
After the free-XOR technique is integrated, the 0-key and
1-key for an XOR gate’s output wire depend on input key
and R, but the 0-key for a non-XOR gate’s output wire is
still free. The GRR technique is to make a smart choice
for this degree of freedom, and thus, reduce one entry in
the garbled truth table to be communicated over network.

In particular, the generator picks (Z0,Z1,πz) by letting
Zg(0⊕πx,0⊕πy) = H(X0⊕πx ||Y0⊕πy), that is, either Z0 or Z1

USENIX Association 	 21st USENIX Security Symposium  291

is assigned to the encryption mask for the 0-th entry of
the GT Tg, and the other one is computed by the equa-
tion Zb = Z1⊕b ⊕R. Therefore, when the evaluator gets
(X0⊕πx ,Y0⊕πy), both X0⊕πx and Y0⊕πy have rightmost bit
0, indicating that the 0-th entry needs to be decrypted.
However, with GRR technique, she is able to retrieve
Zg(0⊕πx,0⊕πy) by running H(·) without inquiring GT Tg.

Pinkas et al. claimed that this technique is compatible
with the free-XOR technique [30]. For rigorousness pur-
poses, we carefully went through the details and came
up with a security proof for our protocol that confirms
this compatibility. The proof will be included in the full
version of this paper.

4.4 Random Seed Checking

Recall that the cut-and-choose approach requires the
generator to construct multiple copies of the garbled cir-
cuit, and more than half of these garbled circuits will
be fully revealed, including the randomness used to con-
struct the circuit. Goyal, Mohassel, and Smith [11] there-
fore pointed out an insight that the evaluator could exam-
ine the correctness of those check circuits by receiving
a hash of the garbled circuit first, acquiring the random
seed, and reconstructing the circuit and hash by herself.

This technique results in the communication overhead
for check circuits independent of the circuit size. This
technique has two phases that straddle the coin-flipping
protocol. Before the coin flipping, the generator con-
structs multiple copies of the circuit as instructed by the
cut-and-choose procedure. Then the generator sends to
the evaluator the hash of each garbled circuit, rather than
the circuit itself. After the coin flipping, when the eval-
uation circuits and the check circuits are determined, the
generator sends to the evaluator the full description of
the evaluation circuits and the random seed for the check
circuits. The evaluator then computes the evaluation cir-
cuits and tests the check circuits by reconstructing the
circuit and comparing its hash with the one received ear-
lier. As a result, even for large circuits, the communi-
cation cost for each check circuit is simply a hash value
plus the random seed. Our system provides that 60% of
the garbled circuits are check circuits. Thus, this opti-
mization significantly reduces communication overhead.

4.5 Working with Large Circuits

A circuit for a reasonably complicated function can eas-
ily consist of billions of gates. For example, a 4095-bit
edit distance circuit has 5.9 billion gates. When circuits
grow to such a size, the task of achieving high perfor-
mance secure computation becomes challenging.

An (I + 2C)-time solution Our solution for handling
large circuits is based on Huang et al.’s work [13], which
is the only prior work capable of handling large circuits
(of up to 1.2 billion non-XOR gates) in the semi-honest
setting. Intuitively, the generator could work with the
evaluator in a pipeline manner so that small chunks of
gates are being processed at a time. The generator could
start to work on the next chunk while the evaluator is still
processing the current one. However, this technique does
not work directly with the random seed checking tech-
nique described above in Section 4.4 because the genera-
tor has to finish circuit construction and hash calculation
before the coin flipping, but the evaluator could start the
evaluation only after the coin flipping. As a result, the
generator needs a way to construct the circuit first, wait
for the coin flipping, and send the evaluation circuits to
the evaluator without keeping them in memory the whole
time. We therefore propose that the generator constructs
the evaluation circuits all over again after the coin flip-
ping, with the same random seed used before and the
same keys for input wires gotten from OT.

We stress that when fully parallelized, the second con-
struction of an evaluation circuit does not incur overhead
to the overall execution time. Although we suggest to
construct an evaluation circuit twice, the fact is that ac-
cording to the random seed checking, a check circuit is
already being constructed twice—once before the coin
flipping by the generator for hash computation and once
after by the evaluator for correctness verification. As a
result, when each generator-evaluator pair is working on
a single copy of the garbled circuit, the constructing time
for a evaluation circuit totally overlaps with that for a
check circuit. We therefore achieve the overall computa-
tion time I+2C mentioned earlier, where the first C is for
the generator to calculate the circuit hash, and the other
C is either for the evaluator to reconstruct a check circuit
or for both parties to work on an evaluation circuit in a
pipeline manner as suggested by Huang et al. [13].

Achieving an (I +C)-time solution We observe that
there is a way to achieve I +C computation time, which
exactly matches the running time of Yao in the semi-
honest setting. This idea, however, is not compatible
with the random-seed technique, and therefore repre-
sents a trade-off between communication and computa-
tion. Recall that the generator has to finish circuit con-
struction and hash evaluation before beginning coin flip-
ping, whereas the evaluator can start evaluating only af-
ter receiving the coin flipping results. The idea is to run
the coin flipping in the way that only the evaluator gets
the result and does not reveal it to the generator until the
circuit construction is completed. Since the generator
is oblivious to the coin flipping result, she sends every
garbled circuit to the evaluator, who could then either

292  21st USENIX Security Symposium	 USENIX Association

evaluate or check the received circuit. In order for the
evaluator to get the generator’s input keys for evaluation
circuits and the random seed for the check circuits, they
run an OT, where the evaluator uses the coin flipping re-
sult as input and the generator provides either the ran-
dom seed (for the check circuit) or his input keys (for the
evaluation circuit). After the generator completes circuit
construction and reveals the circuit hash, the evaluator
compares the hash with her own calculation, if the hashes
match, she proceeds with the rest of the original protocol.
Note that this approach comes at the cost of sacrificing
the random seed checking technique and its 60% savings
in communication.

Working Set Optimization Another problem encoun-
tered while dealing with large circuits is the working
set minimization problem. Note that the circuit value
problem is log-space complete for P. It is suspected that
L�=P, that is, there exist some circuits that can be evalu-
ated in polynomial time but require more than logarith-
mic space. This open problem captures the difficulty of
handling large circuits during both the construction and
evaluation, where at any moment there is a set of wires,
called the working set, that are available and will be ref-
erenced in the future. For some circuits, the working set
is inherently super-logarithmic. A naive approach is to
keep the most recent D wires in the working set, where
D is the upper bound of the input-output distance of all
gates. However, there may be wires which are used as
inputs to gates throughout the entire circuit, and so this
technique could easily result in adding almost the whole
circuit to the working set, which is especially problem-
atic when there are hundreds of copies of a circuit of
billions of gates. While reordering the circuit or adding
identity gates to minimize D would mitigate this prob-
lem, doing so while maintaining the topological order of
the circuit is known to be an NP-complete problem, the
graph bandwidth problem [9].

Our solution to this difficulty is to pre-process the cir-
cuit so that each gate comes with a usage count. Our
system has a compiler that converts a program in high-
level language into a boolean circuit. Since the compiler
is already using global optimization in order to reduce
the circuit size, it is easy for the global optimizer to an-
alyze the circuit and calculate the usage count for each
gate. With this information, it is easy for the genera-
tor and evaluator to decrement the counter for each gate
whenever it is being referenced and to toss away the gate
whenever its counter becomes zero. In other words, we
keep track of merely useful information and heuristically
minimize the size of the working set, which is small com-
pared with the original circuit size as shown in Table 1.

AES Dot64
4 RSA-32 EDT-255

circuit size 49,912 460,018 1,750,787 15,540,196
wrk set size 323 711 235 2,829

Table 1: The size of the working set for various circuits
(sizes include input gates)

5 Boolean Circuit Compiler

Although the Fairplay circuit compiler can generate cir-
cuits, it requires a very large amount of computational
resources to generate even relatively small circuits. Even
on a machine with 48 gigabytes of RAM, Fairplay ter-
minates with an out-of-memory error after spending 20
minutes attempting to compile an AES circuit. This
makes Fairplay impractical for even relatively small cir-
cuits, and infeasible for some of the circuits tested in this
project. One goal of this project was to have a general
purpose system for secure computation, and so writing
application specific programs to generate circuits, a tech-
nique used by others [13], was not an option.

To address this problem, we have implemented a new
compiler that generates a more efficient output format
than Fairplay, and which requires far lower computa-
tional resources to compile circuits. We were able to
generate the AES circuit in only a few seconds on a typi-
cal desktop computer with only 8GB of RAM, and were
able to generate and test much larger non-trivial circuits.
We used the well-known flex and bison tools to generate
our compiler, and implemented an optimizer as a sepa-
rate tool. We also use the results from [30] to reduce 3
arity gates to 2 arity gates.

As a design decision, we created an imperative, un-
typed language with static scoping. We allow code, vari-
ables, and input/output statements to exist in the global
scope; this allows very simple programs to be written
without too much extra syntax. Functions may be de-
clared, but may not be recursive. Variables do not need to
be declared before being used in an unconditional assign-
ment; variables assigned within a function’s body that are
not declared in the global scope are considered to be lo-
cal. Arrays are a language feature, but array indices must
be constants or must be determined at compile time. If
run-time determined indices are required for a function,
a loop that selects the correct index may be used; this is
necessary for oblivious evaluation. Variables may be ar-
bitrarily concatenated, and bits or groups of bits may be
selected from any variable and bits or ranges of bits may
be assigned to; as with arrays, the index of a bit must be
determined at compile time, or else a loop must be used.
Note that loop variables may be used as such an index,
since loops are always completely unrolled, and there-
fore the loop index can always be resolved at compile

USENIX Association 	 21st USENIX Security Symposium  293

time. Additional language features are planned as future
work.

We use some techniques from the Fairplay compiler
in our own compiler. In particular we use the single as-
signment algorithm from Fairplay, which is required to
deal with assignments that occur inside of if statements.
Otherwise, our compiler has several distinguishing char-
acteristics that make it more resource efficient than Fair-
play. The front end of our compiler attempts to gener-
ate circuits as quickly as possible, using as little memory
as possible and performing only rudimentary optimiza-
tions before emitting its output. This can be done with
very modest computational resources, and the intermedi-
ate output can easily be translated into a circuit for evalu-
ation. The main optimizations are performed by the back
end of the compiler, which identifies gates that can be
removed without affecting the output of the circuit as a
whole.

Unlike the Fairplay compiler, we avoided the use of
hash tables in our compiler, using more memory-efficient
storage. Our system can use one of three storage strate-
gies: memory-mapped files, flat files without any map-
ping, and Berkeley DB. In our tests, we found that mem-
ory mapped files always resulted in the highest perfor-
mance, but that Berkeley DB is only sometimes better
than direct access without any mapping.

In the following sections, we describe these contribu-
tions in more detail, and provide experimental results.

5.1 Circuit Optimizations

The front-end of our compiler tends to generate ineffi-
cient circuits, with large numbers of unnecessary gates.
As an example, for some operations the compiler gener-
ates large numbers of identity gates i.e. gates whose out-
puts follow one of their inputs. It is therefore essential
to optimize the circuits emitted by the front end, particu-
larly to meet our system’s overall goal of practicality.

Our compiler uses several stages of optimization, most
of which are global. As a first step, a local optimization
removes redundant gates, i.e. gates that have the same
truth table and input wires. This first step operates on
a fixed-size chunk of the circuit, but we have found that
there are diminishing improvements as the size of this
window is increased. We also remove constant gates,
identity gates, and inverters, which are generated by the
compiler and which may be inadvertently generated dur-
ing the optimization process. Finally, we remove gates
that do not influence the output, which can be thought
of as dead code elimination. The effectiveness of each
optimization on different circuits is shown in Figure 1.
The circuit that was least optimizable was the edit dis-
tance circuit, being reduced to only 82% of its size from
the front end, whereas the RSA signing and the dot prod-

uct circuits were the most optimizable, being reduced to
roughly half of the gates emitted by the front end.

Gate Removal The front-end of the compiler emits
gates in topological order, and similar to Fairplay, our
compiler assigns explicit identifiers to each emitted gate.
To remove gates efficiently, we store a table that maps
the identifiers of gates that were removed to the previ-
ously emitted gates, and for each gate that is scanned
the inputs are rewritten according to this table. The ta-
ble itself is then emitted, so that the identifiers of non-
removed gates can be corrected. This mapping process
can be done in linear time and space using an appropriate
key-value store.

Removing Redundant Gates Some of the gates gen-
erated by the front end of our compiler have the same
truth table and input wires as previously generated gates;
such gates are redundant and can be removed. This re-
moval process has the highest memory requirement of
any other optimization step, since a description of ev-
ery non-redundant gate must be stored. However, we
found during our experiments that this optimization can
be performed on discrete chunks of the circuit with re-
sults that are very close to performing the optimization
on the full circuit, and that there are diminishing im-
provements in effectiveness as the size of the chunks is
increased. Therefore, we perform this optimization us-
ing chunks, and can use hash tables to improve the speed
of this step.

Removing Identity Gates and Inverters The front
end may generate identity gates or inverters, which are
not necessary. This may happen inadvertently, such as
when a variable is incremented by a constant, or as part
of the generation of a particular logic expression. While
removing identity gates is straightforward, the removal
of inverters requires more work, as gates which have in-
verted input wires must have their truth tables rewritten.
There is a cascading effect in this process; the removal of
some identity gates or inverters may transform later gates
into identity gates or inverters. This step also removes
gates with constant outputs, such as an XOR gate with
two identical inputs. Constant propagation and folding
occur as a side effect of this optimization.

Removing Unused Gates Finally, some gates in the
circuit may not affect the output value at all. For this
step, we scan the circuit backwards, and store a table of
live gates; we then re-emit the live gates in the circuit
and skip the dead gates. Immediately following this step,
the circuit is prepared for the garbled circuit generator,
which includes generating a usage count for each gate.

294  21st USENIX Security Symposium	 USENIX Association

Figure 1: Average fraction of circuits remaining after each optimization is applied in sequence. We see that the relative
change in circuit sizes after each optimization is dependent on the circuit itself, with some circuits being optimized
more than others.

Circuit DB (s) mmap (s) flat (s)

7200RPM Spinning Disk (ext4-fs)

AES 4.3 ±0.5% 1.05 ± 1% 3.48 ±0.3%

RSA-32 103 ±0.3% 24.6 ±0.2% 78.4 ±0.3%

Dot64
4 32.56 ±0.1% 7.1 ±0.3% 28.37 ±0.1%

EDT-255 975 ±0.1% 240 ± 1% 700 ±0.9%

Solid-State Drive

AES 3.62 ±0.3% 0.86 ± 1% 3.17 ±0.6%

RSA-32 96.5 ±0.2% 21.6 ±0.4% 68.3 ±0.3%

Dot64
4 30.5 ±0.5% 6.27 ± 1% 25.9 ±0.2%

EDT-255 907 ±0.1% 200 ±0.4% 590 ± 1%

Amazon EC2

AES 5.56 ± 4% 1.12 ± 0% 7.11 ±0.3%

RSA-32 208 ±0.4% 45.7 ± 3% 240 ±0.1%

Dot64
4 46.3 ±0.1% 9.2 ±0.2% 60.7 ±0.2%

EDT-255 2500 ± 1% 405 ±0.2% 2050 ±0.2%

Circuit Sizes

AES RSA-32 Dot64
4 EDT-255

49,912 1,750,787 460,018 15,540,196

Table 2: Compile times for different storage systems for
small circuits (sizes include input gates), using differ-
ent storage media. Results are averaged over 30 experi-
ments, with 95% confidence intervals. On EC2, a high-
memory quadruple extra large instance was used.

Key-Value Stores Unfortunately, even though our
compiler is more resource efficient than Fairplay, it still
requires space that is linear in the size of the circuit. For
very large circuits, circuits with billions of gates or more,
this may exceed the amount of RAM that is available.
Our compiler can make use of a computer’s hard drive to
store intermediate representations of circuits and infor-
mation about how to remove gates from the circuit. We
used memory-mapped I/O to reduce the impact this has
on performance; however, our use of mmap and ftruncate
is not portable, and so our system also supports using an
unmapped file or Berkeley DB. Our tests revealed that,
as expected, memory-mapped I/O achieves the highest
performance, but that Berkeley DB is sometimes better
than unmapped files on high-latency filesystems. A sum-
mary of the performance of each method on a variety of
storage systems is shown in Table 2.

Using the hard drive in this manner, we were able
to compile our largest circuits. The performance im-
pact of writing to disk should not be understated; a
several-billion-gate edit distance 4095x4095 circuit re-
quired more than 3 days to compile on an Amazon EC2
high-memory image, with 68 GB of RAM, one third of
which was spent waiting on I/O. Note, however, that this
is a one-time cost; a compiled circuit can be used in un-
limited evaluations of a secure computation protocol.

5.2 Compiler Testing Methodology
We tested the performance of our compiler using five cir-
cuits. The first was AES, to compare our compiler with
the Fairplay system. We also used AES with the com-
pact S-Box description given by Boyar and Parelta [3],
which results in a smaller AES circuit. We used an RSA

USENIX Association 	 21st USENIX Security Symposium  295

RSA Size Circuit Size Compile Time (s) Gates/s Edit-Dist Size Circuit Size Compile Time (s) Gates/s

16 208,499 2.6 ± 7% 80,000 31x31 144,277 1.70 ±0.7% 84,900
32 1,750,787 21.6 ±0.4% 81,100 63x63 717,233 8.56 ±0.7% 83,800
64 14,341,667 189 ±0.3% 75,900 127x127 3,389,812 41.7 ±0.5% 81,300
128 116,083,983 1810 ±0.3% 64,100 255x255 15,540,196 200 ±0.4% 77,700

Table 3: Time required to compile and optimize RSA and edit distance circuits on a workstation with an Intel Xeon
5506 CPU, 8GB of RAM and a 160GB SSD, using the textbook modular exponentiation algorithm. Note that the
throughput for edit distance is higher even for comparably sized circuits; this is because the front end generates a more
efficient circuit without any optimization. Compile times are averaged over 30 experiments, with 95% confidence
intervals reported.

signing circuit with various toy key sizes, up to 128 bits,
to test our compiler’s handling of large circuits; RSA cir-
cuits have cubic size complexity, allowing us to generate
very large circuits with small inputs. We also used an edit
distance circuit, which was the largest test case used by
Huang et al. [13]; unlike the other test circuits, there is no
multiplication routine in the inner loop of this function.
Finally we used a dot product with error, a basic sam-
pling function for the LWE problem, which is similar to
RSA in creating large circuits, but also demonstrates our
system’s ability to handle large input sizes.

After compiling these circuits, we tested the correct-
ness by first performing a direct, offline evaluation of the
circuit, and comparing the output to a non-circuit imple-
mentation. We then compared the output of an online
evaluation to the offline evaluation. Additionally, for the
AES circuit, we compared the output of the circuit gener-
ated by our compiler to the output of a circuit generated
using Fairplay. We tested all three key-value stores on a
variety of file systems, including a fast SSD, a spinning
disk, and an Amazon EC2 instance store, checking for
correctness as described above in each case.

5.3 Summary of Compiler Performance

Our compiler is able to emit and optimize large circuits
in relatively short periods of time, less than an hour for
circuits with tens of millions of gates on an inexpensive
workstation. In Figure 1 we summarize the effectiveness
of the various optimization stages on different circuits;
in circuits that involve multiplication in finite fields or
modulo an integer, the identity gate removal step is the
most important, removing more than half of the gates
emitted by the front-end. The edit distance circuit is the
best-case for our front end, as less than 1/5 of the gates
that are emitted can be removed by the optimizer. The
throughput of our compiler is dependent on the circuit
being compiled, with circuits which are more efficiently
generated by the front-end being compiled faster; in Ta-
ble 3 we compare the generation of RSA circuits to edit
distance circuits.

6 Experimental Results

In this section, we give a detailed description of our
system, upon which we have implemented various real
world secure computation applications. The experimen-
tal environment is the Ranger cluster in the Texas Ad-
vanced Computing Center. Ranger is a blade-based sys-
tem, where each node is a SunBlade x6240 blade run-
ning a Linux kernel and has four AMD Opteron quad-
core 64-bit processors, as an SMP unit. Each node in the
Ranger system has 2.3 GHz core frequency and 32 GB of
memory, and the point-to-point bandwidth is 1 GB/sec.
Although Ranger is a high-end machine, we use only a
small fraction of its power for our system, only 512 out of
62,976 cores. Note that we use the PBC (Pairing-Based
Cryptography) library [25] to implement the underly-
ing cryptographic protocols such as oblivious transfers,
witness-indistinguishable proofs, and so forth. However,
moving to more modern libraries such as RELIC [31] is
likely to give even better results, especially to those cir-
cuits with large input and output size.

System Setup In our system, both the generator and
the evaluator run an equal number of processes, includ-
ing a root process and many slave processes. A root pro-
cess is responsible for coordinating its own slave pro-
cesses and the other root process, while the slave pro-
cesses work together on repeated and independent tasks.
There are three pieces of code in our system: the genera-
tor, the evaluator, and the IP exchanger. Both the genera-
tor’s and evaluator’s program are implemented with Mes-
sage Passing Interface (MPI) library. The reason for the
IP exchanger is that it is common to run jobs on a cluster
with dynamic working node assignment. However, when
the nodes are dynamically assigned, the generator run-
ning on one cluster and the evaluator running on another
might have a hard time locating each other. Therefore,
a fixed location IP exchanger helps the match-up pro-
cess as described in Figure 2. Our system provides two
modes—the user mode and the simulation mode. The
former works as mentioned above, and the latter simply

296  21st USENIX Security Symposium	 USENIX Association

spawns an even number of processes, half for the gen-
erator and the other half for the evaluator. The network
match-up process is omitted in the latter mode to sim-
plify the testing of this system.

To achieve a security level of 2−80, meaning that a ma-
licious player cannot successfully cheat with probability
better than 2−80, requires at least 250 copies of the gar-
bled circuit [32]. For simplicity, we used 256 copies in
our experiments, that is, security parameters k = 80 and
s= 256. Each experiment was run 30 times (unless stated
otherwise), and in the following sections we report the
average runtime of our experiments.

1 4

32

5

5

5

5

Evl Gen

IP server

Figure 2: Both the generator and evaluator consist of a
root process (solid dot) and a number of slave processes
(hollow dots). The match-up works as follows: the slave
evaluator processes send their IPs to the root evaluator
process (Step 1), who then forwards them to the IP ex-
changer (Step 2). Next, the root generator process comes
to acquire these IPs (Step 3) and dispatch them to its
slaves (Step 4), who then proceed to pair up with one of
the slave evaluator processes (Step 5) and start the main
protocol. The arrows show the message flow.

Timing methodology When there is more than one
process on each side, care must be taken in measuring
the timings of the system. The timings reported in this
section are the time required by the root process at each
stage of the system. This was chosen because the root
process will always be the longest running process, as
it must wait for each slave process to run to completion.
Moreover, in addition to doing all the work that the slaves
do, the root processes also perform the input consistency
check and the coin tossing protocol.

Impacts of the Performance Optimization Techniques
We have presented several performance optimization
techniques in Section 4 with theoretical analyses, and
here we demonstrate their empirical effectiveness in Ta-
ble 4. As we have anticipated, the Random Seed Check-
ing reduces the communication cost for the garbled cir-
cuits by 60%, and the Garbled Row Reduction further
reduces by another 25%. In the RS and GRR columns,

the small deviation from the theoretical fraction 40%
and 30%, respectively, is due to certain implementation
needs. Our compiler is designed to reduce the number of
non-XOR gates. In these four circuits, the ratio of non-
XOR gates is less than 43%. So after further applying
the Free-XOR technique, the final communication is less
than 13% of that in the baseline approach.

non-XOR Baseline RS GRR FX
(%) (MB) (%) (%) (%)

AES 30.81 509 39.97 30.03 9.09
Dot64

4 29.55 4,707 39.86 29.91 8.88
RSA-32 34.44 17,928 39.84 29.88 10.29
EDT-255 41.36 159,129 39.84 29.87 12.36

Table 4: The impact of various optimization techniques:
The Baseline shows the communication cost for 256
copies of the original Yao garbled circuit when k = 80;
RS shows the remaining fraction after Random Seed
technique is applied; GRR shows when Garbled Row Re-
duction is further applied; and FX shows when the previ-
ous two techniques and the Free-XOR are applied. (The
communication costs here only include those in the gen-
eration and evaluation stages.)

Performance Gain by AES-NI On a machine with
2.53 GHz Intel Core i5 processor and 4GB 1067 MHz
DDR3 memory, it takes 784 clock cycles to run a single
SHA-256 (with OpenSSL 1.0.0g), while it needs only
225 cycles for AES-256 (with AES-NI). To measure the
benefits of AES-NI, we use two instantiations to con-
struct various circuits, listed in Table 5, and observe a
consistent 20% saving in circuit construction.3

size AES-NI SHA-256 Ratio
(gate) (sec) (sec) (%)

AES 49,912 0.12± 1% 0.15± 1% 78.04
Dot64

4 460,018 1.11±0.4% 1.41±0.5% 78.58
RSA-32 1,750,787 4.53±0.5% 5.9±0.8% 76.78
EDT-255 15,540,196 42.0±0.5% 57.6± 1% 72.92

Table 5: Circuit generation time (for a single copy) with
different instantiations (AES-NI vs SHA-256) of the 2-
circular correlation robust function.

AES We used AES as a benchmark to compare our
compiler to the Fairplay compiler, and as a test circuit

3The reason that saving 500+ cycles does not lead to more improve-
ments is that this encryption operation is merely one of the contributing
factors to generating a garbled gate. Other factors, for example, in-
clude GNU hash map table insertion (∼1,200 cycles) and erase (∼600
cycles).

USENIX Association 	 21st USENIX Security Symposium  297

for our system. We tested the full AES circuit, as spec-
ified in FIPS-197 [8]. In the semi-honest model, it is
possible to reduce the number of gates in an AES circuit
by computing the key schedule offline; e.g. this is one of
the optimizations employed by Huang et al. [13]. In the
malicious model, however, such an optimization is not
possible; the party holding the key could attempt to re-
duce the security level of the cipher by computing a ma-
licious key schedule. So in our experiments we compute
the entire function, including the key schedule, online.

In this experiment, two parties collaboratively com-
pute the function f : (x,y) �→ (⊥,AESx(y)), i.e., the cir-
cuit generator holds the encryption key x, while the eval-
uator has the message y to be encrypted. At the end, the
generator will not receive any output, whereas the evalu-
ator will receive the ciphertext AESx(y).

Type Fairplay Ours-A Pinkas et al. Ours-B

non-XOR 15,316 15,300 11,286 9,100
XOR 35,084 34,228 22,594 21,628

Table 6: The components of the AES circuits from dif-
ferent sources. Ours-A comes from the textbook AES
algorithm, and Ours-B uses an optimized S-box circuit
from [3]. (Sizes do not include input or output wires)

First of all, we demonstrate the performance of our
compiler in Table 6. We have shown in Section 5 that
our compiler is capable of large circuit generation. We
also found in our experiments that our compiler produces
smaller AES circuit than Fairplay. Given the same high-
level description of AES encryption (textbook AES), our
compiler produces a circuit with a smaller gate count and
even fewer non-XOR gates. When applying the compact
S-Box description proposed by Boyar and Parelta [3]
to the high-level description as input to our compiler, a
smaller AES circuit than the hand-optimized one from
Pinkas et al. is generated with less effort.

In Table 7, both the computational and communica-
tion costs for each main stage are listed under the tradi-
tional setting, where there is only one process on each
side. These main stages include oblivious transfer, gar-
bled circuit construction, the generator’s input consis-
tency check, and the circuit evaluation. Each row in-
cludes both the computation and communication time
used. Note that network conditions could vary from set-
ting to setting. Our experiments run in a local area net-
work, and the data can only give a rough idea on how fast
the system could be in an ideal environment. However,
the precise amount of data being exchanged is reported.

We notice in Table 7 that the evaluator spends an un-
reasonable amount of time on communication with re-
spect to the amount of data to be transmitted in both
the oblivious transfer and circuit construction stages.

Gen Eval Comm
(sec) (sec) (KB)

OT
comp 45.8±0.09% 34.0±0.2%

5,516
comm 0.1± 1% 11.9±0.6%

Gen.
comp 35.6± 0.5% –

3
comm – 35.6±0.5%

Inp. comp – 1.75±0.2%
266

Chk comm – –

Evl.
comp 14.9± 0.6% 32.4±0.4%

28,781
comm 18.2± 1% 3.2±0.8%

Total
comp 96.3± 0.3% 68.0±0.2%

34,566
comm 18.3± 1% 50.8±0.4%

Table 7: The 95% two-sided confidence intervals of the
computation and communication time for each stage in
the experiment (x,y) �→ (⊥,AESx(y)).

This is because the evaluator spends that time waiting
for the generator to finish computation-intensive tasks.
The same reasoning explains why in the circuit evalu-
ation stage the generator spends more time in commu-
nication than the evaluator. This waiting results from
the fact that both parties need to run the protocol in a
synchronized manner. A generator-evaluator pair can-
not start next communication round while any other pair
has not finished the current one. This synchronization is
crucial since our protocol’s security is guaranteed only
when each communication round is performed sequen-
tially. While the parallelization of the program intro-
duces high performance execution, it does not and should
not change this essential property. A stronger notion
of security such as universal security will be required if
asynchronous communication is allowed. By using TCP
sockets in “blocking” mode, we enforce this communi-
cation round synchronization.

Note that the low communication during the circuit
construction stage is due to the random seed checking
technique. Also, the fact that the generator spends more
time in the evaluation stage than she traditionally does
comes from the second construction for evaluation cir-
cuits. Recall that only the evaluation circuits need to be
sent to the evaluator. Since only 40% of the garbled cir-
cuits (102 out of 256) are evaluation-circuits, the ratio of
the generator’s computation time in the generation and
evaluation stage is 35.63:14:92 � 5:2.

We were unfortunately unable to find a cluster of hun-
dreds of nodes that all support AES-NI. Our experimen-
tal results, therefore, do not show the full potential of
all the optimization techniques we have proposed. How-
ever, recall that for certain circuits the running time in
the semi-honest setting is roughly half of that in the

298  21st USENIX Security Symposium	 USENIX Association

node #
4 16 64 256

Gen Evl Gen Evl Gen Evl Gen Evl

OT 12.56±0.1% 8.41±0.1% 4.06±0.1% 2.13±0.2% 1.96±0.1% 0.58±0.2% 0.64±0.1% 0.19±0.2%
Gen. 8.18±0.4% – 1.92±0.7% – 0.49±0.4% – 0.14± 1% –

Inp. Chk – 0.42± 4% – 0.10± 10% – – – –
Evl. 3.3± 4% 7.08± 1% 0.80± 10% 1.58± 4% 0.23± 17% 0.37± 7% 0.12±0.5% 0.05±0.6%

Inter-com 4± 5% 13.2±0.3% 0.93± 10% 4.08±0.8% 0.31± 20% 1.98± 1% 0.11± 40% 0.72±0.2%
Intra-com 0.17± 30% 0.23± 20% 0.18± 8% 0.25± 6% 0.45± 20% 0.48± 15% 0.34± 30% 0.34± 30%

Total time 28.3±0.3% 29.4±0.3% 7.90±0.5% 8.17±0.4% 3.45± 2% 3.44± 2% 1.4± 10% 1.3± 9%

Table 8: The average and error interval of the times (seconds) running AES circuit. The number of nodes represents
the degree of parallelism on each side. “–” means that the time is smaller than 0.05 seconds. Inter-com refers to the
communication between the two parties, and intra-com refers to communication between nodes for a single party.

malicious setting. We estimate a 20% improvement in
the performance of garbled circuit generation when the
AES-NI instruction set becomes ubiquitous, based on the
preliminary results presented above in Table 5.

Table 8 shows that the Yao protocol really benefits
from the circuit-level parallelization. Starting from Ta-
ble 7, where each side only has one process, all the way
to when each side has 256 processes, as the degree of par-
allelism is multiplied by four, the total time reduces into
a quarter. Note that the communication costs between the
generator and evaluator remain the same, as shown in Ta-
ble 7. It may seem odd that the communication costs are
reduced as the number of processes increase. The real in-
terpretation of this data is that as the number of processes
increases, the “waiting time” decreases.

Notice that as the number of processes increases, the
ratio of the time the generator spends in the construc-
tion and evaluation stage decreases from 5:2 to 1:1. The
reason is that the number of garbled circuit each process
handles is getting smaller and smaller. Eventually, we
reach the limit of the benefits that the circuit-level paral-
lelism could possibly bring. In this case, each process is
dealing with merely a single copy of the garbled circuit,
and the time spent in both the generation and evaluation
stages is the time to construct a garbled circuit.

To the best of our knowledge, completing an execution
of secure AES in the malicious model within 1.4 seconds
is the best result that has ever been reported. The next
best result from Nielsen et al. [28] is 1.6 seconds, and it
is an amortized result (85 seconds for 54 blocks of AES
encryption in parallel) in the random oracle model. This
is only a crude comparison, however; our experimental
setup uses a cluster computer while Nielsen et al. used
only two desktops. A better comparison would be pos-
sible given a parallel implementation of Nielsen et al.’s
system, and we are interested in seeing how much of an
improvement such an implementation could achieve.

Large Circuits In this experiment, we run the 4095-
bit edit distance circuit, that is, (x,y) �→ (⊥,EDT(x,y)),
where x,y ∈ {0,1}4095. In particular, we use the I +C
approach, where the computation time could be roughly
a half of that of the I+2C approach with the price of not
getting to use the random-seed technique. Recall that in
the I +C approach, the generator and the evaluator con-
duct the cut-and-choose in a way that the generator does
not know the check circuits until she finishes transferring
all the garbled circuits. Next, both the parties run the
circuit generation and evaluation in a pipeline manner,
where one party is generating and giving away garbled
gates on one end, and the other party is evaluating and
checking the received gates at the other end at the same
time. The results are shown in Table 9.

Gen Eval Comm
(sec) (sec) (Byte)

OT
19.73±0.5% 5.26±0.4%

1.7×108
1.1± 6% 15.6±0.6%

Cut-& 1.1±0.8% –
6.5×107

Choose – 1.5± 2%

Gen./Evl.
24,400± 1% 14,600± 3%

1.8×1013
4,900± 1% 14,700± 2%

Inp. 0.6± 20% –
8.5×106

Chk 0.4± 40% 0.60± 20%

Total
24,400± 1% 14,600± 3%

1.8×1013
4,900± 1% 14,700± 2%

Table 9: The result of (x,y) �→ (⊥,EDT-4095(x,y)).
Each party is comprised of 256 cores in a cluster. This
table comes from 6 invocations of the system. Simi-
larly, the upper row in each stage is the computation time,
while the lower is the communication time.

This circuit generated by our compiler has 5.9 billion
gates, and 2.4 billion of those are non-XOR. It is worth

USENIX Association 	 21st USENIX Security Symposium  299

mentioning that, without the random-seed technique, the
communication cost shown in Table 9 can also be esti-
mated by 256× 2.4× 109 × 3× 10 = 1.8× 1013, since
256 copies of the garbled circuits need to be transferred,
each copy has 2.4 billion non-free gates, each non-free
gate has three entries, and each entry has k = 80 bits.

In additional to showing that our system is capable of
handling the largest circuits ever reported, we also have
shown a speed in the malicious setting that is comparable
to those in the semi-honest setting. In particular, we were
able to complete an single execution of 4095-bit edit dis-
tance circuit in less than 8.2 hours with a rate of 82,000
(non-XOR) gates per second. Note that Huang et al.’s
system is the only one, to the best of our knowledge, that
is capable of handling such large circuits [13]; they re-
ported a rate of over 96,000 (non-XOR) gates per second
for an edit-distance circuit in the semi-honest setting.

7 Conclusion

We have presented a general purpose secure two party
computation system which offers security against mali-
cious adversaries and which can efficiently evaluate cir-
cuits with hundreds of millions and even billions of gates
on affordable hardware. Our compiler can generate large
circuits using fewer computational resources than simi-
lar compilers, and offers improved flexibility to users of
the system. Our evaluator can take advantage of parallel
computing resources, which are becoming increasingly
common and affordable. As future work, we plan further
improvements to our compiler and language, as well as
experiments on systems other than Ranger.

The source code for this system can be down-
loaded from the authors’ website (http://crypto.cs.
virginia.edu/), along with example functions, includ-
ing those describe in this paper.

8 Acknowledgements

We would like to thank Benny Pinkas, Thomas Schnei-
der, Nigel Smart and Stephen Williams for providing us
with a copy of their optimized AES circuit. We would
also like to thank Gabriel Robins for his advice on min-
imizing circuits in VLSI systems. We are particularly
grateful to Ian Goldberg for his very helpful comments.

This work is supported by Defense Advanced Re-
search Projects Agency (DARPA) and the Air Force Re-
search Laboratory (AFRL) under contract FA8750-11-
2-0211. The views and conclusions contained in this
document are those of the authors and should not be in-
terpreted as representing the official policies, either ex-
pressed or implied, of the Defense Advanced Research
Projects Agency or the US government.

References
[1] BENDLIN, R., DAMGÅRD, I., ORLANDI, C., AND ZAKARIAS,

S. Semi-homomorphic encryption and multiparty computation.
In Proceedings of the 30th Annual international conference on
Theory and applications of cryptographic techniques: advances
in cryptology (Berlin, Heidelberg, 2011), EUROCRYPT’11,
Springer-Verlag, pp. 169–188.

[2] BOGETOFT, P., CHRISTENSEN, D. L., DAMGÅRD, I.,
GEISLER, M., JAKOBSEN, T. P., KRØIGAARD, M., NIELSEN,
J. D., NIELSEN, J. B., NIELSEN, K., PAGTER, J.,
SCHWARTZBACH, M. I., AND TOFT, T. Secure Multiparty Com-
putation Goes Live. In Financial Cryptography (2009), pp. 325–
343.

[3] BOYAR, J., AND PERALTA, R. A new combinational logic
minimization technique with applications to cryptology. In Pro-
ceedings of the 9th international conference on Experimental Al-
gorithms (Berlin, Heidelberg, 2010), SEA’10, Springer-Verlag,
pp. 178–189.

[4] BRICKELL, J., AND SHMATIKOV, V. Privacy-preserving graph
algorithms in the semi-honest model. In Proceedings of the 11th
international conference on Theory and Application of Cryptol-
ogy and Information Security (Berlin, Heidelberg, 2005), ASI-
ACRYPT’05, Springer-Verlag, pp. 236–252.

[5] CANETTI, R., LINDELL, Y., OSTROVSKY, R., AND SAHAI, A.
Universally composable two-party and multi-party secure com-
putation. In Proceedings of the thiry-fourth annual ACM sym-
posium on Theory of computing (New York, NY, USA, 2002),
STOC ’02, ACM, pp. 494–503.

[6] CHOI, S. G., KATZ, J., KUMARESAN, R., AND ZHOU, H.-S.
On the security of the ”free-xor” technique. In Proceedings of the
9th international conference on Theory of Cryptography (Berlin,
Heidelberg, 2012), TCC’12, Springer-Verlag, pp. 39–53.

[7] DAMGARD, I., PASTRO, V., SMART, N., AND ZAKARIAS, S.
Multiparty Computation from Somewhat Homomorphic Encryp-
tion. In Proceedings of the 32th Annual International Cryptology
Conference on Advances in Cryptology (2012), CRYPTO ’12.
http://eprint.iacr.org/2011/535.

[8] FIPS. Advanced Encryption Standard (AES), 2001.

[9] GAREY, M., GRAHAM, R., JOHNSON, D., AND KNUTH, D.
Complexity results for bandwidth minimization. SIAM Journal
on Applied Mathematics 34, 3 (1978), 477–495.

[10] GENTRY, C., HALEVI, S., AND SMART, N. P. Homomorphic
Evaluation of the AES Circuit. In Proceedings of the 32th Annual
International Cryptology Conference on Advances in Cryptology
(2012), CRYPTO ’12. http://eprint.iacr.org/2012/099.

[11] GOYAL, V., MOHASSEL, P., AND SMITH, A. Efficient two
party and multi party computation against covert adversaries.
In Proceedings of the theory and applications of cryptographic
techniques 27th annual international conference on Advances
in cryptology (Berlin, Heidelberg, 2008), EUROCRYPT’08,
Springer-Verlag, pp. 289–306.

[12] HENECKA, W., K ÖGL, S., SADEGHI, A.-R., SCHNEIDER, T.,
AND WEHRENBERG, I. Tasty: tool for automating secure two-
party computations. In Proceedings of the 17th ACM confer-
ence on Computer and communications security (New York, NY,
USA, 2010), CCS ’10, ACM, pp. 451–462.

[13] HUANG, Y., EVANS, D., KATZ, J., AND MALKA, L. Faster
secure two-party computation using garbled circuits. In Proceed-
ings of the 20th USENIX conference on Security (Berkeley, CA,
USA, 2011), SEC’11, USENIX Association, pp. 35–35.

[14] HUANG, Y., MALKA, L., EVANS, D., AND KATZ, J. Efficient
Privacy-Preserving Biometric Identification. In NDSS’11 (2011).

300  21st USENIX Security Symposium	 USENIX Association

[15] ISHAI, Y., KILIAN, J., NISSIM, K., AND PETRANK, E. Extend-
ing Oblivious Transfers Efficiently. In CRYPTO’03, vol. 2729 of
LNCS. Springer Berlin / Heidelberg, 2003, pp. 145–161.

[16] ISHAI, Y., PRABHAKARAN, M., AND SAHAI, A. Founding
cryptography on oblivious transfer — efficiently. In Proceed-
ings of the 28th Annual conference on Cryptology: Advances in
Cryptology (Berlin, Heidelberg, 2008), CRYPTO 2008, Springer-
Verlag, pp. 572–591.

[17] JHA, S., KRUGER, L., AND SHMATIKOV, V. Towards prac-
tical privacy for genomic computation. In Proceedings of the
2008 IEEE Symposium on Security and Privacy (Washington,
DC, USA, 2008), SP ’08, IEEE Computer Society, pp. 216–230.

[18] KIRAZ, M. Secure and Fair Two-Party Computation. PhD thesis,
Technische Universiteit Eindhoven, 2008.

[19] KIRAZ, M., AND SCHOENMAKERS, B. A Protocol Issue for
The Malicious Case of Yao’s Garbled Circuit Construction. In
27th Symposium on Information Theory in the Benelux (2006).

[20] KOLESNIKOV, V., AND SCHNEIDER, T. Improved garbled cir-
cuit: Free xor gates and applications. In Proceedings of the 35th
international colloquium on Automata, Languages and Program-
ming, Part II (Berlin, Heidelberg, 2008), ICALP ’08, Springer-
Verlag, pp. 486–498.

[21] LINDELL, Y., OXMAN, E., AND PINKAS, B. The IPS Compiler:
Optimizations, Variants and Concrete Efficiency. In CRYPTO’11
(2011), pp. 259–276.

[22] LINDELL, Y., AND PINKAS, B. Privacy preserving data min-
ing. In Proceedings of the 20th Annual International Cryptology
Conference on Advances in Cryptology (London, UK, UK, 2000),
CRYPTO ’00, Springer-Verlag, pp. 36–54.

[23] LINDELL, Y., AND PINKAS, B. An efficient protocol for se-
cure two-party computation in the presence of malicious adver-
saries. In Proceedings of the 26th annual international confer-
ence on Advances in Cryptology (Berlin, Heidelberg, 2007), EU-
ROCRYPT ’07, Springer-Verlag, pp. 52–78.

[24] LINDELL, Y., AND PINKAS, B. Secure two-party computa-
tion via cut-and-choose oblivious transfer. In Proceedings of the
8th conference on Theory of cryptography (Berlin, Heidelberg,
2011), TCC’11, Springer-Verlag, pp. 329–346.

[25] LYNN, B. Pairing-Based Cryptography Library, 2006. http:

//crypto.stanford.edu/pbc/.

[26] MALKA, L. Vmcrypt: modular software architecture for scal-
able secure computation. In Proceedings of the 18th ACM con-
ference on Computer and communications security (New York,
NY, USA, 2011), CCS ’11, ACM, pp. 715–724.

[27] MOHASSEL, P., AND FRANKLIN, M. Efficiency tradeoffs for
malicious two-party computation. In Proceedings of the 9th inter-
national conference on Theory and Practice of Public-Key Cryp-
tography (Berlin, Heidelberg, 2006), PKC’06, Springer-Verlag,
pp. 458–473.

[28] NIELSEN, J. B., NORDHOLT, P. S., ORLANDI, C., AND
BURRA, S. S. A New Approach to Practical Active-Secure Two-
Party Computation. In Proceedings of the 32th Annual Interna-
tional Cryptology Conference on Advances in Cryptology (2012),
CRYPTO ’12. http://eprint.iacr.org/2011/091.

[29] OSADCHY, M., PINKAS, B., JARROUS, A., AND MOSKOVICH,
B. Scifi - a system for secure face identification. In Proceedings
of the 2010 IEEE Symposium on Security and Privacy (Washing-
ton, DC, USA, 2010), SP ’10, IEEE Computer Society, pp. 239–
254.

[30] PINKAS, B., SCHNEIDER, T., SMART, N. P., AND WILLIAMS,
S. C. Secure two-party computation is practical. In Proceedings

of the 15th International Conference on the Theory and Applica-
tion of Cryptology and Information Security: Advances in Cryp-
tology (Berlin, Heidelberg, 2009), ASIACRYPT ’09, Springer-
Verlag, pp. 250–267.

[31] RELIC. http://code.google.com/p/relic-toolkit/.

[32] SHELAT, A., AND SHEN, C.-H. Two-output secure computation
with malicious adversaries. In Proceedings of the 30th Annual
international conference on Theory and applications of crypto-
graphic techniques: advances in cryptology (Berlin, Heidelberg,
2011), EUROCRYPT’11, Springer-Verlag, pp. 386–405.

[33] YAO, A. C. Protocols for secure computations. In Proceedings
of the 23rd Annual Symposium on Foundations of Computer Sci-
ence (Washington, DC, USA, 1982), SFCS ’82, IEEE Computer
Society, pp. 160–164.

USENIX Association 	 21st USENIX Security Symposium  301

Progressive authentication: deciding when to authenticate on mobile phones

Oriana Riva† Chuan Qin§∗ Karin Strauss† Dimitrios Lymberopoulos†
†Microsoft Research, Redmond §University of South Carolina

Abstract

Mobile users are often faced with a trade-off between se-
curity and convenience. Either users do not use any se-
curity lock and risk compromising their data, or they use
security locks but then have to inconveniently authenti-
cate every time they use the device. Rather than explor-
ing a new authentication scheme, we address the problem
of deciding when to surface authentication and for which
applications. We believe reducing the number of times a
user is requested to authenticate lowers the barrier of en-
try for users who currently do not use any security. Pro-
gressive authentication, the approach we propose, com-
bines multiple signals (biometric, continuity, possession)
to determine a level of confidence in a user’s authenticity.
Based on this confidence level and the degree of protec-
tion the user has configured for his applications, the sys-
tem determines whether access to them requires authen-
tication. We built a prototype running on modern phones
to demonstrate progressive authentication and used it in a
lab study with nine users. Compared to the state-of-the-
art, the system is able to reduce the number of required
authentications by 42% and still provide acceptable se-
curity guarantees, thus representing an attractive solution
for users who do not use any security mechanism on their
devices.

1 Introduction

Security on mobile phones is often perceived as a barrier
to usability. Users weaken the security of their phones
for the convenience of interacting with their applications
without having to type a password every time. As a re-
sult, according to a recent study [25], more than 30% of
mobile phone users do not use a PIN on their phones. On
the other hand, the amount of high-value content stored
on phones is rapidily increasing, with mobile payment

∗Work done while interning at Microsoft Research.

and money transfer applications as well as enterprise data
becoming available on mobile devices [22].

One approach for increasing security of mobile phones
is to replace PINs and passwords with a more suitable au-
thentication scheme. Yet, alternative schemes have their
own flaws. Token-based approaches [6, 31, 35], for in-
stance, are in general harder to attack than passwords, but
they go against the desire of users to carry fewer devices.
Biometric identification has gained interest in the mobile
community [11], but not without performance, accept-
ability, and cost issues [27].

In this work, we look at the problem of mobile au-
thentication from a different angle. Rather than explor-
ing a new authentication scheme, we study the problem
of when to surface authentication and for which applica-
tions. Unlike desktops and laptops, which users tend to
use for a long, continuous period of time, users access
mobile phones periodically or in response to a particu-
lar event (e.g., incoming email notification). This lack
of continuous interaction creates the need to authenti-
cate with the device almost every time users wish to use
it. Even though the interaction between users and mo-
bile devices might not be continuous, the physical con-
tact between the user and the mobile device can be. For
instance, if a user places his phone in his pocket after a
phone call, even though the user stops interacting with it,
the authenticated owner is still “in contact” with the de-
vice. When the user pulls the phone out of his pocket, au-
thentication should not be necessary. On the other hand,
if the phone lost contact with the authenticated user (e.g.,
left on a table), then authentication should be required.
As a result, if the phone is able to accurately infer the
physical interaction between the authenticated user and
the device (e.g., through its embedded and surrounding
sensors), it can extend the validity of a user authentica-
tion event, reducing the frequency of such events.

This approach not only significantly lowers the au-
thentication overhead on the user, but also makes the au-
thentication effort proportional to the value of the content

302  21st USENIX Security Symposium	 USENIX Association

being accessed. If the system has strong confidence in
the user’s authenticity, the user will be able to access any
content without explicitly authenticating. If the system
has low confidence in his authenticity, he will only be
able to access low-value content (e.g., a weather app) and
will be required to explicitly authenticate to view high-
value content (e.g., email, banking). By doing so, the
system provides low overhead with security guarantees
that can be acceptable for a large user population, par-
ticularly users who do not use any security lock on their
phones – our primary target.

We propose mobile systems that progressively authen-
ticate (and de-authenticate) users by constantly collect-
ing cues about the user, such that at any point in time the
user is authenticated with a certain level of confidence.
Several authentication signals are used. The system can
exploit the increasing availability of sensors on mobile
devices to establish users’ identity (e.g., through voice
recognition). Once the user is authenticated, the system
can exploit continuity to extend the validity of a suc-
cessful authentication by leveraging accelerometers and
touch sensors to determine when the phone “has left” the
user after a successful login. Finally, as users’ personal
devices are increasingly networked, it can use proximity
and motion sensors to detect whether the phone is next
to another device of the same user where he is currently
authenticated and active.

Automatically inferring a user’s authenticity from con-
tinuous sensor streams is challenging because of inher-
ent noise in sensing data as well as energy and perfor-
mance constraints. If sensor streams are naively used,
the system could suffer a high number of false rejec-
tions (not recognizing the owner) and/or unauthorized
accesses (recognizing others as the owner). Our solution
consists of using machine learning techniques to robustly
combine and cross-check weak sensor signals. Sensors
and related processing create energy and performance is-
sues. First, processing the sensor data and running the
inference stack on a mobile device can be challenging.
We show how to architect the system to mitigate these
problems by offloading processing to the cloud or dis-
abling computation-expensive signals. Second, contin-
uously recording data from the sensors can be a major
power hog in a mobile device. We rely on existing archi-
tectures for low power continuous sensing such as Lit-
tleRock [28, 29]. We expect in the near future all mo-
bile devices to be equipped with such low power sensing
subsystems, as it is already made possible by the latest
generation of mobile processors with embedded ARM
Cortex M4 based sensing subsystems [37].

In summary, the contributions of this work are three-
fold. First, we introduce the progressive authentication
model, which relies on the continuous combination of
multiple authentication signals collected through widely

available sensor information. This approach makes the
authentication overhead lower and proportional to the
value of the content being accessed. Second, we present
a Windows Phone implementation of progressive authen-
tication, which explores the implications of applying the
model to a concrete phone platform. Third, we show
through experiments and a deployment of the system
with 9 users how progressive authentication (within our
study setup) achieves the goal of reducing the number of
explicit authentications (by 42%) with acceptable secu-
rity guarantees (no unauthorized accesses and only 8% of
cases in which the user’s authenticity is estimated higher
than it should be), power consumption (325 mW) and de-
lay (987 msec). We believe this represents an attractive
solution for users who currently do not use any security
lock on their phones.

The rest of the paper is organized as follows. The next
section motivates our work through a user study on ac-
cess control on mobile phones and sets the goals of our
work. Section 3 presents the key principles of progres-
sive authentication, and Section 4 and Section 5 demon-
strate these principles through the prototype system we
designed and implemented. We then evaluate our sys-
tem: in Section 6 we describe how we collected sensor
traces and trained the inference model, and in Section 7
we present the experimental results. Finally, we discuss
related work and conclude.

2 Motivations and assumptions

Most smart phones and tablets support some locking
mechanism (e.g., PIN) that, if used, prevents access to
all the devices applications, with the exception of a few
pre-defined functions such as answering incoming calls,
making emergency calls, and taking photos. Unlike
desktops and laptops, users interact with their phones for
short-term tasks or in response to specific events (e.g.,
incoming SMS notification). This results in users having
to authenticate almost every time they wish to use their
phone.

2.1 User study
We investigated how well this model meets the access
control needs of mobile users through a user study [13].
We recruited 20 participants (9M/11F, age range: 23-54)
who owned both smart phones and tablets, using Mi-
crosoft’s recruiting service to reach a diverse population
in our region. They were primarily iPhone (9) or Android
(8) phone users. 11 used a PIN on their phone and 9 did
not use any. Although this study is much broader, some
of its findings motivate progressive authentication.

Beyond all-or-nothing: Today’s mobile devices force
users to either authenticate before accessing any applica-

USENIX Association 	 21st USENIX Security Symposium  303

tion or to entirely disable device locking. According to
our study, this all-or-nothing approach poorly fits users’
needs. Across our participants, those who used security
locks on their devices wanted about half of their appli-
cations to be unlocked and always accessible. Not co-
incidentally, participants who did not use security locks
wanted to have about half of their applications locked.

Multi-level security: Even when offered the option to
categorize their applications into two security levels (i.e.,
one unprotected level and one protected by their pre-
ferred security scheme), roughly half of our participants
expressed the need for at least a third category, mainly
motivated by security and convenience trade-off reasons.
Most participants chose to have a final configuration with
one unlocked level, one weakly-protected level for pri-
vate, but easily accessible applications, and one strongly-
protected level for confidential content such as banking.

Convenience: Participants were asked to rank the se-
curity of different authentication approaches (PINs, pass-
words, security questions, and biometric authentication).
More than half of the participants ranked passwords
and PINs as the most secure authentication schemes,
but when asked to indicate their favorite authentication
mechanism, 85% chose biometric systems. Convenience
was clearly the dominant factor in their decision.

These lessons highlight the value of correctly trading
off security and convenience on a per-application basis.
This is the cornerstone of progressive authentication.

2.2 Assumptions and threat model

Progressive authentication builds on two main assump-
tions. First, we assume a single-user model, which is
in line with current smart phones. However, such as in
related systems [20, 23], adding multiple profiles (e.g.,
family members, guests) to progressive authentication
would be straightforward. Second, we assume the avail-
ability of low-cost sensors in the device and the environ-
ment for detecting a user’s presence and identity. Indeed,
the sensors used in our implementation are widely avail-
able in modern devices and office environments. As more
sensors become pervasive (e.g., 3D depth cameras), they
can be easily folded into the system.

The main security goal of progressive authentication is
to protect important applications from unauthorized use,
while providing a probabilistic deterrent to use of less
sensitive applications by others. In a noise-free environ-
ment where sensor signals are reliable and error-free, the
same security guarantees can be provided regardless of
the physical environment and the people present. In re-
ality, these guarantees depend on several external con-
ditions (presence of people with similar aspect, back-
ground noise, light conditions, etc.), such that the sys-

tem relies on the probabilistic guarantees of a machine
learning model trained to account for these variables.

Progressive authentication seeks to preserve its goal
in the presence of adversaries under the following con-
ditions. Our model inserts barriers against unauthorized
use when the phone is left unattended. Attacks can be
carried out by both strangers and “known non-owner”
attackers such as children and relatives. Attackers can
operate both in public (e.g., a conference room, a restau-
rant) and private spaces (e.g., an office, at home). At-
tackers may not know which signals progressive authen-
tication utilizes (e.g., not knowing that voice is a factor
and speaking into the system) or they may know which
signals are in use and therefore try to avoid them (e.g.,
remaining silent). Attacks in which the adversary ob-
tains privileged information (e.g., passwords or biomet-
rics) are orthogonal to our guarantees, i.e., progressive
authentication does not make these authentication mech-
anisms more secure, so they are not considered in our
security analysis. Finally, we assume the phone operat-
ing system and the devices the user owns are trusted, and
that attacks cannot be launched on wireless links used by
the system.

In the presence of the legitimate user, progressive
authentication allows him to implicitly authorize other
users (by simply handing them the phone), as we assume
the above attacks can be prevented by the owner himself.
For instance, if the user authenticates with the phone by
entering a PIN and, soon after that, hands it to another
person, the phone will remain authenticated.

Stronger attacker models are possible, but addressing
them would require more sophisticated sensors and in-
ference algorithms, thus increasing the burden on the
user (cost of sensors, phone form factor, training effort)
or limiting the applicability of our approach in environ-
ments not equipped with these sensors.

2.3 Goals

Based on the assumptions and threat model described
above, our system has the following goals:

Finer control over convenience versus security trade-
offs: Today’s models are all-or-nothing: they require
users to make a single security choice for all applications.
Users who do not use authentication typically make this
choice for convenience. Our goal is to give these users
more flexibility such that they can keep the convenience
of not having to authenticate for low-value content, but
to improve security for high-value content. Progressive
authentication enables per-application choices.

Moderating the surfacing of authentication: Too many
authentication requests can be annoying to users. In ad-
dition to per-application control, our goal is to reduce
the number of times users are inconvenienced by having

304  21st USENIX Security Symposium	 USENIX Association

to authenticate. We do this by augmenting devices with
inference models that use sensor streams to probabilisti-
cally determine if the user should continue to be authen-
ticated, avoiding the surfacing of authentication requests.

Low training overhead for users: Our focus is on con-
venience, so the above inference models should be easy
to train and deploy. Some scenarios, such as potential
attacks, are difficult to train after the phone ships, so
this type of training needs to be done in advance, in a
user-agnostic manner. Personalized models (e.g., voice
models), however, cannot be trained in advance because
they depend on input from the user. In such cases, users
should not be burdened with complex training routines.
Our solution partitions the model into a high-level, user-
agnostic model that can be trained before shipping, and
low-level, personalized models that can be trained via
normal user interaction with the device (e.g., by record-
ing the user’s voice during phone calls).

Overhead management: Mobile phones are afflicted
with battery limitations, yet their computing capabili-
ties are limited. It should be possible to let the system
transition between high-performance and energy-saving
modes. We achieve this goal by offloading computation
to the cloud, or moving all the computation locally and
disabling certain sensor streams, at the cost of accuracy.

3 Progressive authentication model

Progressive authentication establishes the authenticity
of the user by combining multiple authentication sig-
nals (multi-modal) and leveraging multi-device authen-
tication. The goal is to keep the user authenticated while
in possession of the device (i.e.,continuity since a last
successful authentication is detected) or de-authenticate
the user once the user lets go of it (i.e., a discontinuity
is detected). The confidence level in the user’s authen-
ticity is then compared to one authentication threshold
for a single-level approach, or to multiple authentication
thresholds for multi-level authentication.
Multi-modal. Possible signal types used for multi-
modal authentication are the following:

Biometric signals: user appearance and sound (face
and voice recognition). Fingerprinting and other hard
biometric identification can also be used, but we focus
on low-sensitivity signals. High-sensitivity signals may
result in privacy concerns (e.g., if stored on untrusted
servers).

Behavioral signals: deviation of a user’s current be-
havior from his past recurrent behavior may result in
lower confidence. For example, if the phone is used at
an unusual time and in a location that the user has never
visited, then authentication may be surfaced. Location
signals are a subset of behavioral signals.

Possession signals: nearby objects that belong to the
user, such as a laptop or a PC, may increase the confi-
dence level of the phone. This may be detected using
Bluetooth signal strength or RFIDs, for example.

Secrets: PINs and passwords are still compatible with
progressive authentication and actually represent some
of the strongest signals it uses. They are requested from
the user when the system is unable to determine the
user’s authenticity with high confidence.

In combining these signals several challenges must be
considered. First, most signals are produced using unre-
liable and discrete sensor measurements. Second, certain
signals may require combining readings from sources
with different sampling frequencies and communication
delays. As a result, most signals are not individually suf-
ficient to determine user authenticity and when combined
they may be inconsistent as well. Finally, signals vary in
strength. Some signals can provide a stronger indication
of authenticity than others because, for example, some
may be easier to fake and some are more discriminating
than others (e.g., a PIN vs. the user’s voice which may
be recorded in a phone call). For all these reasons, sig-
nals need to be combined and cross-checked. However,
drawing the correlations across these signals manually is
a cumbersome job, prone to errors and inconsistencies.
As we discuss in the next section, we use machine learn-
ing tools to derive a robust inference model from the sig-
nals we collect.

Continuous. Continuity is one of the cornerstones of
progressive authentication. It comes from the observa-
tion that users are likely to use their phones shortly after
a previous use. For example, after the user reads emails,
he locks the phone to save energy. He keeps holding
the phone and talking to someone else. When he tries
to use the phone five minutes later, the phone is locked
even if he did not let go of it. If the user has been touch-
ing the phone since the last successful authentication, the
authentication level should be maintained unless “nega-
tive” signals are being received (e.g., mismatching bio-
metric signals). By “touching”, we currently mean ac-
tively holding or storing the phone in a pocket. A phone’s
placement with respect to the user can be determined by
accelerometers, touch screens, light, temperature and hu-
midity sensors, most of which are embedded in modern
phones.

Multi-device. Progressive authentication takes advan-
tage of widespread device connectivity to gather infor-
mation about the user from other devices he owns. If
a user is logged in and active in another nearby device,
this information represents a strong signal of the user’s
presence. For example, if a user enters his office, places
the phone on his desk, logs into his PC and wants to use
the phone, the phone already has some cues about his

USENIX Association 	 21st USENIX Security Symposium  305

close
to PC

not close to PCProximity

Voice

Placement

Face

table
hands

table

pocket
hands

hands handshands

pocketpocket pocket

Confidential

Private

Public

close to authPC

Time

Time

PIN

U
se

r a
ut

he
nt

ic
ity

 le
ve

l

Figure 1: Progressive authentication in action. Signals
are combined to infer the level of confidence in user au-
thenticity. Based on this level, access (without PIN) to
public, private or confidential content is granted.

authenticity. Devices need to be registered once (e.g., at
purchase time) so the overhead for the user is limited.
Multi-level. Users storing high-value content on their
devices want to protect this harder than less valuable in-
formation. Progressive authentication associates user au-
thenticity with a confidence level. This enables the sys-
tem to depart from the all-or-nothing paradigm and al-
lows the user to associate different protection levels to
different data and applications. For example, a weather
or a game application does not reveal any sensitive data,
so it can be made accessible to anybody. An email or
a social networking application contains sensitive infor-
mation, but perhaps not as sensitive as a financial appli-
cation. Thus, the confidence level required for access-
ing email is lower than that for accessing the banking
application. In a complete system, users may config-
ure their applications into an appropriate security level,
perhaps at installation time, may specify levels by appli-
cation categories (e.g., games, email, banking, etc.), or
may even accept a default configuration set by their cor-
porate’s IT department. We expect users to deal with no
more than three or four levels. The preferred configura-
tion that emerged from our user study was three levels.
Our system prototype adopts the same.
Putting it all together. Figure 1 illustrates the pro-
gressive authentication process. Multiple signals are ag-
gregated into a single framework, which determines the
level of confidence in user authenticity. The example
considers continuity (phone placement), biometric (face
and voice) and multi-device (proximity to a PC where
the user is logged on/off) signals as well PIN events.
Based on the confidence level, the user is allowed to
access predefined data and applications in three sensi-
tivity levels: public, which requires a very low confi-
dence; private, which requires medium confidence; and

Inference engine

Sensors

Mobile Phone

Low-level processing

Signals

Monitoring
Processing

i1 i2 ... in

…
Sensor streams

…
 Si
gn

al
s

…

Risk
factor

High-level processing

<f1,f2,..,fn>
Feature vector

auth_level
Vector label

m

 Inference engine

Desktop PC

Sensors

Low-level processing

i1 i2 ... in

Sensor streams
Monitoring
Processing

…

Figure 2: Progressive authentication architecture. The
two-level inference engine processes incoming sensor
data to estimate the level of a user’s authenticity.

confidential, which requires very high confidence. Note
that when the user’s authenticity level is too low for ac-
cessing high security applications, the system requires a
PIN, which raises the score to the confidential level. Pre-
viously achieved levels are maintained by continuity as
long as signals are sufficient.

4 Architecture

This section describes the architecture of progressive au-
thentication. Note that the system is designed for phones
and mobile devices with rich sensing capabilities, but
could also be applied to other types of computers. The
specific system we consider is a 2-device configuration
including a mobile phone and another user-owned device
such as a desktop PC. Progressive authentication is used
to control authentication on the phone and the PC simply
acts as another sensor.

As Figure 2 shows, the software running on each de-
vice consists of two levels. At the monitoring level, sen-
sor streams are continuously collected and fed as inputs
to the inference engine, the core of our system. The infer-
ence engine processes sensor information in two stages.
A collection of inference modules (ii boxes inside low-
level processing) processes raw sensor data to extract the
set of primitive signals described in the previous sec-
tion, such as placement of the mobile device as an in-
dication of continuity, presence of the user through bio-
metric inference, and proximity to other known devices
as an indication of device possession and safe location.
A confidence level is associated to each signal. These
inferred signals are not sufficiently robust in isolation to
authenticate or de-authenticate the user, hence the next
step (high-level processing) combines them to compute
the overall confidence in the user’s authenticity.

306  21st USENIX Security Symposium	 USENIX Association

We rely on well-established machine learning tech-
niques, particularly support vector machine (SVM) mod-
els, to do this properly. In using such models, feature
extraction is the most critical step. Features should pro-
vide as accurate and discriminative information as possi-
ble about the user’s authenticity and whether the phone
has left or not the user since the last successful authen-
tication (Table 1 in the next section lists all features we
have considered in our prototype). Once the high-level
processing extracts these features from the most recent
signals produced by low-level processing, they are com-
bined in a feature vector. This vector is passed as input
to the machine learning model (m box inside high-level
processing), which in turn associates a label to it, indi-
cating the estimated confidence in the user’s authentic-
ity at that particular time. This label is then mapped to
one of the system protection levels, which we currently
limit to three. Named after the most restrictive type of
application to which they allow access, they are: public
level, in which only applications classified as public are
accessible; private level, in which public and private ap-
plications are accessible; and confidential level, in which
all applications are available.

The machine learning model is trained offline using a
set of labeled feature vectors (Section 6 describes how
they are obtained). The model is trained to minimize a
loss function, which represents the relative seriousness
of the kinds of mistakes the system can make. More
specifically, it represents the loss incurred when the sys-
tem decides that a user has authenticity level higher than
it should be and possibly automatically authenticates him
(false authentication), or when the system decides that he
has authenticity level lower than it should be and requires
explicit authentication (false rejection). The system ex-
poses a so-called risk factor to users such that they can
themselves adjust how aggressively they want to trade
security for convenience. The higher the risk factor, the
higher the convenience, but also the higher the security
risk.

Unlike low-level processing, which is continually ac-
tive as sensor data are fed into the system, high-level pro-
cessing is activated only when the phone detects touch-
screen activity (i.e., the user is about to use an applica-
tion). This model is sufficient to provide the illusion of
continuous authentication without unnecessarily drain-
ing the battery of the phone and wasting communication
resources. The high level keeps being invoked periodi-
cally, as long as the phone’s touch screen detects activity,
allowing the system to promptly adjust its authentication
decision to sudden changes in ambient conditions, which
may indicate threat situations.

A main challenge for this system is resource manage-
ment. Sensor monitoring and processing need to mini-
mally impact the phone’s operation and battery lifetime.

For this reason, we designed the architecture in a mod-
ular manner. Depending on its resource constraints, the
phone can decide to offload some processing to the cloud
or another device so as to reduce the computing over-
head, or it can instead decide to do more processing lo-
cally in order to reduce communication. In addition, all
low-level processing modules are independent and the
high-level processing can work with all or some of them,
i.e., some modules can be disabled to save resources,
in which case the corresponding features are computed
based on the latest available signals. In the evaluation
section, we show the impact of these resource-saving de-
cisions on the overall system’s accuracy. The system cur-
rently supports a few static configurations. Systems such
as MAUI [8] and AlfredO [10] may be used to support
dynamic module reconfiguration.

For this kind of authentication to be viable, it is im-
portant to keep the machine learning models as user-
agnostic as possible. The main inference model can be
trained independently using a broad population (before
the phone ships). Some of the low-level inference algo-
rithms, specifically face and voice recognition, are user
specific. However, their training does not incur a high
overhead on the user because it can be done in the back-
ground, during user interaction with the device. A user’s
appearance can be recorded while the user types or reads
from the PC. 1 minute of image recording is sufficient for
the face recognition model to work accurately. Voice can
be recorded during phone calls. In particular, Speaker
Sense [21], the algorithm we used in our implementa-
tion, was designed to specifically support such type of
training. The voice model was trained using 2 minutes
of audio recording.

5 Implementation

We built a progressive authentication prototype on Win-
dows Phone 7.1 OS and used it in a 2-device configura-
tion with a desktop PC running Windows. The bottom
part of Figure 3 shows the detailed architecture of the
system running on the phone and on the desktop PC.
Sensors. On the phone, we use accelerometers, light,
temperature/humidity sensor, touch screen, login events,
microphone, and Bluetooth receiver. All these sensors
are widely available on commercial phones (e.g., An-
droid) today. As the platform we chose does not yet
support light and temperature/humidity sensors, we aug-
mented it by using the .NET Gadgeteer [9] sensor kit, a
platform for quick prototyping of small electronic gad-
gets and embedded hardware devices. Figure 5 shows
the final prototype. On the PC, we use external web-
cams, sensors for activity detection (mouse motion, key
presses, login/logout events), and Bluetooth adaptors.
Bluetooth is used for proximity detection between phone

USENIX Association 	 21st USENIX Security Symposium  307

M
ob

ile
 P

ho
ne

High-level processing

Au
th

en
tic

at
io

n
le

ve
l

ML
model
(SVM)

20 msec

Speaker Sense
event-based

this event activates high-level inference

Voice
ident.

‘hands’
‘table’

‘pocket’

‘voice’
‘noise’
‘silence’

‘speaker
name’Frame

adm.

‘correct/
wrong PIN’

‘touch’

Feature extraction

<f1 ,f2 ,..,fn >
Feature vector

this computation
can be offloaded
to a remote
device (e.g., PC)
or the cloud

0.5 sec

1 sec

event-based

PIN

Accelerometers

Microphone

Light/Temp./Humid.

Touch screen

Phone placement
(decision tree)

Bluetooth

Webcam

Keyboard/mouse

Login/logout

Proximity

Face recogn.

Authorized activity

De
sk

to
p

PC

Bluetooth receiver

event-based

‘face name’

‘phone_close_PC,
phone_notclose_PC’

‘auth_PC, not_auth_PC,
activePC, idlePC’

0.1 sec

0.5 sec

event-based

Offline
Online

ML model
trained
across n

users

Sensor
sampling

Low-level
processing

Feature
Extraction

…
.

Sensor
sampling

Low-level
processing

Feature
Extraction

n
users

ML
model

training

Ground truth

Ground truth

labeled feature
vectors

WiFi /cellular linksBluetooth beacons

Figure 3: Detailed architecture of a 2-device progres-
sive authentication implementation. Offline, a machine
learning model is trained using traces from several users.
Online, the model is loaded into the phone and invoked
using the features extracted from the most-recent sensor
signals. Signals’ confidence values are not shown.

and PC. The system employs Bluetooth, WiFi or cellular
links for communication. The channel can be encrypted.
Low-level processing. It currently produces these sig-
nals: proximity to known devices (detected using Blue-
tooth beacons), presence of activity on phone or PC
(detected using touch screen and activity detection sen-
sors, respectively), speaker identification, face recogni-
tion, and phone placement.

Voice recognition relies on Speaker Sense [21], which
is based on a Gaussian Mixture Model (GMM) classi-
fier [30]. To make the recognition process more effi-
cient, in a first stage, called Frame Admission, sound
recorded by the phone’s microphone is processed to iden-
tify voiced speech frames and discard silence frames or
unvoiced speech frames. Voiced speech frames are ad-
mitted to the second stage, called Voice Identification,
where speaker recognition occurs and produces an iden-
tifier with associated confidence.

Face recognition is based on a proprietary algorithm.
Pictures are collected using a PC’s webcam and fed into
the face recognition model. This returns an identifier of
the recognized person along with a confidence.
High-level processing. The primitive authentication sig-
nals and associated confidence levels generated by the
low-level processing are combined at this stage to ex-
tract the features used by the machine learning model.
Figure 4 gives a detailed example of the entire process,
where accelerometer data are aggregated every 200 msec
and processed by the placement decision tree to extract
placement signals. Continuity features are extracted and

Placement = ‘table’
PlacementDur = ‘200’
PlacementConf =‘90%’
LastPlacement =‘hands’
LastPlacementDur=‘800’
TimeSinceTable=‘200’
TimeSinceHands=‘400’
TimeSincePocket=‘2000’
….
TimeSincePIN
TimeSinceTouch
Speaker

Low-level processing
(decision tree for

placement detection)

< f1,f2,…,fn>

1 sample every 20 msec

‘table’
var

avg_x

avg_x

avg_y

…

…

…
…

1300
1320

1480

accel sample (x,y,z)Time

(0.0742,-0.0782,-1.1339)
(0.0742,-0.0782,-1.1260)…

(0.0703,-0.0782,-1.1260)

…

1500
1520

1680

(0.1329,-0.4770,-0.9462)
(0.1407,-0.4848,-0.9384)…

(0.0586,-0.5004,-1.0439)

1700
1720

1880

(0.5708,0.7077,-0.5083)
(0.5786,0.7194,-0.5122)…

(0.5630,0.6920,-0.5083)

1100
1120

1280

(0.0703,-0.0782,-1.1300)
(0.0782,-0.0742,-1.1339)…

(0.0742,-0.0821,-1.1260)

…

…
1080:<‘hands’,95%>

1280:<’table’,95%>

1480:<‘table’,90%>

1680:<‘hands’,80%>

1880:<’pocket’,95%>

Placement signal
time:<value,conf>

Features

Feature extraction

Other
signals

High-level processing
(SVM model)

‘public’

authentication
level

10-sam
ple w

indow

…
…

Figure 4: Processing chain from accelerometer data
(sampled every 20 msec) to placement signals and to
continuity features which are fed as input to the ma-
chine learning model to estimate the user’s authentica-
tion level.

combined in a feature vector with all other features (bio-
metric, possession, continuity and secret-derived fea-
tures). Feature vectors are fed as input to the machine
learning (ML) model and a label indicating the authen-
ticity of the user is produced.

Table 1 lists all features currently used. These features
cover all categories of signals described in Section 3 with
the exception of behavioral signals. For these, we plan to
first collect longer-term traces of users interacting with
our prototype, and then extract behavioral patterns for
each user. The current implementation relies on SVM
models, but we experimented also with Decision Tree
and Linear Regression models (see Section 7).

Finally, the high-level processing and some of the low-
level processing can be too computationally intensive for
mobile phones, so we support a minimum power con-
figuration where Voice Identification and high-level pro-
cessing (gray box in Figure 3) are offloaded to the cloud
(Windows Azure) or a remote device.

User interface. Figure 5 shows our current user inter-
face. We do not claim this to be the most appropriate
interface. For instance, users may want to configure the
level of details returned in the feedback. However, we
used it during our user study [13] and it was well re-
ceived by our participants. When the phone is picked up,
the user can see which applications are accessible and
which are locked (not shown in the figure). When try-
ing to access a locked application, the user is prompted
to enter a PIN and receives a visual explanation of why
access is denied. Icons representing the authentication
signals are lit up (the corresponding signal is present) or
grayed out (the corresponding signal is absent). This al-
lows users to understand why a PIN is required.

308  21st USENIX Security Symposium	 USENIX Association

Table 1: Machine learning features used in the high-level processing.

Category Features Description

Cont. Placement, PlacementDuration, PlacementConf Current placement of the phone, how long it has lasted, and associated confidence

Cont. LastPlacement, LastPlacementDuration Last placement of the phone, and how long it lasted

Cont. TimeSinceTable, TimeSinceHands, TimeSincePocket Time elapsed since the last time the phone was on the table, in the user’s hands, or pocket

Cont./Secrets TimeSincePIN, TimeSinceTouch Time since last login event and time since the phone’s screen was last touched

Biom. Speaker, SpeakerConf Whether a human voice was identified (owner, other, no-voice) and associated confidence

Biom. TimeSinceOwnerVoice, TimeSinceNonOwnerVoice Time since (any) voice was identified

Biom. TimeSinceSound Time since any sound (either voice or noise) was detected

Poss./Biom. ProxAuthDev, ProxAuthDevConf Proximity of phone to a device where the user is logged in and active, and confidence

Poss./Biom. TimeSinceProx Time elapsed since the proximity status last changed

Figure 5: System prototype running on a WP Samsung
Focus augmented with Gadgeteer sensors (white box).

6 Data collection and offline training

We collected traces from 9 users (4F, 5M) to evaluate
our system prototype. The participants were researchers
(4), engineers (3) and admins (2) working in our group.
During the lab study, they used the system for a little
longer than an hour. The study consisted of two parts.
The first part focused on collecting data for evaluating
the accuracy of the low-level processing models. It lasted
for roughly 30 minutes and it was guided by a researcher.
The data collected was used to train voice identification
and face recognition models, which were plugged into
the system for use in the second part.

The second part of the study was conducted in two
user study rooms that had a participant and an observer
side, which allowed us to collect information about the
activities in which the participant was engaged without
disturbing. This information was used to generate the
ground truth necessary for training the high-level pro-
cessing model (more details below). Each study session
was also video-recorded such that it could be used later
for the same purpose. Participants were asked to per-
form a series of tasks by following a script. The script
consisted of ordinary tasks in an office setting, involving

a phone and a desktop PC. The user was asked to check
his phone from time to time, work on the PC, answer in-
coming phone calls, chat with a colleague, and walk to
a “meeting room” with his phone to meet a colleague.
The script also included security attacks. Overall, the
second part of the study lasted 40 minutes. The data col-
lection ran continuously and collected sensor measure-
ments from phone and PC, as well as types and time of
applications invoked on the phone.

Each participant interacted with a total of five phone
applications categorized as public (1 application), pri-
vate (3) or confidential (1). This distribution reflects
the results of our preliminary user study where across
their most frequently used applications (i.e., more than
10 times a day) participants wanted 22% of them to be
always available (public) and the rest protected by some
security mechanism (private or confidential). We then
assumed a similar frequency of invocation across these 5
applications: across all participants, the average ratio at
which public, private, and confidential applications were
invoked was 19%:57%:24%, respectively.

6.1 Attack scenarios

In the script, we inserted 3 attack sessions for a total of 26
attack attempts (12 to private applications and 14 to con-
fidential applications) covering the threat scenarios de-
scribed in Section 2.2. In two sessions the user leaves
the office and the phone on the desk, and soon after that
an attacker (i.e., a user unknown to the system) enters the
room and tries to use the phone. These attacks take place
in a private place (i.e., office). We simulate both an at-
tacker that knows which signals the system is using and
one that does not know. In the first case, the attacker’s
strategies are staying out of the camera’s range, being
silent and entering the office soon after the user leaves
and locks his PC. In the second case, the attacker is in the
camera’s range and speaks three times for about 10 sec-

USENIX Association 	 21st USENIX Security Symposium  309

onds. In each of the two sessions we have both types of
attacks. The third type of attack occurs in a public place.
The participant forgets his phone in a meeting room. The
participant is asked to interact with the phone just until
leaving the meeting room. The attacker enters the room
soon after the user leaves, picks the phone up and tries
to access the phone applications. These scenarios cover
a small range of situations, but in the office setup we se-
lected for the study they simulate all types of attacker
strategies we considered in our threat model.

6.2 Training and testing the models

Low-level processing models were trained and tested us-
ing the data collected in the first part of the study. The
inferred model for placement detection is the same across
all users, while the face and voice recognition models are
user specific (more details in Section 7.5). To train the
high-level inference model, which is user-agnostic, we
extracted feature vectors from each user’s trace, and used
WEKA [14], a popular suite of machine learning soft-
ware, to train three models: decision tree, support vector
machine with a non-linear model, and linear regression.
As the top part of Figure 3 shows, the model is trained
offline, across users. 8 users’ traces are used for training
and the remaining user’s trace for testing. A feature vec-
tor is generated for each line in the user trace and then
labeled with a ground truth label – the state the model
is trained to recognize under different conditions. The
ground truth labels are extracted by the study’s observer
based on a set of predetermined definitions. These defi-
nitions are used to provide an objective, quantifiable, and
implementation-independent way of defining the ground
truth labels:

Public Label: The legitimate owner is not present OR
Other people are in contact with the phone OR The legit-
imate owner is present, but not in contact with the phone
and other people are present.

Private Label: The legitimate owner has been in con-
tact with the phone since the last private-level authenti-
cation OR The legitimate owner is present and is not in
contact with the phone and no one else is present.

Confidential Label: The legitimate owner has been in
contact with the phone since the last confidential-level
authentication.

Across all participants, the distribution of ground truth
labels was such that 55.0% of the labels were of type
public (2379 labels), 42.6% were of type private (1843
labels), and the rest were of type confidential (2.4% or
105 labels). The distribution of the ground truth labels
should not be confused with the distribution of applica-
tion invocations and the type of application invoked. For
instance, despite the participants invoked the confidential
application as frequently as the public application or one

of the three private applications, only 2.4% of the labels
were confidential. This means that only in few cases the
signals the system could collect were sufficient to auto-
matically authenticate the user at the confidential level.
Hence, confidential applications required a PIN most of
the time.

In the testing phase, the model was invoked using a
user’s trace. For each touch event which had been gen-
erated less than 0.5 seconds earlier, a feature vector was
generated and fed as input to the model. To assess the
model’s accuracy, the output of the model was then com-
pared against the ground truth label. We also tried train-
ing the high-level model on a per-user basis, but the ac-
curacy of the resulting model was lower than that of the
generalized model, so we did not pursue this strategy
(more details in Section 7).

7 Experimental evaluation

We verify that our prototype meets the following goals:
(1) Lowers authentication overhead on mobile phones;
(2) Allows users to trade off stronger protection and more
convenience; (3) Achieves reasonable accuracy in esti-
mating the level of user authenticity; and (4) Provides
acceptable execution time and power consumption.

7.1 Authentication overhead
The main goal of progressive authentication is to reduce
the authentication overhead on mobile phones and be-
come a viable (more secure) solution for users who cur-
rently do not use security locks on their devices. We
measure how many times the participants executing the
tasks of our script had to type a PIN and how many
times they would have had to type a PIN without pro-
gressive authentication. We also count the number of
unauthorized authentications (UAs) that occurred dur-
ing the attack scenarios – cases of false authentication
in which a non-legitimate user tried to unlock the phone
and succeeded. For progressive authentication, we use
an SVM model. As baseline schemes, we assume a sys-
tem that locks the user’s phone after 1 minute of inactiv-
ity (PhoneWithPIN) and one that never locks the phone
(PhoneWithoutPIN). We choose a 1-minute timeout for
the baseline case because the script was designed to al-
low for frequent application invocations in a limited time
window. In real-life such invocations would be spread
over longer time. Table 2 shows that, on average, com-
pared to a state-of-the-art phone with PIN, progressive
authentication reduces the number of times a user is re-
quested to enter a PIN by 42% and provides the same
security guarantees (i.e., 0 UAs). Our claim is that such
a system would be acceptable by users who currently do
not use PINs on their phones. If for some of these users

310  21st USENIX Security Symposium	 USENIX Association

Table 2: Reduction in the authentication over-
head with progressive authentication (using an SVM
model without loss function) compared to the two
baseline cases available on today’s mobile phones.
The table reports the number of times the user was
required to enter a PIN (Num of PINs) and how
many unauthorized authentications (Perc of UAs)
occurred. Average and standard deviation are re-
ported.

Avg [Stdev] PhoneWithoutPIN PhoneWithPIN ProgAuth

Num of PINs 0.0 [0.0] 19.2 [0.6] 11.2 [0.4]

Perc of UAs 100% [0.0] 0.0% [0.0] 0.0% [0.0]

this reduction in overhead is not sufficient, they can de-
crease it even more by tuning the system’s risk factor,
which we evaluate next.

7.2 Convenience and security trade-offs
As with password-based systems, for which users can set
easy or hard passwords, with progressive authentication
users can set a high or low risk factor (R). If R is high,
the inference model is optimized for convenience – it re-
duces the number of false rejections (FRs), but it can pos-
sibly increase the number of false authentications (FAs).
If R is low, the inference model is optimized for security.
Recall that FAs are cases in which the system overes-
timates the level of the user authenticity and grants the
user automatic access instead of requesting a PIN. Unau-
thorized accesses (UAs), reported in the previous test,
represent a subset of the total number of FAs, as UAs
only refer to cases in which non-legitimate users got ac-
cess to the system. FAs refer to any user, legitimate or
non-legitimate ones. FRs are cases in which the system
underestimates the level of user authenticity and unnec-
essarily requires a password.

We configure 4 additional SVM models with increas-
ing risk factors and compare their rates of FAs and FRs
for private and confidential applications against a base-
line without loss function (this is the same model used in
Section 7.1, which uses R = 1). Table 3 shows that as R
increases the percentage of FAs for private applications
(FA Priv) increases from 4.9% to 16.1% and there are no
FAs for confidential applications (FA Conf). Conversely,
FRs decrease. With R = 20, the system reduces FR Priv
to only 34.4% (i.e., the user is required to enter a PIN
for private applications 1 out of 3 times), but it still re-
quires PINs for confidential applications most of the time
(96.8%). This happens because the loss function used
for optimizing the model always penalizes more strongly
FAs for confidential applications (i.e., if the penalty for

Table 3: Comparison of 5 SVM models, each with a
different risk factor (R). One default model does not
use any loss function (R = 1), while the other 4 are
optimized either for convenience (R = 5 and R = 20)
or for security (R = 0.05 and R = 0.2). The table
reports percentage of false authentications and false
rejections for private (FA Priv and FR Priv) and con-
fidential (FA Conf and FR Conf) applications.

Risk factor %FA Priv %FA Conf %FR Priv %FR Conf

0.05 3.3 0.0 57.7 100.0

0.2 3.6 0.0 55.8 100.0

1 4.9 0.0 53.5 98.4

5 5.8 0.0 39.9 96.8

20 16.1 0.0 34.4 96.8

accessing private applications is P, that for confidential
applications is P2). This makes it very hard for the sys-
tem to allow access to confidential applications without
a PIN.

7.3 High-level processing accuracy
We have so far used an SVM model. We now evalu-
ate the accuracy of high-level processing in more detail
and compare SVM against two other popular modeling
techniques: a decision tree with maximum depth of five
and linear regression. All models are trained and cross-
validated across users (i.e., successively trained on ev-
ery eight users and tested on the ninth user). None of
the models use a loss function. Unlike the previous tests
where we measured the accuracy of the model in estimat-
ing the level of user authenticity only for the first touch
event leading to an application invocation, here we eval-
uate its accuracy in estimating the ground truth labels for
all touch events extracted from the trace. This means that
this analysis not only reports whether access to an appli-
cation correctly required or did not require a PIN, but
also whether while the application was in use the system
was able to maintain the correct level of authentication
or to de-authenticate the user as expected.
Precision and recall. We start by reporting the preci-
sion and recall for each model. Precision is defined as
the fraction of correct predictions across all testing sam-
ples that resulted in the same prediction, while recall is
defined as the fraction of correct predictions across all
testing samples with the same ground truth label. As
Figure 6(b) shows, SVM and decision tree outperform
linear regression, which instead presents many incorrect
predictions when the ground truth is private or confiden-
tial. This could lead to a disproportionate number of both
FRs and FAs, so we discard it. We choose to use SVM

USENIX Association 	 21st USENIX Security Symposium  311

 0

 0.2

 0.4

 0.6

 0.8

 1

Decision-Tree SVM Linear-Regression

Pr
ec

is
io

n

public
priv

conf

(a) Precision

 0

 0.2

 0.4

 0.6

 0.8

 1

Decision-Tree SVM Linear-Regression

R
ec

al
l

public
priv

conf

(b) Recall

Figure 6: Precision and recall of different machine learning models when trained with 8 user traces and tested with the
remaining one. The average and standard deviation is across the 9 users. No loss function is used.

Table 4: Confusion matrix for the SVM model.

Rec. as Public Rec. as Priv. Rec. as Conf.

Public 92.50% 7.44 % 0.06%

Private 25.02% 74.42% 0.56%

Confidential 37.31% 0.00 % 62.69%

as the default inference model in our system because it
is the most secure: it is able to recognize 92.5% of the
public labels (high recall) which implies very few false
authentications, and shows precision higher than 81%
for all labels (Figure 6(a)). These graphs consider infer-
ences done when both the authentic user and the attacker
used the system. Since we saw in Table 2 that no unau-
thorized accesses occurred (i.e., cases of false authen-
tications when an attacker tried to access the system),
all false authentications of SVM happened for authentic
users and were due to incorrectly binning a user’s access
as private/confidential instead of public. Decision tree is
a more aggressive model which presents fewers FRs for
confidential (higher recall for confidential), but generates
more FAs (lower recall for public).

Table 4 further characterizes the results for SVM. It
provides a complete breakdown of test outputs, includ-
ing which states were incorrectly inferred when an incor-
rect inference was made (i.e., how the difference between
100% and the height of the bar in Figure6(b) is broken
down). We observe that most of the errors are false rejec-
tions for the confidential state: when the ground truth is
confidential (last row in the table), the model labels it as
public 37% of the time (first column) and it never labels
it as private (second column). When inferring private
states, it labels private states as public 25% of the time
and almost never as confidential. The higher accuracy
in inferring private states is an artifact of our traces and

the reliability of the sensor signals our implementation
uses: the number of private ground truth labels (42.6%)
was much higher than the confidential ones (2.4%), thus
making the model better trained for inferring private la-
bels.

From these results two observations follow. First, we
do expect users to place commonly used applications in
the private application bin more often than in the confi-
dential one, hence requiring higher convenience for pri-
vate and higher security for confidential. Second, one
could argue that for the confidential level, the system
should simply adopt password-based authentication and
avoid making any inference. Our model does not exclude
this option, but in an implementation with a larger num-
ber of more reliable signals, the system would be more
likely to automatically detect the confidential level thus
making the machine learning approach still useful at this
level. Overall, these results show high potential in using
machine learning models such as SVM in this context.
False authentications are less than 8% and restricted to
authentic users, and the system is able to infer the pri-
vate/confidential states about 70% of the time.

Feature Importance. Next, we evaluate which fea-
tures more strongly contributed in training the inference
model. Table 5 shows the relative importance of features
for SVM (in WEKA, this parameter is called GainRa-
tioAttributeEvaluator: “it evaluates the worth of an at-
tribute by measuring the gain ratio with respect to the
class”). Features are shown in rank order (second col-
umn), along with their respective gain ratio (third col-
umn). The feature rank shows the importance of the
corresponding authentication signals: possession (Prox-
AuthDev and ProxAuthDevConf), continuity (LastPlace-
mentDuration), secrets (TimeSincePIN), and biometric
(TimeSinceOwnerVoice). All types of signals envisioned
for progressive authentication contributed to the infer-
ence model. Particularly, these results confirm the im-

312  21st USENIX Security Symposium	 USENIX Association

Table 5: Relative feature importance for SVM

Feature rank Feature name Gain ratio

1 ProxAuthDev 0.16105

2 LastPlacementDuration 0.09785

3 TimeSincePIN 0.04879

4 ProxAuthDevConf 0.04584

5 TimeSinceOwnerVoice 0.04554

6 TimeSinceProx 0.03919

7 TimeSinceTouch 0.02802

8 TimeSinceSound 0.02618

9 LastPlacement 0.02529

10 TimeSinceTable 0.02264

11 Placement 0.01849

12 TimeSinceHands 0.0174

13 TimeSinceNonOwnerVoice 0.01505

14 TimeSincePocket 0.01456

15 Speaker 0.00983

16 SpeakerConf 0.00907

17 PlacementDuration 0.00884

18 PlacementConf 0.00000

portance of recency and continuity of significant events
that indicate user authenticity, such as being close to a
known PC, having been in contact with the phone re-
cently, having a PIN entered, or “hearing” the owner’s
voice. However, the fact that in this specific imple-
mentation of progressive authentication ProxAuthDev is
the top ranked feature does not mean that progressive
authentication works only in scenarios where the user
is nearby a PC. Instead, not surprisingly, the features
ranked first are those derived from the most reliable sen-
sor signals. For instance, ProxAuthDev is derived from
BT-based proximity, activity detection, and PIN events.

7.4 Model personalization
We have so far evaluated high-level processing models
trained across users because these are the models we ex-
pect to ship with the phones. However, it is possible to
collect additional data from specific users to further tailor
the model to their behavior. To assess the benefits of per-
sonalization, we evaluate the models when trained with
data of a single user and tested through leave-one-out
cross-validation. Figure 7 reports average precision and
recall of these “personalized” models. Compared to the
models trained across users (see Figure 6), SVM’s recall
remains the same while the precision is slightly worse.
Decision tree and linear regression show slightly better
performance, but these modest improvements do not jus-
tify the overhead of training personal models. Perhaps
with much longer traces for individual users we could see

 0

 0.2

 0.4

 0.6

 0.8

 1

Decision-Tree SVM Linear-Regression

Pr
ec

is
io

n

public
priv

conf

(a) Precision

 0

 0.2

 0.4

 0.6

 0.8

 1

Decision-Tree SVM Linear-Regression

R
ec

al
l

public
priv

conf

(b) Recall

Figure 7: Precision and recall of different models when
tested through leave-one-out cross-validation. Average
and standard deviation across users are shown. No loss
function is used.

higher improvements, but otherwise these results con-
firm that building accurate generalized models that can
be shipped with the phone is feasible.

7.5 Low-level processing accuracy

The low-level processing models include placement de-
tection, face recognition and voice identification. Fig-
ure 8 reports the average accuracy (across 9 users) and
variance for each recognition model. The accuracy is
computed as the ratio of correct recognitions out of the
total number of model invocations.

In the current prototype, placement can be in one of
three possible states: “hands”, “table”, or “pocket”. Al-
though they do not cover all possible states, we started
with three states that are fairly common and sufficient to
cover the scenarios in the script. To evaluate the place-
ment detector accuracy, each participant performed a se-
ries of actions that put the phone in each of these states
multiple times. In the meantime, sensor measurements
were recorded: accelerometer samples were taken every
20 milliseconds, temperature and humidity every second,
and light every 100 milliseconds. The placement recog-

USENIX Association 	 21st USENIX Security Symposium  313

 0

 20

 40

 60

 80

 100

PlacAcc PlacAllSens SpeakerId FaceRec

A
c
c
u
ra

c
y
 (

%
)

Figure 8: Average accuracy of placement, voice and
face recognition models. Two versions of the placement
model are tested: PlacAllSens relies on external Gad-
geteer sensors and PlacAcc does not.

nition model was invoked every half second. We mea-
sured the accuracy of two decision tree models, one that
uses only accelerometer data (PlacAcc), and another that
is augmented with temperature/humidity and light sen-
sors (PlacAllSens).

Figure 8 shows that the model accuracy varies from
83% to 100% when all sensors are used, and from 76% to
99% if only accelerometers are used. Without the added
Gadgeteer sensors, the model still provides high accu-
racy. As Table 6 shows, the most common error consists
of confusing a pocket placement with a table placement.
Due to the prototype bulky form factor, the light sensor
was sometimes left outside of the pocket, biasing the sys-
tem towards a “table” state. The “hands” state was rarely
confused with other states because of the high reliabil-
ity of the temperature/humidity sensor (used to detect a
human hand).

For face recognition, a webcam mounted on a desktop
PC’s screen collected pictures of the participants. First,
users were asked to look at the center of the screen (4
pictures) and then to look at 8 different points around
the perimeter of the screen (2 pictures for each point).
We trained a user-specific model using these 20 photos.
For testing, a video was recorded while users read text
on the screen and watched a ball moving in a figure of
eight pattern across the entire screen. Roughly 1,000
frames were extracted from the video and used for test-
ing. The whole recording was performed indoors and in
the same lighting conditions (since it was from a desktop
webcam). Figure 8 shows a 94% accuracy and a small
variance across users. In scenarios with changing light
conditions it is likely that the face recognition accuracy
would decrease, but for office environments where light-
ing conditions are more stable this was not a problem.
Nevertheless, when face recognition did not work we
observed a small impact on the overall accuracy of our
system because the face recognition signals are cross-

Table 6: Confusion matrix for the PlacAllSens model.

Recogn. as Hand Recogn. as Table Recogn. as Pocket

Hand 98.78% 1.22% 0.003%

Table 0.01% 98.43% 1.56%

Pocket 0.12% 5.82% 94.06%

Table 7: Confusion matrix for voice identification.

Rec. as Owner’s voice Rec. as Other’s voice or Unknown

Owner’s voice 77.0% 23.0%

Other’s voice 0.4% 99.6%

checked against other presence signals collected using
activity detection sensors (e.g., login/logout events, typ-
ing on keyboard or moving a mouse) which can be esti-
mated with much higher reliability.

Finally, we evaluated the accuracy of the speaker
identification model [21]. In the study, the participants’
voice was recorded for roughly 10 minutes using the
phone’s microphone at 16kHz, 16bit mono format. All
samples were collected in an office environment where
the user’s voice was the dominant signal and there was
modest background noise such as people talking in the
hall, keyboard typing, or air conditioning. The phone
was placed within 1 to 2 meters from the participant. The
participant was asked to speak or read some text (4 of
them only read text, 1 only spoke, and 4 alternated be-
tween reading and speaking). This model requires mul-
tiple voices for training, so we created a single model
with the samples we collected. The model was trained
using 2 minutes from each of the users and the voice
of all 9 participants was tested against the model (i.e., a
user’s voice may be recognized as somebody’s else voice
or as unknown). Compared to the other models in Fig-
ure 8, speaker identification varied the most across users.
There were 3 participants for whom the average accu-
racy was roughly 59.3%, while for all the other users the
model achieved at least 83.7% accuracy. However, Ta-
ble 7 shows that the system rarely recognized another
voice as the owner’s voice (0.4%) – false positives were
rare. Most of the errors were due to the system not rec-
ognizing the user (23%) – false negatives. In the actual
study (the second part), these errors were unfortunately
amplified, perhaps due to the variety of conditions in
which the phone was used (the speaker was at a variable
distance from the user, sometimes the phone was in a
pocket while the user spoke, different background noise,
etc.).

314  21st USENIX Security Symposium	 USENIX Association

Table 8: Power consumption and execution time on a Sam-
sung Focus WP 7.1 for 4 different power configurations.

Conf Sensing Comput Comm TotalPower ExTime

(mW) (mW) (mW) (mW) (sec)

LocalMin <1 41 0 42 0.20

Local ≈160 447 44 651 0.23

LocalRemote ≈160 71 94 325 0.99

Remote ≈160 49 98 307 1.50-2.81

7.6 Latency and power consumption
We evaluate latency and power overhead using a 2-device
configuration including a WP 7.1 Samsung Focus using
WiFi for communication and a Windows PC (2.66GHz
Intel Xeon W3520 CPU with 6GB of RAM). We con-
sider four device configurations:

• LocalMin: low-level and high-level processing runs
on the phone, however power-consuming tasks
(BT-based proximity detection and voice identifica-
tion/recognition) are disabled.

• Local: all low-level and high-level processing tasks
depicted in Figure 3 run on the phone.

• LocalRemote: computation-light low-level process-
ing runs on the phone while voice identification
and high-level processing run on the PC (i.e., gray-
colored modules in Figure 3 are offloaded).

• Remote: both low-level and high-level processing
runs on the PC. The phone only runs the sensors
and sends raw measurements to the PC.

We measured the power drained from the phone bat-
tery by connecting it to a Monsoon Power Monitor [26],
specifically designed for Windows phones. The Mon-
soon meter supplies a stable voltage to the phone and
samples the power consumption at a rate of 5KHz. Dur-
ing the measurements, the phone had the display and
WiFi on, which corresponds to an idle power consump-
tion of 896 mW. Table 8 shows power consumption and
execution time results for all four configurations. Lo-
calMin is the best configuration from both a power con-
sumption and latency point of view: it consumes only
42 mW and has an average delay of 200 msec. How-
ever, as this configuration disables features derived from
proximity and voice recognition, its model may provide
lower accuracy compared to the other 3 configurations,
which allow for the complete set of features. Specifi-
cally, LocalMin’s SVM model is able to reduce the num-
ber of PINs by 53%, but it presents 70% UAs to private
applications. On the other hand, the model still provides

0% UAs to confidential applications. Although less accu-
rate, this model still provides advantages compared to an
unprotected system, thus being an option for users who
currently do not use a PIN on their phone.

Among the other 3 configurations, the best com-
promise from a power-latency point of view is Local-
Remote – this is also the default configuration of our
system. Its delay is less than 1 second and it consumes
about 325 mW, which may be acceptable for modern
phones. The reason for such a reduction in power con-
sumption compared to Local is that this configuration
offloads voice identification to the PC thus significantly
reducing the power drained by the phone’s CPU. Basi-
cally, the phone uploads voice recordings only if voice is
detected (i.e., it does not upload raw data if no voice is
present). Local represents the fastest full configuration
with an average execution time of 225 msec per infer-
ence, including feature extraction (≈ 90 msec) and SVM
invocation (≈ 115 msec). This configuration may be con-
venient for a phone at home or in an office, with full
power or currently connected to a power charger.

We have shown a range of options. Executing on
the client is faster, using the server for remote ex-
ecution yields lower power costs. Temporarily dis-
abling computation-intensive features can also signifi-
cantly lower power consumption at the cost of accuracy.
By switching between these configurations and possibly
even temporarily disabling progressive authentication,
we can deliver a system with lower authentication over-
head and acceptable power and latency requirements. In
general, users who currently do not use PINs on their
phones can have a much more protected system without
the need to worry about power consumption.

8 Related work

Other researchers have explored work related to progres-
sive authentication in the following areas: multi-level
authentication systems, context-based and automatic au-
thentication, and mobile device authentication in general.

8.1 Multi-level authentication
Multi-level authentication has been considered before.
As in progressive authentication, data and applica-
tions are categorized in different levels of authoriza-
tion, variously called “hats” [34], “usage profiles” [19],
“spheres” [32], “security levels” [4], or ”sensitive
files” [36]. With the exception of TreasurePhone [32]
and MULE [36], most of this work has been concep-
tual, with no actual implementation. TreasurePhone
divides applications into multiple access spheres and
switches from one sphere to another using the user’s lo-
cation, a personal token, or physical “actions” (e.g., lock-

USENIX Association 	 21st USENIX Security Symposium  315

ing the home door would switch from the “Home” to
the “Closed” sphere). However, these sphere switch-
ing criteria have flaws. First, location is rather unre-
liable and inaccurate, and when used in isolation, it is
difficult to choose the appropriate sphere (e.g., being
alone at home is different than being at home during a
party). Second, the concept of personal tokens requires
users to carry more devices. Third, monitoring physi-
cal “actions” assumes that the device can sense changes
in the physical infrastructure, something that is not yet
viable. Conversely, progressive authentication enables
automatic switching among the multiple levels of au-
thentication by relying on higher-accuracy, simpler and
more widely available multi-modal sensory information.
MULE proposes to encrypt sensitive files stored in lap-
tops based on their location: if the laptop is not at work or
at home, these files are encrypted. Location information
is provided by a trusted location device that is contacted
by the laptop in the process of regenerating decryption
keys. Progressive authentication protects applications,
not files, and it uses multiple authentication factors, un-
like MULE, which uses location exclusively.

8.2 Automatic authentication
Other forms of automatic authentication use a single au-
thentication factor such as proximity [6, 7, 18], behav-
ioral patterns [33], and biometrics, such as typing pat-
terns [1,24], hand motion and button presses [3]. Most of
these techniques are limited to desktop computers, lap-
tops or specific devices (e.g., televisions [3]). The clos-
est to our work is Implicit Authentication [33], which
records a user’s routine tasks such as going to work or
calling friends, and builds a profile for each user. When-
ever deviations from the profile are detected, the user is
required to explicitly authenticate. Progressive authenti-
cation differs from this work in that it uses more sensory
information to enable real-time, finer granularity mod-
eling of the device’s authentication state. On the other
hand, any of those proximity, behavioral and biometric
patterns could be plugged into our system. Transient au-
thentication [6,7] requires the user to wear a small token
and authenticate with it from time to time. This token
is used as a proximity cue to automate laptop authen-
tication. This approach requires the user to carry and
authenticate with an extra token, but its proximity-based
approach is relevant to our work in that it also leverages
nearby user-owned devices (i.e., the tokens) as authenti-
cation signals.

8.3 Mobile device authentication
The design of more intuitive and less cumbersome
authentication schemes has been a popular research

topic. Current approaches can be roughly classified into
knowledge-based, multi-factor, and biometric authenti-
cation techniques. All three are orthogonal to progres-
sive authentication. Our goal is not to provide a new “ex-
plicit” authentication mechanism, but instead to increase
the usability of current mechanisms by reducing the fre-
quency at which the user must authenticate. When ex-
plicit authentication is required, any of these techniques
can be used.

Knowledge-based approaches assume that a secret
(e.g., a PIN) is shared between the user and the device,
and must be provided every time the device is used. Due
to the limited size of phone screens and on-screen key-
boards, this can be a tedious process [5], especially when
it is repeated multiple times per day. In multi-factor
authentication, more than one type of evidence is re-
quired. For instance, two-factor authentication [2,31,35]
requires a PIN and secured element such as a credit card
or USB dongle. This practice presents major usability
issues, as the need to carry a token such as SecurID [31]
goes against the user’s desire to carry fewer devices. Bio-
metric schemes [5, 16, 27] leverage biometrics [17] or
their combinations [12, 15], such as face recognition and
fingerprints, to authenticate the user with high accuracy.
Even though very secure, biometric identification comes
with acceptability, cost and privacy concerns [27], and is
especially cumbersome on small devices.

9 Conclusions

We presented a novel approach to progressively authen-
ticate (and de-authenticate) users on mobile phones. Our
key insight is to combine multiple authentication signals
to determine the user’s level of authenticity, and surface
authentication only when this level is too low for the con-
tent being requested. We have built a system prototype
that uses machine learning models to implement this ap-
proach. We used the system in a lab study with nine users
and showed how we could reduce the number of explicit
authentications by 42%. We believe our results should
make this approach attractive to many mobile users who
do not use security locks today. Overall, progressive au-
thentication offers a new point in the design of mobile
authentication and provides users with more options in
balancing the security and convenience of their devices.

10 Acknowledgments

We thank the authors of Speaker Sense for making it
available to us. Special thanks to Eiji Hayashi for many
insightful discussions on the architecture of progres-
sive authentication and for designing its user interface.
Thanks to Asela Gunawardana for helping us with the

316  21st USENIX Security Symposium	 USENIX Association

machine learning models used by the system, and to Tom
Blank, Jeff Herron, Colin Miller and Nicolas Villar for
helping us instrumenting the WP with additional sensors.
We also thank David Molnar and Bryan Parno for their
comments on an earlier draft of this paper, and the anony-
mous reviewers for their insightful feedback. Finally, we
are especially grateful to all users who participated in our
user studies.

References
[1] Bergadano, F., Gunetti, D., and Picardi, C. User authentica-

tion through keystroke dynamics. ACM Trans. Inf. Syst. Secur. 5
(November 2002), 367–397.

[2] C.G.Hocking, S.M.Furnell, N.L.Clarke, and P.L.Reynolds. A
distributed and cooperative user authentication framework. In
Proc. of IAS ’10 (August 2010), pp. 304–310.

[3] Chang, K.-H., Hightower, J., and Kveton, B. Inferring identity
using accelerometers in television remote controls. In Proc. of
Pervasive ’09 (2009), pp. 151–167.

[4] Clarke, N., Karatzouni, S., and Furnell, S. Towards a Flexible,
Multi-Level Security Framework for Mobile Devices. In Proc. of
the 10th Security Conference (May 4–6 2011).

[5] Clarke, N. L., and Furnell, S. M. Authentication of users on
mobile telephones - A survey of attitudes and practices. Comput-
ers and Security 24, 7 (Oct. 2005), 519–527.

[6] Corner, M. D., and Noble, B. Protecting applications with tran-
sient authentication. In Proc. of MobiSys ’03 (2003), USENIX.

[7] Corner, M. D., andNoble, B. D. Zero-interaction authentication.
In Proc. of MobiCom ’02 (2002), ACM, pp. 1–11.

[8] Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A.,
Saroiu, S., Chandra, R., and Bahl, P. MAUI: making smart-
phones last longer with code offload. In Proc. of MobiSys ’10
(2010), ACM, pp. 49–62.

[9] Gadgeteer. http://netmf.com/gadgeteer/.

[10] Giurgiu, I., Riva, O., Juric, D., Krivulev, I., andAlonso, G. Call-
ing the cloud: Enabling mobile phones as interfaces to cloud ap-
plications. In Proc. of Middleware’09 (November 30 - December
4 2009), Springer.

[11] How Apple and Google will kill the password.
http://www.computerworld.com/s/article/9206998/
How Apple and Google will kill the password .

[12] Greenstadt, R., and Beal, J. Cognitive security for personal de-
vices. In Proc. of the 1st ACM workshop on AISec (2008), ACM,
pp. 27–30.

[13] Hayashi, E., Riva, O., Brush, A., Strauss, K., and Schechter, S.
Goldilocks and the Two Mobile Devices: Going Beyond All-Or-
Nothing Access to a Device’s Applications. In Proc. of SOUPS
’12 (July 11-13 2012), ACM.

[14] Holmes, G., Donkin, A., andWitten, I. Weka: A machine learn-
ing workbench. In Proc. of the 2nd Australia and New Zealand
Conference on Intelligent Information Systems (December 1994),
pp. 357–361.

[15] Hong, L., and Jain, A. Integrating faces and fingerprints for per-
sonal identification. IEEE Trans. Pattern Anal. Mach. Intell. 20
(December 1998), 1295–1307.

[16] Jain, A., Bolle, R., and Pankanti, S. Biometrics: Personal Iden-
tification in a Networked Society. Kluwer Academic Publ., 1999.

[17] Jain, A., Hong, L., and Pankanti, S. Biometric identification.
Commun. ACM 43 (February 2000), 90–98.

[18] Kalamandeen, A., Scannell, A., de Lara, E., Sheth, A., and
LaMarca, A. Ensemble: cooperative proximity-based authen-
tication. In Proc. of MobiSys ’10 (2010), pp. 331–344.

[19] Karlson, A. K., Brush, A. B., and Schechter, S. Can I bor-
row your phone?: Understanding concerns when sharing mobile
phones. In Proc. of CHI ’09 (2009), ACM, pp. 1647–1650.

[20] Liu, Y., Rahmati, A., Huang, Y., Jang, H., Zhong, L., Zhang, Y.,
and Zhang, S. xShare: supporting impromptu sharing of mobile
phones. In Proc. of MobiSys ’09 (2009), ACM, pp. 15–28.

[21] Lu, H., Brush, A. J. B., Priyantha, B., Karlson, A. K., and Liu,
J. SpeakerSense: Energy Efficient Unobtrusive Speaker Identifi-
cation on Mobile Phones. In Proc. of Pervasive 2011 (June 12-15
2011), pp. 188–205.

[22] Mobile wallet offered to UK shoppers. http://www.bbc.co.uk/
news/technology-13457071.

[23] Ni, X., Yang, Z., Bai, X., Champion, A. C., andXuan, D. Diffuser:
Differentiated user access control on smartphone. In Proc. of
MASS ’09 (12-15 October 2009), IEEE, pp. 1012–1017.

[24] Nisenson, M., Yariv, I., El-Yaniv, R., and Meir, R. Towards
behaviometric security systems: Learning to identify a typist. In
Proc. of PKDD ’03 (2003), Springer, pp. 363–374.

[25] 24% of mobile users bank from a phone. Yet most don’t have
security measures in place. http://www.bullguard.com/news/
latest-press-releases/press-release-archive/2011-06-21.
aspx.

[26] Monsoon Power Monitor. http://www.msoon.com/
LabEquipment/PowerMonitor/.

[27] Prabhakar, S., Pankanti, S., and Jain, A. K. Biometric recogni-
tion: Security and privacy concerns. IEEE Security and Privacy
1 (2003), 33–42.

[28] Priyantha, B., Lymberopoulos, D., and Liu, J. LittleRock: En-
abing Energy Efficient Continuous Sensing on Moble Phones.
Tech. Rep. MSR-TR-2010-14, Microsoft Research, February 18
2010.

[29] Priyantha, B., Lymberopoulos, D., and Liu, J. LittleRock: En-
abling Energy-Efficient Continuous Sensing on Mobile Phones.
IEEE Pervasive Computing 10 (2011), 12–15.

[30] Reynolds, D. A. An overview of automatic speaker recognition
technology. In Proc. of ICASSP ’02 (2002), vol. 4, pp. IV–4072–
IV–4075.

[31] RSA SecurID. http://www.rsa.com/node.aspx?id=1156.

[32] Seifert, J., De Luca, A., Conradi, B., and Hussmann, H. Trea-
surePhone: Context-Sensitive User Data Protection on Mobile
Phones. In Proc. of Pervasive ’10. 2010, pp. 130–137.

[33] Shi, E., Niu, Y., Jakobsson, M., and Chow, R. Implicit authentica-
tion through learning user behavior. In Proc. of ISC ’10 (October
2010), pp. 99–113.

[34] Stajano, F. One user, many hats; and, sometimes, no hat – to-
wards a secure yet usable PDA. In In Proc. of Security Protocols
Workshop (2004).

[35] Stajano, F. Pico: No more passwords! In Proc. of Security
Protocols Workshop (March 28–30 2011).

[36] Studer, A., and Perrig, A. Mobile user location-specific encryp-
tion (MULE): using your office as your password. In Proc. of
WiSec ’10 (2010), ACM, pp. 151–162.

[37] Texas Instruments. OMAPT M 5 mobile applications platform,
13 July 2011. Product Bulletin.

USENIX Association 	 21st USENIX Security Symposium  317

Origin-Bound Certificates: A Fresh Approach to Strong Client
Authentication for the Web

Michael Dietz
Rice University

mdietz@rice.edu

Alexei Czeskis
University of Washington

alexei@czeskis.com

Dirk Balfanz∗

Google Inc.
balfanz@google.com

Dan S. Wallach
Rice University
dwallach@rice.edu

Abstract
Client authentication on the web has remained in the

internet-equivalent of the stone ages for the last two
decades. Instead of adopting modern public-key-based
authentication mechanisms, we seem to be stuck with
passwords and cookies.

In this paper, we propose to break this stalemate by
presenting a fresh approach to public-key-based client
authentication on the web. We describe a simple TLS
extension that allows clients to establish strong authenti-
cated channels with servers and to bind existing authen-
tication tokens like HTTP cookies to such channels. This
allows much of the existing infrastructure of the web to
remain unchanged, while at the same time strengthening
client authentication considerably against a wide range
of attacks.

We implemented our system in Google Chrome and
Google’s web serving infrastructure, and provide a per-
formance evaluation of this implementation.

1 Introduction

In the summer of 2011, several reports surfaced of at-
tempted man-in-the-middle attacks against Google users
who were primarily located in Iran. The Dutch certifi-
cation authority DigiNotar had apparently issued certifi-
cates for google.com and other websites to entities not
affiliated with the rightful owners of the domains in ques-
tion1. Those entities were then able to pose as Google
and other web entities and to eavesdrop on the commu-
nication between users’ web browsers and the websites
they were visiting. One of the pieces of data such eaves-
droppers could have conceivably recorded were authen-
tication cookies, meaning that the man-in-the-middle

∗The opinions expressed here are those of the authors and do not
necessarily reflect the position of Google.

1It later turned out that the certificates had, in fact, been created
fraudulently by attackers that had compromised DigiNotar.

could have had full control over user accounts, even after
the man-in-the-middle attack itself was over.

This attack should have never been possible: authen-
ticating a client to a server while defeating man-in-the-
middle attacks is theoretically a solved problem. Simply
put, client and server can use an authenticated key agree-
ment protocol to establish a secure permanent “channel.”
Once this channel is set up, a man-in-the-middle cannot
“pry it open”, even with stolen server certificates.

Unfortunately, this is not how authentication works on
the web. We neither use sophisticated key agreement
protocols, nor do we establish authenticated “channels.”
Instead, we send secrets directly from clients to servers
with practically every request. We do this across all lay-
ers of the network stack. For example, to authenticate
users, passwords are sent from clients to servers; SAML
or OpenID assertions are sent from clients to servers in
order to extend such user authentication from one web-
site to another; and HTTP cookies are sent with every
HTTP request after the initial user authentication in or-
der to authenticate that HTTP request.

We call this pattern bearer tokens: the bearer of a
token is granted access, regardless of the channel over
which the token is presented, or who presented it2.

Unfortunately, bearer tokens are susceptible to cer-
tain classes of attacks. Specifically, an adversary that
manages to steal a bearer token from a legitimate user
can impersonate that user to web services that require
it. For different kinds of bearer tokens these attacks
come in different flavors: passwords are usually ob-
tained through phishing or keylogging, while cookie
theft happens through man-in-the-browser malware (e.g.,
Zeus [16]), cross site scripting attacks, or adversaries that
manage to sniff the network or insert themselves into the
network between the client and server [1, 7]).

The academic community, of course, has known of
authentication mechanisms that avoid the weaknesses of

2Bearer tokens, originally called “sparse capabilities” [25], were
widely used in distributed systems, well before the web.

318  21st USENIX Security Symposium	 USENIX Association

bearer tokens since before the dawn of the web. These
mechanisms usually employ some form of public-key
cryptography rather than a shared secret between client
and server. Authentication protocols based on public-
key cryptography have the benefit of not exposing secrets
to the eavesdropper which could be used to impersonate
the client to the server. Furthermore, when public/private
key pairs are involved, the private key can be moved out
of reach of thieving malware on the client, perhaps us-
ing a hardware Trusted Platform Module (TPM). While
in theory this problem seems solved, in practice we have
seen attempts to rid the web of bearer tokens gain near-
zero traction [10] or fail outright [13].

In this paper, we present a fresh approach to using
public-key mechanisms for strong authentication on the
web. Faced with an immense global infrastructure of
existing software, practices and network equipment, as
well as users’ expectations of how to interact with the
web, we acknowledge that we cannot simply “reboot”
the web with better (or simply different) authentication
mechanisms. Instead, after engaging with various stake-
holders in standards bodies, browser vendors, operators
of large website, and the security, privacy and usability
communities, we have developed a layered solution to
the problem, each layer consisting of minor adjustments
to existing mechanisms across the network stack.
The key contributions of this work are:

• We present a slight modification to TLS client au-
thentication, which we call TLS-OBC. This new
primitive is simple and powerful, allowing us to cre-
ate strong TLS channels.
• We demonstrate how higher-layer protocols like

HTTP, federation protocols, or even application-level
user login can be hardened by “binding” tokens at
those layers to the authenticated TLS channel.
• We describe our efforts in gaining community sup-

port for an IETF draft [2], as well as support from
major browser vendors; both Google’s Chrome and
Mozilla’s Firefox have begun to incorporate and test
support for TLS-OBC.
• We present a detailed report on our client-side im-

plementation in the open-source Chromium browser,
and our server-side implementation inside the serv-
ing infrastructure of a large website.
• We give some insight into the process that led to

the proposal as presented here, contrasting it with
existing work and explaining real-world constraints,
ranging from privacy expectations that need to be
weighed against security requirements, to deploy-
ment issues in large datacenters.

Summary. The main idea of this work is easily
explained: browsers use self-signed client certificates

within TLS client authentication. These certificates are
generated by the browser on-the-fly, as needed, and con-
tain no user-identifying information. They merely serve
as a foundation upon which to establish an authenticated
channel that can be re-established later.

The browser generates a different certificate for every
website to which it connects, thus defeating any cross-
site user tracking. We therefore call these certificates
origin-bound certificates (OBCs). This design choice
also allows us to completely decouple certificate gener-
ation and use from the user interface; TLS-OBC client
authentication allows the existing web user experience
to remain the same, despite the changes under the hood.

Since the browser will consistently use the same client
certificate when establishing a TLS connection with an
origin, the website can “bind” authentication tokens (e.g.,
HTTP cookies) to the OBC, thereby creating an authen-
ticated channel. This is done by simply recording which
client certificate should be used at the TLS layer when
submitting the token (i.e., cookie) back to the server. It
is at this layer (in the cookie, not in the TLS certificate)
that we establish user identity, just as it is usually done
on the web today.

TLS-OBC’s channel-binding mechanism prevents
stolen tokens (e.g., cookies) from being used over other
TLS channels, thereby making them useless to token
thieves, solving a large problem in today’s web.

2 Threat Model

We consider a fairly broadly-scoped (and what we be-
lieve to be a real-world) threat model. Specifically, we
assume that attackers are occasionally able to “pry open”
TLS sessions and extract the enclosed sensitive data by
exploiting a bug in the TLS system [22], mounting a man
in the middle (MITM) attack through stolen server TLS
certificates [1], or utilizing man-in-the-browser mal-
ware [16]. These attacks not only reveal potentially pri-
vate data, but in today’s web will actually allow attack-
ers to impersonate and completely compromise user ac-
counts by capturing and replaying users’ authentication
credentials (which, as we noted earlier, are usually in the
form of bearer tokens). These attacks are neither theo-
retical nor purely academic; they are being employed by
adversaries in the wild [24].

In this paper we focus on the TLS and HTTP lay-
ers of the protocol stack, and on protecting the authen-
tication tokens at those layers—mostly HTTP cookies
(but also identity assertions in federation protocols)—by
binding them to the underlying authenticated TLS-OBC
channel. We have a parallel effort under way to pro-
tect the application-layer user logins, but that is mostly
outside the scope of this paper. To model this distinc-
tion, we consider two classes of attacker. The first class

USENIX Association 	 21st USENIX Security Symposium  319

is an attacker that has managed to insert themselves as
a MITM during the initial authentication step (when
the user trades his username/password credentials for a
cookie), or an attacker that steals user passwords through
a database compromise or phishing attack. The second
class of attacker is one that has inserted themself as a
MITM after the initial user authentication step where
credentials are traded for an authentication token. The
first class of attacker is strictly stronger than the second
class of attacker as a MITM that can directly access a
user’s credentials can trade them in for an authentication
token at his leisure. While the second class of attacker,
a MITM that can only steal the authentication token, has
a smaller window of opportunity (the duration for which
the cookie is valid) for access to the user’s private infor-
mation.

For the purposes of this paper, we choose to focus on
the second class of attacker. In short, we assume that the
user has already traded their username/password creden-
tials to acquire an authentication token that will persist
across subsequent connections. Our threat model allows
for attackers to exploit MITM or eavesdropping attacks
during any TLS handshake or session subsequent to the
initial TLS connection to a given endpoint—including at-
tacks that cause a user to re-authenticate as discussed in
Section 4.3. Attacks that target user credentials during
the initial TLS connection, rather than authentication to-
kens during subsequent TLS connections, are dealt with
in a forthcoming report.

3 TLS-OBC

We propose a slightly modified version of traditional
TLS client certificates, called Origin-Bound Certificates
(OBCs), that will enable a number of useful applications
(as discussed in Section 4).

3.1 Overview

Fundamentally, an Origin-Bound Certificate is a self-
signed certificate that browsers use to perform TLS
Client Authentication. Unlike normal certificates, and
their use in TLS Client Authentication (see Section 8.1),
OBCs do not require any interaction with the user.
This property stems from the observation that since the
browser generates and stores only one certificate per ori-
gin, it’s always clear to the browser which certificate it
must use; no user input is necessary to make the deci-
sion.

On-Demand Certificate Creation If the browser does
not have an existing OBC for the origin it’s connecting
to, a new OBC will be created on-the-fly. This newly
generated origin-bound certificate contains no user iden-

tifying information (e.g., name or email). Instead, the
OBC is used only to prove, cryptographically, that sub-
sequent TLS sessions to a given server originate from the
same client, thus building a continuous TLS channel3,
even across different TLS sessions.

User Experience As noted earlier, there is no user in-
terface for creating or using Origin-Bound Certificates.
This is similar to the UI for HTTP cookies; there is typi-
cally no UI when a cookie is set nor when it is sent back
to the server. Origin-Bound Certificates are similar to
cookies in other ways as well:

• Clients uses a different certificate for each origin.
Unless the origins collaborate, one origin cannot dis-
cover which certificate is used for another.
• Different browser profiles use different Origin-Bound

Certificates for the same origin.
• In incognito or private browsing mode, the Origin-

Bound Certificates used during the browsing session
get destroyed when the user closes the incognito or
private browsing session.
• In the same way that browsers provide a UI to in-

spect and clean out cookies, there should be a UI that
allows users to reset their Origin-Bound Certificates.

3.2 The Origin-Bound Certificates TLS
Extension

OBCs do not alter the semantics of the TLS handshake
and are sent in exactly the same manner as traditional
client certificates. However, because they are generated
on-the-fly and have no associated UI component, we
must differentiate TLS-OBC from TLS client-auth and
treat it as a distinct TLS extension. Figure 1 shows, at
a high level, how this extension fits in with the normal
TLS handshake protocol; the specifics of the extension
are explained below.

The first step in the client-server decision to use OBCs
occurs when the client advertises acceptance of the TLS-
OBC extension in its initial ClientHello message. If
the server chooses to accept the use of OBCs, it echoes
the TLS-OBC extension identifier in its ServerHello
message. At this point, the client and server are consid-
ered to have negotiated to use origin-bound client certifi-
cates for the remainder of the TLS session.

After OBCs have been negotiated, the server sends a
CertificateRequest message to the client that spec-
ifies the origin-bound certificate types that it will ac-
cept (ECDSA, RSA, or both). Upon a client’s receipt
of the CertificateRequest, if the client has already
generated an OBC associated with the server endpoint,

3We use the same notion as TAOS [27] does, of a cryptographically
strong link between two nodes.

320  21st USENIX Security Symposium	 USENIX Association

Figure 1: TLS-OBC extension handshake flow.

the existing OBC is returned to the server in the client’s
ClientCertificate message. If this is the first con-
nection to the server endpoint or if no acceptable existing
OBC can be found, an origin-bound certificate must be
generated by the client then delivered to the server in the
client’s ClientCertificate message.

During the OBC generation process, the client cre-
ates a self-signed client certificate with common and dis-
tinguished names set to “anonymous.invalid” and an
X509 extension that specifies the origin for which the
OBC was generated.

4 Securing Web Authentication Mecha-
nisms with TLS-OBC

We now show how origin-bound certificates can be used
to strengthen other parts of the network stack: In Sec-
tion 4.1 we explain how HTTP cookies can be bound to
TLS channels using TLS-OBC. In Section 4.2 we show
how federation protocols (such as OpenID or OpenID
Connect) can be hardened against attackers, and in Sec-
tion 4.3 we turn briefly to application-level user authen-
tication protocols.

4.1 Channel-binding cookies
OBCs can be used to strengthen cookie-based authen-
tication by “binding” cookies to OBCs. When issuing
cookies for an HTTP session, servers can associate the
client’s origin-bound certificate with the session (either
by unforgeably encoding information about the certifi-
cate in the cookie value, or by associating the certificate
with the cookie’s session through some other means).
That way, if and when a cookie gets stolen from a client,
it cannot be used to authenticate a user when communi-
cated over a TLS connection initiated by a different client
– the cookie thief would also have to steal the private
key associated with the client’s origin-bound certificate

Figure 2: Process of setting an OBC bound cookie

– a task considerably harder to achieve (especially in the
presence of Trusted Platform Modules or other Secure
Elements that can protect private key material).

Service Cookie Hardening One way of unforgeably
encoding an OBC into a cookie is as follows. If a tradi-
tional cookie is set with value v, a channel bound cookie
may take the form of:

〈v, HMACk(v + f)〉

where v is the value, f is a fingerprint of the client
OBC, k is a secret key (known only to the server), and
HMACk(v + f) is a keyed message authentication code
computed over v concatenated to f with key k. This
information is all that is required to create and verify a
channel bound cookie. The general procedure for set-
ting a hardened cookie is illustrated in Figure 2. Care
must be taken not to allow downgrade attacks: if both
v and 〈v, HMACk(v + f)〉 are considered valid cook-
ies, a man-in-the-middle might be able to strip the sig-
nature and simply present v to the server. Therefore,
the protected cookie always has to take the form of
〈v, HMACk(v + f)〉, even if the client doesn’t support
TLS-OBC.

Cookie Hardening for TLS Terminators The tech-
nique for hardening cookies, as discussed above, as-
sumes that the cookie-issuing service knows the OBC
of the connecting client. While this is a fair assumption
to make for most standalone services, it is not true for
many large-scale services running in datacenters. In fact,
for optimization and security reasons, some web services
have TLS “terminators”. That is, all TLS requests to and
from an application are first passed through the TLS ter-
minator node to be “unwrapped” on their way in and are
“wrapped” on their way out.

There are two potential approaches to cookie harden-
ing with TLS terminators. First, TLS terminators could
extract a client’s OBC and pass it, along with other infor-
mation about the HTTP request (such as cookies sent by

USENIX Association 	 21st USENIX Security Symposium  321

Figure 3: MITM attack during a TLS handshake

the client) to the backend service. The backend service
can then create and verify channel-bound cookies using
the general procedure in the previous section.

The second approach involves using the TLS termina-
tor to channel-bind the cookies of legacy services that
cannot or will not be modified to deal with OBC in-
formation sent to them by the TLS terminator. Us-
ing this approach, TLS terminators must receive a list
of cookie names to harden for each service to which
they cater. When receiving an outbound HTTP response
with a Set-Cookie header for a protected cookie, the
TLS terminator must compute the hardened value us-
ing the OBC fingerprint, rewrite the cookie value in the
Set-Cookie header, and only then wrap the request in
a TLS stream. Similarly, the TLS terminator must in-
spect incoming requests for Cookie headers bearing a
protected cookie, validate them, and rewrite them to only
have the raw value. Any inbound request with a channel-
bound cookie that fails verification must be dropped by
the TLS verifier.

Channel-Bound Cookies Protect Against MITM

As mentioned earlier, TLS MITM attacks happen and
some can go undetected (see Figure 3 for a depiction of a
conventional MITM attack). Channel-bound cookies can
be used to bring protection against MITM attacks to web
users.

Recall that our threat model assumes that at some time
in the past, the user’s client was able to successfully au-
thenticate with the server. At that point, the server would
have set a cookie on the client and would have bound
that cookie to the client’s legitimate origin-bound certifi-
cate. This process is shown in Figure 2. Observe that on
a subsequent visit, the client will send its cookie (bound
to the client’s OBC). However, the MITM lacks the abil-
ity to forge the client’s OBC and must substitute a new
OBC in its handshake with the server. Therefore, when
the MITM forwards the user’s cookie on to the server,
the server will recognize that the cookie was bound to a
different OBC and will drop the request. This process
is shown in Figure 4. The careful reader will observe
that a MITM attacker may strip the request of any bearer
tokens completely and force the user to provide his user-
name/password once more or fabricate a new cookie and

Figure 4: Using OBCs and bound cookies to protect
against MITM. The server recognizes a mismatch be-
tween the OBC to which the cookie is bound and the cert
of the client (attacker) with who it is communicating.

log the user in as another identity. We cover this more in
Section 4.3 and in an upcoming report.

4.2 Hardening Federation Protocols

Channel-binding cookies with OBCs allows a single en-
tity to protect the authentication information of its users,
but modern web users have a plethora of other login cre-
dentials and session tokens that make up their digital
identity. Federation protocols like OpenID [20], OpenID
Connect [23], and BrowserID [14] have been proposed
as a way to manage this explosion of user identity state.
At a high level, these federation protocols allow the user
to maintain a single account with an identity provider
(IdP). This IdP can then generate an identity assertion
that demonstrates to relying parties that the user con-
trols the identity established with the identity provider.
While these federation techniques reduce the number of
credentials a user is responsible for remembering, they
make the remaining credentials much more valuable. It
is therefore critical to protect the authentication creden-
tials for the identity provider as well as the mechanism
used to establish the identity assertion between identity
provider and relying party. Towards that end, we explore
using TLS-OBC and channel-binding to harden a generic
federation system against attack.

PostKey API The first step towards hardening a feder-
ation protocol is to provide a way for an identity provider
and relying party to communicate in a secure, MITM re-
sistant manner. We introduce a new browser API called
the PostKey API to facilitate this secure communica-
tion. This new API is conceptually very similar to the
PostMessage [11] communication mechanism that al-
lows distinct windows within the browser to send mes-
sages to each other using inter-process communication

322  21st USENIX Security Symposium	 USENIX Association

iFrame:
https://idp.com

Browser

window:
https://rp.com

Cert idp
C user

Cert idp

Cert

rp.postKey(https://idp.com)

rp

[K] , [K]idp K rp Krp idp

https://rp.com

Cert rp

K rp

Kidp

AuthRequest{U, [K] , [K] }idp rp K idpK rp

IdentityAssertion {U, K , nonce}Krp idp

IdentityAssertion {U, K , nonce}Krp idp

https://idp.com

Cuser@rp.com

1
2

3

4

5

Figure 5: Simplified federation protocol authorization
flow using PostKey and OBCs.

rather than the network. The goal of PostKey extends be-
yond a simple communication mechanism to encompass
the secure establishment of a “proof key” that commu-
nicates the public key of an OBC to a different origin
within the browser by exposing a new browser window
function:

otherWindow.postKey(message, targetOrigin)

This postKey call works like the existing postMessage
call but additional cert and crossCert parameters are
added to the event received by the recipient window’s
message handler. The cert parameter contains a cer-
tificate that is signed by the receiver’s origin-bound key
and includes: the sender’s origin, the sender’s OBC pub-
lic key, the receiver’s origin, and an X509 extension
that includes a random nonce. The crossCert has the
sender and receiver’s roles reversed (i.e., it contains the
receiver’s key, signed by the sender’s key) and includes
the same random nonce as in cert.

These certificates form what is called a cross certifica-
tion, where the recipient of the certification can establish
that the sender’s public key is KS because KS has been
signed, by the browser, with the receiver’s private key
KR. Additionally, the caller’s public key cross-certifies
the receiver’s public key to establish that both keys be-
long to the same browser.

It’s important to note that the sender does not get to
choose the keys used in this cross certification process.
Instead, the browser selects the OBCs associated with
the origins of the sender and receiver and automatically
performs the cross certification using the keys associated
with the found OBCs.

Putting it all together The combination of the PostKey
API and origin-bound certificates can be used to improve
upon several federation protocols.

Figure 5 shows the steps required to federate a user’s
identity in a generic federation protocol that had been
modified to work with the PostKey API and OBCs. In
step 1 the relying party issues a PostKey javascript re-
quest to the IdP’s iFrame and the IdP receives a cross

certification from the web browser. In step 2, an Autho-
rization Request is issued to the IdP. Since the request
is sent over the TLS channel authenticated with KIdP the
server associates the incoming request with the user U
associated with KIdP. The authorization request contains
the cross certification that asserts that KRP and KIdP be-
long to the same user’s browser so upon user consent, the
IdP can respond (in step 3) with a single use Identity As-
sertion that asserts that KRP is also associated with user
U. The IdP’s iFrame then passes the Identity Assertion
to the RP’s frame where, in step 4, the Identity Assertion
is forwarded to the relying party’s server. The relying
party verifies that the Identity Assertion was delivered
over a channel authenticated with KRP, has been prop-
erly signed by the IdP, and has not been used yet. If this
verification succeeds the RP can now associate user U
with key KRP by setting a cookie in the user’s browser as
shown in step 5.

4.3 Protecting user authentication

We’ve largely considered the initial user-authentication
phase, when the user submits his credentials (e.g., user-
name/password) in return for an authenticated session, to
be out of scope for this paper. However, we now briefly
outline how TLS-OBC can be leveraged in order to se-
cure this tricky phase of the authentication flow.

As a promising direction where TLS-OBC can make a
significant impact, we explore the ideas put forth by a re-
cent workshop paper by Czeskis et al. [8], where the au-
thors frame authentication in terms of protected and un-
protected login. They define unprotected login as an au-
thentication during which all of the submitted credentials
are user-supplied and are therefore vulnerable to phish-
ing attacks. For example, these types of logins occur
when users first sign in from a new device or after having
cleared all browser state (i.e., cleared cookies). The au-
thors observe that to combat the threats to unprotected lo-
gin, many websites are moving towards protected login,
whereby user-supplied credentials are accompanied by
supplementary, “unphishable” credentials such as cook-
ies or other similar tokens. For example, websites may
set long-lived cookies for users the first time they log in
from a new device (an unprotected login), which will not
be cleared when a user logs out or his session expires.
On subsequent logins, the user’s credentials (i.e., user-
name/password) will be accompanied by the previously
set cookie, allowing websites to have some confidence
that the login is coming from a user that has already had
some interaction with the website rather than a phisher.
The authors argue that websites should move all possible
authentications to protected login, minimize unprotected
login, and then alert users when unprotected logins oc-
cur. The paper argues that this approach is meaningful

USENIX Association 	 21st USENIX Security Symposium  323

because phishers are not able to produce protected logins
and will be forced to initiate unprotected logins instead.
Given that unprotected logins should occur rarely for le-
gitimate users, alerting users during an unprotected login
will make it significantly harder for password thieves to
phish for user credentials.

It’s important to note that websites can’t fully trust
protected logins because they are vulnerable to MITM
attacks. However, with TLS-OBC, websites can pro-
tect themselves by channel-binding the long-lived cookie
that enables the protected login. Combining TLS-
OBC with the protected login paradigm allows us to
build systems which are resilient to more types of at-
tacks. For example, when describing the attack in Fig-
ure 4, we mentioned that attackers could deliver the
user cookie, but that would alert the server to the pres-
ence of a MITM. We also mentioned that attackers could
drop the channel-bound cookie altogether and force the
user to re-authenticate, but that this attack was out of
scope. However, using TLS-OBC along with the pro-
tected/unprotected paradigm, if the attacker forced the
user to re-authenticate, the server could force an unpro-
tected login to be initiated and an alert would be sent to
the user, notifying him of a possible attack in progress.
Hence, channel-bound cookies along with TLS-OBC
would protect the user against this type of attack as well.

The careful reader will observe that protecting first
logins from new devices (an initial unprotected login)
is difficult since the device and server have no pre-
established trust. We are currently in the beginning
stages of building a system to handle this case and leave
further discussion as future work.

5 Implementation

In order to demonstrate the feasibility of TLS origin-
bound certificates for channel-binding HTTP cookies,
we implemented the extensions discussed in Section 3.
The changes made while implementing origin-bound
certificates span many disparate systems, but the major
modifications were made to OpenSSL, Mozilla’s Net-
work Security Services (used in Firefox and Chrome),
the Google TLS terminator, and the open-source
Chromium browser.

5.1 TLS Extension Support

We added support for TLS origin-bound certificates to
OpenSSL and Mozilla’s Network Security Stack by im-
plementing the new TLS-OBC extensions, following the
appropriate guidelines [5]. We summarize each of these
changes below.

NSS Client Modifications Mozilla’s Network Se-

curity Stack (NSS) was modified to publish its ac-
ceptance of the TLS-OBC extension when issuing a
ClientHello message to a TLS endpoint. Upon receipt
of a ServerHello message that demonstrated that the
communicating TLS endpoint also understands and ac-
cepts the TLS-OBC extension, a new X509 certificate
is generated on-the-fly by the browser for use over the
negotiated TLS channel. These NSS modifications re-
quired 108 modified or added lines across 6 files in the
NSS source code.

OpenSSL Server Modifications The OpenSSL TLS
server code was modified to publish its acceptance of
the TLS-OBC extension in its ServerHello message.
Furthermore, if during the TLS handshake the client and
server agree to use origin bound certificates, the normal
client certificate verification is disabled and the OBC ver-
ification process is used instead.

The new verification process attempts to establish that
the certificate delivered by the client is an OBC rather
than a traditional client authentication certificate. The
check is performed by confirming that the certificate is
self-signed and checking for the presence of the X509
OBC extension. With these two constraints satisfied, the
certificate is attached to the TLS session for later use by
higher levels of the software stack.

An upstream patch of these changes is pending and
has preliminary support from members of the OpenSSL
community. The proposed patch requires 316 lines of
modification to the OpenSSL source code where most
of the changes focus on the TLS handshake and client
certificate verification submodules.

5.2 Browser Modifications

In addition to the NSS client modifications discussed
above, Chromium’s cookie storage infrastructure was
adapted to handle the creation and storage of TLS origin-
bound certificates. The modifications required to gen-
erate the OBCs resulted in a 712 line patch (across 8
files) to the Chromium source code. Storage of OBCs
in the existing Chromium cookie infrastructure required
an additional 1,164 lines added across 15 files. These
changes have been upstreamed as an experimental fea-
ture of Chromium since version 16.

6 Performance Evaluation

We have conducted extensive testing of our modifica-
tions to TLS and have found them to perform well, even
at a significant scale. We report on these results below.

324  21st USENIX Security Symposium	 USENIX Association

6.1 Chromium TLS-OBC Performance

Experimental methodology In order to demonstrate
that the performance impact of adding origin-bound
certificates to TLS connections is minimal, we evalu-
ated the performance of TLS-OBCs in the open-source
Chromium browser using industry standard benchmarks.
All experiments were performed with Chromium version
19.0.1040.0 running on an Ubuntu (version 10.04) Linux
system with a 2.0GHz Core 2 Duo CPU and 4GB of
RAM.

All tests were performed against the TLS secured
version of a Google’s home page. During the tests
JavaScript was disabled in the browser to minimize the
impact of the JavaScript engine on any observed results.
Additionally, SPDY connection pooling was disabled,
the browser cache was cleared, and all HTTP connec-
tions were reset between each measured test run in order
to eliminate any saved state that would skew the exper-
imental results. The Chromium benchmark results dis-
cussed in section 6.1.1 were gathered with the Chromium
benchmarking extension [12] and the HTML5 Naviga-
tion Timing [19] JavaScript interface.

6.1.1 Effects on Chromium TLS Connection Setup

We first analyzed the slowdown resulting the TLS-OBC
extension for all connections bound for our website’s
HTTPS endpoints. The two use-cases considered by
these tests were the first visit, which requires the client-
side generation of a fresh origin-bound certificate, and
subsequent visits where a cached origin-bound certificate
is used instead.

Figure 6: Observed Chromium network latency (ms)
with TLS-OBC certificate generation.

The first test shown in Figure 6 shows the total net-
work latency in establishing a connection to our web site
and retrieving the homepage on the user’s first visit. We

measured the total network latency from the Navigation
Timing fetchStart event to the responseEnd event, encap-
sulating TLS handshake time as well as network commu-
nication latency.

Figure 7: Observed Chromium network latency (ms),
TLS-OBC certificate pre-generated.

The results shown in Figure 7 represent subsequent re-
quests to our web site where there is a cache hit for a
pre-generated origin-bound certificate. We observed no
meaningful impact of the additional CertificateRequest
and Certificate messages required in the TLS handshake
on the overall network latency.

Figure 8: NSS certificate generate times (ms).

The differences between the latencies observed in Fig-
ures 6 and 7 imply that origin-bound certificate genera-
tion is the contributing factor in the slowdown observed
when first visiting an origin that requires a new origin
bound certificate. We measured the performance of the
origin-bound certificate generation routine, as shown in
Figure 8, and found that the certificate generation does
seem to be the contributing factor in the higher latencies

USENIX Association 	 21st USENIX Security Symposium  325

seen when first connecting to an origin with an origin-
bound certificate.

Client Performance Analysis These observations
demonstrate that certificate generation is the main source
of slowdown that a client using origin-bound certificates
will experience. The selection of public key algorithm
has a significant impact on the fresh connection case,
and an insignificant impact on subsequent connections.
This suggests that production TLS-OBC browsers should
speculatively use spare CPU cycles to precompute pub-
lic/private key pairs, although fresh connections will still
need to sign origin-bound certificates, which cannot be
done speculatively.

6.2 TLS Terminator Performance
We also measured the impact of TLS-OBC on Google’s
high-performance TLS terminator used inside the data-
center of our large-scale web service. To test our sys-
tem, we use a corpus of HTTP requests that model real-
world traffic and send that traffic through a TLS termina-
tor to a backend that simulates real-world responses, i.e.,
it varies both response delays (forcing the TLS termina-
tor to keep state about the HTTP connection in memory
for the duration of the backend’s “processing” of the re-
quest) as well as response sizes according to a real-world
distribution. Mirroring real-world traffic patterns, about
80% of the HTTP requests are sent over resumed TLS
sessions, while 20% of requests are sent through freshly-
negotiated TLS sessions.

We subjected the TLS terminator to 5 minutes of
3000 requests-per-second TLS-only traffic and periodi-
cally measured memory and CPU utilization of the TLS
terminator during that period.

We ran four different tests: One without origin-bound
certificates, one with a 1024-bit RSA client key pair, one
with a 2048-bit RSA client key pair, and one with a 163-
bit client key pair on the sect163k1 elliptic curve (used
for ECDSA). We also measure the latency introduced by
the TLS terminator for each request (total server-side la-
tency minus backend “processing” time).

Figure 9 shows the impact on memory. Compared to
the baseline (without client certificates) of about 1.85GB,
the 2048-bit RSA client certs require about 12% more
memory, whereas the 1024-bit RSA and ECDSA keys
increase the memory consumption by less than 1%.

Figure 10 shows the impact on CPU utilization. Com-
pared to the baseline (without client certificates) of sat-
urating about 4.3 CPU cores, we observed the biggest
increase in CPU utilization (of about 7%) in the case of
the ECDSA client certificates.

Finally, Figure 11 through Figure 14 show latency his-
tograms. While we see an increase in higher-latency re-
sponses when using client-side certificates, the majority

Figure 9: Server-side memory footprint of various client-
side key sizes.

Figure 10: Server-side CPU utilization for various client-
side key sizes.

of requests are serviced in under one millisecond in all
four cases.

Server Performance Analysis If we cared purely
about minimizing the memory and CPU load on our TLS
terminator systems, our measurements clearly indicate
that we should use 1024-bit RSA. As 1024-bit RSA and
163-bit ECDSA are offer equivalent security [4], how-
ever the ECDSA server costs might be worth the client-
side benefits.

7 Discussion – Practical Realities

We now discuss a variety of interesting details, chal-
lenges, and tensions that we encountered while dealing
with the actual nature of how applications are developed
and maintained on the web.

326  21st USENIX Security Symposium	 USENIX Association

Figure 11: Latency without client certificates.

Figure 12: Latency with 1024-bit RSA certificate.

7.1 Domain Cookies and TLS-OBC

In Section 4 we explained how cookies can be channel-
bound using TLS-OBC, hardening them against theft.
However, this works only as long as the cookie is
not set across multiple origins. For example: when a
cookie is set by origin foo.example.com for domain ex-
ample.com, then clients will send the cookie with re-
quests to (among others) bar.example.com. Presumably,
however, the client will use a different client certificate
when talking to bar.example.com than it used when talk-
ing to foo.example.com. Thus, the channel-binding will
break.

Bortz et al. [6] make a convincing argument that do-
main cookies are a poor choice from a security point-of-
view, and we agree that in the long run, domain cookies
should be replaced with a mix of origin cookies and high-
performance federation protocols.

In the meantime, however, we would like to address
the issue of domain cookies. In particular, we would like
to be able to channel-bind domain cookies just as we’re
able to channel-bind origin cookies.

To that end, we are currently considering a “legacy
mode” of TLS-OBC, in which the client uses whole do-
mains (based on eTLDs), rather than web origins, as the

Figure 13: Latency with 2048-bit RSA certificate.

Figure 14: Latency with 163-bit ECDSA certificate.

granularity for which it uses client-side certificates. Note
that this coarser granularity of client certificate scopes
does not increase the client’s exposure to credential theft.
All the protocols presented in this paper maintain their
security properties against men-in-the-middle, etc. The
only difference between origin-scoped client certificates
and (more broadly-scoped) domain-scoped client certifi-
cates is that in the latter case, related domains (e.g.,
foo.example.com and bar.example.com) will be able to
see the same OBC for a given browser.

It is also worth noting that even coarse-grained
domain-bound client certificates alleviate many of the
problems of domain cookies, if those cookies are
channel-bound – including additional attacks from the
Bortz et al. paper.

In balance, we feel that the added protection afforded
to widely-used domain cookies outweighs the slight risk
of “leaking” client identity across related domains, and
are therefore planning to support the above-mentioned
“legacy mode” of TLS-OBC.

7.2 Privacy
The TLS specification [9] indicates that both client and
server certificates should be sent in the clear during the

USENIX Association 	 21st USENIX Security Symposium  327

handshake process. While OBCs do not bear any infor-
mation that could be used to identify the user, a single
OBC is meant to be reused when setting up subsequent
connections to an origin. This certificate reuse enables
an eavesdropper to track users by correlating the OBCs
used to setup TLS sessions to a particular user and track
a users browsing habits across multiple sessions.

Client ClientHello

ServerHello

Certificate: Cs

CertificateRequest

ServerHello Done

Certificate: Cc

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

ChangeCipherSpec

Server Client ClientHello

ServerHello

Certificate: Cs

CertificateRequest

ServerHello Done

ChangeCipherSpec

ChangeCipherSpec

Server

Certificate: Cc

ClientKeyExchange

CertificateVerify

Figure 15: TLS encrypted client certificates

Towards rectifying this issue, we propose to combine
TLS-OBC with an encrypted client certificate TLS ex-
tension. This extension modifies the ordering of TLS
handshake messages so that the client certificate is sent
over an encrypted channel rather than in the clear. Fig-
ure 15 shows the effect this extension has on TLS mes-
sage ordering.

7.3 SPDY and TLS-OBC

The SPDY [26] protocol multiplexes several HTTP re-
quests over the same TLS connection, thus achieving
higher throughput and lower latency. SPDY has been im-
plemented in Google Chrome for some time, and will be
supported in Firefox 11. SPDY always runs over TLS.

One feature of SPDY is IP pooling, which allows
HTTP sessions from the same client to different web ori-
gins to be carried over the same TLS connection if: the
web origins in question resolve to the same IP address,
and the server in the original TLS handshake presented
a certificate for all the web origins in question.

For example, if a.com and b.com resolved to the
same IP address, and the server at that IP address pre-
sented a valid certificate for a.com and b.com (presum-
ably through wildcard subject alternative names), then
a SPDY client would send requests to a.com and b.com
through the same SPDY (and, hence, TLS) connection.

Remember that with TLS-OBC, the client uses a dif-
ferent client TLS certificate with a.com than with b.com.
This presents a problem. The client needs to be able to
present different client certificates for different origins.

In fact, this is not a problem unique to TLS-OBC, but
applies to TLS client authentication in general: theoreti-
cally speaking, a client might want to use different non-
OBC TLS certificates for different origins, even if those
origins qualify for SPDY IP pooling.

One solution to would be to disallow SPDY IP pooling
whenever the client uses a TLS client certificate. Instead,
the client would have to open a new SPDY connection
to the host to which it wishes to present a client certifi-
cate. This solution works well when client certificates
are rare: most of the time (when no client certificates
are involved), users will benefit from the performance
improvements of SPDY IP pooling. When TLS client
certificates become ubiquitous, however (as we expect it
to be the case through TLS-OBC), most of the time the
client would not be able to take advantage of SPDY IP
pooling if this remained the solution to the problem.

Therefore, SPDY needs to address the problem of
client certificates and IP pooling. From version 3 on-
ward, it does this by adding a new CREDENTIAL con-
trol frame type. The client sends a CREDENTIAL frame
whenever it needs to present a new client certificate to
the server (for example, when talking to a new web ori-
gin over an IP-pooled SPDY connection). A CREDEN-
TIAL frame allows the client to prove ownership of a
public-key certificate without a new TLS handshake by
signing a TLS extractor value [21] with the private key
corresponding to the public-key certificate.

7.4 Other Designs We Considered

Before settling on TLS-OBC, we considered, and re-
jected, a number of alternative designs. We share these
rejected ideas below to further motivate the choice for
TLS-OBC.

Application-Level Crypto API In this design, web
client applications would be able to use a crypto API
(similar to a PKCS#11 API, but accessible by JavaScript
in the browser). JavaScript would be able to generate key
pairs, have them certified (or leave the certificates self-
signed), use the private key to sign arbitrary data, etc.,
all without ever touching the private key material itself
(again, similar to PKCS#11 or similar crypto APIs).

Every web origin would have separate crypto key con-
tainers, meaning that keys generated in one web origin
would not be accessible by Javascript running in other
web origins. It would be up to individual applications
to sign relevant (and application-specific) authentication
tokens used in HTTP requests (e.g., special URL query
parameters) with keys from that web origin. The applica-
tion could further design its authentication tokens in such
a way that they don’t grant ambient authority to a user’s
account, but rather authorize specific actions on a user’s

328  21st USENIX Security Symposium	 USENIX Association

account (e.g., to send an email whose contents hashes to
a certain value, etc.).

Such a system would give some protection against a
TLS MITM: being unable to mint authentication tokens
itself, the attacker could only eavesdrop on a connection.
Also, this approach doesn’t require changes in the TLS or
HTTP layers, and is therefore “standards committee neu-
tral”, except for the need for a standardized JavaScript
crypto API, which presumably would be useful in other
contexts (than authentication) as well.

Note, however, that TLS-OBC with channel-bound
cookies provides strictly more protection, preventing
men-in-the-middle from eavesdropping. This approach
is also vulnerable to XSS attacks and requires applica-
tions to be re-written to use these application-level au-
thentication tokens (instead of existing cookies).

We didn’t consider the advantages mentioned above
strong enough to outweigh the disadvantages of this ap-
proach.

Signed HTTP Requests We also explored designs
where the client would sign HTTP requests at the HTTP
layer. For example, imagine an HTTP request header
“X-Request-Signature” that contained a signature of the
HTTP request. The key used to sign requests would be
client-generated, per-origin, etc., just like for TLS-OBC.
Unlike TLS-OBC, this would not require a change in
TLS, or HTTP for that matter. This design, however,
quickly morphed into a re-implementation of TLS at the
HTTP layer. For example, protection against replay at-
tacks leads to timestamps, counters, synchronization is-
sues, and extra round trips. Another example is session
renegotiation, questions of renegotiation protocols, and
the resulting induced latency.

TLS solves all these issues for us: it protects against
replay attacks, allow session renegotiation to be multi-
plexed with data packages, and many other issues that
would have to be addressed at the HTTP layer. We felt
that the TLS extension we’re proposing was far less com-
plex than the additions to the HTTP layer that would have
been necessary to get to comparable security, hence our
focus on TLS.

8 Related Work

Origin-bound certificates are closely related to traditional
client certificates; we take this opportunity to explain
why traditional client certificates don’t work in today’s
web. We also briefly mention various similar efforts to
remedy the security issues with authentication on the
web, and explain why they stop short of a complete so-
lution.

8.1 Traditional TLS Client Certificates

While TLS server authentication is widely used across
the web, the client authentication aspect of TLS is used
much less frequently. Just like TLS server authentication
identifies a web server to a client (i.e., browser), TLS
client authentication uses public key cryptography to au-
thenticate a client to a web server; this process is an op-
tional part of the TLS handshake.

While effective in small, managed systems such as en-
terprise networks, the flaws of TLS client authentication
begin to emerge as we examine them at web scale:

Bad User Experience One issue that prevents conven-
tional TLS client authentication from becoming the stan-
dard for web authentication is the cumbersome, com-
plicated, and onerous interface that a user must wade
through in order to use a client certificate. Typically,
when web servers request that browsers generate a TLS
client certificate, browsers display a dialog where the
user must choose the certificate cipher and key length.
Even worse, when web servers request that the browser
provide a certificate, the user is prompted to select the
client certificate to use with the site they are attempting to
visit. This “login action” happens during the TLS hand-
shake, before the user can inspect any content of the web-
site (which presumably would help her decide whether
or not she wanted to authenticate to the site in the first
place).

Layer Confusion Arguably, TLS client authentication
puts user identity at the wrong layer in the network stack.
An example that reveals this layer confusion is multi-
login: Google has implemented a feature in which mul-
tiple accounts can be logged into the website at the same
time (multiple user identities are encoded in the cookie).
This makes it easy to quickly switch between accounts
on the site, and even opens up the potential to show a
“mashup” of several users’ accounts on one page (e.g.,
show calendars of all the logged-in accounts). With TLS
client authentication, the user identity is established at
the TLS layer, and is “inherited” from there by the HTTP
and application layers. However, client certificates usu-
ally contain exactly one user identity, thus forcing the
application layer to also only see this one use identity.

Privacy Once a user has obtained a certificate, any site
on the web can request TLS client authentication with
that certificate. The user can now choose to not be logged
in at all, or use the same identity at the new site that they
use with other sites on the web. That is a poor choice.
Creating different certificates for different sites makes the
user experience worse: Now the user is presented with a
list of certificates every time they visit a website requir-
ing TLS client authentication.

USENIX Association 	 21st USENIX Security Symposium  329

Portability Since certificates ideally are related to a
private key that can’t be extracted from the underlying
platform, by definition, they can’t be moved from one
device to another. So any solution that involves TLS
client authentication also has to address and solve the
user credential portability problem. Potential solutions
include re-obtaining certificates from the CA for differ-
ent devices, extracting private keys (against best security
practices) and copying them from one device to another,
or cross-certifying certificates from different devices. So
far we have not been able to come up with good user
interfaces for any of these solutions.

Trusted Computing Base in Datacenters Large dat-
acenters often terminate TLS connections at the datacen-
ter boundary [3], perhaps even using specialized hard-
ware for this relatively expensive part of the connection
setup between client and server. If the TLS client certifi-
cate is what authenticates the user, then the source of that
authentication is lost at the datacenter boundary.

This means that the TLS terminators become part of
the trusted computing base – they simply report to the
backends who the user is that was authenticated during
the TLS handshake. A compromised TLS terminator
would in this case essentially become “root” with respect
to the applications running in the datacenter.

Contrast this with a cookie-based authentication sys-
tem, in which the TLS terminator forwards the cookie
that the browser sends to the app frontend. In such a sys-
tem, the cookies are minted and authenticated by the app
frontend, and the TLS terminator would not be able to
fabricate arbitrary authentic cookies. Put another way,
in a cookie-based authentication system a compromised
TLS terminator can modify an incoming request before
it is delivered to the backend service, but cannot forge a
completely new request from an arbitrary user.

In summary, TLS client authentication presents a
range of issues, ranging from privacy to usability to de-
ployment problems that make it unsuitable as an authen-
tication mechanism on the web.

8.2 Other Related Efforts

CardSpace Microsoft’s CardSpace [13] authentica-
tion system attacked two of the problems mentioned so
far: First, it replaced passwords with a public-key based
protocol, thus eliminating one kind of bearer tokens.
Second, it moved user identity from the TLS layer to the
application layer.

It allowed users to manage multiple digital identities
from a single user interface. CardSpace stored user iden-
tities in the form of identity “cards”. When visiting a
website that implemented the CardSpace protocol, users
could choose which card, and hence which identity, to

use to authenticate with that website. Instead of a user-
name/password pair, a cookie, or a TLS client certificate,
CardSpace would authenticate users by sending crypto-
graphic tokens that encoded the user identity. There is no
consensus on why CardSpace did not become an indus-
try standard; however, we believe the same complexity
that gave CardSpace a wide variety of features, also con-
tributed to its demise by unnecessarily complicating the
user interface, interaction, and development models.

CardSpace by itself was also agnostic to the use of
bearer tokens in lower layers of the protocol stack once
the user was logged in. In this paper we approach the
problem from the opposite direction: we build a strong
foundation at the TLS layer that allows us to harden other
protocols (HTTP, application-specific login, etc.), so the-
oretically origin-bound certificates and CardSpace are
more complementary than competing proposals – in par-
ticular one could imagine a “channel-bound” CardSpace
token that results in a channel-bound cookie (see Sec-
tion 4). However, we strive to learn from CardSpace’s
failure in the market and carefully designed our system
to not alter the user experience (and burden developers)
too much from what users (and developers) are already
used to.

BrowserID Mozilla has recently developed a
prototype of an authentication mechanism called
BrowserID [14], which abstracts identity to the level of
email addresses. BrowserID is aimed at the password
bearer token, at least for websites that choose to become
relying parties to email providers. For those, instead
of using a password, users authenticate by providing a
cryptographic proof of email ownership. Similarly to
CardSpace, the browser maintains a cache of emails
(identities) and generates the respective proofs (tokens)
for the user. Unlike CardSpace, BrowserID is based
on both a simpler model of identity (email addresses
vs. a variety of claims) and a simpler implementation
platform (JWTs vs. WS-Trust).

BrowserID is complementary to the ideas put forth in
this paper. Since it mostly plays at the application layer,
it is agnostic to the use of bearer tokens at lower layers
(e.g., HTTP cookies). It could easily be adjusted by bind-
ing BrowserID identity assertions to the underlying TLS
channel if the browser supports origin-bound certificates.

TLS-SA As another approach, Opplinger et al. address
the disconnect between user authentication and TLS
channels in their proposed TLS Session Aware (TLS-
SA) User Authentication scheme [17, 18]. TLS-SA is in-
tended to solve the man-in-the-middle (MITM) problem
by providing the server side of a TLS connection with
the information necessary to determine if a user’s cre-
dentials have been sent over a different TLS session than
the session that the client thought the credentials were

330  21st USENIX Security Symposium	 USENIX Association

being sent over. However, these protections apply only
to the initial user credentials and not to the subsequent
bearer tokens. To our knowledge TLS-SA has neither
been implemented nor tested on a mass, web scale.

Hardening Cookies Some work has also focused on
hardening the information stored in HTTP cookies. For
example, Murdoch presented a method for toughening
cookies by encoding values not only based on on a secret
server key, but also on a hash of the user’s password [15].
This approach has the benefit of making it harder for at-
tackers to fabricate fake cookies (even if the secret server
key has been compromised), but does not protect the user
if the cookie is ever stolen.

9 Conclusion

In this paper we presented TLS origin-bound certificates
as a new approach to TLS client certificates. TLS-OBCs
act as a foundational layer on which the notion of an au-
thenticated channel for the web can be established.

We showed how TLS-OBCs can be used to harden ex-
isting HTTP layer authentication mechanisms like cook-
ies, federated login protocols, and user authentication.

We implemented TLS-OBCs as an extension to the
OpenSSL and NSS TLS implementations and deployed
TLS-OBC to the Chromium open source browser as well
as the TLS terminator of a major website.

Finally, we demonstrated that the performance over-
head imparted by using TLS-OBC is small in terms of
CPU and memory load on the TLS server and observed
latency on the TLS client.

We see origin-bound certificates as a first step towards
enabling more secure web protocols and applications.

10 Acknowledgements

A great number of individuals have contributed to the
work presented in this paper. We would like to thank
the team at Google, including Mayank Upadhyay, Adam
Langley, Wan-Teh Chang, Matt Mueller, Ryan Hamilton,
Diana Smetters, Adam Barth and Warren Zhang for help-
ing us develop the ideas presented in this paper, and for
implementing and testing them. Our thanks go out to Ben
Adida, Mike Hanson and Brian Smith from Mozilla, as
well as the members of the IETF TLS Working Group for
sanity-checking and improving our proposals. We would
also like to thank Tadayoshi Kohno for his support.

Finally, we would like to thank the anonymous review-
ers of our manuscript for helping us make this a better
paper.

USENIX Association 	 21st USENIX Security Symposium  331

References

[1] H. Adkins. An update on at-
tempted man-in-the-middle attacks.
http://googleonlinesecurity.blogspot.com/2011/08/update-
on-attempted-man-in-middle.html, Aug 2011.

[2] D. Balfanz. TLS Origin-Bound Certificates.
http://tools.ietf.org/html/draft-balfanz-tls-obc-01, Nov
2011.

[3] J. Barr. AWS Elastic Load Balanc-
ing: Support for SSL Termination.
http://aws.typepad.com/aws/2010/10/elastic-load-
balancer-support-for-ssl-termination.html, Oct 2010.

[4] S. Blake-Wilson, T. Dierks, and C. Hawk. ECC Ci-
pher Suites for TLS. http://tools.ietf.org/html/draft-ietf-
tls-ecc-01, March 2001.

[5] S. Blake-Wilson, M. Nystrom, D. Hopwood,
J. Mikkelsen, and T. Wright. Transport layer secu-
rity (tls) extensions. http://tools.ietf.org/html/rfc4366,
Apr 2006.

[6] A. Bortz, A. Barth, and A. Czeskis. Origin cookies: Ses-
sion integrity for web applications. In Web 2.0 Security &
Privacy, 2011.

[7] E. Butler. Firesheep. http://codebutler.com/firesheep,
2010.

[8] A. Czeskis and D. Balfanz. Protected Login. In Proceed-
ings of the Workshop on Usable Security (at the Finan-
cial Cryptography and Data Security Conference), March
2012.

[9] T. Dierks and C. Allen. The TLS Protocol, Version 1.0.
Internet Engineering Task Force, Jan. 1999. RFC-2246,
ftp://ftp.isi.edu/in-notes/rfc2246.txt.

[10] T. Dierks and E. Rescorla. The Trandsport Layer Security
(TLS) Protocol Version 1.2 – Client Certificates, 2008.
http://tools.ietf.org/html/rfc5246#section-7.4.6.

[11] I. Hickson. HTML5 Web Messaging.
http://dev.w3.org/html5/postmsg/, Jan 2012.

[12] J. Hurwich. Chrome benchmarking exten-
sion. http://www.chromium.org/developers/design-
documents/extensions/how-the-extension-system-
works/chrome-benchmarking-extension, Sept 2010.

[13] Microsoft. Introducing windows cardspace, 2006. http:
//msdn.microsoft.com/en-us/library/aa480189.aspx.

[14] Mozilla. BrowserID, 2012. https://developer.mozilla.org/
en/BrowserID.

[15] S. Murdoch. Hardened stateless session cookies. Security
Protocols XVI, pages 93–101, 2011.

[16] A. Mushaq. Man in the Browser: Inside the Zeus
Trojan, 2010. http://threatpost.com/en_us/blogs/man-
browser-inside-zeus-trojan-021910.

[17] R. Oppliger, R. Hauser, and D. Basin. SSL/TLS
session-aware user authentication–or how to effectively
thwart the man-in-the-middle. Computer Communica-
tions, 29(12):2338–2246, 2006.

[18] R. Opplinger, R. Hauser, and D. Basin. SSL/TLS session-
aware user authentication revisited. Computers & Secu-
rity, 27(3-4):64–70, 2008.

[19] S. Park and D. L. Dill. Verification of cache coherence
protocols by aggregation of distributed transactions. The-
ory of Computing Systems, 31(4):355–376, 1998.

[20] D. Recordon and B. Fitzpatrick. OpenID authentica-
tion 1.1. http://openid.net/specs/openid-authentication-
1_1.html, May 2008.

[21] E. Rescorla. Keying Material Exporters for Transport
Layer Security (TLS). http://tools.ietf.org/html/rfc5705,
March 2010.

[22] J. Rizzo and T. Duong. Beast.
http://vnhacker.blogspot.com/2011/09/beast.html, Sept
2011.

[23] N. Sakimura, D. Bradley, B. de Mederiso, M. Jones,
and E. Jay. OpenID connect standard 1.0 - draft 07.
http://openid.net/specs/openid-connect-standard-1

[24] C. M. Shields and M. M. Toussain. Subterfuge: The
MITM Framework. http://subterfuge.googlecode.com/
files/Subterfuge-WhitePaper.pdf, 2012.

[25] A. S. Tanenbaum, S. J. Mullender, and R. van Renesse.
Using sparse capabilities in a distributed operating sys-
tem. In 6th International Conference on Distributed
Computing Systems, pages 558–563, Cambridge, Mas-
sachusetts, May 1986.

[26] The Chromium Project. SPDY, 2012. http://www.
chromium.org/spdy.

[27] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Au-
thentication in the Taos operating system. ACM Transac-
tions on Computer Systems (TOCS), 12(1):3–32, 1994.

USENIX Association 	 21st USENIX Security Symposium  333

Data Node Encrypted File System:
Efficient Secure Deletion for Flash Memory

Joel Reardon, Srdjan Capkun, David Basin
Department of Computer Science, ETH Zurich

Abstract
We propose the Data Node Encrypted File Sys-

tem (DNEFS), which uses on-the-fly encryption and
decryption of file system data nodes to efficiently
and securely delete data on flash memory systems.
DNEFS is a generic modification of existing flash
file systems or controllers that enables secure data
deletion while preserving the underlying systems’ de-
sirable properties: application-independence, fine-
grained data access, wear-levelling, and efficiency.
We describe DNEFS both abstractly and in the

context of the flash file system UBIFS. We propose
UBIFSec, which integrates DNEFS into UBIFS. We
implement UBIFSec by extending UBIFS’s Linux
implementation and we integrate UBIFSec in the
Android operating system running on a Google
Nexus One smartphone. We show that it is effi-
cient and usable; Android OS and applications (in-
cluding video and audio playback) run normally on
top of UBIFSec. To the best of our knowledge,
this work presents the first comprehensive and fully-
implemented secure deletion solution that works
within the specification of flash memory.

1 Introduction

Flash memory is used near universally in portable
devices. However, the way modern systems use flash
memory has a serious drawback—it does not guaran-
tee deletion of stored data. To the user, data appears
to be deleted from the file system, but in reality
it remains accessible after deletion [39]. This prob-
lem is particularly relevant for modern smartphones,
as they store private data, such as communications,
browsing, and location history as well as sensitive
business data. The storage of such data on portable
devices necessitates guaranteed secure deletion.
Secure deletion is the operation of sanitizing data

on a storage medium, so that access to the data is

no longer possible on that storage medium [9]. This
is in contrast to standard deletion, where metadata
simply indicates that the data’s storage location is
no longer needed and can be reused. The time be-
tween marking data as deleted and its actual (se-
cure) deletion is called the deletion latency. We use
the term guaranteed secure deletion to denote secure
deletion with a fixed, (small) finite upper bound on
the deletion latency for all data.

On magnetic storage media, secure data deletion
is implemented by overwriting a file’s content with
non-sensitive information [29], or by modifying the
file system to automatically overwrite any discarded
sector [2]. However, flash memory cannot perform
in-place updates of data (i.e., overwrites) [8]; it in-
stead performs erasures on erase blocks, which have
a larger granularity than read/write operations. A
single erase block may store data for different files,
so it can only be erased when all the data in the
erase block is marked as deleted or when the live
data is replicated elsewhere. Moreover, flash mem-
ory degrades with each erasure, so frequent erasures
shorten the device’s lifetime. Therefore, the simplis-
tic solution of erasing any erase block that contains
deleted data is too costly with regards to time and
device wear [35].

In this work, we present the Data Node Encrypted
File System (DNEFS), which securely and efficiently
deletes data on flash memory; it requires only a few
additional erasures that are evenly distributed over
the erase blocks. DNEFS uses on-the-fly encryption
and decryption of individual data nodes (the small-
est unit of read/write for the file system) and relies
on key generation and management to prevent access
to deleted data. We design and implement an in-
stance of our solution for the file system UBIFS [14]
and call our modification UBIFSec.

UBIFSec has the following attractive properties.
It provides a guaranteed upper bound on deletion

1

334  21st USENIX Security Symposium	 USENIX Association

latency. It provides fine-grained deletion, also for
truncated or overwritten parts of files. It runs effi-
ciently and produces little wear on the flash memory.
Finally, it is easy to integrate into UBIFS’s existing
Linux implementation, and requires no changes to
the applications using UBIFS. We deploy UBIFSec
on a Google Nexus One smartphone [11] running an
Android OS. The system and applications (includ-
ing video and audio playback) run normally on top
of UBIFSec.
Even though DNEFS can be implemented on

YAFFS (the file system used on the Android OS),
this would have required significant changes to
YAFFS. We test DNEFS within UBIFS, which is
a supported part of the standard Linux kernel (since
version 2.6.27) and which provides interfaces that
enable easy integration of DNEFS.
We summarize our contributions as follows. We

design DNEFS, a system that enables guaranteed
secure data deletion for flash memory—operating
within flash memory’s specification [26]. We in-
stantiate DNEFS as UBIFSec, analyze its security,
and measure its additional battery consumption,
throughput, computation time, and flash memory
wear to show that it is practical for real-world use.
We provide our modification freely to the commu-
nity [37].

2 Background

Flash Memory. Flash memory is a non-volatile
storage medium consisting of an array of electronic
components that store information [1]. Flash mem-
ory has very small mass and volume, does not incur
seek penalties for random access, and requires little
energy to operate. As such, portable devices almost
exclusively use flash memory.
Flash memory is divided into two levels of gran-

ularity. The first level is called erase blocks, which
are on the order of 128 KiB [11] in size. Each erase
block is divided into pages, which are on the order
of 2 KiB in size. Erase blocks are the unit of era-
sure, and pages are the unit of read and write oper-
ations [8]. One cannot write data to a flash memory
page unless that page has been previously erased ;
only the erasure operation performed on an erase
block prepares the pages it contains for writing.
Erasing flash memory causes significant physical

wear [22]. Each erasure risks turning an erase block
into a bad block, which cannot store data. Flash
erase blocks tolerate between 104 to 105 erasures be-
fore they become bad blocks. To promote a longer
device lifetime, erasures should be evenly levelled
over the erase blocks.

MTD Layer. On Linux, flash memory is accessed
through the Memory Technology Device (MTD)
layer [23]. MTD has the following interface: read
and write a page, erase an erase block, check if an
erase block is bad, and mark an erase block as bad.
Erase blocks are referenced sequentially, and pages
are referenced by the erase block number and offset.

Flash File Systems. Several flash memory file
systems have been developed at the MTD layer [4,
40]. These file systems are log-structured: a class
of file systems that (notably) do not perform in-
place updates. A log-structured file system con-
sists of an ordered list of changes from an initial
empty state, where each change to the file system
is appended to the log’s end [34]. Therefore, stan-
dard log-structured file systems do not provide se-
cure deletion because new data is only appended.
When a change invalidates an earlier change then

the new, valid data is appended and the erase block
containing the invalidated data now contains wasted
space. Deleting a file, for example, appends a change
that indicates the file is deleted. All the deleted file’s
data nodes remain on the storage medium but they
are now invalid and wasting space. A garbage col-
lection mechanism detects and recycles erase blocks
with only invalid data; it also copies the remaining
valid data to a new location so it may recycle erase
blocks mostly filled with invalid data.

Flash Translation Layer. Flash memory is com-
monly accessed through a Flash Translation Layer
(FTL) [1, 15], which is used in USB sticks, SD cards,
and solid state drives. FTLs access the raw flash
memory directly, but expose a typical hard drive in-
terface that allows any regular file system to be used
on the memory. FTLs can either be a hardware con-
troller or implemented in software. An FTL trans-
lates logical block addresses to raw physical flash ad-
dresses, and internally implements a log-structured
file system on the memory [6]. Therefore, like log-
structured file systems, FTLs do not provide secure
data deletion. In Section 5 we explain how to mod-
ify an FTL to use DNEFS to enable efficient secure
deletion for any file system mounted on it.

UBI Layer. Unsorted Block Images (UBI) is an
abstraction of MTD, where logical erase blocks are
transparently mapped to physical erase blocks [10].
UBI’s logical mapping implements wear-levelling
and bad block detection, allowing UBI file systems
to ignore these details. UBI also permits the atomic
updating of a logical erase block—the new data is
either entirely available or the old data remains.

2

USENIX Association 	 21st USENIX Security Symposium  335

ε εε

PEB ε εε εbad bad

ε εε εbad badMTD (flash)

εεεUBIFS

block, etc

super
main storage areajournal

LEB

UBI

Figure 1: Erase block relationships among MTD, UBI,

and UBIFS. Different block shades label different areas

of the file system. Empty LEBs are labelled by ε and are

not mapped to a corresponding PEB by UBI. Similarly,

bad PEBs are labelled and not mapped onto by UBI.

UBI exposes the following interface: read and
write to a Logical Erase Block (LEB), erase an LEB,
and atomically update the contents of an LEB. UBI
LEBs neither become bad due to wear, nor should
their erasure counts be levelled.

Underlying this interface is an injective partial
mapping from LEBs to physical erase blocks (PEBs),
where PEBs correspond to erase blocks at the MTD
layer. The lower half of Figure 1 illustrates this re-
lationship. Wear monitoring is handled by tracking
the erasures at the PEB level, and a transparent
remapping of LEBs occurs when necessary. Remap-
ping also occurs when bad blocks are detected. De-
spite remapping, an LEB’s number remains con-
stant, regardless of its corresponding PEB.

Atomic updates occur by invoking UBI’s update
function, passing as parameters the LEB number to
update along with a buffer containing the desired
contents. An unused and empty PEB is selected and
the page-aligned data is then written to it. UBI then
updates the LEB’s mapping to the new PEB, and
the previous PEB is queued for erasure. This erasure
can be done either automatically in the background
or immediately with a blocking system call. If the
atomic update fails at any time—e.g., because of a
power loss—then the mapping is unchanged and the
old PEB is not erased.

UBIFS. The UBI file system, UBIFS [14], is de-
signed specifically for UBI, and Figure 1 illustrates
UBIFS’s relationship to UBI and MTD. UBIFS di-
vides file data into fixed-sized data nodes. Each data
node has a header that stores the data’s inode num-
ber and its file offset. This inverse index is used by
the garbage collector to determine if the nodes on
an erase block are valid or can be discarded.

UBIFS first writes all data in a journal. When this

journal is full, it is committed to the main storage
area by logically moving the journal to an empty
location and growing the main storage area to en-
compass the old journal. An index is used to lo-
cate data nodes, and this index is also written to
the storage medium. At its core, UBIFS is a log-
structured file system; in-place updates are not per-
formed. As such, UBIFS does not provide guaran-
teed secure data deletion.

Adversarial Model. In this work, we model a
novel kind of attacker that we name the peek-a-boo
attacker. This attacker is more powerful than the
strong coercive attacker considered in other secure
deletion works [27, 30]. A coercive attacker can,
at any time, compromise both the storage medium
containing the data along with any secret keys or
passphrases required to access it. The peek-a-boo
attacker extends the coercive attacker to also allow
the attacker to obtain (“to peek into”) the content of
the storage medium at some point(s) in time prior
to compromising the storage medium.

Coercive attacks model legal subpoenas that re-
quire users to forfeit devices and reveal passwords.
Since the time of the attack is arbitrary and therefore
unpredictable, no extraordinary sanitization proce-
dure can be performed prior to the compromise time.
Since the attacker is given the user’s secret keys,
it is insufficient to simply encrypt the storage me-
dia [17]. The peek-a-boo attacker models an at-
tacker who additionally gets temporary read-access
to the medium (e.g., a hidden virus that is forced
to send suicide instructions upon being publicly ex-
posed) and then subsequently performs a coercive
attack. It is roughly analogous to forward secrecy
in the sense that if a secure deletion scheme is re-
silient to a peek-a-boo attacker, it prevents recovery
of deleted data even if an earlier snapshot of the data
from the storage medium is available to the attacker.

Figure 2 shows a timeline of data storage and an
adversarial attack. We divide time into discrete in-
tervals called purging epochs. At the end of each
purging epoch any data marked for deletion is se-
curely deleted (purged). We assume that purging is
an atomic operation. The lifetime of a piece of data
is then defined as all the purging epochs from the one
when it was written to the one when it was deleted.
We say that data is securely deleted if a peek-a-boo
attacker cannot recover the data when performing
peek and boo attacks in any purging epochs outside
the data’s lifetime.

3

336  21st USENIX Security Symposium	 USENIX Association

...
time

epoch 3 4 5 621

delete datawrite data

boo attackpeek attack

data’s lifetime

Figure 2: Example timeline for secure deletion. Time

is divided into discrete purging epochs. Data is written

in epoch 2 and deleted in epoch 5, and the data’s life-

time includes all epochs between these. Here, the peek

attack (read access to the entire storage medium) occurs

in epoch 1 and the boo attack (full compromise of the

storage medium and secret keys/passphrases) in epoch

6. More generally, they can occur in any purging epochs

outside the data’s lifetime.

3 DNEFS

In this section we describe our main contribution: a
solution for efficient secure deletion for flash mem-
ory. We first list our requirements for secure dele-
tion, and afterwards describe our solution.

3.1 Secure Deletion Requirements

We present four requirements for secure deletion so-
lutions. The solution must be sound, fine-grained,
efficient, and simple.

Soundness requires that the solution ensures guar-
anteed secure data deletion against a strong at-
tacker; we use the peek-a-boo attacker defined in
Section 2.

Fine-grained requires the solution to securely
delete data, however small. This includes overwrit-
ten or truncated files, such as data removed from a
long-lived database.

The solution must be efficient in terms of resource
consumption. For flash memory and portable de-
vices, the relevant resources are battery consump-
tion, computation time, storage space, and device
lifetime, i.e., minimizing and levelling wear.

Finally, simplicity requires that the solution can
be easily implemented as part of existing systems.
For our purposes, this means that adding secure
deletion to existing file systems must be straightfor-
ward. We want to minimize the necessary changes
to the existing code and isolate the majority of the
implementation in new functions and separate data
structures. We want the change to be easily au-
dited and analyzed by security-minded professionals.
Moreover, we must not remove or limit any existing
feature of the underlying file system.

3.2 Our Solution

We now present our secure deletion solution and
show how it fulfills the listed requirements.

In the spirit of Boneh and Lipton [3], DNEFS
uses encryption to provide secure deletion. It en-
crypts each individual data node (i.e., the unit of
read/write for the file system) with a different key,
and then manages the storage, use, and purging of
these keys in an efficient and transparent way for
both users and applications. Data nodes are en-
crypted before being written to the storage medium
and decrypted after being read; this is all done in-
memory. The keys are stored in a reserved area of
the file system called the key storage area.

DNEFS works independent of the notion of files;
neither file count/size nor access patterns have any
influence on the size of the key storage area. The en-
crypted file data stored on the medium is no different
than any reversible encoding applied by the storage
medium (e.g., error-correcting codes) because all le-
gitimate access to the data only observes the unen-
crypted form. This is not an encrypted file system,
although in Section 5 we explain that it can be easily
extended to one. In our case, encryption is simply
a coding technique that we apply immediately be-
fore storage to reduce the number of bits required
to delete a data node from the data node size to the
key size.

Key Storage Area. Our solution uses a small mi-
grating set of erase blocks to store all the data nodes’
keys—this set is called the Key Storage Area (KSA).
The KSA is managed separately from the rest of the
file system. In particular, it does not behave like a
log-structured file system: when a KSA erase block
is updated, its contents are written to a new erase
block, the logical reference to the KSA block is up-
dated, and the previous version of the KSA erase
block is then erased. Thus, except while updating,
only one copy of the data in the KSA is available on
the storage medium. Our solution therefore requires
that the file system or flash controller that it mod-
ifies can logically reference the KSA’s erase blocks
and erase old KSA erase blocks promptly after writ-
ing a new version.

Each data node’s header stores the logical KSA
position that contains its decryption key. The erase
blocks in the KSA are periodically erased to securely
delete any keys that decrypt deleted data. When the
file system no longer needs a data node—i.e, it is
removed or updated—we mark the data node’s cor-
responding key in the KSA as deleted. This solution
is independent of the notion of files; keys are marked

4

USENIX Association 	 21st USENIX Security Symposium  337

as deleted whenever a data node is discarded. A key
remains marked as deleted until it is removed from
the storage medium and its location is replaced with
fresh, unused random data, which is then marked as
unused.

kE (DN) 33kE (DN) 221k 1E (DN)k3 k4k1 k2

kE (DN) 33

(1) encrypt

kE (DN) 33kE (DN) 221k 1E (DN)k3 k4k1 k2

DN1

(3) associate key

(2) write data

KSA main storage

(a) DNEFS write operation

WRITE DN 3

1READ DN (1) read encrypted data and key position

(3) decrypt and return data(2) read encryption key

(b) DNEFS read operation

main storageKSA

Figure 3: (a) writing a new data node DN3: DN3 is first

encrypted with an unused key k3 and then written to an

empty position in the main storage. A reference to the

key’s position in the KSA is stored alongside Ek3(DN3).

(b) reading a data node DN1: Ek1(DN1) is first read

from the storage medium along with a reference to its

key k1 in the KSA. The key is then read and used to

decrypt and return DN1.

When a new data node is written to the storage
medium, an unused key is selected from the KSA
and its position is stored in the data node’s header.
DNEFS does this seamlessly, so applications are un-
aware that their data is being encrypted. Figure 3
illustrates DNEFS’s write and read algorithms.

Purging. Purging is a periodic procedure that se-
curely deletes keys from the KSA. Purging proceeds
iteratively over each of the KSA’s erase blocks: a
new version of the erase block is prepared where the
used keys remain in the same position and all other
keys (i.e., unused and deleted keys) are replaced
with fresh, unused, cryptographically-appropriate
random data from a source of hardware random-
ness. Such random data is inexpensive and easy to
generate, even for resource-constrained devices [38].
Fresh random data is then assigned to new keys as
needed. We keep used keys logically-fixed because
their corresponding data node has already stored—
immutably until an erasure operation—its logical

position. The new version of the block is then writ-
ten to an arbitrary empty erase block on the storage
medium. After completion, all erase blocks contain-
ing old versions of the logical KSA erase block are
erased, thus securely deleting the unused and deleted
keys along with the data nodes they encrypt.
The security of our system necessitates that the

storage medium can be properly instructed to erase
an erase block. Therefore, for flash memory, DNEFS
must be implemented either into the logic of a file
system that provides access to the raw flash memory
(e.g., UBIFS) or into the logic of the flash controller
(e.g., solid state drive). As Swanson et al. [36] ob-
serve, any implementation of secure deletion on top
of an opaque flash controller cannot guarantee dele-
tion, as its interface for erase block erasure is not
security focused and may neglect to delete internally
created copies of data due to wear levelling. Our use
of UBI bypasses obfuscating controllers and allows
direct access to the flash memory.
By only requiring the secure deletion of small

densely-packed keys, DNEFS securely deletes all the
storage medium’s deleted data while only erasing a
small number of KSA erase blocks. Thus, encryption
is used to reduce the number of erasures required to
achieve secure deletion. This comes at the cost of as-
suming a computationally-bounded adversary—an
information-theoretic adversary could decrypt the
encrypted file data. We replace unused keys with
new random data to thwart the peek-a-boo attacker:
keys are discarded if they are not used to store data
in the same deletion epoch as they are generated.
While DNEFS is designed to batch deleted data

nodes, thus erasing fewer erase blocks per deleted
data node, there is no technical reason that prohibits
immediate secure deletion. In particular, files can be
marked as sensitive [2] so that purging is triggered
whenever a data node for such a file is deleted, re-
sulting in one erase block erasure. Purging can also
be triggered by an application, for example after it
clears its cache.
If a KSA erase block becomes a bad block while

erasing it, it is possible that its contents will remain
readable on the storage medium without the ability
to remove them [21]. In this case, it is necessary
to re-encrypt any data node whose encryption key
remains available and to force the garbage collection
of those erase blocks on which the data nodes reside.

Key State Map. The key state map is an in-
memory map that maps key positions to key states
{unused, used, deleted}. Unused keys can be as-
signed and then marked as used. Used keys are keys
that encrypt some valid data node, so they must be

5

338  21st USENIX Security Symposium	 USENIX Association

k k k k k
43210

k k k k
5 6 7

k
8 9

next

assigned

key

1
2
3
4
5
6
7

seq # file # offset keypos data
1
1
1
2
2
1
2

4096
0

0
0

8192
0

[...]
[...]

[...]
[...]

[...]
[...]
[...]8192

1
2
3
4
5
6

0

valid
no
yes
no
yes
no
yes
yes

next

assigned

key

erase block 2

erase block 1

erase block 2

erase block 1

0−4

 5−9

10−14

 15−19 k k k kk

k k k k k
10 11 12 13 14

15 16 17 18 19

KSAkey state map

pos state

deleted
1
2
3
4
5
6
7
8
9

0 deleted
used

used
used
used
unused
unused

deleted
used

*
... ...

main storage area
data nodes

(a) state before purging keys

key state map

pos state

KSA

1
2
3
4
5
6
7
8
9

0
used

used
used
used
unused
unused

used

unused

unused

unused

* 0−4

 5−9

10−14

 15−19 k k k k

k k k k k
10 11 12 13 14

15 16 17 18 19

k k k k
5 6 7

k
8 9

k k
43210

k k

... ...

(b) state after purging keys

k

k

Figure 4: Example of a key state map, key storage area,

and main storage area during a purging operation. (a)

shows the state before and (b) shows the state after

purging. Some keys are replaced with new values af-

ter purging, corresponding to data nodes that were un-

used or deleted. The table of data nodes illustrate a

log-structured file system, where newer versions of data

nodes for the same file/offset invalidate older versions.

preserved to ensure availability of the file system’s
data. Deleted keys are keys used to encrypt deleted
data—i.e., data nodes that are no longer referenced
by the index—and should be purged from the sys-
tem to achieve secure deletion. Figure 4 shows an
example key state map and a KSA before and after
a purging operation: unused and deleted keys are
replaced with new values and used keys remain on
the storage medium.

While mounting, the key state map must be cor-
rectly constructed; the procedure for this depends on
the file system in which it is integrated. However,
log-structured file systems are capable of generating
a file system index data structure that maps data
nodes to their (most recently written) location in

flash memory. We require only that the file system
also determines the key location for the data node
in the index, and so the state of each key position
can be generated by marking these key locations as
used and assuming all other locations are deleted.
We define a correct key state map as one that has

(with high probability) the following three proper-
ties: (1) every unused key must not decrypt any
data node—either valid or invalid, (2) every used
key must have exactly one data node it can decrypt
and this data node must be referred to by the index,
and (3) every deleted key must not decrypt any data
node that is referred to by the index. Observe that
an unused key that is marked as deleted will still re-
sult in a correct key state map, as it affects neither
the security of deleted data nor the availability of
used data.
The operation of purging performed on a cor-

rect key state map guarantees DNEFS’s soundness:
purging securely deletes any key in the KSA marked
as deleted; afterwards, every key decrypts at most
one valid data node, and every data node referred to
by the index can be decrypted. While the encrypted
version of the deleted data node still resides in flash
memory, our adversary is thereafter unable to ob-
tain the key required to decrypt and thus read the
data. A correct key state map also guarantees the
integrity of our data during purging, because no key
that is used to decrypt valid data will be removed.
We define DNEFS’s purging epoch’s duration

(Section 2) as the time between two consecutive
purging operations. When a data node is written, it
is assigned a key that is currently marked as unused
in the current purging epoch. The purging opera-
tion’s execution at the purging epochs’ boundaries
ensures that all keys currently marked as unused
were not available in any previous purging epoch.
Therefore, a peek or boo attack that occurs in any
prior purging epoch reveals neither the encrypted
data node nor its encryption key. When data is
deleted, its encryption key is marked as deleted in
the current purging epoch. Purging’s execution be-
fore the next purging epoch guarantees that key
marked as deleted in one epoch is unavailable in the
KSA in the next epoch. Therefore, a peek or boo
attack that occurs in any later purging epoch may
reveal the encrypted data node but not the key. A
computationally-bounded peek-a-boo attacker is un-
able to decrypt the data node, ensuring that the data
is not recoverable and therefore securely deleted.

Conclusion. DNEFS provides guaranteed secure
deletion against a computationally-bounded peek-a-
boo attacker. When an encryption key is securely

6

USENIX Association 	 21st USENIX Security Symposium  339

deleted, the data it encrypted is then inaccessible,
even to the user. All invalid data nodes have their
corresponding encryption keys securely deleted dur-
ing the next purging operation. Purging occurs pe-
riodically, so during normal operation the deletion
latency for all data is bounded by this period. Nei-
ther the key nor the data node is available in any
purging epoch prior to the one in which it is writ-
ten, preventing any early peek attacks from obtain-
ing this information.

4 UBIFSec

We now describe UBIFSec: our instantiation of
DNEFS for the UBIFS file system. We first give
an overview of the aspects of UBIFS relevant for in-
tegrating our solution. We then describe UBIFSec
and conclude with an experimental validation.

4.1 UBIFS

UBIFS is a log-structured flash file system, where
all file system updates occur out of place. UBIFS
uses an index to determine which version of data is
the most recent. This index is called the Tree Node
Cache (TNC), and it is stored both in volatile mem-
ory and on the storage medium. The TNC is a B+
search tree [7] that has a small entry for every data
node in the file system. When data is appended to
the journal, UBIFS updates the TNC to reference its
location. UBIFS implements truncations and dele-
tions by appending special non-data nodes to the
journal. When the TNC processes these nodes, it
finds the range of TNC entries that correspond to
the truncated or deleted data nodes and removes
them from the tree.
UBIFS uses a commit and replay mechanism to

ensure that the file system can be mounted after an
unsafe unmounting without scanning the entire de-
vice. Commit periodically writes the current TNC
to the storage medium, and starts a new empty jour-
nal. Replay loads the most recently-stored TNC into
memory and chronologically processes the journal
entries to update the stale TNC, thus returning the
TNC to the state immediately before unmounting.
UBIFS accesses flash memory through UBI’s log-

ical interface, which provides two features useful for
our purposes. First, UBI allows updates to KSA
erase blocks (called KSA LEB’s in the context of
UBIFSec) using its atomic update feature; after
purging, all used keys remain in the same logical po-
sition, so references to KSA positions remain valid
after purging. Second, UBI handles wear-levelling
for all the PEBs, including the KSA. This is useful

because erase blocks assigned to the KSA see more
frequent erasure; a fixed physical assignment would
therefore present wear-levelling concerns.

4.2 UBIFSec Design

UBIFSec is a version of UBIFS that is extended
to use DNEFS to provide secure data deletion.
UBIFS’s data nodes have a size of 4096 bytes, and
our solution assigns each of them a distinct 128-
bit AES key. AES keys are used in counter mode,
which turns AES into a semantically-secure stream
cipher [20]. Since each key is only ever used to
encrypt a single block of data, we can safely omit
the generation and storage of initialization vectors
(IVs) and simply start the counter at zero. There-
fore, our solution requires about 0.4% of the stor-
age medium’s capacity for the KSA, although there
exists a tradeoff between KSA size and data node
granularity, which we discuss in Section 4.3.

Key Storage Area. The KSA is comprised of a
set of LEBs that store random data used as en-
cryption keys. When the file system is created,
cryptographically-suitable random data is written
from a hardware source of randomness to each of the
KSA’s LEBs and all the keys are marked as unused.
Purging writes new versions of the KSA LEBs us-
ing UBI’s atomic update feature; immediately after,
ubi_flush is called to ensure all PEBs containing
old versions of the LEB are synchronously erased
and the purged keys are inaccessible. This flush
feature ensures that any copies of LEBs made as
a result of internal wear-levelling are also securely
deleted. Figure 5 shows the LEBs and PEBs during
a purging operation; KSA block 3 temporarily has
two versions stored on the storage medium.

Key State Map. The key state map (Section 3.2)
stores the key positions that are unused, used, and
deleted. The correctness of the key state map is
critical in ensuring the soundness of secure deletion
and data integrity. We now describe how the key
state map is created and stored in UBIFSec. As an
invariant, we require that UBIFSec’s key state map
is always correct before and after executing a purge.
This restriction—instead of requiring correctness at
all times after mounting—is to allow writing new
data during a purging operation, and to account for
the time between marking a key as used and writing
the data it encrypts onto the storage medium.
The key state map is stored, used, and updated

in volatile memory. Initially, the key state map of a
freshly-formatted UBIFSec file system is correct as it

7

340  21st USENIX Security Symposium	 USENIX Association

ckpt
key state

KSA

 1’

KSA KSA KSA KSA

 2’ 3’ 4 5

KSA

 1’

KSA

 2’ε

ckpt 2

ckpt 1
KSA

 4

KSA

 5

KSA

 3’

KSA

 1’ ε

ckpt 2

ckpt 1
KSA

 4

KSA

 2’

KSA

 5(flash)

MTD PEBs

UBIFS

UBI LEBs

main storage areakey storage area

ε

ckpt 2

ckpt 1

UBIFSec changes

KSA

 3’

KSA

 3

Figure 5: Erase block relationships among MTD, UBI, and UBIFSec, showing the new regions added by UBIFSec

(cf. Figure 1). In this example, a purging operation is ongoing—the first three KSA LEBs have been updated and

the remaining LEBs still have their old value. In the MTD layer, an old version of KSA 3 is temporarily available.

consists of no data nodes, and every key is fresh ran-
dom data that is marked as unused. While mounted,
UBIFSec performs appropriate key management to
ensure that the key state map is always correct when
new data is written, deleted, etc. We now show that
we can always create a correct key state map when
mounting an arbitrary UBIFSec file system.

The key state map is built from a periodic check-
point combined with a replay of the most recent
changes while mounting. We checkpoint the current
key state map to the storage medium whenever the
KSA is purged. After a purge, every key is either
unused or used, and so a checkpoint of this map can
be stored using one bit per key—less than 1% of the
KSA’s size—which is then compressed. A special
LEB is used to store checkpoints, where each new
checkpoint is appended; when the erase block is full
then the next checkpoint is written at the beginning
using an atomic update.

The checkpoint is correct when it is written to the
storage medium, and therefore it is correct when it is
loaded during mounting if no other changes occurred
to the file system. If the file system changed after
committing and before unmounting, then UBIFS’s
replay mechanism is used to generate the correct
key state map: first the checkpoint is loaded, then
the replay entries are simulated. Therefore, we al-
ways perform purging during regular UBIFS com-
mits; the nodes that are replayed for UBIFS are ex-
actly the ones that must be replayed for UBIFSec.
If the stored checkpoint gets corrupted, then a full
scan of the valid data nodes rebuilds the correct key
state map. A consistency check for the file system
also confirms the correctness of the key state map
with a full scan.

As it is possible for the storage medium to fail
during the commit operation (e.g., due to a loss of

power), we now show that our invariant holds re-
gardless of the condition of unmounting. Purging
consists of atomically updating each LEB contain-
ing deleted keys and afterwards writing a new check-
point. UBI’s atomic update feature ensures that any
failure before completing the update is equivalent
to failing immediately before beginning. Therefore,
the following is the complete list of possible failure
points: before the first purge, between some purges,
after all the purges but before the checkpoint, dur-
ing the checkpoint, or after the checkpoint but before
finishing other UBIFS commit actions.

First, failure can occur before purging the first
LEB, which means the KSA is unchanged. When
remounting the device, the loaded checkpoint is up-
dated with the replay data, thereby constructing the
exact key state map before purging—taken as cor-
rect by assumption.

Second, failure can occur after purging one, sev-
eral, or indeed all of the KSA’s LEBs. When re-
mounting the device, the loaded checkpoint merged
with the replay data reflects the state before the first
purge, so some purged LEBs contain new unused
data while the key state map claims it is a deleted
key. As these are cryptographically-suitable random
values, with high probability they cannot success-
fully decrypt any existing valid data node.

Third, failure can occur while writing to the check-
point LEB. When the checkpoint is written using
atomic updates, then failing during the operation
is equivalent to failing before it begins (cf. previ-
ous case). Incomplete checkpoints are detected and
so the previous valid checkpoint is loaded instead.
After replaying all the nodes, the key state map is
equal to its state immediately before purging the
KSA. This means that all entries marked as deleted
are actually unused entries, so the invariant holds.

8

USENIX Association 	 21st USENIX Security Symposium  341

Old ckpt Replay’s Ckpt Value after Cause Key’s state
value effect value recovery

unused nothing unused unused no event correct
unused mark used used used key assigned correct
unused mark deleted unused deleted key assigned, deleted correct
used nothing used used no event correct
used mark used used used cannot occur correct
used mark deleted unused deleted key deleted correct

Table 1: Consequences of replaying false information during committing.

Finally, failure can occur after successfully purg-
ing the KSA and checkpointing the key state map,
but before completing the regular UBIFS commit.
In this case, the current key state map correctly re-
flects the contents of the KSA. When mounting, the
replay mechanism incorrectly updates it with the
journal entries of the previous iteration. Table 1
shows the full space of possibilities when replaying
old changes on the post-purged checkpoint. It shows
that it is only possible for an unused key to be er-
roneously marked as deleted, which still results in a
correct key state map.
In summary, the correctness of the key state map

before and after a purge is invariant, regardless of
when or how the file system was unmounted. This
ensures secure deletion’s soundness as well as the
integrity of the valid data on the storage medium.

Summary. UBIFSec instantiates DNEFS for
UBIFS, and so it provides efficient fine-grained guar-
anteed secure deletion. UBIFSec is efficient in stor-
age space: the overhead for keys is fixed and it needs
less than one percent of the total storage medium’s
capacity. The periodic checkpointing of UBIFSec’s
key state map ensures that UBIFS’s mounting time
is not significantly affected by our approach.
Our implementation of UBIFSec is available as a

Linux kernel patch for version 3.2.1 [37]. As of the
time of writing, we are in the process of integrating
UBIFSec into the standard UBIFS distribution.

4.3 Experimental Validation

We have patched an Android Nexus One smart
phone’s Linux kernel to include UBIFSec and modi-
fied the phone to use it as the primary data partition.
In this section, we describe experiments with our im-
plementation on both the Android mobile phone and
on a simulator.
Our experiments measure our solution’s cost: ad-

ditional battery consumption, wear on the flash
memory, and time required to perform file opera-
tions. The increase in flash memory wear is mea-

sured using a simulator, and the increase in time
is measured on a Google Nexus One smartphone
by instrumenting the source code of UBIFS and
UBIFSec to measure the time it takes to perform ba-
sic file system operations. We further collected tim-
ing measurements from the same smartphone run-
ning YAFFS: the flash file system currently used on
Android phones.

Android Implementation. To test the feasibil-
ity of our solution on mobile devices, we ported
UBIFSec to the Android OS. The Android OS is
based on the Linux kernel and it was straightfor-
wards to add support for UBIFS. The source code
was already available and we simply applied our
patch and configured the kernel compiler to include
the UBI device and the UBIFS file system.

Wear Analysis. We measured UBIFSec’s wear on
the flash memory in two ways: the number of erase
cycles that occur on the storage medium, and the
distribution of erasures over the erase blocks. To re-
duce the wear, it is desirable to minimize the number
of erasures that are performed, and to evenly spread
the erasures over the storage medium’s erase blocks.

We instrumented both UBIFS and UBIFSec to
measure PEB erasure frequency during use. We var-
ied UBIFSec’s purging frequency and computed the
resulting erase block allocation rate. This was done
by using a low-level control (ioctl) to force UBIFS
to perform a commit. We also measured the ex-
pected number of deleted keys and updated KSA
LEBs during purging operation.

We simulated the UBI storage medium based on
Nexus One specifications [11]. We varied the period
between UBIFSec’s purging operation, i.e., the du-
ration of a purging epoch: one of 1, 5, 15, 30, and
60 minutes. We used a discrete event simulator to
write files based on the writing behaviour collected
from an Android mobile phone [32]. Writing was
performed until the file system began garbage collec-
tion; thenceforth we took measurements for a week

9

342  21st USENIX Security Symposium	 USENIX Association

Purge PEB erasures Updates per KSA updates Deleted keys Wear Lifetime
period per hour KSA purge per hour per purged LEB ineq (%) (years)

Stardard UBIFS 21.3± 3.0 - - - 16.6± 0.5 841
60 minutes 26.4± 1.5 6.8± 0.5 6.8± 0.5 64.2± 9.6 17.9± 0.2 679
30 minutes 34.9± 3.8 5.1± 0.6 9.7± 2.0 50.3± 9.5 17.8± 0.3 512
15 minutes 40.1± 3.6 3.7± 0.4 14.9± 1.6 36.3± 8.2 19.0± 0.3 447
5 minutes 68.5± 4.4 2.6± 0.1 30.8± 0.7 22.1± 4.3 19.2± 0.5 262
1 minute 158.6± 11.5 1.0± 0.1 61.4± 4.6 14.1± 4.4 20.0± 0.2 113

Table 2: Wear analysis for our modified UBIFS file system. The expected lifetime is based on the Google Nexus One

phone’s data partition, which has 1571 erase blocks with a (conservative) lifetime estimate of 104 erasures.

of simulated time. We averaged the results from four
attempts and computed 95% confidence intervals.

To determine if our solution negatively impacts
UBI’s wear levelling, we performed the following ex-
periment. Each time UBI unmaps an LEB from
a PEB (thus resulting in an erasure) or atomically
updates an LEB (also resulting in an erasure), we
logged the erased PEB’s number. From this data,
we then compute the PEBs’ erasure distribution.

To quantify the success of wear-levelling, we use
the Hoover economic wealth inequality indicator—a
metric that is independent of the storage medium
size and erasure frequency. This metric comes
from economics, where it quantifies the unfairness
of wealth distributions. It is the simplest measure,
corresponding to an appropriately normalized sum
of the difference of each measurement to the mean.
For our purposes, it is the fraction of erasures that
must be reassigned to other erase blocks to obtain
completely even wear. Assuming the observations
are c1, . . . , cn, and C =

∑n
i=1 ci, then the inequality

measure is 1
2

∑n
i=1 ‖

ci
C − 1

n‖.
Table 2 presents the results of our experiment. We

see that the rate of block allocations increases as
the purging period decreases, with 15 minutes pro-
viding a palatable tradeoff between additional wear
and timeliness of deletion. The KSA’s update rate
is computed as the product of the purging frequency
and the average number of KSA LEBs that are up-
dated during a purge. As such, it does not include
the additional costs of executing UBIFS commit,
which is captured by the disparity in the block al-
locations per hour. We see that when committing
each minute, the additional overhead of committing
compared to the updates of KSA blocks becomes sig-
nificant. While we integrated purging with commit
to simplify the implementation, it is possible to sep-
arate these operations. Instead, UBIFSec can add
purging start and finish nodes as regular (non-data)
journal entries. The replay mechanism is then ex-
tended to correctly update the key state map while
processing these purging nodes.

The expected number of keys deleted per purged
KSA LEB decreases sublinearly with the purging pe-
riod and linearly with the number of purged LEBs.
This is because a smaller interval results in fewer ex-
pected deletions per interval and fewer deleted keys.
Finally, UBIFSec affects wear-levelling slightly,

but not significantly. The unfairness increases with
the purging frequency, likely because the set of un-
allocated PEBs is smaller than the set of allocated
PEBs; very frequent updates will cause unallocated
PEBs to suffer more erasures. However, the effect
is slight. It is certainly the case that the additional
block erasures are, for the most part, evenly spread
over the device.

Throughput and Battery Analysis A natural
concern is that UBIFSec might introduce signifi-
cant costs that discourage its use. We therefore
experimentally evaluated the read/write through-
put, battery consumption, and computation time of
UBIFSec’s Android implementation (Linux version
2.6.35.7) on a Google Nexus One mobile phone. We
compare measurements taken for both Android’s de-
fault file system (YAFFS) and for the standard ver-
sion of UBIFS.
To measure battery consumption over time, we

disabled the operating system’s suspension ability,
thus allowing computations to occur continuously
and indefinitely. This has the unfortunate conse-
quence of maintaining power to the screen of the
mobile phone. We first determined the power con-
sumption of the device while remaining idle over the
course of two hours starting with an 80% charged
battery with a total capacity of 1366 mAh. The re-
sult was nearly constant at 121 mA. We subtract this
value from all other power consumption measures.
To measure read throughput and battery use, we

repeatedly read a large (85 MiB) file; we mounted
the drive as read-only and remounted it after each
read to ensure that all read caches were cleared.
We read the file using dd, directing the output to
/dev/null and recorded the observed throughput.

10

USENIX Association 	 21st USENIX Security Symposium  343

We began each experiment with an 80% charged
battery and ran it for 10 minutes observing con-
stant behaviour. Table 3 presents the results for
this experiment. For all filesystems, the additional
battery consumption was constant: 39 mA, about
one-third of the idle cost. The throughput achieved
with that power varied, and so along with our re-
sults we compute the amount of data that can be
read using 13.7 mAh—1% of the Nexus One’s bat-
tery. The write throughput and battery consump-
tion was measured by using dd to copy data from
/dev/zero to a file on the flash file system. Com-
pression was disabled for UBIFS for comparison with
YAFFS. When the device was full, the throughput
was recorded. We immediately started dd to write
to the same file, which begins by overwriting it and
thus measuring the battery consumption and reduc-
tion in throughput imposed by erase block erasure
concomitant with writes.

We observe that the use of UBIFSec reduces the
throughput for both read and write operations when
compared to UBIFS. Some decrease is expected, as
the encryption keys must be read from flash while
reading and writing. To check if the encryption op-
erations also induce delay, we performed these ex-
periments with a modified UBIFSec that immedi-
ately returned zeroed memory when asked to read
a key, but otherwise performed all cryptographic
operations correctly. The resulting throughput for
read and write was identical to UBIFS, suggesting
that (for multiple reads) cryptographic operations
are easily pipelined into the relatively slower flash
memory read/write operations.

Some key caching optimizations can be added to
UBIFSec to improve the throughput. Whenever a
page of flash memory is read, the entire page can be
cached at no additional read cost, allowing efficient
sequential access to keys, e.g., for a large file. Long-
term use of the file system may reduce its efficiency
as gaps between used and unused keys result in new
files not being assigned sequential keys. Improved
KSA organization can help retain this efficiency.

Write throughput, alternatively, is easily im-
proved with caching. The sequence of keys for data
written in the next purging epoch is known at purg-
ing time when all these keys are randomly generated
and written to the KSA. By using a heuristic on the
expected number of keys assigned during a purging
epoch, the keys for new data can be kept in mem-
ory as well as written to the KSA. Whenever a key
is needed, it is taken and removed from this cache
while there are still keys available.

Caching keys in memory opens UBIFSec to at-
tacks. We ensure that all memory buffers contain-

YAFFS UBIFS UBIFSec

Read rate (MiB/s) 4.4 3.9 3.0
Power usage (mA) 39 39 39
GiB read per % 5.4 4.8 3.7

Write rate (MiB/s) 2.4 2.1 1.7
Power usage (mA) 30 46 41
GiB written per % 3.8 2.2 2.0

Table 3: I/O throughput and battery consumption for

YAFFS, UBIFS, and UBIFSec.

ing keys are overwritten when the key is no longer
needed during normal decryption and encryption op-
erations. Caches contain keys for a longer time
but are cleared during a purging operation to en-
sure deleted keys never outlive their deletion purging
epoch. Applications storing sensitive data in volatile
memory may remain after the data’s deletion and so
secure memory deallocation should be provided by
the operating system to ensure its unavailability [5].

Timing Analysis. We timed the following file
system functions: mounting/unmounting the file
system and writing/reading a page. Addition-
ally, we timed the following functions specific to
UBIFSec: allocation of the cryptographic context,
reading the encryption key, performing an encryp-
tion/decryption, and purging a KSA LEB. We col-
lected dozens of measurements for purging, mount-
ing and unmounting, and hundreds of measurements
for the other operations (i.e., reading and writing).
We controlled the delay caused by our instrumenta-
tion by repeating the experiments instead of execut-
ing nested measurements, i.e., we timed encryption
and writing to a block in separate experiments.
We mounted a partition of the Android’s flash

memory first as a standard UBIFS file system and
then as UBIFSec file system. We executed a se-
quence of file I/O operations on the file system. We
collected the resulting times and present the 80th
percentile measurements in Table 4. Because of
UBIFS’s implementation details, the timing results
for reading data nodes contain also the time required
to read relevant TNC pages (if they are not currently
cached) from the storage medium, which is reflected
in the increased delay. Because the data node size
for YAFFS is half that of UBIFS, we also doubled
the read/write measurements for YAFFS for com-
parison. Finally, the mounting time for YAFFS is
for mounting after a safe unmount—for an unsafe
unmount, YAFFS requires a full device scan, which
takes several orders of magnitude longer.
The results show an increase in the time required

for each of the operations. Mounting and unmount-

11

344  21st USENIX Security Symposium	 USENIX Association

File system 80th percentile execution time (ms)
operation YAFFS UBIFS UBIFSec

mount 43 179 236
unmount 44 0.55 0.67
read data node 0.92 2.8 4.0
write data node 1.1 1.3 2.5

prepare cipher - - 0.05
read key - - 0.38
encrypt - - 0.91
decrypt - - 0.94
purge one block - - 21.2

Table 4: Timing results for various file system function-

ality on an android mobile phone.

ing the storage medium continues to take a frac-
tion of a second. Reading and writing to a data
node increases by a little more than a millisecond,
an expected result that reflects the time it takes to
read the encryption key from the storage medium
and encrypt the data. We also tested for notice-
able delay by watching a movie in real time from a
UBIFSec-formatted Android phone running the An-
droid OS: the video was 512x288 Windows Media
Video 9 DMO; the audio was 96.0 kbit DivX au-
dio v2. The video and audio played as expected
on the phone; no observable latency, jitter, or stut-
ter was observed during playback while background
processes ran normally.

Each atomic update of an erase block takes about
22 milliseconds. This means that if every KSA LEB
is updated, the entire data partition of the Nexus
One phone can be purged in less than a fifth of a
second. The cost to purge a device grows with its
storage medium’s size. The erasure cost for purging
can be reduced in a variety of ways: increasing the
data node size to use fewer keys, increasing the dura-
tion of a purging epoch, or improving the KSA’s or-
ganization and key assignment strategy to minimize
the number of KSA LEBs that contain deleted keys.
The last technique works alongside lazy on-demand
purging of KSA LEBs that contain no deleted keys,
i.e., only used and unused keys.

Granularity Tradeoff Our solution encrypts
each data node with a separate key allowing effi-
cient secure deletion of data from long-lived files,
e.g., databases. Other related work instead encrypts
each file with a unique key, allowing secure deletion
only at the granularity of an entire file [19]. This is
well suited for media files, such as digital audio and
photographs, which are usually created, read, and
deleted in their entirety. However, if the encrypted
file should permit random access and modification,

Data node size KSA size Copy cost
(flash pages) (EBs per GiB) (EBs)

1 64 0
8 8 0.11
64 1 0.98
512 0.125 63.98
4096 0.016 511.98

Table 5: Data node granularity tradeoffs assuming 64

2-KiB pages per erase block.

then one of the following is true: (i) the cipher is used
in an ECB-like mode, resulting in a system that is
not semantically secure, (ii) the cipher is used in a
CBC-like mode where all file modifications require
re-encryption of the remainder of the file, (iii) the
cipher is used in a CBC-like mode with periodic IVs
to facilitate efficient modification, (iv) the cipher is
used in counter mode, resulting in all file modifica-
tions requiring rewriting the entire file using a new
IV to avoid the two-time pad problem [20], or (v)
the cipher is used in counter mode with periodic IVs
to facilitate efficient modifications.

We observe the that first option is inadequate as a
lack of semantic security means that some informa-
tion about the securely deleted data is still available.
The second and fourth options are special cases of
the third and fifth options respectively, where the IV
granularity is one per file and file modifications are
woefully inefficient. Thus, a tradeoff exists between
the storage costs of IVs and additional computation
for modifications. As the IV granularity decreases to
the data node size, the extra storage cost required
for IVs is equal to the KSA storage cost for DNEFS’s
one key per data node, and the modification cost is
simply that of the single data node.

We emphasize that a scheme where IVs were not
stored but instead deterministically computed, e.g.,
using the file offset, would inhibit secure deletion: so
long as the file’s encryption key and previous version
of the data node were available, the adversary could
compute the IV and decrypt the data. Therefore, all
IVs for such schemes must be randomly generated,
stored, and securely deleted.

Table 5 compares the encryption granularity trade
off for a flash drive with 64 2-KiB pages per erase
block. To compare DNEFS with schemes that en-
crypt each file separately, simply consider the data
node size as equal to the IV granularity or the ex-
pected size file size. The KSA size, measured in
erase blocks per GiB of storage space, is the amount
of storage required for IVs and keys, and is the worst
case number of erase blocks that must be erased
during each purging operation. The copy cost, also

12

USENIX Association 	 21st USENIX Security Symposium  345

measured in erase blocks, is the amount of data that
must be re-written to the flash storage medium due
to a data node modification that affects only one
page of flash memory. For example, with a data
node size of 1024 KiB and a page size of 2 KiB, the
copy cost for a small change to the data node is 1022
KiB. This is measured in erase blocks because the
additional writes, once filling an entire erase block,
result in an additional erase block erasure, otherwise
unnecessary with a smaller data node size.
As we observed earlier, reducing the number of

keys required to be read from flash per byte of data
improves read and write throughput. From these
definitions, along with basic geometry of the flash
drive, it is easy to compute the values presented in
Table 5. When deploying DNEFS, the administra-
tor can choose a data node size by optimizing for
the costs given how frequently small erasures and
complete purges are executed.

5 Extensions and Optimizations

Compatibility with FTLs. The most widely-
deployed interface for flash memory is the Flash
Translation Layer (FTL) [1], which maps logical
block device sectors (e.g., a hard drive) to physi-
cal flash addresses. While FTLs vary in implemen-
tation, many of which are not publicly available, in
principle DNEFS can be integrated with FTLs in the
following way. All file-system data is encrypted be-
fore being written to flash, and decrypted whenever
it is read. A key storage area is reserved on the flash
memory to store keys, and key positions are assigned
to data. The FTL’s in-memory logical remapping
of sectors to flash addresses must store alongside a
reference to a key location. The FTL mechanism
that rebuilds its logical sector to address mapping
must also rebuild the corresponding key location.
Key locations consist of a logical KSA erase block
number and the actual offset inside the erase block.
Logically-referenced KSA erase blocks are managed
by storing metadata in the final page of each KSA
erase block. This page is written immediately after
successfully writing the KSA block and stores the
following information: the logical KSA number so
that key references need not be updated after purg-
ing, and an epoch number so that the most recent
version of the KSA block is known. With this infor-
mation, the FTL is able to replicate the features of
UBI that DNEFS requires.
Generating a correct key state map when mount-

ing is tied to the internal logic of the FTL. Assuming
that the map of logical to physical addresses along
with the key positions is correctly created, then it

is trivial to iterate over the entries to mark the cor-
responding keys as used. The unmarked positions
are then purged to contain new data. The FTL
must also generate cryptographically-secure random
data (e.g., with an accelerometer [38]) or be able
to receive it from the host. Finally, the file sys-
tem mounted on the FTL must issue TRIM com-
mands [16] when a sector is deleted, as only the file
system has the semantic context to know when a
sector is deleted.

Purging Policies. Purging is currently performed
after a user-controlled period of time and before un-
mounting the device. More elaborate policies are
definable, where purging occurs once a threshold of
deleted keys is passed, ensuring that the amount of
exposable data is limited, so the deletion of many
files would thus act as a trigger for purging. A low-
level control allows user-level applications to trigger
a purge, such as an email application that purges
the file system after clearing the cache. We can al-
ternatively use a new extended attribute to act a
trigger: whenever any data node belonging to a sen-
sitive file is deleted, then DNEFS triggers an imme-
diate purge. This allows users to have confidence
that most files are periodically deleted, while sensi-
tive files are promptly deleted.

Securely Deleting Swap. A concern for secure
deletion is to securely delete any copies of data made
by the operating system. Data that is quite large
may be written to a swap file—which may be on the
same file system or on a special cache partition. We
leave as future work to integrate our solution to a
secure deleting cache. (There exist encrypted swap
partitions [31], but not one that securely deletes the
memory when it is deallocated.) We expect it to
be simple to design, as cache data does not need to
persist if power is lost; an encryption-based approach
can keep all the keys in volatile memory and delete
them immediately when they are no longer needed.

Encrypted File System. Our design can be triv-
ially extended to offer a passphrase-protected en-
crypted file system: we simply encrypt the KSA
whenever we write random data, and derive the
decryption key from a provided passphrase when
mounting. Since, with high probability, each
randomly-generated key in the KSA is unique, we
can use a block cipher in ECB mode to allow
rapid decryption of randomly accessed offsets with-
out storing additional initialization vectors [20].
Encrypted storage media are already quite pop-

ular, as they provide confidentiality of stored data

13

346  21st USENIX Security Symposium	 USENIX Association

against computationally-bounded non-coercive at-
tackers, e.g., thieves, provided the master secret is
unavailable in volatile memory when the attack oc-
curs [13]. It is therefore important to offer our en-
crypted file system design to avoid users doubly-
encrypting their data: first as an encrypted file sys-
tem and then for secure deletion.

6 Related Work

Secure deletion for magnetic media is a well-
researched area. Various solutions exist at differ-
ent levels of system integration. User-level solutions
such as shred [29] open a file and overwrite its en-
tire content with insensitive data. This requires that
the file system performs in-place updates, otherwise
old data still remains. As such, these solutions are
inappropriate for flash memory.
Kernel-level secure deletion has been designed and

implemented for various popular block-structured
file systems [2, 17]. These solutions typically change
the file system so that whenever a block is discarded,
its content is first sanitized before it is added to the
list of free blocks. This ensures that even if a file is
truncated or the user forgets to use a secure deletion
tool, the data is still sanitized. It is also beneficial
for journalled file systems where in-place updates do
not immediately occur, so overwriting a file may not
actually overwrite the original content. The saniti-
zation of discarded blocks still requires in-place up-
dates, and is therefore inapplicable to flash memory.
The use of encryption to delete data was originally

proposed by Boneh and Lipton [3], where they used
the convenience of deleting small encryption keys to
computationally-delete data from magnetic backup
tapes. Peterson et al. [28] used this approach to im-
prove the efficiency of secure deletion in a versioned
backup system on a magnetic storage medium. They
encrypt each data block with an all-or-nothing cryp-
tographic expansion transformation [33] and colo-
cate the resulting key-sized tags for every version of
the same file in storage. They use in-place updates
to remove tags, and keys are colocated to reduce
the cost of magnetic disk seek times when deleting
all versions of a single file. DNEFS also colocates
keys separately to improve the efficiency of secure
deletion. However, DNEFS is prohibited from per-
forming in-place updates, and our design focuses on
minimizing and levelling erasure wear.
Another approach is Perlman’s Ephemerizer [27],

a system that allows communication between par-
ties where messages are securely deleted in the pres-
ence of a coercive attacker. Data is encrypted with
ephemeral keys that are manged by the eponymous

trusted third party. Each message is given an ex-
piration time at creation, and an appropriate key
is generated accordingly. The Ephemerizer stores
the keys and provides them when necessary to the
communicating parties using one-time session keys.
When the expiration time passes, it deletes any ma-
terial required to create the key, thus ensuring se-
cure deletion of the past messages. Perlman’s work
is a protocol using secure deletion as an assumed
primitive offered by the storage medium. Indeed, if
this approach is implemented on a flash-based smart
card, DNEFS can be used to implement it.

Reardon et al. [32] have shown how to securely
delete data from log-structured file systems from
user-space—that is, without modifying the hardware
or the file system—provided that the user can ac-
cess the flash directly and is not subjected to disk
quota limitations. Their proposal is to fill the stor-
age medium to capacity to ensure that no wasted
space remains on the storage medium, thus ensuring
the secure deletion of data. This is a costly approach
in terms of flash memory wear and execution time,
but from user-space it is the only solution possible.
They also showed that occupying a large segment of
the storage medium with unneeded data improves
the expected time deleted data remains on the stor-
age medium, and reduces the amount of space that
needs to be filled to guarantee deletion.

Swanson et al. [36] considered verifiable sanitiza-
tion for solid state drives—flash memory accessed
through an opaque FTL. They observed that the
manufacturers of the controller are unreliable even
when implementing their own advertised sanitiza-
tion procedure, and that the use of cryptography
is insufficient when the ultimate storage location of
the cryptographic key cannot be determined from
the logical address provided by the FTL. They pro-
pose a technique for static sanitization of the entire
flash memory—that is, all the storage medium’s con-
tained information is securely removed. It works by
originally encrypting all the data on the drive be-
fore being written. When a sanitize command is is-
sued, first the memory containing the keys is erased,
and then every page on the device is written and
erased. Our solution focuses on the more typical case
of a user wanting to securely delete some sensitive
data from their storage media but not wanting to
completely remove all data available on the device.
Our solution requires access to the raw flash, or a
security-aware abstraction such as UBI that offers
the ubi_flush() function to synchronously remove
all previous versions (including copies) of a particu-
lar LEB number.

Wei et al. [39] have considered secure deletion on

14

USENIX Association 	 21st USENIX Security Symposium  347

flash memory accessed through an FTL (cf. Sec-
tion 2). They propose a technique, called scrubbing,
which writes zeros over the pages of flash memory
without first erasing the block. This sanitizes the
data because, in general, flash memory requires an
erasure to turn a binary zero to a binary one, but
writes turn ones into zeros. Sun et al. [35] pro-
pose a hybrid secure deletion method built on Wei
et al.’s scheme, where they also optimize the case
when there is less data to copy off a block then data
to be zero overwritten.

Scrubbing securely deletes data immediately, and
no block erasures must be performed. However, it re-
quires programming a page multiple times between
erasures, which is not appropriate for flash mem-
ory [22]. In general, the pages of an erase block must
be programmed sequentially [26] and only once. An
option exists to allow multiple programs per page,
provided they occur at different positions in the
page; multiple overwrites to the same location offi-
cially result in undefined behaviour [26]. Flash man-
ufacturers prohibit this due to program disturb [21]:
bit errors that can be caused in spatially proximate
pages while programming flash memory.

Wei et al. performed experiments to quantify
the rate at which such errors occur: they showed
that they do exist but their frequency varies widely
among flash types, a result also confirmed by Grupp
et al. [12]. Wei et al. use the term scrub budget to re-
fer to the number of times that the particular model
of flash memory has experimentally allowed multi-
ple overwrites without exhibiting a significant risk
of data errors. When the scrub budget for an erase
block is exceeded, then secure deletion is instead per-
formed by invoking garbage collection: copying all
the remaining valid data blocks elsewhere and eras-
ing the block. Wei et al. state that modern densely
packed flash memories are unsuitable for their tech-
nique as they allow as few as two scrubs per erase
block [39]. This raises serious concerns for the fu-
ture utility of Wei et al.’s approach and highlights
the importance of following hardware specifications.

Lee et al. [19] propose secure deletion for YAFFS.
They encrypt each file with a different key, store
the keys in the file’s header, and propose to modify
YAFFS to colocate file headers in a fixed area of the
storage medium. They achieve secure deletion by
erasing the erase block containing the file’s header,
thus deleting the entire file. More recently, Lee et
al. [18] built on this approach by extending it to per-
form standard data sanitization methods prescribed
by government agencies (e.g., NSA [25], DoD [24])
on the erase blocks containing the keys.

We can only compare our approach with theirs in

design, as their approaches were not implemented.
First, the approach causes an erase block deletion
for every deleted file. This results in rapid wear
for devices that create and delete many small cache
files. Reardon et al. [32] observed that the Android
phone’s normal usage created 10,000 such files a day;
if each file triggers an erase block erasure, then this
solution causes unacceptable wear on the dedicated
segment of the flash memory used for file headers.
Their proposal encrypts the entire file before writ-
ing it to the storage medium with a single key and
without mention of the creation or storage of IVs.
(See Section 4.3 for more analysis on per-file versus
per-data-node encryption.) Our solution differs from
theirs by batching deletions and purging based on an
interval, by considering the effect on wear levelling,
by allowing fine-grained deletions of overwritten and
truncated data, and by being fully implemented.

7 Conclusions

DNEFS and its instance UBIFSec are the first fea-
sible solution for efficient secure deletion for flash
memory operating within flash memory’s specifica-
tion. It provides guaranteed secure deletion against
a computationally-bounded peek-a-boo attacker by
encrypting each data node with a different key
and storing the keys together on the flash storage
medium. The erase blocks containing the keys are
logically updated to remove old keys, replacing them
with fresh random data that can be used as keys for
new data. It is fine-grained in that parts of files that
are overwritten are also securely deleted.
We have implemented UBIFSec and analyzed it

experimentally to ensure that it is efficient, requiring
a small evenly-levelled increase in flash memory wear
and little additional computation time. UBIFSec
was easily added to UBIFS, where cryptographic op-
erations are added seamlessly to UBIFS’s read/write
data path, and changes to key state are handled by
UBIFS’s existing index of data nodes.

Acknowledgments

This work was partially supported by the Zurich In-
formation Security Center. It represents the views
of the authors. We would like to thank our anony-
mous reviews for their many helpful comments and
Artem Bityutskiy for his help integrating UBIFSec
into UBIFS.

15

348  21st USENIX Security Symposium	 USENIX Association

References

[1] Ban, A. Flash file system. US Patent, no. 5404485, 1995.

[2] Bauer, S., and Priyantha, N. B. Secure Data Dele-
tion for Linux File Systems. Usenix Security Symposium
(2001), 153–164

[3] Boneh, D., and Lipton, R. J. A revocable backup
system. In Proceedings of the 6th conference on
USENIX Security Symposium, Focusing on Applications
of Cryptography - Volume 6 (Berkeley, CA, USA, 1996),
USENIX Association, pp. 91–96.

[4] Charles Manning. How YAFFS Works. 2010.

[5] Chow, J., Pfaff, B., Garfinkel, T., and Rosenblum,
M. Shredding Your Garbage: Reducing Data Lifetime
through Secure Deallocation. In Proceedings of the 14th
conference on USENIX Security Symposium - Volume
14 (Berkeley, CA, USA, 2005), SSYM’05, USENIX As-
sociation.

[6] Chung, T.-S., Park, D.-J., Park, S., Lee, D.-H., Lee,
S.-W., and Song, H.-J. A survey of Flash Translation
Layer. Journal of Systems Architecture 55, 5-6 (2009),
332–343.

[7] Cormen, T., Leiserson, C., and Rivest, R. Introduc-
tion to Algorithms. McGraw Hill, 1998.

[8] Gal, E., and Toledo, S. Algorithms and Data Struc-
tures for Flash Memories. ACM Computing Surveys 37
(2005), 138–163.

[9] Garfinkel, S., and Shelat, A. Remembrance of Data
Passed: A Study of Disk Sanitization Practices. IEEE
Security & Privacy (January 2003), 17–27.

[10] Gleixner, T., Haverkamp, F., and Bityutskiy, A.
UBI - Unsorted Block Images. 2006.

[11] Google, Inc. Google Nexus Phone.

[12] Grupp, L. M., Caulfield, A. M., Coburn, J., Swan-
son, S., Yaakobi, E., Siegel, P. H., and Wolf, J. K.
Characterizing flash memory: anomalies, observations,
and applications. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (New York, NY, USA, 2009), MICRO 42, ACM,
pp. 24–33.

[13] Halderman, J. A., Schoen, S. D., Heninger, N.,
Clarkson, W., Paul, W., Calandrino, J. A., Feld-
man, A. J., Appelbaum, J., and Felten, E. W. Lest we
remember: cold-boot attacks on encryption keys. Com-
munications of the ACM 52 (May 2009), 91–98.

[14] Hunter, A. A Brief Introduction to the Design of
UBIFS. 2008.

[15] Intel Corporation. Understanding the Flash Transla-
tion Layer (FTL) Specification. 1998.

[16] Intel Corporation. Intel Solid-State Drive Optimizer.
2009.

[17] Joukov, N., Papaxenopoulos, H., and Zadok, E. Se-
cure Deletion Myths, Issues, and Solutions. ACM Work-
shop on Storage Security and Survivability (2006), 61–
66.

[18] Lee, B., Son, K., Won, D., and Kim, S. Secure Data
Deletion for USB Flash Memory. Journal of Information
Science and Engineering 27 (2011), 933–952.

[19] Lee, J., Yi, S., Heo, J., and Park, H. An Efficient
Secure Deletion Scheme for Flash File Systems. Journal
of Information Science and Engineering (2010), 27–38.

[20] Menezes, A. J., van Oorschot, P. C., and Vanstone,
S. A. Handbook of Applied Cryptography. CRC Press,
2001.

[21] Micron, Inc. Design and Use Considerations for NAND
Flash Memory Introduction. 2006.

[22] Micron Technology, Inc. Technical Note: Design and
Use Considerations for NAND Flash Memory. 2006.

[23] Memory Technology Devices (MTD): Subsystem for
Linux. 2008.

[24] National Industrial Security Program Operating Manual.
July 1997.

[25] NSA/CSS Storage Device Declassification Manual.
November 2000.

[26] Open NAND Flash Interface. Open NAND Flash In-
terface Specification, version 3.0. 2011.

[27] Perlman, R. The Ephemerizer: Making Data Disap-
pear. Tech. rep., Mountain View, CA, USA, 2005.

[28] Peterson, Z., Burns, R., and Herring, J. Secure
Deletion for a Versioning File System. USENIX Con-
ference on File and Storage Technologies (2005).

[29] Plumb, C. shred(1) - Linux man page.

[30] Pöpper, C., Basin, D., Capkun, S., and Cremers,
C. Keeping Data Secret under Full Compromise using
Porter Devices. In Computer Security Applications Con-
ference (2010), pp. 241–250.

[31] Provos, N. Encrypting virtual memory. In Proceedings
of the 9th USENIX Security Symposium (2000), pp. 35–
44.

[32] Reardon, J., Marforio, C., Capkun, S., and Basin,
D. Secure Deletion on Log-structured File Systems. 7th
ACM Symposium on Information, Computer and Com-
munications Security (2012).

[33] Rivest, R. L. All-Or-Nothing Encryption and The Pack-
age Transform. In Fast Software Encryption Confer-
ence (1997), Springer Lecture Notes in Computer Sci-
ence, pp. 210–218.

[34] Rosenblum, M., and Ousterhout, J. K. The Design
and Implementation of a Log-Structured File System.
ACM Transactions on Computer Systems 10 (1992), 1–
15.

[35] Sun, K., Choi, J., Lee, D., and Noh, S. Models and De-
sign of an Adaptive Hybrid Scheme for Secure Deletion
of Data in Consumer Electronics. IEEE Transactions on
Consumer Electronics 54 (2008), 100–104.

[36] Swanson, S., and Wei, M. SAFE: Fast, Verifiable San-
itization for SSDs. October 2010.

[37] UBIFSec Patch.

[38] Voris, J., Saxena, N., and Halevi, T. Accelerome-
ters and randomness: perfect together. In Proceedings
of the fourth ACM conference on Wireless network se-
curity (New York, NY, USA, 2011), WiSec ’11, ACM,
pp. 115–126.

[39] Wei, M., Grupp, L. M., Spada, F. M., and Swanson,
S. Reliably Erasing Data from Flash-Based Solid State
Drives. In Proceedings of the 9th USENIX conference
on File and Storage Technologies (Berkeley, CA, USA,
2011), pp. 105–117.

[40] Woodhouse, D. JFFS: The Journalling Flash File Sys-
tem. In Ottawa Linux Symposium (2001).

16

USENIX Association 	 21st USENIX Security Symposium  349

Throttling Tor Bandwidth Parasites

Rob Jansen Paul Syverson
U.S. Naval Research Laboratory

{rob.g.jansen, paul.syverson}@nrl.navy.mil

Nicholas Hopper
University of Minnesota

hopper@cs.umn.edu

Abstract
Tor is vulnerable to network congestion and performance
problems due to bulk data transfers. A large fraction of
the available network capacity is consumed by a small
percentage of Tor users, resulting in severe service degra-
dation for the majority. Bulk users continuously drain
relays of excess bandwidth, creating new network bot-
tlenecks and exacerbating the effects of existing ones.
While this problem may currently be attributed to ratio-
nal users utilizing the network, it may also be exploited
by a relatively low-resource adversary using similar tech-
niques to contribute to a network denial of service (DoS)
attack. Degraded service discourages the use of Tor, af-
fecting both Tor’s client diversity and anonymity.

Equipped with mechanisms from communication net-
works, we design and implement three Tor-specific al-
gorithms that throttle bulk transfers to reduce network
congestion and increase network responsiveness. Unlike
existing techniques, our algorithms adapt to network dy-
namics using only information local to a relay. We exper-
iment with full-network deployments of our algorithms
under a range of light to heavy network loads. We find
that throttling results in significant improvements to web
client performance while mitigating the negative effects
of bulk transfers. We also analyze how throttling affects
anonymity and compare the security of our algorithms
under adversarial attack. We find that throttling reduces
information leakage compared to unthrottled Tor while
improving anonymity against realistic adversaries.

1 Introduction

The Tor [19] anonymity network was developed in an
attempt to improve anonymity on the Internet. Onion
Routing [23,48] serves as the cornerstone for Tor’s over-
lay network design. Tor clients encrypt messages in sev-
eral “layers” while packaging them into 512-byte packets
called cells, and send them through a collection of relays
called a circuit. Each relay decrypts its layer and for-
wards the message to the next relay in the circuit. The
last relay forwards the message to the user-specified des-
tination. Each relay can determine only its predecessor
and successor in the path from source to destination, pre-
venting any single relay from linking the sender and re-

ceiver. Clients choose their first relay from a small set
of entry guards [44, 59] in order to help defend against
passive logging attacks [58]. Traffic analysis is still pos-
sible [8,22,28,30,39,42,46,49], but slightly complicated
by the fact that each relay simultaneously services mul-
tiple circuits.

Tor relays are run by volunteers located throughout
the world and service hundreds of thousands of Tor
clients [37] with high bandwidth demands. A relay’s
utility to Tor is dependent on both the bandwidth ca-
pacity of its host network and the bandwidth restrictions
imposed by its operator. Although bandwidth donations
vary widely, the majority of relays offer less than 100
KiB/s and may become bottlenecks when chosen for a
circuit. Bandwidth bottlenecks lead to network conges-
tion and impair client performance.

Bottlenecks are further aggravated by bulk users,
which make up roughly five percent of connections and
forty percent of the bytes transferred through the net-
work [38]. Bulk traffic increases network-wide conges-
tion and punishes interactive users as they attempt to
browse the web and run SSH sessions. Bulk traffic also
constitutes a simple denial of service (DoS) attack on
the network as a whole: with nothing but a moderate
number of bulk clients, an adversary can intentionally
significantly degrade the performance of the entire Tor
network for most users. This is a malicious attack as op-
posed to an opportunistic use of resources without regard
for the impact on legitimate users, and could be used by
censors [16] to discourage use of Tor. Bulk traffic ef-
fectively averts potential users from Tor, decreasing both
Tor’s client diversity and anonymity [10, 18].

There are three general approaches to alleviate Tor’s
performance problems: increase network capacity; opti-
mize resource utilization; and reduce network load.
Increasing Capacity. One approach to reducing bottle-
necks and improving performance is to add additional
bandwidth to the network from new relays. Previous
work has explored recruiting new relays by offering per-
formance incentives to those who contribute [32, 41,43].
While these approaches show potential, they have not
been deployed due to a lack of understanding of the
anonymity and economic implications they would im-
pose on Tor and its users. It is unclear how an incentive

1

350  21st USENIX Security Symposium	 USENIX Association

scheme will affect users’ anonymity and motivation to
contribute: Acquisti et al. [6] discuss how differentiating
users by performance may reduce anonymity while com-
petition may reduce the sense of community and con-
vince users that contributions are no longer warranted.

New high-bandwidth relays may also be added by the
Tor Project [4] or other organizations. While effective
at improving network capacity, this approach is a short-
term solution that does not scale. As Tor increases speed
and bandwidth, it will likely attract more users. More
significantly, it will attract more high-bandwidth and Bit-
Torrent users, resulting in a Tragedy of the Commons [26]
scenario: the bulk users attracted to the faster network
will continue to leech the additional bandwidth.
Optimizing Resource Utilization. Another approach to
improving performance is to better utilize the available
network resources. Tor’s path selection algorithm ig-
nores the slowest small fraction of relays while selecting
from the remaining relays in proportion to their available
bandwidth. The path selection algorithm also ignores cir-
cuits with long build times [12], removing the worst of
bottlenecks and improving usability. Congestion-aware
path selection [57] is another approach that aims to bal-
ance load by using opportunistic and active client mea-
surements while building paths. However, low band-
width relays must still be chosen for circuits to mitigate
anonymity problems, meaning there are still a large num-
ber of circuits with tight bandwidth bottlenecks.

Tang and Goldberg previously explored modifications
to the Tor circuit scheduler in order to prioritize bursty
(i.e. web) traffic over bulk traffic using an exponentially-
weighted moving average (EWMA) of relayed cells [52].
Early experiments show small improvements at a sin-
gle relay, but full-network experiments indicate that
the new scheduler has an insignificant effect on perfor-
mance [31]. It is unclear how performance is affected
when deployed to the live Tor network. This schedul-
ing approach attempts to shift network load to better uti-
lize the available bandwidth, but does not reduce bottle-
necks introduced by the massive amount of bulk traffic
currently plaguing Tor.
Reducing Load. All of the previously discussed ap-
proaches attempt to increase performance, but none
of them directly address or provide adequate defense
against performance degradation problems created by
bulk traffic clients. In this paper, we address these by
adaptively throttling bulk data transfers at the client’s en-
try into the Tor network.

We emphasize that throttling is fundamentally differ-
ent than scheduling, and the distinction is important in
the context of the Tor network. Schedulers optimize the
utilization of available bandwidth by following policies
set by the network engineer, allowing the enforcement
of fairness among flows (e.g. max-min fairness [24, 34]

or proportional fairness [35]). However, throttling may
under-utilize local bandwidth resources by intentionally
imposing restrictions on clients’ throughput to reduce ag-
gregate network load.

By reducing bulk client throughput in Tor, we effec-
tively reduce the bulk data transfer rate through the net-
work, resulting in fewer bottlenecks and a less congested,
more responsive Tor network that can better handle the
burstiness of web traffic. Tor has recently implemented
token buckets, a classic traffic shaping mechanism [55],
to statically (non-adaptively) throttle client-to-guard con-
nections at a given rate [17], but currently deployed con-
figurations of Tor do not enable throttling by default. Un-
fortunately, the throttling algorithm implemented in Tor
requires static configuration of throttling parameters: the
Tor network must determine network-wide settings that
work well and update them as the network changes. Fur-
ther, it is not possible to automatically tune each relay’s
throttling configuration with the current algorithm.
Contributions. To the best of our knowledge, we are
the first to explore throttling algorithms that adaptively
adjust to the fluctuations and dynamics of Tor and each
relay independently without the need to adjust parame-
ters as the network changes. We also perform the first
detailed investigation of the performance and anonymity
implications of throttling Tor client connections.

In Section 3, we introduce and test three algorithms
that dynamically and adaptively throttle Tor clients us-
ing a basic token bucket rate-limiter as the underlying
throttling mechanism. Our new adaptive algorithms use
local relay information to dynamically select which con-
nections get throttled and to adjust the rate at which
those connections are throttled. Adaptively tuned throt-
tling mechanisms are paramount to our algorithm de-
signs in order to avoid the need to re-evaluate parame-
ter choices as network capacity or relay load changes.
Our bit-splitting algorithm throttles each connection at
an adaptively adjusted, but reserved and equal portion
of a guard node’s bandwidth, our flagging algorithm ag-
gressively throttles connections that have historically ex-
ceeded the statistically fair throughput, and our thresh-
old algorithm throttles connections above a throughput
quantile at a rate represented by that quantile.

We implement our algorithms in Tor1 and test their
effectiveness at improving performance in large scale,
full-network deployments. Section 4 compares our algo-
rithms to static (non-adaptive) throttling under a varied
range of network loads. We find that the effectiveness
of static throttling is highly dependent on network load
and configuration whereas our adaptive algorithms work
well under various loads with no configuration changes
or parameter maintenance: web client performance was

1Software patches for our algorithms have been made publicly
available to the community [5].

2

USENIX Association 	 21st USENIX Security Symposium  351

Figure 1: A Tor relay’s internal architecture.

improved for every parameter setting we tested. We con-
clude that throttling is an effective approach to achieve a
more responsive network.

Having shown that our adaptive throttling algorithms
provide significant performance benefits for web clients
and have a profound impact on network responsiveness,
Section 5 analyzes the security of our algorithms under
adversarial attack. We discuss several realistic attacks on
anonymity and compare the information leaked by each
algorithm relative to unthrottled Tor. Against intuition,
we find that throttling clients reduces information leak-
age and improves network anonymity while minimizing
the false positive impact on honest users.

2 Background

This section discusses Tor’s internal architecture, shown
in Figure 1, to facilitate an understanding of how internal
processes affect client traffic flowing through a Tor relay.
Multiplexed Connections. All relays in Tor commu-
nicate using pairwise TCP connections, i.e. each relay
forms a single TCP connection to each other relay with
which it communicates. Since a pair of relays may be
communicating data for several circuits at once, all cir-
cuits between the pair are multiplexed over their single
TCP connection. Each circuit may carry traffic for mul-
tiple services or streams that a user may be accessing.
TCP offers reliability, in-order delivery of packets be-
tween relays, and potentially unfair kernel-level conges-
tion control when multiplexing connections [47]. The
distinction between and interaction of connections, cir-
cuits, and streams is important for understanding Tor.
Connection Input. Tor uses libevent [1] to handle input
and output to and from kernel TCP buffers. Tor regis-
ters sockets that it wants to read with libevent and con-
figures a notification callback function. When data ar-
rives at the kernel TCP input buffer (Figure 1a), libevent
learns about the active socket through its polling in-
terface and asynchronously executes the corresponding

callback (Figure 1b). Upon execution, the read callback
determines read eligibility using token buckets.

Token buckets are used to rate-limit connections. Tor
fills the buckets as defined by configured bandwidth lim-
its in one-second intervals while tokens are removed
from the buckets as data is read, although changing that
interval to improve performance is currently being ex-
plored [53]. There is a global read bucket that limits
bandwidth for reading from all connections as well as
a separate bucket for throttling on a per-connection ba-
sis (Figure 1c). A connection may ignore a read event
if either the global bucket or its connection bucket is
empty. In practice, the per-connection token buckets
are only utilized for edge (non-relay) connections. Per-
connection throttling reduces network congestion by pe-
nalizing noisy connections, such as bulk transfers, and
generally leads to better performance [17].

When a TCP input buffer is eligible for reading, a
round-robin (RR) scheduling mechanism is used to read
the smaller of 16 KiB and 1

8 of the global token bucket
size per connection (Figure 1d). This limit is imposed in
an attempt at fairness so that a single connection can not
consume all the global tokens on a single read. However,
recent research shows that input/output scheduling leads
to unfair resource allocations [54]. The data read from
the TCP buffer is placed in a per-connection application
input buffer for processing (Figure 1e).

Flow Control. Tor uses an end-to-end flow control algo-
rithm to assist in keeping a steady flow of cells through
a circuit. Clients and exit relays constitute the edges of
a circuit: each are both an ingress and egress point for
data traversing the Tor network. Edges track data flow
for both circuits and streams using cell counters called
windows. An ingress edge decrements the correspond-
ing stream and circuit windows when sending cells, stops
reading from a stream when its stream window reaches
zero, and stops reading from all streams multiplexed over
a circuit when the circuit window reaches zero. Win-
dows are incremented and reading resumes upon receipt
of SENDME acknowledgment cells from egress edges.

3

352  21st USENIX Security Symposium	 USENIX Association

By default, circuit windows are initialized to 1000
cells (500 KiB) and stream windows to 500 cells (250
KiB). Circuit SENDMEs are sent to the ingress edge af-
ter the egress edge receives 100 cells (50 KiB), allowing
the ingress edge to read, package, and forward 100 ad-
ditional cells. Stream SENDMEs are sent after receiving
50 cells (25 KiB) and allow an additional 50 cells. Win-
dow sizes can have a significant effect on performance
and recent work suggests an algorithm for dynamically
computing them [7].
Cell Processing and Queuing. Data is immediately
processed as it arrives in connection input buffers (Fig-
ure 1f) and each cell is either encrypted or decrypted de-
pending on its direction through the circuit. The cell is
then switched onto the circuit corresponding to the next
hop and placed into the circuit’s first-in-first-out (FIFO)
queue (Figure 1g). Cells wait in circuit queues until the
circuit scheduler selects them for writing.
Scheduling. When there is space available in a con-
nection’s output buffer, a relay decides which of sev-
eral multiplexed circuits to choose for writing. Al-
though historically this was done using round-robin, a
new exponentially-weighted moving average (EWMA)
scheduler was recently introduced into Tor [52] and is
currently used by default (Figure 1h). EWMA records
the number of packets it schedules for each circuit, expo-
nentially decaying packet counts over time. The sched-
uler writes one cell at a time chosen from the circuit with
the lowest packet count and then updates the count. The
decay means packets sent more recently have a higher
influence on the count while bursty traffic does not sig-
nificantly affect scheduling priorities.
Connection Output. A cell that has been chosen
and written to a connection output buffer (Figure 1i)
causes an activation of the write event registered with
libevent for that connection. Once libevent determines
the TCP socket can be written, the write callback is asyn-
chronously executed (Figure 1j). Similar to connection
input, the relay checks both the global write bucket and
per-connection write bucket for tokens. If the buckets
are not empty, the connection is eligible for writing (Fig-
ure 1k) and again is allowed to write the smaller of 16
KiB and 1

8 of the global token bucket size per connection
(Figure 1l). The data is written to the kernel-level TCP
buffer (Figure 1m) and sent to the next hop.

3 Throttling Client Connections

Client performance in Tor depends heavily on the traf-
fic patterns of others in the system. A small number of
clients performing bulk transfers in Tor are the source
of a large fraction of total network traffic [38]. The
overwhelming load these clients place on the network
increases congestion and creates additional bottlenecks,

Figure 2: Throttling occurs at the connection between the
client and guard to capture all streams to various destinations.

causing interactive applications, such as instant messag-
ing and remote SSH sessions, to lose responsiveness.

This section explores client throttling as a mechanism
to prevent bulk clients from overwhelming the network.
Although a relay may have enough bandwidth to han-
dle all traffic locally, bulk clients that continue producing
additional traffic cause bottlenecks at other low-capacity
relays. The faster a bulk downloader gets its data, the
faster it will pull more into the network. Throttling bulk
and other high-traffic clients prevents them from pushing
or pulling too much data into the network too fast, reduc-
ing these bottlenecks and improving performance for the
majority of users. Therefore, interactive applications and
Tor in general will become much more usable, attracting
new users who improve client diversity and anonymity.

We emphasize that throttling algorithms are not a re-
placement for congestion control or scheduling algo-
rithms, although each approach may cooperate to achieve
a common goal. Scheduling algorithms are used to man-
age the utilization of bandwidth, throttling algorithms re-
duce the aggregate network load, and congestion con-
trol algorithms attempt to do both. The distinction be-
tween congestion control and throttling algorithms is
subtle but important: congestion control reduces circuit
load while attempting to maximize network utilization,
whereas throttling reduces network load in an attempt to
improve circuit performance by explicitly under-utilizing
connections to bulk clients using too many resources.
Each approach may independently affect performance,
and they may be combined to improve the network.

3.1 Static Throttling
Recently, Tor introduced the functionality to allow entry
guards to throttle connections to clients [17] (see Fig-
ure 2). This client-to-guard connection is targeted be-
cause all client traffic (using this guard) will flow over
this connection regardless of the number of streams or
the destination associated with each.2 The implemen-
tation uses a token bucket for each connection in addi-
tion to the global token bucket that already limits the to-
tal amount of bandwidth used by a relay. The size of
the per-connection token buckets can be specified us-
ing the PerConnBWBurst configuration option, and
the bucket refill rate can be specified by configuring the
PerConnBWRate. The configured throttling rate en-

2This work does not consider modified Tor clients.

4

USENIX Association 	 21st USENIX Security Symposium  353

sures that all client-to-guard connections are throttled
to the specified long-term-average throughput while the
configured burst allows deviations from the throttling
rate to account for bursty traffic. The configuration op-
tions provide a static throttling mechanism: Tor will
throttle all connections using these values until directed
otherwise. Note that Tor does not enable or configure
static throttling by default.

While static throttling is simple, it has two main draw-
backs. First, static throttling requires constant monitor-
ing and measurements of the Tor network to determine
which configurations work well and which do not in or-
der to be effective. We have found that there are many
configurations of the algorithm that cause no change in
performance, and worse, there are configurations that
harm performance for interactive applications [33]. This
is the opposite of what throttling is attempting to achieve.
Second, it is not possible under the current algorithm
to auto-tune the throttling parameters for each Tor relay.
Configurations that appear to work well for the network
as a whole might not necessarily be tuned for a given
relay (we will show that this is indeed the case in Sec-
tion 4). Each relay has very different capabilities and
load patterns, and therefore may require different throt-
tling configurations to be most useful.

3.2 Adaptive Throttling

Given the drawbacks of static throttling, we now explore
and present three new algorithms that adaptively adjust
throttling parameters according to local relay informa-
tion. This section details our algorithms while Section 4
explores their effect on client performance and Section 5
analyzes throttling implications for anonymity.

There are two main issues to consider when design-
ing a client throttling algorithm: which connections to
throttle and at what rate to throttle them. The approach
discussed above in Section 3.1 throttles all client con-
nections at the statically specified rate. Each of our three
algorithms below answers these questions adaptively by
considering information local to each relay. Note that our
algorithms dynamically adjust the PerConnBWRate
while keeping a constant PerConnBWBurst.3

Bit-splitting. A simple approach to adaptive throttling
is to split a guard’s bandwidth equally among all active
client connections and throttle them all at this fair split
rate. The PerConnBWRate will therefore be adjusted
as new connections are created or old connections are
destroyed: more connections will result in lower rates.
No connection will be able to use more than its allot-

3Our experiments [33] indicate that a 2 MiB burst is ideal as it al-
lows directory requests to be downloaded unthrottled during bootstrap-
ping while also throttling bulk traffic relatively quickly. The burst may
need to be increased if the directory information grows beyond 2 MiB.

Algorithm 1 Throttling clients by splitting bits.

1: B ← getRelayBandwidth()
2: L ← getConnectionList()
3: N ← L.length()
4: if N > 0 then
5: splitRate ← B

N
6: for i ← 1 to N do
7: if L[i].isClientConnection() then
8: L[i].throttleRate ← splitRate
9: end if

10: end for
11: end if

ted share of bandwidth unless it has unused tokens in its
bucket. Inspired by Quality of Service (QoS) work from
communication networks [11, 50, 60], bit-splitting will
prevent bulk clients from unfairly consuming bandwidth
and ensure that there is a minimum “reserved” bandwidth
for clients of all types.

Note that Internet Service Providers employ similar
techniques to throttle their customers, however, their
client base is much less dynamic than the connections an
entry guard handles. Therefore, our adaptive approach is
more suitable to Tor. We include this algorithm in our
analysis of throttling to determine what is possible with
such a simple approach.
Flagging Unfair Clients. The bit-splitting algorithm fo-
cuses on adjusting the throttle rate and applying this to
all client connections. Our next algorithm takes the op-
posite approach: configure a static throttling rate and ad-
just which connections get throttled. The intuition be-
hind this approach is that if we can properly identify the
connections that use too much bandwidth, we can throttle
them in order to maximize the benefit we gain per throt-
tled connection. Therefore, our flagging algorithm at-
tempts to classify and throttle bulk traffic while it avoids
throttling web clients.

Since deep packet inspection is not desirable for pri-
vacy reasons, and is not possible on encrypted Tor traffic,
we instead draw upon existing statistical fingerprinting
classification techniques [14, 29, 36] that classify traffic
solely on its statistical properties. When designing the
flagging algorithm, we recognize that Tor already con-
tains a statistical throughput measure for scheduling traf-
fic on circuits using an exponentially-weighted moving
average (EWMA) of recently sent cells [52]. We can use
the same statistical measure on client connections to clas-
sify and throttle bulk traffic.

The flagging algorithm, shown in Algorithm 2, re-
quires that each guard keeps an EWMA of the number
of recently sent cells per client connection. The per-
connection cell EWMA is computed in much the same
way as the per-circuit cell EWMA: whenever the cir-

5

354  21st USENIX Security Symposium	 USENIX Association

Algorithm 2 Throttling clients by flagging bulk connections,
considering a moving average of throughput.
Require: f lagRate,P,H

1: B ← getRelayBandwidth()
2: L ← getConnectionList()
3: N ← L.length()
4: M← getMetaEWMA()
5: if N > 0 then
6: splitRate ← B

N
7: M←M.increment(H,splitRate)
8: for i ← 1 to N do
9: if L[i].isClientConnection() then

10: if L[i].EWMA >M then
11: L[i]. f lag ← True
12: L[i].throttleRate ← f lagRate
13: else if L[i]. f lag = True ∧

L[i].EWMA < P ·M then
14: L[i]. f lag ← False
15: L[i].throttleRate ← in f inity
16: end if
17: end if
18: end for
19: end if

cuit’s cell counter is incremented, so is the cell counter
of the connection to which that circuit belongs. Note
that clients can not affect others’ per-connection EWMA
since all of a client’s circuits are multiplexed over a
single throttled guard-to-client connection.4 The per-
connection EWMA is enabled and configured indepen-
dently of its circuit counterpart.

We rely on the observation that bulk connections will
have higher EWMA values than web connections since
bulk clients are steadily transferring data while web
clients “think” between each page download. Using this
to our advantage, we can flag connections as containing
bulk traffic as follows. Each relay keeps a single sepa-
rate meta-EWMA M of cells transferred. M is adjusted
by calculating the fair bandwidth split rate as in the bit-
splitting algorithm, and tracking its EWMA over time.
M does not correspond with any real traffic, but rep-
resents the upper bound of a connection-level EWMA
if a connection were continuously sending only its fair
share of traffic through the relay. Any connection whose
EWMA exceeds M is flagged as containing bulk traffic
and penalized by being throttled.

There are three main parameters for the algorithm. As
mentioned above, a per-connection half-life H allows
configuration of the connection-level half-life indepen-
dent of that used for circuit scheduling. H affects how

4The same is not true for the unthrottled connections between relays
since each of them contain several circuits and each circuit may belong
to a different client (see Section 2).

Algorithm 3 Throttling clients considering the loudest thresh-
old of connections.
Require: T ,R,F

1: L ← getClientConnectionList()
2: N ← L.length()
3: if N > 0 then
4: selectIndex ← f loor(T ·N)
5: L ← reverseSortEWMA(L)
6: thresholdRate ← L[selectIndex].

getMeanT hroughput(R)
7: if thresholdRate < F then
8: thresholdRate ←F
9: end if

10: for i ← 1 to N do
11: if i ≤ selectIndex then
12: L[i].throttleRate ← thresholdRate
13: else
14: L[i].throttleRate ← in f inity
15: end if
16: end for
17: end if

long the algorithm remembers the amount of data a con-
nection has transferred, and has precisely the same mean-
ing as the circuit priority half-life [52]. Larger half-life
values increase the ability to differentiate bulk from web
connections while smaller half-life values make the algo-
rithm more immediately reactive to throttling bulk con-
nections. We would like to allow for a specification of
the length of each penalty once a connection is flagged
in order to recover and stop throttling connections that
may have been incorrectly flagged. Therefore, we intro-
duce a penalty fraction parameter P that affects how long
each connection remains in a flagged and throttled state.
If a connection’s cell count EWMA falls below P ·M,
its flag is removed and the connection is no longer throt-
tled. Finally, the rate at which each flagged connection is
throttled, i.e. the FlagRate, is statically defined and is
not adjusted by the algorithm.

Note that the flagging parameters need only be set
based on system-wide policy and generally do not re-
quire independent relay tuning, but provides the flexi-
bility to allow individual relay operators to deviate from
system policy if they desire.
Throttling Using Thresholds. Recall the two main is-
sues a throttling algorithm must address: selecting which
connections to throttle and the rate at which to throttle
them. Our bit-splitting algorithm explored adaptively
adjusting the throttle rate and applying this to all con-
nections while our flagging algorithm explored statically
configuring a throttle rate and adaptively selecting the
throttled connections. We now describe our final algo-
rithm which attempts to adaptively address both issues.

6

USENIX Association 	 21st USENIX Security Symposium  355

The threshold algorithm also makes use of a
connection-level cell EWMA, which is computed as de-
scribed above for the flagging algorithm. However,
EWMA is used here to sort connections by the loudest
to quietest. We then select and throttle the loudest frac-
tion T of connections, where T is a configurable thresh-
old. For example, setting T to 0.1 means the loudest ten
percent of client connections will be throttled. The se-
lection is adaptive since the EWMA changes over time
according to each connection’s bandwidth usage.

We have adaptively selected which connections to
throttle and now must determine a throttle rate. To do
this, we require that each connection tracks its through-
put over time. We choose the average throughput rate
of the connection with the minimum EWMA from the
set of connections being throttled. For example, when T
= 0.1 and there are 100 client connections sorted from
loudest to quietest, the chosen throttle rate is the average
throughput of the tenth connection. Each of first ten con-
nections is then throttled at this rate. In our prototype,
we approximate the throughput rate as the average num-
ber of bytes transferred over the last R seconds, where
R is configurable. R represents the period of time be-
tween which the algorithm re-selects the throttled con-
nections, adjusts the throttle rates, and resets each con-
nection’s throughput counters.

There is one caveat to the algorithm as described
above. In our experiments in Section 4, we noticed
that occasionally the throttle rate chosen by the thresh-
old algorithm was zero. This would happen if the mean
throughput of the threshold connection (line 6 in Algo-
rithm 3) did not send data over the last R seconds. To
prevent a throttle rate of zero, we added a parameter to
statically configure a throttle rate floor F so that no con-
nection would ever be throttled below F . Algorithm 3
details threshold adaptive throttling.

4 Experiments

In this section we explore the performance benefits possi-
ble with each throttling algorithm specified in Section 3.
We perform experiments with Shadow [2, 31], an accu-
rate and efficient discrete event simulator that runs real
Tor code over a simulated network. Shadow allows us to
run an entire Tor network on a single machine and config-
ure characteristics such as network latency, bandwidth,
and topology. Since Shadow runs real Tor, it accurately
characterizes application behavior and allows us to focus
on experimental comparison of our algorithms. A direct
comparison between Tor and Shadow-Tor performance
is presented in [31].
Experimental Setup. Using Shadow, we configure a pri-
vate Tor network with 200 HTTP servers, 950 Tor web
clients, 50 Tor bulk clients, and 50 Tor relays. The dis-

tribution of clients in our experiments approximates that
found by McCoy et al. [38]. All of our nodes run inside
the Shadow simulation environment.

In our experiments, each client node runs Tor in client-
only mode as well as an HTTP client application config-
ured to download over Tor’s SOCKS proxy available on
the local interface. Each web client downloads a 320 KiB
file5 from a randomly selected one of our HTTP servers,
and pauses for a length of time drawn from the UNC
“think time” data set [27] before downloading the next
file. Each bulk client repeatedly downloads a 5 MiB file
from a randomly selected HTTP server without pausing.
Clients track the time to the first and the last byte of the
download as indications of network responsiveness and
overall performance.

Tor relays are configured with bandwidth parameters
according to a Tor network consensus document.6 We
configure our network topology and latency between
nodes according to the geographical distribution of re-
lays and pairwise PlanetLab node ping times. Our sim-
ulated network mirrors a previously published Tor net-
work model [31] that has been compared to and shown to
closely approximate the load of the live Tor network [3].

We focus on the time to the first data byte for web
clients as a measure of network responsiveness, and
the time to the last data byte—the download time—for
both web and bulk clients as a measure of overall per-
formance. In our results, “vanilla” represents unmod-
ified Tor using a round-robin circuit scheduler and no
throttling—the default settings in the Tor software—and
can be used to compare relative performance between
experiments. Each experiment uses network-wide de-
ployments of each configuration. To further reduce ran-
dom variances, we ran all configurations five times each.
Therefore, every curve on every CDF shows the cumula-
tive results of five experiments.
Results. Our results focus on the algorithmic config-
urations that we found to maximize web client perfor-
mance [33] while we show how the algorithms perform
when the network load varies from light (25 bulk clients)
to medium (50 bulk clients) to heavy (100 bulk clients).
The experimental setup is otherwise unmodified from the
model described above. Running the algorithms under
various loads allows us to highlight the unique and novel
features each provides.

Figure 3 shows client performance for our algorithms.
The time to first byte indicates network responsiveness
for web clients while the download time indicates overall
client performance for web and bulk clients. Client per-
formance is shown for the lightly loaded network in Fig-
ures 3a–3c, the normally loaded network in Figures 3d–
3f, and the heavily loaded network in Figures 3g–3i.

5The average webpage size reported by Google web metrics [45].
6Retrieved on 2011-04-27 and valid from 03-06:00:00

7

356  21st USENIX Security Symposium	 USENIX Association

0 2 4 6 8 10 12 14
Web Time to First Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla

static

split

flag

thresh

(a) 320 KiB clients, light load

0 5 10 15 20 25 30
Web Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

static

split

flag

thresh

(b) 320 KiB clients, light load

0 100 200 300 400 500
Bulk Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

static

split

flag

thresh

(c) 5 MiB clients, light load

0 2 4 6 8 10 12 14
Web Time to First Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

static

split

flag

thresh

(d) 320 KiB clients, medium load

0 5 10 15 20 25 30
Web Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

static

split

flag

thresh

(e) 320 KiB clients, medium load

0 100 200 300 400 500
Bulk Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

static

split

flag

thresh

(f) 5 MiB clients, medium load

0 2 4 6 8 10 12 14
Web Time to First Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

static

split

flag

thresh

(g) 320 KiB clients, heavy load

0 5 10 15 20 25 30
Web Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

static

split

flag

thresh

(h) 320 KiB clients, heavy load

0 100 200 300 400 500
Bulk Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

static

split

flag

thresh

(i) 5 MiB clients, heavy load

Figure 3: Comparison of client performance for each throttling algorithm and vanilla Tor, under various load. All experiments use
950 web clients. We vary the load between “light,” “medium,” and “heavy” by setting the number of bulk clients to 25 for 3a–3c,
to 50 for 3d–3f, and to 100 for 3g–3i. The time to first byte indicates network responsiveness while the download time indicates
overall client performance. The parameters for each algorithm are tuned based on experiments presented in [33].

Overall, static throttling results in the least amount of
bulk traffic throttling while providing the lowest bene-
fit to web clients. For the bit-splitting algorithm, we
see improvements over static throttling for web clients
for both time to first byte and overall download times,
while download times for bulk clients are also slightly
increased. Flagging and threshold throttling perform
somewhat more aggressive throttling of bulk traffic and
therefore also provide the greatest improvements in web
client performance.

We find that each algorithm is effective at throttling
bulk clients independent of network load, as evident in
Figures 3c, 3f and 3i. However, performance benefits for
web clients vary slightly as the network load changes.
When the number of bulk clients is halved, throughput
in Figure 3b is fairly similar across algorithms. How-

ever, when the number of bulk clients is doubled, re-
sponsiveness in Figure 3g and throughput in Figure 3h
for both the static throttling and the adaptive bit-splitting
algorithm lag behind the performance of the flagging and
threshold algorithms. Static throttling would likely re-
quire a reconfiguration of throttling parameters while bit-
splitting adjusts the throttle rate less effectively than our
flagging and threshold algorithms.

As seen in Figures 3a, 3d, and 3g, as the load
changes, the strengths of each algorithm become appar-
ent. The flagging and threshold algorithms stand out as
the best approaches for both web client responsiveness
and throughput, and Figures 3c, 3f, and 3i show that
they are also most aggressive at throttling bulk clients.
The flagging algorithm appears very effective at accu-
rately classifying bulk connections regardless of network

8

USENIX Association 	 21st USENIX Security Symposium  357

vanilla static split flag thresh
lig

ht
Data (GiB) 88.3 80.3 78.3 72.1 69.8
Web (%) 74.5 83.7 85.9 92.7 90.1
Bulk (%) 25.5 16.3 14.1 7.3 9.9

m
ed

iu
m Data (GiB) 92.2 88.6 84.7 77.7 76.3

Web (%) 65.8 72.4 75.0 86.2 82.8
Bulk (%) 34.2 27.6 25.0 13.8 17.2

he
av

y Data (GiB) 94.7 91.1 85.0 81.7 85.0
Web (%) 55.8 60.5 64.3 75.4 71.2
Bulk (%) 44.2 39.5 35.7 24.6 28.8

Table 1: Total data downloaded in our simulations by client
type. Throttling reduces the bulk traffic share of the load on the
network. The flagging algorithm is the best at throttling bulk
traffic under light, medium, and heavy loads of 25, 50, and 100
bulk clients, respectively.

load. The threshold algorithm maximizes web client per-
formance in our simulations among all loads and all al-
gorithms tested, since it effectively throttles the worst
bulk clients while utilizing extra bandwidth when possi-
ble. Both the threshold and flagging algorithms perform
well over all network loads tested, and their usage in Tor
would require little-to-no maintenance while providing
significant performance improvements for web clients.

Aggregate download statistics are shown in Table 1.
The results indicate that we are approximating the load
distribution measured by McCoy et al. [38] reasonably
well. The data also indicates that as the number of
bulk clients in our simulation increases, so does the total
amount of data downloaded and the bulk fraction of the
total as expected. The data also shows that all throttling
algorithms reduce the total network load. Static throt-
tling reduces load the least, while our adaptive flagging
algorithm is both the best at reducing both overall load
and the bulk percentage of network traffic. Each of our
adaptive algorithms are better at reducing load than static
throttling, due to their ability to adapt to network dynam-
ics. The relative difference between each algorithm’s ef-
fectiveness at reducing load roughly corresponds to the
relative difference in web client performance in our ex-
periments, as we discussed above.
Discussion. The best algorithm for Tor depends on mul-
tiple factors. Although not maximizing web client per-
formance, bit-splitting is the simplest, the most efficient,
and the most network neutral approach (every connec-
tion is allowed the same portion of a guard’s capacity).
This “subtle” or “delicate” approach to throttling may be
favorable if supporting multiple client behaviors is de-
sirable. Conversly, the flagging algorithm may be used
to identify a specific class of traffic and throttle it ag-
gressively, creating the potential for the largest increase
in performance for unthrottled traffic. We are currently
exploring improvements to our statistical classification
techniques to reduce false positives and to improve the

control over traffic of various types. For these reasons,
we feel the bit-splitting and flagging algorithms will be
the most useful in various situations. We suggest that
perhaps bit-splitting is the most appropriate throttling al-
gorithm to use initially, even if something more aggres-
sive is desirable in the long term.

While requiring little maintenance, our algorithms
were designed to use only local relay information.
Therefore, they are incrementally deployable while re-
lay operators may choose the desired throttling algorithm
independent of others. Our algorithms are already imple-
mented in Tor and software patches are available [5].

5 Analysis and Discussion

Having shown the performance benefits of throttling bulk
clients in Section 4, we now analyze the security of
throttling against adversarial attacks on anonymity. We
will discuss the direct impact of throttling on anonymity:
what an adversary can learn when guards throttle clients
and how the information leaked affects the anonymity of
the system. We lastly discuss potential strategies clients
may use to elude the throttles.

Before exploring practical attacks, we introduce two
techniques an adversary may use to gather information
about the network given that a generic throttling algo-
rithm is enabled at all guards. Similar techniques used
for throughput-based traffic analysis outside the context
of throttling are discussed in detail by Mittal et al. [39].
Discussion about the security of our throttling algorithms
in the context of practical attacks will follow.

5.1 Gathering Information
Our analysis uses the following terminology. At time t,
the throughput of a connection between a client and a
guard is λt , the rate at which the client will be throttled is
αt , and the allowed data burst is β . Note that, as consis-
tent with our algorithms, the throttle rate may vary over
time but the burst is a static system-wide parameter.
Probing Guards. Using the above terminology, a con-
nection is throttled if, over the last s seconds, its through-
put exceeds the allowed initial burst and the long-term
throttle rate:

t

∑
k=t−s

(λk)≥ β +
t

∑
k=t−s

(αk) (1)

A client may perform a simple technique to probe a spe-
cific guard node and determine the rate at which it gets
throttled. The client may open a single circuit through
the guard, selecting other high-bandwidth relays to en-
sure that the circuit does not contain a bottleneck. Then,
it may download a large file and observe the change in
throughput after receiving a burst of β payload bytes.

9

358  21st USENIX Security Symposium	 USENIX Association

0 10 20 30 40 50 60
Time (m)

0

5

10

15

20

25

30

35

40
Th

ro
ug

hp
ut

(K
iB

ps
)

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Entropy Lost (bits)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

static

split

flag

thresh

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Entropy Lost (bits)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

static

split

flag

thresh

(c)

Figure 4: 4a: Client’s may discover the throttle rate by probing guards. 4b: Information leaked by learning circuit throughputs.
4c: Information leaked by learning guards’ throttle rates.

If the first β bytes are received at time t1 and the
download finishes at time t2 ≥ t1, the throttle rate at any
time t in this interval can be approximated by the mean
throughput leading up to t:

∀t ∈ [t1, t2], αt ≈
∑t

k=t1 (λk)

t − t1
(2)

Therefore, αt2 approximates the actual throttle rate. Note
that this approximation may under-estimate the actual
throttle rate if the throughput falls below the throttle rate
during the measured interval.

We simulate probing in Shadow [2, 31] to show its ef-
fectiveness against the static throttling algorithm. As ap-
parent in Figure 4a, the throttle rate was configured at 5
KiB/s and the burst at 2 MiB. With enough resources, an
adversary may probe every guard node to form a com-
plete list of throttle rates.
Testing Circuit Throughput. A web server may deter-
mine the throughput of a connecting client’s circuit by
using a technique similar to that presented by Hopper
et al. [30]. When the server gets an HTTP request from
a client, it may inject either special JavaScript or a large
amount of garbage HTML into a form element included
in the response. The injected code will trigger a second
client request after the original response is received. The
server may adjust the amount of returned data and mea-
sure the time between when it sent the first response and
when it received the second request to approximate the
throughput of the circuit.

5.2 Adversarial Attacks
We now explore several adversarial attacks in the con-
text of client throttling algorithms, and how an adversary
may use those attacks to learn information and affect the
anonymity of a client.
Attack 1. In our first attack, an adversary obtains a dis-
tribution on throttle rates by probing all Tor guard relays.

We assume the adversary has resources to perform such
an attack, e.g. by utilizing a botnet or other distributed
network such as PlanetLab [13]. The adversary then ob-
tains access to a web server and tests the throughput of a
target circuit. With this information, the adversary may
reduce the anonymity set of the circuit’s potential guards
by eliminating those whose throttle rate is inconsistent
with the measured circuit throughput.

This attack is somewhat successful against all of
the throttling algorithms we have described. For bit-
splitting, the anonymity set of possible guard nodes will
consist of those whose bandwidth and number of active
connections would throttle to the throughput of the target
circuit or higher. By running the attack repeatedly over
time, an intersection will narrow the set to those whose
throttle rate is consistent with the target circuit through-
put at all measured times.

The flagging algorithm throttles all flagged connec-
tions to the same rate system-wide. (We assume here
that the set of possible guards is already narrowed to
those whose bandwidth is consistent with the target cir-
cuit’s throughput irrespective of throttling.) A circuit
whose throughput matches the system-wide rate is either
flagged at some guard or just coincidentally matches the
system-wide rate and is not flagged because its EWMA
has remained below the splitRate (see Algorithm 2)
for its guard long enough to not be flagged or become
unflagged. The throttling rate is thus not nearly as infor-
mative as for bit-splitting. If we run the attack repeatedly
however, we can eliminate from the anonymity set any
guard such that the EWMA of the target circuit should
have resulted in a throttling but did not. Also, if the
EWMA drops to the throttling rate at precise times (ig-
noring unusual coincidence), we can eliminate any guard
that would not have throttled at precisely those times.
Note that this determination must be made after the fact
to account for the burst bucket of the target circuit, but it
can still be made precisely.

10

USENIX Association 	 21st USENIX Security Symposium  359

The potential for information going to the attacker in
the threshold algorithm is a combination of the potential
in each of the above two algorithms. The timing of when
a circuit gets throttled (or does not when it should have
been) can narrow the anonymity set of entry guards as in
the flagging algorithm. Once the circuit has been throt-
tled, then any fluctuation in the throttling rate that sepa-
rates out the guard nodes can be used to further narrow
the set. Note that if a circuit consistently falls below the
throttling rate of all guards, an attacker can learn nothing
about its possible entry guard from this attack. Attack 2
considerably improves the situation for the adversary.

We simulated this attack in Shadow [2, 31]. An ad-
versary probes all guards and forms a distribution on the
throttle rate at which a connection would become throt-
tled. We then form a distribution on circuit throughputs
over each minute, and remove any guard whose throttle
rate is outside a range of one standard deviation of those
throughputs. Since there are 50 guards, the maximum
entropy is log2(50) ≈ 5.64; the entropy lost by this at-
tack for various throttling algorithms relative to vanilla
Tor is shown in Figure 4b. We can see that the static
algorithm actually loses no information, since all con-
nections are throttled to the same rate, while vanilla Tor
without throttling actually loses more information than
any of the throttling algorithms. Therefore, the distri-
bution on guard bandwidth leaks more information than
throttled circuits’ throughputs.
Attack 2. As in Attack 1, the adversary again obtains
a distribution on throttle rates of all guards in the sys-
tem. However, the adversary slightly modifies its circuit
testing by continuously sending garbage responses. The
adversary adjusts the size of each response so that it may
compute the throughput of the circuit over time and ap-
proximates the rate at which the circuit is throttled. By
comparing the estimated throttle rate to the distribution
on guard throttle rates, the adversary may again reduce
the anonymity set by removing guards whose throttle rate
is inconsistent with the estimated circuit throttle rate.

For bit-splitting, by raising and lowering the rate of
garbage sent, the attacker can match this with the throt-
tled throughput of each guard. The only guards in the
anonymity set would be those that share the same throt-
tling rate that matches the flooded circuit’s throughput
at all times. To maximize what he can learn from flag-
ging, the adversary should raise the EWMA of the target
circuit at a rate that will allow him to maximally differ-
entiate guards with respect to when they would begin to
throttle a circuit. If this does not uniquely identify the
guard, he can also use the rate at which he diminishes
garbage traffic to try to learn more from when the tar-
get circuit stops being throttled. As in Attack 1 from the
threshold algorithm, the adversary can match the signa-
ture of both fluctuations in throttling rate over time and

the timing of when throttling is applied to narrow the set
of possible guards for a target circuit.

We simulated this attack using the same data set as
Attack 1. Figure 4c shows that a connection’s throttle
rate generally leaks slightly more information than its
throughput. As in Attack 1, guards’ bandwidth in our
simulation leaks more information than the throttle rate
of each connection for all but the flagging algorithm.
Attack 3. An adversary controlling two malicious
servers can link streams of a client connecting to each
of them at the same time. The adversary uses the circuit
testing technique to send a response of β

2 bytes in size to
each of two requests. Then, small “test” responses are re-
turned after receiving the clients’ second requests. If the
throughput of each circuit when downloading the “test”
response is consistently throttled, then it is possible that
the requests are coming from the same client. This at-
tack relies on the observation that all traffic on the same
client-to-guard connection will be throttled at the same
time since each connection has a single burst bucket.

This attack is intended to indicate if and when a circuit
is throttled, rather than the throttling rate. It will there-
fore not be effective against bit splitting, but will work
against flagging or threshold throttling.
Attack 4. Our final attack is an active denial of service
attack that can be used to confirm a circuit’s entry guard
with high probability. In this attack, the adversary at-
tempts to adjust the throttle rate of each guard in order
to identify whether it carries a target circuit. An adver-
sary in control of a malicious server may monitor the
throughput of a target circuit over time, and may then
open a large number of connections to each guard node
until a decrease in the target circuit’s throughput is ob-
served. To confirm that a guard is on the target circuit,
the adversary can alternate between opening and closing
guard connections and continue to observe the through-
put of the target circuit. If the throughput is consistent
with the adversary’s behavior, it has found the circuit’s
guard with high probability.

The one thing not controlled by the adversary in
Attack 2 is a guard’s criterion for throttling at a
given time – splitRate for bit splitting and flagging
and selectIndex for threshold throttling (see Algo-
rithms 1, 2, and 3). All of these are controlled by the
number of circuits at the guard, which Attack 4 places
under the control of the adversary. Thus, under Attack 4,
the adversary will have precise control over which cir-
cuits get throttled at which rate at all times and can there-
fore uniquely determine the entry guard.

Note that all of Attacks 1, 2, and 4 are intended to
learn about the possible entry guards for an attacked cir-
cuit. Even if completely successful, this does not fully
de-anonymize the circuit. But since guards themselves
are chosen for persistent use by a client, they can add

11

360  21st USENIX Security Symposium	 USENIX Association

to pseudonymous profiling and can be combined with
other information, such as that uncovered by Attack 3,
to either reduce anonymity of the client or build a richer
pseudonymous profile of it.

5.3 Eluding Throttles

A client may try multiple strategies to avoid being throt-
tled. A client may instrument its downloading applica-
tion and the Tor software to send application data over
multiple Tor circuits. However, these circuits will still be
subject to throttling since each of them uses the same
throttled TCP connection to the guard. A client may
avoid this by attempting to create multiple TCP con-
nections to the guard. In this case, the guard may eas-
ily recognize that the connection requests come from
the same client and can either deny the establishment
of multiple connections or aggregate the accounting of
all connections to that client. A client may use multi-
ple guard nodes and send application data over each sep-
arate guard connection, but the client significantly de-
creases its anonymity by subverting the guard mecha-
nism [58, 59]. Finally, the client could run and use its
own guard node and avoid throttling itself. Although this
strategy may actually benefit the network since it reduces
the amount of Tor’s capacity consumed by the client, the
cost of running a guard may be sufficient to prevent its
wide-scale adoption.

Its important to note that the “cheating” techniques
outlined above do not decrease the security or perfor-
mance below what unthrottled Tor provides. At worst,
even if all clients somehow manage to elude the throttles,
performance and security both regress to that of unthrot-
tled Tor. In other words, throttling can only improve the
situation whether or not “cheating” occurs in practice.

6 Related Work

6.1 Improving Tor’s Performance

Recent work on improving Tor’s performance covers a
wide range of topics, which we now enumerate.
Incentives. A recognition that Tor is limited by its band-
width resources has resulted in several proposals for de-
veloping performance incentives for volunteering band-
width as a Tor relay. New relays would provide ad-
ditional resources and improve network performance.
Ngan et al. explore giving better performance to re-
lays that attain the fast and stable relay flags [43].
These relays are marked with a “gold star” in the di-
rectory. Gold star relays may build circuits through
other gold star relays, improving download performance.
This scheme has a severe anonymity problem: any relay

on a gold star circuit can determine with absolute cer-
tainty that the client is also a gold star relay. Jansen
et al. explore reducing anonymity problems from the
gold star approach by distributing anonymous tickets to
all clients [32]. Relays then collect tickets from clients in
exchange for prioritized service and can prioritize their
own traffic in return. However, a centralized bank lim-
its the allowable number of tickets in circulation, leading
to spending strategies that may reduce anonymity. Fi-
nally, Moore et al. independently explored using static
throttling configurations as a way to produce incentives
for users to run relays in Tortoise [41]. Tortoise’s throt-
tling configurations must be monitored as network load
changes, and anonymity with Tortoise is slightly worse
than with the gold star scheme: the intersection attack
is improved since gold star nodes retain their gold stars
for several months after dropping from the consensus,
whereas Tortoise only unthrottles nodes that are in the
current consensus.
Relay Selection. Snader and Borisov [51] suggest an
algorithm where relays opportunistically measure their
peers’ performance, allowing clients to use empirical ag-
gregations to select relays for their circuits. A user-
tunable mechanism for selecting relays is built into the
algorithm: clients may adjust how often the fast re-
lays get chosen, trading off anonymity and performance
while not significantly reducing either. It was shown
that this approach increases accuracy of available band-
width estimates and reduces reaction time to changes
in network load while decreasing vulnerabilities to low-
resource routing attacks. Wang et al. [57] propose a
congestion-aware path selection algorithm where clients
choose paths based on information gathered during op-
portunistic and active measurements of relays. Clients
use latency as an indication of congestion, and reject con-
gested relays when building circuits. Improvements were
realized for a single client, but its unclear how the new
strategy would affect the network if used by all clients.
Scheduling. Alternative scheduling approaches have re-
cently gained interest. Tang and Goldberg [52] sug-
gest each relay track the number of packets it sched-
ules for each circuit. After a configurable time-period,
packet counts are exponentially decayed so that data
sent more recently has a greater influence on the packet
count. For each scheduling decision, the relay flushes
the circuit with the lowest cell count, favoring circuits
that have not sent much data recently while preventing
bursty traffic from significantly affecting scheduling pri-
orities. Jansen et al. [32] investigate new schedulers
based on the proportional differentiation model [21] and
differentiable service classes. Relays track the delay of
each service class and prioritize scheduling so that rel-
ative delays are proportional to configurable differenti-
ation parameters, but the schedulers require a mecha-

12

USENIX Association 	 21st USENIX Security Symposium  361

nism (tickets) for differentiating traffic into classes. Fi-
nally, Tor’s round-robin TCP read/write schedulers have
recently been noted as a source of unfairness for relays
that have an unbalanced number of circuits per TCP con-
nection [54]. Tschorsch and Scheuermann suggest that a
round-robin scheduler could approximate a max-min al-
gorithm [24] by choosing among all circuits rather than
all TCP connections. More work is required to determine
the suitability of this approach in Tor.
Congestion. Improving performance and reducing con-
gestion has been studied by taking an in-depth look at
Tor’s circuit and stream windows [7]. AlSabah et al. ex-
periment with dynamically adjusting window sizes and
find that smaller window sizes effectively reduce queuing
delays, but also decrease bandwidth utilization and there-
fore hurt overall download performance. As a result, they
implement and test an algorithm from ATM networks
called the N23 scheme, a link-by-link flow control al-
gorithm. Their adaptive N23 algorithm propagates infor-
mation about the available queue space to the next up-
stream router while dynamically adjusting the maximum
circuit queue size based on outgoing cell buffer delays,
leading to a quicker reaction to congestion. Their experi-
ments indicate slightly improved response and download
times for 300 KiB files.
Transport. Tor’s performance has also been analyzed
at the socket level, resulting in suggestions for a UDP-
based mechanism for data delivery [56] or using a user-
level TCP stack over a DTLS tunnel [47]. While Tor cur-
rently multiplexes all circuits over a single kernel TCP
stream to control information leakage, the TCP-over-
DTLS approach suggests separate user TCP streams for
each circuit and sends all TCP streams between two re-
lays over a single kernel DTLS-secured [40] UDP socket.
As a result, a circuit’s TCP window is not unfairly re-
duced when other high-bandwidth circuits cause queuing
delays or dropped packets.

6.2 Bandwidth Management

Our approach to bandwidth management in this paper
has been to use a token bucket rate-limiter, a classic traf-
fic shaping mechanism [55], to ensure that traffic con-
forms to the desired policies. We now briefly discuss
other approaches to bandwidth management.
Quality of Service. Networks often want to provide
a certain quality of service (QoS) to their subscribers.
There are two main approaches to QoS: Integrated Ser-
vices (IntServ) and Differentiated Services (DiffServ).

In the IntServ [11, 50] model, applications request re-
sources from the network using the resource reservation
protocol [60]. Since the network must maintain the ex-
pected quality for its current commitments, it must en-
sure the load of the network remains below a certain

level. Therefore, new requests may be denied if the net-
work is unable to provide the resources requested. This
approach does not work well in an anonymity network
like Tor since clients would be able to request unbounded
resources without accountability and the network would
be unable to fulfill most requests due to bottlenecks.

In the DiffServ [9] model, applications notify the net-
work of the desired service type by setting bits in the IP
header. Routers then tailor performance toward an ex-
pected notion of fairness (e.g. max-min fairness [24, 34]
or proportional fairness [20,21,35]). Leaking this type of
information about a client’s traffic flows is a significant
risk to privacy and ways to provide differentiated service
without such risk do not currently exist.
Scheduling. Scheduling algorithms, such as fair queu-
ing [15] and round robin [24, 25], affect the order in
which packets are sent out of a given node, but gen-
erally do not change the total number of packets being
sent. Therefore, unless the sending rate is explicitly re-
duced, the network will still contain similar load regard-
less of the relative priority of individual packets. As ex-
plained in Section 1 and Section 3, scheduling does not
directly reduce network congestion, but may cooperate
with other bandwidth management techniques to achieve
the desired performance characteristics of traffic classes.

7 Conclusion

This paper analyzes client throttling by guard relays to
reduce Tor network bottlenecks and improve responsive-
ness. We explore static throttling configurations while
designing, implementing, and evaluating three new throt-
tling algorithms that adaptively select which connections
get throttled and dynamically adjust the throttle rate of
each connection. Our adaptive throttling techniques use
only local relay information and are considerably more
effective than static throttling since they do not require
re-evaluation of throttling parameters as network load
changes. We find that client throttling is effective at
both improving performance for interactive clients and
increasing Tor’s network resilience. We also analyzed
the effects throttling has on anonymity and discussed the
security of our algorithms against realistic adversarial at-
tacks. We find that throttling improves anonymity: a
guard’s bandwidth leaks more information about its cir-
cuits when throttling is disabled.
Future Work. There are many directions for future re-
search. Our current algorithms may be modified to op-
timize performance by improving classification of bulk
traffic, considering alternative strategies for distinguish-
ing web from bulk connections. Additional approaches
to rate-tuning are also of interest, e.g. it may be possi-
ble to further improve web client performance using pro-
portional fairness to schedule traffic on circuits. Also of

13

362  21st USENIX Security Symposium	 USENIX Association

interest is an analysis of throttling in the context of con-
gestion and flow control to determine the interrelation
and effects the algorithms have on each other. Finally, a
deeper understanding of our algorithms and their effects
on client performance would be possible through analy-
sis on the live Tor network.
Acknowledgements. We thank Roger Dingledine for
helpful discussions regarding this work and the anony-
mous reviewers for their feedback and suggestions. This
research was supported by NFS grant CNS-0917154,
ONR, and DARPA.

References
[1] The Libevent Event Notification Library, Version 2.0. http:

//monkey.org/˜provos/libevent/.

[2] The Shadow Simulator. http://shadow.cs.umn.edu/.

[3] The Tor Metrics Portal. http://metrics.torproject.
org/.

[4] The Tor Project. https://www.torproject.org/.

[5] Throttling Algorithms Code Repository. https://github.
com/robgjansen/torclone.

[6] ACQUISTI, A., DINGLEDINE, R., AND SYVERSON, P. On the
Economics of Anonymity. In Proceedings of Financial Cryptog-
raphy (January 2003), R. N. Wright, Ed., Springer-Verlag, LNCS
2742.

[7] ALSABAH, M., BAUER, K., GOLDBERG, I., GRUNWALD, D.,
MCCOY, D., SAVAGE, S., AND VOELKER, G. DefenestraTor:
Throwing out Windows in Tor. In Proceedings of the 11th Inter-
national Symposium on Privacy Enhancing Technologies (2011).

[8] BACK, A., MOLLER, U., AND STIGLIC, A. Traffic Analysis
Attacks and Trade-offs in Anonymity Providing Systems. In Pro-
ceedings of Information Hiding Workshop (2001), pp. 245–257.

[9] BLAKE, S., BLACK, D., CARLSON, M., DAVIES, E., WANG,
Z., AND WEISS, W. An Architecture for Differentiated Services,
1998.

[10] BORISOV, N., DANEZIS, G., MITTAL, P., AND TABRIZ, P. De-
nial of Service or Denial of Security? In Proceedings of the
14th ACM conference on Computer and communications secu-
rity (2007), ACM, pp. 92–102.

[11] BRADEN, B., CLARK, D., AND SHENKER, S. Integrated Ser-
vice in the Internet Architecture: an Overview.

[12] CHEN, F., AND PERRY, M. Improving Tor Path Selection.
https://gitweb.torproject.org/torspec.git/
blob/HEAD:/proposals/151-path-selection-
improvements.txt.

[13] CHUN, B., CULLER, D., ROSCOE, T., BAVIER, A., PETER-
SON, L., WAWRZONIAK, M., AND BOWMAN, M. PlanetLab: an
Overlay Testbed for Broad-coverage Services. SIGCOMM Com-
puter Communication Review 33 (2003), 3–12.

[14] CROTTI, M., DUSI, M., GRINGOLI, F., AND SALGARELLI, L.
Traffic Classification Through Simple Statistical Fingerprinting.
SIGCOMM Comput. Commun. Rev. 37 (January 2007), 5–16.

[15] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and
Simulation of a Fair Queueing Algorithm. In ACM SIGCOMM
Computer Communication Review (1989), vol. 19, ACM, pp. 1–
12.

[16] DINGLEDINE, R. Iran Blocks Tor. https://blog.
torproject.org/blog/iran-blocks-tor-tor-
releases-same-day-fix.

[17] DINGLEDINE, R. Research problem: adaptive throttling of Tor
clients by entry guards. https://blog.torproject.
org/blog/research-problem-adaptive-
throttling-tor-clients-entry-guards.

[18] DINGLEDINE, R., AND MATHEWSON, N. Anonymity Loves
Company: Usability and the Network Effect. In Proceedings
of the Fifth Workshop on the Economics of Information Security
(WEIS 2006), Cambridge, UK, June (2006).

[19] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The Second-Generation Onion Router. In Proceedings of the 13th
USENIX Security Symposium (2004).

[20] DOVROLIS, C., AND RAMANATHAN, P. A Case for Rela-
tive Differentiated Services and the Proportional Differentiation
Model. Network, IEEE 13, 5 (1999), 26–34.

[21] DOVROLIS, C., STILIADIS, D., AND RAMANATHAN, P. Propor-
tional Differentiated Services: Delay Differentiation and Packet
Scheduling. In Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munication (1999), pp. 109–120.

[22] EVANS, N., DINGLEDINE, R., AND GROTHOFF, C. A Practical
Congestion Attack on Tor Using Long Paths. In Proceedings of
the 18th USENIX Security Symposium (2009), pp. 33–50.

[23] GOLDSCHLAG, D. M., REED, M. G., AND SYVERSON, P. F.
Hiding Routing Information. In Proceedings of Information Hid-
ing Workshop (1996), pp. 137–150.

[24] HAHNE, E. Round-robin Scheduling for Max-min Fairness in
Data Networks. IEEE Journal on Selected Areas in Communica-
tions 9, 7 (1991), 1024–1039.

[25] HAHNE, E., AND GALLAGER, R. Round-robin Scheduling for
Fair Flow Control in Data Communication Networks. NASA
STI/Recon Technical Report N 86 (1986), 30047.

[26] HARDIN, G. The Tragedy of the Commons. Science 162, 3859
(December 1968), 1243–1248.

[27] HERNANDEZ-CAMPOS, F., JEFFAY, K., AND SMITH, F. Track-
ing the Evolution of Web Traffic: 1995-2003. In The 11th
IEEE/ACM International Symposium on Modeling, Analysis, and
Simulation of Computer Telecommunications Systems (2003),
pp. 16–25.

[28] HINTZ, A. Fingerprinting Websites using Traffic Analysis.
In Proceedings of Privacy Enhancing Technologies Workshop
(2002), pp. 171–178.

[29] HJELMVIK, E., AND JOHN, W. Statistical Protocol Identification
with SPID: Preliminary Results. In Swedish National Computer
Networking Workshop (2009).

[30] HOPPER, N., VASSERMAN, E., AND CHAN-TIN, E. How Much
Anonymity Does Network Latency Leak? ACM Transactions on
Information and System Security 13, 2 (2010), 1–28.

[31] JANSEN, R., AND HOPPER, N. Shadow: Running Tor in a Box
for Accurate and Efficient Experimentation. In Proceedings of
the 19th Network and Distributed System Security Symposium
(2012).

[32] JANSEN, R., HOPPER, N., AND KIM, Y. Recruiting New
Tor Relays with BRAIDS. In Proceedings of the 17th ACM
Conference on Computer and Communications Security (2010),
pp. 319–328.

[33] JANSEN, R., SYVERSON, P., AND HOPPER, N. Throttling Tor
Bandwidth Parasites. Tech. Rep. 11-019, University of Min-
nesota, 2011.

[34] KATEVENIS, M. Fast Switching and Fair Control of Congested
Flow in Broadband Networks. Selected Areas in Communica-
tions, IEEE Journal on 5, 8 (1987), 1315–1326.

14

USENIX Association 	 21st USENIX Security Symposium  363

[35] KELLY, F., MAULLOO, A., AND TAN, D. Rate Control for
Communication Networks: Shadow Prices, Proportional Fairness
and Stability. Journal of the Operational Research society 49, 3
(1998), 237–252.

[36] KOHNEN, C., UBERALL, C., ADAMSKY, F., RAKOCEVIC, V.,
RAJARAJAN, M., AND JAGER, R. Enhancements to Statis-
tical Protocol IDentification (SPID) for Self-Organised QoS in
LANs. In Computer Communications and Networks (ICCCN),
2010 Proceedings of 19th International Conference on (2010),
IEEE, pp. 1–6.

[37] LOESING, K. Measuring the Tor network: Evaluation of client
requests to directories. Tech. rep., Tor Project, 2009.

[38] MCCOY, D., BAUER, K., GRUNWALD, D., KOHNO, T., AND
SICKER, D. Shining Light in Dark Places: Understanding the
Tor Network. In Proceedings of the 8th International Symposium
on Privacy Enhancing Technologies (2008), pp. 63–76.

[39] MITTAL, P., KHURSHID, A., JUEN, J., CAESAR, M., AND
BORISOV, N. Stealthy Traffic Analysis of Low-Latency Anony-
mous Communication Using Throughput Fingerprinting. In Pro-
ceedings of the 18th ACM conference on Computer and Commu-
nications Security (October 2011).

[40] MODADUGU, N., AND RESCORLA, E. The Design and Imple-
mentation of Datagram TLS. In Proceedings of the 11th Network
and Distributed System Security Symposium (2004).

[41] MOORE, W. B., WACEK, C., AND SHERR, M. Exploring the
Potential Benefits of Expanded Rate Limiting in Tor: Slow and
Steady Wins the Race With Tortoise. In Proceedings of 2011
Annual Computer Security Applications Conference (December
2011).

[42] MURDOCH, S., AND DANEZIS, G. Low-cost Traffic Analysis
of Tor. In IEEE Symposium on Security and Privacy (2005),
pp. 183–195.

[43] NGAN, T.-W. J., DINGLEDINE, R., AND WALLACH, D. S.
Building Incentives into Tor. In The Proceedings of Financial
Cryptography (2010).

[44] ØVERLIER, L., AND SYVERSON, P. Locating Hidden Servers.
In Proceedings of the 2006 IEEE Symposium on Security and Pri-
vacy (May 2006), IEEE CS.

[45] RAMACHANDRAN, S. Web Metrics: Size and Num-
ber of Resources. http://code.google.com/speed/
articles/web-metrics.html, 2010. Accessed February,
2012.

[46] RAYMOND, J. Traffic Analysis: Protocols, Attacks, Design Is-
sues, and Open Problems. In Designing Privacy Enhancing Tech-
nologies (2001), pp. 10–29.

[47] REARDON, J., AND GOLDBERG, I. Improving Tor using a TCP-
over-DTLS tunnel. In Proceedings of the 18th USENIX Security
Symposium (2009).

[48] REED, M., SYVERSON, P., AND GOLDSCHLAG, D. Anony-
mous Connections and Onion Routing. IEEE Journal on Selected
Areas in Communications 16, 4 (1998), 482–494.

[49] SERJANTOV, A., AND SEWELL, P. Passive Attack Analysis
for Connection-based Anonymity Systems. Computer Security–
ESORICS (2003), 116–131.

[50] SHENKER, S., PARTRIDGE, C., AND GUERIN, R. RFC 2212:
Specification of Guaranteed Quality of Service, Sept. 1997. Sta-
tus: PROPOSED STANDARD.

[51] SNADER, R., AND BORISOV, N. A Tune-up for Tor: Improving
Security and Performance in the Tor Network. In Proceedings of
the 16th Network and Distributed Security Symposium (2008).

[52] TANG, C., AND GOLDBERG, I. An Improved Algorithm for Tor
Circuit Scheduling. In Proceedings of the 17th ACM Conference
on Computer and Communications Security (2010), pp. 329–339.

[53] TSCHORSCH, F., AND SCHEUERMANN, B. Refill In-
tervals. https://gitweb.torproject.org/
torspec.git/blob/HEAD:/proposals/183-
refillintervals.txt.

[54] TSCHORSCH, F., AND SCHEUERMANN, B. Tor is Unfair–and
What to Do About It, 2011.

[55] TURNER, J. New directions in communications(or which way to
the information age?). IEEE communications Magazine 24, 10
(1986), 8–15.

[56] VIECCO, C. UDP-OR: A Fair Onion Transport Design. In
Proceedings of Hot Topics in Privacy Enhancing Technologies
(2008).

[57] WANG, T., BAUER, K., FORERO, C., AND GOLDBERG, I.
Congestion-aware Path Selection for Tor. In Proceedings of Fi-
nancial Cryptography (2012).

[58] WRIGHT, M., ADLER, M., LEVINE, B. N., AND SHIELDS, C.
An Analysis of the Degradation of Anonymous Protocols. In Pro-
ceedings of the Network and Distributed Security Symposium -
NDSS ’02 (February 2002), IEEE.

[59] WRIGHT, M., ADLER, M., LEVINE, B. N., AND SHIELDS, C.
Defending Anonymous Communication Against Passive Logging
Attacks. In Proceedings of the 2003 IEEE Symposium on Security
and Privacy (May 2003), pp. 28–43.

[60] ZHANG, L., DEERING, S., ESTRIN, D., SHENKER, S., AND
ZAPPALA, D. Rsvp: A new resource reservation protocol. Net-
work, IEEE 7, 5 (1993), 8–18.

15

USENIX Association 	 21st USENIX Security Symposium  365

Chimera: A Declarative Language for Streaming Network Traffic Analysis

Kevin Borders
National Security Agency
krborde@tycho.nsa.gov

Jonathan Springer
Reservoir Labs

springer@reservoir.com

Matthew Burnside
National Security Agency
msburns@tycho.nsa.gov

Abstract
Intrusion detection systems play a vital role in network
security. Central to these systems is the language used to
express policies. Ideally, this language should be pow-
erful, implementation-agnostic, and cross-platform. Un-
fortunately, today’s popular intrusion detection systems
fall short of this goal. Each has their own policy lan-
guage in which expressing complicated logic requires
implementation-specific code. Database systems have
adapted SQL to handle streaming data, but have yet to
achieve the efficiency and flexibility required for com-
plex intrusion detection tasks.

In this paper, we introduce Chimera, a declara-
tive query language for network traffic processing that
bridges the gap between powerful intrusion detection
systems and a simple, platform-independent SQL syn-
tax. Chimera extends streaming SQL languages to better
handle network traffic by adding structured data types,
first-class functions, and dynamic window boundaries.
We show how these constructs can be applied to real-
world scenarios, such as side-jacking detection and DNS
feature extraction. Finally, we describe the implementa-
tion and evaluation of a compiler that translates Chimera
queries into low-level code for the Bro event language.

1 Introduction

Intrusion detection systems (IDSs) continue to play an
essential role in network security. One critical aspect of
IDS design is how users express analytic tasks. In partic-
ular, policy should be separate from the mechanism [21].
This leads to simpler policies that are easier to write and
easier to share because they have fewer implementation
constraints. Separation also increases interoperability,
which moves us closer to the goal of having a standard-
ized language for network traffic analysis.

Unfortunately, current IDSs only partially separate
policy from mechanism. They each have their own
domain-specific languages, which are incompatible with
one other. Snort uses a declarative rule language for
defining signatures [23], which is limited in its ability

to express stateful analytics. Bro [21] offers a more pow-
erful (Turing complete) event language, but complex op-
erations require procedural programming and direct in-
teraction with data structures, which is cumbersome and
leads to dependency between policy and mechanism.

Database systems have been attacking this problem
from the opposite end. SQL is a powerful, declarative,
standard language, and recent work has extended it to
support streaming queries [1, 3, 19]. While these systems
are typically too slow to serve as an IDS, Gigascope [7]
adopts a more limited SQL-based language and has suc-
cessfully applied it to packet processing. Unfortunately,
Gigascope cannot express many of the complex analytic
tasks that are possible in Bro.

In this paper, we introduce Chimera, a declara-
tive query language for network traffic processing that
bridges the gap between powerful intrusion detection
platforms and simple, implementation-agnostic queries.
The goal is to provide an SQL-like syntax while main-
taining as much expressive power as possible, and with-
out significantly impacting performance. We achieve this
goal by implementing Chimera as an independent lan-
guage that is compiled down into low-level policies for
other platforms. For this paper, we have written a com-
piler1 that translates Chimera queries into the Bro event
language [21].

Chimera is similar to streaming SQL languages, but
has some additional features that make it better-suited for
handling network traffic. First, it supports structured data
types (lists and maps). This allows rows to more closely
reflect the structure of application-layer protocols, al-
most all of which contain structured data. Chimera also
makes dealing with these types easier by introducing a
SPLIT operator to break up lists into multiple rows, as
well as first-class functions that can be applied to data
structures. Chimera also improves upon streaming SQL
by introducing dynamic windows. Instead of enforcing
strict window specifications at the table level, such as
“range 60 minutes, slide 1 minute", Chimera allows win-
dow boundary computation using dynamic expressions,

1Visit http://www.chimera-query.org for more information about
obtaining the Chimera compiler source code.

366  21st USENIX Security Symposium	 USENIX Association

such as “UNTIL count() > 10". This makes it possible to
output aggregate results as soon as they are ready, which
is extremely important for intrusion prevention and ac-
tive response scenarios.

We motivate the design of Chimera by examining real-
world scenarios where detection requires complex state
tracking that is unavailable in a simple system like Snort
[23]. We look at existing work on detecting side-jacking
– an attack that steals a session ID from an HTTP cookie
[22] – and on finding malicious domains with the EX-
POSURE system [5]. We also consider two examples
of detecting DNS tunnels and identifying spam/phishing
servers. After describing the Chimera syntax, we present
example queries for these scenarios. When compared to
a previous Bro implementation [22], the query for side-
jacking demonstrates how analytics in the Chimera lan-
guage are very concise. The Chimera queries for extract-
ing features used by EXPOSURE [5] led us to identify
ambiguities in the original text, highlighting the need for
a standard network traffic analysis language.

In final part of the paper, we describe and evaluate the
implementation of a Chimera to Bro compiler. The com-
piler operates in two main stages: (1) it translates queries
into a relational algebra, and (2) it generates Bro event
language code. We compared the compiler’s output to
hand-optimized code for a number of queries by running
each side by side on real network traffic. In the worst-
case example, compiled code was 3% slower than hand-
written code due to extra copying and event handlers. We
plan to add optimizations to minimize these issue in the
future, but our experiments show that the compiler gener-
ates code that with almost the same performance as hand-
written code even it is current form.

The rest of the paper is laid out as follows. Section
2 motivates our work with examples of stateful analyt-
ics. Section 3 describes the Chimera language. Section
4 presents Chimera queries for example scenarios. Sec-
tion 5 describes the Bro compiler. Section 6 evaluates
teh compiler and discusses future optimizations. Finally,
section 7 covers related work and section 8 concludes.

2 Motivation: Stateful Network Analytics

As attacks continue to increase in sophistication, so
must analytics that detect them. Over time it is becom-
ing more and more difficult to characterize malicious be-
havior with simple Snort rules [23]. As a result, many
administrators rely on systems like Bro [21] that are able
to perform stateful analysis on high-level protocol fields,
rather than being constrained to individual packet or flow
analysis.

This section outlines a number of scenarios in which
simple filtering is not enough. The rest of the paper then

uses these scenarios to motivate the Chimera language
and its design. Keep in mind that the analytic techniques
presented in this section are not necessarily bulletproof,
or even practical in all situations. The point is not to
assess the quality of analytics, but to provide examples
of logical constructs that we would like to express in the
Chimera language.

2.1 Sidejacking
Sidejacking is a term used to describe the attack where a
hacker steals a session token from an unencrypted HTTP
cookie and then impersonates the legitimate user. This
attack is easy to pull off in a coffee-shop environment
where there is a public wireless network. Countermea-
sures include use of HTTPS, and are discussed in work
by Riley et al. [22].

Sidejacking can also be detected by monitoring net-
work traffic. An implementation of sidejacking detec-
tion has been written for Bro [26]. This script works in
the following way:

1. Group incoming HTTP requests by session ID in
cookie.

2. When a new request arrives, are the client IP and
User-Agent the same?

3. If not, then report sidejacking.
As you can see, the analytic logic is straightforward,

but implementation requires non-trivial maintenance of
client state on a per-cookie basis.

2.2 Malicious Domains
A recent research project called EXPOSURE introduced
a set of sixteen features for detecting malicious domain
names [5]. Some of these features could operate on a
single domain name, such as the percentage of numerical
characters. Many of the features, however, require state
tracking across multiple DNS packets. In this paper, we
examine some of EXPOSURE’s stateful features. In par-
ticular, we will focus on a subset of the DNS answer- and
TTL-based features:
• Number of distinct IP addresses per domain name
• Number of domains that share the same IP address
• Average TTL value
• Number of TTL value changes
These features all require parsing the DNS protocol.

They also require per-domain state tracking, and the sec-
ond feature needs additional per-IP state tracking.

The authors of EXPOSURE also identify time-based
features that we do not discuss here. It would be possi-
ble to adapt the change point detection (CPD) algorithms
used by EXPOSURE to run in the Chimera framework.
However, describing the implementation of complex al-
gorithms in a streaming model is outside of the scope of
this work, and is orthogonal to the design of Chimera.

USENIX Association 	 21st USENIX Security Symposium  367

2.3 DNS Tunnels
The DNS protocol is designed to resolve information
about domain names. However, it can also be used for
covert communication by storing data in the requested
domain name (e.g., <encoded data>.hacker.com) and
sending data back to the client inside of the IP address
field. While this is a low-bandwidth channel, the ubiq-
uity of the DNS protocol makes it likely to bypass fire-
walls even in restricted networks.

There are many ways to detect DNS tunnels, but we
will discuss a particular method here because it high-
lights an interesting analytic technique. In this method,
the following steps are taken to find DNS tunnels:

1. Keep track of all DNS response A records, indexing
by the A record IP address.

2. When a packet is seen going to an IP address, re-
move the corresponding DNS response record.

3. If no packet is ever sent to the A record IP (within
a window), increment a counter for the client and
server IP addresses from the DNS message.

4. Report tunneling for clients or servers that exceed a
threshold of orphaned responses.

This analysis logic is again very straightforward. It
assumes that IP address values in DNS responses from
tunnels will not actually be used as IP addresses, so most
of them will never see follow-up packets. Counting a
threshold will eliminate false positives from command-
line DNS look-ups (e.g., using the nslookup UNIX com-
mand) that do not have ensuing connections.

2.4 Phishing/Spam Detection
A lot of research has gone into phishing and spam detec-
tion. Some approaches look at message contents, while
others look at aggregate measurements like e-mail vol-
ume and rate of sending. Here, we will consider a de-
tector that looks for new mail transfer agents (MTAs)
through which e-mail is sent to a large number of dis-
tinct recipients. The analysis happens as follows:

1. Identify SMTP messages that have a “new" MTA in
their path.

2. For 24 hours after a new MTA is seen, count the
number of distinct recipients in messages that tra-
verse that MTA.

3. If the count for a new MTA exceeds a threshold,
then report phishing/spam.

Though the description of this analytic is concise,
implementing it requires a few complicated operations.
First, there must be a data structure, such as a Bloom fil-
ter, that keeps track of whether each MTA has been seen
before. That structure must have at least two windows so
that it does not start emitting old values after each time
it is purged. The next challenge is that the MTA path is
stored in multiple headers within each SMTP message.

Checking whether each MTA on the path is new either
requires applying a function to each value or splitting up
the SMTP message into one tuple for each MTA. When
new SMTP messages arrive, checking to see if one of
the MTAs is new within the past 24 hours again requires
splitting the tuple prior to a join operation.

3 The Chimera Language

3.1 Query Syntax
The highest level element in the Chimera language is
a query statement. Since Chimera operates passively,
the only type of query allowed right now is SELECT.
Chimera also includes a CREATE VIEW statement,
which is effectively a macro that can be used in place of
sub-queries. The syntax for a Chimera SELECT query is
very similar to SQL, and can be seen in Figure 1. Many
elements are shared and behave the same way, includ-
ing the FROM, WHERE, and UNION. The input and
output specifications are a bit different. Explicit data
sources are allowed in the query, including a file (PCAP
or user-defined CSV), network interface, or list of file
names from standard input (the default). Similarly, out-
put will be sent to standard output unless a file is speci-
fied. Chimera begins to differ more significantly for the
GROUP BY and JOIN operations, as well as the newly
introduced SPLIT, which we discuss next. It also sup-
ports an expression syntax with different data and func-
tion types, which are described in sections 3.2 and 3.4.

3.1.1 GROUP BY

The Chimera language diverges from SQL and tra-
ditional streaming database in its semantics for the
GROUP BY clause. To support streaming, we have
added a TABLESIZE parameter and the UNTIL keyword
with an optional GLOBAL parameter and a Boolean ex-
pression. TABLESIZE specifies the maximum number
of items to hold before discarding old values. (Chimera
does not yet implement more intelligent QoS or load
shedding like Aurora [1], but TABLESIZE effectively
enables memory limits.) The UNTIL condition deter-
mines when GROUP BY will generate output. It may
contain aggregate functions, such as count or average.
If GLOBAL is specified, then the aggregate functions are
evaluated with a single global state object, instead of sep-
arately for each key. In this case, GROUP BY will output
everything in the table when the UNTIL expression be-
comes true. This is similar to window-based grouping in
traditional streaming databases. If GLOBAL is omitted,
then each item in the GROUP BY table will be evaluated
and flushed independently. This allows implementation
of partitioned windows, which are described by Arasu et
al. [3].

368  21st USENIX Security Symposium	 USENIX Association

〈select_query〉 ::=
[SOURCE {STDIN | FILE 〈fname〉 | INTERFACE 〈if〉}]
〈select_body〉
[INTO {STDOUT | FILE 〈fname〉}]

〈create_view〉 ::=
CREATE VIEW 〈alias〉 AS 〈select_body〉

〈select_body〉 ::=
SELECT {* | 〈expr〉 [AS 〈alias〉]

[, 〈expr〉 [AS 〈alias〉]]* }
FROM 〈table_ref〉
[WHERE 〈bool_expr〉]
[GROUP BY 〈expr〉 [, 〈expr〉]*
UNTIL [GLOBAL] 〈bool_expr〉
[TABLESIZE 〈row_count〉]
[HAVING 〈bool_expr〉]
[ORDER BY 〈expr〉 [, 〈expr〉]* [ASC | DESC]

[LIMIT 〈row_count〉]]]
[UNION 〈select_body〉]

〈table_ref〉 ::=
〈table_instance〉

| 〈table_ref〉 [[EXCLUSIVE] {LEFT | RIGHT | FULL}
[OUTER]] [UNORDERED] [SINGLE] JOIN
〈table_instance〉 ON 〈expr〉 EQUALS 〈expr〉
[TABLESIZE 〈row_count〉]
[WINDOW 〈expr〉[, 〈expr〉]]

| 〈table_ref〉 SPLIT 〈expr〉 AS 〈alias〉, 〈alias〉
〈table_instance〉 ::=

〈table_name〉 [AS 〈alias〉]
| (〈select_body〉) AS 〈alias〉

Figure 1: Query syntax for the Chimera language

The GROUP BY clause may also include an ORDER
BY keyword that takes a sorting parameter. Because
Chimera is a stream processing system, some values
will inevitably be discarded. ORDER BY ensures that
the highest values are kept in the GROUP BY table in-
stead of the newest values (the default). Chimera uses a
heap structure to discard rows with the lowest ORDER
BY value. This allows computation of “heavy hitters"
on a high-volume data stream using very little memory.
LIMIT specifies how many to rows to output at the end
of each window. It defaults to TABLESIZE and is only
used if GLOBAL is specified.

3.1.2 JOIN

Chimera introduces a few non-standard features for joins
that improve efficiency and enable new analytic seman-
tics. The first difference is that joins are ordered by de-
fault. This means that the left tuple must arrive before
the right tuple. This lets Chimera use only one hash table
instead of two, improving efficiency. The keyword UN-
ORDERED can be added to the JOIN clause for standard
join semantics.

Because Chimera is a stream processing system,
only equi-joins are supported, hence the mandatory EQ
(equals) syntax. Furthermore, only one tuple is allowed

per key in the join table. If a new tuple arrives on the
same side with the same key, then the old one is dis-
carded without being matched. This ensures that each
new tuple will generate at most one output, keeping over-
head down to O(1). Support for multi-tuple joins could
be added in the future, but their use could negatively af-
fect performance.

The next feature supported by Chimera is a SINGLE
JOIN, which enforces one-to-one matching between left
and right tuples. Normally, a row from one side of a join
is allowed to match multiple rows from the other side.
When a match occurs in a SINGLE JOIN, the matching
tuple is removed from the join table so that it frees up
space and cannot match any other tuples. This is useful
when performing an EXCLUSIVE OUTER JOIN, which
is similar to a typical outer join, except that the inner part
of the join is excluded, leaving only tuples that do not
have a match. An EXCLUSIVE LEFT SINGLE JOIN
can be used, for example, to detect ICMP ping packets
that never receive a reply. Here, SINGLE effectively in-
creases the time that can elapse before declaring a packet
unmatched by removing matched packets from the table.

The maximum number of elements stored in the JOIN
table can be set with TABLESIZE, just as with GROUP
BY, which guarantees a limit on memory utilization. In
addition to a size-based limit, JOIN also supports a con-
ditional WINDOW clause, which allows it to selectively
age off old tuples from the window. The conditional ex-
pression for the WINDOW clause is evaluated in a spe-
cial context where the oldest tuple is assigned the name
old in the root object, and the newest tuple given the
name new. For each new tuple, it and the oldest tuple
are used to evaluate the WINDOW expression. If the ex-
pression is false, then the old tuple is removed and the
expression is re-evaluated against the next oldest tuple.
For example, [new].[time] - [old].[time] < 60
enforces a 60 second time window. There can be two
window conditions if the join is UNORDERED, which
are applied to incoming left and right tuples, respectively.

3.1.3 SPLIT

Chimera includes the SPLIT keyword to its query lan-
guage to make it easier to handle structured data types.
There are some cases where it makes more sense to pro-
cess a list or map structure as a single object (e.g., look-
ing up a value at an index), but others where it is bet-
ter to split the list and handle each item in its own tu-
ple (e.g., examining DNS resource records). The SPLIT
keyword takes an expression that evaluates to a struc-
tured data type (list or map, discussed in section 3.2) as
an argument, as well as an alias name for each individual
item, and an alias for the item index (which cannot be de-
rived if there are duplicate items). When a split occurs,
Chimera creates a new tuple for each item in the object

USENIX Association 	 21st USENIX Security Symposium  369

argument. These tuples have references to all of the orig-
inal data, including the structured object, but also contain
the individual item (map items are emitted as two-value
[key, value] lists) and its index as extra values. If the
SPLIT object is empty, then Chimera will emit one tuple
with NULL values for both the item and the index.

3.2 Data Types
The Chimera language has several data types that it uses
to represent message fields in network traffic. Chimera
takes a minimalist approach to typing modeled after the
types used in JSON [8]. This makes data manipulation
much simpler by reducing the number of functions and
operators that are required.

Chimera supports six primitive data types: Integer,
Float, String, Bool, Null, and IPAddress. The first
five correspond to the four primitive types in JSON, with
the additional distinction between integer and floating-
point numbers. The Integer type does not have any
constraint on its size. It will be expanded as necessary if
it overflows the bounds of a 32- or 64-bit integer. Float
types are all double precision. All String types are
binary strings, which is appropriate for network traffic
analysis. The Bool and Null types are self-explanatory.
The remaining data type, IPAddress, could have been
encapsulated in a String or Integer. Its existence is
not necessary, but it is frequently used in network traffic
analysis so we decided to add it out of convenience.

Chimera also supports two structured types: a List,
and a Map. The List type directly corresponds to an ar-
ray in JSON. The Map type is similar to maps in other
languages, but it also supports ordering and duplicate
keys. This makes it better-suited for network protocols
that contain map-like structures. The ordering of map
elements in a network message may have significance.
Keys can also be repeated, both for legitimate and mali-
cious purposes. Internally, Map objects are implemented
by hash tables when they are created by assigning to
a key, and by lists or numerically-indexed tables when
they are created by appending key-value pairs. Iterating
through a map will yield list objects with two items: a
key and a value. The objects will be in the original inser-
tion order if the map was created by appending items.

3.3 Naming and Schemata
One core part of the Chimera query language is the set of
available schemata. In general, Chimera is not tied to any
specific schemata or naming system. In fact, it supports
CSV file input with user-defined column names. In this
mode, Chimera reads the column names from the first
line of a CSV file and applies them to each row.

When dealing with network traffic instead of user-
defined meta-data, it is important to have a common
naming scheme that is the same across all platforms.

Right now, the only platform supported by Chimera is
Bro. We could have just used the Bro names exactly,
but they contain some implementation artifacts. Instead,
we opted to create our own protocol schemata and write
a Bro translation function for each one. This way, the
naming and structure is more closely tied to actual pro-
tocol messages than to implementation choices specific
to Bro.

Table 1: The schema for HTTP requests in Chimera

Name Type
packets List(tcp_packet)
method String

path String
version String
headers Map(String→String)

body String

We will not enumerate the schema of every protocol
here due to space constraints, but provide an example of
the schema for HTTP requests in table 1. This schema
is simple and corresponds directly to the protocol struc-
ture. In addition, there is a list of packets in the schema.
All top-level protocols in Chimera have this field, which
refers to the original packets that make up the message.
This allows you to retrieve original IP addresses, port
numbers, etc. It also allows more flexible handling of
time because each individual packet’s arrival time is ex-
posed in the schema.

Another important aspect of the HTTP request schema
is that it does not expose any anomalies or low-level pars-
ing details. For example, we assume that the parser strips
out any chunked-encoding headers from the body field.
Once these are gone, we do not know whether the body
was split up into many one-byte chunks, one hundred-
byte chunks, or any other chunk sizes. If there were
anomalies in a chunk header, such as only having a new-
line character instead of a carriage return and a newline,
then the parser will either fail altogether or discard the
information and continue silently. The problem becomes
even more serious for DNS messages where hiding data
in slack space is a well-known technique. This is a sys-
temic problem that affects all protocol parsers and is or-
thogonal to the design of Chimera. The problem could be
addressed by adding more fields to the parser that contain
raw bytes. If these fields were added to low-level parsers,
it would be easy to extend the Chimera naming scheme
to include them.

3.4 Functions
In Chimera, functions are essential building blocks used
for data manipulation and extraction. Chimera supports
four different types of functions, which are described in
this section. Functions can be defined by the user in the
target language (Bro in this case). The set of available

370  21st USENIX Security Symposium	 USENIX Association

functions and their definitions are considered outside of
the core Chimera language, with the exception of func-
tions for which there are syntactic shortcuts. Examples
of other specific functions are given later in section 4,
which provides example Chimera queries for analysis
scenarios.

3.4.1 Methods

The first function type that Chimera supports is
a method. Methods operate on objects and can
be chained together using a dot syntax (Example:
<object>.a().b().c()). Each method function can
operate on one or more types of input data, and can gen-
erate multiple output types. If any function in a method
chain generates a NULL output, then evaluation stops
and later functions in the chain are not called.

Within an expression in a Chimera query statement,
methods may be called without an explicit base ob-
ject. In this case, Chimera uses the implicit default ob-
ject, which is a Map representing a tuple in the current
schema. Chimera also supports a square-bracket syntax:
[<field>]. This is syntactic sugar for calling the get
function get(’<field>’), which will retrieve the first
value in the map that has a key matching the given input
string. If the get function or bracket syntax is used on a
List object, then Chimera assumes that the list consists
of Map objects and will add an implicit iterator over the
list, returning the first object that is not NULL. Such “ap-
ply” functions are discussed more later in this section.

In the Chimera language, arguments to method func-
tions must be literals and cannot be derived from the
default tuple object. Functions that need to manipulate
multiple elements in the default tuple must be written as
static functions (described in the next section) instead of
method functions. This was a choice that we made based
on readability and it does not effect expressiveness.

3.4.2 Static Functions and Operators

Chimera supports static functions that can operate
on multiple objects (Example: concat(<string1>,
<string2>, ...)). The arguments to static functions
can be literals or chains of method functions. Chimera
also has a number of basic operators. These operators
are essentially syntactic sugar for static function calls,
though they may be compiled down to the same operator
in the target language if it exists and has the same seman-
tics. Chimera currently support most of the C operators,
including:
• Arithmetic: +, − (subtraction and unary), ∗, /, %

(modulo)
• Comparison: ==, ! =, <, >, <=, >=
• Logical: ! (NOT), && (AND), || (OR)
• Bitwise: ∼ (NOT), & (AND), | (OR), ^(XOR), <<

(Left Shift), >> (Right Shift)

For arithmetic and comparison operators between in-
tegers and floats, integers are promoted to floats. Bitwise
operations are only allowed on integers, and left shifting
an integer will never truncate bits that are set. Instead, it
will be expanded so that it can hold the value. For strings
and IP addresses, only the comparison operators are sup-
ported. For Boolean values, only the equality, inequality,
and logical operators are supported.

3.4.3 Aggregate Functions

The next type of function available in Chimera is an ag-
gregate function. Aggregate functions are used to com-
pute some result over multiple data items. Aggregate
functions are typically seen in expressions that are part of
the SELECT, HAVING, or UNTIL clauses in a statement
that uses GROUP BY. In these places, a different aggre-
gate value will be computed for each unique GROUP BY
key (each key has a different state). Aggregate functions
may also be used in WHERE clauses or statements with-
out GROUP BY, but they will have a single global state
in these cases.

The syntax for an aggregate function is exactly the
same as for static functions. However, the definition must
specify four routines, which are shown in Table 2. These
routines are similar to those for defining an aggregate
function in a standard relational database.

Table 2: User-defined aggregate function routines

Arguments Returns When Called
Initialization None State Before the first input
Iteration State, Inputs State For each new input
Evaluation State Outputs To read current output
Termination State State At end of each window

Each of the routines in an aggregate function deals
with a state object. This state object is returned from calls
to aggregate routines (except evaluation, which does not
update the state), stored, and then passed back to the next
aggregate routine call. This state object is opaque to the
rest of the system and can contain anything.

The termination function works a bit differently than
in a traditional database due to the streaming nature of
Chimera. This function will be called at the end of each
window as specified in an UNTIL clause in an aggre-
gate statement. The state object that it returns will be
passed back to the next iteration call for the first item
in the next window. This allows aggregate functions to
maintain state across multiple windows.

Some traditional databases also support a Merge rou-
tine for user-defined aggregates. This allows intermedi-
ate results to be merged together, which allows parallel
computation. Chimera does not yet support merging, but
could be extended to do so in the future.

USENIX Association 	 21st USENIX Security Symposium  371

3.4.4 Apply Functions

The final type of function available in Chimera is
an apply function. An apply function is a method
on a structured object that takes another function as
a first-class object and applies it to items in the
structured object. How the argument is applied de-
pends on the particular function. Apply functions
can take normal arguments in parentheses, but use a
curly bracket syntax for their function argument (e.g.,
[list].apply(<args>){<fnarg>}) to clearly dif-
ferentiate them from other function types. Arguments
can be passed to inner functions using the symbols
$, $2, $3, etc. (“1" omitted from first argument for
brevity). This lets user-defined apply functions pass an
arbitrary number of arguments. It also allows the in-
ner functions to be methods, static functions, or aggre-
gate functions (e.g., [list].apply{$.strlen()} or
[list].apply{count($)}). This syntax is slightly
different from other languages like Javascript, but we felt
it to be more concise and easy to read in this context.

Chimera does support multiple levels of apply func-
tions. When there are multiple levels, however, inner
functions cannot directly reference parent arguments.
First-class functions in Chimera are not full closures.

Apply functions can be defined by the user, but a
few examples are provided here to illustrate the concept.
Note that when iterating over a map instead of a list, each
key-value pair is represented as two-item [key, value] list.

• foreach – Apply the function to each item in the
list and update it with the output value. Example:
[list].foreach{$.substr(3)}

• foridx(index) – Apply the function to the
item in the list at the given index and up-
date it with the output value. Example:
[map].foreach{$.foridx(0){$.substr(3)}}

• iter – Iteratively apply the function to each item in
the list and return the first value that is not NULL.
Example: [list].iter{$.match(’as.*df’)}

• iterall – Apply the function to all items in the
list and return the last output value. Example:
[list].iterall{count($)}

• filter – Apply the function to each item
in the list and discard items for which
it evaluates to false or NULL. Example:
[map].filter{$.first().strlen() > 3}

• find – Apply the function to each item in
the list and return the first item for which it
does not evaluate to false or NULL. Example:
[map].find{$.first() == ’A’}

4 Implementing Analytics in Chimera

In section 2, we introduced several attack scenar-
ios that require advanced analysis capabilities to detect.
Now that we have presented the Chimera language, we
show here how it can be used to implement analytics
for these scenarios. While these scenarios demonstrate
many of Chimera’s features and capabilities, they are by
no means a complete exposition of its power. The goal
here is to provide examples of how the language can be
used in practice that serve as a starting point for future
work.

4.1 Sidejacking
As you may recall, sidejacking involves searching for
multiple clients that are using the same session identifier
for a web service. For simplicity, clients can be repre-
sented as an IP address and User-Agent pair. Now that
we have an understanding of Chimera’s query model, we
can break down the analysis task into some key facts:
• This query requires aggregation using the session

ID as the GROUP BY key.
• The session ID is inside of a key-value list in the

“Cookie" header and will need to be broken out of
the list.

• Detection requires counting more than one distinct
client. This will be the UNTIL trigger condition.

This leads us to the following query, which cleanly im-
plements sidejacking detection and is much more shorter
than the previous Bro implementation [26] (though the
Bro implementation contains a few more additional fea-
tures not included here):

SELECT
list_agg(distinct(concat(
[packets].[srcip], ’:’,
[headers].[User-Agent])))
AS clientlist

[headers].[Cookie].split(’;’).
foreach{$.split(’=’)}.
find{$.first() == ’SID’}.last()
AS sessionid

FROM http
WHERE [sessionid] != NULL
GROUP BY [sessionid]
UNTIL [clientlist].size() > 1

The first expression in the SELECT statement extracts
the source IP address from the first packet in the con-
nection (HTTP messages are comprised of one or more
packets), finds the value of the “User-Agent" header (or
NULL if it is missing), and concatenates the two together
to form a client identifier string. Because [packets] is a
list of map objects, the bracket operator that follows in-
cludes an implicit iteration, thus extracting [srcip] from

372  21st USENIX Security Symposium	 USENIX Association

the first packet in the list. The query then passes this
string to the aggregate function distinct, which will
check each incoming value to see if it has occurred be-
fore. If not, it will pass through the value, otherwise it
will output NULL. The distinct function can be imple-
mented with a Bloom filter, or with a hash table if more
accuracy is desired. Our implementation of distinct in
the Bro language currently uses a hash table. Finally, the
list_agg aggregate function will take each non-NULL
input item and append it to a list.

The next expression in the SELECT statement pulls
out the session ID from the “Cookie" header. If there
is more than one “Cookie" header, then the implicit call
to get() made by the square brackets will just grab the
first one. The expression then splits the the cookie header
value up into a list of strings separated by the ’;’ charac-
ter. Next, it iterates over this list with foreach, further
splitting each string using the ’=’ character into a key-
value list. Finally, the find function extracts the first
pair in the list where its first item is the string ’SID’, and
last pulls out the corresponding value. If at any point
during this chain of functions there is a NULL value, then
processing will stop and the result will be NULL.

The remainder of the query is pretty straightforward.
The WHERE clause filters out only HTTP messages that
have Cookie headers and session IDs. GROUP BY ag-
gregates based on the session ID, and UNTIL will trigger
an output whenever it sees more than one client using the
same session ID.

4.2 Malicious Domains
There were several DNS features presented earlier in sec-
tion 2.2. These features each perform some aggregate
computation on DNS responses. In the Chimera lan-
guage, lists of objects can be split into one tuple for each
item using the SPLIT command. DNS responses contain
lists of answer records in a single DNS packet, which
can be split up into individual answer records. How-
ever, Chimera also includes a schema for individual re-
source records (essentially pre-split) that corresponds to
resource record events in the Bro language. The queries
below use the DNS resource record schema out of con-
venience, but could use the DNS schema and SPLIT as
well. Here are queries for each of the listed features:

4.2.1 Number of distinct IP addresses per domain
SELECT count_distinct([aip]), [name]
FROM dns_rr
WHERE [aip] != NULL
GROUP BY [name]
UNTIL GLOBAL

nextwindow([packets].[time], 86400)

One thing to note about this query is the
count_distinct function. Counting the number

of distinct items can be done more efficiently than by
keeping a list and computing its size. This query also
uses an aggregate function nextwindow to compute
when the packet timestamp has transitioned into the next
86400-second (one day) time window. It essentially
performs integer division and change detection. When
this occurs, the entire table will be flushed and the
computation will restart.

4.2.2 Number of domains that share the same IP
SELECT [name], [ip], [count]
FROM (

SELECT
[aip] AS ip
list_agg(distinct([name])) AS names
count_distinct([name]) AS count

FROM dns_rr
WHERE [aip] != NULL
GROUP BY [aip]
UNTIL GLOBAL

nextwindow([packets].[time], 86400)
) SPLIT names AS name, nameidx

This query will keep a list of domains for each IP ad-
dress, maintain a count of its size, and then output each
domain along with an IP address and count every day.
As you may have noticed, this query does not precisely
quantify the "number of domains that share the same IP
address" because a domain name can have multiple IPs,
and the original EXPOSURE paper was not clear about
whether all the domains on all the IPs should be counted
[5]. This query will actually output multiple counts for
each domain name, one for each IP address that it uses.
This is an example where having a common query lan-
guage would make explicit analytic descriptions much
easier, allowing researchers to more precisely describe
their techniques.

4.2.3 Average TTL value
SELECT avg([ttl]), [name]
FROM dns_rr
WHERE [ttl] != NULL
GROUP BY [name]
UNTIL GLOBAL

nextwindow([packets].[time], 86400)

This query is very similar to the first, except that it
employs the avg (average) aggregate function instead of
count_distinct. Another point of ambiguity in EX-
POSURE is whether the TTL values should be counted
for all types of resource records (as is done above), or
just for A records.

4.2.4 Number of TTL value changes
SELECT count(), [name]
FROM (

SELECT [name]

USENIX Association 	 21st USENIX Security Symposium  373

FROM dns_rr
WHERE [ttl] != NULL
GROUP BY [name]
UNTIL

last([ttl]) != last([ttl], 2, true) &&
last([ttl], 2, true) != NULL

)
GROUP BY [name]
UNTIL GLOBAL

nextwindow([packets].[time], 86400)

This query uses a nested statement with two instances
of the aggregate function last. In its first form, last
just outputs the current tuple value. The second call to
last([ttl], 2, true) actually outputs the second-
to-last value (2 parameter) and persists across windows
(true parameter). For the sequence {A, B, A}, the UN-
TIL statement will become true and flush the result after
B arrives. Because the second call to last persists, it
will hold on to the B value and output another change
when the next A arrives. This is an example of aggregate
functions that maintain state across windows.

4.3 DNS Tunnels
The DNS tunnel detection algorithm described in sec-
tion 2.3 works by identifying responses that never have
follow-up connections. Here are some key facts about
this analytic:
• DNS responses may contain several A records, but

only the first one will be likely to receive a con-
nection. It is thus better to use the whole-message
DNS schema rather the individual resource record
schema.

• We only want to count responses that do not have
matching packets, so we need to use an EXCLU-
SIVE LEFT SINGLE JOIN.

• Because individual false positives may occur, we
should apply a per-client threshold to unmatched re-
sponses, which will require a GROUP BY using the
client as the key.

Here is a query that implements DNS tunnel detection:

SELECT
[dns].[packets].[dstip] AS client,
last([dns].[packets].[time]) AS start,
first([dns].[packets].[time]) AS end

FROM dns EXCLUSIVE LEFT SINGLE JOIN ip_packet
ON [answers].[aip] EQUALS [dstip]
WINDOW [new].[packets].[time] -

[old].[packets].[time] < 300
WHERE [dns].[answers].[aip] != NULL
GROUP BY [client]
UNTIL count() > 100
HAVING [end] - [start] < 3600

This query counts the number of DNS answers with
an A-record IP address that have no matching packets

within a five-minute time window. It then groups those
unmatched responses by their destination IP (the client
who made the request) and applies a threshold of 100 re-
sponses. Note that the threshold is applied in an UNTIL
clause. This makes it so that detection happens imme-
diately when the threshold is reached, instead of having
to wait for the end of a time window. The timestamps
of the first and last responses can then be checked in the
HAVING clause to make sure they occurred within some
reasonable amount of time (one hour in this case). This
query demonstrates the latency benefit from using UN-
TIL instead of a time- or count-based window like in ex-
isting streaming databases.

4.4 Phishing/Spam Detection
Section 2.4 describes a method for detecting spam and
phishing e-mails based on filtering SMTP messages with
“new" mail transfer agents (MTAs) and then counting the
number of recipients to which the new MTAs send e-
mail in the first 24 hours. Here is a Chimera query that
implements this analytic:

CREATE VIEW mtasmtp AS
SELECT *
FROM smtp SPLIT [headers].

filter{$.first() == ’Received’}.
foreach{$.second().regex_extract
(’.*by ([^]*)’)} AS mta, midx;

SELECT
merge([b].[headers].[To].split(’,’),

[b].[headers].[Cc].split(’,’),
[b].[headers].[Bcc].split(’,’)).
iterall{count_distinct($.strip())}
AS recipient_count,

[a].[mta] AS mta
FROM (

SELECT *
FROM mtasmtp
WHERE unique([mta])

) AS a JOIN mtasmtp AS b
ON [mta] EQUALS [mta]

WHERE [b].[packets].[time] -
[a].[packets].[time] < 86400

GROUP BY [a].[mta]
UNTIL [recipient_count] > 50

This query contains a number of more complicated
operations to achieve the desired result. The CREATE
VIEW statement is used for the first time to set up a table
of SMTP messages that are split by MTAs. The MTAs
are extracted from "Received" headers in the SMTP mes-
sage using a regular expression that searches for the
string "by " and pulls out the following word.

In the first part of the select statement that follows,
all of the destination e-mail addresses are extracted by
splitting the "To", "Cc", and "Bcc" headers by commas,
and then merging them into one list. The apply function

374  21st USENIX Security Symposium	 USENIX Association

iterall is then used to pass each recipient through the
aggregate count_distinct function to count the num-
ber of unique recipients for each MTA.

The sub-query in the left part of the join uses a stateful
function unique in a WHERE clause. This means that
it will use one global state instead of having a different
state for each aggregate key. Furthermore, the unique
function will accumulate values indefinitely. This func-
tion is different from distinct in a subtle way; it is
designed to only output "new" values. It will silently add
items to a Bloom filter during a learning phase at start-up,
and then start generating output once a certain percent-
age of its inputs have already been seen. As the Bloom
filter fills up, distinct will stop adding to it and create
a new one. Once the new filter becomes full, the old one
will be discarded and process will continue so that there
are always two Bloom filters in use. With a Bloom fil-
ter it is possible to falsely label new items as not unique a
small percentage of the time. This trade-off buys reduced
memory utilization. The false match rate of a Bloom fil-
ter will depend on its size and the number of insertions
that are made before rolling it over.

The final part of the query joins new MTAs with fu-
ture e-mails that contain those MTAs, using the WHERE
clause to cut off the count after 24 hours. The UNTIL
clause will trigger as soon as the unique recipient count
exceeds 50 and generate a final query output.

5 Bro Compiler Implementation

For this paper, we implemented a Chimera compiler
that produces policies for the Bro event language [21].
While we have only implemented one specific target,
it would be possible to extended the compiler to target
other languages. The work that we describe in section
5.1 on translating a declarative query to an intermediate
relational algebra will be applicable for all targets. The
code generation phase, which is described in section 5.2,
will depend on the target language.

5.1 Translation to Relational Algebra
Because Chimera is very similar to SQL, we begin
the compilation process in the same way as traditional
database systems: by parsing the query and translating it
into an intermediate relational algebra. We used a simple
YACC parser [16] and the syntax from section 3 to con-
vert the original query into an abstract syntax tree (AST)
representation. From there, the compiler translates the
AST into a data-flow representation that loosely corre-
sponds to relational algebra, which we call the Chimera
Core. The Chimera Core operators are shown in figure 2.
This step is performed using syntax-directed translation
[2], wherein syntactic elements are converted into data-

source(source)
parser(parser)
split(exprlist , aliasitem)
projection(expr1,alias1, ...,exprn,aliasn)
selection(expr)
rename(newlabel)
join(labelle f t , labelright , exprle f t , exprright ,

exprwindow, joinkind, tablesize)
group(exprgroupby, expruntil , options, tablesize,

aggexpr1,alias1, ...,aggexprn,aliasn)
output(dest)

Figure 2: Chimera Core language constructs

flow operators as shown in figure 3. During this process,
the compiler uses a symbol table to map aliases to loca-
tions in the data-flow graph, but does not need to perform
full data-flow analysis because all data-flow connections
are explicit in the Chimera syntax.

CREATE VIEW → add alias to symbol table
SOURCE → source
<proto-name> → parser
SPLIT → split
<table> AS ... → rename
JOIN → join
WHERE → selection
GROUP BY . . .UNTIL . . .ORDER BY . . .LIMIT

→ group
HAVING → selection
SELECT → projection
INTO → output

Figure 3: Summary of translation to Chimera Core

To illustrate translation from a Chimera query to the
Chimera Core language, consider the following example:

SOURCE STDIN
SELECT avg([b].[z]) AS avgz
FROM dns AS a JOIN smtp AS b ON [x] EQ [y]
WHERE [a].[x] > 5
GROUP BY [a].[x]
UNTIL avgz > 3
INTO STDOUT

Figure 4 shows the data-flow graph that results from
this example query. Using top-down syntax-directed
translation, the first node emitted is a source node cor-
responding to SOURCE STDIN. The FROM statement
is processed next. Because there is a JOIN, the compiler
first translates the left and right tables, adding parser
nodes to the source. The parser outputs are then fed
through rename operators so that they can be referenced
in the join operator, which combines them into a sin-
gle data flow. Next, the data flows through a selection

USENIX Association 	 21st USENIX Security Symposium  375

Figure 4: Chimera Core data-flow graph for example

operator that filters tuples using the WHERE expres-
sion. The tuples are then aggregated with a group opera-
tor, which also computes and adds aggregate expressions
from HAVING and SELECT clauses to the data flow. Fi-
nally, expressions in the SELECT clause are extracted
with the projection operator, and output sends data to
standard output.

5.2 Code Generation
The next step in compilation is to translate the data-flow
graph into Bro code. This process happens in two main
stages: (1) type computation, and (2) event code gener-
ation. The event code generation step further depends
on the implementation of user-defined functions, which
written natively in the Bro language. Also note that data
sources in Bro are specified on the command line, so the
source operator is emitted as a shell script wrapper and
not as part of the Bro language.

Type computation involves visiting each edge in the
data-flow graph, determining the contents of tuples that
flow through that edge, and then creating a record type
for those tuples. Edges coming from operators that do
not change the data – selection and rename – can be
ignored during this pass. It would have been possible to
use a table of the any type in Bro for tuples, or to create
another dynamic data structure. We chose to use custom
record types instead because they are better-documented
and do not require modifying Bro internals.

After types have been defined for each input and out-
put tuple, the compiler generates code for each node in
the data flow graph in the form of an event handler:
• parser – This node adds a Bro protocol parser at

the beginning of the file (if it does not yet exist) and
defines an event handler that converts Bro protocol

events into output tuples.
• split – This node takes a tuple with a list expression

and outputs a new tuple for each item in the list,
which also includes all the original tuple items.

• projection – This node outputs an event handler
that executes one or more expressions on each in-
put tuple and assigns their results to an output tuple.

• selection – This node evaluates an expression on
each input tuple and passes that tuple as output if
the expression is true.

• rename – This node passes tuples through un-
changed, but renames the event.

• join – This node stores tuples in a hash table keyed
on their join expression values and later matches
them against tuples from the other side of the join.
When there is a match (or no match for OUTER
joins), this node will generate a new output tuple
with one or both elements. To support the WIN-
DOW expression, we extended the Bro table data
structure to expose its oldest element.

• group – This node maintains a hash table keyed on
the GROUP BY expression value. The table con-
tains state objects for each aggregate function, all
of which have their Iteration routine called for each
new tuple. When the UNTIL expression becomes
true, this node calls each aggregate function’s Eval-
uation routine, adds the results to an output tuple,
and then calls the aggregate Termination routines to
flush the state objects.

• output – This special-purpose node outputs tuples
in CSV format, or, if the tuple only has one packet,
sends output to a PCAP file.

Some of the operator nodes take function expressions
as arguments. As mentioned before, each function is
written natively in Bro. A few functions, such as those
that use a Bloom filter, also required some implementa-
tion in the Bro internal function (BIF) language. When a
function is encountered during code generation, its defi-
nition is included in the Bro code and it is called with a
standard Bro expression. Bro does not support method-
style function calls using a syntax like x(arg1).y(arg2),
so these are re-written as y(x(arg1),arg2). Apply func-
tions are implemented by generating inline anonymous
first-class function definitions, which are supported by
Bro.

5.3 Example
Here we demonstrate Bro code generation with a simple
example. In the interest of space, the example does not
include join and group operators. Consider the follow-
ing Chimera query:

SELECT [path]
FROM http-request
WHERE [method] == "GET"

376  21st USENIX Security Symposium	 USENIX Association

This query extracts the path from all HTTP GET re-
quests. It translates to the following data-flow graph,
where each operator sends data to the next:

l0: source(STDIN)
l1: parser(http-request)
l2: selection([method] == “GET")
l3: projection([path], none)
l4: output()

Finally, this is compiled down to the following Bro
script. Note that Bro splits up the HTTP headers and
body into multiple events. To have everything avail-
able in one tuple, we also add an event handler for
http_all_headers that saves the headers in the session
table, which is omitted here to save space.

@http-reply
type http_request_type: record {

method: string;
path: string;
headers: listmap;
body: string;
packetlist: packetlist_type;

};
type l3_type: record {

v1: string;
};
event l3(t: l3_type) {

print t$v1;
}
event l2(t: http_request_type) {

local out: l3_type;
out$v1 = t$path;
event l3(t);

}
event l1(t: http_request_type) {

if (!(t$method == "GET")) return;
event l2(t);

}
event http_message_done(c: connection, ...) {

local t = http_request_translate(c);
event l1(t);

}

6 Evaluation & Future Optimizations

We have presented the implementation of a compiler
that translates Chimera queries into the Bro event lan-
guage. Because functionality was our primary focus,
we have not yet implemented any performance optimiza-
tions. However, there are many areas that have potential
for optimization. Here we evaluate the compiler’s pro-
cessing performance in its current unoptimized form and
discuss opportunities for future performance optimiza-
tion. This section does not evaluate memory utilization
because it is highly dependent on the particular query,

desired window size, and data rate of the connection.
Windows for JOIN and GROUP BY operations can be
scaled according to the operating environment and ana-
lytic needs.

6.1 Performance Measurement
The performance measurements in this section were
taken by processing a 2 GB PCAP file (stored on a ram
disk) with Bro and recording the execution time. The
PCAP file was generated by capturing traffic at a U.S.
government network gateway, so it includes data from
a variety of protocols. It contains approximately 81k
HTTP, 58k SMTP, and 32k DNS messages.

To test the compiler’s performance, we compare the
Bro event code generated by the Chimera compiler to
hand-written Bro code that implements the same func-
tionality. For example, the Bro code in section 5.3 could
be written by hand as follows:

@http-reply
event http_request(c: connection,

method: string, original_URI: string,
unescaped_URI: string, version: string) {

if (method == "GET")
print original_URI;

}

This shorter implementation has three optimizations:
1. Data is not copied into new record types.
2. Events with only one handler are evaluated inline.
3. An earlier event handler (http_request) is used be-

cause the headers and body are not needed.
Our first experiment tests the effect of each optimiza-

tion by applying them one-by-one to the section 5.3 ex-
ample. We ran each configuration 30 times against the
test data. Table 3 summarizes our results. Bypassing
data copying saves about 1.5% execution time. Inlining
event code makes no significant difference in this case.
Switching to a single earlier handler saves another 1.5%,
for a 3.0% overall speed-up. While the difference be-
tween current compiled code and hand-written code is
noticeable, it does not have a major impact.

Table 3: Execution times with different optimizations

Configuration Base Opt-1 Opt-1+2 Opt-1+2+3
Avg. Time (s) 14.21 14.00 14.01 13.79
Std. Dev. σ (s) 0.084 0.083 0.074 0.081
Speed-up (%) - 1.5% 1.4% 3.0%

For the next part of our evaluation, we tested a se-
lection of more complicated queries from sections 4.1,
4.2.1, and 4.4. We ran the queries as they were compiled
to Bro code, and after they were optimized by hand by
eliminating unnecessary copying and event handlers. Be-
cause a Bro implementation of side-jacking was already
available for query 4.1 [26], we used that as a basis for

USENIX Association 	 21st USENIX Security Symposium  377

Table 4: Execution times for different queries, with and
without hand-optimization

Query Base Time (s) Optimized (s) Speed-up (%)
4.1 15.64 (σ = 0.081) 15.48 (σ = 0.067) 1.1%
4.2.1 8.81 (σ = 0.085) 8.72 (σ = 0.021) 0.96%
4.4. 2.77 (σ = 0.027) 2.75 (σ = 0.019) 0.79%

comparison. We optimized the other two queries our-
selves. Table 4 shows the results averaged across 30 runs
for each measurement. Much like the first experiment,
the overhead added by extra copying and event handlers
only has a minor impact on overall performance, increas-
ing running time by about 1%. Though the Bro code gen-
erator could benefit from some optimizations, in its cur-
rent form it generates code that is almost exactly equiva-
lent to hand-written code for these real-world scenarios.

6.2 Other Optimizations
The previous section discussed optimizations in the code
generator related to event and data handling. There are
also opportunities for optimization at the relational alge-
bra level before any code is generated, and in the analy-
sis logic. Prior work on query optimization for databases
[11, 15, 25] is directly applicable here because it oper-
ates on relational algebra that is almost exactly the same
as the Chimera Core language. One common trick is to
break up selection operators into sub-expressions and put
the cheapest one with the greatest data reduction first.
Similarly, selection operators that occur after joins can
have sub-expressions that do not depend on both join
sides pushed before the join, thus reducing the number
of items in the join table. Finally, any nodes that dupli-
cate one another, including parsers, can be merged to-
gether. We plan to incorporate all of these optimizations
in future versions of the Chimera compiler.

Another area of optimization that we plan to explore
is improving the actual analysis logic. For example, an
ordered EXCLUSIVE RIGHT JOIN is effectively an ex-
istence check; there is no need to actually store left tu-
ples in the join table because they will never be emitted
as output. Going further down this route, an existence
check can be approximated efficiently using a Bloom fil-
ter. For analytics where complete precision is not neces-
sary, an exclusive right join could be implemented with
a windowed bloom filter.

Finally, queries in the Chimera language lend them-
selves well to parallel processing using a map-reduce
model. Tuples can be mapped to a processing node us-
ing their join or group key right before each join or group
operator in the data-flow graph. Each node will then exe-
cute the operator to perform the reduction. Global aggre-
gates can be computed by extending aggregate functions
to have a merge routine that combines partial answers as
discussed in section 3.4.3 (though not all aggregates can

be merged efficiently). We plan to extend the Chimera
compiler in the future to automatically produce code that
can run in a parallel environment.

7 Related Work

There has been a lot of prior research on streaming
database systems. STREAM [3, 19] and Aurora [1]
were pioneers in this area. Following initial work, oth-
ers have developed improved techniques for windowed
query evaluation [17] and load shedding [24]. An effort
has also been make to create a standard for streaming
SQL [14] that accounts for semantic differences between
various systems. Others have focused on window speci-
fication semantics for streaming queries [6, 20].

Streaming database research is useful and serves as a
basis for ideas in this paper, but Chimera goes beyond
what has been done in prior work. It is the first lan-
guage designed to translate into external intrusion de-
tection frameworks like Bro. Chimera also adds two
new capabilities that are very important for handling net-
work traffic. The first is support for structured data types,
which includes the new SPLIT operator and apply func-
tions. The second major contribution is the addition of
dynamic window conditions using the UNTIL trigger for
aggregates, and the WINDOW condition for joins. This
gives the query writer full control over window bound-
aries, allowing for immediate response after a detection
threshold has been reached, rather than having to wait
until the window expires as with traditional fixed win-
dow specifications.

One project that is related to Chimera is Gigascope
[7]. Gigascope is a platform for performing network traf-
fic analysis that uses an SQL query language. However,
Gigascope is different from Chimera in a few key ways.
First, it is a vertically integrated query language and plat-
form for performing analysis. Its language is therefore
tied to the implementation and has not been adapted to
target other platforms. Chimera, on the other hand, is
designed to be implementation-agnostic and serve as a
general-purpose language for network processing. Fur-
thermore, Gigascope’s SQL query language has the same
limitations as traditional streaming database systems. As
far as we are aware, it only supports flat schemata, which
prevents it from properly handling structured data. It also
uses standard window specifications instead of dynamic
window boundaries, which limits flexibility for join and
aggregate queries.

IBM’s Stream Processing Language (SPL) [13] is also
related to Chimera. Unlike Chimera, SPL is not entirely
declarative. Its logic clause uses procedural code and
one must specify data flow paths to define analysis logic.
SPL does support dynamic window boundaries using a

378  21st USENIX Security Symposium	 USENIX Association

punct type of tumbling window in which boundaries are
set by messages from upstream operators. These opera-
tors can use arbitrarily complex logic to generate punct
messages, which in theory provides the same power as
dynamic window conditions in Chimera, but in a less
concise manner. We view SPL as largely analogous to
the Bro event language, except that it is data-flow-based
rather than event-based. It is a powerful lower-level lan-
guage that provides greater control, but suffers from the
same problems of being less concise and more compli-
cated than Chimera. We imagine that it would be possi-
ble to adapt the Chimera compiler to generate code for
SPL in the future.

There are a number of procedural language ex-
tensions for traditional relational databases, including
PL/SQL[10], Transact-SQL [9], and PL/pgSQL [18].
These procedural languages offer powerful constructs
like conditional statements and looping. PL/SQL also
offers array data types, and arrays can be simulated with
delimiter-separated strings. These languages do not di-
rectly offer apply functions or SPLIT operations, but the
same result can be achieved (albeit not as elegantly) with
nested queries. While it is possible to express Chimera
queries and data types in these procedural programming
languages (they are Turing complete), we believe that the
Chimera language is more intuitive for processing struc-
tured network protocol traffic. Chimera also goes further
by running in a streaming environment and translating to
the Bro event language.

The idea of having a high-level language that trans-
lates into low-level policy has been applied previously
to other areas. One particularly relevant example is for
router and firewall configurations [4, 12]. Low-level fire-
wall policies precisely describe the mechanism for filter-
ing traffic in a level of detail that goes beyond the high-
level goals behind them. This makes firewall configura-
tion policies difficult to read and error-prone. Previous
work by Guttman et al. and Bartal et al. distills out the
underlying security goals into a high-level language, and
then translates that into low-level policies, thus eliminat-
ing the need for administrators to write those low-level
policies. Chimera is applying the same idea of separat-
ing policy from mechanism, but for a much different dif-
ferent domain.

8 Conclusion

In this paper, we introduced Chimera, a new query
language for processing network traffic. Chimera ef-
fectively separates policy from mechanism, leading to
concise queries that are independent of implementation.
Chimera is based on a streaming SQL syntax, which it
extends by adding structured data, first-class functions,

and dynamic window boundaries. These additional fea-
tures allow Chimera to better handle complex network
traffic analysis tasks.

This paper looks at example scenarios to motivate
Chimera’s design and demonstrate its utility. Two of the
examples – side-jacking and DNS feature extraction –
are taken from prior work. Writing Chimera queries for
these examples showed how they are more compact than
lower-level Bro event code and more precise than human
language descriptions. The other two scenarios – detect-
ing DNS tunnels and identifying spam/phishing e-mail –
demonstrated some of Chimera’s more advanced capa-
bilities and showed how it can be used to express com-
plex analysis logic with concise delcarative queries.

Finally, we presented the design and implementation
of a compiler that translates Chimera queries into the
Bro event language. This compiler works in two phases
by first transforming an abstract syntax tree into a data
flow representation, and then translating that representa-
tion into Bro event code. We tested the compiler’s out-
put against hand-optimized code for several queries and
showed that it is only 3% slower in the worst case. This
experiment highlighted opportunities for optimization by
eliminating unnecessary copying and event handlers, but
also showed that the Compiler generates code that is al-
most as efficient as hand-written code in its current form.
In the future, we hope to implement these optimizations
and also incorporate optimizations at the relational al-
gebra level so that Chimera obviates the need to write
low-level code for network analysis logic.

References

[1] ABADI, D. J., CARNEY, D., ÃĞETINTEMEL, U.,
CHERNIACK, M., CONVEY, C., LEE, S., STONE-
BRAKER, M., TATBUL, N., AND ZDONIK, S. Au-
rora: A new model and architecture for data stream
management. The VLDB Journal 12, 2 (2003).

[2] AHO, A. V., SETHI, R., AND ULLMAN, J. D.
Compilers: Principles, Techniques, and Tools.
1986.

[3] ARASU, A., BABU, S., AND WIDOM, J. CQL: A
language for continuous queries over streams and
relations. Lecture Notes in Computer Science 2921,
123–124 (2004).

[4] BARTAL, Y., MAYER, A., NISSIM, K., AND
WOOL, A. Firmato: A novel firewall management
toolkit. In IEEE Symposium on Security and Pri-
vacy (1999).

[5] BILGE, L., KIRDA, E., KRUEGEL, C., AND BAL-
DUZZI, M. Exposure: Finding malicious domains

USENIX Association 	 21st USENIX Security Symposium  379

using passive dns analysis. In Network and Dis-
tributed System Security Symposium (2011).

[6] BOTAN, I., DERAKHSHAN, R., DINDAR, N.,
HAAS, L., MILLER, R. J., AND TATBUL, N. SE-
CRET: A model for analysis of the execution se-
mantics of stream processing systems. Proceedings
of the VLDB Endowment 3, 1–2 (2010).

[7] CRANOR, C., JOHNSON, T., SPATASCHEK, O.,
AND SHKAPENYUK, V. Gigascope: A stream
database for network applications. In 2003 ACM
SIGMOD International Conference on Manage-
ment of Data (2003).

[8] CROCKFORD, D. The application/json media type
for javascript object notation (json). RFC 4627, In-
ternet Engineering Task Force, July 2006.

[9] DARNOVSKY, M., AND BOWMAN, G. Transact-
sql user’s guide. Tech. Rep. 3231-21, Sybase, Inc.,
1987.

[10] FEUERSTEIN, S. Oracle PL/SQL Programming,
third ed. O’Reilly & Associates, Sebastapol, CA,
2002.

[11] GRAEFE, G. The volcano optimizer generator: Ex-
tensibility and efficient search. In ICDE (1993),
pp. 209–218.

[12] GUTTMAN, J. Filtering postures: Local enforce-
ment for global policies. In IEEE Symposium on
Security and Privacy (1997).

[13] HIRZEL, M., ANDRADE, H., GEDIK, B., KU-
MAR, V., LOSA, G., MENDELL, M., NASGAARD,
H., SOULÃL’, R., AND WU, K.-L. Streams pro-
cessing language (spl). Tech. Rep. RC24897, IBM,
2009.

[14] JAIN, N., MISHRA, S., SRINIVASAN, A.,
GEHRKE, J., WIDOM, J., BALAKRISHNAN, H.,
ÃĞETINTEMEL, U., CHERNIACK, M., TIB-
BETTS, R., AND ZDONIK, S. Towards a streaming
SQL standard. Proceedings of the VLDB Endow-
ment 1, 2 (2008).

[15] JARKE, M., AND KOCH, J. Query optimization
in database systems. ACM Computing Surveys, 2
(1984), 111–152.

[16] JOHNSON, S. C. Yacc: Yet another compiler-
compiler. Tech. Rep. 32, Bell Laboratories, 1975.

[17] LI, J., MAIER, D., TUFTE, K., PAPADIMOS, V.,
AND TUCKER, P. A. No pane, no gain: Efficient
evaluation of sliding-window aggregates over data
streams. Information Systsems 34, 1 (2005).

[18] MONJIAN, B. PostgreSQL: Introduction and Con-
cepts. Addison-Wesley, Boston, MA, 2000.

[19] MOTWANI, R., WIDOM, J., ARASU, A., BAB-
COCK, B., BABU, S., DATAR, M., MANKU, G.,
OLSTON, C., ROSENSTEIN, J., AND VARMA, R.
Query processing, resource management, and ap-
proximation in a data stream management system.
Technical Report 2002-41, Stanford InfoLab, 2002.

[20] PATROUMPAS, K., AND SELLIS, T. Maintaining
consistent results of continuous queries under di-
verse window specifications. Information Systsems
36, 1 (2011), 42–61.

[21] PAXSON, V. Bro: a system for detecting network
intruders in real-time. Computer Networks 31, 23–
24 (1999), 2435–2463.

[22] RILEY, R. D., ALI, N. M., AL-SENAIDI, K. S.,
AND AL-KUWARI, A. L. Empowering users
against sidejacking attacks. In ACM SIGCOMM
2010 conference (2010).

[23] ROESCH, M. Snort – lightweight intrusion detec-
tion for networks. In USENIX LISA âĂŹ99 Confer-
ence (1999).

[24] TATBUL, N., AND ZDONIK, S. Window-aware
load shedding for aggregation queries over data
streams. In 32nd International Conference on Very
Large Data Bases (2009).

[25] V. MARKL, G. M. LOHMAN, V. R. Leo: An auto-
nomic query optimizer for db2. IBM Systems Jour-
nal 42, 1 (2003).

[26] VALLENTIN, M. Taming the sheep:
Detecting sidejacking with bro.
http://matthias.vallentin.net/blog/2010/10/taming-
the-sheep-detecting-sidejacking-with-bro/, 2010.

USENIX Association 	 21st USENIX Security Symposium  381

New Attacks on Timing-based Network Flow Watermarks

Zi Lin
University of Minnesota

lin@cs.umn.edu

Nicholas Hopper
University of Minnesota

hopper@cs.umn.edu

Abstract
A network flow watermarking scheme attempts to ma-

nipulate the statistical properties of a flow of packets to
insert a “mark” making it easier to detect the flow af-
ter passing through one or more relay hosts. Because an
attacker that is willing to tolerate delay can (nearly) al-
ways eliminate such marks, recent schemes have concen-
trated on making the marks “invisible” so that a passive
attacker cannot detect the presence of the mark. In this
work, we argue that from a system’s perspective, secu-
rity against passive detection is insufficient for success-
ful traffic analysis. We introduce a stronger, but feasi-
ble attack model (a known/chosen flow attacker) and a
second security goal (security against copy attacks) and
argue that security against both of these attacks is re-
quired for successful traffic analysis. We also demon-
strate successful attacks against two recent watermarking
schemes, RAINBOW and SWIRL, and show how con-
sidering these stronger attacks can aid in the design of
passive detection attacks against each as well.

1 Introduction

Active traffic analysis, so called network flow water-
marking, is the practice of manipulating the timing of
a network flow so that the same flow, relayed by one or
more intermediate hosts, can later be recognized. This
technique has been the subject of increased interest in
the past decade, because it requires low computational
and communication cost while providing high accuracy
in linking traffic flows. In these schemes, the packet tim-
ings of a network flow are modified, usually by buffer-
ing and delaying, to contain a distinctive pattern. If the
pattern is later detected in another flow, we can con-
clude the two flows are the same with high probability.
Flow watermarking is one of the most effective methods
both for breaking anonymous communications systems
[14, 15, 18, 7] and detecting network intruders launching
a stepping stone attack [16, 12, 8, 7].

In contrast to the variety of schemes proposed, there
is a relative lack of systematic study on attacking water-
marking schemes. Since an active attacker can arbitrar-
ily delay packets, thus destroying any watermark, recent
schemes focus on how to evade passive detection and

thus become “invisible” [15, 18, 7, 8]. However, many
of these works consider a very limited attack model. At-
tackers are usually assumed to have access only to flows
that comes from a black box in which a watermarker may
have inserted marks to some of the flows. This assump-
tion however, is often unrealistic: for example, in both
cases mentioned above the adversary attacking the wa-
termark has access to additional information about the
marked flow. Furthermore, some adversaries (such as
an anonymity network) may be better served by increas-
ing the number of “unmarked” flows that appear to be
marked, rather than trying to detect or remove a mark
imperfectly.

Meanwhile, without a systematic view, it is often un-
fair to compare different detection attacks directly. In
[11] Peng, Ning and Reeves studied how a stepping stone
attacker, as a chosen flow attacker, could inject and an-
alyze flows to detect the presence of a watermark and
even replicate the parameters used by the watermarking
system. Hereafter we refer to this attack as the PNR at-
tack. In [9], Kiyavash et al. propose the multi-flow attack
(MFA), which exposes a watermark by aligning multi-
ple flows carrying the same watermark. A MFA can be
launched by a single router in the network and is thus
widely applicable. Very recently, Luo et al. [10], describe
BACKLIT, a unique threat model in which the attacker
acts as a known/chosen flow attacker and is thus able to
detect state-of-the-art watermarking schemes. It is worth
noting that the PNR attack model is stronger than BACK-
LIT, which is in turn stronger than the MFA model, so
it is not surprising that their performance strengths also
follow that order. On the other hand, MFA is more appli-
cable than BACKLIT, which in turn is more applicable
than PNR.

To address these concerns, we formalize two threat
models for network flow watermarks. The first model,
the chosen flow attacker, captures the capacities of a net-
work intruder. This attacker may observe or even ma-
nipulate the input to the black box of a watermarker. In
this case, packet delays due to deliberate watermarking
and/or normal network processing become visible; and
separating marked flows from unmarked flows becomes
considerably easier. We apply this model to two recent
watermarking schemes, RAINBOW [8] and SWIRL [7].

1

382  21st USENIX Security Symposium	 USENIX Association

Both schemes use delaying as the basic operation to in-
sert marks and are thus vulnerable to relatively straight-
forward chosen flow detection attacks.

Evaluating under the chosen flow attack may also help
to develop ideas for new passive detection algorithms in
the second threat model, the isolated attacker. For ex-
ample, our initial chosen flow attacks on RAINBOW,
which are based on testing jitter irregularity using co-
sine distance and histograms, led us to design a new pas-
sive detection attack based on testing the irregularities
in the distribution of inter packet delays (IPDs). Simi-
larly, a simple multi-flow chosen flow attack on SWIRL
provides several important insights on a new multi-flow
passive detection attack against SWIRL.

We implement and test our new attacks through ex-
periments with real-world network traces. We show that
chosen flow attacks can perfectly detect the watermarks
with 100% recall and no false positives, outperforming
the BACKLIT attacks. Our local, passive attacks on
RAINBOW and SWIRL also achieve high ROC scores
of ≥ 0.92; in some cases, ROC scores of 1.0 can be
achieved.

Finally, we also introduce non-parametric copy at-
tacks, which transfer marks between flows and eventu-
ally confuse traffic analysis without the knowledge of
watermark secret keys and parameters. To our knowl-
edge, this type of attack has not been studied before;
yet every timing-based flow watermark is vulnerable due
to the naı̈ve attack that buffers enough traffic to mimic
the inter-packet delays of marked flows. However, some
schemes are vulnerable to less heavy-handed copy at-
tacks. For example, the design of SWIRL allows us to
demonstrate a very cost effective copy attack against it.

1.1 Paper outline
We briefly survey related work in section 2. In section
3, we establish the threat model for network flow water-
marking schemes, identify new detection modes/attacks
and a novel implementation of active copy attack. We
describe our new detection attacks on RAINBOW and
SWIRL, followed by evaluation on real-world datasets
in section 4. We also present a detailed description of
copy attacks on the aforementioned schemes along with
experimental evaluations in section 5. Finally, we dis-
cuss possible defenses against these attacks and general
defense strategies under our threat models in section 6.

2 Related Work

2.1 Stepping Stone Detection
Network intruders usually tunnel their attack traffic
through one or more intermediate relays as “step-

ping stones”, making the traffic origin hardly traceable.
Within large enterprise networks, stepping stones are
good candidates of compromised hosts. Network admin-
istrators therefore take stepping stone detection as part of
their security monitoring routines.

Detecting stepping stone is usually done by linking
outgoing flows with incoming ones. Often the intruder
encrypted their tunnel (for instance by SSH). As a re-
sult, only packet counts, sizes and timings are available
for flow characterization. By passive recording of these
flow features, many schemes have studied the problem
of linking streams [19, 4, 17, 4, 2, 6]. Since flow charac-
teristics could be affected by padding schemes, packet
retransmission and repacketization, and network jitter,
successful passive stepping stone detection needs large
number of observations, which in turn incur large over-
head in both storage and computation. To address these
efficiency issues, active approach is proposed as water-
marking [16]. We will next briefly review the literature
of flow watermarking schemes.

2.2 Network Flow Watermarking Schemes
There are two entities involved in flow watermarking, the
encoder and the decoder. Both are typically boundary
routers and share some common states. The encoder em-
beds a timing watermark to each incoming flow by intro-
ducing timing distortion (usually through delaying spe-
cific packets). At the other end, the decoder examines
each outgoing flow to see whether it displays the unique
mark and thus identify a potential stepping stone.

Several packet delaying schemes [16, 14, 8] intend to
embed message bits by introducing distinctive network
jitter. Those bits can be easily picked up by the de-
coder but they look unintentional to other routers. In
[16, 14], skewness in jitter distribution, caused by de-
laying selected individual packets, is directly manipu-
lated/measured. In RAINBOW[8], jitter distortion is ex-
pressed as an artificial jitter sequence (up to a few thou-
sands in length), which is orthogonal to natural observed
jitter in the linear space. This unique jitter, compounded
together with normal network noise, can still be recog-
nized by the decoder, using the inner product.

Interval-based watermarking schemes [12, 15, 18, 7]
divide a flow into a series of time intervals and embed
bits by manipulating the packet timing characteristics
within each interval. Such approaches focus on intervals
rather than packets, and are thus generally more resilient
to packet insertion, losses and repacketization.

2.3 Attacks on Watermarking
In 2006 Peng et al. presented the PNR attack for step-
ping stone attackers [11]. The attack is designed to re-

2

USENIX Association 	 21st USENIX Security Symposium  383

cover the secret keys and system parameters of the par-
ticular scheme by Wang et al. [16]. By sending packets
with controlled timing, uncommon extra delays can be
detected by a variety of statistical and data mining tools.
They also designed a duplicate attack to confuse the de-
coder by raising the false positive rate. The duplicate
attack mentioned in [11] is simply repeat the watermark-
ing with the extracted watermark parameters and is es-
sentially different from the non-parametric copy attack
we discuss here.

The Multi-flow attack (MFA), a passive detection at-
tack recently proposed by Kiyavash et al. [9], demon-
strates that an alignment of multiple marked flows shows
an unusual synchronized pattern of busy and idle peri-
ods. This pattern is strong enough to conclude the pres-
ence of a watermark. MFAs show the potential of pas-
sive detection attacks and have helped motivate the de-
sign of newer watermarking schemes like RAINBOW
and SWIRL [8, 7], that claim to resist these attacks.

Most recently, Lou et al. [10] studied how to expose
watermarks in BACKLIT, an attack scenario in which
the watermark encoder manipulates return traffic from a
server while the attacker acts as a traffic relay between
the client and the server. The watermark attacker can
probe irregularities by comparing “clean” forward flows
and “marked” backward ones. By doing so, BACK-
LIT gains extra knowledge similar to chosen flow at-
tacker and is able to expose RAINBOW, SWIRL and
other timing-based watermarks. The success of BACK-
LIT, however, relies heavily on the specific threat model.

3 Threat Model of Network Flow Water-
marking

In this section we first discuss the performance goals
of network flow watermarking schemes. Then we
briefly describe two threat models for watermarking
schemes and define essential security properties that wa-
termarks should achieve against adversaries. We note
that anonymity systems and stepping stone intruders gen-
erally possess different capabilities and it is worthwhile
to model them as different adversaries.

3.1 Performance Requirements
Active traffic analysis techniques, such as timing-based
watermarking, aim to link network flows passing through
one or more relay hosts efficiently and with high preci-
sion and robustness. This requires watermark detection
to achieve both low false negative rates (FNR) and low
false positive rates (FPR), even in the presence of net-
work jitter and other distortion noise.

Low FNR requires the watermark not be easily erased
by natural timing distortion. Detecting watermarked

Watermark
Encoder

Watermark
Decoder

Attacker Non­marked flow Marked flow

Figure 1: Isolated adversary: Accessible to output
streams of the watermark encoder and input stream of
the decoder.

Watermark
Encoder

Watermark
Decoder

Attacker Non­marked flow Marked flow

Figure 2: Chosen flow adversary: Inputs of the encoder
are accessible too, in addition to outputs of the encoder
and inputs of the decoder.

flows within a large network, although with keys, is
sometimes challenging. Timing distortion such as de-
lay by congestion, packet reordering, packet loss, and re-
packetizing are not uncommon. To achieve low FNR,
usually multiple copies of a watermark are inserted into
different flow locations, so that timing distortion will not
affect the majority of the marks.

When facing a determined active adversary, FNR can
be arbitrarily high because any timing-based mark can
be erased through drastic measures. In an attempt to
preemptively remove any timing-based watermark, ac-
tive attackers can drastically change the timing by adding
dummy packets, introducing large delays and/or send-
ing packets in batches. Although effective, these ac-
tive counter-measures against flow watermarking induce
high costs that are typically unacceptable to the attacker,
especially for delay-intolerant applications like Tor and
SSH stepping-stones. Therefore, active attackers gener-
ally would prefer to appear passive and reactively launch
counter-watermark attacks.

The requirement of low FNR against adversaries trig-
gers the goal of passive invisibility: if watermarks ap-

3

384  21st USENIX Security Symposium	 USENIX Association

pear invisible to passive attackers, active countermea-
sures may not be employed. Still, there exists a trade-off
between low FNR and invisibility. The more watermarks
that are embedded in the network flow, the more signals
can be potentially picked up by the attacker.

On the other hand, low FPR is required so that
non-watermarked flows are not frequently mistaken for
marked ones; the advantage of watermarking over pas-
sive traffic analysis diminishes quickly as FPR grows.

Low FPR against adversarial manipulation, however,
has not attracted much attention. Attackers that re-
covers specific watermark parameters can duplicate wa-
termarks on different flows, ”confusing the detector”
[11, 9]. However, given the lack of knowledge of se-
cret keys and parameters, blindly manipulating a benign
flow into a watermarked flow is perceived to be hard for
adversaries. We introduce a novel implementation of ac-
tive duplication attack designed to increase FPR without
the knowledge of any watermark parameter, called the
best-effort copy attack. Busy Tor relays can use copy at-
tacks to replicate and spread watermarks on all outgoing
circuits and as a result, considerably increase FPR.

3.2 Types of Adversaries

The adversary against watermarking is assumed to con-
trol at least one host that relay the traffic between the
encoder and decoder. Such assumption is realistic for
both stepping stone intruders and anonymity system re-
lays. The concrete threat model can be categorized into
two classes: Isolated adversary illustrated in Fig. 1 and
chosen flow adversary in Fig. 2. Adversaries in both
threat models can be either pure observers (passive) or
traffic manipulators (active).

Anonymity networks such as Tor are generally iso-
lated active adversaries. Although Tor relays can manip-
ulate packet timing, they seldom do so because their ulti-
mate goal is to forward traffic as soon as possible. How-
ever that doesn’t mean Tor cannot do anything actively
about watermarking. As long as timing watermarks don’t
incur a high delay, a Tor relay could inject them and even
further exchange watermarks between different circuits
as we will show later.

The seemingly strong chosen flow adversaries are not
uncommon. A stepping-stone intruder, for example, is
capable of sending traffic at will. And it is usually
true that those attackers get root privilege on “stepping
stones” and are therefore able to observe and manipulate
the packet timing. A careful stepping-stone intruder can
set up trial connections to test the existence of a water-
marker before actually using these “owned” workstations
as stepping stones. The PNR attacker [11] is a good ex-
ample.

3.3 Invisibility

In a nutshell, invisibility is defined as the ability to dis-
tinguish watermarked flows from non-watermarked ones.
More formally, we define the Invisibility Game, played
by an adversary (shown in Figure 3): Consider two sets
of network flows S0 and S1; both of them are gener-
ated from the same distribution on flows. Flows in S1
are manipulated by the watermarker while ones in S0 are
not. Both S0 and S1 are affected by similar network jit-
ter. Now a random i ∈ {0,1} is generated by a fair coin
flip, the adversary is given one or more flows from Si
and she outputs i′, she wins the game if i = i′. A wa-
termark scheme is ’invisible’ if no adversary can win the
Invisibility Game with probability non-negligibly greater
than “1/2”. We further extend the definition of Invisibil-
ity Game to match up the ability of specific adversaries.

3.3.1 Invisibility with Isolated Adversaries

(Encoder) Output-only Detection To detect the pres-
ence of a watermark, there is little extra information
the isolated adversary can obtain other than flow timing.
Generally, we call such detection Output-only detection
because the adversary only has access to (possible) out-
puts of the watermark encoder. Although such adver-
saries appear to be the weakest, their detection capabili-
ties are still poorly understood.

Isolated passive invisibility has been the main focus in
the literature to date. Various primitive analyses, such as
entropy tests and distribution tests are utilized to examine
the invisibility. These tests are usually carried out on
individual flows. More powerful attacks come from the
novel idea of collectively examining flows in S1 or S0.

Multi-flow Attacks. The Multi-Flow Attack
(MFA) was introduced by Kiyavash, Houmansadr and
Borisov [9] to show that previous interval-based wa-
termarking schemes [12, 15, 18] lack invisibility when
multiple network flows carrying the same watermark are
carefully aligned. The aggregated histogram of packet
frequencies will show repeated cleared/crowded inter-
vals that can rarely happen without watermarking. The
MFA shows the potential power of a passive isolated at-
tacker.

We argue there is still room for many more intelligent
detection attacks. In this work, we demonstrate some
effective output-only detection attacks against state-of-
the-art watermarking systems, RAINBOW and SWIRL,
which have taken MFA resistance into account.

3.3.2 Invisibility with Chosen Flow Adversaries

Known Flow Attack. In this attack, chosen flow ad-
versaries can choose to observe arbitrary flows; flows are

4

USENIX Association 	 21st USENIX Security Symposium  385

Marked?Watermarker

 Attacker
Flow

Generator
Jitter

Generator
S

0

S
1

S
1

S
0

Figure 3: The Invisibility Game

examined by pure observers before and after they are wa-
termarked. We modify the invisibility game to reflect the
fact that now adversaries also have access to flows be-
fore they pass through the watermarker. The adversary
has the ability to compute the actual jitter imposed by
the network and the watermarker. This brings opportu-
nities to detect jitter-based watermarking schemes. In
particular, we will show how RAINBOW, a jitter-based
watermarking scheme, is vulnerable to such an adver-
sary in section 4. We note that Houmansadr et al. [8]
discuss global invisibility of RAINBOW in terms of the
Kolmogorov-Smirnov test on inter-packet delays and jit-
ter vectors. Unfortunately, K-S tests assume no a priori
knowledge of the data distribution and therefore under-
estimate the power of adversaries against RAINBOW,
limiting the usefulness of the result. In particular, we
find discriminators that work almost perfectly to detect
RAINBOW even when its parameters are carefully se-
lected to avoid detection.

Chosen Flow Attack. In this scenario, adversaries can
inject flows with a specific timing pattern and observe the
distortion possibly added by the watermarker. The invis-
ibility game with such an adversary gives the adversary
the ability to intervene with flow generation. An example
of a chosen flow attack is studied in [11]: when sending
packets with known timing, extra delays caused by wa-
termarks are distinguishable from normal network jitter.
None of the known network flow watermarking schemes
will resist this attack. For instance, we will show how
SWIRL is visible under chosen flow attacks.

3.4 Active Copy Attack Resistance

As shown in Figure 4, the purpose of a copy attack is
to confuse the decoder between flows from S0 and ones
from S1. To our knowledge, copy attacks without know-
ing specific watermark parameters have not been stud-
ied for network flow watermark schemes. However, the
concept of copy attacks on watermarking schemes is not
new. Adelsbach et al. [1] introduced the notion of pro-

Watermarker

Active Attacker Decoder

All marked?

Flow
Generator

Jitter
Generator

S
0

S
1

S
0

S
1

Figure 4: The Copy Attack Game

tocol attacks on multimedia watermarks where, for in-
stance, an attacker can copy a watermark from one copy
of a digital product to another, thus causing confusion
and difficulties in the authorship/ownership dispute pro-
cess. Peng et al. [11] designed a duplicate attack which
can be seen as a copy attack by chose flow adversaries.
Unlike the previous work, we show that it is possible to
carry out copy attacks without knowing the secret key or
concrete system parameters. naı̈vely, a straightforward
replay of packet timing works for all timing-based wa-
termarking schemes, including SWIRL and RAINBOW.
However, we design a copy attack on SWIRL that is
much simpler and extremely cost-effective. We show the
effectiveness of this attack in section 5. With an active
copy attack, two flows can replicate their watermarks to
each other so the decoder is confused in flow linking.

4 Detection Attacks Based On Flow Char-
actristics

In this section we present detection attacks from different
levels of adversaries. We demonstrate specific attacks on
two exemplar schemes: RAINBOW and SWIRL. Fol-
lowing a brief recap of each scheme, we present a de-
tection attack by a global adversary. We then show how
the attack can be extended to work with a isolated adver-
sary. All attacks are simulated and evaluated on CAIDA
datasets [13].

4.1 Attack Implementation
We implement both watermarking schemes and attack al-
gorithms in C++. To simulate the flow generator and jit-
ter generator, we draw flows and jitter vectors from real-
world network traces. Our simulation setup closely fol-
lows that of [7].

The network trace data are collected by the CAIDA
project from its equinix-chicago OC192 link in January
2009 [13]. The dataset contains network flows that tra-
verse in both direction of the link during a 4-hour pe-

5

386  21st USENIX Security Symposium	 USENIX Association

riod. We selected SSH flows (destination port 22) be-
cause stepping-stone attacks are usually conducted over
SSH, and got a total pool of 33 flows and 2.78 million
packets. The packet rate ranges from 2 pps to 180 pps.

To simulate normal jitter caused by network delays,
we adopt the RTT (round-trip time) measured between
PlanetLab nodes [3] by Houmansadr and Borisov in their
SWIRL work. In each simulation, a random trace of
round-trip delays is chosen and applied to the water-
marked flow.

4.2 RAINBOW
In the RAINBOW watermarking scheme [8], the water-
mark encoder and decoder share a database (DB) which
records packet inter-arrival timing. In addition, they
share a watermark key w = [w1,w2, · · · ,wn]. The compo-
nents of w take binary values of +a and −a uniformly:

wi =

{
a with prob. 1/2;
−a with prob. 1/2.

For each individual incoming network flow, the en-
coder computes and stores the packet inter-arrival tim-
ing in DB, then inserts w as extra jitter. Considered the
packet arrives at time [t1, t2, · · · , tn+1], the inter-packet de-
lays (IPDs) are v = [t2− t1, t3− t2, · · · , tn+1− tn]. Now the
flow is marked to carry the inter-arrival time as v+w,
i.e. each inter arrival time is lengthened or shortened by
a milliseconds. In case vi+wi < 0, wi is ignored to avoid
packet reordering, which would severely degrade the wa-
termark if it happened too often. The details are shown
in Algorithm 1.

On the other end, for each outgoing flow with inter
arrival time vector v′, the decoder computes a jitter vector
d = v′ − v for each corresponding v recorded in the DB,
and computes the cosine similarity score between d and
w:

cos(d,w) =
〈d,w〉
‖d‖‖w‖

.

The detection algorithm is shown in Algorithm 2.
If v′ is indeed the marked version of v, then we have

d = w+δ where δ is the natural jitter introduced by the
network delay. It is a widely adopted assumption that
the distribution of jitter components can be modelled as
a Laplacian distribution Lap(0,β) [20, 8]. Subsequently
we have

cos(d,w)∼ Lap(
√

a2/(2β 2 +a2),
1√
2n

) .

On the other hand, when the flow is not marked or
an incorrect v is chosen, we have d = v′ − v + δ , and
cos(d,w)≈ Lap(0, 1√

2n
). The two distribution are nicely

separated when the proper a value is chosen. The de-
coder decides the flow is marked if it scores higher than

a threshold ζ = 1
2

√
a2/(2β 2 +a2), and not marked oth-

erwise.

4.2.1 Known Flow Attack

Under a known flow attack, the inter-packet delays be-
fore and after passing through the encoder are given, al-
lowing the attacker to compute jitter. Therefore the task
of detecting a RAINBOW watermark breaks down to dis-
tinguishing between vectors of the form w + δ and δ ,
where δ is normal jitter following a Laplacian distribu-
tion. In this case, there are several algorithms that could
identify the watermark. We briefly introduce a detection
algorithm that uses only one flow. Another detection al-
gorithm that utilizes 2 or more flows and achieves per-
fect discrimination for most parameters is described in
the appendix.
Single-flow Detection. We show how to detect the wa-
termark with a single flow. Specifically, a histogram of
jitter components within a time window serves as an ex-
cellent discriminator. In particular, we focus on the bin
that counts the number of jitter components in the range
[−β/4, β/4].

By definition of the Laplacian distribution,

Pr(−β/4 < δi < β/4) = 1− e−1/4 ≈ 0.221

so we expect over 1/5 components will fall in this bin.
When the watermark w is added, each jitter component is
translated to δi+a or δi−a. Then under this new model,
the probability that a watermarked jitter falls in the same
bin is Pr(−β/4 < x±a < β/4).

When we take a >= β/4, we have

Pr(−β/4 < x±a < β/4)
= Pr(a−β/4 < |x|< a+β/4)/2

= (e−a/β+1/4 − e−a/β−1/4)/2

For different a values, this probability can be directly
estimated; see Table 1. The larger a is, the fewer jitter
values will fall in the bin. Using observed jitter values,
the drop in frequency is even larger, since originally the
majority of the components fall in [−β/4, β/4].

The attack algorithm is very simple: Scan through
the packet arrival times with a moving time window
and compute the percentage of jitter components in the
range [−β/4,β/4] within the window. If it is lower
that a threshold θ , tag the packets within the window as
“marked”.

a = 0 β/4 β/2 β 2β
Frac. 0.221 0.197 0.153 0.093 0.034

Table 1: Expected fraction of watermark jitter in [−β/4,
β/4].

6

USENIX Association 	 21st USENIX Security Symposium  387

Algorithm 1 RAINBOW-Embed a

Input: v, w, n
for j = 1 → n do

if v[j]+w[j]≥ 0 then
v[j] = v[j]+w[j]

end if
end for
return v

aIt is slightly different from the original algorithm described in [8].
However, this is the actual algorithm adapted in RAINBOW’s source
code and is in accordance with the experiment notes in [10] .

Algorithm 2 RAINBOW-Detect
Input: v,DB = {v1,v2, · · · ,vm},w, ζ

isDetected = FALSE
for i = 1 → m do

di = vi − v
r = cos(di,w)
if r > ζ then

isDetected = T RUE
end if

end for
return isDetected

Attack Evaluation. We simulated network flows by cut-
ting randomly a subsequence of n + 1 packets from a
randomly drawn flow and we simulate the encoder with
n = 200 to 1000 and a = 2 to 20. For each set of pa-
rameters, we simulated 1000 marked flows and 1000 un-
marked ones. Also we simulated natural network delay
on each flow, with the RTT dataset by Houmansadr and
Borisov in their work of SWIRL [7]. The resulting flow
is later ran against by the attack algorithm. The Lapla-
cian model of jitter, estimated from the RTT dataset, in-
dicates β = 10ms.

With a moving window that takes m= 200 consecutive
packets, the attacker obtains a histogram of jitter values
within the window and focuses on the number of small
values within ([−2.5ms,2.5ms]), with β = 10ms. As in-
dicated in Table 1, in the idealized situation we should
see the percentage of such small jitter values drop from
20% to 9.3% or lower when an added watermark ampli-
tude a > β is expected. We set the threshold θ to be
10%. To illustrate the detection performance, we evalu-
ate the single-flow detection attack by three criteria: True
Positive Rate, False Positive Rate and Average Recall.

From Table 2, as expected the detection algorithm
successfully recovers almost the entire watermark when
a≥ 10ms, regardless of the length of the watermark. And
it also does a very good job even when a = 5ms and the
watermark is sufficiently long and the performance drops
when a = 2ms. It is evident that the known flow attack is
effective against RAINBOW, without any knowledge of
the watermark key.

4.2.2 Output-only Detection Attack

Now we consider an attacker who can only see the flow
after it passes the encoder: with only access to the poten-
tially watermarked flow, we can still probe irregularities
by sampling, with the assumption that the mark is not
constantly present in the flow. In other words, we as-
sume the flow contains marked segments and unmarked
segments.

a (ms) length TPR FPR Avg. Recall

2
200 0.004 0 0.001
500 0.011 0 0.011

1000 0.024 0 0.001

5
200 0.996 0 0.692
500 1.000 0 0.846

1000 1.000 0 0.921

10
200 1.000 0 0.984
500 1.000 0 0.994

1000 1.000 0 0.997

15
200 1.000 0 1.000
500 1.000 0 1.000

1000 1.000 0 1.000

20
200 1.000 0 1.000
500 1.000 0 1.000

1000 1.000 0 1.000

Table 2: Detection performance of single-flow chosen
flow attack on RAINBOW

An important observation is made: The distribution
of IPDs, {vi}, is highly skewed. One example of the IPD
distribution before and after RAINBOW watermarking is
shown in Figure 5. In RAINBOW, a marked IPD vi will
be translated to vi + a or vi − a. The skewness of these
marked IPDs will be very different from the original.

Similar to the single flow detection algorithm, we uti-
lize the change in histogram skewness as a predictor. Us-
ing a sliding window of w IPDs, histogram samples are
generated. Viewed as vectors, these samples is naturally
assumed to form a cluster in the linear space. Realizing
the IPD distribution varies over time, we limit the his-
togram sampling to a flow segment of L packets. Since
there is no single standardized model of IPD histogram
we can refer to, we resort to using the centroid of the
histogram samples to describe the cluster. The centroid
is called the reference histogram, Hr. Further, each his-
togram sample is compared with the reference Hr. In
case RAINBOW watermark is inserted, there exist sam-
ples that are much different from Hr. With a similar-

7

388  21st USENIX Security Symposium	 USENIX Association

Figure 5: The histogram of first 2000 IPDs of one flow
before and after watermarking (n=2000, a = 10ms). The
bin size is 5ms.

ity function Ψ(·, ·) and a threshold τS, we judge a flow
to be marked if there exists a histogram Hi such that
Ψ(Hi,Hr)≤ τS.

The watermarking effect on histograms can be viewed
as a linear transformation on them. Suppose two his-
tograms H and H ′ represent distributions of IPDs before
and after the watermarking, respectively. Then there ex-
ists a matrix M such that H ′ = H ·M, leading us to use
the cosine function as the similarity measure.

Figure 6: CDF with cosine similarity

A preliminary experiment confirms the effectiveness
of cosine similarity on histograms. After selecting 100
random subsequences of L = 4000 packets from ran-
domly drawn flows, we simulate RAINBOW watermarks
(with n = 1000 and various a values) on each sequence.
We take a sliding window of w = 200 IPDs. For the his-
togram sampling, we set the bin width to be 5ms, aim-
ing to capture the watermark amplitudes a > 5ms. We
also “clip” IPD histograms at vi ≤ 200ms as the major-
ity of IPDs are in that range. The cumulative distribution
functions of similarity scores over watermarked and non-
marked regions respectively, are shown in Fig 6. The dis-
tance between the solid (watermarked) and dashed (un-

watermarked) distributions suggests that we should be
able to distinguish between the cases.
Evaluation of Output-only Detection Attack. We sim-
ulated 1000 flows by selecting a random subsequence of
4000 packets from a randomly drawn flow. We then sim-
ulate RAINBOW watermarks on the flow sample, with
multiple parameter combinations. For each flow, normal
network delay is simulated by imposing one sample jitter
sequence from the RTT dataset.

We experimented with τS values between 0 and 1, and
calculate ROC curves for each parameter combination.
We selected two sets of them to show in Figure 7. To see
how the outlier detection is affected by smaller segment,
we also repeated the evaluation with 2000-packet flows
and found similar results. The area under curve (AUC)
values for various parameters for both experiments are
summarized in Table 3. The performance of the attack
agrees with the intuition: the chances of detecting water-
marks improves with increasing amplitude and length.
When a = 20ms, the AUC is generally close to or greater
than 0.90. When a ≤ 5ms, the performance of the attack
drops substantially because the histogram with 5ms bin
fails to reflect the relatively invisible distribution change.

Figure 7: ROC curves of outlier detection

4.3 SWIRL
The design of SWIRL [7] can be briefly described as
follows. Time is divided into intervals of two basic
types: n “base intervals” in which seeds are gener-
ated, and n “mark intervals” in which packets are ac-
tually manipulated. Both being T seconds long, each
base interval corresponds to one mark interval. Each
mark interval is equally divided into r sub-intervals,
and each sub-interval is equally divided into m slots.
For each pair of base and mark intervals, r secret
permutations,π1,π2, . . . ,πr, are generated, such that each
πi is a permutation of numbers from 1 to m. Each base

8

USENIX Association 	 21st USENIX Security Symposium  389

a length AUC (L = 2000) AUC (L = 4000)

5
200 0.417 0.432
500 0.492 0.455

1000 0.732 0.489

10
200 0.641 0.858
500 0.711 0.878

1000 0.728 0.895

15
200 0.894 0.889
500 0.924 0.917

1000 0.927 0.905

20
200 0.875 0.889
500 0.913 0.917

1000 0.920 0.910

Table 3: AUC scores of outlier detection

interval will be used to derive a seed s ∈ Zm and πi(s)
will determine a designated slot for the i−th sub-interval
of the corresponding mark interval. The encoder and
decoder have agreed on the choices of n, T , m, r, and
π1, . . . ,πr.

Within each mark interval, a watermark bit is inserted
by re-arranging the packets to the designated slots for
each sub-interval. More specifically, packets arriving be-
fore each designated slot are delayed into the subsequent
one. The choice of seed s, the “quantized centroids” of
base interval packets, is determined as follows: First, the
centroid of packets, C, is computed as the mean arrival
time of packets from the beginning of the interval. And
the quantized centroid is

s = �qmC/T� (mod m) ,

where q is the quantization multiplier, introduced to in-
crease randomness. The procedure of delaying packets
into slots is illustrated in Figure 8.

For each outgoing flow at the other end, the decoder
computes the centroids of every base interval and in-
spects the corresponding mark interval. A sub-interval
is considered marked if the designated slot has packets.
For each interval, a watermark bit is found if the number
of marked sub-intervals is more than a pre-determined
threshold τ . Finally, a watermark is detected if the num-
ber of watermark bits exceeds a preset threshold η .

4.3.1 Chosen Flow Attack

To make a SWIRL watermark stand out, the attacker can
establish connections to a compromised host with uni-
formly paced traffic, sending K packets evenly per sec-
ond. The interval centroid within such flows must lie
within [1/2,1/2+ 1/K], regardless of the initial offset.
As long as K is large, the quantized centroid will not

π1(s) = 3 π2(s) = 2

12 3 4 5 2 3

3 4 5

π1(s) = 3 π2(s) = 2

Before

After

Delaying packets in one Interval Mark1, m = 5, r = 2

1

Figure 8: The marking procedure of SWIRL watermark-
ing scheme

change. So each marked flow will have the same pat-
tern of cleared and occupied intervals. To see the pattern
across different flows, we introduce the following attack
that works like MFA based on packets, rather than time
intervals, due to the fact that the pattern is introduced
with a random offset on each flow.

1. One attacker injects multiple flows toward the other;
the IPDs of all packets in all flows are t ms.

2. The receiving attacker models the jitter as Laplacian
and estimates the variance β .

3. The receiver flags packets that arrive too soon (≤ t−
δ) or too late (≥ t +δms) from the previous packet,
with a threshold δ .

4. The receiver converts flagged packets into bit 1 and
others into bit 0, transforming flows into bit strings.
It examines the bit strings to see if there are com-
mon patterns of jitter.

Here is an example: We simulate an attacker that injects
multiple flows with a rate of 20 packets per second (t =
50ms) to the SWIRL encoder and observes the outgo-
ing traffic. We implement the SWIRL encoder with the
recommended parameters (n = 32, T = 2s, r = 20 and
m = 5). For each flow, the encoder applies a unique key
(including new assignments of base/mark intervals) and
a unique random initial offset o ∈ [0,T]. Network jitter
is simulated by the observed jitter dataset. The chosen
flow attacker first computes the jitter and estimate the jit-
ter model: Lap(0,10) and set δ = 20ms. Figure 9 shows
three marked flows that are converted into bit sequences
and put side by side for comparison.

The a priori likelihood of producing highly synchro-
nized bit patterns by normal jitter is very small. The
event of seeing a bit-1 (i.e. a jitter component | j| > δ)
happens with probability p = e−δ/β by Laplacian distri-
bution. Therefore each bit is the outcome of a Bernoulli

9

390  21st USENIX Security Symposium	 USENIX Association

 0 1000 2000 3000 4000 5000

Packet

3-flow alignment

 0 1000 2000 3000 4000 5000

Packet

3-flow alignment

 0 1000 2000 3000 4000 5000

Packet

3-flow alignment

Figure 9: For each flow, an impulse is drawn when
a packets is flagged. The synchronization of flags
clearly shows the presence of watermark. On the con-
trast, the non-marked region on the right shows non-
synchronization columns.

trial. With an alignment of k bit sequences, each column
shows an outcome of k independent Bernoulli trials. The
number of 1 bits in each column follows the binomial
distribution X ∼ B(k, p). Subsequently, the probability
of generating an all-1 column is Pr(X = k) = pk. With
observation of N columns, the expected total occurrence
of all-1 columns is N pk, with variance of N pk(1− pk).

Returning to the example, we have β = 10, δ = 20ms,
k = 3, so p = 0.135 and the probability of generating
one all-1 column is 0.00248. In Figure 9, the left 2500
columns of the alignment have 350 all-1 columns, much
higher than the expected value 6.25 with a Z score of
140. In contrast, the right half has only 8 all-1 columns.

Learning from the example, the attacker uses a moving
observation window and simply sets a Z score threshold.
She raises the alarm when she sees the number of all-1
columns surpassing the threshold.
Evaluation of Chosen Flow Attack. We simulate the
SWIRL watermarking on synthetic flows with two sets
of SWIRL parameters: (n = 32, T = 2s, r = 10, m = 5)
and (n = 32, T = 2s, r = 20, m = 5). Each synthetic flow
lasts for 300 seconds and contains traffic with a uniform
rate of 20 PPS. The resulting flow is further distorted by
a random jitter vector from jitter dataset. In each ex-
periment, 3 marked flows are converted to bit sequence
as described previously and aligned. The attacker runs
through the alignment with a moving window of size
1000. β is estimated as 10. We repeat the detection at-
tack for three times on each alignment with δ = 10ms ,
20ms, and 30ms respectively. The Z score threshold is set
to 10. 3 non-marked flows with jitter are also fed to the
attacker as control. We repeat the experiment 100 times.

There is no surprise to see that the attacker correctly
identifies all watermarked flows and non-marked ones
without any error, no matter which δ value is chosen.
The accuracy of 100% is attributed partly to the fact that

the Laplacian model usually over-estimates the tail dis-
tribution of natural jitter. That results in a much lower
probability of seeing an all-1 column in the non-marked
flow alignment, eliminating false positives.

4.3.2 Output-only Detection Analysis

Two important observations are made from the chosen
flow attack on SWIRL:

• Because of the interval choice algorithm, mark in-
tervals are likely allocated toward the end of the en-
tire watermark period. Intuitively, out of 64 inter-
vals, 1st interval must be base interval and the 64th
must be mark interval. Very often, the last several
intervals are all mark intervals.

• Initial offsets ∈ [0,T] are not significant enough to
break the synchronization of mark intervals.

Inspired by the observations, we examine the distribu-
tion of cleared and occupied sub-intervals and their rela-
tive positioning. With at least 75% probability, each des-
ignated slot is at least one half sub-interval length away
from the neighboring designated slot. Intuitively we call
this ‘isolation’, i.e. a packet in a marked region is either
close to some neighboring packets because they are co-
located in the same slot or far away from other packets.
We slice the packets into groups by time, such that time
gap between groups are at least T microseconds (T is
chosen as a threshold.) Because of ‘isolation’, packets in
marked intervals tend to form groups of short time-span.

To implement this heuristic, we use a naive cluster-
ing analysis algorithm that group packets by their arrival
times. Two packets are grouped to the same cluster if
their IPD in between is ≤ T . To capture the intuition
of ‘many short clusters’, we use the maximum time-span
among all clusters. If all clusters’ time-spans are short,
the maximum is guaranteed to be short. For one flow, we
first divide it into one-second flow snapshots. Then we
apply the analysis to each snapshot and assign the max-
imum cluster time-span to the snapshot as its heuristic
feature. We denote this by Fi for the i-th snapshot. We
hypothesize that Fi has a lower expected value if the i-th
second is in a marked interval. To see this, we repeat the
same procedure on k flows and compute F̄i as the average
Fi across multiple flows. The procedure is illustrated in
Figure 10.

Here we give an example of such F̄i vectors derived
from 30 non-marked flows and 30 marked flows, as
shown in Figure 11.

The output-only attacker collects marked flows pas-
sively and converts them to lists of heuristic values Fi
with clustering parameter t. She computes the mean Fi

10

USENIX Association 	 21st USENIX Security Symposium  391

f
1 ... f

k

{f
11

,f
12

...}

{F
11

,F
12

, ...} {F
k1

,F
k2

, ...}

{f
k1

,f
k2

...}

Divide into 1-second snapshots

 Cluster Analysis
 F

ij
 = Max Cluster(f

ij
)

...

...

...

Average ={F
1
, F

2
, ...}

Figure 10: The procedure of computing F̄i

Figure 11: Two figures show {F̄i} values derived from
the same set of flows with and without watermark manip-
ulation respectively. Marked flows has lower Fi values at
marked intervals. (The thin dash line at y=0.0 level in the
left figure indicates mark intervals.)

values across multiple flows. Marked regions are ex-
pected to score lower F̄i. Using a threshold τF , she deter-
mines that a flow is marked if there exists some F̄i < τF .
Evaluation of Output-only Detection Attack. To test
the output-only attack, we first generate flows with
packet rate λ ≤ 10 packets per second, the target packet
rate for SWIRL. We then repeat for 100 times the simu-
lation of SWIRL watermarking on those flows with the
same two set of system parameters in Chosen Flow At-
tack evaluation.

Assuming no knowledge of the system parameters, the
attacker launches the attack with various values of T .
Unfortunately we don’t have an analytical model for set-
ting τF so we use area under ROC curve (AUC) to eval-
uate the performance of the attack. The evaluation is
shown in Table 4. We have encouraging results when

AUC Score
t (ms) k=10 k = 20 k = 30 k = 40

Sub-interval size = 100 ms (r=20)
50 0.552 0.806 0.920 0.971
100 0.598 0.765 0.882 0.934
150 0.455 0.484 0.498 0.548
200 0.615 0.668 0.706 0.727

Sub-interval size = 200 ms (r=10)
50 0.410 0.444 0.472 0.513
100 0.580 0.893 0.984 0.998
150 0.749 0.980 0.998 1.000
200 0.934 0.983 1.000 1.000

Table 4: AUC scores with combinations of t and k

the clustering threshold t is smaller than or equal to the
subinterval length SI. Obviously, when T is larger than
SI, the heuristic fails as the ‘isolation’ is bounded by SI
and is gone when we look for larger gaps. For the sec-
ond parameter set, the attack is able to score AUC greater
than 0.98 with t ≥ 100ms and k ≥ 30. It is worth men-
tioning that when T = 50ms, the attack cannot identify
watermarked flows, due to the fact that the slot size is
40ms, very close to T . In that case, given the low traffic
rate, Fi with T = 50ms in the marked regions looks es-
sentially the same as in non-marked regions, producing
random numbers between 0 and 50ms. Finally, we are
always able to find a threshold that allows the attack to
separate marked flows and non-marked flows without er-
ror, when enough marked flows are accumulated (k ≥ 30)
and T is between the slot size and the sub-interval size,
e.g. 100ms.

We further argue that blindly setting T = 100ms will
be suitable to detect most SWIRL watermarks. First
of all, heuristically we see the sub-interval should not
be smaller than 100ms. The reason is that a smaller
sub-interval is closely related to larger false negatives.
Smaller sub-intervals result in smaller slots, making the
scheme vulnerable to natural network jitter. Even worse,
many smaller sub-intervals will be unmarkable because
there is no packet falling into them, resulting in detec-
tion difficulties. On the other hand, we also reason the
slot size should not be much larger than 100ms, since
larger slots lead to much worse invisibility [7].

5 Active Copy and Ambiguity Attacks

Copy attacks are common in the area of media water-
marking. However, to our knowledge the copy attack
on network flow watermarks has not been studied exten-
sively. In this section, we focus on copy attacks from a
isolated adversary’s perpective, resulting in stronger at-
tacks (based on weaker assumptions). For convenience

11

392  21st USENIX Security Symposium	 USENIX Association

of discussion, we refer to the original watermarked flow
as the Source Flow and refer to the to-be-copied-to flow
as the Target Flow.
Generic Copy Attack The first passive copy attack is the
replay attack, which simply replicates the IPD sequence
of the source flow with the target flow. In the RAIN-
BOW scheme, the decoder automatically links incoming
and out-going flows when a watermark is detected, since
the detection only succeeds when outgoing timing and
recorded incoming timing are matched correctly. In case
of the replay attack, the decoder will have to face two
identical watermarked flows and will no longer be able
to do exact traffic linking.

Moreover, the replay attack doesn’t need to be turned
on all the time due to the fact that the watermark decoder
will tolerate some errors. For example, suppose the en-
tire watermark is imposed on the first 1000 packets of
both source and target flows. When the attack changes
the first 500 IPDs of the target flow with the source flow
as a template, it creates a “chimera” flow that looks 50%
similar to the source and the target, making the decoder
more confused.
Copy Attacks against SWIRL. Unlike RAINBOW,
SWIRL is interval-based, searching for intervals manip-
ulated by the watermark encoding algorithm. SWIRL
also tolerates errors caused by natural delay and jitters.
Therefore it is possible to copy SWIRL watermarks im-
perfectly. Two key insights enable us to design a best-
effort keyless copy attack efficiently:

• The interval centroid will not change even when a
small fraction of packets are missing.

• The SWIRL decoder only watches for one packet to
appear in the right slot and not all designated slots
need to be filled.

In order to copy the mark, the attacker simply delays
packets with a timing template recorded moments ago.
The self-synchronization of the watermarking detection
algorithm will automatically shift the interval boundary
in place so we don’t need to worry about the actual posi-
tion of marks in the flow. The specific copy attack works
as follows (also shown in Figure 12):

1. Between time u and u + ∆, the attacker sets up a
buffer that records the arrival times of a source flow
as Q = {t1, t2, . . . , tn} for packets coming within this
period.

2. Between time u+∆ and u+ 2∆, each packet of the
target flow arriving at time vi will be examine to
see if it can be matched to t j ∈ Q so that vi can be
delayed to make t j − u = vi − u − ∆. Unmatched
packets will be handled normally without extra de-
lay. Meanwhile, we use another buffer Q′ to record
the timing of A in this period.

λ Parameters
3 < λ < 20 n = 32, T = 2s, r = 20, m = 5

20 < λ < 80 n = 32, T = 2s, r = 40, m = 5
80 < λ n = 32, T = 2s, r = 80, m = 5

Table 5: Adaptive setting of SWIRL system parameters

3. Replace Q with Q′, u with u+∆, and repeat step2.

... ...

Time

Flow A

u u + Δ

Flow B

u + Δ u +2 Δ

Copy

Figure 12: The best-effort copy attack on SWIRL
scheme

This algorithm can run in real time and only requires
two small buffers. ∆ can be tuned to a small value, such
as 500 milliseconds or 1 second. The “icing on the cake”
is that the attacker can also copy the other way around
simultaneously while copying from the source to the tar-
get.
Evaluation of Copy Attack on SWIRL. We implement
the SWIRL encoder and decoder with multiple sets of
parameters, adjusted to flows with different packet rates,
shown in Table 5.

We simulated network flows by randomly choosing
128-second long intervals from randomly drawn flows.
In total we obtained 300 flows for simulation and we sim-
ulated SWIRL watermarks on them, each with a unique
watermark key. Our implementation of the copy attack
chooses ∆ = 500ms. The attack is launched on every
pair of flows 100 times. Eventually the average perfor-
mance is calculated. The average number of bits detected
on the target flow with the source flow’s key is shown in
Figure 13. Meanwhile, after the copy attack, the aver-
age bits detected by the target flow’s key is also shown in
Figure 14, organized by both flows’ packet rates. The di-
agonal blocks show that it is easy to achieve copy effect
between flows with similar system parameters. It also
shows a clear trend that high-packet-rate flows (λ > 40)
can easily copy any marks from a flow with a lower rate,
achieving 25.4 bits detected on average. Also because
of the high packet rate, they still remain watermarked by
their original keys, with 19.5 bits. It is evident that the
best-effort copy attack is agnostic to the actual settings

12

USENIX Association 	 21st USENIX Security Symposium  393

Figure 13: Bits detected after the target flow (A) copies
watermarks from the source flow (B), with source flow’s
detection key.

Figure 14: Bits detected after the best-effort copy attack,
with the target flow’s detection key.

of SWIRL such that two flows carrying completely dif-
ferent SWIRL watermarks can still exchange their marks
without knowledge of SWIRL parameters.

6 Discussion

6.1 Defending Chosen Flow Attacks

Generally, defending against chosen flow attackers is
hard given that timing manipulation is visible and mea-
surable for such attackers. For jitter-based schemes, cho-
sen flow attacker can directly compare the jitter in ques-
tion with some theoretical model. One defense technique
to borrow from stegnography is that the imposed artifi-
cial jitter should approximate the real jitter as much as
possible. As to interval-based schemes, Kiyavash et al.
in their work of MFA already suggested choosing dif-
ferent mark intervals for different flows [9]. However,
both PNR attacks and our chosen flow detection algo-
rithms indicate that using base/mark approach doesn’t re-
sist against chosen flow adversary. How to choose mark
intervals randomly to get pass such adversary becomes
an interesting open question.

6.2 Defenses against Isolated Passive At-
tacks

6.2.1 RAINBOW

There are two ways to mitigate our outlier detection at-
tack on RAINBOW: one is to use a smaller amplitude
value a, such as 5ms. The other is to only watermark a
subset of IPDs. For example, only one in every k IPDs
will be touched for watermarking. Either way we face a
trade-off between invisibility and robustness.

6.2.2 SWIRL

To defend against the passive attack we described, an
easy fix for SWIRL is to use larger offsets and more ran-
dom interval assignments. Large offsets breaks the syn-
chronization of marked intervals so multi-flow alignment
is less effective. A large offset might, however, present a
scalability issue for the self-synchronized watermark de-
coder because now trying all possible offset values will
be a time consuming task. Another defense is to employ
a more sophisticated mark interval selection algorithm.
For example, we could choose 32 out of 100 intervals to
be mark intervals, and have the choice of the 32 mark in-
tervals be determined by the base intervals of individual
flows. Properly evaluating these defense strategies will
require further research.

6.3 Utilizing Copy Attack for Anonymity
Large autonomous systems (ASes) such as ISPs control
the network routing infrastructure in a distributed man-
ner. Studies have pointed out that AS-level adversaries
could reduce the link anonymity of Tor substantially by
passive traffic analysis [5]. Equipped with high-capacity
routers, such adversaries can also employ watermark-
ing to improve the linking results. Blind watermarking
schemes such as SWIRL are more suitable than non-
blind schemes like RAINBOW because decoders in blind
schemes can act along with pre-configured parameters
and keys, saving a huge amount of resources.

To defend anonymity against AS-level adversaries that
use SWIRL, Tor relays can launch the copy attack against
SWIRL to mingle the timing information from multiple
concurrent flows and confuse the decoders. The impact
of copy attacks against passive and active traffic analysis
on low-delay anonymity networks like Tor is an interest-
ing open problem, appealing for future investigation.

7 Conclusion

We have proposed a security evaluation framework for
network flow watermarking schemes, based on threat
modeling. We started from a strong adversary, who is

13

394  21st USENIX Security Symposium	 USENIX Association

capable of chosen flow attacks, and proved the effective-
ness of chosen flow attacks against the recent state-of-
the-art watermarking schemes, RAINBOW and SWIRL.
Using insights from these attacks, we were able to devise
detection attacks from the perspective of weaker isolated
passive adversaries that still defeat the invisibility claims
of these schemes. Additionally, we point out the feasi-
bility of keyless copy attacks against flow watermarking
and the importance of defending against such attacks in a
traffic analysis scenario. In particular we develop an effi-
cient and simple copy attack that works very well against
SWIRL. We were able to transfer watermarks from one
marked flow to another non-marked flow. Such copy at-
tacks are especially of interests to Tor relays, which have
concerns about link privacy with potential watermarking
from ASes or compromised relays. In our future work,
we would like to investigate the attack effectiveness in
the real world and evaluate the subsequent performance
impacts.

8 Acknowledgements

We thank Nikita Borisov and Amir Houmansadr for
kindly sharing the source code and datasets for RAIN-
BOW and SWIRL. We thank our shepherd Nikita
Borisov as well as several anonymous reviewers for their
constructive feedback. This work was supported by NSF
grant 0917154.

References

[1] A. Adelsbach, S. Katzenbeisser, and H. Veith. Wa-
termarking schemes provably secure against copy
and ambiguity attacks. In Proceedings of the
3rd ACM workshop on Digital rights management,
DRM ’03, pages 111–119, New York, NY, USA,
2003. ACM.

[2] A. Blum, D. X. Song, and S. Venkataraman. De-
tection of interactive stepping stones: Algorithms
and confidence bounds. In E. Jonsson, A. Valdes,
and M. Almgren, editors, International Symposium
on Recent Advances in Intrusion Detection, volume
3224 of Lecture Notes in Computer Science, pages
258–277. Springer, Sept. 2004.

[3] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Pe-
terson, M. Wawrzoniak, and M. Bowman. Planet-
lab: an overlay testbed for broad-coverage services.
SIGCOMM Comput. Commun. Rev., 33:3–12, July
2003.

[4] D. L. Donoho, A. G. Flesia, U. Shankar, V. Pax-
son, J. Coit, and S. Staniford. Multiscale stepping-

stone detection: detecting pairs of jittered interac-
tive streams by exploiting maximum tolerable de-
lay. In Proceedings of the 5th international con-
ference on Recent advances in intrusion detection,
RAID’02, pages 17–35, Berlin, Heidelberg, 2002.
Springer-Verlag.

[5] M. Edman and P. F. Syverson. AS-awareness in tor
path selection. In E. Al-Shaer, S. Jha, and A. D.
Keromytis, editors, Proceedings of the 2009 ACM
Conference on Computer and Communications Se-
curity, CCS 2009, Chicago, Illinois, USA, Novem-
ber 9-13, 2009, pages 380–389. ACM, 2009.

[6] T. He and L. Tong. Detecting encrypted stepping-
stone connections. Trans. Sig. Proc., 55(5):1612–
1623, May 2007.

[7] A. Houmansadr and N. Borisov. SWIRL: A scal-
able watermark to detect correlated network flows.
In Network and Distributed System Security Sym-
posium. Internet Society, Feb 2011.

[8] A. Houmansadr, N. Kiyavash, and N. Borisov.
RAINBOW: A robust and invisible non-blind wa-
termark for network flows. In Network and Dis-
tributed System Security Symposium. Internet Soci-
ety, Feb 2009.

[9] N. Kiyavash, A. Houmansadr, and N. Borisov.
Multi-flow attacks against network flow water-
marking schemes. In Proceedings of the 17th con-
ference on Security symposium, pages 307–320,
Berkeley, CA, USA, 2008. USENIX Association.

[10] X. Luo, P. Zhou, J. Zhang, R. Perdisci, W. Lee, and
R. K. C. Chang. Exposing invisible timing-based
traffic watermarks with backlit. In Proceedings of
2011 Annual Computer Security Applications Con-
ference (ACSAC’11), Orlando, FL, USA, December
2011.

[11] P. Peng, P. Ning, and D. S. Reeves. On the se-
crecy of timing-based active watermarking trace-
back techniques. In Proceedings of the 2006 IEEE
Symposium on Security and Privacy, pages 334–
349, Washington, DC, USA, 2006. IEEE Computer
Society.

[12] Y. Pyun, Y. Park, X. Wang, D. S. Reeves, and
P. Ning. Tracing traffic through intermediate hosts
that repacketize flows. In G. Kesidis, E. Modiano,
and R. Srikant, editors, IEEE Conference on Com-
puter Communications (INFOCOM), pages 634–
642, May 2007.

14

USENIX Association 	 21st USENIX Security Symposium  395

[13] C. Walsworth, E. Aben, kc claffy, and D. Andersen.
The caida anonymized 2009 internet tracesjanuary.,
Mar. 2009.

[14] X. Wang, S. Chen, and S. Jajodia. Tracking anony-
mous peer-to-peer voip calls on the internet. In Pro-
ceedings of the 12th ACM conference on Computer
and communications security, CCS ’05, pages 81–
91, New York, NY, USA, 2005. ACM.

[15] X. Wang, S. Chen, and S. Jajodia. Network flow
watermarking attack on low-latency anonymous
communication systems. In Proceedings of the
2007 IEEE Symposium on Security and Privacy, SP
’07, pages 116–130, Washington, DC, USA, 2007.
IEEE Computer Society.

[16] X. Wang and D. S. Reeves. Robust correlation of
encrypted attack traffic through stepping stones by
manipulation of interpacket delays. In Proceedings
of the 10th ACM conference on Computer and com-
munications security, CCS ’03, pages 20–29, New
York, NY, USA, 2003. ACM.

[17] X. Wang, D. S. Reeves, and S. F. Wu. Inter-packet
delay based correlation for tracing encrypted con-
nections through stepping stones. In Proceedings
of the 7th European Symposium on Research in
Computer Security, ESORICS ’02, pages 244–263,
London, UK, UK, 2002. Springer-Verlag.

[18] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao.
Dsss-based flow marking technique for invisible
traceback. In Proceedings of the 2007 IEEE Sym-
posium on Security and Privacy, SP ’07, pages 18–
32, Washington, DC, USA, 2007. IEEE Computer
Society.

[19] Y. Zhang and V. Paxson. Detecting stepping stones.
In Proceedings of the 9th conference on USENIX
Security Symposium - Volume 9, SSYM’00, pages
13–13, Berkeley, CA, USA, 2000. USENIX Asso-
ciation.

[20] L. Zheng, L. Zhang, and D. Xu. Characteristics
of network delay and delay jitter and its effect on
voice over ip (voip). In Communications, 2001.
ICC 2001. IEEE International Conference on, vol-
ume 1, pages 122 –126 vol.1, jun 2001.

A Appendix

Multi-flow Detection of RAINBOW. First, we consider
an attacker that initiates two flows through the water-
marker and receives them at the compromised host. Now
he needs to determine if both flows carry the watermark

by looking at jitter vectors d0 and d1. Similar to detec-
tion, we again use cosine similarity between d0 and d1 to
test it. Therefore, we need to distinguish two hypotheses:

• H0: d0 and d1 are unwatermarked flows.

• H1: d0 and d1 are both watermarked flows carrying
mark w.

Figure 15: Cosine similarity between two jitter vectors

Define D = cos(d0,d1), Under H0, di = δ i where δ i

are two independent jitter vectors. Under H1, di =w+δ i.
The decision rule is to use a threshold τD, such that if
D ≥ τD, we reject H0 and the watermark is present, and
otherwise absent. To see this working we have the fol-
lowing lemmas (the proofs are shown in the appendix):

Lemma 1. Suppose X1,X2, . . .Xn are i.i.d random vari-
ables with Laplacian distribution Lap(0,β). Then
E(∑n

j=1 X2
j) = n · (2β 2)

Proof.

E(
n

∑
j=1

X2
j) =

n

∑
j=1

E(X2
j)

= n · (σ2(Xj)+E(Xj)
2)

= n · (2β 2) (1)

Corollary 1. For δ = [X1,X2, . . . ,Xn], E(‖δ‖) =√
n · (2β 2)

Lemma 2. Suppose X1,X2, . . .Xn,Y1,Y2, . . . ,Yn are i.i.d
random variables with Laplacian distribution Lap(0,β).
For Z = ∑n

i=1 XiYi, σ(Z) =
√

n · (2β 2)

Proof. Due to i.i.d random variables Xi,Yi:

σ2(Z) = nσ2(X0Y0)

= n(2β 2)2 (2)

15

396  21st USENIX Security Symposium	 USENIX Association

Figure 16: Statistics of RAINBOW multi-flow detection
test

Figure 17: Performance of multi-flow detection attack

Lemma 3. The inner product of jitter δ and watermark
w, has distribution 〈δ ,w〉 ∼ Lap(0,

√
naβ). The proof is

referred to [8].

Under H0, the distribution of D satisfies the following
characteristics:

E(D) =
E(∑n

j=1 δ 0
j δ 1

j)

E(‖δ 0‖)E(‖δ 1‖)

=
n

∑
j=1

E(δ 0
j)E(δ

1
j)/E(‖δ 0‖)2

= 0 (3)

σ(D) ≈ σ(
n

∑
j=1

δ 0
j δ 1

j)/E(‖δ 0‖)2

=
√

n(2β 2)2/(
√

n · (2β 2))2

= 1/
√

n (4)

Under H1, we have the following:

E(D) =
E(〈w+δ 0,w+δ 1〉)
‖w+δ 0‖2 · ‖w+δ 1‖2

≈ na2 +E(〈δ 0,δ 1〉)√
(‖w‖2 +‖δ 0‖2)(‖w‖2 +‖δ 1‖2)

= na2/(na2 +n2β 2)

= γ2/(2+ γ2) (5)

where γ is the ratio of watermark amplitude to the Lapla-
cian parameter β of jitter.

σ(D) ≈
√

2σ2(〈w,δ 〉)+σ2(〈δ 0,δ 1〉)
(na2 +n2β 2)

=

√
4a2β 2 +4β 4

√
n(a2 +2β 2)

(6)

=
2
√

γ2 +1√
n(γ2 +2)

(7)

Figure 15 shows how the two hypotheses lead to dif-
ferent D distributions under varying values of γ with
n = 1000. Evidently H1 is significantly different from
H0 when n and γ are sufficiently large. In that case, de-
tection attack can be accomplished by a simple statistic
test that reject H0 with good confidence.

We set a threshold τD for dectection test. If two jit-
ter vectors score higher than τD, the attacker rejects H0
and deems them as “watermarked”. Otherwise it accepts
H0. By Chebyshev’s inequality, we expect FPR ≤ 1

2k2

with τD = k/
√

n. Note now we can choose the thresh-
old value independent of actual a and β values used by
RAINBOW.
Attack Evaluation. We simulated network flows by cut-
ting randomly a subsequence of n+1 packets from a ran-
domly drawn flow. For each set of n and a values, We
simulated 1000 marked flows and 1000 unmarked ones,
and ran the attack algorithm against them.

We first compute cosine similarity D between marked
jitter vectors and between normal jitter vectors. Fig-
ure 16 shows that the actual detection performance fit
nicely with the model. Therefore, we further set τD =
5/
√

1000 ≈ 0.158, such that the false positive rate is
≤ 2% when n ≥ 1000. We then launch the detection at-
tack with τD. The result, plotted in Figure 17, is satisfac-
tory: Watermarks with a≥ 10ms will be detected for sure
while the false positive rate is nearly 0 when n ≥ 500.

16

USENIX Association 	 21st USENIX Security Symposium  397

On Breaking SAML: Be Whoever You Want to Be

Juraj Somorovsky1, Andreas Mayer2, Jörg Schwenk1, Marco Kampmann1, and Meiko Jensen1

1Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
2Adolf Würth GmbH & Co. KG, Künzelsau-Gaisbach, Germany

{Juraj.Somorovsky, Joerg.Schwenk, Marco.Kampmann, Meiko.Jensen}@rub.de,
Andreas.Mayer@wuerth.com

Abstract
The Security Assertion Markup Language (SAML) is a
widely adopted language for making security statements
about subjects. It is a critical component for the develop-
ment of federated identity deployments and Single Sign-
On scenarios. In order to protect integrity and authentic-
ity of the exchanged SAML assertions, the XML Signa-
ture standard is applied. However, the signature verifica-
tion algorithm is much more complex than in traditional
signature formats like PKCS#7. The integrity protection
can thus be successfully circumvented by application of
different XML Signature specific attacks, under a weak
adversarial model.

In this paper we describe an in-depth analysis of 14
major SAML frameworks and show that 11 of them,
including Salesforce, Shibboleth, and IBM XS40, have
critical XML Signature wrapping (XSW) vulnerabilities.
Based on our analysis, we developed an automated pen-
etration testing tool for XSW in SAML frameworks. Its
feasibility was proven by additional discovery of a new
XSW variant. We propose the first framework to an-
alyze such attacks, which is based on the information
flow between two components of the Relying Party. Sur-
prisingly, this analysis also yields efficient and practical
countermeasures.

1 Introduction

The Security Assertion Markup Language (SAML) is an
XML based language designed for making security state-
ments about subjects. SAML assertions are used as se-
curity tokens in WS-Security, and in REST based Single
Sign-On (SSO) scenarios. SAML is supported by major
software vendors and open source projects, and is widely
deployed. Due to its flexibility and broad support, new
application scenarios are defined constantly.

SAML ASSERTIONS. Since SAML assertions con-
tain security critical claims about a subject, the validity
of these claims must be certified. According to the stan-

dard, this shall be achieved by using XML Signatures,
which should either cover the complete SAML assertion,
or an XML document containing it (e.g. a SAML Au-
thentication response).

However, roughly 80% of the SAML frameworks that
we evaluated could be broken by circumventing integrity
protection with novel XML Signature wrapping (XSW)
attacks. This surprising result is mainly due to two facts:

• Complex Signing Algorithm: Previous digital sig-
nature data formats like PKCS#7 and OpenPGP
compute a single hash of the whole document, and
signatures are simply appended to the document.
The XML Signature standard is much more com-
plex. Especially, the position of the signature and
the signed content is variable. Therefore, many per-
mutations of the same XML document exist.

• Unspecified internal interface: Most SAML
frameworks treat the Relying Party (i.e. the Web
Service or website consuming SAML assertions) as
a single block, assuming a joint common state for
all tasks. However, logically this block must be sub-
divided into the signature verification module (later
called RPsig) which performs a cryptographic opera-
tion, and the SAML processing module (later called
RPclaims) which processes the claims contained in
the SAML assertion. Both modules have different
views on the assertion, and they typically only ex-
change a Boolean value about the validity of the sig-
nature.

CONTRIBUTION. In this paper, we present an in-
depth analysis of 14 SAML frameworks and systems.
During this analysis, we found critical XSW vulnerabili-
ties in 11 of these frameworks. This result is alarming
given the importance of SAML in practice, especially
since SSO frameworks may become a single point of at-
tack. It clearly indicates that the security implications
behind SAML and XML Signature are not understood
yet.

398  21st USENIX Security Symposium	 USENIX Association

Second, these vulnerabilities are exploitable by an at-
tacker with far fewer resources than the classical network
based attacker from cryptography: Our adversary may
succeed even if he does not control the network. He does
not need realtime eavesdropping capabilities, but can
work with SAML assertions whose lifetime has expired.
A single signed SAML assertion is sufficient to com-
pletely compromise a SAML issuer/Identity Provider.
Using SSL/TLS to encrypt SAML assertions, and thus to
prevent adversaries from learning assertions by intercept-
ing network traffic, does not help either: The adversary
may e.g. register as a regular customer at the SAML is-
suer, and may use his own assertion to impersonate other
customers.

Third, we give the first model for SAML frameworks
that takes into account the interface between RPsig and
RPclaims. This model gives a clear definition of successful
attacks on SAML. Besides its theoretical interest, it also
enables us to prove several positive results. These results
are new and help to explain why some of the frameworks
were not vulnerable to our attacks, and to give advice on
how to improve the security of the other 11 frameworks.

Last, we show that XSW vulnerabilities constitute an
important and broad class of attack vectors. There is no
easy defense against XSW attacks: Contrary to common
belief, even signing the whole document does not neces-
sarily protect against them. To set up working defenses,
a better understanding of this versatile attack class is re-
quired. A specialized XSW pentesting tool developed
during our research will be released as open source to aid
this understanding. Its practicability was proven by dis-
covering a new attack vector on Salesforce SAML inter-
face despite the fact that specific countermeasures have
been applied.

RESPONSIBLE DISCLOSURE. All vulnerabilities
found during our analysis were reported to the respon-
sible security teams. Accordingly, in many cases, we
closely collaborated with them in order to patch the
found issues.

OUTLINE. The rest of the paper is organized as fol-
lows. Section 2 gives a highlevel overview on SAML,
and Section 3 adds details. The methodology of the in-
vestigation is explained in Section 4, and the detailed re-
sults are described in Section 5. In Section 6 we present
the first fully automated XSW penetration test tool for
SAML. Section 7 gives a formal analysis and derives two
countermeasures. In Section 8 we discuss their practi-
cal feasibility. Section 9 presents an overview on related
work. In the last section we conclude and propose future
research directions.

ClientRelying Party
(RP)

Identity Provider
(IdP)

4

5

SAML Response
Token
Issuing and
Signing

Token
Redirect

6

Token
Response

7

Token
Redirect

8

Signature
 validation
Token
 evaluation
User
 authorization [SSL/TLS]

3

Token
Request

1

Login
Request

[SSL/TLS]

2

SAML Request
Token
Issuing

Figure 1: A typical Single Sign-On scenario: The user
visits the RP, which generates a request token. He redi-
rects this token to the IdP. The issued token is sent to the
user and forwarded to the RP. Even though the channel
is secured by SSL/TLS, the user still can see the token.

2 Motivation

In this section we introduce two typical SAML scenarios
and some widely used SAML frameworks.

SAML-BASED SINGLE SIGN-ON. Typical Internet
users have to manage many identities for different web
applications. To overcome this problem, Single Sign-On
was developed. In this approach the users authenticate
only once to a trustworthy Identity Provider (IdP). After
a successful login of a user, the IdP issues security to-
kens on demand. These tokens are used to authenticate
to Relying Parties (RP).

A simplified Single Sign-On scenario is depicted in
Figure 1. In this setting, a user logged-in by the IdP first
visits the desired RP (1). The RP issues a token request
(2). This token is sent to the user (3) who forwards it
to the IdP (4). The IdP issues a token response for the
user including several claims (e.g. his access rights or
expiration time). In order to protect the authenticity and
integrity of the claims, the token is signed (5). Subse-
quently, the token is sent to the user (6), who forwards it
to the RP (7). The RP validates the signature and after-
wards grants access to the protected service or resource,
if the user is authorized (8). This access control decision
is based on the claims in the validated token.

SECURING WEB SERVICES WITH SAML. Another
typical application scenario is the use of SAML together
with WS-Security [29] in SOAP [21] to provide authen-
tication and authorization mechanisms to Web Services.
SAML assertions are included as security tokens in the
Security header.

SAML PROVIDERS AND FRAMEWORKS. The
evaluation presented in this paper was made through-
out the last 18 months and includes prominent and well-
used SAML frameworks, which are summarized in Ta-
ble 1. Our analysis included the IBM hardware appliance

USENIX Association 	 21st USENIX Security Symposium  399

Framework/Provider Type Language Reference Application
Apache Axis 2 WS Java http://axis.apache.org WSO2 Web Services
Guanxi Web SSO Java http://guanxi.sourceforge.net Sakai Project (www.sakaiproject.org)
Higgins 1.x Web SSO Java www.eclipse.org/higgins Identity project
IBM XS40 WS XSLT www.ibm.com Enterprise XML Security Gateway
JOSSO Web SSO Java www.josso.org Motorola, NEC, Redhat
WIF Web SSO .NET http://msdn.microsoft.com Microsoft Sharepoint 2010
OIOSAML Web SSO Java, .NET http://www.oiosaml.info Danish eGovernment (e.g. www.virk.dk)
OpenAM Web SSO Java http://forgerock.com/openam.html Enterprise-Class Open Source SSO
OneLogin Web SSO Java, PHP, Ruby, Python www.onelogin.com Joomla, Wordpress, SugarCRM, Drupal
OpenAthens Web SSO Java, C++ www.openathens.net UK Federation (www.eduserv.org.uk)
OpenSAML Web SSO Java, C++ http://opensaml.org Shibboleth, SuisseID
Salesforce Web SSO — www.salesforce.com Cloud Computing and CRM
SimpleSAMLphp Web SSO PHP http://simplesamlphp.org Danish e-ID Federation (www.wayf.dk)
WSO2 Web SSO Java www.wso2.com eBay, Deutsche Bank, HP

Table 1: Analyzed SAML frameworks and providers: The columns give information about type (Web Service or
Browser-based SSO), programming language (if known), web site, and application in concrete products or frameworks.

XS40, which is applied as an XML Security Gateway.
Other examples of closed source frameworks are the
Windows Identity Foundation (WIF) used in Microsoft
Sharepoint and the Salesforce cloud platform. Important
open source frameworks include OpenSAML, OpenAM,
OIOSAML, OneLogin, and Apache Axis 2. OpenSAML
is for example used in Shibboleth and the SDK of the
electronic identity card from Switzerland (SuisseID).
OpenAM, formerly known as SUN OpenSSO, is an iden-
tity and access management middleware, used in major
enterprises. The OIOSAML framework is e.g. used in
Danish public sector federations (e.g. eGovernment busi-
ness and citizen portals). The OneLogin Toolkits inte-
grate SAML into various popular open source web appli-
cations like Wordpress, Joomla, Drupal, and SugarCRM.
Moreover, these Toolkits are used by many OneLogin
customers (e.g. Zendesk, Riskonnect, Zoho, Knowl-
edgeTree, and Yammer) to enable SAML-based SSO.
Apache Axis2 is the standard framework for generating
and deploying Web Service applications.

3 Technical Foundations

In this section we briefly introduce the SAML standard
and XML Signature wrapping attacks. Additionally, for
readers unfamiliar with the relevant W3C standards, we
present XML Signature [14] and XML Schema [36].

3.1 XML Signature

The XML Signature standard [14] defines the syntax and
processing rules for creating, representing, and verifying
XML-based digital signatures. It is possible to sign a
whole XML tree or only specific elements. One XML
Signature can cover several local or global resources.
A signature placed within the signed content is called
an enveloped signature. If the signature surrounds the
signed parts, it is an enveloping signature. A detached
signature is neither inside nor a parent of the signed data.

<Signature ID?>
<SignedInfo>

<CanonicalizationMethod/>
<SignatureMethod/>
(<Reference URI? >

(<Transforms>)?
<DigestMethod>
<DigestValue>

</Reference>)+
</SignedInfo>
<SignatureValue>
(<KeyInfo>)?
(<Object ID?>)*

</Signature>

Figure 2: XML Signature data structure (”?”: zero or one
occurrence; ”+”: one or more occurrences; ”*”: zero or
more occurrences).

An XML Signature is represented by the Signature

element. Figure 2 provides its basic structure. XML
Signatures are two-pass signatures: the hash value of
the resource (DigestValue) along with the used hash
algorithm (DigestMethod) and the URI reference to
the resource are stored in a Reference element. Ad-
ditionally, the Transforms element specifies the pro-
cessing steps which are applied prior to digesting of
the resource. Each signed resource is represented by
a Reference element in the SignedInfo element.
Therefore, SignedInfo is a collection of hash val-
ues and URIs. The SignedInfo itself is protected
by the signature. The CanonicalizationMethod and
the SignatureMethod element specify the algorithms
used for canonicalization and signature creation, and are
also embedded in SignedInfo. The Base64-encoded
value of the computed signature is deposited in the
SignatureValue element. In addition, the KeyInfo el-
ement facilitates the transport of signature relevant key
management information. The Object is an optional el-
ement that may contain any data.

400  21st USENIX Security Symposium	 USENIX Association

<saml:Assertion Version ID IssueInstant>
<saml:Issuer>
<ds:Signature>?
<saml:Subject>?
<saml:Conditions>?
<saml:Advice>?
<saml:AuthnStatement>*
<saml:AuthzDecisionStatement>*
<saml:AttributeStatement>*

</saml:Assertion>

Figure 3: SAML assertion structure.

3.2 XML Schema
The W3C recommendation XML Schema [36] is a lan-
guage to describe the layout, semantics, and content of
an XML document. A document is deemed to be valid,
when it conforms to a specific schema. A schema con-
sists of a content model, a vocabulary, and the used data
types. The content model describes the document struc-
ture and the relationship of the items. The standard pro-
vides 19 primitive data types to define the allowed con-
tent of the elements and attributes.

Regarding to our evaluation of SAML based XML
Signature Wrapping attacks there is one important el-
ement definition in XML Schema. The any element
allows the usage of any well-formed XML document
in a declared content type. When an XML processor
validates an element defined by an any element, the
processContents attribute specifies the level of flex-
ibility. The value lax instructs the schema validator to
check against the given namespace. If no schema infor-
mation is available, the content is considered valid. In the
case of processContents="skip" the XML processor
does not validate the element at all.

3.3 SAML
SAML is an XML standard for exchanging authentica-
tion and authorization statements about Subjects [11].
Several profiles are defined in [10]. The most important
profile is the Browser SSO profile, which defines how to
use SAML with a web browser.

A SAML assertion has the structure described in Fig-
ure 3. The issuing time of the assertion is specified in
saml:IssueInstant. All attributes are required.

The saml:Issuer element specifies the SAML au-
thority (the IdP) that is making the claim(s) in the asser-
tion. The assertion’s saml:Subject defines the princi-
pal about whom all statements within the assertion are
made. The saml:*Statement elements are used to
specify user-defined statements relevant for the context
of the SAML assertion.

To protect the integrity of the security claims made
by the Issuer, the whole saml:Assertion element must
be protected with a digital signature following the XML

Signed

Processed

Envelope

Assertion

Header

ID=“123“

Signature

SignedInfo

Reference URI=“#123“

Response

Assertion

Signature

SignedInfo

Reference URI=“#123“

ID=“123“

Body

Binding root element R

Figure 4: SAML message examples (SOAP and REST):
The SAML assertion is put into a root element R and
signed using an enveloped signature. When signing the
SOAP body, an additional detached signature is used.

Signature standard. Therefore, the SAML specifica-
tion [11] requires that either the saml:Assertion ele-
ment or an ancestor element must be referenced by the
Signature element, with an enveloped XML Signature
([11], Section 5.4.1). Furthermore, Id-based referencing
must be used ([11], Section 5.4.2), which opens the way
for XSW attacks.

In REST based frameworks, the SAML assertion is
typically put into an enveloping Response element.
Frameworks applying SOAP insert the SAML assertions
into the SOAP header (or the Security element in-
side of the SOAP header). For clarification purposes,
consider that the SAML assertions are signed using en-
veloped XML Signatures and are put into some binding
root element R (see Figure 4).

3.4 XML Signature Wrapping Attacks

XML documents containing XML Signatures are typi-
cally processed in two independent steps: signature val-
idation and function invocation (business logic). If both
modules have different views on the data, a new class of
vulnerabilities named XML Signature Wrapping attacks
(XSW) [27, 23] exists. In these attacks the adversary
modifies the message structure by injecting forged ele-
ments which do not invalidate the XML Signature. The
goal of this alteration is to change the message in such
a way that the application logic and the signature verifi-
cation module use different parts of the message. Con-
sequently, the receiver verifies the XML Signature suc-
cessfully but the application logic processes the bogus
element. The attacker thus circumvents the integrity pro-
tection and the origin authentication of the XML Signa-
ture and can inject arbitrary content. Figure 5 shows a
simple XSW attack on a SOAP message.

XSW attacks resemble other classes of injection at-
tacks like XSS or SQLi: in all cases, the attacker tries to
force different views on the data in security modules (e.g.
Web Application Firewalls) and data processing modules
(HTML parser, SQL engine).

USENIX Association 	 21st USENIX Security Symposium  401

Signed

Processed

Envelope

Wrapper

Header

ID=“123“

Signature

SignedInfo

Reference URI=“#123“

Body

Body

CreateKeyPair

MonitorInstances

ID=“attack“

Figure 5: A simple XML Signature wrapping attack: The
attacker moves the original signed content to a newly cre-
ated Wrapper element. Afterwards, he creates an arbi-
trary content with a different Id, which is invoked by the
business logic.

4 XSW Attacks on SAML

In this section we first characterize the assumed threat
model. Second, we describe the basic attack principle
that underlies our analysis of the 14 frameworks.1

4.1 Threat Model
As a prerequisite the attacker requires an arbitrary signed
SAML message. This could be a single assertion A or a
whole document D with an embedded assertion, and its
lifetime can be expired. After obtaining such a message,
the attacker modifies it by injecting evil content, e.g. an
evil assertion EA. In our model we assume two differ-
ent types of adversaries, which are both weaker than the
classical network based attacker:

1. Advacc. To obtain an assertion, this attacker regis-
ters as a user of an Identity Provider IdP. Advacc
then receives, through normal interaction with IdP,
a valid signed SAML assertion A (probably as a
part of a larger document D) making claims about
Advacc. The attacker now adds additional claims EA
about any other subject S, and submits the modified
document D′ (A′) to RP.

2. Advintc. This adversary retrieves SAML assertions
from the Internet, but he does not have the abil-
ity to read encrypted network traffic. This can
be done either by accessing transmitted data di-
rectly from unprotected networks (sniffing), or in
an ”offline” manner by analyzing proxy or browser
caches. Since SAML assertions should be worthless
once their lifetime expired, they may even be posted

1Please note that from now on we distinguish between the document
D and the root element R. This is to make clear the distinction between
the element referenced by the XML signature, and the document root:
Even if the root element R of the original document D is signed, we
may transform this into a new document D′ with a new evil root ER,
without invalidating the signature.

A1 S1 EA

A1 S1R ER EA

A1 SR S1 ER EA

Legitimate content Injected evil content
Signed

Processed

Signing Type 1)

Signing Type 2)

Signing Type 3)

Figure 6: Types of signature applications on SAML as-
sertions on the left. The new malicious content needed
to execute the attacks depicted on the right, accordingly.

in technical discussion boards, where Advintcmay
access them.

4.2 Basic Attack Principle
As described in the previous section, XML Signatures
can be applied to SAML assertions in different ways and
placed in different elements. The only prerequisite is that
the Assertion element or the protocol binding element
(ancestor of Assertion) is signed using an enveloped
signature with Id-based referencing. In this section we
analyze the usage of SAML assertions in different frame-
works and the possibilities of inserting malicious con-
tent. Generally, SAML assertions and their signatures
are implemented as depicted in Figure 6:

1. The first possible usage of signatures in SAML as-
sertions is to insert the XML Signature S1 as a
child of the SAML assertion A1 and sign only the
Assertion element A1. This type can be used in-
dependently of the underlying protocol (SOAP or
REST).

2. The second type of signature application in SAML
signs the whole protocol binding element R. The
XML Signature can be placed into the SAML asser-
tion A1 or directly into the protocol binding root ele-
ment R. This kind of signature application is used in
different SAML HTTP bindings, where the whole
Response element is signed.

3. It is also possible to use more than one XML Sig-
nature. The third example shows this kind of signa-
ture application: the inner signature S1 protects the
SAML assertion and the outer signature S addition-
ally secures the whole protocol message. This kind
of signature application is e.g. used by the Simple-
SAMLphp framework.

In order to apply XSW attacks to SAML assertions,
the basic attack idea stays the same: The attacker has

402  21st USENIX Security Symposium	 USENIX Association

to create new malicious elements and force the assertion
logic to process them, whereas the signature verification
logic verifies the integrity and authenticity of the original
content. In applications of the first signature type, the
attacker only has to create a new evil assertion EA. In the
second and third signing types, he also has to create the
whole evil root ER element including the evil assertion.

4.3 Attack Permutations

The attacker has many different possibilities where to in-
sert the malicious and the original content. To this end,
he has to deal with these questions:

• At which level in the XML message tree should the
malicious content and the original signed data be
included?

• Which Assertion element is processed by the as-
sertion logic?

• Which element is used for signature verification?

By answering these questions we can define different
attack patterns, where the original and the malicious el-
ements can be permuted (Figure 7). We thus get a com-
plete list of attack vectors, which served as a guideline
for our investigations.

For the following explanations we only consider sign-
ing type 1) defined in Figure 6. In this signing type only
the Assertion element is referenced.

The attack permutations are depicted in Figure 7. In
addition, we analyze their SAML standard conformance
and the signature validity:

1. Malicious assertion, original assertion, and signa-
ture are left on the same message level: This kind of
XML message can have six permutations. None of
them is SAML standard compliant, since the XML
Signature does not sign its parent element. The di-
gest value over the signed elements in all the mes-
sages can be correctly validated. We can use this
type of attack messages if the server does not check
the SAML conformance.

2. All the three elements are inserted at different mes-
sage levels, as child elements of each other, which
again results in six permutations: Messages 2-a and
2-b show examples of SAML standard conform-
ing and cryptographically valid messages. In both
cases the signature element references its parent –
the original assertion A1. Message 2-c illustrates a
message which is not SAML standard conform as
the signature signs its child element. Nevertheless,
the message is cryptographically valid. Lastly, mes-
sage 2-d shows an example of an invalid message
since the signature would be verified over both as-
sertions. Generally, if the signature is inserted as the

A1 S1EA

R

A1

S1

EA

R

A1

S1

EA

R

2) Three Levels (6 Permutations)

3) Two Levels (12 Permutations)

A1

S1

EA

R

A1

S1

EA

R

A1

S1

EA

R

A1

S1

EA

R

1) One Level (6 Permutations) Signed

Processed

Signature Invalid

not SAML-conform

a) b) c) d)

a) b)

EA S1A1

R

EA

S1

A1

R

c)

EA

S1

A1

R

d)

SAML-conform

Figure 7: Possible variants for XSW attacks applied on
messages with one signed SAML assertion divided ac-
cording to the insertion depth of the evil assertion EA,
the original assertion A1 and the signature S1. The var-
ious permutations are labeled according to their validity
and SAML-conformance.

child of the root element, the message would also be
either invalid or not SAML standard compliant.

3. For the insertion of these three elements we use two
message levels: Message 3-a shows an example of
a valid and SAML compliant document. By con-
structing message 3-b, the signature element was
moved to the new malicious assertion. Since it ref-
erences the original element, it is still valid, but does
not conform to the SAML standard.

The analysis shown above can similarly be applied to
messages with different signing types (see Figure 6).

5 Practical Evaluation

We evaluated the above defined attacks on real-world
systems and frameworks introduced in Section 2. In this
section we present the results.

5.1 Signature Exclusion Attacks
We start the presentation of our results with the simplest
attack type called Signature exclusion attack. This at-
tack relies on poor implementation of a server’s security
logic, which checks the signature validity only if the sig-
nature is included. If the security logic does not find the
Signature element, it simply skips the validation step.

USENIX Association 	 21st USENIX Security Symposium  403

Root

Assertion ID=“evil“

Assertion ID=“123“

Signature

SignedInfo

Reference URI=“#123“

Root

Assertion ID=“evil“

Assertion ID=“123“

Signature

SignedInfo

Reference URI=“#123“

Root

Assertion ID=“evil“

Assertion ID=“123“

Signature

SignedInfo

Reference URI=“#123“

Signed

ProcessedRoot

Assertion ID=“evil“

Assertion ID=“123“

Signature

SignedInfo

Reference URI=“#123“

OIOSAMLHiggins, Apache Axis2, IBM XS 40 Security Gateway OpenAM, Salesforce

Figure 8: XML tree-based illustration of refined XSW attacks found in Type 1 signature applications.

The evaluation showed that three SAML-based frame-
works were vulnerable to these attacks: Apache Axis2
Web Services Framework, JOSSO, and the Java-based
implementation of SAML 2.0 in Eduserv (other versions
of SAML and the C-implementation in Eduserv were not
affected).

By applying this attack on JOSSO and Eduserv the at-
tacker had to remove the Signature element from the
message, since if it was found, the framework tried to
validate it. On the other hand, the Apache Axis2 frame-
work did not validate the Signature element over the
SAML assertion at all, even if it was included in the mes-
sage. Apache Axis2 validated only the signature over the
SOAP body and the Timestamp element. The signature
protecting the SAML assertion, which is included sep-
arately in the Assertion element, was completely ig-
nored.

5.2 Refined Signature Wrapping
Ten out of 14 systems were prone to refined XSW at-
tacks.

Classified on the three different signature application
types given in Figure 6, five SAML-based systems failed
in validating Type 1 messages, where only the asser-
tion is protected by an XML Signature. Figure 8 depicts
the XML tree-based illustration of the found XSW vari-
ants. Starting from left to right, Higgins, Apache Axis2,
and the IBM XS 40 Security Gateway were outfoxed
by the two depicted permutations. In the first variant
it was sufficient to inject an evil assertion with a dif-
ferent Id attribute in front of the original assertion. As
the SAML standard allows to have multiple assertions in
one protocol element, the XML Schema validation still
succeeded. The second attack type embedded the orig-
inal assertion as a child element into the evil assertion
EA. In both cases the XML Signature was still standard
conform, as enveloped signatures were applied. This
was broken in the case of OIOSAML by using detached
signatures. In this variant the original Signature ele-
ment was moved into the EA, which was inserted be-
fore the legitimate assertion. The last shown permuta-
tion was applicable to the cloud services of Salesforce

Root

Assertion

Root ID=“123“

Signature

SignedInfo

Reference URI=“#123“

ID=“evil“

Assertion

Root

Assertion

Root ID=“123“

Signature

SignedInfo

Reference URI=“#123“

ID=“evil“

Assertion

Guanxi, JOSSO WSO2

Figure 9: XML tree-based illustration of refined XSW
attacks found in Type 2 signature applications.

and the OpenAM framework. At this, the genuine asser-
tion was placed into the original Signature element. As
both implementations apply XML Schema for validating
the schema conformance of a SAML message, this was
done by injecting them into the Object element, which
allows arbitrary content. Again, this is not compliant
to the SAML standard because this mutation transforms
the enveloped to an enveloping signature. Finally, the
OneLogin Toolkits were prone to all shown attack vari-
ants as they did not apply XML Schema, validated the
XML Signature independent of it’s semantic occurrence
and used a fixed reference to the processed SAML claims
(/samlp:Response/saml:Assertion[1]).

We found three susceptible implementations, which
applied Type 2 messages, where the whole message is
protected by an XML Signature. We depict the attacks
on these implementations in Figure 9. In the Guanxi
and JOSSO implementations the legitimate root element
was inserted into the Object element in the original
Signature. The Signature node was moved into the
ER element which also included the new evil assertion.
In the case of WSO2, it was sufficient to place the orig-
inal root element into the ER object. Naturally, some-
one would expect that enforcing full document signing
would eliminate XSW completely. The both given ex-
amples demonstrate that this does not hold in practice.
Again, this highlights the vigilance required when im-
plementing complex standards such as SAML.

Finally, we did not find vulnerable frameworks that
applied Type 3 messages, where both the root and the as-

404  21st USENIX Security Symposium	 USENIX Association

sertion are protected by different signatures. Indeed, one
legitimate reason is, that most SAML implementations
do not use Type 3 messages. In our practical evaluation,
only SimpleSAMLphp applied them by default. Never-
theless, this does not mean that XSW is not applicable to
this message type in practice.

5.3 OpenSAML Vulnerability
The attack vectors described above did not work against
the prevalently deployed OpenSAML library. The reason
was that OpenSAML compared the Id used by the signa-
ture validation with the Id of the processed assertion. If
these identifiers were different (based on a string compar-
ison), the signature validation failed. Additionally, XML
messages including more than one element with the same
Id were also rejected. Both mechanisms are handled in
OpenSAML by using the Apache Xerces library and its
XML Schema validation method [34]. Nevertheless, it
was possible to overcome these countermeasures with a
more sophisticated XSW attack.

As mentioned before, in OpenSAML the Apache
Xerces library performs a schema validation of every in-
coming XML message. Therefore, the Id of each el-
ement can be defined by using the appropriate XML
Schema file. This allows the Xerces library to iden-
tify all included Ids and to reject messages with Id

values which are not unique (e.g. duplicated). How-
ever, a bug in this library caused that XML elements
defined with xsd:any content were not processed cor-
rectly. More concretely, the content of the elements
defined as <xsd:any processContents="lax"> were
not checked using the defined XML Schema. Therefore,
it was possible to insert elements with arbitrary – also
duplicated – Ids inside an XML message. This created a
good position for our wrapped content.

It is still the question which of the extensible elements
could be used for the execution of our attacks. This de-
pends on two processing properties:

1. Which element is used for assertion processing?
2. Which element is validated by the security module,

if there are two elements with the same Id?

Interestingly, the two existing implementations of
Apache Xerces (Java and C++) handled element deref-
erencing differently.

For C++, the attacker had to ensure that the original
signed assertion was copied before the evil assertion. In
the Java case, the legitimate assertion had to be placed
within or after the evil assertion. In summary, if two
elements with the same Id values occurred in an XML
message, the XML security library detected only the first
(for C++) or the last (for Java) element in the message.
This property gave the attacker an opportunity to use

Signed

Processed
Response

Assertion

Extensions

Assertion

C++ Java

Signature

SignedInfo

Reference URI=“#123“

ID=“123“

Response

Assertion

Assertion

Signature

SignedInfo

Reference URI=“#123“

ID=“123“

ID=“123“

ID=“123“

Object

Figure 10: XSW attack on OpenSAML library.

<element name="Extensions" type="samlp:ExtensionsType"/>
<complexType name="ExtensionsType">

<sequence>
<any namespace="##other" processContents="lax"

maxOccurs="unbounded"/>
</sequence>

</complexType>

Figure 11: XML Schema definition of the Extensions

element.

e.g. the Extensions element for the C++ library, whose
XML Schema is defined in Figure 11. However, the
Extensions element is not the only possible position for
our wrapped content. The schemas of SAML and XML
Signature allow more locations (e.g. the Object element
of the Signature, or the SubjectConfirmationData

and Advice elements of the Assertion).
The previously described behavior of the XML

schema validation forced OpenSAML to use the wrapped
original assertion for signature validation. In contrast,
the application logic processed the claims of the evil as-
sertion. In Figure 10, we present the concrete attack mes-
sages of this novel XSW variant.

The successful attack on OpenSAML shows that coun-
tering the XSW attack can become more complicated
than expected. Even when applying several countermea-
sures, the developer should still consider vulnerabilities
in the underlying libraries. Namely, one vulnerability in
the XML Schema validating library can lead to the exe-
cution of a successful XSW attack.

5.4 Various Implementation Flaws

While reviewing the OneLogin Toolkit, we discovered
another interesting flaw: the implementation did not care
about what data was actually signed. Therefore, any con-
tent signed by the IdP was sufficient to launch a XSW
attack. In our case we used the metadata of the IdP 2 and
created our own self-made response message to success-
fully attack OneLogin.

2The SAML Metadata [12] describes properties of SAML entities
in XML to allow the easy establishment of federations. Typically, the
metadata is signed by the issuer and publicly available.

USENIX Association 	 21st USENIX Security Symposium  405

Besides the fact that a SAML system has to check
what data is signed, it is also essential to verify by whom
the signature was created. In an early version of Sim-
pleSAMLphp, which applied Type 3 messages, we ob-
served that an attacker could forge the outer signature of
the response message with any arbitrary key. In short,
the SimpleSAMLphp RP did not verify if the included
certificate in the KeyInfo element is trustworthy at all.
The key evaluation for the signed assertion was correctly
handled.

5.5 Secure Frameworks
In our evaluation of real-world SAML implementations
we observed that Microsoft Sharepoint 2010 and Simple-
SAMLphp were resistant to all applied test cases. Based
on these findings the following questions arise: How
do these systems implement signature validation? In
which way do signature validation and assertion process-
ing work together? Due to the fact that the source code of
Sharepoint 2010 is not publicly available, we were only
able to analyze SimpleSAMLphp.

According to this investigation the main signature
validation and claims processing algorithm of Simple-
SAMLphp performs the following five steps to counter-
act XSW attacks:

1. XML Schema validation: First, the whole re-
sponse message is validated against the applied
SAML schemas.

2. Extract assertions: All included assertions are ex-
tracted. Each assertion is saved as a DOM tree in
a separate variable. The following steps are only
applied on these segregated assertions.

3. Verify what is signed: SimpleSAMLphp checks, if
each assertion is protected by an enveloped signa-
ture. In short, the XML node addressed by the URI
attribute of the Reference element is compared to
the root element of the same assertion. The XML
Signature in the assertion is an enveloped signature
if and only if both objects are identical.

4. Validate signature: The verification of every en-
veloped signature is exclusively done on the DOM
tree of each corresponding assertion.

5. Assertion processing: The subsequent assertion
processing is solely done with the extracted and suc-
cessfully validated assertions.

When not considering the signature exclusion bug
found in the OpenAthens implementation and its Java-
based assertions’ processing, this framework was also
resistant to all the described attacks. The analysis of its
implementation showed that it processes SAML asser-
tions similarly to the above described SimpleSAMLphp
framework.

Frameworks / Providers Si
gn

in
g

ty
pe

Si
gn

at
ur

e
ex

cl
us

io
n

R
efi

ne
d

X
SW

So
ph

is
tic

at
ed

X
SW

N
ot

vu
ln

er
ab

le

Apache Axis 2 1) X X
Guanxi 2) X
Higgins 1.x 1) X
IBM XS40 1) X
JOSSO 2) X X
WIF 1) X
OIOSAML 1) X
OpenAM 1) X
OneLogin 1) X
OpenAthens 1) X
OpenSAML 1) X
Salesforce 1) X
SimpleSAMLphp 3) X
WSO2 2) X

Table 2: Results of our practical evaluation show that a
majority of the analyzed frameworks were vulnerable to
the refined wrapping techniques.

5.6 Summary
We evaluated 14 different SAML-based systems. We
found 11 of them susceptible to XSW attacks, while the
majority were prone to refined XSW. One prevalently
used framework (OpenSAML) was receptive to a new,
more subtle, variant of this attack vector. In addition,
three out of the tested frameworks were vulnerable to
Signature Exclusion attacks. We found two implemen-
tations, which were resistant against all test cases. The
results obtained from our analysis are summarized in Ta-
ble 2.

6 XSW Penetration Test Tool for SAML

Motivated on our crucial findings from the extensive
frameworks’ analysis and the vast amount of possible
attack permutations, we implemented the first fully au-
tomated penetration test tool for XSW attacks in SAML-
based frameworks. In this section we briefly describe
the basic design decisions for our tool. Afterwards, we
motivate its usage by revisiting the Salesforce SAML in-
terface. This interface yielded a new possibility for an
interesting XSW attack even after a deep investigation
with different handcrafted messages.

Our tool will be integrated into the WS-Attacker
framework3 and offered as open source to support the
huge Web Services and SSO developers’ community.

6.1 Penetration Test Tool
According to the theoretical and practical analysis of dif-
ferent SAML frameworks (see Section 4, 5), we gained
the following general knowledge about XSW attacks:

3http://ws-attacker.sourceforge.net

406  21st USENIX Security Symposium	 USENIX Association

• XML Schema validation: Some of the SAML
frameworks check message conformance to the un-
derlying XML schema. Therefore, it is necessary to
use XML schema extension points for placing the
wrapped content. If the extension elements are not
provided in the message, they have to be explicitly
included.

• Order and position: The order and position of
signed and executed elements in the message tree
can force the different processing modules to have
inconsistent data views.

• Processing of the Ids: Several SAML frameworks
explicitly check, if the Id in the handled assertion
is also used in the Reference of the XML Signa-
ture. Application of this countermeasure alone does
not work, as there is still the option to use more el-
ements with equal Ids.

• Placement of the Signature element: The
Signature element can be placed in the newly cre-
ated evil assertion or stay in the original assertion
(cf. the attacks on Higgins, Apache Axis2 and IBM
XS40 in Figure 8). Both cases must be considered.

• Signature exclusion: In three out of 14 frameworks
implementation bugs caused that the signature vali-
dation step was omitted.

• Untrusted signatures: It is essential to check that
the signature was created with a trustworthy key.
Otherwise, the attacker can forge a signature with
any arbitrary key and embed the corresponding cer-
tificate in the KeyInfo element.

Based on this knowledge, we developed a library,
which allows the systematic creation of a vast amount
of different SAML attack vectors. Its processing can
be summarized in the following steps. First, the library
takes a signed XML document containing a SAML as-
sertion and analyzes the usage of XML Signature. The
element referenced by the signature is stored as a string.
Subsequently, it creates a new malicious message includ-
ing an evil assertion with modified content (e.g. the
NameID and/or Timestamp element). Then, it searches
dynamically for extension points in the XML Schema
documents (e.g. XML Schemas for SAML, HTTP bind-
ing, XML Signature, or SOAP). It places the extension
elements into the malicious message (e.g. a new Object

element is created and placed into the given Signature

element). Afterwards, the library embeds the stored orig-
inal referenced element into each of the possible mali-
cious message elements. For each position, a combina-
tion of different attack vectors – considering changes in
the Ids of the newly created elements and the positions
of the Signature elements – are created. For complete-
ness, test cases for signature exclusion and untrusted sig-
natures are provided. With these attack vectors, develop-

Signed

Processed

Response

Assertion

Assertion

Signature

SignedInfo

Reference URI=“#123“

ID=“123“

ID=“123“

Audience

saml.salesforce.com

Figure 12: A successful XSW attack performed against
the patched Salesforce SAML interface.

ers can systematically test the security of their (newly)
developed SAML libraries.

6.2 Salesforce SAML Interface Revisited

After reporting the XSW vulnerability to Salesforce, the
security response team developed a simple and promis-
ing countermeasure: the SAML interface solely accepted
messages containing one Assertion element4. On re-
quest of the Salesforce security team, we investigated
the fixed SAML interface with handcrafted messages
containing wrapped contents in different elements. Our
manual analysis did not reveal any new attack vectors.
Every message containing more than one Assertion el-
ement was automatically rejected. Therefore, we first
considered this interface to be secure.

A few months later, after finishing the development of
our penetration test tool, we decided to retest the Sales-
force SAML interface and prove the feasibility of our ap-
proach. Surprisingly, the automated penetration test tool
revealed a new successful attack variant by inserting the
wrapped content into the Audience element – a descen-
dant of the Conditions element. This element typically
contains a URI constraining the parties that can consume
the issued assertion. The wrapped message is depicted in
Figure 12. As can be seen in the figure, both Assertion

elements needed to contain the same Id attribute.
This scientifically interesting attack vector stayed un-

analyzed as the Salesforce security team did not expose
any concrete information about their SAML interface.
However, this finding shows how complex the develop-
ment of secure signature wrapping countermeasures is.
This motivates for further development of automatic pen-
etration test tools for XSW.

Salesforce security team afterwards implemented a
countermeasure, which could successfully mitigate all
our attack types. Its details were not revealed.

4This countermeasure is not standard-conform as one message can
generally contain several assertions. Therefore, we do not consider this
remedy in our countermeasure analysis in Section 7.

USENIX Association 	 21st USENIX Security Symposium  407

IdP
1

IdP
2

IdP
3

Adv
acc

Adv
intc

RP
sig

RP
claims

RP
work

Figure 13: Overview of the components in our formal
model.

7 Analysis and Countermeasures

In order to define what a successful attack on a SAML
implementation is, we have to define the possibilities of
the adversary, and the event that characterizes a success-
ful attack. We do this in form of a game played between
the adversary on one side, and IdP and RP on the other
side. Additionally, we derive two different countermea-
sures. Their practical application is described in Sec-
tion 8.

7.1 Data Model

A SAML assertion A can be sent to a Relying Party RP
either as a stand-alone XML document, or as part of a
larger document D. (D may be a complete SOAP mes-
sage, or a SAML Authentication response.) To process
the SAML assertion(s), the Relying Party (more specifi-
cally, RPclaims) searches for the Assertion element and
parses it. We assume that A is signed, either stand-alone,
or as part of D.

7.2 Identity Provider Model

We define an Identity Provider IdP to be an entity that is-
sues signed SAML assertions, and that has control over
a single private key for signing. Thus, companies like
Salesforce may operate several IdPs, one for each do-
main of customers.

An Identity Provider IdP operates a customer database
dbIdP and is able to perform a secure authentication
protocol with any customer contained in this database.
Furthermore, he has control over a private signing key,
where the corresponding public key is trusted by a set of
Relying Parties RP := {RP1, . . . ,RPn}, either directly,
or through means of a Public Key Infrastructure. After
receiving a request from one of the customers registered
in dbIdP, and after successful authentication, he may is-
sue a signed XML document D, where the signed part
contains the requested SAML assertion A.

7.3 Relying Party Model
We assume that processing of documents containing
SAML assertions is split into two parts: (1) XML Sig-
nature verification RPsig, and (2) SAML security claims
processing RPclaims (see Figure 13). This assumption is
justified since both parts differ in their algorithmic base,
and because this separation was found in all frameworks.
If RPclaims accepts, then the application logic RPwork of
the Relying Party will deliver the requested resource to
the requestor.

The XML Signature verification module RPsig is con-
figured to trust several Identity Provider public keys
{pk1, . . . , pkr}. Each public key defines a trusted do-
main within RP. After receiving a signed XML document
D, RPsig searches for a Signature element. It applies
the referencing method described in Reference to re-
trieve the signed parts of the document, applies the trans-
forms described in Transforms to these parts, and com-
pares the computed hash values with the values stored in
DigestValue. If all these values match, signature ver-
ification is performed over the whole SignedInfo ele-
ment, with one of the trusted keys from {pk1, . . . , pkr}.
RPsig then communicates the result of the signature veri-
fication (eventually alongside D) to RPclaims.

The SAML security claims processing module
RPclaims may operate a customer database dbRP, and may
validate SAML assertions against this database. In this
case if the claimed identity is contained in dbRP, the asso-
ciated rights are granted to the requestor. As an alterna-
tive, RPclaims may rely on authorization data contained in
dbIdP. In this case, the associated rights will be contained
in the SAML assertion, and RPclaims will grant these.

Please note that the definition of the winning event
given below does not depend on the output of the sig-
nature verification part RPsig, but on the SAML asser-
tion processing RPclaims. This is necessary since in all
cases described in this paper, signature verification was
done correctly (as is always the case with XML Signa-
ture wrapping). Therefore, to be able to formulate mean-
ingful statements about the security of a SAML frame-
work, we must make some assumptions on the behavior
of RPclaims.

There are many possible strategies for RPclaims to pro-
cess SAML assertions: E.g. use the claims from the first
assertion which is opened during parsing, from the first
that is closed during parsing (analogously for the last as-
sertion opened or closed), or issue an error message if
more than one Assertion element is read.

7.4 Adversarial Model
Please recall the two different types of adversaries
we have mentioned in our threat model in Section 4.
Advintc is the stronger of the two: He has the ability to

408  21st USENIX Security Symposium	 USENIX Association

partially intercept network traffic, e.g. by sniffing HTTP
traffic on an unprotected WLAN, by reading past mes-
sages from an unprotected log file, or by a chosen ci-
phertext attack on TLS 1.0 along the lines of [5]. Please
note that already this adversary is strictly weaker than the
classical network based attacker known from cryptogra-
phy. Advacc, our weaker adversary, only has access to
the IdP and RP, i.e. he may register as a customer with
IdP and receive SAML assertions issued about himself,
and he may send requests to RP.

We define preconditions and success conditions of an
attacker in the form of a game G. If Adv mounts a suc-
cessful attack under these conditions, we say that Adv
wins the game. This facilitates some definitions.

During the game G, the adversary has access to a
validly signed document D containing a SAML assertion
A issued by IdP. He then generates his own (evil) asser-
tion EA, and combines it arbitrarily with D into an XML
document D′. This document is then sent to RP.

Definition 1. We say that the adversary (either Advintc or
Advacc) wins game G if RP, after receiving document D′,
with non-negligible probability Pr(WinAdv) bases its au-
thentication and authorization decisions on the security
claims contained in EA.

Remark: For all researched frameworks, the winning
probability was either negligible or equal to 1. Within the
term ”negligible” we include the possibility that Adv is-
sues a forged cryptographic signature, which we assume
to be impossible in practice. If an adversary wins the
game against a specific Relying Party RP, he takes over
the trust domain for a specific public key pk within RP.
Advacc may do this for all pk where he is allowed to reg-
ister as a customer with the corresponding IdP who con-
trols (sk, pk). Advintc can achieve this for all pk where he
is able to find single signed SAML assertion A where the
signature can (could in the past) be verified with pk.

7.5 Countermeasure 1: Only-process-
what-is-hashed

We can derive the first countermeasure if we assume that
RPsig acts as a filter and only forwards the hashed parts
of an XML document to RPclaims. The hashed parts of
an XML document are those parts that are serialized as
an input to a hash function, and where the hash value is
stored in a Reference element. This excludes all parts
of the document that are removed before hash calculation
by applying a transformation, especially the enveloped
signature transform.

Claim 1. If RPsig only forwards the hashed parts of D to
RPclaims, then Pr(WinAdv) is negligible.

It is straightforward to see that EA is only forwarded
to RPclaims if a valid signature for EA is available.

Please note that although this approach is simple and
effective, it is rarely used in practice due to a number of
subtle implementation problems. A variant of this ap-
proach is implemented by SimpleSAMLphp, where the
RP imposes special requirements on the SAML authen-
tication response, thus limiting interoperability. We dis-
cuss these problems in Section 8.

7.6 Countermeasure 2: Mark signed ele-
ments

In practice, RPsig only returns a Boolean value, and
the whole document D is forwarded to RPclaims. Since
IdPhas to serve many different Relying Parties, we as-
sume knowledge about the strategy of RPclaims only for
RPsig. One possibility to mark signed elements is to hand
over the complete document D from RPsig to RPclaims,
plus a description where the validly signed assertions can
be found.

A second possibility that is more appropriate for
SAML is that RPsig chooses a random value r, marks
the validly signed elements with an attribute containing
r, and forwards r together with the marked document.
RPclaims can then check if the assertion processed con-
tains r.

Let us therefore consider the second approach in more
detail. For sake of simplicity we assume that only one
complete element (i.e. a complete subtree of the XML
document tree) is signed.

Claim 2. Let Dsig be the signed subtree of D, and
let r ∈ {0,1}l be the random value chosen by RPsig
and attached to Dsig. Then Pr(WinAdv) is bounded by
max{breaksig,2−l}.

RPclaims (regardless of its strategy to choose an asser-
tion) will only process EA if r is attached to this element.
An adversary can achieve this by either generating a valid
signature for EA (then r will be attached by RPsig), or by
guessing r and attaching it to EA.

8 Practical Countermeasures

In Section 5.5 we analyzed message processing of Sim-
pleSAMLphp. This framework was resistant against all
XSW attacks. One could therefore ask a legitimate ques-
tion: Why do we need further countermeasures and why
is it not appropriate to apply the security algorithm of
SimpleSAMLphp in every system?

We want to make clear that SimpleSAMLphp offers
both critical functionalities in one framework: signa-
ture validation (RPsig) and SAML assertion evaluation

USENIX Association 	 21st USENIX Security Symposium  409

Response

Assertion ID=“123“

Signature URI=“#123“

RPsig RPclaims

Status

Response

Assertion ID=“123“

Figure 14: The see-what-is-signed approach applied in
HTTP POST binding: After successful signature valida-
tion the security module RPsig excludes all the unsigned
elements and forwards the message to the module pro-
cessing security claims RPclaims and the business logic.

(RPclaims). These two methods are implemented using
the same libraries and processing modules. After pars-
ing a document, the elements are stored within a docu-
ment tree and can be accessed directly. This allows the
security developers to conveniently access the same el-
ements used in signature validation and assertion evalu-
ation steps. However, especially in SOA environments
there exist scenarios, which force the developers to sep-
arate these two steps into different modules or even dif-
ferent systems, e.g.:

• Using a signature validation library: Before eval-
uating the incoming assertion elements, the devel-
oper uses a DOM-based signature library, which
returns true or false according to the message
validity. However, the developer does not exactly
know which elements were validated. If the as-
sertion evaluation uses a different parsing approach
(e.g. streaming-based SAX or StAX approach)
or another DOM-library, the message processing
could become error-prone.

• XML Security gateways: XML Security gateways
can validate XML Signatures and are configured to
forward only validated XML documents. If the de-
veloper evaluates a validated document in his appli-
cation, he again has no explicit information about
the position of the signed element. Synchronization
of signature and assertion processing components in
this scenario becomes even more complicated, if the
developer has no information about the implemen-
tation of the security gateway (e.g. IBM XS40).

These two examples show that a convenient access to
the same XML elements is not always given. Subse-
quently, we present two practical feasible countermea-
sures, which can be applied in complex and distributed
real-world implementations. Both countermeasures re-
sult from our formal analysis in Section 7.

8.1 See-what-is-signed
The core idea of this countermeasure is to forward only
those elements to the business logic module (RPclaims)

that were validated by the signature verification module
(RPsig). This is not trivial as extracting the unsigned el-
ements from the message context could make the fur-
ther message processing in some scenarios impossible.
Therefore, we propose a solution that excludes only the
unsigned elements which do not contain any signed de-
scendants. We give an example of such a message pro-
cessing in Figure 14. This way, the claims and message
processing logic would get the whole message context:
in case of SOAP it would see the whole Envelope ele-
ment, by application of HTTP POST binding it would be
able to process the entire Response element. The main
advantage of this approach is that the message process-
ing logic does not have to search for validated elements
because all forwarded elements are validated.

We want to stress the fact that by application of this ap-
proach all unsigned character nodes have to be extracted.
Otherwise, the attacker could create an evil assertion EA
and insert the signed original assertion into each element
of EA. If RPsig would not extract the character contents
from EA, RPclaims could process its claims. However, by
extracting the unsigned character nodes, the attacker has
no possibility to insert his evil content, since it was ex-
cluded in RPsig. Nevertheless, the subsequent XML mod-
ules can still access the whole XML tree.

This idea has already been discussed by Gajek et
al. [17]. However, until now no XML Signature
framework implements this countermeasure. It could
be applied especially in the context of SAML HTTP
POST bindings because the unsigned elements within
the SAML response do not contain any data needed
in RPclaims. We consider this countermeasure in these
scenarios as appropriate because the SAML standard
only allows the usage of Id-based referencing, exclusive
canonicalization, and enveloped transformation. The au-
thors explicitly state that this countermeasure would not
work if XML Signature uses specific XSLT or XPath
transformations.

8.2 Unique Identification (Tainting) of
Signed Data

The second countermeasure represents another form of
the see-what-is-signed approach. The basic idea is to
uniquely identify the signed data in the RPsig module
and forward this information to the following modules.
As described in our formal analysis, this could be done
by generating a random value r, sending it to the next
processing module (or as an attribute in the document
root element), and attaching it to all the signed elements.
We give an example of this countermeasure applied to a
SOAP message in Figure 15.

The main drawback of this countermeasure is that the
SAML XML Schema does not allow the inclusion of

410  21st USENIX Security Symposium	 USENIX Association

Envelope

Assertion

Header

ID=“123“

Signature

Signature

URI=“#123“

Body

URI=“#body“

ID=“body“

UnsignedContent

RPsig RPclaims

rg=“xy“

rg=“xy“

r=“xy“

Envelope

Assertion

Header

ID=“123“

Signature

Signature

URI=“#123“

Body

URI=“#body“

ID=“body“

UnsignedContent

r=“xy“

Figure 15: Unique identification of signed data applied
on a SOAP message including two signed elements: The
RPsig module uniquely identifies the signed elements
with a random value r and forwards this information
along with the whole XML message.

new attributes: neither directly into the Assertion el-
ement nor the Response binding element. Therefore,
the XML Schema validation of the assertion processing
module would fail. For general application of this idea
the SAML XML Schema needs to be extended.

Another possibility to implement this countermeasure
is to use XML node types, which do not violate XML
Schema, but are visible to the XML processors. For
example, processing instructions, which are intended to
carry instructions to the application belong to this group.
They can be placed anywhere in the document without
invalidating the XML Schema. Additionally, they can
be conveniently found by processing XML trees with
streaming and DOM-based parsers. Therefore, the pres-
ence of these XML nodes would help to find the vali-
dated data and thus allows to mitigate XSW attacks. We
propose this technique for further discussion in the W3C
XML Security Working Group and the OASIS consor-
tium.

9 Related Work

XML Signature Wrapping (XSW). XSW attacks
have first been described in [28] and [7]. Several coun-
termeasures have been proposed over time.

McIntosh and Austel [28] have presented several XSW
attacks and discussed (informal) receiver-sided security
policies in order to prevent such exploits. They have
however not given a definitive solution for this problem.

Bhargavan, Fournet and Gordon [7] have analyzed a
formal approach in order to verify Web Services specifi-
cations. They have proposed a policy advisor [8], a tool
that generates appropriate security policies for Web Ser-
vices protocols. This approach is however not directly
applicable to SAML.

Rahaman, Schaad and Rits [32, 30, 31] have refrained
from policy-driven approaches and have introduced an
inline solution. The authors have proposed to embed an
Account element into the SOAP header. This element

contains partial information about the structure of the
SOAP message and the neighborhood of the signed el-
ement(s). The information preserves the structure of the
data to be signed. However, Gajek et al. have shown
that this approach does not prevent XSW attacks [16].
Benameur, Kadir, and Fenet [6] have extended the inline
approach, but suffer from the same vulnerabilities.

Jensen et al. [24] have analyzed the effectiveness of
XML Schema validation in terms of fending XSW at-
tacks in Web Services. Thereby, they have used man-
ually hardened XML Schemas. The authors have con-
cluded that XML Schema validation is capable of fend-
ing XSW attacks, at the expense of two important disad-
vantages: for each application a specific hardened XML
Schema without extension points must be created care-
fully. Moreover, validating of a hardened XML Schema
entails severe performance penalties.

XPath and XPath Filter 2 are specified as referenc-
ing mechanisms in the XML Signature standard. How-
ever, the WS-Security standard proposes not to use these
mechanisms, and the SAML standard mandates to use
Id-based referencing instead. This is due to the fact that
both standards are very complex. Gajek et al. [15] have
evaluated the effectiveness of these mechanisms to mit-
igate XSW attacks in the SOAP context, and have pro-
posed a lightweight variant FastXPath, which has lead
to the same performance in a PoC implementation as by
adapting the Id-based referencing.

Jensen et al. [23] have however shown that this ap-
proach does not completely eliminate XSW attacks: by
clever manipulations of XML namespace declarations
within a signed document, which take into account the
processing rules for canonicalization algorithms in XML
Signature, XSW attacks could successfully be mounted
even against XPath referenced resources.

The impacts of practical XSW attacks have also been
analyzed in [20, 33]. In these works new types of
XSW attack have been applied on SOAP Web Service
interfaces of Amazon and Eucalyptus clouds. The at-
tacks have exploited different XML processing in dis-
tinct modules.

In summary, previous work has mostly concentrated
on SOAP, and the results do not directly apply to all
SAML use cases.

SAML and Single Sign-On Since SAML offers very
flexible mechanisms to make claims about identities,
there is a large body of research on how SAML can be
used to improve identity management (e.g. [22, 39]) and
other identity-related processes like payment or SIP on
the Internet [25, 35]. In all these applications, the secu-
rity of all SAML standards is assumed.

In an overview paper on SAML, Maler and Reed [26]
have proposed mutually authenticated TLS as the basic

USENIX Association 	 21st USENIX Security Symposium  411

security mechanism. Please note that even if mutually
authenticated TLS would be employed, it would not pre-
vent our attacks because we only need a single signed
SAML assertion from an IdP, which we can get through
different means. Moreover, there exist specific sidechan-
nels, which could be exploited by an adversary. Let us
e.g. mention chosen-plaintext attacks against SSL/TLS
predicted by [37] and refined by [5], or the Million Ques-
tion attack by Bleichenbacher [9]. Other complications
arise with the everlasting problems with SSL PKIs.

In 2003, T. Groß has initiated the security analysis of
SAML [18] from a Dolev-Yao point of view, which has
been formalized in [4]. He has found, together with B.
Pfitzmann [19], deficiencies in the information flow be-
tween the SAML entities. Their work has influenced a
revision of the standard.

In 2008, Armando et al. [3] have built a formal model
of the SAML 2.0 Web Browser SSO protocol and have
analyzed it with the model checker SATMC. By intro-
ducing a malicious RP they have found a practical at-
tack on the SAML implementation of Google Apps. An-
other attack on the SAML-based SSO of Google Apps
has been found in 2011 [2]. Again, a malicious RP has
been used to force a user’s web browser to access a re-
source without approval. Thereby, the malicious RP has
injected malicious content in the initial unintended re-
quest to the attacked RP. After successful authentication
on the IdP this content has been executed in the context
of the user’s authenticated session.

The fact that SAML protocols consist of multiple lay-
ers has been pointed out in [13]. In this paper, the Weak-
est Link Attack has enabled adversaries to succeed at all
levels of authentication by breaking only at the weakest
one.

Very recently, another work pointing out the impor-
tance of SSO protocols has been published by Wang et
al. [38]. This work has analyzed the security quality
of commercially deployed SSO solutions. It has shown
eight serious logic flaws in high-profile IdPs and RPs
(such as OpenID, Facebook, or JanRain), which have
allowed an attacker to sign in as the victim user. The
SAML-based SSO has not been analyzed.

10 Conclusion

In this paper we systematically analyzed the application
of XSW attacks on SAML frameworks and systems. We
showed that the large majority of systems exhibit criti-
cal security insufficiencies in their interfaces. Addition-
ally, we revealed new classes of XSW attacks, which
worked even if specific countermeasures were applied.
We showed that the application of XML Security heav-
ily depends on the underlying XML processing system
(i.e. different XML libraries and parsing types). The pro-

cessing modules involved can have inconsistent views on
the same secured XML document, which may result in
successful XSW attacks. Generally, these heterogeneous
views can exist in all data formats beyond XML.

We proposed a formal model by analyzing the in-
formation flow inside the Relying Party and presented
two countermeasures. The effectiveness of these coun-
termeasures depends on the real information flow and
the data processing inside RPclaims. Our research is
a first step towards understanding the implications of
the information flow between cryptographic and non-
cryptographic components in complex software environ-
ments. Research in this direction could enhance the re-
sults, and provide easy-to-apply solutions for practical
frameworks.

As another future research direction, we propose de-
velopment of an enhanced penetration testing tool for
XSW in arbitrary XML documents and all types of XML
Signatures. This kind of tool presents a huge challenge
as it should e.g. consider more difficult transformations
like XPath or XSLT.

Acknowledgements
The authors would like to thank all the security teams and
their developers for their cooperation, and would like to
note that throughout the collaboration all the teams ef-
fectuated a productive and highly professional commu-
nication.

Moreover, we would like to thank Scott Cantor, David
Jorm, Florian Kohlar, Christian Mainka, Christopher
Meyer, Thomas Roessler, and the anonymous review-
ers (of the USENIX Security Symposium and the IEEE
Symposium on Security and Privacy) for their valuable
remarks on the developed attacks and the paper content.
Finally, we thank Alexander Bieber for the Sharepoint
2010 test bed.

This work was partially funded by the Sec2 project of
the German Federal Ministry of Education and Research
(BMBF, FKZ: 01BY1030).

References
[1] IEEE International Conference on Web Services, ICWS 2009, Los

Angeles, CA, USA, 6-10 July 2009 (2009), IEEE.

[2] ARMANDO, A., CARBONE, R., COMPAGNA, L., CUÉLLAR, J.,
PELLEGRINO, G., AND SORNIOTTI, A. From Multiple Creden-
tials to Browser-Based Single Sign-On: Are We More Secure?
In Future Challenges in Security and Privacy for Academia and
Industry, J. Camenisch, S. Fischer-Hbner, Y. Murayama, A. Port-
mann, and C. Rieder, Eds., vol. 354 of IFIP Advances in Infor-
mation and Communication Technology. Springer Boston, 2011.

[3] ARMANDO, A., CARBONE, R., COMPAGNA, L., CUÉLLAR,
J., AND TOBARRA, M. L. Formal Analysis of SAML 2.0
Web Browser Single Sign-On: Breaking the SAML-based Single
Sign-On for Google Apps. In Proceedings of the 6th ACM Work-
shop on Formal Methods in Security Engineering, FMSE 2008,
V. Shmatikov, Ed. ACM, Alexandria and VA and USA, 2008.

412  21st USENIX Security Symposium	 USENIX Association

[4] BACKES, M., AND GROSS, T. Tailoring the dolev-yao abstrac-
tion to web services realities. In SWS (2005), E. Damiani and
H. Maruyama, Eds., ACM, pp. 65–74.

[5] BARD, G. V. A Challenging but Feasible Blockwise-
Adaptive Chosen-Plaintext Attack on SSL. In SECRYPT (2006),
M. Malek, E. Fernández-Medina, and J. Hernando, Eds., IN-
STICC Press, pp. 99–109.

[6] BENAMEUR, A., KADIR, F. A., AND FENET, S. XML Rewrit-
ing Attacks: Existing Solutions and their Limitations. In IADIS
Applied Computing 2008 (Apr. 2008), IADIS Press.

[7] BHARGAVAN, K., FOURNET, C., AND GORDON, A. D. Verify-
ing policy-based security for web services. In CCS ’04: Proceed-
ings of the 11th ACM conference on Computer and communica-
tions security (2004), pp. 268–277.

[8] BHARGAVAN, K., FOURNET, C., GORDON, A. D., AND
O’SHEA, G. An advisor for web services security policies. In
SWS ’05: Proceedings of the 2005 workshop on Secure web ser-
vices (New York, NY, USA, 2005), ACM, pp. 1–9.

[9] BLEICHENBACHER, D. Chosen ciphertext attacks against proto-
cols based on the rsa encryption standard pkcs #1. In CRYPTO
(1998), pp. 1–12.

[10] CANTOR, S., KEMP, J., MALER, E., AND PHILPOTT,
R. Profiles for the OASIS Security Assertion Markup
Language (SAML) V2.0. OASIS Standard, 15.03.2005,
2005. http://docs.oasis-open.org/security/saml/v2.
0/saml-profiles-2.0-os.pdf.

[11] CANTOR, S., KEMP, J., PHILPOTT, R., AND MALER, E.
Assertions and Protocol for the OASIS Security Assertion
Markup Language (SAML) V2.0. OASIS Standard, 15.03.2005,
2005. http://docs.oasis-open.org/security/saml/v2.
0/saml-core-2.0-os.pdf.

[12] CANTOR, S., MOREH, J., PHILPOTT, R., AND MALER,
E. Metadata for the OASIS Security Assertion Markup
Language (SAML) V2.0. OASIS Standard, 15.03.2005,
2005. http://docs.oasis-open.org/security/saml/v2.
0/saml-metadata-2.0-os.pdf.

[13] CHAN, Y.-Y. Weakest link attack on single sign-on and its case
in saml v2.0 web sso. In Computational Science and Its Applica-
tions - ICCSA 2006, M. Gavrilova, O. Gervasi, V. Kumar, C. Tan,
D. Taniar, A. Lagan, Y. Mun, and H. Choo, Eds., vol. 3982 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2006, pp. 507–516. 10.1007/11751595 54.

[14] EASTLAKE, D., REAGLE, J., SOLO, D., HIRSCH, F., AND
ROESSLER, T. XML Signature Syntax and Processing (Second
Edition), 2008. http://www.w3.org/TR/xmldsig-core/.

[15] GAJEK, S., JENSEN, M., LIAO, L., AND SCHWENK, J. Analy-
sis of signature wrapping attacks and countermeasures. In ICWS
[1], pp. 575–582.

[16] GAJEK, S., LIAO, L., AND SCHWENK, J. Breaking and fixing
the inline approach. In SWS ’07: Proceedings of the 2007 ACM
workshop on Secure web services (New York, NY, USA, 2007),
ACM, pp. 37–43.

[17] GAJEK, S., LIAO, L., AND SCHWENK, J. Towards a formal
semantic of xml signature. W3C Workshop Next Steps for XML
Signature and XML Encryption, 2007.

[18] GROSS, T. Security Analysis of the SAML SSO Browser/Artifact
Profile. In ACSAC (2003), IEEE Computer Society, pp. 298–307.

[19] GROSS, T., AND PFITZMANN, B. SAML artifact information
flow revisited. In In IEEE Workshop on Web Services Security
(WSSS) (Berkeley, May 2006), IEEE, pp. 84–100.

[20] GRUSCHKA, N., AND IACONO, L. L. Vulnerable cloud: Soap
message security validation revisited. In ICWS [1], pp. 625–631.

[21] GUDGIN, M., HADLEY, M., MENDELSOHN, N., MOREAU, J.-
J., AND NIELSEN, H. F. SOAP Version 1.2 Part 1: Messaging
Framework. W3C Recommendation (2003).

[22] HARDING, P., JOHANSSON, L., AND KLINGENSTEIN, N. Dy-
namic security assertion markup language: Simplifying single
sign-on. Security Privacy, IEEE 6, 2 (march-april 2008), 83 –
85.

[23] JENSEN, M., LIAO, L., AND SCHWENK, J. The curse of names-
paces in the domain of xml signature. In SWS (2009), E. Damiani,
S. Proctor, and A. Singhal, Eds., ACM, pp. 29–36.

[24] JENSEN, M., MEYER, C., SOMOROVSKY, J., AND SCHWENK,
J. On the effectiveness of xml schema validation for counter-
ing xml signature wrapping attacks. In Securing Services on the
Cloud (IWSSC), 2011 1st International Workshop on (sept. 2011),
pp. 7 –13.

[25] LUTZ, D., AND STILLER, B. Combining identity federation with
payment: The saml-based payment protocol. In Network Oper-
ations and Management Symposium (NOMS), 2010 IEEE (april
2010), pp. 495 –502.

[26] MALER, E., AND REED, D. The venn of identity: Options and
issues in federated identity management. Security Privacy, IEEE
6, 2 (march-april 2008), 16 –23.

[27] MCINTOSH, M., AND AUSTEL, P. XML Signature Element
Wrapping Attacks and Countermeasures. In SWS ’05: Proceed-
ings of the 2005 workshop on Secure web services (New York,
NY, USA, 2005), ACM Press, pp. 20–27.

[28] MCINTOSH, M., AND AUSTEL, P. XML signature element
wrapping attacks and countermeasures. In Workshop on Secure
Web Services (2005).

[29] NADALIN, A., KALER, C., MONZILLO, R., AND HALLAM-
BAKER, P. Web Services Security: SOAP Message Security 1.1
(WS-Security 2004). OASIS Standard (2006).

[30] RAHAMAN, M. A., MARTEN, R., AND SCHAAD, A. An inline
approach for secure soap requests and early validation. OWASP
AppSec Europe, 2006.

[31] RAHAMAN, M. A., AND SCHAAD, A. Soap-based secure con-
versation and collaboration. In ICWS (2007), pp. 471–480.

[32] RAHAMAN, M. A., SCHAAD, A., AND RITS, M. Towards se-
cure soap message exchange in a soa. In Workshop on Secure
Web Services (2006).

[33] SOMOROVSKY, J., HEIDERICH, M., JENSEN, M., SCHWENK,
J., GRUSCHKA, N., AND IACONO, L. L. All Your Clouds are
Belong to us – Security Analysis of Cloud Management Inter-
faces. In The ACM Cloud Computing Security Workshop (CCSW)
(Oct. 2011).

[34] THE APACHE SOFTWARE FOUNDATION. Apache Xerces.
[35] TSCHOFENIG, H., FALK, R., PETERSON, J., HODGES, J.,

SICKER, D., AND POLK, J. Using saml to protect the session
initiation protocol (sip). Network, IEEE 20, 5 (sept.-oct. 2006),
14 –17.

[36] VAN DER VLIST, E. XML Schema. O’Reilly, 2002.
[37] WAGNER, D., AND SCHNEIER, B. Analysis of the SSL 3.0 pro-

tocol. In In Proceedings of the Second USENIX Workshop on
Electronic Commerce (1996), USENIX Association, pp. 29–40.

[38] WANG, R., CHEN, S., AND WANG, X. Signing Me onto Your
Accounts through Facebook and Google: a Traffic-Guided Secu-
rity Study of Commercially Deployed Single-Sign-On Web Ser-
vices. In IEEE Symposium on Security and Privacy (Oakland),
IEEE Computer Society (May 2012).

[39] YONG-SHENG, Z., AND JING, Y. Research of dynamic authen-
tication mechanism crossing domains for web services based on
saml. In Future Computer and Communication (ICFCC), 2010
2nd International Conference on (may 2010), vol. 2, pp. V2–395
–V2–398.

USENIX Association 	 21st USENIX Security Symposium  413

Clickjacking: Attacks and Defenses

Lin-Shung Huang
Carnegie Mellon University
linshung.huang@sv.cmu.edu

Alex Moshchuk
Microsoft Research

alexmos@microsoft.com

Helen J. Wang
Microsoft Research

helenw@microsoft.com

Stuart Schechter
Microsoft Research

stuart.schechter@microsoft.com

Collin Jackson
Carnegie Mellon University
collin.jackson@sv.cmu.edu

Abstract
Clickjacking attacks are an emerging threat on the web.
In this paper, we design new clickjacking attack variants
using existing techniques and demonstrate that existing
clickjacking defenses are insufficient. Our attacks show
that clickjacking can cause severe damages, including
compromising a user’s private webcam, email or other
private data, and web surfing anonymity.

We observe the root cause of clickjacking is that an
attacker application presents a sensitive UI element of a
target application out of context to a user (such as hiding
the sensitive UI by making it transparent), and hence the
user is tricked to act out of context. To address this root
cause, we propose a new defense, InContext, in which
web sites (or applications) mark UI elements that are sen-
sitive, and browsers (or OSes) enforce context integrity
of user actions on these sensitive UI elements, ensuring
that a user sees everything she should see before her ac-
tion and that the timing of the action corresponds to her
intent.

We have conducted user studies on Amazon Mechani-
cal Turk with 2064 participants to evaluate the effective-
ness of our attacks and our defense. We show that our at-
tacks have success rates ranging from 43% to 98%, and
our InContext defense can be very effective against the
clickjacking attacks in which the use of clickjacking is
more effective than social engineering.

1 Introduction
When multiple applications or web sites (or OS princi-
pals [44] in general) share a graphical display, they are
subject to clickjacking [13] (also known as UI redress-
ing [28, 49]) attacks: one principal may trick the user
into interacting with (e.g., clicking, touching, or voice
controlling) UI elements of another principal, triggering
actions not intended by the user. For example, in Like-
jacking attacks [46], an attacker web page tricks users
into clicking on a Facebook “Like” button by transpar-
ently overlaying it on top of an innocuous UI element,

such as a “claim your free iPad” button. Hence, when
the user “claims” a free iPad, a story appears in the user’s
Facebook friends’ news feed stating that she “likes” the
attacker web site. For ease of exposition, our description
will be in the context of web browsers. Nevertheless, the
concepts and techniques described are generally applica-
ble to all client operating systems where display is shared
by mutually distrusting principals.

Several clickjacking defenses have been proposed and
deployed for web browsers, but all have shortcomings.
Today’s most widely deployed defenses rely on frame-
busting [21, 37], which disallows a sensitive page from
being framed (i.e., embedded within another web page).
Unfortunately, framebusting is fundamentally incompat-
ible with embeddable third-party widgets, such as Face-
book Like buttons. Other existing defenses (discussed
in Section 3.2) suffer from poor usability, incompatibil-
ity with existing web sites, or failure to defend against
significant attack vectors.

To demonstrate the insufficiency of state-of-the-art de-
fenses, we construct three new attack variants using ex-
isting clickjacking techniques. We designed the new at-
tack scenarios to be more damaging than the existing
clickjacking attacks in the face of current defenses. In
one scenario, the often-assumed web-surfing-anonymity
can be compromised. In another, a user’s private data and
emails can be stolen. Lastly, an attacker can spy on a user
through her webcam. We have conducted the first click-
jacking effectiveness study through Amazon Mechanical
Turk and find that the aforementioned attacks have suc-
cess rates of 98%, 47%, and 43%, respectively.

Learning from the lessons of existing defenses, we set
the following design goals for our clickjacking defense:
• Widget compatibility: clickjacking protection

should support third-party widgets.
• Usability: users should not be prompted for their

actions.
• Backward compatibility: the defense should not

break existing web sites (e.g., by disallowing exist-

414  21st USENIX Security Symposium	 USENIX Association

ing functionality).
• Resiliency: our defense should address the root

cause of clickjacking and be resilient to new attack
vectors.

The root cause of clickjacking is that an attacker ap-
plication presents a sensitive UI element of a target ap-
plication out of context to a user and hence the user gets
tricked to act out of context. For example, in the afore-
mentioned Likejacking attack scenario, an attacker web
page presents a false visual context to the user by hiding
the sensitive “Like” button transparently on top of the
“claim your free iPad” button.

To address the root cause and achieve the above goals,
our defense, called InContext, lets web sites mark their
sensitive UI elements and then lets browsers enforce the
context integrity of user actions on the sensitive UI ele-
ments. The context of a user’s action consists of its visual
context and temporal context.
• Visual context is what a user should see right before

her sensitive action. To ensure visual context in-
tegrity, both the sensitive UI element and the pointer
feedback (such as cursors, touch feedback, or NUI
input feedback) need to be fully visible to a user. We
refer to the former as target display integrity and to
the latter as pointer integrity.

• Temporal context refers to the timing of a user ac-
tion. Temporal integrity ensures that a user action
at a particular time is intended by the user. For ex-
ample, an attack page can compromise temporal in-
tegrity by launching a bait-and-switch attack by first
baiting the user with a “claim your free iPad” button
and then switching in a sensitive UI element right
before the anticipated time of user click.

We implemented a prototype of InContext on Internet
Explorer 9 and found that it is practical to use, adding at
most 30ms of delay for verifying a click. We evaluated
InContext through Amazon Mechanical Turk user stud-
ies, and our results show that InContext is very effective
against attacks in which the use of clickjacking is vital to
attack effectiveness.

2 Threat Model
The primary attacker against which InContext defends
is a clickjacking attacker. A clickjacking attacker has
all the capabilities of a web attacker [17]: (1) they own
a domain name and control content served from their
web servers, and (2) they can make a victim visit their
site, thereby rendering attacker’s content in the victim’s
browser. When a victim user visits the attacker’s page,
the page hides a sensitive UI element either visually or
temporally (see Section 3.1 for various techniques to
achieve this) and lure the user into performing unin-
tended UI actions on the sensitive element out of context.

We make no attempt to protect against social engineer-
ing attackers who can succeed in their attacks even when
the system is perfectly designed and built. For example,
a social engineering attacker can fool users into clicking
on a Facebook Like button by drawing misleading con-
tent, such as images from a charity site, around it. Even
though the Like button is not manipulated in any way,
a victim may misinterpret the button as “liking” charity
work rather “liking” the attacker web site, and the vic-
tim may have every intention to click on the button. In
contrast, a clickjacking attacker exploits a system’s in-
ability to maintain context integrity for users’ actions and
thereby can manipulate the sensitive element visually or
temporally to trick users.

3 Background and Related Work
In this section, we discuss known attacks and defenses
for clickjacking, and compare them to our contributions.
Below, we assume a victim user is visiting a clickjack-
ing attacker’s page, which embeds and manipulates the
target element residing on a different domain, such as
Facebook’s Like button or PayPal’s checkout dialog.

3.1 Existing clickjacking attacks

We classify existing attacks according to three ways of
forcing the user into issuing input commands out of con-
text: (1) compromising target display integrity, the guar-
antee that users can fully see and recognize the target el-
ement before an input action; (2) compromising pointer
integrity, the guarantee that users can rely on cursor
feedback to select locations for their input events; and
(3) compromising temporal integrity, the guarantee that
users have enough time to comprehend where they are
clicking.

3.1.1 Compromising target display integrity

Hiding the target element. Modern browsers support
HTML/CSS styling features that allow attackers to visu-
ally hide the target element but still route mouse events to
it. For example, an attacker can make the target element
transparent by wrapping it in a div container with a CSS
opacity value of zero; to entice a victim to click on it,
the attacker can draw a decoy under the target element
by using a lower CSS z-index [13]. Alternatively, the
attacker may completely cover the target element with an
opaque decoy, but make the decoy unclickable by setting
the CSS property pointer-events:none [4]. A vic-
tim’s click would then fall through the decoy and land on
the (invisible) target element.
Partial overlays. Sometimes, it is possible to visually
confuse a victim by obscuring only a part of the target
element [12, 41]. For example, attackers could over-
lay their own information on top of a PayPal checkout
iframe to cover the recipient and amount fields while
leaving the “Pay” button intact; the victim will thus have

2

USENIX Association 	 21st USENIX Security Symposium  415

incorrect context when clicking on “Pay”. This over-
laying can be done using CSS z-index or using Flash
Player objects that are made topmost with Window Mode
property [2] set to wmode=direct. Furthermore, a tar-
get element could be partially overlaid by an attacker’s
popup window [53].
Cropping. Alternatively, the attacker may crop the target
element to only show a piece of the target element, such
as the “Pay” button, by wrapping the target element in a
new iframe that uses carefully chosen negative CSS po-
sition offsets and the Pay button’s width and height [41].
An extreme variant of cropping is to create multiple 1x1
pixel containers of the target element and using single
pixels to draw arbitrary clickable art.

3.1.2 Compromising pointer integrity

Proper visual context requires not only the target ele-
ment, but also all pointer feedback to be fully visible
and authentic. Unfortunately, an attacker may violate
pointer integrity by displaying a fake cursor icon away
from the pointer, known as cursorjacking. This leads
victims to misinterpret a click’s target, since they will
have the wrong perception about the current cursor lo-
cation. Using the CSS cursor property, an attacker can
easily hide the default cursor and programmatically draw
a fake cursor elsewhere [20], or alternatively set a custom
mouse cursor icon to a deceptive image that has a cursor
icon shifted several pixels off the original position [7].

Another variant of cursor manipulation involves the
blinking cursor which indicates keyboard focus (e.g.,
when typing text into an input field). Vulnerabilities
in major browsers have allowed attackers to manipulate
keyboard focus using strokejacking attacks [50, 52]. For
example, an attacker can embed the target element in a
hidden frame, while asking users to type some text into a
fake attacker-controlled input field. As the victim is typ-
ing, the attacker can momentarily switch keyboard focus
to the target element. The blinking cursor confuses vic-
tims into thinking that they are typing text into the at-
tacker’s input field, whereas they are actually interacting
with the target element.

3.1.3 Compromising temporal integrity

Attacks in the previous two sections manipulated visual
context to trick the user into sending input to the wrong
UI element. An orthogonal way of achieving the same
goal is to manipulate UI elements after the user has de-
cided to click, but before the actual click occurs. Humans
typically require a few hundred milliseconds to react to
visual changes [34, 54], and attackers can take advantage
of our slow reaction to launch timing attacks.

For example, an attacker could move the target ele-
ment (via CSS position properties) on top of a decoy
button shortly after the victim hovers the cursor over the

decoy, in anticipation of the click. To predict clicks more
effectively, the attacker could ask the victim to repeti-
tively click objects in a malicious game [1, 3, 54, 55]
or to double-click on a decoy button, moving the tar-
get element over the decoy immediately after the first
click [16, 33].

3.1.4 Consequences

To date, there have been two kinds of widespread click-
jacking attacks in the wild: Tweetbomb [22] and Like-
jacking [46]. In both attacks, an attacker tricks victims
to click on Twitter Tweet or Facebook Like buttons us-
ing hiding techniques described in Section 3.1.1, causing
a link to the attacker’s site to be reposted to the victim’s
friends and thus propagating the link virally. These at-
tacks increase traffic to the attacker’s site and harvest a
large number of unwitting friends or followers.

Many proof-of-concept clickjacking techniques have
also been published. Although the impact of these at-
tacks in the wild is unclear, they do demonstrate more
serious damages and motivate effective defenses. In one
case [38], attackers steal user’s private data by hijack-
ing a button on the approval pages of the OAuth [10]
protocol, which lets users share private resources such
as photos or contacts across web sites without handing
out credentials. Several attacks target the Flash Player
webcam settings dialogs (shown in Figure 1), allowing
rogue sites to access the victim’s webcam and spy on the
user [1, 3, 9]. Other POCs have forged votes in online
polls, committed click fraud [11], uploaded private files
via the HTML5 File API [19], stolen victims’ location in-
formation [54], and injected content across domains (in
an XSS spirit) by tricking the victim to perform a drag-
and-drop action [18, 40].

3.2 Existing anti-clickjacking defenses

Although the same-origin policy [35] is supposed to pro-
tect distrusting web sites from interfering with one an-
other, it fails to stop any of the clickjacking attacks we
described above. As a result, several anti-clickjacking
defenses have been proposed (many of such ideas were
suggested by Zalewski [51]), and some have been de-
ployed by browsers.

3.2.1 Protecting visual context

User Confirmation. One straightforward mitigation for
preventing out-of-context clicks is to present a confirma-
tion prompt to users when the target element has been
clicked. Facebook currently deploys this approach for
the Like button, asking for confirmation whenever re-
quests come from blacklisted domains [47]. Unfortu-
nately, this approach degrades user experience, espe-
cially on single-click buttons, and it is also vulnerable to
double-click timing attacks of Section 3.1.3, which could
trick the victim to click through both the target element

3

416  21st USENIX Security Symposium	 USENIX Association

and a confirmation popup.
UI Randomization. Another technique to protect the
target element is to randomize its UI layout [14]. For
example, PayPal could randomize the position of the Pay
button on its express checkout dialog to make it harder
for the attacker to cover it with a decoy button. This
is not robust, since the attacker may ask the victim to
keep clicking until successfully guessing the Pay button’s
location.
Opaque Overlay Policy. The Gazelle web browser [45]
forces all cross-origin frames to be rendered opaquely.
However, this approach removes all transparency from
all cross-origin elements, breaking benign sites.
Framebusting. A more effective defense is frame-
busting, or disallowing the target element from
being rendered in iframes. This can be done
either with JavaScript code in the target element
which makes sure it is the top-level document [37],
or with newly added browser support, using fea-
tures called X-Frame-Options [21] and CSP’s
frame-ancestors [39]. A fundamental limitation of
framebusting is its incompatibility with target elements
that are intended to be framed by arbitrary third-party
sites, such as Facebook Like buttons.1 In addition,
previous research found JavaScript framebusting unreli-
able [37], and in Section 4.2, we will show attacks that
bypass framebusting protection on OAuth dialogs using
popup windows. Zalewski has also demonstrated how
to bypass framebusting by navigating browsing history
with JavaScript [55].
Visibility Detection on Click. Instead of completely
disallowing framing, an alternative is to allow rendering
transparent frames, but block mouse clicks if the browser
detects that the clicked cross-origin frame is not fully vis-
ible. Adobe has added such protection to Flash Player’s
webcam access dialog in response to webcam clickjack-
ing attacks; however, their defense only protects that di-
alog and is not available for other web content.

The ClearClick module of the Firefox extension No-
Script also uses this technique [23], comparing the
bitmap of the clicked object on a given web page to the
bitmap of that object rendered in isolation (e.g., without
transparency inherited from a malicious parent element).
Although ClearClick is reasonably effective at detect-
ing visual context compromises, its on-by-default nature
must assume that all cross-origin frames need clickjack-
ing protection, which results in false positives on some
sites. Due to these false positives, ClearClick prompts
users to confirm their actions on suspected clickjacking
attacks, posing a usability burden. An extension called

1X-Frame-Options and frame-ancestors both allow specify-
ing a whitelist of sites that may embed the target element, but doing
so is often impractical: Facebook would have to whitelist much of the
web for the Like button!

ClickIDS [5] was proposed to reduce the false positives
of ClearClick by alerting users only when the clicked el-
ement overlaps with other clickable elements. Unfortu-
nately, ClickIDS cannot detect attacks based on partial
overlays or cropping, and it still yields false positives.

Finally, a fundamental limitation of techniques that
verify browser-rendered bitmaps is that cursor icons are
not captured; thus, pointer integrity is not guaranteed.
To address this caveat, ClearClick checks the computed
cursor style of the clicked element (or its ancestors) to
detect cursor hiding. Unfortunately, cursor spoofing at-
tacks can still be effective against some users even if the
default cursor is visible over the target element, as dis-
cussed in Section 7.2.

3.2.2 Protecting temporal context

Although we’re not aware of any timing attacks used in
the wild, browser vendors have started to tackle these
issues, particularly to protect browser security dialogs
(e.g., for file downloads and extension installations) [34].
One common way to give users enough time to compre-
hend any UI changes is to impose a delay after displaying
a dialog, so that users cannot interact with the dialog un-
til the delay expires. This approach has been deployed in
Flash Player’s webcam access dialog, suggested in Za-
lewski’s proposal [51], and also proposed in the Gazelle
web browser [45]. In response to our vulnerability re-
port, ClearClick has added a UI delay for cross-origin
window interactions [24].

Unresponsive buttons during the UI delay have report-
edly annoyed many users. The length of the UI delay
is clearly a tradeoff between the user experience penalty
and protection from timing attacks. Regardless, UI delay
is not a complete answer to protecting temporal integrity,
and we construct an attack that successfully defeats a UI
delay defense in Section 4.3.

3.2.3 Access Control Gadgets

Access control gadgets (ACG) [30] were recently intro-
duced as a new model for modern OSes to grant appli-
cations permissions to access user-owned resources such
as camera or GPS. An ACG is a privileged UI which can
be embedded by applications that need access to the re-
source represented by the ACG; authentic user actions on
an ACG grant its embedding application permission to
access the corresponding resource. The notion of ACGs
is further generalized to application-specific ACGs, al-
lowing applications to require authentic user actions for
application-specific functionality. Application-specific
ACGs precisely capture today’s web widgets that de-
mand a clickjacking defense.

ACGs require clickjacking resilience. While Roesner
et al’s design [30] considered maintaining both visual
and temporal integrity, they did not consider pointer in-

4

USENIX Association 	 21st USENIX Security Symposium  417

Fake cursor

Real cursor Real curs

Figure 1: Cursor spoofing attack page. The target Flash Player webcam settings dialog is at the bottom right of the page, with a
“skip this ad” bait link remotely above it. Note there are two cursors displayed on the page: a fake cursor is drawn over the “skip
this ad” link while the actual pointer hovers over the webcam access “Allow” button.

tegrity and did not evaluate various design parameters.
In this work, we comprehensively address these issues,
and we also establish the taxonomy of context integrity
explicitly.

3.2.4 Discussion

We can conclude that all existing clickjacking defenses
fall short in some way, with robustness and site compat-
ibility being the main issues. Moreover, a glaring omis-
sion in all existing defenses is the pointer integrity at-
tacks described in Section 3.1.2. In Section 5, we will
introduce a browser defense that (1) does not require user
prompts, unlike ClearClick and Facebook’s Likejacking
defense, (2) provides pointer integrity, (3) supports tar-
get elements that require arbitrary third-party embed-
ding, unlike framebusting, (4) lets sites opt in by indi-
cating target elements, avoiding false positives that exist
in ClearClick, and (5) is more robust against timing at-
tacks than the existing UI delay techniques.

3.3 Our contributions

The major contributions of this paper are in evaluating
the effectiveness of existing attack techniques as well as
designing and evaluating a new defense. Our evaluation
uses several new attack variants (described in Section 4)
which build on existing techniques described in Sec-
tion 3.1, including cursor manipulation, fast-paced ob-
ject clicking, and double-click timing. Whereas most ex-
isting proof-of-concepts have focused on compromising
target display integrity, we focus our analysis on pointer
integrity and temporal integrity, as well as on combin-
ing several known techniques in novel ways to increase
effectiveness and bypass all known defenses.

4 New Attack Variants
To demonstrate the insufficiency of state-of-the-art de-
fenses described above, we construct and evaluate three

attack variants using known clickjacking techniques. We
have designed the new attack scenarios to be potentially
more damaging than existing clickjacking attacks in the
face of current defenses. We describe each in turn.

4.1 Cursor spoofing attack to steal webcam access

We first crafted a cursor spoofing attack (Section 3.1.2) to
steal access to a private resource of a user: the webcam.
In this attack, the user is presented with an attack page
shown in Figure 1. A fake cursor is programmatically
rendered to provide false feedback of pointer location to
the user, in which the fake cursor gradually shifts away
from the hidden real cursor while the pointer is moving.
A loud video ad plays automatically, leading the user to
click on a “skip this ad” link. If the user moves the fake
cursor to click on the skip link, the real click actually
lands on the Adobe Flash Player webcam settings dialog
that grants the site permission to access the user’s web-
cam. The cursor hiding is achieved by setting the CSS
cursor property to none, or a custom cursor icon that is
completely transparent, depending on browser support.

4.2 Double-click attack to steal user private data

Today’s browsers do not protect temporal integrity for
web sites. We show in our second attack that even if
a security-critical web page (such as an OAuth dialog
page) successfully employs framebusting (refusing to be
embedded by other sites), our attack can still success-
fully clickjack such a page by compromising temporal
integrity for popup windows.

We devised a bait-and-switch double-click attack
(Section 3.1.3) against the OAuth dialog for Google ac-
counts, which is protected with X-Frame-Options. The
attack is shown in Figure 2. First, the attack page baits
the user to perform a double-click on a decoy button.
After the first click, the attacker switches in the Google
OAuth pop-up window under the cursor right before the

5

418  21st USENIX Security Symposium	 USENIX Association

Figure 2: Double-click attack page. The target OAuth dia-
log popup window appears underneath the pointer immediately
after the first click on the decoy button.

second click (the second half of the double-click). This
attack can steal a user’s emails and other private data
from the user’s Google account.

The double-click attack technique was previously dis-
cussed in the context of extension installation dialogs by
Ruderman [33].

4.3 Whack-a-mole attack to compromise web
surfing anonymity

In our third attack, we combine the approaches from
the previous two attacks, cursor spoofing and bait-and-
switch, to launch a more sophisticated whack-a-mole
attack that combines clickjacking with social plugins
(e.g., Facebook Like button) to compromise web surfing
anonymity.

In this attack, we ask the user to play a whack-a-mole
game and encourage her to score high and earn rewards
by clicking on buttons shown at random screen locations
as fast as possible. Throughout the game, we use a fake
cursor to control where the user’s attention should be. At
a later point in the game, we switch in a Facebook Like
button at the real cursor’s location, tricking the user to

Figure 3: Whack-a-mole attack page. This is a cursor spoof-
ing variant of the whack-a-mole attack. On the 18th trial, the
attacker displays the target Like button underneath the actual
pointer.

click on it.
In 2010, Wondracek et al. [48] showed that it is fea-

sible for a malicious web site to uniquely identify 42%
of social network users that use groups by exploiting
browsing history leaks. Fortunately, the history sniffing
technique required in their attack is no longer feasible
in major browsers due to Baron’s patch [6]. However,
we find that our whack-a-mole attack above, and Like-
jacking attacks in general, can still easily reveal the vic-
tim’s real identity at the time of visit and compromise
user anonymity in web surfing as follows.

Consider an attacker who is an admin for a Face-
book page; the attacker crafts a separate malicious page
which tricks users to click on his Like button. That
page is notified when a victim clicks on the Like button
via FB.Event.subscribe(), triggering the attacker’s
server to pull his fan list from Facebook and instantly
identify the newly added fan. The attacker’s server could
then query the victim’s profile via Facebook Graph API
(and remove the victim fan to avoid suspicion). While we
implemented this logic as a proof-of-concept and verified
its effectiveness, we did not test it on real users.

In Section 7, we show our results on the effectiveness
of all these attacks on Mechanical Turk users.

5 InContext Defense
As described in Section 1, the root cause of clickjacking
is that an attacker application presents a sensitive UI el-
ement of a target application out of context to the user,
and hence the user gets tricked to act out of context.

6

USENIX Association 	 21st USENIX Security Symposium  419

Enforcing context integrity for an application is essen-
tially one aspect of application isolation, in addition to
memory and other resource access. Namely, the context
for a user’s action in the application should be protected
from manipulation by other applications. We believe it
is an OS’s (or a browser’s) role to provide such cross-
application (or cross-web-site) protection.

Section 1 introduced two dimensions of context in-
tegrity: visual and temporal. Enforcing visual integrity
ensures that the user is presented with what she should
see before an input action. Enforcing temporal integrity
ensures that the user has enough time to comprehend
what UI element they are interacting with.

We describe our design for each in turn.

5.1 Ensuring Visual Integrity

To ensure visual integrity at the time of a sensitive user
action, the system needs to make the display of both the
sensitive UI elements and the pointer feedback (such as
cursors, touch feedback, or NUI input feedback) fully
visible to the user. Only when both the former (target
display integrity) and the latter (pointer integrity) are sat-
isfied, the system activates sensitive UI elements and de-
livers user input to them.

5.1.1 Guaranteeing Target Display Integrity

Although it is possible to enforce the display integrity
of all the UI elements of an application, doing so would
make all the UI elements inactivated if any part of the
UI is invisible. This would burden users to make the
entire application UI unobstructed to carry out any in-
teractions with the application. Such whole-application
display integrity is often not necessary. For example, not
all web pages of a web site contain sensitive operations
and are susceptible to clickjacking. Since only appli-
cations know which UI elements require protection, we
let web sites indicate which UI elements or web pages
are sensitive. This is analogous to how HTML5 [43]
and some browsers [32] (as well as earlier research on
MashupOS [44]) allow web sites to label certain content
as “sandboxed”. The sandboxed content is isolated so
that it cannot attack the embedding page. In contrast, the
sensitive content is protected with context integrity for
user actions, so that the embedding page cannot click-
jack the sensitive content.

We considered several design alternatives for provid-
ing target display integrity, as follows.
Strawman 1: CSS Checking. A naı̈ve approach is to let
the browser check the computed CSS styles of elements,
such as the position, size, opacity and z-index, and
make sure the sensitive element is not overlaid by cross-
origin elements. However, various techniques exist to
bypass CSS and steal topmost display, such as using IE’s
createPopup() method [25] or Flash Player’s Window

Reference bitmap: OS screenshot:

Figure 4: Ensuring target element display integrity. Here,
the attacker violates visual context of the Twitter Follow but-
ton by changing its opacity and obstructing it with two DIVs.
InContext detects this during its bitmap comparison. Obstruc-
tions from other windows are also detected (e.g., the non-
browser Vi window on the right).

Mode [2]. Solely relying on CSS checking is not reliable
and thus insufficient.
Strawman 2: Static reference bitmap. Another ap-
proach is to let a web site provide a static bitmap of
its sensitive element as a reference, and let the browser
make sure the rendered sensitive element matches the
reference. Flash Player uses this approach for protect-
ing its webcam access dialog (Section 3.2.1). However,
different browsers may produce slightly differently ren-
dered bitmaps from the same HTML code, and it would
be too burdensome for developers to serve different ref-
erence bitmaps for different browsers. Furthermore, this
approach fails when sensitive elements contain animated
content, such as button mouseover effects, or dynami-
cally generated content, such as the amount to pay in a
checkout UI.
Our design. InContext enforces target display integrity
by comparing the OS-level screenshot of the area that
contains the sensitive element (what the user sees), and
the bitmap of the sensitive element rendered in isolation
at the time of user action. If these two bitmaps are not the
same, then the user action is canceled and not delivered
to the sensitive element. Figure 4 illustrates this process.

In the Likejacking attack example in Section 1, when
a user clicks on the “claim your iPad” button, the trans-
parent Facebook Like button is actually clicked, as the
browser unconditionally delivered the click event to the
Facebook Like button. With our defense, Facebook can
label its Like button web page as “sensitive” in the corre-
sponding HTTP response. The browser will then per-
form the following tasks before delivering each click
event to the Like button. The browser first determines
what the user sees at the position of the Like button on
the screen by taking a screenshot of the browser window
and cropping the sensitive element from the screenshot
based on the element’s position and dimenions known
by the browser. The browser then determines what the

7

420  21st USENIX Security Symposium	 USENIX Association

sensitive element should look like if rendered in isola-
tion and uses this as a reference bitmap. To this end, the
browser draws the sensitive element on a blank surface
and extracts its bitmap. The browser then compares the
cropped screenshot with the reference bitmap. A mis-
match here means that the user does not fully see the Like
button but her click targets the Like button. In this case,
the browser detects a potential clickjacking offense and
cancels the delivery of the click event. Instead, it triggers
a new oninvalidclick event to give the application an
opportunity to deal with such occasions.

This design is resilient to new visual spoofing attack
vectors because it uses only the position and dimension
information from the browser layout engine to determine
what the user sees. This is much easier to get right than
relying on other sophisticated logic (such as CSS) from
the layout engine to determine what the user sees. By
obtaining the reference bitmap at the time of the user ac-
tion on a sensitive UI element, this design works well
with dynamic aspects (such as animations or movies) in
a sensitive UI element, unlike Strawman 2 above.

We also enforce that a host page cannot apply any CSS
transforms [42] (such as zooming, rotating, etc.) that
affect embedded sensitive elements; any such transfor-
mations will be ignored by InContext-capable browsers.
This will prevent malicious zooming attacks [36], which
change visual context via zoom. We also disallow any
transparency inside the sensitive element itself. Al-
though doing so may have a compatibility cost in terms
of preventing legitimate blending effects of the sensitive
element with the host page, we believe this is a necessary
restriction, since otherwise attackers could violate visual
context by inserting decoys that could show through the
sensitive element.

Our bitmap comparison is similar to ClearClick (Sec-
tion 3.2.1), with two crucial differences: (1) We use
OS APIs to take a screenshot of the browser window,
rather than relying on the browser to generate screen-
shots, making it more robust to rendering performed by
Flash Player and other plug-ins, and (2) our approach
is opt-in, eliminating false positives and obviating user
prompts.

5.1.2 Guaranteeing Pointer Integrity

Without pointer integrity support, an attacker could spoof
the real pointer. For example, an attack page may show
a fake cursor to shift the user’s attention from the real
cursor and cause the user to act out of context by not
looking at the destination of her action. To mitigate this,
we must ensure that users see system-provided (rather
than attacker-simulated) cursors and pay attention to the
right place before interacting with a sensitive element.

For our design, we consider the following techniques,
individually and in various combinations, to under-

stand the tradeoff between their effectiveness of stop-
ping pointer-spoofing attacks and intrusiveness to users.
Some of the techniques limit the attackers’ ability to
carry out pointer-spoofing attacks; others draw attention
to a particular place on the screen.
No cursor customization. Current browsers disallow
cross-origin cursor customization. We further restrict
this policy: when a sensitive element is present, In-
Context disables cursor customization on the host page
(which embeds the sensitive element) and on all of the
host’s ancestors, so that a user will always see the system
cursor in the areas surrounding the sensitive element.

Our opt-in design is better than completely disallow-
ing cursor customization, because a web site may want
to customize the pointer for its own UIs (i.e., same-origin
customization). For example, a text editor may want to
show different cursors depending on whether the user is
editing text or selecting a menu item.
Screen freezing around sensitive element. Since hu-
mans typically pay more attention to animated objects
than static ones [15], attackers could try to distract a user
away from her actions with animations. To counter this,
InContext “freezes” the screen (i.e., ignores rendering
updates) around a sensitive UI element when the cursor
enters the element.
Muting. Sound could also draw a user’s attention away
from her actions. For example, a voice may instruct the
user to perform certain tasks, and loud noise could trigger
a user to quickly look for a way to stop the noise. To
stop sound distractions, we mute the speakers when a
user interacts with sensitive elements.
Lightbox around sensitive element. Greyout (also
called Lightbox) effects are commonly used for focus-
ing the user’s attention on a particular part of the screen
(such as a popup dialog). In our system, we apply this
effect by overlaying a dark mask on all rendered content
around the sensitive UI element whenever the cursor is
within that element’s area. This causes the sensitive ele-
ment to stand out visually.

The mask cannot be a static one. Otherwise, an at-
tacker could use the same static mask in its application
to dilute the attention-drawing effect of the mask. In-
stead, we use a randomly generated mask which consists
of a random gray value at each pixel.
No programmatic cross-origin keyboard focus
changes. To stop strokejacking attacks that steal key-
board focus (see Section 3.1.2), once the sensitive UI
element acquires keyboard focus (e.g., for typing text in
an input field), we disallow programmatic changes of
keyboard focus by other origins.
Discussion. This list of techniques is by no means ex-
haustive. For example, sensitive elements could also
draw the user’s attention with splash animation effects
on the cursor or the element [15].

8

USENIX Association 	 21st USENIX Security Symposium  421

Our goal was to come up with a representative set of
techniques with different security and usability tradeoffs,
and conduct user studies to evaluate their effectiveness
as a design guide. We hope that this methodology can be
adopted by browser vendors to evaluate a wider range of
techniques with a larger-scale user study for production
implementations.

5.2 Ensuring Temporal Integrity

Even with visual integrity, an attacker can still take a
user’s action out of context by compromising its tempo-
ral integrity, as described in Section 3.1.3. For example, a
timing attack could bait the user with a “claim your free
iPad” button and then switch in a sensitive UI element
(with visual integrity) at the expected time of user click.
The bait-and-switch attack is similar to time-of-check-
to-time-of-use (TOCTTOU) race conditions in software
programs. The only difference is that the race condition
happens to a human rather than a program. To mitigate
such TOCTTOU race conditions on users, we impose the
following constraints for a user action on a sensitive UI
element:
UI delay. We apply this existing technique (discussed in
Section 3.2.2) to only deliver user actions to the sensi-
tive element if the visual context has been the same for
a minimal time period. For example, in the earlier bait-
and-switch attack, the click on the sensitive UI element
will not be delivered unless the sensitive element (to-
gether with the pointer integrity protection such as grey-
out mask around the sensitive element) has been fully
visible and stationary long enough. We evaluate trade-
offs of a few delays in Section 7.3.
UI delay after pointer entry. The UI delay technique
above is vulnerable to the whack-a-mole attack (Sec-
tion 4.3) that combines pointer spoofing with rapid ob-
ject clicking. A stronger variant on the UI delay is to
impose the delay not after changes to visual context, but
each time the pointer enters the sensitive element. Note
that the plain UI delay may still be necessary, e.g., on
touch devices which have no pointer.
Pointer re-entry on a newly visible sensitive element.
In this novel technique, when a sensitive UI element first
appears or is moved to a location where it will overlap
with the current location of the pointer, an InContext-
capable browser invalidates input events until the user
explicitly moves the pointer from the outside of the sen-
sitive element to the inside. Note that an alternate design
of automatically moving the pointer outside the sensitive
element could be misused by attackers to programmati-
cally move the pointer, and thus we do not use it. Obvi-
ously, this defense only applies to devices and OSes that
provide pointer feedback.
Padding area around sensitive element. The sensitive
UI element’s padding area (i.e., extra whitespace separat-

Sensitive Element Dimensions Click Delay Memory
Overhead

Facebook Like 90x20 px 12.04 ms 5.11 MB
Twitter Follow 200x20 px 13.54 ms 8.60 MB
Animated GIF (1.5 fps) 468x60 px 14.92 ms 7.90 MB
Google OAuth 450x275 px 24.78 ms 12.95 MB
PayPal Checkout 385x550 px 30.88 ms 15.74 MB

Table 1: Performance of InContext. For each sensitive
element, this table shows extra latency imposed on each click,
as well as extra memory used.

ing the host page from the embedded sensitive element)
needs to be thick enough so that a user can clearly de-
cide whether the pointer is on the sensitive element or
on its embedding page. As well, this ensures that during
rapid cursor movements, such as those in the whack-a-
mole attack (Section 4.3), our pointer integrity defenses
such as screen freezing are activated early enough. Sec-
tions 7.2 and 7.4 give a preliminary evaluation on some
padding thickness values. The padding could be either
enforced by the browser or implemented by the devel-
oper of the sensitive element; we have decided the latter
is more appropriate to keep developers in control of their
page layout.

5.3 Opt-in API

In our design, web sites must express which elements
are sensitive to the browser. There are two options for
the opt-in API: a JavaScript API and an HTTP response
header. The JavaScript API’s advantages include abil-
ity to detect client support for our defense as well as to
handle oninvalidclick events raised when clickjack-
ing is detected. On the other hand, the header approach
is simpler as it doesn’t require script modifications, and
it does not need to deal with attacks that disable script-
ing on the sensitive element [37]. We note that bitmap
comparison functions should not be directly exposed in
JavaScript (and can only be triggered by user-initiated
actions). Otherwise, they might be misused to probe pix-
els across origins using a transparent frame.

6 Prototype Implementation
We built a prototype of InContext using Internet Explorer
9’s public COM interfaces. We implemented the pixel
comparison between an OS screenshot and a sensitive
element rendered on a blank surface to detect element
visibility as described in Section 5.1.1, using the GDI
BitBlt function to take desktop screenshots and using
the MSHTML IHTMLElementRender interface to gen-
erate reference bitmaps.

To implement the UI delays, we reset the UI delay
timer whenever the top-level window is focused, and
whenever the computed position or size of the sensitive
element has changed. We check these conditions when-
ever the sensitive element is repainted, before the actual

9

422  21st USENIX Security Symposium	 USENIX Association

paint event; we detect paint events using IE binary behav-
iors [27] with the IHTMLPainter::Draw API. We also
reset the UI delay timer whenever the sensitive element
becomes fully visible (e.g., when an element obscuring it
moves away) by using our visibility checking functions
above. When the user clicks on the sensitive element, In-
Context checks the elapsed time since the last event that
changed visual context.

Our prototype makes the granularity of sensitive ele-
ments to be HTML documents (this includes iframes);
alternately, one may consider enabling protection for
finer-grained elements such as DIVs. For the opt-in
mechanism, we implemented the Javascript API of Sec-
tion 5.3 using the window.external feature of IE.

Although our implementation is IE and Windows-
specific, we believe these techniques should be feasible
in other browsers and as well. For example, most plat-
forms support a screenshot API, and we found an API
similar to IE’s IHTMLElementRender in Firefox to ren-
der reference bitmaps of an HTML element.

At this time, we did not implement the pointer in-
tegrity defenses, although we have evaluated their effects
in Section 7.
Performance. To prove that InContext is practical, we
evaluated our prototype on five real-world sensitive ele-
ments (see Table 1). For each element, we measured the
memory usage and click processing time for loading a
blank page that embeds each element in a freshly started
browser, with and without InContext, averaging over ten
runs. Our testing machine was equipped with Intel Xeon
CPU W3530 @ 2.80 GHz and 6 GB of RAM.

Without additional effort on code optimization, we
find that our average click processing delay is only 30 ms
in the worst case. This delay is imposed only on clicks on
sensitive elements, and should be imperceptible to most
users. We find that the majority (61%) of the click delay
is spent in the OS screenshot functions (averaging 11.65
ms). We believe these could be significantly optimized,
but this is not our focus in this paper.

7 Experiments
7.1 Experimental design

In February of 2012 we posted a Human Interactive Task
(HIT) at Amazon’s Mechanical Turk to recruit prospec-
tive participants for our experiments. Participants were
offered 25 cents to “follow the on-screen instructions and
complete an interactive task” by visiting the web site at
which we hosted our experiments. Participants were told
the task would take roughly 60 seconds. Each task con-
sisted of a unique combination of a simulated attack and,
in some cases, a simulated defense. After each attack, we
asked a series of follow-up questions. We then disclosed
the existence of the attack and explained that since it was
simulated, it could only result in clicking on harmless

simulated functionality (e.g., a fake Like button).
We wanted participants to behave as they would if

lured to a third-party web site with which they were pre-
viously unfamiliar. We hosted our experiments at a web
site with a domain name unaffiliated with our research
institution so as to ensure that participants’ trust (or dis-
trust) in our research institution would not cause them to
behave in a more (or less) trusting manner.

For attacks targeting Flash Player and access to video
cameras (webcams), we required that participants have
Flash Player installed in their browser and have a web-
cam attached. We used a SWF file to verify that Flash
Player was running and that a webcam was present. For
attacks loading popup windows, we required that partic-
ipants were not using IE or Opera browsers since our at-
tack pages were not optimized for them.

We recruited a total of 3521 participants.2 Partici-
pants were assigned uniformly and at random to one of
27 (between-subjects) treatment groups. There were 10
treatment groups for the cursor-spoofing attacks, 4 for
the double-click attacks, and 13 for the whack-a-mole at-
tacks. Recruiting for all treatments in parallel eliminated
any possible confounding temporal factors that might re-
sult if different groups were recruited or performed tasks
at different times. We present results for each of these
three sets of attacks separately.

In our analysis, we excluded data from 370 partici-
pants who we identified (by worker IDs) have previously
participated in this experiment or earlier versions of it.
We also discarded data from 1087 participants who were
assigned to treatment groups for whack-a-mole attacks
that targeted Facebook’s Like button but who could not
be confirmed as being logged into Facebook (using the
technique described in [8]). In Tables 2, 3 and 4, we re-
port data collected from the remaining 2064 participants.

Except when stated otherwise, we use a two-tailed
Fisher’s Exact Test when testing whether differences be-
tween attack rates in different treatment groups are sig-
nificant enough to indicate a difference in the general
population. This test is similar to χ2, but more conserva-
tive when comparing smaller sample sizes.

7.2 Cursor-spoofing attacks

In our first experiment, we test the efficacy of the cursor-
spoofing attack page, described in Section 4.1 and illus-
trated in Figure 1, and of the pointer integrity defenses
we proposed in Section 5.1.2. The results for each treat-
ment group make up the rows of Table 2. The columns
show the number of users that clicked on the “Skip ad”
link (Skip), quit the task with no pay (Quit), clicked on

2The ages of our participants were as follows: 18-24 years: 46%;
25-34 years: 38%; 35-44 years: 11%; 45-54 years: 3%; 55-64 years:
1%; 65 years and over: 0.5%. A previous study by Ross et al. provides
an analysis of the demographics of Mechanical Turk workers [31].

10

USENIX Association 	 21st USENIX Security Symposium  423

Treatment Group Total Timeout Skip Quit Attack Success

1. Base control 68 26 35 3 4 (5%)
2. Persuasion control 73 65 0 2 6 (8%)
3. Attack 72 38 0 3 31 (43%)
4. No cursor styles 72 34 23 3 12 (16%)
5a. Freezing (M=0px) 70 52 0 7 11 (15%)
5b. Freezing (M=10px) 72 60 0 3 9 (12%)
5c. Freezing (M=20px) 72 63 0 6 3 (4%)
6. Muting + 5c 70 66 0 2 2 (2%)
7. Lightbox + 5c 71 66 0 3 2 (2%)
8. Lightbox + 6 71 60 0 8 3 (4%)

Table 2: Results of the cursor-spoofing attack. Our attack
tricked 43% of participants to click on a button that would
grant webcam access. Several of our proposed defenses re-
duced the rate of clicking to the level expected if no attack had
occurred.

webcam “Allow” button (Attack success), and those who
watched the ad full video and were forwarded to the end
of the task with no clicks (Timeout).
Control. We included a control group, Group 1, which
contained an operational skip button, a Flash webcam
access dialog, but no attack to trick the user into click-
ing the webcam access button while attempting to click
the skip button. We included this group to determine the
click rate that we would hope a defense could achieve
in countering an attack. We anticipated that some users
might click on the button to grant webcam access simply
out of curiosity. In fact, four did. We were surprised that
26 of the 68 participants waited until the full 60 seconds
of video completed, even though the “skip ad” button
was available and had not been tampered with. In future
studies, we may consider using a video that is longer,
more annoying, and that does not come from a charity
that users may feel guilty clicking through.

We added a second control, Group 2, in which we re-
moved the “skip ad” link and instructed participants to
click on the target “Allow” button to skip the video ad.
This control represents one attempt to persuade users to
grant access to the webcam without tricking them. As
with Group 1, we could consider a defense successful it
rendered attacks no more successful than using persua-
sion to convince users to allow access to the webcam.

Whereas 4 of 68 (5%) participants randomly as-
signed to the persuasion-free control treatment (Group
1) clicked on the “Allow” button, we observed that 6
of 73 (8%) participants assigned to the persuasion con-
trol treatment did so. However, the difference in the
attack success rates of Group 1 and Group 2 were not
significant, with a two-tailed Fisher’s exact test yielding
p=0.7464.
Attack. Participants in Group 3 were exposed to the sim-
ulated cursor spoofing attack, with no defenses to protect
them. The attack succeeded against 31 of 72 participants
(43%). The difference in the attack success rates between
participants assigned to the non-persuasion control treat-

Figure 5: Cursor-spoofing attack with lightbox defenses.
The intensity of each pixel outside of the target element is dark-
ened and randomized when the actual pointer hovers on the
target element.

ment (Group 1) and the attack treatment (Group 3) is sta-
tistically significant (p<0.0001). The attack might have
been even more successful had participants been given
a more compelling motivation to skip the “skip this ad”
link. Recall that only 51% of participants in the non-
persuasion control treatment (Group 1) tried to skip the
animation. If we assume the same percent of participants
tried to skip the advertisement during the attack, then
84% of those participants who tried to skip the ad fell
for the attack (43% of 51%).
Defenses. One straightforward defense against cursor-
spoofing attacks is to disallow cursor customization.
This would prevent the real cursor from being hidden,
though the attack page could still draw a second, fake
cursor. Some victims might focus on the wrong cursor
and fall for the attack. In Group 4, we disallowed cursor
customization and found that 12 of 72 (16%) participants
still fell for the attack. This result, along with attacker’s
ability to draw multiple fake cursors and emphasize one
that is not the real cursor, suggest this defense has lim-
ited effectiveness. Nevertheless, the defense does appear
to make a dent in the problem, as there is a reduction
in attack success rates from Group 3 (43%), without the
defense, to Group 4 (16%), with the defense, and the dif-
ference between these two treatment groups was statisti-
cally significant (p=0.0009).

In Groups 5a-c, we deployed the freezing defense de-
scribed in Section 5.1.2: when this defense triggers, all
movement outside the protected region, including the
video and fake cursor, is halted. This helps break the il-
lusion of the fake cursor and draws the user’s attention to
the part of the screen on which there is still movement—
that which contains the real cursor. The freezing effect
will not help if users have already initiated a click before
noticing it. We thus initiate the freeze when the cursor
is within M pixels of the webcam dialog, for M of 0, 10,
and 20 pixels. At M=20px (Group 5c), the attack success
rate dropped to that of our non-persuasion control group,

11

424  21st USENIX Security Symposium	 USENIX Association

Treatment Group Total Timeout Quit Attack Success

1. Attack 90 46 1 43 (47%)
2a. UI Delay (TA=250ms) 91 89 0 2 (2%)
2b. UI Delay (TA=500ms) 89 86 2 1 (1%)
3. Pointer re-entry 88 88 0 0 (0%)

Table 3: Results of double-click attack. 43 of 90 partic-
ipants fell for the attack that would grant access to their
personal Google data. Two of our defenses stopped the attack
completely.

tricking only 3 of 72 (4%). Fewer participants assigned
to the 20px-border-freezing defense of Group 5c fell for
the attack (4%) than those in the cursor-customization-
defense treatment of Group 4 (16%), and this difference
was significant (p=0.0311).

Given the efficacy of the large-margin (20px) freezing
defense in Group 5c, and the low rate of successful at-
tacks on which to improve, our sample was far too small
to detect any further benefits that might result from mut-
ing the speaker or freezing portions of the screen with
a lightbox might provide. Augmenting the freezing de-
fense to mute the computer’s speaker (Group 6) yielded
a similar attack success rate of 2 of 70 (2%) participants.
Augmenting that defense again with a lightbox, grey-
ing over the frozen region as described in Section 5.1.2,
(Groups 7 and 8) also resulted in attack success rates of
2-4%. The lightbox effect is a somewhat jarring user ex-
perience, and our experiments do not provide evidence
that this user-experience cost is offset by a measurably
superior defense. However, larger sample sizes or dif-
ferent attack variants may reveal benefits that our exper-
iment was unable to uncover.

7.3 Double-click attacks

In our second experiment, we tested the efficacy of the
double-click timing attack (described in Section 4.2 and
shown in Figure 2) and the defenses proposed in Sec-
tion 5.2. The attack attempts to trick the user into click-
ing on the “Allow Access” button of a Google OAuth
window by moving it underneath the user’s cursor after
the first click of a double-click on a decoy button. If
the “Allow” button is not clicked within two seconds, the
attack times out without success (column Timeout). The
results of each treatment group appear as rows of Table 3.
Attack. Of the 90 participants assigned to the treatment
in which they were exposed to the simulated attack with-
out any defense to protect them, the attack was success-
ful against 43 of them (47%). If this had been a real
attack, we could have accessed their GMail to read their
personal messages or download their contacts. Further-
more, many of the users who were not successfully at-
tacked escaped because the popup was not shown quickly
enough. Indeed, the popup took more than 500ms to be
displayed for 31 out of 46 users who timed out on the at-
tack (with 833ms average loading time for those users)—

likely greater than a typical user’s double-click speed.
The attack efficacy could likely be improved further by
pre-loading the OAuth dialog in a pop-under window (by
de-focusing the popup window) and refocusing the pop-
under window between the two clicks; this would avoid
popup creation cost during the attack.
Defenses. Two groups of participants were protected
by simulating the UI delay defense described in Sec-
tion 5.2—we treated clicks on the “Allow” button as in-
valid until after it has been fully visible for a threshold of
TA ms. We assigned a treatment group for two choices for
TA: 250ms (Group 2a), the mode of double-click inter-
vals of participants in an early mouse experiment [29] in
1984, and 500ms (Group 2b), the default double-click in-
terval in Windows (the time after which the second click
would be counted as a second click, rather than the sec-
ond half of a double-click) [26]. We observed that the
delay of 250ms was effective, though it was not long
enough for 2 out of 91 (2%) participants in Group 2a,
who still fell for the attack. The difference in attack suc-
cess rates between the attack treatment (Group 1) and
the UI delay defense treatment for TA=250ms (Group 2a)
was significant (p<0.0001). Similarly, the 500ms delay
stopped the attack for all but 1 of 89 (1%) participants in
Group 2b.

We also simulated our pointer re-entry defense (Group
3), which invalidated UI events on the OAuth dialog until
the cursor has explicitly transitioned from outside of the
OAuth dialog to inside. This defense was 100% effective
for 88 participants in Group 3. The difference in attack
success rates between the attack treatment (Group 1) and
the pointer re-entry defense treatment (Group 3) was sig-
nificant (p<0.0001). While the attack success rate re-
duction from the delay defense (Groups 2a and 2b) to the
pointer re-entry defense (Group 3) was not statistically
significant, the pointer re-entry defense is preferable for
other reasons; it does not constrain the timing with which
users can click on buttons, and it cannot be gamed by at-
tacks that might attempt to introduce delays—one can
imagine an attack claiming to test the steadiness of a
user’s hand by asking him to move the mouse to a po-
sition, close his eyes, and press the button after five sec-
onds.

7.4 Whack-a-mole attacks

Next, we tested the efficacy of the fast-paced button
clicking attack, the whack-a-mole attack, described in
Section 4.3 and shown in Figure 3. In attempt to in-
crease the attack success rates, as a real attacker would
do, we offered a $100 performance-based prize to keep
users engaged in the game. In this experiment, we used
the Facebook’s Like button as the target element (ex-
cept for Group 1b, where for the purposes of compari-
son, the Flash Player webcam settings dialog was also

12

USENIX Association 	 21st USENIX Security Symposium  425

Treatment Group Total Timeout Quit Attack Success Attack Success Attack Success
(On 1st Mouseover) (Filter by Survey)

1a. Attack without clickjacking 84 1 0 83 (98%) N/A 42/43 (97%)
1b. Attack without clickjacking (webcam) 71 1 1 69 (97%) N/A 13/13 (100%)
2. Attack with timing 84 3 1 80 (95%) 80 (95%) 49/50 (98%)
3. Attack with cursor-spoofing 84 0 1 83 (98%) 78 (92%) 52/52 (100%)
4a. Combined defense (M=0px) 77 0 1 76 (98%) 42 (54%) 54/54 (100%)
4b. Combined defense (M=10px) 78 10 1 67 (85%) 27 (34%) 45/53 (84%)
4c. Combined defense (M=20px) 73 18 4 51 (69%) 12 (16%) 31/45 (68%)
5. Lightbox + 4c 73 21 0 52 (71%) 10 (13%) 24/35 (68%)
6a. Entry delay (TE =250ms) + 4c 77 27 4 46 (59%) 6 (7%) 27/44 (61%)
6b. Entry delay (TE =500ms) + 4c 73 25 3 45 (61%) 3 (4%) 31/45 (68%)
6c. Entry delay (TE =1000ms) + 4c 71 25 1 45 (63%) 1 (1%) 25/38 (65%)
6d. Entry delay (TE =500ms) + 4a 77 6 0 71 (92%) 16 (20%) 46/49 (93%)
7. Lightbox + 6b 73 19 0 54 (73%) 6 (8%) 34/46 (73%)

Table 4: Results of the whack-a-mole attack.
98% of participants were vulnerable to Likejacking de-anonymization under the attack that combined whack-a-mole with cursor-spoofing. Several
defenses showed a dramatic drop in attack success rates, reducing them to as low as 1% when filtered by first mouseover events.

tested). We checked whether the participant was logged
into Facebook [8] and excluded data from users that were
not logged in. The results for each treatment group ap-
pear in the rows of Table 4. The “Timeout” column rep-
resents those participants who did not click on the target
button within 10 seconds, and were thus considered to
not have fallen for the attack.

We calculated the attack success rate with three differ-
ent methods, presented in three separate columns. The
first Attack Success column shows the total number of
users that clicked on the Like button. However, after an-
alyzing our logs, we realized that this metric is not neces-
sarily accurate: many people appeared to notice the Like
button and moved their mouse around it for several sec-
onds before eventually deciding to click on it. For these
users, it was not clickjacking that ultimately caused the
attack, but rather it was the users’ willingness to know-
ingly click on the Like button after noticing it (e.g., due
to wanting to finish the game faster, or deciding that they
did not mind clicking it, perhaps not understanding the
consequences). For the purposes of evaluating our de-
fense, we wanted to filter out these users: our defenses
are only designed to stop users from clicking on UI ele-
ments unknowingly.

We used two different filters to try to isolate those vic-
tims who clicked on the Like button unknowingly. The
first defined an attack to be successful if and only if the
victim’s cursor entered the Like button only once before
the victim click. This on first mouseover filter excludes
victims who are moving their mouse around the Like but-
ton and deliberating whether or not to click. The second
filter uses responses from our post-task survey to exclude
participants who stated that they noticed the Like button
and clicked on it knowingly, shown in column “Attack
Success (Filter by Survey)”. We asked the participants
the following questions, one at a time, revealing each
question after the previous question was answered:
1. Did you see the Facebook Like button at any point

in this task? <displayed an image of Like button>

2. (If No to 1) Would you approve if your Facebook

wall showed that you like this page?

3. (If Yes to 1) Did you click on the Like button?

4. (If Yes to 3) Did you intend to click on the Like

button?

We only included participants who either did not approve
“liking” (No to 2), were not aware that they “liked” (No
to 3) or did not intend to “like” (No to 4). This ex-
cludes victims who do not care about “liking” the at-
tacker’s page and who intentionally clicked on the Like
button. We expected the two filters to yield similar re-
sults; however, as we describe later, the trust in our sur-
vey responses was reduced by indications that partici-
pants lied in their answers. Therefore, we rely on the
on first mouseover column for evaluating and comparing
our defenses.
Attacks. We assigned two treatment groups to a simu-
lated whack-a-mole attack that did not employ clickjack-
ing. The first (Group 1a) eventually were shown a Like
button to click on whereas the second (Group 1b) were
eventually shown the “allow” button in the Flash webcam
access dialog. In the simulated attack, participants first
had to click on a myriad of buttons, many of which were
designed to habituate participants into ignoring the possi-
bility that these buttons might have context outside their
role in the game. These included buttons that contained
the text “great,” “awesome,” and smiley face icons. On
the attack iteration, the Like button simply appeared to be
the next target object to press in the game. We hypothe-
sized that users could be trained to ignore the semantics
usually associated with a user interface element if it ap-
peared within this game.

Though we had designed this attack, its efficacy sur-
prised even us. The Like button version of Group 1a suc-
ceeded on 83 of 84 (98%) participants and the “allow”
button of Group 1b succeeded on 69 of 71 (97%) partici-
pants. The differences between these two groups are not

13

426  21st USENIX Security Symposium	 USENIX Association

statistically significant. The attacks were also so effec-
tive that, at these sample sizes, they left no room in which
to find statistically significant improvements through the
use of clickjacking.

In the whack-a-mole attack with timing (Group 2), the
Like button is switched to cover one of the game buttons
at a time chosen to anticipate the user’s click. This attack
was also effective, fooling 80 of 84 (95%) participants in
Group 2. Next, we combined the timing technique with
cursor spoofing that we also used in Section 7.2, so that
the game is played with a fake cursor, with the attack
(Group 3) succeeding on 83 of 84 (98%) participants.
Defenses. In Groups 4a-c, we combined the proposed
defenses that were individually effective against the pre-
vious cursor-spoofing and the double-click attacks, in-
cluding pointer re-entry, appearance delay of TA=500ms,
and display freezing with padding area size M=0px, 10px
and 20px. We assumed that the attacker could be aware
of our defenses; e.g., our attack compensated for the ap-
pearance delay by substituting the Like button roughly
500ms before the anticipated user click.

Using no padding area (M=0px), the attack succeeded
on the first mouseover on 42 of 77 (54%) of the partici-
pants in Group 4a. The reduction in the first-mouseover-
success rate from Group 3 (without defense) to 4a (with
the M=0px combined defense) was statistically signifi-
cant, with p<0.0001. So, while all of the participants
in Group 4a eventually clicked on the Like button, the
defense caused more users to move their mouse away
from the Like button before clicking on it. Increas-
ing the padding area to M=10px (Group 4b) further re-
duced the first-mouseover success rate to 27 of 78 (34%),
and the maximum padding area tested (M=20px, Group
4c) resulted in a further reduction to 12 of 73 (16%).
The reduction in the first-mouseover attack success rates
between Groups 4a and 4b was statistically significant
(p=0.0155), as was the reduction from Groups 4b to 4c
(p=0.0151). We also noticed that adding a 10px padding
area even reduced the unfiltered attack success rate from
76 of 77 (98%) in Group 4a to 67 of 78 (85%) in Group
4b, and a 20px padding area further reduced the unfil-
tered attack success rate to 51 of 73 (69%) in Group 4c.
The reduction in the unfiltered attack success rates be-
tween Groups 4a and 4b was also statistically significant
(p=0.0046), as was the reduction from Groups 4b to 4c
(p=0.0191). Thus, larger padding areas provide notice-
ably better clickjacking protection. Participants assigned
to Group 5 received the defense of 4c enhanced with a
lightbox, which further decreased the first-mouseover at-
tack effectiveness to 10 of 73 (13%). The difference in
first-mouseover success rates between Group 4c and 5
was not statistically significant (p=0.8176).

Note that there is a large discrepancy comparing first-
mouseover attack success to the survey-filtered attack

success. After analyzing our event logs manually, we
realized that many users answered our survey questions
inaccurately. For example, some people told us that they
didn’t click on the Like button, and they wouldn’t ap-
prove clicking on it, whereas the logs show that while
their initial click was blocked by our defense, they con-
tinued moving the mouse around for several seconds be-
fore finally resolving to click the Like button. While
these users’ answers suggested that clickjacking protec-
tion should have stopped them, our defenses clearly had
no chance of stopping these kinds of scenarios.

Participants assigned to Groups 6a-d were protected
by the pointer-entry delay defense described in Sec-
tion 5.2: if the user clicks within a duration of TE ms of
the pointer entering the target region, the click is invalid.
In Groups 6a and 6b, we experiment with a pointer en-
try delay of TE=250ms and TE=500ms, respectively. We
used an appearance delay of TA=500ms and a padding
area of M=20px as in Group 4c. In both cases, we ob-
served that the addition of pointer entry delay was highly
effective. Only 3 of 73 (4%) participants in Group 6b
still clicked on the target button. We found a signifi-
cant difference in attack success rate between Groups 4c
and 6b (p=0.0264), indicating that the pointer entry de-
lay helps stopping clickjacking attacks, compared to no
pointer entry delays. We then test a more extreme pointer
entry delay of TE=1000ms, in which the appearance de-
lay TA must also be adjusted to no less than 1000ms. This
was most successful in preventing clickjacking from suc-
ceeding: only 1 of 71 (1%) participants fell for the at-
tack. We also tested the pointer entry delay TE=500ms
without a padding area (M=0px), which allowed 16 of
77 (20%) participants in Group 6d to fall for the attack.
Note that the difference in first-mouseover success rates
between Groups 6b and 6d was significant (p=0.0026).
Again, our results suggest that attacks are much more
effective when there is no padding area around the tar-
get. Finally, in Group 7 we tested the lightbox effect in
addition to Group 6b. The attack succeeded on 6 of 73
(8%) participants in Group 7, in which the difference be-
tween Groups 6b and 7 was not statistically significant
(p=0.4938).

Overall, we found that pointer entry delay was crucial
in reducing the first-mouseover success rate, the part of
the attack’s efficacy that could potentially be addressed
by a clickjacking defense. Thus, it is an important tech-
nique that should be included in a browser’s clickjacking
protection suite, alongside freezing with a sufficiently
large padding area, and the pointer re-entry protection.
The pointer entry delay subsumes, and may be used
in place of, the appearance delay. The only exception
would be for devices that have no pointer feedback; hav-
ing an appearance delay could still prove useful against
a whack-a-mole-like touch-based attack.

14

USENIX Association 	 21st USENIX Security Symposium  427

7.5 Ethics

The ethical elements of our study were reviewed as per
our research institution’s requirements. No participants
were actually attacked in the course of our experiments;
the images they were tricked to click appeared identical
to sensitive third-party embedded content elements, but
were actually harmless replicas. However, participants
may have realized that they had been tricked and this
discovery could potentially lead to anxiety. Thus, after
the simulated attack we not only disclosed the attack but
explained that it was simulated.

8 Conclusion
We have devised new clickjacking attack variants, which
bypass existing defenses and cause more severe harm
than previously known, such as compromising webcams,
user data, and web surfing anonymity.

To defend against clickjacking in a fundamental way,
we have proposed InContext, a web browser or OS mech-
anism to ensure that a user’s action on a sensitive UI el-
ement is in context, having visual integrity and temporal
integrity.

Our user studies on Amazon Mechanical Turk show
that our attacks are highly effective with success rates
ranging from 43% to 98%. Our InContext defense can
be very effective for clickjacking attacks in which the
use of clickjacking improves the attack effectiveness.

This paper made the following contributions:
• We provided a survey of existing clickjacking at-

tacks and defenses.
• We conducted the first user study on the effective-

ness of clickjacking attacks.
• We introduced the concept of context integrity and

used it to define and characterize clickjacking at-
tacks and their root causes.

• We designed, implemented, and evaluated InCon-
text, a set of techniques to maintain context integrity
and defeat clickjacking.

With all these results, we advocate browser vendors
and client OS vendors to consider adopting InContext.

Acknowledgments
We are grateful to Adam Barth, Dan Boneh, Elie
Bursztein, Mary Czerwinski, Carl Edlund, Rob Ennals,
Jeremiah Grossman, Robert Hansen, Brad Hill, Eric
Lawrence, Giorgio Maone, Jesse Ruderman, Sid Stamm,
Zhenbin Xu, Michal Zalewski, and the Security and Pri-
vacy Research Group at Microsoft Research for review-
ing and providing feedback on this work.

References
[1] F. Aboukhadijeh. HOW TO: Spy on the Webcams of Your

Website Visitors. http://www.feross.org/webcam-

spy/, 2011.

[2] Adobe. Flash OBJECT and EMBED tag attributes.
http://kb2.adobe.com/cps/127/tn_12701.html,
2011.

[3] G. Aharonovsky. Malicious camera spying using
ClickJacking. http://blog.guya.net/2008/

10/07/malicious-camera-spying-using-

clickjacking/, 2008.
[4] L. C. Aun. Clickjacking with pointer-events. http://

jsbin.com/imuca.
[5] M. Balduzzi, M. Egele, E. Kirda, D. Balzarotti, and

C. Kruegel. A solution for the automated detection of
clickjacking attacks. In Proceedings of the 5th ACM Sym-
posium on Information, Computer and Communications
Security, 2010.

[6] D. Baron. Preventing attacks on a user’s history through
CSS :visited selectors. http://dbaron.org/mozilla/
visited-privacy, 2010.

[7] E. Bordi. Proof of Concept - CursorJacking (noScript).
http://static.vulnerability.fr/noscript-

cursorjacking.html.
[8] M. Cardwell. Abusing HTTP Status Codes to Ex-

pose Private Information. https://grepular.

com/Abusing_HTTP_Status_Codes_to_Expose_

Private_Information, 2011.
[9] J. Grossman. Clickjacking: Web pages can see and

hear you. http://jeremiahgrossman.blogspot.

com/2008/10/clickjacking-web-pages-can-see-

and-hear.html, 2008.
[10] E. Hammer-Lahav. The OAuth 1.0 Protocol. RFC 5849

(Informational), Apr. 2010.
[11] R. Hansen. Stealing mouse clicks for banner fraud.

http://ha.ckers.org/blog/20070116/stealing-

mouse-clicks-for-banner-fraud/, 2007.
[12] R. Hansen. Clickjacking details. http://ha.ckers.

org/blog/20081007/clickjacking-details/,
2008.

[13] R. Hansen and J. Grossman. Clickjacking. http://www.
sectheory.com/clickjacking.htm, 2008.

[14] B. Hill. Adaptive user interface ran-
domization as an anti-clickjacking strat-
egy. http://www.thesecuritypractice.

com/the_security_practice/papers/

AdaptiveUserInterfaceRandomization.pdf,
May 2012.

[15] R. Hoffmann, P. Baudisch, and D. S. Weld. Evaluating
visual cues for switching windows on large screens. In
Proceedings of the 26th annual SIGCHI conference on
Human factors in computing systems, 2008.

[16] L.-S. Huang and C. Jackson. Clickjacking attacks
unresolved. http://mayscript.com/blog/david/

clickjacking-attacks-unresolved, 2011.
[17] C. Jackson. Improving browser security policies. PhD

thesis, Stanford University, 2009.
[18] K. Kotowicz. Exploiting the unexploitable XSS with

clickjacking. http://blog.kotowicz.net/2011/03/
exploiting-unexploitable-xss-with.html, 2011.

[19] K. Kotowicz. Filejacking: How to make a file
server from your browser (with HTML5 of course).
http://blog.kotowicz.net/2011/04/how-to-

15

428  21st USENIX Security Symposium	 USENIX Association

make-file-server-from-your.html, 2011.
[20] K. Kotowicz. Cursorjacking again. http:

//blog.kotowicz.net/2012/01/cursorjacking-

again.html, 2012.
[21] E. Lawrence. IE8 Security Part VII: ClickJack-

ing Defenses. http://blogs.msdn.com/b/ie/

archive/2009/01/27/ie8-security-part-vii-

clickjacking-defenses.aspx, 2009.
[22] M. Mahemoff. Explaining the “Don’t Click” Clickjacking

Tweetbomb. http://softwareas.com/explaining-

the-dont-click-clickjacking-tweetbomb, 2009.
[23] G. Maone. Hello ClearClick, Goodbye Clickjack-

ing! http://hackademix.net/2008/10/08/hello-

clearclick-goodbye-clickjacking/, 2008.
[24] G. Maone. Fancy Clickjacking, Tougher NoScript.

http://hackademix.net/2011/07/11/fancy-

clickjacking-tougher-noscript/, 2011.
[25] Microsoft. createPopup Method. http://msdn.

microsoft.com/en-us/library/ms536392(v=vs.

85).aspx.
[26] Microsoft. SetDoubleClickTime function.

http://msdn.microsoft.com/en-us/library/

windows/desktop/ms646263(v=vs.85).aspx.
[27] Microsoft. Implementing Binary DHTML Be-

haviors. http://msdn.microsoft.com/en-

us/library/ie/aa744100(v=vs.85).aspx, 2012.
[28] M. Niemietz. UI Redressing: Attacks and Countermea-

sures Revisited. In CONFidence, 2011.
[29] L. A. Price. Studying the mouse for CAD systems. In

Proceedings of the 21st Design Automation Conference,
1984.

[30] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J.
Wang, and C. Cowan. User-driven access control: Re-
thinking permission granting in modern operating sys-
tems. In IEEE Symposium on Security and Privacy, 2012.

[31] J. Ross, L. Irani, M. S. Silberman, A. Zaldivar, and
B. Tomlinson. Who are the crowdworkers?: shifting
demographics in mechanical turk. In Proceedings of
the 28th International Conference On Human Factors In
Computing Systems, 2010.

[32] J. Rossi. Defense in depth: Locking down mash-
ups with HTML5 Sandbox. http://blogs.msdn.

com/b/ie/archive/2011/07/14/defense-in-

depth-locking-down-mash-ups-with-html5-

sandbox.aspx?Redirected=true, 2011.
[33] J. Ruderman. Bug 162020 - pop up XPInstall/security

dialog when user is about to click. https://bugzilla.
mozilla.org/show_bug.cgi?id=162020, 2002.

[34] J. Ruderman. Race conditions in security di-
alogs. http://www.squarefree.com/2004/07/01/

race-conditions-in-security-dialogs/, 2004.
[35] J. Ruderman. The Same Origin Policy. http:

//www.mozilla.org/projects/security/

components/same-origin.html, 2011.
[36] G. Rydstedt, E. Bursztein, and D. Boneh. Framing attacks

on smart phones and dumb routers: Tap-jacking and geo-
localization. In USENIX Workshop on Offensive Tech-
nologies, 2010.

[37] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson.

Busting frame busting: a study of clickjacking vulnera-
bilities at popular sites. In Proceedings of the Web 2.0
Security and Privacy, 2010.

[38] S. Sclafani. Clickjacking & OAuth. http:

//stephensclafani.com/2009/05/04/

clickjacking-oauth/, 2009.
[39] S. Stamm, B. Sterne, and G. Markham. Reining in the

web with content security policy. In Proceedings of the
19th International Conference on World Wide Web, 2010.

[40] P. Stone. Next generation clickjacking. In Black Hat Eu-
rope, 2010.

[41] E. Vela. About CSS Attacks. http://

sirdarckcat.blogspot.com/2008/10/about-

css-attacks.html, 2008.
[42] W3C. CSS 2D Transforms. http://www.w3.org/TR/

css3-2d-transforms/, 2011.
[43] W3C. HTML5, 2012. http://www.w3.org/TR/

html5/.
[44] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection

and Communication Abstractions in MashupOS. In ACM
Symposium on Operating System Principles, 2007.

[45] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choud-
hury, and H. Venter. The Multi-Principal OS Construction
of the Gazelle Web Browser. In Proceedings of the 18th
Conference on USENIX Security Symposium, 2009.

[46] Wikipedia. Likejacking. http://en.wikipedia.org/
wiki/Clickjacking#Likejacking.

[47] C. Wisniewski. Facebook adds speed bump to slow
down likejackers. http://nakedsecurity.sophos.

com/2011/03/30/facebook-adds-speed-bump-to-

slow-down-likejackers/, 2011.
[48] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel. A prac-

tical attack to de-anonymize social network users. In Pro-
ceedings of the 31th IEEE Symposium on Security and
Privacy, 2010.

[49] M. Zalewski. Browser security handbook. http:

//code.google.com/p/browsersec/wiki/Part2#

Arbitrary_page_mashups_(UI_redressing).
[50] M. Zalewski. Firefox focus stealing vulnerability

(possibly other browsers). http://seclists.org/

fulldisclosure/2007/Feb/226, 2007.
[51] M. Zalewski. [whatwg] Dealing with UI re-

dress vulnerabilities inherent to the current web.
http://lists.whatwg.org/pipermail/whatwg-

whatwg.org/2008-September/016284.html, 2008.
[52] M. Zalewski. The curse of inverse strokejack-

ing. http://lcamtuf.blogspot.com/2010/06/

curse-of-inverse-strokejacking.html, 2010.
[53] M. Zalewski. Minor browser UI nitpicking. http:

//seclists.org/fulldisclosure/2010/Dec/328,
2010.

[54] M. Zalewski. On designing UIs for non-robots.
http://lcamtuf.blogspot.com/2010/08/on-

designing-uis-for-non-robots.html, 2010.
[55] M. Zalewski. X-Frame-Options, or solving the wrong

problem. http://lcamtuf.blogspot.com/2011/12/
x-frame-options-or-solving-wrong.html, 2011.

16

USENIX Association 	 21st USENIX Security Symposium  429

Privilege Separation in HTML5 Applications

Devdatta Akhawe, Prateek Saxena, Dawn Song
University of California, Berkeley

{devdatta,prateeks,dawnsong}@cs.berkeley.edu

Abstract
The standard approach for privilege separation in

web applications is to execute application components
in different web origins. This limits the practicality of
privilege separation since each web origin has finan-
cial and administrative cost. In this paper, we pro-
pose a new design for achieving effective privilege sep-
aration in HTML5 applications that shows how appli-
cations can cheaply create arbitrary number of com-
ponents. Our approach utilizes standardized abstrac-
tions already implemented in modern browsers. We do
not advocate any changes to the underlying browser or
require learning new high-level languages, which con-
trasts prior approaches. We empirically show that we
can retrofit our design to real-world HTML5 applica-
tions (browser extensions and rich client-side applica-
tions) and achieve reduction of 6x to 10000x in TCB for
our case studies. Our mechanism requires less than 13
lines of application-specific code changes and consider-
ably improves auditability.

1 Introduction
Applications written with JavaScript, HTML5 and CSS
constructs (called HTML5 applications) are becoming
ubiquitous. Rich web applications and web browser ex-
tensions are examples of HTML5 applications that al-
ready enjoy massive popularity [1, 2]. The introduc-
tion of browser operating systems [3, 4], and support for
HTML5 applications in classic operating systems [5, 6]
herald the convergence of web and desktop applica-
tions. However, web vulnerabilities are still pervasive in
emerging web applications and browser extensions [7],
despite immense prior research on detection and mitiga-
tion techniques [8–12].

Privilege separation is an established security prim-
itive for providing an important second line of de-
fense [13]. Commodity OSes enable privilege separated
applications via isolation mechanisms such as LXC [14],
seccomp [15], SysTrace [16]. Traditional applications
have utilized these for increased assurance and secu-
rity. Some well-known examples include OpenSSH [17],

QMail [18] and Google Chrome [19]. In contrast, privi-
lege separation in web applications is harder and comes
at a cost. If an HTML5 application wishes to separate
its functionality into multiple isolated components, the
same-origin policy (SOP) mandates that each component
execute in a separate web origin.1 Owning and main-
taining multiple web origins has significant practical ad-
ministrative overheads. 2 As a result, in practice, the
number of origins available to a single web application
is limited. Web applications cannot use the same-origin
policy to isolate every new component they add into the
application. At best, web applications can only utilize
sub-domains for isolating components, which does not
provide proper isolation, due to special powers granted
to sub-domains in the cookie and document.domain be-
haviors.

Recent research [12, 20] and modern HTML5 plat-
forms, such as the Google Chrome extension platform
(also used for “packaged web applications”), have recog-
nized the need for better privilege separation in HTML5
applications. These systems advocate re-architecting the
underlying browser or OS platform to force HTML5 ap-
plications to be divided into a fixed number of compo-
nents. For instance, the Google Chrome extension frame-
work requires that extensions have three components,
each of which executes with different privileges [19].
Similarly, recent research proposes to partition HTML5
applications in “N privilege rings”, similar to the isola-
tion primitives supported by x86 processors [12]. We
observe two problems with these approaches. First, the
fixed limit on the number of partitions or components
creates an artificial and unnecessary limitation. Differ-

1Browsers isolate applications based on their origins. An origin is
defined as the tuple <scheme, host, port>. In recent browser exten-
sion platforms, such as in Google Chrome, each extension is assigned
a unique public key as its web origin. These origins are assigned and
fixed at the registration time.

2To create new origins, the application needs to either create new
DNS domains or run services at ports different from port 80 and 443.
New domains cost money, need to be registered with DNS servers and
are long-lived. Creating new ports for web services does not work: first,
network firewalls block atypical ports and Internet Explorer doesn’t
include the port in determining an application’s origin

1

430  21st USENIX Security Symposium	 USENIX Association

ent applications require differing number of components,
and a “one-size-fits-all” approach does not work. We
show that, as a result, HTML5 applications in such plat-
forms have large amounts of code running with unneces-
sary privileges, which increases the impact from attacks
like cross-site scripting. Second, browser re-design has
a built-in deployment and adoption cost and it takes sig-
nificant time before applications can enjoy the benefits
of privilege separation.

In this paper, we rethink how to achieve privilege sepa-
ration in HTML5 applications. In particular, we propose
a solution that does not require any platform changes
and is orthogonal to privilege separation architectures en-
forced by the underlying browsers. Our proposal uti-
lizes standardized primitives available in today’s web
browsers, requires no additional web domains and im-
proves the auditability of HTML5 applications. In our
proposal, HTML5 applications can create an arbitrary
number of “unprivileged components.” Each compo-
nent executes in its own temporary origin isolated from
the rest of the components by the SOP. For any priv-
ileged call, the unprivileged components communicate
with a “privileged” (parent) component, which executes
in the main (permanent) origin of the web application.
The privileged code is small and we ensure its integrity
by enforcing key security invariants, which we define in
Section 3. The privileged code mediates all access to
the critical resources granted to the web application by
the underlying browser platform, and it enforces a fine-
grained policy on all accesses that can be easily audited.
Our proposal achieves the same security benefits in en-
suring application integrity as enjoyed by desktop appli-
cations with process isolation and sandboxing primitives
available in commodity OSes [14–16].

We show that our approach is practical for exist-
ing HTML5 applications. We retrofit two widely used
Google Chrome extensions and a popular HTML5 appli-
cation for SQL database administration to use our design.
In our case studies, we show that the amount of trusted
code running with full privileges reduces by a factor of
6 to 10000. Our architecture does not sacrifice any per-
formance as compared to alternative approaches that re-
design the underlying web browser. Finally, our migra-
tion of existing applications requires minimal changes to
code. For example, in porting our case studies to this
new design we changed no more than 13 lines of code
in any application. Developers do not need to learn new
languages or type safety primitives to migrate code to
our architecture, in contrast to recent proposals [21]. We
also demonstrate strong data confinement policies. To
encourage adoption, we have released our core infras-
tructure code as well as the case studies (where permit-
ted) and made it all freely available online [22]. We are
currently collaborating with the Google Chrome team to

apply this approach to secure Chrome applications, and
our design has influenced the security architecture of up-
coming Chrome applications.

In our architecture, HTML5 applications can de-
fine more expressive policies than supported by exist-
ing HTML5 platforms, namely the Chrome extension
platform [19] and the Windows 8 Metro platform [5].
Google Chrome and Windows 8 rely on applications
declaring install-time permissions that end users can
check [23]. Multiple studies have found permission sys-
tems to be inadequate: the bulk of popular applications
run with powerful permissions [24, 25] and users rarely
check install-time permissions [26]. In our architecture,
policy code is explicit and clearly separated, can take
into account runtime ordering of privileged accesses, and
can be more fine-grained. This design enables expert au-
ditors, such as maintainers of software application gal-
leries, to reason about the security of applications. In our
case studies, these policies are typically a small amount
of static JavaScript code, which is easily auditable.

2 Problem and Approach Overview
Traditional HTML applications execute with the author-
ity of their “web origin” (protocol, port, and domain).
The browser’s same origin policy (SOP) isolates differ-
ent web origins from one another and from the file sys-
tem. However, applications rarely rely on domains for
isolation, due to the costs associated with creating new
domains or origins.

In more recent application platforms, such as the
Google Chrome extension platform [23], Chrome pack-
aged web application store [1] and Windows 8 Metro ap-
plications [5], applications can execute with enhanced
privileges. These privileges, such as access to the
geo-location, are provided by the underlying platform
through privileged APIs. Applications utilizing these
privileged API explicitly declare their permissions to use
privileged APIs at install time via manifest files. These
applications are authored using the standard HTML5 fea-
tures and web languages (like JavaScript) that web ap-
plications use; we use the term HTML5 applications to
collectively refer to web applications and the aforemen-
tioned class of emerging applications.

Install-time manifests are a step towards better secu-
rity. However, these platforms still limit the number of
application components to a finite few and rely on sep-
arate origins to isolate them. For example, each Google
Chrome extension has three components. One compo-
nent executes in the origin of web sites that the exten-
sion interacts with. A second component executes with
the extension’s permanent origin (a unique public key as-
signed to it at creation time). The third component exe-
cutes in an all-powerful origin having the authority of the
web browser. In this section, we show how this limits the

2

USENIX Association 	 21st USENIX Security Symposium  431

degree of privilege separation for HTML5 applications in
practice.

2.1 Issues with the Current Architecture

In this section, we point out two artifacts of today’s
HTML5 applications: bundling of privileges and TCB
inflation. We observe that these issues are rooted in the
fact that, in these designs, the ability to create new web
origins (or security principals) is severely restricted.

Common vulnerabilities (like XSS and mixed content)
today actually translate to powerful gains for attackers
in current architectures. Recent findings corroborate the
need for better privilege separation—for instance, 27 out
of 100 Google Chrome extensions (including the top 50)
recently studied have been shown to have exploitable
vulnerabilities [7]. These attacks grant powerful privi-
leges like code execution in all HTTP and HTTPS web
sites and access to the user’s browsing history.

As a running example, we introduce a hypothetical ex-
tension for Google Chrome called ScreenCap. Screen-
Cap is an extension for capturing screenshots that also in-
cludes a rudimentary image editor to annotate and mod-
ify the image before sending to the cloud or saving to a
disk.

Bundling. The ScreenCap extension consists of two
functionally disjoint components: a screenshot capturing
component and an image editor. In the current architec-
ture, both the components run in the same principal (ori-
gin), despite requiring disjoint privileges. We call this
phenomenon bundling. The screenshot component re-
quires the tabs and <all urls> permission, while the
image editor only requires the pictureLibrary permis-
sion to save captured images to the user’s picture library
on the cloud.

Bundling causes over-privileged components. For ex-
ample, the image editor component runs with the power-
ful tabs and <all urls> permission. In general, if an
application’s components require privilege sets α1, α2...,
all components of the application run with the privileges⋃

αi, leading to over-privileging. As we show in Sec-
tion 5.4, 19 out of the Top 20 extensions for the Google
Chrome platform exhibit bundling. As discussed earlier,
this problem manifests on the web too.

TCB inflation. Privileges in HTML5 are ambient—all
code in a principal runs with full privileges of the princi-
pal. In reality, only a small application core needs access
to these privileges and rest of the application does not
need to be in the trusted computing base (TCB). For ex-
ample, the image editor in ScreenCap consists of a num-
ber of complex and large UI and image manipulation li-
braries. All this JavaScript code runs with the ambient
privilege to write to the user’s picture library. Note that
this is in addition to it running bundled with the privi-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

N
u

m
b

e
r

o
f

E
x
te

n
s
io

n
s
 (

P
e

rc
e

n
ta

g
e

)

Percentage of Functions requiring privileges

Figure 1: CDF of percentage of functions in an extension that
make privileged calls (X axis) vs. the fraction of extensions
studied (in percentage) (Y axis). The lines for 50% and 20% of
extensions as well as for 5% and 20% of functions are marked.

leges of the screenshot component.
We measured the TCB inflation for the top 50 Chrome

extensions. Figure 1 shows the percentage of total func-
tions in an extension requiring privileges as a fraction of
the total number of static functions. In half the exten-
sions studied, less than 5% of the functions actually need
any privileges. In 80% of the extensions studied, less
than 20% of the functions require any privileges.

Summary. It is clear from our data that HTML5 ap-
plications, like Chrome extensions, do not sufficiently
isolate their sub-components. The same-origin policy
equates web origins and security principals, and web ori-
gins are fixed at creation time or tied to the web do-
main of the application. All code from a given provider
runs under a single principal, which forces privileges
to be ambient. Allowing applications to cheaply create
as many security principals as necessary and to confine
them with fine-grained, flexible policies can make privi-
lege separation more practical.

Ideally, we would like to isolate the image editor com-
ponent from the screenshot component, and give each
component exactly the privileges it needs. Moving the
complex UI and image manipulation code to an unprivi-
leged component can tremendously aid audit and anal-
ysis. Our first case study (Section 5.1) discusses un-
bundling and TCB reduction on a real world screenshot
application. We achieved a 58x TCB reduction.

2.2 Problem Statement

Our goal is to design a new architecture for privilege sep-
aration that side steps the problem of scarce web origins
and enables the following properties:

Reduced TCB. Given the pervasive nature of code in-
jection vulnerabilities, we are interested, instead, in
reducing the TCB.

3

432  21st USENIX Security Symposium	 USENIX Association

Ease of Audit. Dynamic code inclusion and use of com-
plex JS constructs is pervasive. An architecture that
eases audits, in spite of these issues, is necessary.

Flexible policies. Current manifest mechanisms pro-
vide insufficient contextual data for meaningful se-
curity policies. A separate flexible policy mecha-
nism can ease audits and analysis.

Reduce Over-privileging. Bundling of disjoint applica-
tions in the same origin results in over-privileging.
We want an architecture that can isolate applications
agnostic of origin.

Ease of Use. For ease of adoption, we also aim for min-
imal compatibility costs for developers. Mecha-
nisms that would involve writing applications for a
new platform are outside scope.

Scope. We focus on the threat of vulnerabilities in be-
nign HTML5 application. We aim to enable a privilege
separation architecture that benign applications can uti-
lize with ease to provide a strong second line of defense.
We consider malicious applications as out of scope, but
our design improves auditability and may be applicable
to HTML5 malware in the future.

This paper strictly focuses on mechanisms for achiev-
ing privilege separation and on mechanisms for expres-
sive policy-based confinement. Facilitating policy devel-
opment and checking if policies are reasonable is an im-
portant issue, but beyond the scope of this paper.

3 Design
We describe our privilege separation architecture in this
section. We describe the key security invariants we main-
tain in Section 3.2 and the mechanisms we use for en-
forcing them in Section 3.3.

3.1 Approach Overview

We advocate a design that is independent of any privilege
separation scheme enforced by the underlying browser.
In our design, HTML5 applications have one privileged
parent component, and can have an arbitrary number of
unprivileged children. Each child component is spawned
by the parent and it executes in its own temporary ori-
gin. These temporary origins are created on the fly for
each execution and are destroyed after the child exits;
we detail how temporary origins can be implemented us-
ing modern web browsers primitives in Section 3.3. The
privileged parent executes in the main (permanent) origin
assigned to the HTML5 application, typically the web
origin for traditional web application. The same origin
policy isolates unprivileged children from one another
and from the privileged parent. Figure 2 shows our pro-
posed HTML5 application architecture. In our design,
applications can continue to be authored in existing web
languages like JavaScript, HTML and CSS. As a result,

Browser Page

ParentChild Iframe

Child Iframe Bootstrap Code

S
H
I

M

Application
 Code

S
H
I

M

Policy Code

Application
 Code

S
H
I

M

Figure 2: High-level design of our proposed architecture.

our design maintains compatibility and facilitates adop-
tion.

Parent. Our design ensures the integrity of the privi-
leged parent by maintaining a set of key security invari-
ants that we define in Section 3.2. The parent guards ac-
cess to a powerful API provided by the underlying plat-
form, such as the Google Chrome extension API. For
making any privileged call or maintaining persistent data,
the unprivileged children communicate with the parent
over a thin, well-defined messaging interface. The par-
ent component has three components:

• Bootstrap Code. When a user first navigates to the
HTML5 application, a portion of the parent code
called the bootstrap code executes. Bootstrap code
is the unique entry point for the application. The
bootstrap code downloads the application source,
spawns the unprivileged children in separate tempo-
rary origins, and controls the lifetime of their exe-
cution. It also includes boilerplate code to initialize
the messaging interface in each child before child
code starts executing. Privileges in HTML5 appli-
cations are tied to origins; thus, a temporary origin
runs with no privileges. We explain temporary ori-
gins further in Section 3.3.

• Parent Shim. During their execution, unprivileged
children can make privileged calls to the parent.
The parent shim marshals and unmarshals these re-
quests to and from the children. The parent shim
also presents a usable interface to the policy code
component of the parent.

• Policy Code. The policy code enforces an
application-specific policy on all messages received

4

USENIX Association 	 21st USENIX Security Symposium  433

from children. Policy code decides whether to allow
or disallow access to privileged APIs, such as access
to the user’s browsing history. This mechanism pro-
vides complete mediation on access to privileged
APIs and supports fine-grained policies, similar to
system call monitors in commodity OSes like Sys-
Trace [16]. In addition, as part of the policy code,
applications can define additional restrictions on the
privileges of the children, such as disabling import
of additional code from the web.

Only the policy code is application-specific; the boot-
strap and parent shim are the same across all applica-
tions. To ease adoption, we have made the application-
independent components available online. The applica-
tion independent components need to be verified once
for correctness and can be reused for all application in
the future. For new applications using our design, only
the application’s policy code needs to be audited. In our
experimental evaluation, we find that the parent code is
typically only a small fraction of the rest of the applica-
tion and our design invariants make it statically auditable.

Children. Our design moves all functional compo-
nents of the application to the children. Each child con-
sists of two key components:

• Application Code. Application code starts execut-
ing in the child after the bootstrap code initializes
the messaging interface. All the application logic,
including code to handle visual layout of the appli-
cation, executes in the unprivileged child; the parent
controls no visible area on the screen. This implies
that all dynamic HTML (and code) rendering op-
erations execute in the child. Children are allowed
to include libraries and code from the web and ex-
ecute them. Vulnerabilities like XSS or mixed con-
tent bugs (inclusion of HTTP scripts in HTTPS do-
mains) can arise in child code. In our threat model,
we assume that children may be compromised dur-
ing the application’s execution.

• Child Shim. The parent includes application inde-
pendent shim code into the child to seamlessly al-
low privileged calls to the parent. This is done to
keep compatibility with existing code and facilitate
porting applications to our design. Shim code in
the child defines wrapper functions for privileged
APIs (e.g., the Google Chrome extension API [27]).
The wrapper functions forward any privileged API
calls as messages to the parent. The parent shim un-
marshals these messages, checks the integrity of the
message and executes the privileged call if allowed
by the policy. The return value of the privileged
API call is marshaled into messages by the parent
shim and returned to the child shim. The child shim

unmarshals the result and returns it to the original
caller function in the child. Certain privileged API
functions take callbacks or structured data objects;
in Section 4.1 we outline how our mechanism prox-
ies these transparently. Together, the parent and
child shim hide the existence of the privilege bound-
ary from the application code.

3.2 Security Invariants

Our security invariants ensure the integrity and correct-
ness of code running in the parent with full privileges.
We do not restrict code running in the child; our threat
model assumes that unprivileged children can be com-
promised any time during their execution. We enforce
four security invariants on the parent code:

1. The parent cannot convert any string to code.

2. The parent cannot include external code from the
web.

3. The parent code is the only entry point into the priv-
ileged origin.

4. Only primitive types (specifically, strings) cross the
privilege boundary.

The first two invariants help increase assurance in the
parent code. Together, they disable dynamic code exe-
cution and import of code from the web, which elimi-
nates the possibility of XSS and mixed content vulner-
abilities in parent code. Furthermore, it makes parent
code statically auditable and verifiable. Several analysis
techniques can verify JavaScript when dynamic code ex-
ecution constructs like eval and setTimeout have been
syntactically eliminated [9–11, 28, 29].

Invariant 3 ensures that only the trusted parent code
executes in the privileged origin; no other application
code should execute in the permanent origin. The naive
approach of storing the unprivileged (child) code as a
HTML file on the server suffers from a subtle but seri-
ous vulnerability. An attacker can directly navigate to
the unprivileged code. Since it is served from the same
origin as the parent, it will execute with full privileges
of the parent without going through the parent’s boot-
strap mechanism. To prevent such escalation, invariant
3 ensures that all entry points into the application are
directed only through the bootstrap code in the parent.
Similarly, no callbacks to unprivileged code are passed
to the privileged API—they are proxied by parent func-
tions to maintain Invariant 3. We detail how we enforce
this invariant in Section 3.3.

Privilege separation, in and of itself, is insufficient to
improve security. A problem in privilege-separated C ap-
plications is the exchange of pointers across the privi-
lege boundary, leading to possible errors [30, 31]. While

5

434  21st USENIX Security Symposium	 USENIX Association

JavaScript does not have C-style pointers, it has first-
class functions. Exchanging functions and objects across
the privilege boundary can introduce security vulnerabil-
ities. Invariant 4 eliminates such attacks by requiring that
only primitive strings are exchanged across the privilege
boundary.

3.3 Mechanisms

We detail how we implement the design and enforce the
above invariants in this section. Whenever possible, we
rely on browser’s mechanisms to declaratively enforce
the outlined invariants, thereby minimizing the need for
code audits.

Temporary Origins. To isolate components, we exe-
cute unprivileged children in separate iframes sourced
from temporary origins. A temporary origin can be cre-
ated by assigning a fresh, globally unique identifier that
the browser guarantees will never be used again [32].
A temporary origin does not have any privileges, or in
other words, it executes with null authority. The globally
unique nature means that the browser isolates every tem-
porary origin from another temporary origin, as well as
the parent. The temporary origin only lasts as long as the
lifetime of the associated iframe.

Several mechanisms for implementing temporary ori-
gins are available in today’s browsers, but these are rarely
found in use on the web. In the HTML5 standard, iframes
with the sandbox directive run in a temporary origin.
This primitive is standardized and already supported in
shipping versions of Google Chrome/ChromeOS, Safari,
Internet Explorer/Windows 8, and a patch for Mozilla
Firefox is in the final stages of review [33].

Enforcement of Security Invariants. To enforce se-
curity invariants 1 and 2 in the parent, our implemen-
tation utilizes the Content Security Policy (CSP) [34].
CSP is a new specification, already supported in Google
Chrome and Firefox, that defines browser-enforced re-
strictions on the resources and execution of application
code. In our case studies, it suffices to use the CSP
policy directive default-src ’none’; script-src

’self’—this disables all constructs to convert strings
into code (Invariant 1) and restricts the source of all
scripts included in the page to the origin of the appli-
cation (Invariant 2). We find that application-specific
code is typically small (5 KB) and easily auditable in our
case studies. On platforms on which CSP is not sup-
ported, we point out that disabling code evaluation con-
structs and external code import is possible by syntacti-
cally restricting the application language to a subset of
JavaScript [11, 28, 29].

We require that all non-parent code, when requested,
is sent back as a text file. Browsers do not ex-
ecute text files—the code in the text files can only

execute if downloaded and executed by the parent,
via the bootstrap mechanism. This ensures Invariant
3. In case of pure client-side platforms like Chrome,
this involves a simple file renaming from .html to
.txt. In case of classic client-server web applica-
tions, this involves returning a Content-Type header of
text/plain. To disable mime-sniffing, we also set the
X-Content-Type-Options HTTP header to nosniff.

Messaging Interface. We utilize standard primitives
like XMLHttpRequest and the DOM API for download-
ing the application code and executing it in an iframe.
We rely on the postMessage API for communication
across the privilege boundary. postMessage is an asyn-
chronous, cross-domain, purely client-side messaging
mechanism. By design, postMessage only accepts
primitive strings. This ensures Invariant 4.

Policy. Privilege separation isolates the policy and the
application logic. Policies, in our design, are written in
JavaScript devoid of any dynamic evaluation constructs
and are separated from the rest of the complex applica-
tion logic. Permissions on existing browser platforms are
granted at install-time. In contrast, our design allows for
more expressive and fine-grained policies like granting
and revoking privileges at run-time. For example, in the
case of ScreenCap, a child can get the ability to capture
a screenshot only once and only after the user clicks the
‘capture’ button. Such fine-grained policies require the
policy engine to maintain state, reason about event or-
dering and have the ability to grant/revoke fine-grained
privileges. Our attempt at expressive policies is along the
line of active research in this space [21], but in contrast
to existing proposals, it does not require developers to
specify policies in new high-level languages. Our focus
is on mechanisms to support expressive policies; deter-
mining what these policies should be for applications is
beyond the scope of this paper.

Additional Confinement of Child Code. By default,
no restrictions are placed on the children beyond those
implied by use of temporary origins. Specifically, the
child does not inherit the parent’s CSP policy restric-
tions. In certain scenarios, the application developer
may choose to enforce additional restrictions on the child
code, via an appropriate CSP policy on the child iframe

at the time of its creation by the parent code. For ex-
ample, in the case of ScreenCap, the screenshot compo-
nent can be run under the script-src ’self’. This
increases assurance by disabling inline scripts and code
included from the web, making XSS and mixed content
attacks impossible. The policy code can then grant the
powerful privilege of capturing a screenshot of a user’s
webpage to a high assurance screenshot component.

6

USENIX Association 	 21st USENIX Security Symposium  435

Browser Page

Parent

Child Iframe

Bootstrap Code

Policy Code

Application
 Code

S
H
I

M

1. Bootstrap
Code

2. Application
Code and

Policy
4. Source

Policy
Code

3. Create
Child

S
H
I

M

Figure 3: Sequence of events to run application in sandbox.
Note that only the bootstrap code is sent to the browser to exe-
cute. Application code is sent directly to the parent, which then
creates a child with it.
� �

var s b c o n t e n t ="<html><head>" ;
s b c o n t e n t +="<meta http-equiv=’X-WebKit-CSP’" ;
//csp_policy is defined in downloaded policy

s b c o n t e n t +="content=’"+ c s p p o l i c y +"’>" ;
s b c o n t e n t +="<script src=’"+ c h i l d S h i m S r c +"’>" ;
//the baseurl is current window uri

//so that relative URIs work

s b c o n t e n t +="<base href=’"+ b a s e u r l +"’>" ;
//contents of app.txt

s b c o n t e n t += a p p l i c a t i o n c o d e ;
// attribute values are URI-decoded

// by HTML parser

s b c o n t e n t =encodeURIComponent (s b c o n t e n t) ;
var f r = document . c r e a t e E l e m e n t ("iframe") ;
f r . s r c ="data:text/html;charset=utf-8,"+

s b c o n t e n t ;
//sandboxed frames run in fresh origin

f r . s e t A t t r i b u t e (’sandbox’ , ’allow-scripts’) ;
document . body . appendCh i ld (f r) ;� �

Listing 1: Bootstrap Code (JavaScript)

4 Implementation
As outlined in Section 3, the parent code executes when
the user navigates to the application. The bootstrap code
is in charge of creating an unprivileged sandbox and ex-
ecuting the unprivileged application code in it. The shim
code and policy also run in the parent, but we focus on
the bootstrap and shim code implementation in this sec-
tion. The unprivileged child code and the security policy
vary for each application, and we discuss these in our
case studies (Section 5).

Figure 3 outlines the steps involved in creating one
unprivileged child. First, the user navigates to the ap-
plication and the parent’s bootstrap code starts executing
(Step 1 in Figure 3). In Step 2, the parent’s bootstrap
code retrieves the application HTML code (as plain text
files) as well as the security policy of the application. For
client-side platforms like Chrome and Windows 8, this is
a local file retrieval.

The parent proceeds to create a temporary origin,
unprivileged iframe using the downloaded code as the
source (Step 3, Figure 3). Listing 1 outlines the code
to create the unprivileged temporary origin. The parent
builds up the child’s HTML in the sb content variable.
The parent can optionally include content restrictions on
the child via a CSP policy, as explained in Section 3.3.
Creating multiple children is a simple repetition of the
step 3.

The parent also sources the child shim into the
child iframe. The parent concatenates the child’s
code (HTML) and URI-encodes it all into a variable
called sb content. The parent creates an iframe with
sb content as the data: URI source, sets the sandbox
attribute and appends the iframe to the document. The
parent code also inserts a base HTML tag that enables
relative URIs to work seamlessly.
data: is a URI scheme that enables references to in-

line data as if it were an external reference. For example,
an iframe with src attribute set to data:text/html;Hi

is similar to an iframe pointing to an HTML page con-
taining only the text ‘Hi’. Recall our enforcement mech-
anism for Invariant 3: the application code is a text file.
The use of data: is necessary to convert text to code
that the iframe src can point to, without storing un-
privileged application code as HTML or JavaScript files.

4.1 API Shims

Recall that the child executes in a temporary origin, with-
out the privileges needed for making privileged calls like
chrome.tabs.captureVisibleTab. Privileged API
calls in the original child code would fail when it exe-
cutes in a temporary origin; our transformation should,
therefore, take additional steps to preserve the original
functionality of the application. In our design, we pro-
pose API shims to proxy calls to privileged API in the
child to the parent code safely and transparently.

The child shim defines wrapper objects in the child
that proxy a privileged call to the parent. The aim of the
parent and child shim is to make the privilege separa-
tion boundary transparent. We have implemented shims
for all the privileged API functions needed for our case
studies. This implementation of the parent shim is 5.46
KB and that of the child shim is 9.1 KB. Note that only
the parent shim is in the TCB.

Figure 4 outlines the typical events involved in prox-
ying a privileged call. First, the child shim de-
fines a stub implementation of the privileged APIs
(e.g., chrome.tabs.captureVisibleTab) that, when
called, forwards the call to the parent. On receiving the
message, the parent shim checks with the policy and if
the policy allows, the parent shim makes the call on be-
half of the child. On completion of the call, the parent
shim forwards the callback arguments (given by the run-

7

436  21st USENIX Security Symposium	 USENIX Association

Browser Page

ParentChild Iframe

Bootstrap
Code

S
H
I

M
Policy
Code

Application
 Code

S
H
I

M

1. Privileged
Call

2. Save
Callback 3. Parent

Request 4. Check
Policy

5. Make
Privileged

Call
6. Forward

Callback
Arguments

7. Execute
Saved

Callback

Figure 4: Typical events for proxying a privileged API call.
The numbered boxes outline the events. The event boxes span
the components involved. For example, event 4 involves the
parent shim calling the policy code.

time) to the child shim, and the child shim executes the
original callback.

Continuing with our running example, we give
concrete code examples of the shims for the
chrome.tabs.captureVisibleTab function, used
to capture a screenshot. captureVisibleTab takes
three arguments: a windowID, an options object, and
a callback parameter. On successfully capturing a
screenshot of the given window, the chrome runtime
executes the callback with the encoded image data as
the only argument. Note that the callback parameter is a
first-class function; our invariants do not allow exchange
of a function across the privilege boundary.

Child Shim. The child shim creates a stub implemen-
tation of the privileged API. In the unprivileged child, a
privileged call would fail since the child does not have
privileges to execute it. Instead, the stub function de-
fined by the child function is called. This stub func-
tion marshals all the arguments and sends it to the par-
ent. Listing 2 is the child shim implementation for the
captureVisibleTab function.

No code is passed across the privilege boundary. In-
stead, the child saves the callback (Step 2 in Fig. 4) and
forwards the rest of the argument list to the parent (Step
3). The callback is stored in a cache and a unique iden-
tifier is sent to the parent. The parent uses this identifier
later.

We stress that this process is transparent to the applica-
tion: the parent code ensures that the child shim is loaded
before any application code starts executing. The appli-

� �
tabs.captureVisibleTab =

function(windowid ,options ,callback){

var id =callbackctr ++;

cached_callbacks[id] = callback;

sendToParent ({

"type":"tabs.captureVisibleTab",

"windowid":windowid ,

"options":options ,

"callbackid":id

});

};� �
Listing 2: Child shim for captureVisibleTab� �

//m is the argument given to

// sendToParent in the child shim

if(m.type ===’tabs.captureVisibleTab ’)

{//fail if policy does not allow

if(! policy.allowCall(m){ return ;}

tabs.captureVisibleTab(

m.windowid ,

m.options ,

function(imgData){

sendToChild ({

type:"cb_tabs.captureVisibleTab",

id:m.callbackid ,

imgData: imgData

});

});

}� �
Listing 3: Parent shim for captureVisibleTab

cation can continue calling the privileged API as before.

Parent Shim. On receiving the message, the parent’s
shim first checks with the policy (Step 4 in Fig. 4 and
line 5 in Listing 3) and if the policy allows it, the parent
shim makes the requested privileged call.

In case of ScreenCap, a simple policy could disallow
captureVisibleTab call if the request came from the
image editor, and allow the call if the request came from
the screenshot component. Such a policy unbundles the
two components. If a network attacker compromises one
of the two components in ScreenCap, then it only gains
the ability to make request already granted to that com-
ponent. As another example, the application can enforce
a policy to only allow one captureVisibleTab call af-
ter a user clicks the ‘capture’ button. All future requests
during that execution of the application are denied until
the user clicks the ‘capture’ button again.

Note that the privileged call is syntactically the same
as what the child would have made, except for the call-
back. The modified callback (lines 9-14 in Listing 3)
forwards the returned image data to the child (Step 6),
the original callback still executes in the child.

Child Callback The message handler on the child re-
ceives the forwarded arguments from the parent and exe-
cutes the saved callback with the arguments provided by
the parent. (Step 7 in Figure 4 and line 6 in Listing 4).
The saved callback is then deleted from the cache (Line

8

USENIX Association 	 21st USENIX Security Symposium  437

� �
if(

m.type ===’cb_tabs.captureVisibleTab ’

){

var cb_id = m.callbackid;

var savedCb = cached_callbacks[cb_id

];

savedCb.call(window ,m.imgData);

delete cached_callbacks[cb_id];

}� �
Listing 4: Child shim for captureVisibleTab: Part 2

7).

Persistent State. We take a different approach to
data persistence APIs like window.localStorage and
document.cookie. It is necessary that the data stored
using these APIs is also stored in the parent since the next
time a child is created, it will run in a fresh origin and the
previous data will be lost. We point out that enabling per-
sistent storage while maintaining compatibility requires
some changes to code. Persistent storage APIs (like
window.localStorage) in today’s platforms are syn-
chronous; our proxy mechanism uses postMessage to
pass persistent data, but postMessage is asynchronous.
To facilitate compatibility, we implement a wrapper for
these synchronous API calls in the child shim code and
asynchronously update the parent via postMessage un-
derneath. For example, a part of the localStorage child
shim is presented in Listing 5. The shim creates a
wrapper for the localStorage API using an associa-
tive array (viz., data). On every update, the new as-
sociative array is sent to the parent. On receiving the
localStorage save message, the parent can save the
data or discard it per policy.

We observe that in our transformation, calls to API
that access persistent state become asynchronous which
contrasts the synchronous API calls in the original code.
To preserve the application’s intended behavior, in prin-
ciple, it may be necessary to re-design parts of the code
that depend on the synchronous semantics of persistent
storage APIs—for example, when more than one unpriv-
ileged children are sharing data via persistent state simul-
taneously. In our case studies so far, however, we find
that the application behavior does not depend on such se-
mantics. In future work, we plan to investigate transfor-
mation mechanisms that can provide reasonable memory
consistency properties in accessing persistent local stor-
age.

5 Case Studies
We retrofit our design onto three HTML5 applications
to demonstrate that our architecture can be adopted by
applications today:

• As an example of browser extensions, we retrofit
our design to Awesome Screenshot, a widely used

� �
setItem: function (key , value) {

data[key] = value+’’;

saveToMainCache(data);

},

saveToMainCache: function(data){

sendToParent ({

"type":"localStorage_save",

"value":data

});

},� �
Listing 5: localStorage Shim in the Child Frame

chrome extension (802,526 users) similar to Screen-
Cap.

• As an example of emerging packaged HTML5 web
applications, we retrofit our design to SourceKit, a
full-fledged text editor available as a Chrome pack-
aged web application. SourceKit’s design is similar
to editors often bundled with online word proces-
sors and web email clients. These editors typically
run with the full privileges of the larger application
they accompany.

• As an example of traditional HTML5 web appli-
cations, we retrofit our design to SQL Buddy, a
PHP web application for database administration.
Web interfaces for database administration (notably,
PHPMyAdmin) are pervasive and run with the full
privileges of the web application they administer.

Our goal in this evaluation is to measure (a) the reduc-
tion in TCB our architecture achieves, (b) the amount of
code changes necessary to retrofit our design, and (c) per-
formance overheads (user latency, CPU overheads and
memory footprint impact) compared to platform redesign
approaches. Table 1 lists our case studies and summa-
rizes our results. First, we find that the TCB reduction
achieved by our redesign ranges from 6x to 10000x. Due
to the prevalence of minification, we believe LOC is not
a useful metric for JavaScript code and, instead, we re-
port the size of the code in KB. Second, we find that we
require minimal changes, ranging from 0 to 13 lines, to
port the case studies to our design. This is in addition to
the application independent shim and bootstrap code that
we added.

We also demonstrate examples of expressive policies
that these applications can utilize. The focus of this paper
is on mechanisms, not policies, and we do not discuss
alternative policies in this work.

Finally, we also quantify the reduction in privileges
we would achieve in the 50 most popular Chrome exten-
sions with our architecture. We also find that in half the
extensions studied, we can move 80% of the functions
out of the TCB. This quantifies the large gap between
the privileges granted by Chrome extensions today and

9

438  21st USENIX Security Symposium	 USENIX Association

what is necessary. In addition, we also analyze the top
20 Chrome extensions to determine the number of com-
ponents bundled in each. We find that 19 out of the top
20 extension exhibit bundling, and estimate that we can
separate these between 2 to 4 components, in addition to
the three components that Chrome enforces.

To facilitate further research and adoption of our tech-
niques, we make all the application independent compo-
nents of the architecture and the SQL Buddy case study
available online [22]. Due to licensing restrictions, we
are unable to release the other case studies publicly.

Table 1: Overview of case studies. The TCB sizes are in KB.
The lines changed column only counts changes to application
code, and not application independent shims and parent code.

Application Number Initial New Lines
of users TCB TCB Changed

(KB) (KB)
Awesome

802,526 580 16.4 0
Screenshot
SourceKit 14,344 15,000 5.38 13
SQL Buddy 45,419 100 2.67 11

5.1 Awesome Screenshot

The Awesome Screenshot extension allows a user to cap-
ture a screenshot of a webpage similar to our running
example [35]. A rudimentary image editor, included in
the extension, allows the user to annotate and modify the
captured image as he sees fit. Awesome Screenshot has
over 800,000 users.3

The extension consists of three components:
background.html, popup.html, and editor.html.
A typical interaction involves the user clicking the
Awesome Screenshot button, which opens popup.html.
The user selects her desired action; popup.html

forwards the choice to background.html, which
captures a screenshot and sends it to the image editor
(editor.html) for post-processing. All components
communicate with each other using the sendRequest

API call.

Privilege Separation. We redesigned Awesome
Screenshot following the model laid out in Section 3
(Figure 2). Each component runs in an unprivileged tem-
porary origin. The parent mediates access to privileged
APIs, and the policy keeps this access to the minimum
required by the component in question.

Code Changes. Apart from the application indepen-
dent code, we required no changes to the code. The
parent and child shims make the redesign seamless. We

3Due to a bug in Chrome, the current Awesome Screenshot exten-
sion uses a NPAPI binary to save big (> 2MB) images. We used the
HTML5 version (which doesn’t allow saving large files) for the pur-
poses of this work. This is just a temporary limitation.

manually tested the application functionality thoroughly
and did not observe any incompatibilities.

Unbundling. In the original version of Awesome
Screenshot, the image editor (editor.html) accepts the
image from background.html and allows the user to
edit it, but runs with the full privileges of the extension—
an example of bundling. Similarly, the popup.html only
needs to forward the user’s choice to background.html

but runs with all of the extension’s privileges.
In our privilege-separated implementation of Awe-

some Screenshot, the editor code, stored in editor.txt

now, runs within a temporary origin. The policy only
gives it access to the sendRequest API to send the exit
and ready messages as well as receive the image data
message from the background page.

TCB Reduction. The image editor in the original
Awesome Screenshot extension uses UI and image ma-
nipulation libraries (more than 500KB of complex code),
which run within the same origin as the extension. As
a result, these libraries run with the ambient privileges
to take screenshots of any page, log the user’s browsing
history, and access the user’s data on any website. While
some functions in the extension do need these privileges,
the complete codebase does not need to run with these
privileges.

In our privilege-separated implementation of Awe-
some Screenshot, the amount of code running with full
privileges (TCB) decreased by a factor of 58. We found
the UI and image manipulation libraries, specifically
jQuery UI, used dynamic constructs like innerHTML and
eval. Our design moves these potentially vulnerable
constructs to an unprivileged child.

The code in the child can still request privileged func-
tion calls via the interface provided by the parent. How-
ever, this interface is thin, well defined and easily au-
ditable. In contrast, in the non-privilege separated de-
sign, the UI and image libraries run with ambient privi-
leges. In contrast, in the original extension all the code
needs to be audited.

Example Policy. In addition to unbundling the im-
age editor from the screenshot component, the parent
can enforce stronger, temporal policies on the appli-
cation. In particular, the parent can require that the
captureVisibleTab function is only called once after
the user clicks the capture button. Any subsequent calls
have to be preceded by another button click. Such tem-
poral policies are impossible to express and enforce in
current permission-based systems.

5.2 SourceKit Text Editor

The SourceKit text editor is an HTML5 text editor for
a user’s documents stored on the Dropbox cloud ser-
vice [36]. It uses open source components like the

10

USENIX Association 	 21st USENIX Security Symposium  439

Ajax.org cloud editor [37] and Dojo toolkit [38], in con-
junction with the Dropbox REST APIs [36].

SourceKit is a powerful text editor. It includes a file-
browser pane and can open multiple files at the same
time. The text editor component supports themes and
syntax highlighting. The application consists of 15MB
of JavaScript code, all of which runs with full privileges.

Privilege Separation. In our least privilege design, the
whole application runs in a single child. Redesigning
SourceKit to move code to an unprivileged temporary
origin was seamless because of the library shims (Sec-
tion 4.1). One key change was replacing the included
Dojo toolkit with its asynchronous version. The included
Dojo toolkit uses synchronous XMLHttpRequest calls,
which the asynchronous postMessage cannot proxy.
The asynchronous version of Dojo is freely available on
the Dojo website. We do not include this change in the
number of lines modified in Table 1.

Unbundling. Functionally, SourceKit is a single
Chrome application, and no bundling has occurred in its
design. Popular Web sites (like GitHub [39]), use the
text editor module as an online text editor [37]. In such
cases, the text editor runs bundled with the main applica-
tion, inheriting the application’s privileges and increas-
ing its attack surface. While we focus only on SourceKit
for this case study, our redesign directly applies to these
online text editors.

TCB Reduction. In our privilege separated SourceKit,
the amount of code running with full privileges reduced
from 15MB to 5KB. A large part of this reduction is
due to moving the Dojo Toolkit, the syntax highlight-
ing code and other UI libraries to an unprivileged prin-
cipal. Again, we found the included libraries, specifi-
cally the Dojo Toolkit, relying on dangerous, dynamic
constructs like eval, string arguments to setInterval,
and innerHTML. In our redesign, this code executes un-
privileged.

Code Change. In addition to the switch to asyn-
chronous APIs, we also had to modify one internal
function in SourceKit to use asynchronous APIs. In
particular, SourceKit relied on synchronous requests to
load files from the dropbox.com server. We modi-
fied SourceKit to use an asynchronous mechanism in-
stead. The change was minor; only 13 lines of code were
changed.

Example Policy. In the original application, all code
runs with the tabs permission, which allows access to
the user’s browsing history, and permission to access
dropbox.com. In our privilege-separated design, the pol-
icy only allows the child access to the tabs.open and
tabs.close Chrome APIs for accessing dropbox.com.
Similarly, it only forwards tab events for dropbox.com

URIs. Thus, after the redesign, the child has access to the
user’s browsing history only for dropbox.com, and not
for all websites. Implementing this policy requires only
two lines of code—an if condition that forwards events
only for dropbox.com domains suffices.

SourceKit accesses Dropbox using the Dropbox
OAuth APIs [36]. At first run, SourceKit opens Drop-
box in a new tab, where the user can grant SourceKit the
requisite OAuth access token [40]. The parent can only
allow access to the tabs privileges at first run, and disable
it once the child receives the OAuth token. Such tempo-
ral policies cannot be expressed by install-time permis-
sions implemented in existing platforms.

We can also enforce stronger policies to provide a
form of data separation [41]. By default, the Dropbox
JS API [42] stores the OAuth access token in localStor-
age, accessible by all the code in the application. In-
stead, the policy code can store the OAuth token in the
parent and append it to all dropbox.com requests. This
mitigates data exfiltration attacks where the attacker can
steal the OAuth token to bypass the parent’s policy.4

Such application-specific data-separation policies cannot
be expressed in present permission systems.

5.3 SQL Buddy

SQL Buddy is an open source tool to administer the
MySQL database using a Web browser. Written in PHP,
SQL Buddy is functionally similar to phpMyAdmin and
supports creating, modifying, or deleting databases, ta-
bles, fields, or rows; SQL queries; and user management.

SQL Buddy uses the MooTools JS library to create an
AJAX front-end for MySQL administration. It uses the
MySQL user table for authentication and logged-in users
maintain authentication via PHP session cookies.

Privilege Separation. We modified SQL Buddy to ex-
ecute all its code in an unprivileged child. To en-
sure that no code is interpreted by the browser, we re-
quired all PHP files to return a Content-Type header of
text/plain, as discussed in Section 3.3. Only two
new files: buddy.html and login.html execute in the
browser; these are initialized by the bootstrap code.

Unbundling. A typical SQL Buddy installation runs at
www.example.net/sqlbuddy, and helps ease database
management for the application at www.example.net.
Classic operating system mechanisms can isolate SQL
Buddy and the main application on the server side. But
SQL Buddy runs with the full privileges of the applica-
tion on the client-side. In particular, an XSS vulnerabil-
ity in SQL Buddy is equivalent to an XSS vulnerability
on the main application: it is not isolated from the ap-
plication at the client-side. SQL Buddy inherits all the

4For example, to prevent malware, the parent can require that all
files accessed using SourceKit have non-binary file extensions.

11

440  21st USENIX Security Symposium	 USENIX Association

privileges of the application, including special client-side
privileges such as access to camera, geolocation, and am-
bient privileges granted to the web origin such as the abil-
ity to do cross-origin XMLHttpRequests [43].

In our privilege-separated redesign, a restrictive
policy on the child mitigates SQL Buddy bundling.
The parent allows the child XMLHttpRequest ac-
cess to only /sqlbuddy/<filename>.php URIs.
No other privilege is available to SQL Buddy
code, including document.cookie, localStorage, or
XMLHttpRequest to the main application’s pages. This
policy isolates SQL Buddy from any other application
executing on the same domain, a hitherto unavailable op-
tion.

Code Change. The key change we made to the SQL
Buddy client side code was to convert the login script at
the server. The original SQL Buddy system returned a
new login page on a failed login. Instead, we changed it
to only return an error code over XMLHttpRequest. The
client-side code utilized this response to show the user
the new login page, thereby preserving the application
behavior. This change required modification of only 11
lines of code.

TCB Reduction. SQL Buddy utilizes the MooTools
JavaScript library, which runs with the full privileges
of the application site (e.g., www.example.net). Over
100KB of JavaScript code runs with full privileges of
the www.example.net origin. This code uses danger-
ous, dynamic constructs such as innerHTML and eval.
In our design, the total amount of code running in the
www.example.net origin is 2.5KB, with the JavaScript
code utilizing dynamic constructs running in an unprivi-
leged temporary origin

Example Policy. Privilege separation reduces the am-
bient authority from these libraries. For example, the
session cookie for www.example.net, is never sent to
the child: all HTTP traffic requiring the cookie needs
to go through the parent. Note that the cookie for
the www.example.net principal includes both, the SQL
Buddy session cookie as well as the cookie for the
main www.example.net application. In case of suc-
cessful code injection, the attacker cannot exfiltrate this
cookie. Furthermore, the policy strictly limits privileged
API access to those calls required by SQL Buddy. The
SQL Buddy code does not have ambient authority to
make privileged calls in the www.example.net princi-
pal. Again, implementing this policy requires two lines
of JavaScript code in our architecture.

5.4 Top 50 Google Chrome extensions

Finally, we measure the opportunity available to our
technique by quantifying the extent of TCB inflation and
bundling in Chrome extensions. To perform this analy-

sis, we developed a syntactic static analysis engine for
JavaScript using an existing JavaScript engine called Py-
narcissus [44] and performed a manual review for addi-
tional confidence. We report our results on 46 out of the
top 50 extensions we study.5 In our analysis, we (conser-
vatively) identify all calls to privileged APIs (i.e., calls
to the chrome object) and list them in Figure 1. We be-
lieve that our analysis is overly conservative, being syn-
tactic, so these numbers represent only an undercount of
the over-privileging in these applications.6

TCB Reduction. We show the distribution of the num-
ber of functions requiring any privileges as a percentage
of the total number of functions. TCB inflation is per-
vasive in the extensions studied. In half the extensions,
less than 5% of the total functions require any ambient
privileges. In the current architecture the remaining 95%
run with full privileges, inflating the TCB.

Bundling. We manually analyzed the 20 most popular
Google Chrome extensions, and found 19 of them exhib-
ited bundling. The most common form of bundling oc-
curred when the options page or popup window of an ex-
tension runs with full privileges, in spite of not requiring
any privileges at all. While the Google Chrome archi-
tecture does enable privilege separation between content
scripts and extension code, running all code in an exten-
sion with the same privileges is unnecessary.

Another form of over-privileging occurs due to the
bundling of privileges in Chrome’s permission system.
Google Chrome’s extension system bundles multiple
privileges into one coarse-grained install-time permis-
sion. For example, the tabs permission in Chrome ex-
tension API, required by 42 of the 46 extensions ana-
lyzed, bundles together a number of related, powerful
privileges. This install-time permission includes the abil-
ity to listen to eight events related to tabs and windows,
access users’ browsing history, and call 20 other miscel-
laneous functions. Figure 5 measures the percentage of
the tabs API actually used by extensions as a percent-
age of the total API granted by tabs for the 42 exten-
sions analyzed. As can be seen, no extension requires
the full privileges granted by the tabs permission, with
one extension requiring 44.83% of the permitted API be-
ing the highest. More than half of the extensions require
only 6.9% of the API available, which indicates over-
privileging. In our design, the policy acts on fine-grained
function calls and replaces coarse-grained permissions.

6 Performance Benchmarks
Our approach has two possible overheads: run-time over-
head caused by the parent’s mediation on privileged APIs

5Due to limitations of Pynarcissus, it was unable to completely
parse code in 4 out of the top 50 extensions.

6More precise analysis can be used in the future.

12

USENIX Association 	 21st USENIX Security Symposium  441

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50

N
u

m
b

e
r

o
f

e
x
te

n
s
io

n
s

Percentage of API used (cumulative)

Figure 5: Frequency distribution of event listeners and API
calls used by the top 42 extensions requiring the tabs permis-
sion.

and the memory consumption of the new DOM and
JavaScript heap created for each iframe. We measure the
impact of each below.

Performance Overhead. First, as a micro-benchmark,
we measured the run-time overhead caused by the par-
ent’s mediation on privileged APIs. We created a func-
tion that measures the total time taken to open a tab and
then close it. This involves four crossings of the privilege
boundary.

We performed the experiment 100 times with and
without privilege separation. The median time with and
without privilege-separation was 140ms and 80ms re-
spectively. This implies an overhead of 15ms on each
call crossing the sandbox.

As a macro-benchmark, we measured the amount of
time required to load an image in the Awesome Screen-
shot image editor. Recall that the image editor receives
the image data from the background page. We took a
screenshot of www.google.com and measured the time
taken for the image to load in the image editor, once
the background sends it. We repeated the experiment 20
times each for the privilege separated and the original
versions. The average (median) amount of time taken
for the image load was 72.5ms (77.3ms) for the image
load in the original Awesome Screenshot extension, and
78.5ms (80.1ms) for the image load in the privilege sep-
arated version—an overhead of 8.2% (3.6%). In our test-
ing, we have not noticed any user-perceivable increase in
latency after our redesign.

Memory Consumption. We measured the increase in
memory consumption caused by creating a new tempo-
rary origin iframe, and found no noticeable increase in
memory consumption.

On the Google Chrome platform, an alternate mech-
anism to get additional principals is creating a new ex-

tension. For example, Awesome Screenshot could be
broken up into two extensions: a screenshot extension
and an image editor extension. In addition to requiring
two install decisions from the user, each additional ex-
tension runs in its own process on the Chrome platform.
We measured the memory consumption of creating two
extensions over a single extension and found an increase
in memory consumption of 20MB. This demonstrates
that our approach has no memory overhead as opposed
to the 20MB overhead of creating a new extension.

7 Related Work
The concept of privilege separation was first formalized
by Saltzer and Schroeder [13]. Several have used priv-
ilege separation for increased security. We discuss the
most closely related works in the space.

Privilege Separation in Commodity OS Platforms.
Notable examples of user-level applications utilizing
privilege separation include QMail [18], OpenSSH [17]
and Google Chrome [19]. Brumley and Song investi-
gated automatic privilege separation of programmer an-
notated C programs and implemented data separation as
well [41]. More recently, architectures like Wedge [45]
identified subtleties in privilege separating binary appli-
cations and enforcing a default-deny model. Our work
shows how to achieve privilege separation in emerging
HTML5 applications, which are fuelling a convergence
between commodity OS applications and web applica-
tions, without requiring any changes to the browser plat-
form.

Re-architecting Browser Platforms. Several previ-
ous works on compartmentalizing web applications have
suggested re-structuring the browser or the underly-
ing execution platform altogether. Some examples in-
clude the Google Chrome extension platform [23], Es-
cudo [12], MashupOS [46], Gazelle [47], OP [48], IPC
Inspection [49], and CLAMP [50]. Our work advo-
cates that we can achieve strong privilege separation us-
ing abstractions provided by modern browsers. This ob-
viates the need for further changes to underlying plat-
forms. We point out that temporary origins is similar
to MashupOS’s “null-principal SERVICEINSTANCE” pro-
posal; therefore, the alternative line of research into new
browser primitives has indeed been fruitful. Our work
demonstrates how we can utilize these advancements by
combining deployed primitives (like temporary origins
and CSP [34]) to achieve effective privilege separation,
without requiring any further changes to the platform.

Carlini et al. [7] study the effectiveness of privilege
separation in the Chrome extension architecture and find
that in 4 (19) out of 61 cases, insufficient validation of
messages exchanged over the privilege boundary allowed
for full (partial) privilege escalation. In our design, we

13

442  21st USENIX Security Symposium	 USENIX Association

explicitly prohibit the parent from using incoming mes-
sages in a way that can lead to code execution. Fur-
thermore, Chrome extensions today tend to have inflated
TCB in the privileged component as we show in Sec-
tion 5.4. This is in contrast to our proposed design.

Mashup & Advertisement Isolation. The problem
of isolating code in web applications, especially in
mashups [46,51] and malicious advertisements [52], has
received much attention in research. Our work has sim-
ilarities with these works in that it uses isolation primi-
tives like iframes. However, one key difference is that
we advocate the use of temporary origins, which are now
available in most browsers, as a basis for creating arbi-
trary number of components.

In concurrent work, Treehouse [53] provides similar
properties, but relies on isolated web workers with a
virtual DOM implementation for backwards compatibil-
ity. A virtual DOM allows Treehouse to interpose on all
DOM events, providing stronger security and resource
isolation properties, but at a higher performance cost.

Language-based Isolation of web applications. Re-
cent work has focused on language-based analysis of
web application code, especially JavaScript, for confine-
ment. IBEX proposed writing extensions in a high-level
language (FINE) that can later by analyzed to conform
to specific policies [21]. In contrast, our work does
not require developers to learn new language, and thus
maintains compatibility with existing code. Systems like
IBEX are orthogonal to our approach and can be sup-
ported on top of our architecture; if necessary, the par-
ent’s policy component can be written in a high-level lan-
guage and subject to automated analysis.

Heavyweight language-based analyses and rewriting
systems have been used for isolating untrusted code, such
as advertisements [28, 29, 54]. Our approach instead
relies on a lighter weight mechanism based on built-in
browser primitives like iframes and temporary origins.

8 Conclusion
Privilege separation is an important second line of de-
fense. However, achieving privilege separation in web
applications has been harder than on the commodity OS
platform. We observe that the central reason for this
stems in the same origin policy (SOP), which mandates
use of separate origins to isolate multiple components,
but creating new origins on the fly comes at a cost. As a
result, web applications in practice bundle disjoint com-
ponents and run them in one monolithic authority. We
propose a new design that uses standardized primitives
already available in modern browsers and enables par-
titioning web applications into an arbitrary number of
temporary origins. This design contrasts with previ-
ous approaches that advocate re-designing the browser

or require adoption of new languages. We empirically
show that we can apply our new architecture to widely
used HTML5 applications right away; achieving dras-
tic reduction in TCB with no more than thirteen lines of
change for the applications we studied.

9 Acknowledgements
We thank Erik Kay, David Wagner, Adrienne Felt,
Adrian Mettler, the anonymous reviewers, and our shep-
herd, William Enck for their insightful comments. This
material is based upon work partially supported by the
NSF under the TRUST grant CCF-0424422, by the
Air Force Office of Scientific Research (AFOSR) un-
der MURI awards FA9550-09-1-0539 and FA9550-08-
1-0352 and by Intel through the ISTC for Secure Com-
puting. The second author is supported by the Symantec
Research Labs Graduate Fellowship.

References
[1] Google Inc., “Google chrome webstore.” https:

//chrome.google.com/webstore/.

[2] HTTP Archive, “JS Transfer Size and JS Re-
quests.” http://httparchive.org/trends.

php#bytesJS&reqJS.

[3] Google Inc., “Chromium os.” http://www.

chromium.org/chromium-os.

[4] “Mozilla boot2gecko.” https://wiki.mozilla.

org/B2G.

[5] Microsoft, “Metro style app development,”
2012. http://msdn.microsoft.com/en-us/

windows/apps/.

[6] H. Wang, A. Moshchuk, and A. Bush, “Conver-
gence of desktop and web applications on a multi-
service os,” in Proceedings of the 4th USENIX con-
ference on Hot topics in security, 2009.

[7] N. Carlini, A. P. Felt, and D. Wagner, “An evalua-
tion of the google chrome extension security archi-
tecture,” in Proceedings of the 21st USENIX Con-
ference on Security, 2012.

[8] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. Mc-
Camant, and D. Song, “A symbolic execution
framework for javascript,” in Proceedings of the
2010 IEEE Symposium on Security and Privacy,
pp. 513–528.

[9] S. Bandhakavi, S. T. King, P. Madhusudan, and
M. Winslett, “Vex: vetting browser extensions for
security vulnerabilities,” in Proceedings of the 19th
USENIX conference on Security, 2010.

14

USENIX Association 	 21st USENIX Security Symposium  443

[10] M. Dhawan and V. Ganapathy, “Analyzing in-
formation flow in javascript-based browser ex-
tensions,” in Proceedings of the Computer Secu-
rity Applications Conference, pp. 382–391, IEEE,
2009.

[11] S. Guarnieri and B. Livshits, “Gatekeeper: mostly
static enforcement of security and reliability poli-
cies for JavaScript code,” in Usenix Security, 2009.

[12] K. Jayaraman, W. Du, B. Rajagopalan, and
S. Chapin, “Escudo: A fine-grained protection
model for web browsers,” in Proceedings of the
30th International Conference on Distributed Com-
puting Systems, pp. 231–240, IEEE, 2010.

[13] J. Saltzer and M. Schroeder, “The protection of in-
formation in computer systems,” Proceedings of the
IEEE, vol. 63, no. 9, pp. 1278–1308, 1975.

[14] “lxc linux containers.” http://lxc.

sourceforge.net/.

[15] “Google seccomp sandbox for linux.” http://

code.google.com/p/seccompsandbox/.

[16] N. Provos, “Improving host security with system
call policies,” in Proceedings of the 12th USENIX
Security Symposium, 2003.

[17] N. Provos, M. Friedl, and P. Honeyman, “Prevent-
ing privilege escalation,” in Proceedings of the 12th
USENIX Security Symposium, 2003.

[18] D. J. Bernstein, “Some thoughts on security after
ten years of qmail 1.0,” in Proceedings of the 2007
ACM workshop on Computer security architecture.

[19] A. Barth, C. Jackson, C. Reis, and T. G. C.
Team, “The security architecture of the chromium
browser,” 2008.

[20] E. Y. Chen, J. Bau, C. Reis, A. Barth, and C. Jack-
son, “App isolation: get the security of multiple
browsers with just one,” in Proceedings of the 18th
ACM conference on Computer and communica-
tions security, pp. 227–238, 2011.

[21] A. Guha, M. Fredrikson, B. Livshits, and
N. Swamy, “Verified security for browser exten-
sions,” in Proceedings of the IEEE Symposium on
Security and Privacy, pp. 115–130, 2011.

[22] “Html5 privilege separation: Source code release.”
http://github.com/devd/html5privsep.

[23] A. Barth, A. Felt, P. Saxena, and A. Boodman,
“Protecting browsers from extension vulnerabili-
ties,” in Proceedings of the 17th Network and Dis-
tributed System Security Symposium, 2010.

[24] A. P. Felt, K. Greenwood, and D. Wagner, “The
effectiveness of application permissions,” in Pro-
ceedings of the 2nd USENIX conference on Web ap-
plication development, 2011.

[25] K. W. Y. Au, Y. F. Zhou, Z. Huang, P. Gill, and
D. Lie, “Short paper: A look at smartphone per-
mission models,” in Proceedings of the 1st ACM
workshop on Security and privacy in smartphones
and mobile devices, 2011.

[26] A. P. Felt, “Advertising and android permissions,”
Nov 2011. http://www.adrienneporterfelt.
com/blog/?p=357.

[27] Google Inc., “Google chrome extensions: chrome.*
apis.” http://code.google.com/chrome/

extensions/api_index.html.

[28] S. Maffeis, J. C. Mitchell, and A. Taly, “Object ca-
pabilities and isolation of untrusted web applica-
tions,” in Proceedings of the 2010 IEEE Symposium
on Security and Privacy, pp. 125–140.

[29] Google Inc., “Issues: google-caja: A source-to-
source translator for securing Javascript-based
web content.” http://code.google.com/p/

google-caja.

[30] M. Finifter, J. Weinberger, and A. Barth, “Prevent-
ing capability leaks in secure JavaScript subsets,”
in Proc. of Network and Distributed System Secu-
rity Symposium, 2010.

[31] G. Tan and J. Croft, “An empirical security study
of the native code in the jdk,” in Proceedings of the
17th Usenix Conference on Security, pp. 365–377,
2008.

[32] A. Barth, “Rfc 6454: The web origin concept.”
http://tools.ietf.org/html/rfc6454.

[33] Bugzilla@Mozilla, “Bug 341604 - (framesand-
box) implement html5 sandbox attribute for
iframes.” https://bugzilla.mozilla.org/

show_bug.cgi?id=341604.

[34] B. Sterne and A. Barth, “Content security policy:
W3c editor’s draft,” 2012. https://dvcs.

w3.org/hg/content-security-policy/

raw-file/tip/csp-specification.dev.

html.

[35] diigo.com, “Awesome screenshot : Capture anno-
tate share.” http://www.awesomescreenshot.

com/.

15

444  21st USENIX Security Symposium	 USENIX Association

[36] Dropbox Inc., “Dropbox developer reference.”
http://www.dropbox.com/developers/

reference.

[37] “Ace - ajax.org cloud9 editor.” http://ace.

ajax.org/.

[38] The Dojo Foundation, “The dojo toolkit.” http:

//dojotoolkit.org/.

[39] GitHub Inc., “Edit like an ace.” https://github.
com/blog/905-edit-like-an-ace.

[40] “Oauth.” http://oauth.net/.

[41] D. Brumley and D. Song, “Privtrans: automatically
partitioning programs for privilege separation,” in
Proceedings of the 13th on USENIX Conference on
Security, 2004.

[42] P. Josling, “dropbox-js: A javascript library for
the dropbox api.” http://code.google.com/p/

dropbox-js/.

[43] A. van Kesteren (Ed.), “Cross-origin resource shar-
ing.” http://www.w3.org/TR/cors/.

[44] “pynarcissus : The narcissus javascript interpreter
ported to python.” http://code.google.com/

p/pynarcissus/.

[45] A. Bittau, P. Marchenko, M. Handley, and B. Karp,
“Wedge: splitting applications into reduced-
privilege compartments,” in Proceedings of the 5th
USENIX Symposium on Networked Systems Design
and Implementation, pp. 309–322, 2008.

[46] H. J. Wang, X. Fan, J. Howell, and C. Jackson,
“Protection and communication abstractions for
web browsers in mashupos,” SIGOPS Oper. Syst.
Rev., vol. 41, pp. 1–16, Oct. 2007.

[47] H. Wang, C. Grier, A. Moshchuk, S. King,
P. Choudhury, and H. Venter, “The multi-principal
os construction of the gazelle web browser,” in Pro-
ceedings of the 18th USENIX security symposium,
pp. 417–432, 2009.

[48] C. Grier, S. Tang, and S. King, “Designing and im-
plementing the op and op2 web browsers,” ACM
Transactions on the Web (TWEB), 2011.

[49] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna,
and E. Chin, “Permission re-delegation: Attacks
and defenses,” in Proceedings of the 20th USENIX
conference on Security, 2011.

[50] B. Parno, J. M. McCune, D. Wendlandt, D. G. An-
dersen, and A. Perrig, “Clamp: Practical preven-
tion of large-scale data leaks,” in Proceedings of
the 30th IEEE Symposium on Security and Privacy,
pp. 154–169, 2009.

[51] A. Barth, C. Jackson, and W. Li, “Attacks on
javascript mashup communication,” in Workshop
on Web 2.0 Security and Privacy (W2SP), 2009.

[52] M. T. Louw, K. T. Ganesh, and V. N. Venkatakrish-
nan, “Adjail: practical enforcement of confidential-
ity and integrity policies on web advertisements,”
in Proceedings of the 19th USENIX conference on
Security, 2010.

[53] L. Ingram and M. Walfish, “Treehouse: Javascript
sandboxes to help web developers help them-
selves,” in Proceedings of the USENIX annual tech-
nical conference, 2012.

[54] “AdSafe : Making JavaScript Safe for Advertis-
ing.” http://www.adsafe.org/.

16

USENIX Association 	 21st USENIX Security Symposium  445

Fuzzing with Code Fragments

Christian Holler
Mozilla Corporation∗

choller@mozilla.com

Kim Herzig
Saarland University

herzig@cs.uni-saarland.de

Andreas Zeller
Saarland University

zeller@cs.uni-saarland.de

Abstract
Fuzz testing is an automated technique providing random
data as input to a software system in the hope to expose
a vulnerability. In order to be effective, the fuzzed input
must be common enough to pass elementary consistency
checks; a JavaScript interpreter, for instance, would only
accept a semantically valid program. On the other hand,
the fuzzed input must be uncommon enough to trigger
exceptional behavior, such as a crash of the interpreter.
The LangFuzz approach resolves this conflict by using
a grammar to randomly generate valid programs; the
code fragments, however, partially stem from programs
known to have caused invalid behavior before. LangFuzz
is an effective tool for security testing: Applied on the
Mozilla JavaScript interpreter, it discovered a total of
105 new severe vulnerabilities within three months of
operation (and thus became one of the top security bug
bounty collectors within this period); applied on the PHP
interpreter, it discovered 18 new defects causing crashes.

1 Introduction

Software security issues are risky and expensive.
In 2008, the annual CSI Computer Crime & Security sur-
vey reported an average loss of 289,000 US$ for a single
security incident. Security testing employs a mix of tech-
niques to find vulnerabilities in software. One of these
techniques is fuzz testing—a process that automatically
generates random data input. Crashes or unexpected be-
havior point to potential software vulnerabilities.

In web browsers, the JavaScript interpreter is partic-
ularly prone to security issues; in Mozilla Firefox, for
instance, it encompasses the majority of vulnerability
fixes [13]. Hence, one could assume the JavaScript in-
terpreter would make a rewarding target for fuzz test-
ing. The problem, however, is that fuzzed input to a

∗At the time of this study, Christan Holler was writing his master
thesis at Saarland University. He is now employed at Mozilla.

JavaScript interpreter must follow the syntactic rules of
JavaScript. Otherwise, the JavaScript interpreter will re-
ject the input as invalid, and effectively restrict the test-
ing to its lexical and syntactic analysis, never reaching
areas like code transformation, in-time compilation, or
actual execution. To address this issue, fuzzing frame-
works include strategies to model the structure of the de-
sired input data; for fuzz testing a JavaScript interpreter,
this would require a built-in JavaScript grammar.

Surprisingly, the number of fuzzing frameworks that
generate test inputs on grammar basis is very limited [7,
17, 22]. For JavaScript, jsfunfuzz [17] is amongst the
most popular fuzzing tools, having discovered more that
1,000 defects in the Mozilla JavaScript engine. jsfunfuzz
is effective because it is hardcoded to target a specific
interpreter making use of specific knowledge about past
and common vulnerabilities. The question is: Can we
devise a generic fuzz testing approach that nonetheless
can exploit project-specific knowledge?

In this paper, we introduce a framework called
LangFuzz that allows black-box fuzz testing of engines
based on a context-free grammar. LangFuzz is not bound
against a specific test target in the sense that it takes the
grammar as its input: given a JavaScript grammar, it will
generate JavaScript programs; given a PHP grammar, it
will generate PHP programs. To adapt to specific targets,
LangFuzz can use its grammar to learn code fragments
from a given code base. Given a suite of previously fail-
ing programs, for instance, LangFuzz will use and re-
combine fragments of the provided test suite to generate
new programs—assuming that a recombination of pre-
viously problematic inputs has a higher chance to cause
new problems than random input.

The combination of fuzz testing based on a language
grammar and reusing project-specific issue-related code
fragments makes LangFuzz an effective tool for secu-
rity testing. Applied on the Mozilla JavaScript engine,
it discovered a total of 105 new vulnerabilities within
three months of operation. These bugs are serious and

1

446  21st USENIX Security Symposium	 USENIX Association

LangFuzz
Sample
Code

Test
Suite

Mutated
Test

Language
Grammar

Phase III
Feed test case into

interpreter, check for
crashes and assertions

Phase II
LangFuzz generated
(mutated) test cases

Phase I
Learning code

fragments from sample
code and test suite

Figure 1: LangFuzz workflow. Using a language gram-
mar, LangFuzz parses code fragments from sample code
and test cases from a test suite, and mutates the test cases
to incorporate these fragments. The resulting code is
then passed to the interpreter for execution.

valuable, as expressed by the 50.000$ bug bounties they
raised. Nearly all the detected bugs are memory safety
issues. At the same time, the approach can generically
handle arbitrary grammars, as long as they are weakly
typed: applied on the PHP interpreter, it discovered 18
new defects. All generated inputs are semantically cor-
rect and can be executed by the respective interpreters.

Figure 1 describes the structure of LangFuzz. The
framework requires three basic input sources: a language
grammar to be able to parse and generate code artifacts,
sample code used to learn language fragments, and a test
suite used for code mutation. Many test cases contain
code fragments that triggered past bugs. The test suite
can be used as sample code as well as mutation basis.
LangFuzz then generates new test cases using code mu-
tation and code generation strategies before passing the
generated test cases to a test driver executing the test
case—e.g. passing the generated code to an interpreter.

As an example of a generated test case exposing a se-
curity violation, consider Figure 2 that shows a secu-
rity issue in Mozzila’s JavaScript engine. RegExp.$1
(Line 8) is a pointer to the first grouped regular expres-
sion match. This memory area can be altered by setting
a new input (Line 7). An attacker could use the pointer
to arbitrarily access memory contents. In this test case,
Lines 7 and 8 are newly generated by LangFuzz, whereas
Lines 1–6 stem from an existing test case.

The remainder of this paper is organized as follows.
Section 2 discusses the state of the art in fuzz testing
and provides fundamental definitions. Section 3 presents
how LangFuzz works, from code generation to actual
test execution; Section 4 details the actual implemen-
tation. Section 5 discusses our evaluation setup, where
we compare LangFuzz against jsfunfuzz and show that
LangFuzz detects several issues which jsfunfuzz misses.
Section 6 describes the application of LangFuzz on PHP.

1 var haystack = "foo";
2 var re text = "^foo";
3 haystack += "x";
4 re text += "(x)";
5 var re = new RegExp(re text);
6 re. test (haystack);
7 RegExp.input = Number();
8 print(RegExp.$1);

Figure 2: Test case generated by LangFuzz, crashing the
JavaScript interpreter when executing Line 8. The static
access of RegExp is deprecated but valid. Reported as
Mozilla bug 610223 [1].

Section 7 discusses threats to validity, and Section 8
closes with conclusion and future work.

2 Background

2.1 Previous Work
“Fuzz testing” was introduced in 1972 by Purdom [16].
It is one of the first attempts to automatically test a parser
using the grammar it is based on. We especially adapted
Purdom’s idea of the “Shortest Terminal String Algo-
rithm” for LangFuzz. In 1990, Miller et al. [10] were
among the first to apply fuzz testing to real world appli-
cations. In their study, the authors used random gener-
ated program inputs to test various UNIX utilities. Since
then, the technique of fuzz testing has been used in many
different areas such as protocol testing [6,18], file format
testing [19, 20], or mutation of valid input [14, 20].

Most relevant for this paper are earlier studies on
grammar-based fuzz testing and test generations for com-
piler and interpreters. In 2005, Lindig [8] generated code
to specifically stress the C calling convention and check
the results later. In his work, the generator also uses re-
cursion on a small grammar combined with a fixed test
generation scheme. Molnar et al. [12] presented a tool
called SmartFuzz which uses symbolic execution to trig-
ger integer related problems (overflows, wrong conver-
sion, signedness problems, etc.) in x86 binaries. In 2011,
Yang et al. [22] presented CSmith—a language-specific
fuzzer operating on the C programming language gram-
mar. CSmith is a pure generator-based fuzzer generat-
ing C programs for testing compilers and is based on
earlier work of the same authors and on the random C
program generator published by Turner [21]. In contrast
to LangFuzz, CSmith aims to target correctness bugs in-
stead of security bugs. Similar to our work, CSmith ran-
domly uses productions from its built-in C grammar to
create a program. In contrast to LangFuzz, their gram-
mar has non-uniform probability annotations. Further-
more, they already introduce semantic rules during their

2

USENIX Association 	 21st USENIX Security Symposium  447

generation process by using filter functions, which allow
or disallow certain productions depending on the con-
text. This is reasonable when constructing a fuzzer for a
specific language, but very difficult for a language inde-
pendent approach as we are aiming for.

Fuzzing web browsers and their components is a
promising field. The most related work in this field is the
work by Ruderman and his tool jsfunfuzz [17]. Jsfunfuzz
is a black-box fuzzing tool for the JavaScript engine that
had a large impact when written in 2007. Jsfunfuzz not
only searches for crashes but can also detect certain cor-
rectness errors by differential testing. Since the tool was
released, it has found over 1,000 defects in the Mozilla
JavaScript Engine and was quickly adopted by browser
developers. jsfunfuzz was the first JavaScript fuzzer that
was publicly available (it has since been withdrawn) and
thus inspired LangFuzz. In contrast, LangFuzz does not
specifically aim at a single language, although this paper
uses JavaScript for evaluation and experiments. Instead,
our approaches aim to be solely based on grammar and
general language assumptions and to combine random
input generation with code mutation.

Miller and Peterson [11] evaluated these two
approaches—random test generation and modifying ex-
isting valid inputs—on PNG image formats showing that
mutation testing alone can miss a large amount of code
due to missing variety in the original inputs. Still, we
believe that mutating code snippets is an important step
that adds regression detection capabilities. Code that has
been shown to detect defects helps to detect incomplete
fixes when changing their context or fragments, espe-
cially when combined with a generative approach.

LangFuzz is a pure black-box approach, requiring no
source code or other knowledge of the tested interpreter.
As shown by Godefroid et al. [7] in 2008, a grammar-
based fuzzing framework that produces JavaScript en-
gine input (Internet Explorer 7) can increase coverage
when linked to a constraint solver and coverage measure-
ment tools. While we consider coverage to be an insuf-
ficient indicator for test quality in interpreters (just-in-
time compilation and the execution itself heavily depend
on the global engine state), such an extension may also
prove valuable for LangFuzz.

In 2011, Zalewski [23] presented the crossfuzz tool
that is specialized in DOM fuzzing and revealed some
problems in many popular browsers. The same author
has published even more fuzzers for specific purposes
like ref fuzz, mangleme, Canvas fuzzer or transfuzz.
They all target different functionality in browsers and
have found severe vulnerabilities.

2.2 Definitions
Throughout this paper, we will make use of the following
terminology and assumptions.

Defect. Within this paper, the term “defect” refers to er-
rors in code that cause abnormal termination only
(e.g. crash due to memory violation or an assertion
violation). All other software defects (e.g. defect
that produce false output without abnormal termi-
nation) will be disregarded, although such defects
might be detected under certain circumstances. We
think that this limitation is reasonable due to the
fact that detecting other types of defects using fuzz-
testing generally requires strong assumptions about
the target software under test.

Grammar. In this paper, the term “grammar” refers to
context-free grammars (Type-2 in the Chomsky hi-
erarchy) unless stated otherwise.

Interpreter. An “interpreter” in the sense of this paper
is any software system that receives a program in
source code form and then executes it. This also
includes just-in-time compilers which translate the
source to byte code before or during runtime of the
program. The main motivation to use grammar-
based fuzz testing is the fact that such interpreter
systems consist of lexer and parser stages that detect
malformed input which causes the system to reject
the input without even executing it.

3 How LangFuzz works

In fuzz testing, we can roughly distinguish between two
techniques: Generative approaches try to create new ran-
dom input, possibly using certain constraints or rules.
Mutative approaches try to derive new testing inputs
from existing data by randomly modifying it. For exam-
ple, both jsfunfuzz [17] and CSmith [22] use generative
approaches. LangFuzz makes use of both approaches,
but mutation is the primary technique. A purely gen-
erative design would likely fail due to certain semantic
rules not being respected (e.g. a variable must be de-
fined before it is used). Introducing semantic rules to
solve such problems would tie LangFuzz to certain lan-
guage semantics. Mutation, however, allows us to learn
and reuse existing semantic context. This way, LangFuzz
stays language-independent without losing the ability to
generate powerful semantic context to embed generated
or mutated code fragments.

3.1 Code mutation
The mutation process consists of two phases, a learn-
ing phase in the beginning and the main mutation phase.

3

448  21st USENIX Security Symposium	 USENIX Association

In the learning phase, we process a certain set of sam-
ple input files using a parser for the given language (de-
rived from the language grammar). The parser will allow
us to separate the input file into code fragments which
are essentially examples for non-terminals in the gram-
mar. Of course, these fragments may overlap (e.g. an
expression might be contained in an ifStatement

which is a statement according to the grammar). Given
a large codebase, we can build up a fragment pool

consisting of expansions for all kinds of non-terminal
symbols. Once we have learned all of our input, the
mutation phase starts. For mutation, a single target file
is processed again using the parser. This time, we ran-
domly pick some of the fragments we saw during parsing
and replace them with other fragments of the same type.
These code fragments might of course be semantically
invalid or less useful without the context that surrounded
them originally, but we accept this trade-off for being in-
dependent of the language semantics. In Section 3.3, we
discuss one important semantic improvement performed
during fragment replacement.

As our primary target is to trigger defects in the tar-
get program, it is reasonable to assume that existing test
cases (especially regressions) written in the target lan-
guage should be helpful for this purpose; building and
maintaining such test suites is standard practice for de-
velopers of interpreters and compilers. Using the mu-
tation process described in the previous section, we can
process the whole test suite file by file, first learning frag-
ments from it and then creating executable mutants based
on the original tests.

3.2 Code generation

With our mutation approach, we can only use those code
fragments as replacements that we have learned from our
code base before. Intuitively, it would also be useful if
we could generate fragments on our own, possibly yield-
ing constructs that cannot or can only hardly be produced
using the pure mutation approach.

Using a language grammar, it is natural to generate
fragments by random walk over the tree of possible ex-
pansion series. But performing a random walk with uni-
form probabilities is not guaranteed to terminate. How-
ever, terminating the walk without completing all expan-
sions might result in a syntactically invalid input.

Usually, this problem can be mitigated by restructur-
ing the grammar, adding non-uniform probabilities to the
edges and/or imposing additional semantic restrictions
during the production, as in the CSmith work [22].

Restructuring or annotating the grammar with prob-
abilities is not straightforward and requires additional
work for every single language. It is even reasonable
to assume that using fixed probabilities can only yield a

Figure 3: Example of a stepwise expansion on the syn-
tax tree: Dark nodes are unexpanded non-terminals (can
be expanded) while the other nodes have already been
expanded before.

coarse approximation as the real probabilities are condi-
tional, depending on the surrounding context. To over-
come these problems, we will use an algorithm that per-
forms the generation in a breadth-first manner:

1. Set current expansion ecur to the start symbol S
2. Loop num iterations:

(a) Choose a random non-terminal n in ecur:
i. Find the set of productions Pn ⊆ P that

can be applied to n.
ii. Pick one production p from Pn randomly

and apply it to n, yielding p(n).
iii. Replace that occurrence of n in ecur by

p(n).

Figure 3 gives an example of such a stepwise expan-
sion, considering the code as a syntax tree. Dark nodes
are unexpanded non-terminals that can be considered for
expansion while the remaining nodes have already been
expanded before. This algorithm does not yield a valid
expansion after num iterations. We need to replace the re-
maining non-terminal symbols by sequences of terminal
symbols. In the learning phase of the mutation approach
we are equipped with many different examples for dif-
ferent types of non-terminals. We randomly select any
of these code fragments to replace our remaining non-
terminals. In the unlikely situation that there is no ex-
ample available, we can use the minimal expansion of
the non-terminal instead. During mutation, we can use
learned and generated code fragments.

3.3 Adjusting Fragments to Environment
When a fragment is replaced by a different fragment, the
new fragment might not fit with respect to the semantics
of the remaining program. As LangFuzz does not aim to
semantically understand a specific language, we can only
perform corrections based on generic semantic assump-
tions. One example with a large impact are identifiers.

4

USENIX Association 	 21st USENIX Security Symposium  449

Many programming languages use identifiers to refer
to variables and functions, and some of them will throw
an error if an identifier has not been declared prior to us-
ing it (e.g. in JavaScript, using an identifier that is never
declared is considered to be a runtime error).

We can reduce the chances to have undeclared identi-
fiers within the new fragment by replacing all identifiers
in the fragment with identifiers that occur somewhere
in the rest of the program. Note that this can be done
purely at the syntactic level. LangFuzz only needs to
know which non-terminal in the grammar constitutes an
identifier in order to be able to statically extract known
identifiers from the program and replace identifiers in the
new fragment. Thus, it is still possible that identifiers
are unknown at the time of executing a certain statement
(e.g. because the identifier is declared afterwards), but
the chances of identifier reuse are increased.

Some languages contain identifiers that can be used
without declaring them (usually built-in objects/globals).
The adjustment approach can be even more effective if
LangFuzz is aware of these global objects in order to ig-
nore them during the replacement process. The only way
to identify such global objects within LangFuzz is to re-
quire a list of these objects as (optional) argument. Such
global object lists are usually found in the specification
of the respective language.

4 The LangFuzz Implementation

Based on the methods described so far, we now assem-
ble the different parts to get a proof-of-concept fuzzer
implementation that works as described in the overview
diagram (Figure 1) in the introduction.

Typically, LangFuzz starts with a learning phase
where the given sample code is parsed using the sup-
plied language grammar, thereby learning code frag-
ments (Section 4.1). The input of this learning phase
can be either a sample code base or the test suite itself.
Once the learning step is complete, LangFuzz starts to
process the test suite. All tests are parsed and the results
are cached for performance reasons.

Then the tool starts the actual working phase:

1. From the next test to be mutated, several fragments
(determined by an adjustable parameter, typically
1–3) are randomly selected for replacement.

2. As a single fragment can be considered as multi-
ple types (e.g. if (true) {...} can be seen as
an if-statement but also more generally as a state-
ment), we randomly pick one of the possible inter-
pretations for each of those fragments.

3. Finally, the mutated test is executed and its result is
checked (Section 4.3).

4.1 Code Parsing
In the learning and mutation phase, we parse the given
source code. For this purpose, LangFuzz contains a
parser subsystem such that concrete parsers for different
languages can be added. We decided to use the ANTLR
parser generator framework [15] because it is widespread
and several grammars for different languages exist in the
community. The parser is first used to learn fragments
from the given code base which LangFuzz then memo-
rizes as a token stream. When producing a mutated test,
the cached token stream is used to find all fragments in
the test that could be replaced and to determine which
code can be replaced according to the syntax—we can
mutate directly on the cached token stream.

4.2 Code Generation
The code generation step uses the stepwise expansion
(Section 3.2) algorithm to generate a code fragment.
As this algorithm works on the language grammar,
LangFuzz also includes an ANTLR parser for ANTLR
grammars. However, because LangFuzz is a proof-of-
concept, this subsystem only understands a subset of
the ANTLR grammar syntax and certain features that
are only required for parsing (e.g. implications) are not
supported. It is therefore necessary to simplify the lan-
guage grammar slightly before feeding it into LangFuzz.
LangFuzz uses further simplifications internally to make
the algorithm easier: Rules containing quantifiers (’*’,
‘+’) and optionals (’?’) are de-sugared to remove these
operators by introducing additional rules according to the
following patterns:

X∗� (R → ε |XR) (zero or more)
X+� (R → X |XR) (one or more)
X? � (R → ε |X) (zero or one)

where X can be any complex expression. Furthermore,
sub-alternatives (e.g. R → ((A|B)C|D)), are split up into
separate rules as well. With these simplifications done,
the grammar only consists of rules for which each alter-
native is only a sequence of terminals and non-terminals.
While we can now skip special handling of quantifiers
and nested alternatives, these simplifications also intro-
duce a new problem: The additional rules (synthesized
rules) created for these simplifications have no counter-
part in the parser grammar and hence there are no code
examples available for them. In case our stepwise ex-
pansion contains one or more synthesized rules, we re-
place those by their minimal expansion as described in
Section 3.2. All other remaining non-terminals are re-
placed by learned code fragments as described earlier.
In our implementation, we introduced a size limitation

5

450  21st USENIX Security Symposium	 USENIX Association

on these fragments to avoid placing huge code fragments
into small generated code fragments.

After code generation, the fragment replacement code
adjusts the new fragment to fit its new environment as
described in Section 3.3. For this purpose, LangFuzz
searches the remaining test for available identifiers and
maps the identifiers in the new fragment to existing ones.
The mapping is done based on the identifier name, not its
occurrence, i.e. when identifier “a” is mapped to “b”, all
occurrences of “a” are replaced by “b”. Identifiers that
are on the built-in identifier list (e.g. global objects) are
not replaced. LangFuzz can also actively map an identi-
fier to a built-in identifier with a certain probability.

4.3 Running Tests

In order to be able to run a mutated test, LangFuzz must
be able to run the test with its proper test harness which
contains definitions required for the test. A good exam-
ple is the Mozilla test suite: The top level directory con-
tains a file shell.js with definitions required for all tests.
Every subdirectory may contain an additional shell.js
with further definitions that might only be required for
the tests in that directory. To run a test, the JavaScript
engine must execute all shell files in the correct order,
followed by the test itself. LangFuzz implements this
logic in a test suite class which can be derived and ad-
justed easily for different test frameworks.

The simplest method to run a mutated test is to start the
JavaScript engine binary with the appropriate test har-
ness files and the mutated test. But starting the JavaScript
engine is slow and starting it over and over again would
cost enormous computation time. To solve this problem,
LangFuzz uses a persistent shell: A small JavaScript pro-
gram called the driver is started together with the test
harness. This way, we reduce the number of required
JavaScript engines to be started drastically. The driver
runs a set of tests within one single JavaScript engine
and signals completion when done. LangFuzz monitors
each persistent shell and records all input to it for later
reproduction. Of course the shell may not only be ter-
minated because of a crash, but also because of timeouts
or after a certain number of tests being run. The test
driver is language dependent and needs to be adapted for
other languages (see Section 6); such a test driver would
also be required if one implemented a new fuzzer from
scratch.

Although the original motivation to use persistent
shells was to increase test throughput it has an important
side-effect. It increased the number of defects detected.
Running multiple tests within a single shell allows indi-
vidual tests to influence each other. Different tests may
use the same variables or functions and cause crashes
that would not occur when running the individual tests

alone. In fact, most of the defects found in our experi-
ments required multiple tests to be executed in a row to
be triggered. This is especially the case for memory cor-
ruptions (e.g. garbage collector problems) that require
longer runs and a more complex setup than a single test
could provide.

Running multiple tests in one shell has the side effect
that it increases the number of source code lines executed
within each JavaScript shell. To determine which indi-
vidual tests are relevant for failure reproduction we use
the delta debugging algorithm [24] and the delta tool [9]
to filter out irrelevant test cases. The very same algorithm
also reduces the remaining number of executed source
code lines. The result is a suitably small test case.

4.4 Parameters
LangFuzz contains a large amount of adjustable param-
eters, e.g. probabilities and amounts that drive decisions
during the fuzzing process. In Table 3 (see Appendix)
we provide the most common/important parameters and
their default values. Please note that all default values are
chosen empirically. Because the evaluation of a certain
parameter set is very time consuming (1–3 days per set
and repeating each set hundreds of time times to elim-
inate the variance introduced by random generation), it
was not feasible to compare all possible parameter com-
binations and how they influence the results. We tried
to use reasonable values but cannot guarantee that these
values deliver the best performance.

5 Evaluation

To evaluate how well LangFuzz discovers undetected er-
rors in the JavaScript engines, we setup three different
experimental setups. The external validation compares
LangFuzz to the state of the art in JavaScript fuzzing.
The internal validation compares the two fragment re-
placement strategies used within LangFuzz: random
code generation and code mutation. Finally, we con-
ducted a field study to check whether LangFuzz is ac-
tually up to the task to detect real defects in current state
of the art JavaScript engines.

5.1 LangFuzz vs. jsfunfuzz
The state of the art fuzzer for JavaScript is the jsfunfuzz
tool written by Ruderman [17]. The tool is widely used
and has proven to be very successful in discovering de-
fect within various JavaScript engines. jsfunfuzz is an
active part of Mozilla’s and Google’s quality assurance
and regularly used in their development.

The differences between jsfunfuzz and LangFuzz are
significant and allow only unfair comparisons between

6

USENIX Association 	 21st USENIX Security Symposium  451

both tools. jsfunfuzz is highly adapted to test JavaScript
engines and contains multiple optimizations. jsfunfuzz is
designed to test new and previously untested JavaScript
features intensively. This of course required detailed
knowledge of the software project under test. Addition-
ally, jsfunfuzz has a certain level of semantic knowledge
and should be able to construct valid programs easier.
However, for every new language feature, the program
has to be adapted to incorporate these changes into the
testing process. Also, focusing on certain semantics can
exclude certain defects from being revealed at all.

In contrast, LangFuzz bases its testing strategy solely
on the grammar, existing programs (e.g. test suites) and
a very low amount of additional language-dependent in-
formation. In practice, this means that

• changes to the language under test do not re-
quire any program maintenance apart from possible
grammar updates; and

• through the choice of test cases, LangFuzz can be
set up to cover a certain application domain.

The use of existing programs like previous regression
tests allows LangFuzz to profit from previously detected
defects. However, LangFuzz lacks a semantic back-
ground on the language which lowers the chances to ob-
tain sane programs and produce test cases that trigger a
high amount of interaction between individual parts of
the program.

Although both tools have some differences that make
a fair comparison difficult, comparing both tools can un-
veil two very interesting questions:

Q1. To what extend do defects detected by LangFuzz and
jsfunfuzz overlap?

By overlap, we refer to the number of defects that both
tools are able to detect. A low overlap would indicate
that LangFuzz is able to detect new defects that were not
found and most likely will not be found by jsfunfuzz.
Therefore we define the overlap as the fraction of num-
ber of defects found by both tools and the number of de-
fects found in total. This gives us a value between zero
and one. A value of one would indicate that both tools
detected exactly the same defects. If both tools detected
totally different defects, the overlap would be zero.

overlap =
number of defects found by both tools

number of defects found in total

The second question to be answered by this compari-
son is targeted towards the effectiveness of LangFuzz.

Q2. How does LangFuzz’s detection rate compare to js-
funfuzz?

By effectiveness, we mean how many defects each tool
is able to locate in a given period of time. Even though
the overlap might be large, it might be the case that either
tool might detect certain defects much quicker or slower
than the respective other tool. To compare the effective-
ness of LangFuzz in comparison against jsfunfuzz, we
define the effectiveness as:

effectiveness =
number of defects found by LangFuzz
number of defects found by jsfunfuzz

.

This sets the number of defects found by LangFuzz
into relation to the number of defects found by jsfunfuzz.
Since both tools ran on the same time windows, the same
amount of time using identical amounts of resources (e.g.
CPU and RAM) we do not have to further normalize this
value.

Overall, this comparison answers the question whether
LangFuzz is a useful contribution to a quality assurance
process, even if a fuzzer such as jsfunfuzz is already
used. It is not our intention to show that either tool out-
performs the other tool by any means. We believe that
such comparisons are non-beneficial since both jsfunfuzz
and LangFuzz operate on different assumptions and lev-
els.

5.1.1 Testing windows

We compared jsfunfuzz and LangFuzz using Mozilla’s
JavaScript engine TraceMonkey. There were two main
reasons why we decided to choose TraceMonkey as
comparison base. First, Mozilla’s development process
and related artifacts are publicly available—data that re-
quired internal permission was kindly provided by the
Mozilla development team. The second main reason was
that jsfunfuzz is used in Mozilla’s daily quality assurance
process which ensures that jsfunfuzz is fully functional
on TraceMonkey without investing any effort to setup
the external tool. But using TraceMonkey as reference
JavaScript engine also comes with a downside. Since
jsfunfuzz is used daily within Mozilla, jsfunfuzz had al-
ready run on every revision of the engine. This fact has
two major consequences: First, jsfunfuzz would most
likely not find any new defects; and second, the num-
ber of potential defects that can be found by LangFuzz
is significantly reduced. Consequently, it is not possi-
ble to measure effectiveness based on a single revision
of TraceMonkey. Instead we make use of the fact that
Mozilla maintains a list of defects found by jsfunfuzz.
Using this list, we used a test strategy which is based on
time windows in which no defect fixes were applied that
are based on defect reports filed by jsfunfuzz (see Fig-
ure 4). Within these periods, both tools will have equal
chances to find defects within the TraceMoney engine.

7

452  21st USENIX Security Symposium	 USENIX Association

Revisions

A B

1
Bug is

introduced

2
jsfunfuzz

detects bug

3 Bug is fixed

(last jsfunfuzz
related fix)

testing window
without jsfunfuzz

related fixes

Figure 4: Example of a testing window with the live cy-
cle of a single defect.

start revision end revision
W1 46569:03f3c7efaa5e 47557:3b1c3f0e98d8
W2 47557:3b1c3f0e98d8 48065:7ff4f93bddaa
W3 48065:7ff4f93bddaa 48350:d7c7ba27b84e
W4 48350:d7c7ba27b84e 49731:aaa87f0f1afe
W5 49731:aaa87f0f1afe 51607:f3e58c264932

Table 1: The five testing windows used for the experi-
ments. Each window is given by Mercurial revisions of
the Mozilla version archive. All windows together cover
approximately two months of development activity.

Within the remainder of this paper, we call these periods
testing windows.

In detail, we applied the following test strategy for
both tools:

1. Start at some base revision f0. Run both tools for
a fixed amount of time. Defects detected can solely
be used to analyze the overlap, not effectiveness.

2. Set n = 1 and repeat several times:

(a) Find the next revision fn starting at fn−1 that
fixes a defect found in the list of jsfunfuzz de-
fects.

(b) Run both tools on fn − 1 for a fixed amount
of time. The defects found by both tools can
be used for effectiveness measurement if and
only if the defect was introduced between fn−1
and fn −1 (the preceding revision of fn)1. For
overlap measurement, all defects can be used.

Figure 4 illustrates how such a testing window could
look like. The window starts at revision A. At some
point, a bug is introduced and shortly afterwards, the bug
gets reported by jsfunfuzz. Finally, the bug is fixed in
revision B + 1. At this point, our testing window ends
and we can use revision B for experiments and count all

1 fn −1 is exactly one revision before fn and spans the testing win-
dow. The testing window starts at fn−1 and ends at fn −1 because fn is
a jsfunfuzz-induced fix.

defects that where introduced between A and B which is
the testing window.

For all tests, we used the TraceMonkey development
repository. Both the tested implementation and the test
cases (approximately 3,000 tests) are taken from the de-
velopment repository. As base revision, we chose re-
vision 46549 (03f3c7efaa5e) which is the first revision
committed in July 2010, right after Mozilla Firefox 4
Beta 1 was released at June 30, 2010. Table 1 shows
the five test windows used for our experiments. The end
revision of the last testing window dates to the end of Au-
gust 2010, implying that we covered almost two months
of development activity using these five windows. For
each testing window, we ran both tools for 24 hours.2

To check whether a defect detected by either tool was
introduced in the current testing window, we have to
detect the lifetime of the issue. Usually, this can be
achieved by using the bisect command provided by the
Mercurial SCM. This command allows automated test-
ing through the revision history to find the revision that
introduced or fixed a certain defect. Additionally, we
tried to identify the corresponding issue report to check
whether jsfunfuzz found the defect in daily quality assur-
ance routine.

5.1.2 Result of the external comparison

During the experiment, jsfunfuzz identified 23 defects,
15 of which lay within the respective testing windows.
In contrast, LangFuzz found a total of 26 defects with
only 8 defects in the respective testing windows. The
larger proportion of defects outside the testing windows
for LangFuzz is not surprising since LangFuzz, unlike
jsfunfuzz, was never used on the source base before this
experiment. Figure 5 illustrates the number of defects
per fuzzer within the testing windows.

To address research question Q1, we identified three
defects found by both fuzzers. Using the definition from
Section 5.1 the overlap between LangFuzz and jsfunfuzz
is 15%. While a high overlap value would indicate that
both fuzzers could be replaced by each other, an overlap
value of 15% is a strong indication that both fuzzers find
different defects and hence supplement each other.

LangFuzz and jsfunfuzz detect different defects
(overlap of 15%) and thus should be used

complementary to each other.

To answer research question Q2, we computed the ef-
fectiveness of LangFuzz for the defects found within the
experiment.

2For both tools we used the very same hardware. Each tool ran on
4 CPUs with the same specification. Since jsfunfuzz does not support
threading, multiple instances will be used instead. LangFuzz’s param-
eters were set to default values (see Table 3).

8

USENIX Association 	 21st USENIX Security Symposium  453

815 83 (15%)

overlap
LangFuzz

defects
jsfunfuzz
defects

Figure 5: Number of defects found by each fuzzer within
the testing windows and their overlap.

Compared to the 15 defects that were exclusively de-
tected by jsfunfuzz LangFuzz with it’s eight exclusively
detected defect has an effectiveness of 15 : 8 = 53%. In
other words, LangFuzz is half as effective as jsfunfuzz.

A generic grammar-based fuzzer like LangFuzz can be
53% as effective as a language-specific fuzzer like

jsfunfuzz.

For us, it was not surprising that a tried-and-proven
language-specific fuzzer is more effective than our more
general approach. However, effectiveness does not imply
capability. The several severe issues newly discovered by
LangFuzz show that the tool is capable of finding bugs
not detected by jsfunfuzz.

5.1.3 Example for a defect missed by jsfunfuzz

For several defects (especially garbage collector related)
we believe that jsfunfuzz was not able to trigger them
due to their high complexity even after minimization.
Figure 6 shows an example of code that triggered an as-
sertion jsfunfuzz was not able to trigger. In the original
bug report, Jesse Ruderman confirmed that he tweaked
jsfunfuzz in response to this report: “After seeing this
bug report, I tweaked jsfunfuzz to be able to trigger it.”
After adaptation, jsfunfuzz eventually produced an even
shorter code fragment triggering the assertion (we used
the tweaked version in our experiments).

5.2 Generation vs. Mutation
The last experiment compares LangFuzz with the state
of the art JavaScript engine fuzzer jsfunfuzz. The aim
of this experiment is to compare the internal fragment
replacement approaches of LangFuzz: code generation
against code mutation. The first option learned code frag-
ments to replace code fragments while the second option
uses code generation (see Section 4.2) for replacement
instead.

1 options(’tracejit’);
2 for (var j = 0; uneval({’-1’:true}); ++j) {
3 (−0).toString();
4}

Figure 6: Test case generated by LangFuzz causing the
TraceMonkey JavaScript interpreter to violate an inter-
nal assertion when executed. Reported as Mozilla bug
626345 [2].

This experiment should clarify whether only one of
the approaches accounts for most of the results (and the
other only slightly improves it or is even dispensable) or
if both approaches must be combined to achieve good
results.

Q3. How important is it that LangFuzz generates new
code?

Q4. How important is it that LangFuzz uses learned
code when replacing code fragments?

To measure the influence of either approach, we re-
quire two independent runs of LangFuzz with different
configurations but using equal limitation on resources
and runtime. The first configuration forced LangFuzz to
use only learned code snippets for fragment replacement
(mutation configuration). The second configuration al-
lowed code fragmentation by code generation only (gen-
eration configuration).

Intuitively, the second configuration should perform
random code generation without any code mutation at
all—also not using parsed test cases as fragmentation re-
placement basis. Such a setup would mean to fall back to
a purely generative approach eliminating the basic idea
behind LangFuzz. It would also lead to incomparable
results. The length of purely generated programs is usu-
ally small. The larger the generated code the higher the
chance to introduce errors leaving most of the generated
code meaningless. Also, when mutating code, we can
adjust the newly introduced fragment to the environment
(see Section 3.3). Using purely generated code instead,
this is not possible since there exists no consistent envi-
ronment around the location where a fragment is inserted
(in the syntax tree at the end of generation). Although it
would be possible to track the use of identifiers during
generation the result would most likely not be compara-
ble to results derived using code mutation.

Since we compared different LangFuzz configurations
only, there is no need to use the testing windows from the
previous experiment described in Section 5.1. Instead,
we used the two testing windows that showed most de-
fect detection potential when comparing LangFuzz with
jsfunfuzz (see Section 5.1): W1 and W5. Both windows

9

454  21st USENIX Security Symposium	 USENIX Association

11 614 72 15

generation configuration mutation configuration found with both configurations

testing window W1 testing window W5

Figure 7: Defects found with/without code generation.

showed a high defect rate in the experimental setup de-
scribed in Section 5.1 and spanned over 5,000 revisions
giving each configuration enough defect detection poten-
tial to get comparable results.

Limiting the number of testing windows to compare
the two different configurations of LangFuzz, we were
able to increase the runtime for each configuration, thus
minimizing the randomization impact on the experiment
at the same time. Both configurations ran on both testing
windows for 72 hours (complete experiment time was 12
days). For all runs we used the default parameters (see
Table 3), except for the synth.prob parameter. This
parameter can be used to force LangFuzz to use code
generation only (set to 1.0) and to ignore code generation
completely (set to 0.0).

Since the internal process of LangFuzz is driven by
randomization, we have to keep in mind that both runs
are independent and thus produce results that are hard to
compare. Thus, we should use these results as indica-
tions only.

5.2.1 Result of the internal comparison

Figure 7 shows the results of the internal comparison
experiment as overlapping circles. The left overlapping
circle pair shows the result of the comparison using test
window W1, the right pair the results using test window
W5. The dark circles represent the runs using the genera-
tion configuration while the white circles represent runs
using the mutation configuration. The overlap of the dark
and white circles contains those defects that can be de-
tected using both fragment replacement strategies. The
numbers left and right of the overlap show the number of
defects found exclusively by the corresponding configu-
ration.

For W1 a total of 31 defect were found. The major-
ity of 14 defects is detected by both configurations. But
11 defects were only found when using code generation
whereas six defects could only be detected using the mu-

1 (’false’? length(input + ’’): delete(null?0:{}),0).
watch(’x’, function f() { });

Figure 8: Test case generated by LangFuzz using code
generation. The code cause the TraceMonkey JavaScript
interpreter to write to a null pointer. Reported as Mozilla
bug 626436 [3].

tation replacement strategy. Interestingly, this proportion
is reversed in test window W5. Here a total of 24 de-
fects and again the majority of 15 defects were found
using both configurations. But in W5 the number of de-
fects found by mutation configuration exceeds the num-
ber of defects found by code generation. Combining the
number of defects found by either configurations exclu-
sively, code generation detected 13 defects that were not
detected by the mutation configuration. Vice versa, code
mutation detected 9 defects that were not detected during
the code generation configuration run. Although the ma-
jority of 29 defects found by both configurations, these
numbers and proportions show that both of LangFuzz in-
ternal fragmentation replacement approaches are crucial
for LangFuzz success and should be combined. Thus,
an ideal approach should be a mixed setting where both
code generation and direct fragment replacement is done,
both with a certain probability.

The combination of code mutation and code
generation detects defects not detected by either

internal approach alone. Combining both approaches
makes LangFuzz successful.

5.2.2 Example of defect detected by code generation

The code shown in Figure 8 triggered an error in the
parser subsystem of Mozilla TraceMonkey. This test was
partly produced by code generation. The complex and
unusual syntactic nesting here is unlikely to happen by
only mutating regular code.

5.2.3 Example for detected incomplete fix

The bug example shown in Figure 9 caused an assertion
violation in the V8 project and is a good example for both
an incomplete fix detected by LangFuzz and the benefits
of mutating existing regression tests: Initially, the bug
had been reported and fixed as usual. Fixes had been
merged into other branches and of course a new regres-
sion test based on the LangFuzz test has been added to
the repository. Shortly after, LangFuzz triggered exactly
the same assertion again using the newly added regres-
sion test in a mutated form. V8 developers confirmed
that the initial fix was incomplete and issued another fix.

10

USENIX Association 	 21st USENIX Security Symposium  455

1 var loop count = 5
2 function innerArrayLiteral(n) {
3 var a = new Array(n);
4 for (var i = 0; i < n; i++) {
5 a[i] = void ! delete ’object’%
6 ˜ delete 4
7 }
8}
9 function testConstructOfSizeSize(n) {

10 var str = innerArrayLiteral(n);
11}
12 for (var i = 0; i < loop count; i++) {
13 for (var j = 1000; j < 12000; j += 1000) {
14 testConstructOfSizeSize(j);
15 }
16}

Figure 9: Test case generated by LangFuzz discovering
an incomplete fix triggering an assertion failure in the
Google V8 JavaScript engine. Reported as Google V8
bug 1167 [4].

5.3 Field tests

The first two experiments are targeting the external and
internal comparison of LangFuzz. But so far, we did
not check whether LangFuzz is actually capable of find-
ing real world defects within software projects used
within industry products. To address this issue, we con-
ducted an experiment applying LangFuzz to three differ-
ent language interpreter engines: Mozilla TraceMonkey
(JavaScript), Google V8 (JavaScript), and the PHP en-
gine. In all experiments, we used the default configura-
tion of LangFuzz including code generation. An issue
was marked as security relevant if the corresponding de-
velopment team marked the issue accordingly as security
issue. Thus the security relevance classification was ex-
ternal and done by experts.

Mozilla TraceMonkey We tested LangFuzz on the
trunk branch versions of Mozilla’s TraceMonkey
JavaScript engine that were part of the Firefox 4 re-
lease. At the time we ran this experiment, Firefox
4 and its corresponding TraceMonkey version were
pre-release (beta version). Changes to the Trace-
Monkey trunk branch were regularly merged back
into the main repository.
Additionally, we ran LangFuzz on Mozilla’s type
inference branch of TraceMonkey. At that time,
this branch had alpha status and has not been part
of Firefox 4 (but was eventually included in Fire-
fox 5). Since this branch was no product branch,
no security assessment was done for issues reported
against it.

total number of defect
duplicates to non-LangFuzz defects

security related*

60

45

30

15

0

Mozilla TM
(FF4 Beta)

Mozilla TM
(Type Inference)

Chrome V8
(Chrome 10 beta)

PHP†

51

20

9

54

0 0 un
kn
ow

n

4

59

11

18

2

Figure 10: Real defects found on Mozilla, Google V8,
and PHP. These defects were reported as customer de-
fects and their numbers are not comparable to the de-
fect numbers in earlier figures.∗The security lock might
hide the issue report from public because it might be ex-
ploitable. †Defects reported for PHP were not classified
security relevant.

Google V8 Similar to the Mozilla field test, we tested
LangFuzz on the Google V8 JavaScript engine con-
tained within the development trunk branch. At
the time of testing, Chrome 10—including the new
V8 optimization technique “Crankshaft”—was in
beta stage and fixes for this branch were regularly
merged back into the Chrome 10 beta branch.

PHP To verify LangFuzz’s language independence, we
performed a proof-of-concept adaptation to PHP;
see Section 6 for details. The experiment was con-
ducted on the PHP trunk branch (SVN revision
309115). The experiment lasted 14 days.

5.3.1 Can LangFuzz detect real undetected defects?

For all three JavaScript engines, LangFuzz found be-
tween 51 and 59 defects (see Figure 10). For the Mozilla
TraceMonkey (FF4 Beta) branch, most left group of bars
in Figure 10, 39% of the found security issues where
classified as security related by the Mozilla development
team. Only nine defects were classified as duplicates of
bug reports not being related to our experiments. The
relatively low number of duplicates within all defect sets
shows that LangFuzz detects defects that slipped through
the quality gate of the individual projects, showing the
usefulness of LangFuzz. Although the fraction of secu-
rity related defects for the Google V8 branch is lower
(19%), it is still a significant number of new security re-
lated defects being found. The number of security is-
sues within the Mozilla TraceMonkey (Type Inference)
branch is reported as zero, simply because this branch
was not part of any product at the time of the experi-

11

456  21st USENIX Security Symposium	 USENIX Association

0 20 40 60 80 100
number of days

0

10

20

30

40

50

60

to
ta

l n
um

be
r o

f d
ef

ec
ts

 fo
un

d

Mozilla TM (FF4 Beta)
MozillaTM (Type Inference)
Chrome V8

Figure 11: Cumulative sum of the total number of de-
fects found depending on the length of the experiment.
Approximate 30 days for Mozilla TM (FF4 Beta) and
Google Chrome V8. We did no such analysis for PHP.

ment. This is why the Mozilla development team made
no security assessment for these issue reports.

For PHP, the number of detected defects is much lower
(see Figure 10). We considered the PHP experiment as
a proof-of-concept adaptation and invested considerably
less time into this experiment. Still, the total number of
18 defects was detected just within 14 days (1.3 defects
per day). The majority of these defects concerned mem-
ory safety violations in the PHP engine. We consider
these to be potential security vulnerabilities if an engine
is supposed to run on untrusted input. However, the PHP
development team did not classify reported issues as se-
curity relevant.

Figure 11 shows the cumulative sum of the total num-
ber of defects found depending on the length of the ex-
periment. The length of the different plotted lines corre-
sponds to the number of days each experiment was con-
ducted. The result for the Mozilla TraceMonkey (FF4
Beta) branch differs in length and shape. This stems from
the fact that during this experiment (which was our first
experiment) we fixed multiple issues within LangFuzz
which did not affect the two later applied experiments.
For both Mozilla projects, LangFuzz detected constantly
new defects. The curves of the two shorter experiments
show a very steep gradient right after starting LangFuzz.
The longer the experiment, the lower the number of de-
fects found per time period. Although this is no surpris-
ing finding, it manifests that LangFuzz quickly find de-
fects produced by test cases that differ greatly from other
test cases used before.

The issue reports corresponding to the defects reported
during field experiments can be found online using the
links shown in Table 2. Each link references a search
query within the corresponding issue tracker showing

exactly those issue reports filed during our field experi-
ments. Due to the fact that some of the bug reports could
be used to exploit the corresponding browser version,
some issue reports are security locked requiring special
permission to open the bug report. At the time of writing
this paper, this affects all Google V8 issue reports.

LangFuzz detected 164 real world defects in popular
JavaScript engines within four months, including
31 security related defects. On PHP, LangFuzz

detected 20 defects within 14 days.

5.3.2 Economic value

The number of defects detected by LangFuzz must be
interpreted with regard to the actual value of these de-
fects. Many of the defects were rewarded by bug
bounty awards. Within nine month of experiment-
ing with LangFuzz, defects found by the tool obtained
18 Chromium Security Rewards and 12 Mozilla Security
Bug Bounty Awards. We can only speculate on the po-
tential damage these findings prevented; in real money,
however, the above awards translated into 50,000 US$ of
bug bounties. Indeed, during this period, LangFuzz be-
came one of the top bounty collectors for Mozilla Trace-
Monkey and Google V8.

6 Adaptation to PHP

Although adapting LangFuzz to a new language is kept
as simple as possible, some adaptations are required.
Changes related to reading/running the respective project
test suite, integrating the generated parser/lexer classes,
and supplying additional language-dependent informa-
tion (optional) are necessary. In most cases, the required
effort for these changes adaptation changes is consider-
ably lower than the effort required to write a new lan-
guage fuzzer from scratch. The following is a short de-
scription of the changes required for PHP and in general:

Integration of Parser/Lexer Classes. Given a gram-
mar for the language, we first have to generate the
Parser/Lexer Java classes using ANTLR (automatic
step). For PHP, we choose the grammar supplied by
the PHPParser project [5].
LangFuzz uses so called high-level parser/lexer
classes that override all methods called when pars-
ing non-terminals. These classes extract the non-
terminals during parsing and can be automatically
generated from the classes provided by ANTLR.
All these classes are part of LangFuzz and get in-
tegrated into the internal language abstraction layer.

Integration of Tests. LangFuzz provides a test suite
class that must be derived and adjusted depending

12

USENIX Association 	 21st USENIX Security Symposium  457

Experiment branch Link
Mozilla TM (FF4 Beta) http://tinyurl.com/lfgraph-search4

Mozilla TM (Type Inference) http://tinyurl.com/lfgraph-search2

Google V8 http://tinyurl.com/lfgraph-search3

Table 2: Links to bug reports files during field tests. Due to security locks it might be that certain issue reports require
extended permission rights and may not be listed or cannot be opened.

on the target test suite. In the case of PHP, the orig-
inal test suite is quite complex because each test is
made up of different sections (not a single source
code file). For our proof-of-concept experiment, we
only extracted the code portions from these tests,
ignoring setup/teardown procedures and other sur-
rounding instructions. The resulting code files are
compatible with the standard test runner, so our run-
ner class does not need any new implementation.

Adding Language-dependent Information (optional)
In this step, information about identifiers in the
grammar and global built-in objects can be pro-
vided (e.g. taken from a public specification). In the
case of PHP, the grammar in use provides a single
non-terminal in the lexer for all identifiers used in
the source code which we can add to our language
class. Furthermore, the PHP online documentation
provides a list of all built-in functions which we
can add to LangFuzz through an external file.

Adapting LangFuzz to test different languages is easy:
provide language grammar and integrate tests. Adding

language dependent information is not required but
highly recommended.

7 Threats to Validity

Our field experiments covered different JavaScript en-
gines and a proof-of-concept adaptation to a second weak
typed language (PHP). Nevertheless, we cannot general-
ize that LangFuzz will be able to detect defects in other
interpreters for different languages. It might also be the
case that there exist specific requirements or properties
that must be met in order to make LangFuzz be effective.

Our direct comparison with jsfunfuzz is limited to a
single implementation and limited to certain versions of
this implementation. We cannot generalize the results
from these experiments. Running LangFuzz and jsfun-
fuzz on different targets or testing windows might change
comparison results.

The size and quality of test suites used by LangFuzz
during learning and mutating have a major impact on it’s
performance. Setups with less test cases or biased test
suites might decrease LangFuzz’s performance.

Both jsfunfuzz and LangFuzz make extensive use of
randomness. While some defects show up very quickly
and frequently in all runs, others are harder to detect.
Their discovery heavily depend on the time spent and
the randomness involved. In our experiments, we tried to
find a time limit that is large enough to minimize such ef-
fects but remains practical. Choosing different time lim-
its might impact the experimental results.

For most experiments, we report the number of de-
fects found. Some of the reported bugs might be dupli-
cates. Duplicates should be eliminated to prevent bias.
Although we invested a lot of efforts to identify such du-
plicates, we cannot ensure that we detected all of these
duplicates. This might impact the number of distinct de-
fects discovered through the experiments.

8 Conclusion

Fuzz testing is easy to apply, but needs language-
and project-specific knowledge to be most effective.
LangFuzz is an approach to fuzz testing that can easily be
adapted to new languages (by feeding it with an appropri-
ate grammar) and to new projects (by feeding it with an
appropriate set of test cases to mutate and extend). In our
evaluation, this made LangFuzz an effective tool in find-
ing security violations, complementing project-specific
tools which had been tuned towards their test subject for
several years. The economic value of the bugs uncovered
by LangFuzz is best illustrated by the worth of its bugs,
as illustrated by the awards and bug bounties it raised.
We recommend our approach for simple and effective au-
tomated testing of processors of complex input, includ-
ing compilers and interpreters—especially those dealing
with user-defined input.
Acknowledgments. We thank the Mozilla, Google and
PHP development teams for their support. Guillaume
Destuynder, Florian Gross, Clemens Hammacher, Chris-
tian Hammer, Matteo Maffei, and Eva May provided
helpful feedback on earlier revisions of this paper.

References
[1] https://bugzilla.mozilla.org/show_bug.cgi?id=

610223.

13

458  21st USENIX Security Symposium	 USENIX Association

[2] https://bugzilla.mozilla.org/show_bug.cgi?id=

626345.

[3] https://bugzilla.mozilla.org/show_bug.cgi?id=

626436.

[4] https://code.google.com/p/v8/issues/detail?id=

1167.

[5] The phpparser project. Project website.
http://code.google.com/p/phpparser/.

[6] AITEL, D. The advantages of block-based protocol analysis for
security testing. Tech. rep., 2002.

[7] GODEFROID, P., KIEZUN, A., AND LEVIN, M. Y. Grammar-
based whitebox fuzzing. SIGPLAN Not. 43, 6 (2008), 206–215.

[8] LINDIG, C. Random testing of c calling conventions. Proc.
AADEBUG. (2005), 3–12.

[9] MCPEAK, S., AND WILKERSON, D. S. The delta tool. Project
website. http://delta.tigris.org/.

[10] MILLER, B. P., FREDRIKSEN, L., AND SO, B. An empirical
study of the reliability of unix utilities. Commun. ACM 33 (De-
cember 1990), 32–44.

[11] MILLER, C., AND PETERSON, Z. N. J. Analysis of Mutation
and Generation-Based Fuzzing. Tech. rep., Independent Security
Evaluators, Mar. 2007.

[12] MOLNAR, D., LI, X. C., AND WAGNER, D. A. Dynamic test
generation to find integer bugs in x86 binary linux programs. In
Proceedings of the 18th conference on USENIX security sympo-
sium (Berkeley, CA, USA, 2009), SSYM’09, USENIX Associa-
tion, pp. 67–82.

[13] NEUHAUS, S., ZIMMERMANN, T., HOLLER, C., AND ZELLER,
A. Predicting vulnerable software components. In Proceedings
of the 14th ACM Conference on Computer and Communications
Security (October 2007).

[14] OEHLERT, P. Violating assumptions with fuzzing. IEEE Security
and Privacy 3 (March 2005), 58–62.

[15] PARR, T., AND QUONG, R. Antlr: A predicated-ll (k) parser
generator. Software: Practice and Experience 25, 7 (1995), 789–
810.

[16] PURDOM, P. A sentence generator for testing parsers. BIT Nu-
merical Mathematics 12 (1972), 366–375. 10.1007/BF01932308.

[17] RUDERMAN, J. Introducing jsfunfuzz. Blog Entry.
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/,
2007.

[18] SHU, G., HSU, Y., AND LEE, D. Detecting communication pro-
tocol security flaws by formal fuzz testing and machine learning.
In Proceedings of the 28th IFIP WG 6.1 international confer-
ence on Formal Techniques for Networked and Distributed Sys-
tems (Berlin, Heidelberg, 2008), FORTE ’08, Springer-Verlag,
pp. 299–304.

[19] SUTTON, M., AND GREENE, A. The art of file format fuzzing.
In Blackhat USA Conference (2005).

[20] SUTTON, M., GREENE, A., AND AMINI, P. Fuzzing: Brute
Force Vulnerability Discovery. Addison-Wesley Professional,
2007.

[21] TURNER, B. Random c program generator. Project website.
http://sites.google.com/site/brturn2/randomcprogramgenerator,
2007.

[22] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Finding and
Understanding Bugs in C Compilers. In Proceedings of the 2011
ACM SIGPLAN Conference on Programming Language Design
and Implementation (June 2011), ACM SIGPLAN, ACM.

[23] ZALEWSKI, M. Announcing cross fuzz. Blog En-
try. http://lcamtuf.blogspot.com/2011/01/announcing-crossfuzz-
potential-0-day-in.html, 2011.

[24] ZELLER, A., AND HILDEBRANDT, R. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software Engineer-
ing (2002), 183–200.

Appendix

Parameter Default
Value

synth.prob – Probability to generate
a required fragment instead of using a
known one.

0.5

synth.maxsteps – The maximal number
of steps to make during the stepwise ex-
pansion. The actual amount is 3 + a ran-
domly chosen number between 1 and this
value.

5

fragment.max.replace – The maximal
number of fragments that are replaced dur-
ing test mutation. The actual amount is a
randomly chosen number between 1 and
this value.

2

identifier.whitelist.active.prob

– The probability to actively introduce a
built-in identifier during fragment rewrit-
ing (i.e. a normal identifier in the fragment
is replaced by a built-in identifier).

0.1

Table 3: Common parameters in LangFuzz and their de-
fault values. See Section 4.4 on how these default values
were chosen.

14

USENIX Association 	 21st USENIX Security Symposium  459

kGuard: Lightweight Kernel Protection against Return-to-user Attacks

Vasileios P. Kemerlis Georgios Portokalidis Angelos D. Keromytis
Network Security Lab

Department of Computer Science

Columbia University, New York, NY, USA

{vpk, porto, angelos}@cs.columbia.edu

Abstract

Return-to-user (ret2usr) attacks exploit the operating sys-

tem kernel, enabling local users to hijack privileged ex-

ecution paths and execute arbitrary code with elevated

privileges. Current defenses have proven to be inade-

quate, as they have been repeatedly circumvented, in-

cur considerable overhead, or rely on extended hypervi-

sors and special hardware features. We present kGuard,

a compiler plugin that augments the kernel with com-

pact inline guards, which prevent ret2usr with low per-

formance and space overhead. kGuard can be used with

any operating system that features a weak separation be-

tween kernel and user space, requires no modifications

to the OS, and is applicable to both 32- and 64-bit ar-

chitectures. Our evaluation demonstrates that Linux ker-

nels compiled with kGuard become impervious to a va-

riety of control-flow hijacking exploits. kGuard exhibits

lower overhead than previous work, imposing on average

an overhead of 11.4% on system call and I/O latency on

x86 OSs, and 10.3% on x86-64. The size of a kGuard-

protected kernel grows between 3.5% and 5.6%, due to

the inserted checks, while the impact on real-life appli-

cations is minimal (≤1%).

1 Introduction

The operating system (OS) kernel is becoming an in-

creasingly attractive target for attackers [30, 60, 61, 64].

Due to the weak separation between user and kernel

space, direct transitions from more to less privileged pro-

tection domains (e.g., kernel to user space) are permissi-

ble, even though the reverse is not. As a result, bugs

like NULL pointer dereferences that would otherwise

cause only system instability, become serious vulnera-

bilities that facilitate privilege escalation attacks [64].

When successful, these attacks enable local users to ex-

ecute arbitrary code with kernel privileges, by redirect-

ing the control flow of the kernel to a user process.

Such return-to-user (ret2usr) attacks have affected all

major OSs, including Windows [60], Linux [16, 18],

and FreeBSD [19, 59, 61], while they are not limited to

x86 systems [23], but have also targeted the ARM [30],

DEC [31], and PowerPC [25] architectures.

There are numerous reasons to why attacks against the

kernel are becoming more common. First and foremost,

processes running with administrative privileges have be-

come harder to exploit due to the various defense mech-

anisms adopted by modern OSs [34,52]. Second, NULL

pointer dereference errors had not received significant at-

tention, until recently, exactly because they were thought

impractical and too difficult to exploit. In fact, 2009 has

been proclaimed, by some security researchers, as “the

year of the kernel NULL pointer dereference flaw” [15].

Third, exploiting kernel bugs, besides earning attack-

ers administrative privileges, enables them to mask their

presence on compromised systems [6].

Previous approaches to the problem are either im-

practical for deployment in certain environments or can

be easily circumvented. The most popular approach

has been to disallow user processes to memory-map the

lower part of their address space (i.e., the one including

page zero). Unfortunately, this scheme has been circum-

vented by various means [21, 66] and is not backwards

compatible [35]. The PaX [52] patch for x86 and x86-64

Linux kernels does not exhibit the same shortcomings,

but greatly increases system call and I/O latency, espe-

cially on 64-bit systems.

Recent advances in virtualization have fostered a

wave of research on extending virtual machine moni-

tors (VMMs) to enforce the integrity of the virtualized

guest kernels. SecVisor [62] and NICKLE [56] are two

hypervisor-based systems that can prevent ret2usr attacks

by leveraging memory virtualization and VMM intro-

spection. However, virtualization is not always practi-

cal. Consider smartphone devices that use stripped-down

versions of Linux and Windows, which are also vulnera-

ble to such attacks [30]. Running a complex VMM, like

460  21st USENIX Security Symposium	 USENIX Association

SecVisor, on current smartphones is not realistic due to

their limited resources (i.e., CPU and battery life). On

PCs, running the whole OS over a VM incurs perfor-

mance penalties and management costs, while increas-

ing the complexity and size of a VMM can introduce

new bugs and vulnerabilities [44, 58, 71]. To address the

latter, we have seen proposals for smaller and less error-

prone hypervisors [65], as well as hypervisor protection

solutions [4, 67]. The first exclude mechanisms such as

SecVisor, while the second add further complexity and

overhead, and lead to a “turtles all the way down” prob-

lem,1 by introducing yet another software layer to protect

the layers above it. Addressing the problem in hardware

would be the most efficient solution, but even though In-

tel has recently announced a new CPU feature, named

SMEP [37], to thwart such attacks, hardware extensions

are oftentimes adopted slowly by OSs. Note that other

vendors have not publicly announced similar extensions.

We present a lightweight solution to the problem.

kGuard is a compiler plugin that augments kernel code

with control-flow assertions (CFAs), which ensure that

privileged execution remains within its valid boundaries

and does not cross to user space. This is achieved by

identifying all indirect control transfers during compi-

lation, and injecting compact dynamic checks to attest

that the kernel remains confined. When a violation is de-

tected, the system is halted by default, while a custom

fault handler can also be specified. kGuard is able to

protect against attacks that overwrite a branch target to

directly transfer control to user space [23], while it also

handles more elaborate, two-step attacks that overwrite

data pointers to point to user-controlled memory, and

hence hijack execution via tampered data structures [20].

Finally, we introduce two novel code diversification

techniques to protect against attacks that employ by-

pass trampolines to avoid detection by kGuard. A tram-

poline is essentially an indirect branch instruction con-

tained within the kernel. If an attacker manages to ob-

tain the address of such an instruction and can also con-

trol its operand, he can use it to bypass our checks. Our

techniques randomize the locations of the CFA-indirect

branch pairs, both during compilation and at runtime,

significantly reducing the attackers’ chances of guessing

their location. The main contributions of this paper can

be summarized in the following:

• We present the design and implementation of

kGuard, a compiler plugin that protects the kernel

from ret2usr attacks by injecting fine-grained in-

line guards during compilation. Our approach does

not require modifications to the kernel or additional

software, such as a VMM. It is also architecture in-

1http://en.wikipedia.org/wiki/

Turtles_all_the_way_down

dependent by design, allowing us to compile OSs

for different target architectures and requires little

modifications for supporting new OSs.

• We introduce two code diversification techniques

to randomize the location of indirect branches, and

their associated checks, for thwarting elaborate ex-

ploits that employ bypass trampolines.

• We implement kGuard as a GCC extension, which

is freely available. Its maintenance cost is low

and can successfully compile functional x86/x86-

64 Linux and FreeBSD kernels. More importantly,

it can be easily combined with other compiler-based

protection mechanisms and tools.

• We assess the effectiveness of kGuard using real

privilege escalation attacks against 32- and 64-bit

Linux kernels. In all cases, kGuard was able to suc-

cessfully detect and prevent the respective exploit.

• We evaluate the performance of kGuard using a set

of macro- and micro-benchmarks. Our technique

incurs minimal runtime overhead on both x86 and

x86-64 architectures. Particularly, we show negligi-

ble impact on real-life applications, and an average

overhead of 11.4% on system call and I/O latency

on x86 Linux, and 10.3% on x86-64. The space

overhead of kGuard due to the instrumentation is

between 3.5% – 5.6%, while build time increases

by 0.05% to 0.3%.

kGuard is to some extent related to previous research

on control-flow integrity (CFI) [2]. Similar to CFI,

we rely on inline checks injected before every unsafe

control-flow transfer. Nevertheless, CFI depends on a

precomputed control-flow graph for determining the per-

missible targets of every indirect branch, and uses binary

rewriting to inject labels and checks in binaries.

CFI is not effective against ret2usr attacks. Its in-

tegrity is only guaranteed if the attacker cannot overwrite

the code of the protected binary or execute data. Dur-

ing a ret2usr attack, the adversary completely controls

user space memory, both in terms of contents and rights,

and hence, can subvert CFI by prepending his shellcode

with the respective label. Additionally, CFI induces con-

siderable performance overhead, thereby making it diffi-

cult to adopt. Ongoing work tries to overcome the lim-

itations of the technique [72]. kGuard can be viewed

as a lightweight variant of CFI and Program Shepherd-

ing [43] that is more suitable and efficient in protecting

kernel code from ret2usr threats.

The rest of this paper is organized as follows. In Sec-

tion 2, we look at how ret2usr attacks work and why

the current protection schemes are insufficient. Section 3

presents kGuard. We discuss the implementation of the

USENIX Association 	 21st USENIX Security Symposium  461

kGuard GCC plugin in Section 4, and evaluate its effec-

tiveness and performance in Section 5. Section 6 dis-

cusses possible extensions. Related work is in Section 7

and conclusions in Section 8.

2 Overview of ret2usr Attacks

2.1 Why Do They Work?

Commodity OSs offer process isolation through private,

hardware-enforced virtual address spaces. However, as

they strive to squeeze more performance out of the hard-

ware, they adopt a “shared” process/kernel model for

minimizing the overhead of operations that cross protec-

tion domains, like system calls. Specifically, Unix-like

OSs divide virtual memory into user and kernel space.

The former hosts user processes, while the latter holds

the kernel, device drivers, and kernel extensions (inter-

ested readers are referred to Figure 5, in the appendix,

for more information regarding the virtual memory lay-

out of kernel and user space in Linux).

In most CPU architectures, the segregation of the two

spaces is assisted and enforced by two hardware features.

The first is known as protection rings or CPU modes,

and the second is the memory management unit (MMU).

The x86/x86-64 CPU architecture supports four protec-

tion rings, with the kernel running in the most privileged

one (ring 0) and user applications in the least privileged

(ring 3).2 Similarly, the PowerPC platform supports two

CPU modes, SPARC and MIPS three, and ARM seven.

All these architectures also feature a MMU, which im-

plements virtual memory and ensures that memory as-

signed to a ring is not accessible by less privileged ones.

Since code running in user space cannot di-

rectly access or jump into the kernel, specific hard-

ware facilities (i.e., interrupts) or special instructions

(e.g., SYS{ENTER,CALL} and SYS{EXIT,RET} in

x86/x86-64) are provided for crossing the user/kernel

boundary. Nevertheless, while executing kernel code,

complete and unrestricted access to all memory and sys-

tem objects is available. For example, when servicing a

system call for a process, the kernel has to directly access

user memory for storing the results of the call. Hence,

when kernel code is abused, it can jump into user space

and execute arbitrary code with kernel privileges. Note

that although some OSs have completely separated ker-

nel and user spaces, such as the 32-bit XNU and Linux

running on UltraSPARC, most popular platforms use a

shared layout. In fact, on MIPS the shared address space

is mandated by the hardware.

2Some x86/x86-64 CPUs have more than four rings. Hardware-

assisted virtualization is colloquially known as ring -1, while System

Management Mode (SMM) is supposedly at ring -2.

As a consequence, software bugs that are only a source

of instability in user space, like NULL pointer derefer-

ences, can have more dire effects when located in the

kernel. Spengler [64] demonstrated such an attack by

exploiting a NULL pointer dereference bug, triggered by

the invocation a system call with specially crafted param-

eters. Earlier, it was generally thought that such flaws

could only be used to perform denial-of-service (DoS)

attacks [29], but Spengler’s exploit showed that mapping

code segments with different privileges inside the same

scope can be exploited to execute arbitrary user code

with kernel privileges. Note that SELinux [47], the hard-

ened version of the Linux kernel, is also vulnerable to

this attack.

2.2 How Do They Work?

ret2usr attacks are manifested by overwriting kernel-

level control data (e.g., return addresses, jump tables,

function pointers) with user space addresses. In early

versions of such exploits, this was accomplished by in-

voking a system call with carefully crafted arguments to

nullify a function pointer. When the null function pointer

is eventually dereferenced, control is transferred to ad-

dress zero that resides in user space. Commonly, that ad-

dress is not used by processes and is unmapped.3 How-

ever, if the attacker has local access to the system, he

can build a program with arbitrary data or code mapped

at address zero (or any other address in his program for

that matter). Notice that since the attacker controls the

program, its memory pages can be mapped both writable

and executable (i.e., W∧X anti-measures do not apply).

736 s ock = f i l e −> p r i v a t e _ d a t a ;

737 f l a g s = ! (f i l e −> f _ f l a g s & O_NONBLOCK) ? \

738 0 : MSG_DONTWAIT;

739 i f (more)

740 f l a g s | = MSG_MORE;

741 / ∗ [!] NULL p o i n t e r d e r e f e r e n c e (s endpage) [!] ∗ /

742 re turn sock−>ops−>s endpage (sock , page , o f f s e t ,

743 s i z e , f l a g s) ;

Snippet 1: NULL function pointer in Linux (net/socket.c)

Snippet 1 presents a straightforward NULL function

pointer vulnerability [17] that affected all Linux kernel

versions released between May 2001 and August 2009

(2.4.4/2.6.0 – 2.4.37/2.6.30.4). In this exploit, if the

sendfile system call is invoked with a socket descrip-

tor belonging to a vulnerable protocol family, the value

of the sendpage pointer in line 742 is set to NULL.

This results in an indirect function call to address zero,

which can be exploited by attackers to execute arbitrary

code with kernel privileges. A more detailed analysis of

this attack is presented in Appendix A.

3In Linux accessing an unmapped page, when running in kernel

mode, results into a kernel oops and subsequently causes the OS to kill

the offending process. Other OSs fail-stop with a kernel panic.

462  21st USENIX Security Symposium	 USENIX Association

1333 / ∗ [!] NULL p o i n t e r d e r e f e r e n c e (ops) [!] ∗ /

1334 i b u f −>ops−>g e t (i p i p e , i b u f) ;

1335 obuf = opipe −>b u f s + nbuf ;

1336 ∗obuf = ∗ i b u f ;

Snippet 2: NULL data pointer in Linux (fs/splice.c)

Snippet 2 shows the Linux kernel bug exploited by

Spengler [64], which is more elaborate. The ops field

in line 1334, which is a data pointer of type struct

pipe_buf_operations, becomes NULL after the

invocation of the tee system call. Upon dereferencing

ops, the effective address of a function is read via get,

which is mapped to the seventh double word (assuming

an x86 32-bit architecture) after the address pointed by

ops (i.e., due to the definition of the structure). Hence,

the kernel reads the branch target from 0x0000001C,

which is controlled by the user. This enables an attacker

to redirect the kernel to an arbitrary address.

NULL pointer dereferences are not the only attack

vector for ret2usr exploits. Attackers can partially cor-

rupt, or completely overwrite with user space addresses,

kernel-level control data, after exploiting memory safety

bugs. Examples of common targets include, return ad-

dresses, global dispatch tables, and function pointers

stored in kernel stack and heap. In addition, other vulner-

abilities allow attackers to corrupt arbitrary kernel mem-

ory, and consequently any function or data pointer, due

to the improper sanitization of user arguments [22, 23].

Use-after-free vulnerabilities due to race conditions in

FreeBSD 6.x/7.x and Linux kernels before 2.6.32-rc6

have also been used for the same purpose [19,20]. These

flaws are more complex and require multiple simulta-

neous kernel entrances to trigger the bug. Once they

succeed, the attacker can corrupt a pointer to a critical

kernel data structure that grants him complete control

over its contents by mapping a tampered data structure at

user space memory. If the structure contains a function

pointer, the attacker can achieve user code execution.

The end effect of all these attacks is that the ker-

nel is hijacked and control is redirected to user space

code. Throughout the rest of this paper, we will refer

to this type of exploitation as return-to-user (ret2usr),

since it resembles the older return-to-libc [27] technique

that redirected control to existing code in the C library.

Interestingly, ret2usr attacks are yet another incarna-

tion of the confused deputy problem [39], where a user

“cheats” the kernel (deputy) to misuse its authority and

execute arbitrary, non-kernel code with elevated privi-

leges. Finally, while most of the attacks discussed here

target Linux, similar flaws have been reported against

FreeBSD, OpenBSD, and Windows [19, 26, 59–61].

2.3 Limitations of Current Defenses

Restricting mmap The mitigation strategy adopted by

most Linux and BSD systems is to restrict the ability to

map the first pages of the address space to users with

administrative privileges only. In Linux and FreeBSD,

this is achieved by modifying the mmap system call to

apply the respective restrictions, as well as preventing

binaries from requesting page zero mappings. OpenBSD

completely removed the ability to map page zero, while

NetBSD has not adopted any protective measures yet.

Unfortunately, this approach has several limitations.

First and foremost, it does not solve the actual problem,

which is the weak separation of spaces. Disallowing ac-

cess to lower logical addresses is merely a protection

scheme against exploits that rely on NULL pointer bugs.

If an attacker bypasses the restriction imposed by mmap,

he can still orchestrate a ret2usr attack. Second, it does

not protect against exploits where control is redirected to

memory pages above the forbidden mmap region (e.g.,

by nullifying one or two bytes of a pointer, or overwrit-

ing a branch target with an arbitrary value). Third, it

breaks compatibility with applications that rely on hav-

ing access to low logical addresses, such as QEMU [5],

Wine [70], and DOSEMU [28]. Similar problems have

been reported for the FreeBSD distribution [35].

In fact, shortly after these protection mechanisms were

set in place, many techniques were developed for circum-

venting them. The first technique for bypassing mmap

restrictions used the brk system call for changing the

location of the program break (marked as brk offset

in Figure 5), which indicates where the heap segment

starts. By setting the break to a low logical address, it

was possible to dynamically allocate memory chunks in-

side page zero. Another technique used the mmap sys-

tem call to map pages starting from an address above the

forbidden region and extend the allocated region down-

wards, by supplying the MAP_GROWSDOWN parameter to

the call. A more elaborate mechanism utilized the differ-

ent execution domains supported by Linux, which can be

set with the personality system call, for executing

binaries compiled for different OSs. Specifically, an at-

tacker could set the personality of a binary to SRV4, thus

mapping page zero, since SRV4 utilizes the lower pages

of the address space [66]. Finally, the combination of

a NULL pointer with an integer overflow has also been

demonstrated, enabling attackers to completely bypass

the memory mapping restrictions [20, 21]. Despite the

fact that all the previous techniques were fixed shortly

after they were discovered, it is possible that other ap-

proaches can (and probably will be) developed by persis-

tent attackers, since the root cause of this new manifes-

tation of control hijacking attacks is the weak separation

of spaces.

USENIX Association 	 21st USENIX Security Symposium  463

Hardening with PaX UDEREF [53] and

KERNEXEC are two patches included in PaX [52]

for hardening the Linux kernel. In particular, they

provide protection against dereferencing, or branching

to, user space memory. In x86, PaX relies on memory

segmentation. It maps kernel space into an expand-down

segment that returns a memory fault whenever privileged

code tries to dereference pointers to other segments.4

In x86-64, where segmentation is not available, PaX

resorts in temporarily remapping user space memory

into a different area, using non-executable rights, when

execution enters the kernel, and restoring it when it exits.

PaX has limitations. First, it requires kernel patching

and is platform and architecture specific (i.e., x86/x86-64

Linux only). On the other hand, ret2usr attacks not only

have been demonstrated on many architectures, such as

ARM [30], DEC Alpha [31], and PowerPC [25], but also

on different OSs, like the BSDs [19, 26, 59, 61]. Sec-

ond, as we experimentally confirmed, PaX incurs non-

negligible performance overhead (see Section 5). In x86,

it achieves strong isolation using the segmentation unit,

but the kernel still needs to interact with user-level pro-

cesses. Hence, PaX modifies the stub that executes dur-

ing kernel entry for setting the respective segments, and

also patches code that copies data to/from user space, so

as to temporarily flatten the privileged segment for the

duration of the copy. Evidently, this approach increases

system call latency. In x86-64, remapping user space re-

quires page table manipulation, which results in a TLB

flush and exacerbates the problem [41].

3 Protection with kGuard

3.1 Overview

We propose a defensive mechanism that builds upon

inline monitoring and code diversification. kGuard is

a cross-platform compiler plugin that enforces address

space segregation, without relying on special hardware

features [37, 53] or custom hypervisors [56, 62]. It pro-

tects the kernel from ret2usr attacks with low-overhead,

by augmenting exploitable control transfers with dy-

namic control-flow assertions (CFAs) that, at runtime,

prevent the unconstrained transition of privileged execu-

tion paths to user space. The injected CFAs perform a

small runtime check before indirect branches to verify

that the target address is always in kernel space. If the

assertion is true, execution continues normally, while if

it fails because of a violation, execution is transferred to

a handler that was inserted during compilation. The de-

fault handler appends a warning message to the kernel

log and halts the system. We choose to coerce assertion

4In x86, UDEREF restricts only the SS, DS, and ES segments. CS

is taken care by the accompanying KERNEXEC patch.

failures into a kernel fail-stop to prevent unsafe condi-

tions, such as leaving the OS into an inconsistent state

(e.g., by aborting an in-flight kernel thread that might

hold locks or other resources). In Section 6, we discuss

how we can implement custom handlers for facilitating

forensic analysis, error virtualization [63], selective con-

finement, and protection against persistent attacks.

After compiling a kernel with kGuard, its execution is

limited to the privileged address space segment (e.g., ad-

dresses higher than 0xC0000000 in x86 Linux and BSD).

kGuard does not rely on any mapping restriction, so the

previously restricted addresses can be dispensed to the

process, lifting the compatibility issues with various ap-

plications [5,28,35,70]. Furthermore, the checks cannot

be bypassed using mmap hacks, like the ones described

in the previous section, nor can they be circumvented by

elaborate exploits that manage to jump to user space by

avoiding the forbidden low memory addresses. More im-

portantly, the kernel can still read and write user memory,

so its functionality remains unaffected.

3.2 Threat Model

In this work, we ascertain that an adversary is able to

completely overwrite, partially corrupt (e.g., zero out

only certain bytes), or nullify control data that are stored

inside the address space of the kernel. Notice that over-

writing certain data with arbitrary values, differs signif-

icantly from overwriting arbitrary kernel memory with

arbitrary values. kGuard does not deal with such an ad-

versary. In addition, we assume that the attacker can tam-

per with whole data structures (e.g., by mangling data

pointers), which in turn may contain control data.

Our technique is straightforward and guarantees that

kernel/user space boundary violations are prevented.

However, it is not a panacea that protects the kernel

from all types control-flow hijacking attacks. For in-

stance, kGuard does not address direct code-injection

inside kernel space, nor it thwarts code-reuse attacks

that utilize return-oriented/jump-oriented programming

(ROP/JOP) [7, 40]. Nevertheless, note the following.

First and foremost, our approach is orthogonal to many

solutions that do protect against such threats [4, 14, 42,

45, 53, 62]. For instance, canaries injected by the com-

piler [34] can be used against ret2usr attacks performed

via kernel stack-smashing. Second, the unique nature of

address space sharing casts many protection schemes, for

the aforementioned problems, ineffective. As an exam-

ple, consider again the case of ROP/JOP in the kernel

setting. No matter what anti-ROP techniques have been

utilized [45, 51], the attacker can still execute arbitrary

code, as long as there is no strict process/kernel separa-

tion, by mapping his code to user space and transferring

control to it (after hijacking a privileged execution path).

464  21st USENIX Security Symposium	 USENIX Association

Finally, in order to protect kGuard from being sub-

verted, we utilize a lightweight diversification technique

for the kernel’s text, which can also mitigate kernel-level

attacks that use code “gadgets” in a ROP/JOP fashion

(see Section 3.5). Overall, the aim of kGuard is not to

provide strict control-flow integrity for the kernel, but

rather to render a realistic threat ineffective.

3.3 Preventing ret2usr Attacks with CFAs

In the remainder of this section, we discuss the funda-

mental aspects of kGuard using examples based on x86-

based Linux systems. However, kGuard is by no means

restricted to 32-bit systems and Linux. It can be used

to compile any kernel that suffers from ret2usr attacks

for both 32- and 64-bit CPUs. kGuard “guards” indirect

control transfers from exploitation. In the x86 instruc-

tion set architecture (ISA), such control transfers are per-

formed using the call and jmp instructions with a reg-

ister or memory operand, and the ret instruction, which

takes an implicit memory operand from the stack (i.e.,

the saved return address). kGuard injects CFAs in both

cases to check that the branch target, specified by the re-

spective operand, is inside kernel space.

81 fb 00 00 00 c0 ; cmp $0xc0000000 ,%ebx
73 05 ; j a e c a l l _ l b l
bb 00 00 00 00 ; mov $0xc05a f8 f1 ,%ebx
f f d3 ; c a l l _ l b l : c a l l ∗%ebx

Snippet 3: CFAR guard applied on an indirect call in x86

Linux (drivers/cpufreq/cpufreq.c)

r e g i s t e r vo id ∗ t a r g e t _ a d d r e s s ;
. . .
i f (t a r g e t _ a d d r e s s < 0 xC0000000)

t a r g e t _ a d d r e s s = &< v i o l a t i o n h a n d l e r > ;
c a l l ∗ t a r g e t _ a d d r e s s ;

Snippet 4: CFAR guard in C-like code (x86)

We use two different CFA guards, namely CFAR and

CFAM, depending on whether the control transfer that

we want to confine uses a register or memory operand.

Snippet 3 shows an example of a CFAR guard. The code

is from the show() routine of the cpufreq driver.

kGuard instruments the indirect call (call *%ebx)

with 3 additional instructions. First, the cmp instruction

compares the ebx register with the lower kernel address

0xC0000000.5 If the assertion is true, the control transfer

is authorized by jumping to the call instruction. Oth-

erwise, the mov instruction loads the address of the vi-

olation handler (0xc05af8f1; panic()) into the branch

register and proceeds to execute call, which will result

into invoking the violation handler. In C-like code, this is

equivalent to injecting the statements shown in Snippet 4.

5The same is true for x86 FreeBSD/NetBSD, whereas for x86-64

the check should be with address 0xFFFFFFFF80000000. OpenBSD

maps the kernel to the upper 512MB of the virtual address space, and

hence, its base address in x86 CPUs is 0xD0000000.

57 ; push %e d i
8d 7b 50 ; l e a 0 x50(%ebx) ,% e d i
81 f f 00 00 00 c0 ; cmp $0xc0000000 ,% e d i
73 06 ; j a e kmem_lbl
5 f ; pop %e d i
e8 43 d6 2d b8 ; c a l l 0 x c 0 5 a f 8 f 1
5 f ; kmem_lbl : pop %e d i
81 7b 50 00 00 00 c0 ; cmpl $0xc0000000 , 0 x50(%ebx)
73 05 ; j a e c a l l _ l b l
c7 43 50 f1 f8 5 a c0 ; movl $0xc05a f8 f1 , 0 x50(%ebx)
f f 53 50 ; c a l l _ l b l : c a l l ∗0x50(%ebx)

Snippet 5: CFAM guard applied on an indirect call in x86

Linux (net/socket.c)

r e g i s t e r vo id ∗ t a r g e t _ a d d r e s s _ p t r ;
. . .
t a r g e t _ a d d r e s s _ p t r = &t a r g e t _ a d d r ;
i f (t a r g e t _ a d d r e s s _ p t r < 0xC0000000)

c a l l < v i o l a t i o n h a n d l e r > ;
i f (t a r g e t _ a d d r e s s < 0 xC0000000)

t a r g e t _ a d d r e s s = &< v i o l a t i o n h a n d l e r > ;
c a l l ∗ t a r g e t _ a d d r e s s ;

Snippet 6: CFAM guard in C-like code (x86)

Similarly, CFAM guards confine indirect branches

that use memory operands. Snippet 5 illustrates

how kGuard instruments the faulty control transfer of

sock_sendpage() (the original code is shown in

Snippet 1). The indirect call (call 0x50(%ebx);

Figure 5) is prepended by a sequence of 10 instructions

that perform two distinct assertions. CFAM not only

asserts that the branch target is within the kernel ad-

dress space, but also ensures that the memory address

where the branch target is loaded from is also in ker-

nel space. The latter is necessary for protecting against

cases where the attacker has managed to hijack a data

pointer to a structure that contains function pointers (see

Snippet 2 in Section 2.2). Snippet 6 illustrates how this

can be represented in C-like code. In order to perform

this dual check, we first need to spill one of the reg-

isters in use, unless the basic block where the CFA is

injected has spare registers, so that we can use it as a

temporary variable (i.e., edi in our example). The ad-

dress of the memory location that stores the branch target

(ebx + 0x50 = 0xfa7c8538; Figure 5), is dynamically

resolved via an arithmetic expression entailing registers

and constant offsets. We load its effective address into

edi (lea 0x50(%ebx),%edi), and proceed to ver-

ify that it points in kernel space. If a violation is detected,

the spilled register is restored and control is transferred

to the runtime violation handler (call 0xc05af8f1).

Otherwise, we proceed with restoring the spilled register

and confine the branch target similarly to the CFAR case.

81 7b 50 00 00 00 c0 ; cmpl $0xc0000000 , 0 x50(%ebx)
73 05 ; j a e c a l l _ l b l
c7 43 50 f1 f8 5 a c0 ; movl $0xc05a f8 f1 , 0 x50(%ebx
f f 53 50 ; c a l l _ l b l : c a l l ∗0x50(%ebx)

Snippet 7: Optimized CFAM guard

USENIX Association 	 21st USENIX Security Symposium  465

3.4 Optimizations

In certain cases, we can statically determine that the ad-

dress of the memory location that holds the branch target

is always mapped in kernel space. Examples include a

branch operand read from the stack (assuming that the

attacker has not seized control of the stack pointer), or

taken from a global data structure mapped at a fixed ad-

dress inside the data segment of the kernel. In this case,

the first assertion of a CFAM guard will always be true,

since the memory operand points within kernel space.

We optimize such scenarios by removing the redundant

assertion, effectively reducing the size of the inline guard

to 3 instructions. For instance, Snippet 7 depicts how we

can optimize the code shown in Snippet 5, assuming that

ebx is loaded with the address of a global symbol from

kernel’s data segment. ret instructions are always con-

fined using the optimized CFAM variant.

3.5 Mechanism Protection

CFAR and CFAM guards, as presented thus far, provide

reliable protection against ret2usr attacks, only if the at-

tacker exploits a vulnerability that allows him to par-

tially control a computed branch target. Currently, all

the well known and published ret2usr exploits, which we

analyzed in Section 2 and further discuss in Section 5.1,

fall in this category. However, vulnerabilities where the

attacker can overwrite kernel memory with arbitrary val-

ues also exist [22]. When such flaws are present, exploits

could attempt to bypass kGuard. This section discusses

how we protect against such attacks.

3.5.1 Bypass Trampolines

To subvert kGuard, an attacker has to be able to deter-

mine the address of a (indirect) control transfer instruc-

tion inside the text segment of the kernel. Moreover,

he should also be able to reliably control the value of

its operand (i.e., its branch target). We shall refer to

that branch as a bypass trampoline. Note that in ISAs

with overlapping variable-length instructions, it is possi-

ble to find an embedded opcode sequence that translates

directly to a control branch in user space [40]. By over-

writing the value of a protected branch target with the

address of a bypass trampoline, the attacker can success-

fully execute a jump to user space. The first CFA corre-

sponding to the initially exploited branch will succeed,

since the address of the trampoline remains inside the

privileged memory segment, while the second CFA that

guards the bypass trampoline is completely bypassed by

jumping directly to the branch instruction.

Similarly, jumping in the middle of an instruction that

contains an indirect branch within, could also be used to

subvert kGuard. At this point, we would like to stress that

if an attacker is armed with a powerful exploit for a vul-

nerability that allows him to overwrite arbitrary kernel

memory with arbitrary values, he can easily elevate his

privileges by overwriting the credentials associated with

a process under his control. In other words, the attacker

can achieve his goal without violating the control-flow

by jumping into user-level shellcode.

3.5.2 Code Diversification Against Bypasses

kGuard implements two diversification techniques that

aid in thwarting attacks exploiting bypass trampolines.

Code inflation This technique reshapes the kernel’s

text area. We begin with randomizing the starting ad-

dress of the text segment. This is achieved by insert-

ing a random NOP sled at its beginning, which effec-

tively shifts all executable instructions by an arbitrary

offset. Next, we continue by inserting NOP sleds of ran-

dom length at the beginning of each CFA. The end result

is that the location of every indirect control transfer in-

struction is randomized, making it harder for an attacker

to guess the exact address of a confined branch to use as

a bypass trampoline. The effects of the sleds are cumu-

lative because each one pushes all instructions and NOP

sleds following, further to higher memory addresses. The

size of the initial sled is chosen by kGuard based on the

target architecture. For example, in Linux and BSD the

kernel space is at least 1GB. Hence, we can achieve more

than 20 bits of entropy (i.e., the NOP sled can be ≥ 1MB)

without notably consuming address space.

The per-CFA NOP sled is randomly selected from a

user-configured range. By specifying the range, users

can trade higher overhead (both in terms of space and

speed), for a smaller probability that an attacker can re-

liably obtain the address of a bypass trampoline. An im-

portant assumption of the aforementioned technique is

the secrecy of the kernel’s text and symbols. If the at-

tacker has access to the binary image of the confined ker-

nel or is armed with a kernel-level memory leak [32], the

probability of successfully guessing the address of a by-

pass trampoline increases. We posit that assigning safe

file permissions to the kernel’s text, modules, and debug-

ging symbols is not a limiting factor.6 In fact, this is

considered standard practice in OS hardening, and is au-

tomatically enabled in PaX and similar patches, as well

as the latest Ubuntu Linux releases. Also note that the

kernel should harden access to the system message ring

buffer (dmesg), in order to prevent the leakage of kernel

addresses.7

6This can be trivially achieved by changing the permissions in the

file system to disallow reads, from non-administrative users, in /boot

and /lib/modules in Linux/FreeBSD, /bsd in OpenBSD, etc.
7In Linux, this can be done by asserting the kptr_restrict [24]

sysctl option that hides exposed kernel pointers in /proc interfaces.

466  21st USENIX Security Symposium	 USENIX Association

NOP
sled

NOP
sled

1st relocation

sled

NOP
sled

NOP

2nd relocation

re
lo

ca
ti

o
n
 w

in
d
o
w

.text
kernel

.text
kernel

NOP
sled

CFA

CFA

CFA

.text
kernel

.text
kernel

.text
kernel

.text
kernel

Initial build

branch

branch

branch

Figure 1: CFA motion synopsis. kGuard relocates each in-

line guard and protected branch, within a certain window, by

routinely rewriting the text segment of the kernel.

CFA motion The basic idea behind this technique is

the “continuous” relocation of the protected branches

and injected guards, by rewriting the text segment of the

kernel. Figure 1 illustrates the concept. During com-

pilation, kGuard emits information regarding each in-

jected CFA, which can be used later for relocating the

respective code snippets. Specifically, kGuard logs the

exact location of the CFA inside kernel’s text, the type

and size of the guard, the length of the prepended NOP

sled, as well as the size of the protected branch. Armed

with that information, we can then migrate every CFA

and indirect branch instruction separately, by moving it

inside the following window: sizeof(nop_sled)

+ sizeof(cfa) + sizeof(branch). Currently,

we only support CFA motion during kernel bootstrap. In

Linux, this is performed after the boot loader (e.g., LILO,

GNU GRUB) extracts the kernel image and right before

jumping to the setup() routine [8]. In BSDs, we per-

form the relocation after the boot program has executed

and right before transferring control to the machine-

dependent initialization routines (i.e., mi_startup()

in FreeBSD and main() in {Net, Open}BSD) [49]. Fi-

nally, note that CFA motion can also be performed at

runtime, on a live system, by trading runtime overhead

for safety. In Section 6, we discuss how we can expand

our current implementation, with moderate engineering

effort, to support real-time CFA migration.

To further protect against evasion, kGuard can be

combined with other techniques that secure kernel code

against code-injection [46] and code-reuse attacks [45,

51]. That said, mind that ret2usr violations are detected

at runtime, and hence one false guess is enough for iden-

tifying the attacker and restricting his capabilities (e.g.,

by revoking his access to prevent brute-force attacks). In

Section 6, we further discuss how kGuard can deal with

persistent threats.

*.s

*.m, *.mi

*.java

*.cxx, *.cpp
*.cc, *.c++

*.c, *.i

*.F, *.FOR

Objective−C

Fortran

... ...

GENERICJava

C

C++

Middle−end

GIMPLE

GIMPLE
High

GIMPLE
Low

GIMPLE
SSA

Back−end

RTL

kGuard

Front−ends

(RTL + CFAs)

Figure 2: Architectural overview of GCC. The compilation

process involves 3 distinct translators (frond-end, middle-end,

back-end), and more than 250 optimization passes. kGuard is

implemented as a back-end optimization pass.

4 Implementation

We implemented kGuard as a set of modifications to the

pipeline of a C compiler. Specifically, we instrument the

intermediate language (IL) used during the translation

process, in order to perform the CFA-based confinement

discussed in Section 3. Our implementation consists of

a plugin for the GNU Compiler Collection (GCC) that

contains the “de-facto” C compiler for building Linux

and BSD kernels. Note that although other compilers,

such as Clang and PCC, are capable of building much

of Linux/FreeBSD and NetBSD/OpenBSD respectively,

they are not officially supported by the corresponding de-

velopment groups, due to the excessive use of the GNU

C dialect in the kernel.

Starting with v4.5.1, GCC has been re-designed for

facilitating better isolation between its components, and

allowing the use of plugins for dynamically adding fea-

tures to the translators without modifying them. Fig-

ure 2 illustrates the internal architecture of GCC. The

compilation pipeline is comprised by 3 distinct com-

ponents, namely the front-end, middle-end, and back-

end, which transform the input into various ILs (i.e.,

GENERIC, GIMPLE, and RTL). The kGuard plugin

consists of ∼1000 lines of code in C and builds into a

position-independent (PIC) dynamic shared object that

is loaded by GCC. Upon loading kGuard, the plugin

manager of GCC invokes plugin_init() (i.e., the

initialization callback assumed to be exported by ev-

ery plugin), which parses the plugin arguments (if any)

and registers pass_branchprot as a new “optimiza-

tion” pass.8 Specifically, we chain our instrumentation

callback, namely branchprot_instrument(), af-

ter the vartrack RTL optimization pass, by call-

ing GCC’s register_callback() function and re-

questing to hook with the pass manager (see Figure 2).

8Currently, kGuard accepts 3 parameters: stub, nop, and log.

stub provides the runtime violation handler, nop stores the maximum

size of the random NOP sled inserted before each CFA, and log is used

to define an instrumentation logfile for CFA motion.

USENIX Association 	 21st USENIX Security Symposium  467

The reasons for choosing to implement the instrumen-

tation logic at the RTL level, and not as annotations to

the GENERIC or GIMPLE IL, are mainly the following.

First, by applying our assertions after most of the impor-

tant optimizations have been performed, which may re-

sult into moving or transforming instructions, we guaran-

tee that we instrument only relevant code. For instance,

we do not inject CFAs for dead code or control trans-

fers that, due to optimization transformations like inline

expansion, do not need to be confined. Second, we se-

cure implicit control transfers that are exposed later in

the translation (e.g., after the High-GIMPLE IL has been

“lowered”). Third, we tightly couple the CFAs with the

corresponding unsafe control transfers. This way, we

protect the guards from being removed or shifted from

the respective points of check, due to subsequent opti-

mization passes (e.g., code motion). For more informa-

tion regarding the internals of RTL instrumentation, in-

terested readers are referred to Appendix B.

5 Evaluation

In this section, we present the results from the evaluation

of kGuard both in terms of performance and effective-

ness. Our testbed consisted of a single host, equipped

with two 2.66GHz quad-core Intel Xeon X5500 CPUs

and 24GB of RAM, running Debian Linux v6 (“squeeze”

with kernel v2.6.32). Note that while conducting our

performance measurements, the host was idle with no

other user processes running apart from the evaluation

suite. Moreover, the results presented here are mean val-

ues, calculated after running 10 iterations of each experi-

ment; the error bars correspond to 95% confidence inter-

vals. kGuard and the corresponding Linux kernels were

compiled with GCC v4.5.1, and unless otherwise noted,

we used Debian’s default configuration that results into a

complete build of the kernel, including all modules and

device drivers. Finally, we configured kGuard to use a

random NOP sled of 20 instructions on average. Mind

you that we also measured the effect of various NOP sled

sizes, which was insignificant for the range 0 – 20.

5.1 Preventing Real Attacks

The main goal of the effectiveness evaluation is to ap-

ply kGuard on commodity OSs, and determine whether

it can detect and prevent real-life ret2usr attacks. Table 1

summarizes our test suite, which consisted of a collec-

tion of 8 exploits that cover a broad spectrum of different

flaws, including direct NULL pointer dereferences, con-

trol hijacking via tampered data structures (data pointer

corruption), function and data pointer overwrite, arbi-

trary kernel-memory nullification, and ret2usr via kernel

stack-smashing.

x86 kernel x86-64 kernel

call jmp ret call jmp ret

CFAM 20767 1803 — 17740 1732 —

CFAMopt 2253 12 113053 1789 0 105895

CFAR 6325 0 — 8780 0 —

Total 29345 1815 113053 28309 1732 105895

Table 2: Number of indirect branches instrumented by

kGuard in the vanilla Linux kernel v2.6.32.39.

We instrumented 10 different vanilla Linux kernels,

ranging from v2.6.18 up to v2.6.34, both in x86 and x86-

64 architectures. Additionally, in this experiment, we

used a home-grown violation handler for demonstrating

the customization features of kGuard. Upon the detec-

tion of a ret2usr attack, the handler takes a snapshot of

the memory that contains the user-provided code for an-

alyzing the behavior of the offending process. Such a

feature could be useful in a honeypot setup for perform-

ing malware analysis and studying new ret2usr exploita-

tion vectors. All kernels were compiled with and with-

out kGuard, and tested against the respective set of ex-

ploits. In every case, we were able to successfully detect

and prevent the corresponding exploitation attempt. Also

note that the tested exploits circumvented the page map-

ping restrictions of Linux, by using one or more of the

techniques discussed in Section 2.3.

5.2 Translation Overhead

We first quantify the additional time needed to inspect the

RTL IL and emit the CFAs (see Section 4). Specifically,

we measured the total build time with Unix’s time util-

ity, when compiling the v2.6.32.39 Linux kernel natively

and with kGuard. On average, we observed a 0.3% in-

crease on total build time on the x86 architecture, and

0.05% on the x86-64. Moreover, the size of the ker-

nel image/modules was increased by 3.5%/0.43% on the

x86, and 5.6%/0.56% on the x86-64.

In Table 2, we show the number of exploitable

branches instrumented by kGuard, categorized by ar-

chitecture, and confinement and instruction type. As

expected, ret instructions dominate the computed

branches. Note that both in x86 and x86-64 scenar-

ios, we were able to optimize approximately 10% of

the total indirect calls via memory locations, using the

optimization scheme presented in Section 3.4. Over-

all, the drivers/ subsystem was the one with the

most instrumentations, followed by fs/, net/, and

kernel/. Additionally, a significant amount of instru-

mented branches was due to architecture-dependent code

(arch/) and “inlined” C functions (include/).

468  21st USENIX Security Symposium	 USENIX Association

Vulnerability Description Impact
Exploit

x86 x86-64

CVE-2009-1897 NULL function pointer dereference in drivers/net/tun.c due to compiler optimization 2.6.30–2.6.30.1
√

—

CVE-2009-2692 NULL function pointer dereference in net/socket.c due to improper initialization 2.6.0–2.6.30.4
√ √

CVE-2009-2908 NULL data pointer dereference in fs/ecryptfs/inode.c due to a negative reference
counter (function pointer affected via tampered data flow)

2.6.31
√ √

CVE-2009-3547 data pointer corruption in fs/pipe.c due to a use-after-free bug (function pointer under
user control via tampered data structure)

≤ 2.6.32-rc6
√ √

CVE-2010-2959 function pointer overwrite via integer overflow in net/can/bcm.c 2.6.{27.x, 32.x, 35.x}
√

—

CVE-2010-4258 function pointer overwrite via arbitrary kernel memory nullification in kernel/exit.c ≤ 2.6.36.2
√ √

EDB-15916 NULL function pointer overwrite via a signedness error in Phonet protocol (function
pointer affected via tampered data structure)

2.6.34
√ √

CVE-2009-3234 ret2usr via kernel stack buffer overflow in kernel/perf_counter.c (return address is
overwritten with user space memory)

2.6.31-rc1
√ √

√
: detected and prevented successfully —: exploit unavailable

Table 1: Effectiveness evaluation suite. We instrumented 10 x86/x86-64 vanilla Linux kernels, ranging from v2.6.18 to v2.6.34,

for assessing kGuard. We successfully detected and prevented all the listed exploits.

5.3 Performance Overhead

The injected CFAs also introduce runtime latency. We

evaluated kGuard to quantify this overhead and estab-

lish a set of performance bounds for different types of

system services. Moreover, we used the overhead im-

posed by PaX (i.e., UDEREF [53] and KERNEXEC) as

a reference. Mind you that on x86, PaX offers protection

against ret2usr attacks by utilizing the segmentation unit

for isolating the kernel from user space. In x86-64 CPUs,

where segmentation is not supported by the hardware, it

temporarily remaps user space into a different location

with non-execute permissions.

Macro benchmarks We begin with the evaluation of

kGuard using a set of real-life applications that repre-

sent different workloads. In particular, we used a kernel

build and two popular server applications. The Apache

web server, which performs mainly I/O, and the MySQL

RDBMS that is both I/O driven and CPU intensive. We

run all the respective tests over a vanilla Linux kernel

v2.6.32.39, the same kernel patched with PaX, and in-

strumented with kGuard.

First, we measured the time taken to build a vanilla

Linux kernel (v2.6.32.39), using the Unix time utility.

On the x86, the PaX-protected kernel incurs a 1.26%

run-time overhead, while on the x86-64 the overhead is

2.89%. In contrast, kGuard ranges between 0.93% on

x86-64, and 1.03% on x86. Next, we evaluated MySQL

v5.1.49 using its own benchmark suite (sql-bench).

The suite consists of four different tests, which assess

the completion time of various DB operations, like table

creation and modification, data selection and insertion,

and so forth. On average, kGuard’s slowdown ranges

from 0.85% (x86-64) to 0.93% (x86), while PaX lies

between 1.16% (x86) and 2.67% (x86-64). Finally, we

measured Apache’s performance using its own utility ab

and static HTML files of different size. We used Apache

v2.2.16 and configured it to pre-fork all the worker pro-

cesses (pre-forking is a standard multiprocessing mod-

ule), in order to avoid high fluctuations in performance,

due to Apache spawning extra processes for handling the

incoming requests at the beginning of our experiments.

We chose files with sizes of 1KB, 10KB, 100KB, and

1MB, and measured the average throughput in requests

per second (req/sec). All other options were left to their

default setting. The kernel patched with PaX incurs an

average slowdown that ranges between 0.01% and 0.09%

on the x86, and 0.01% and 1.07% on x86-64. In antithe-

sis, kGuard’s slowdown lies between 0.001% and 0.01%.

Overall, our results indicate that in both x86 and x86-64

Linux the impact of kGuard in real-life applications is

negligible (≤1%).

Micro benchmarks Since the injected CFAs are dis-

tributed throughout many kernel subsystems, such as the

essential net/ and fs/, we used the LMbench [50] mi-

crobenchmark suite to measure the impact of kGuard

on the performance of core kernel system calls and

facilities. We focus on both latency and bandwidth.

For the first, we measured the latency of entering the

OS, by investigating the null system call (syscall)

and the most frequently used I/O-related calls: read,

write, fstat, select, open/close. Addition-

ally, we measured the time needed to install a signal

with sigaction, inter-process communication (IPC)

latency with socket and pipe, and process creation

latency with fork+{exit, execve, /bin/sh}.

Figure 3 summarizes the latency overhead of kGuard

in contrast to the vanilla Linux kernel and a kernel with

the PaX patch applied and enabled. Note that the time

is measured in microseconds (µsec). kGuard ranges

from 2.7% to 23.5% in x86 (average 11.4%), and 2.9%

to 19.1% in x86-64 (average 10.3%). In contrast, the

PaX-protected kernel exhibits a latency ranging between

5.6% and 257% (average 84.5%) on the x86, whereas on

x86-64, the latency overhead ranges between 19% and

531% (average 172.2%). Additionally, kGuard’s over-

head for process creation (in both architectures) lies be-

tween 7.1% and 9.7%, whereas PaX ranges from 8.1%

to 56.3%.

USENIX Association 	 21st USENIX Security Symposium  469

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

syscall()
read()

write()
fstat()

sigaction()

L
a

te
n

c
y
 (

µ
s
e

c
)

vanilla
PaX

kGuard

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

select ()-10 fds

select()-100 fds

open/close()

socket()
pipe()

L
a

te
n

c
y
 (

µ
s
e

c
)

vanilla
PaX

kGuard

(a) x86

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

syscall()
read()

write()
fstat()

sigaction()

L
a

te
n

c
y
 (

µ
s
e

c
)

vanilla
PaX

kGuard

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

select ()-10 fds

select()-100 fds

open/close()

socket()
pipe()

L
a

te
n

c
y
 (

µ
s
e

c
)

vanilla
PaX

kGuard

(b) x86-64

Figure 3: Latency overhead incurred by kGuard and PaX on essential system calls (x86/x86-64 Linux).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Socket (PF_INET)

Socket (PF_UNIX)

Pipe

B
a
n
d
w

id
th

 (
M

B
/s

)

x86

vanilla
PaX

kGuard

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Socket (PF_INET)

Socket (PF_UNIX)

Pipe

B
a
n
d
w

id
th

 (
M

B
/s

)

x86-64

vanilla
PaX

kGuard

Figure 4: IPC bandwidth achieved by kGuard and PaX, using

TCP (PF_INET), Unix sockets (PF_UNIX), and pipes.

As far as bandwidth is concerned, we measured the

degradation imposed by kGuard and PaX in the maxi-

mum achieved bandwidth of popular IPC facilities, such

as sockets and pipes. Figure 4 shows our results (band-

width is measured in MB/s). kGuard’s slowdown ranges

between 3.2% – 10% on x86 (average 6%), and 5.25%

– 9.27% on x86-64 (average 6.6%). PaX’s overhead

lies between 19.9% – 58.8% on x86 (average 37%),

and 21.7% – 78% on x86-64 (average 42.8%). Overall,

kGuard exhibits lower overhead on x86-64, due to the

fewer CFAM guards (see Table 2). Recall that CFAR con-

finement can be performed with just 3 additional instruc-

tions, and hence incurs less run-time overhead, whereas

CFAM might need up to 10 (e.g., when we cannot opti-

mize). However, the same is not true for PaX, since the

lack of segmentation in x86-64 results in higher perfor-

mance penalty.

6 Discussion and Future Work

Custom violation handlers kGuard’s default violation

handler appends a message in system log and halts the

OS. We coerce assertion violations into a kernel fail-stop

to prevent brute-force attempts and to avoid leaving the

OS in inconsistent states (e.g., by aborting an in-flight

kernel thread that holds a lock). However, kGuard can be

configured to use a custom handler. Upon enabling this

option, our instrumentation becomes slightly different.

Instead of overwriting offending branch targets with the

address of our handler, we push the value of the branch

target into the stack and invoke the handler directly. In

the case of a CFAR guard this means that the mov in-

struction (see Snippet 3) will be replaced with a push

and call. CFAM guards are modified accordingly.

This instrumentation increases slightly the size of our

inline guards, but does not incur additional overhead,

since the extra instructions are on the error path. Ad-

ditionally, the custom violation handler has access to the

location where the violation occurred, by reading the re-

turn address of the callee (pushed into the stack from

call), as well as to the offending branch target (passed

as argument to the handler). Using that information,

one can implement adaptive defense mechanisms, in-

cluding selective confinement (e.g., deal with VMware’s

I/O backdoor that needs to “violate” protection domains),

error virtualization [63], as well as forensic analysis (e.g.,

dump the shellcode). The latter can be useful in honeypot

setups for studying new ret2usr exploitation vectors.

Persistent threats By building upon the previous fea-

ture, we implemented a handler that actively responds to

persistent threats (i.e., users that repeatedly try to per-

form a ret2usr attack). Once invoked, due to a violation,

it performs the following. First, it checks the execution

context of the kernel to identify if it runs inside a user-

470  21st USENIX Security Symposium	 USENIX Association

level process or an interrupt handler. If the violation oc-

curred while executing an interrupt service routine, or

the current execution path is holding a lock9, then we

fail-stop the kernel. Else, if the kernel is preemptible, we

terminate all processes with the same uid of the offend-

ing process and prevent the user from logging in. Other

possible approaches include inserting an exponentially

increased delay for user logins (i.e., make the bruteforce

attack slow and impractical), activate CFA motion, etc.

Future considerations Currently, we investigate how

to apply the CFA motion technique (see Section 3.5),

while a kernel is running and the OS is live. Our early

Linux prototype utilizes a dedicated kernel thread, which

upon a certain condition, freezes the kernel and per-

forms rewriting. Thus far, we achieve CFA relocation

in a coarse-grained manner, by exploiting the suspend

subsystem of the Linux kernel. Specifically, we bring

the system to pre-suspend state for preventing any ker-

nel code from being invoked during the relocation (note

that the BSD OSs have similar facilities). Possible events

to initiate live CFA motion are the number of executed

system calls or interrupts (i.e., diversify the kernel ev-

ery n invocation events), CFA violations, or in the case

of smartphone devices, dock station attach and charging.

However, our end goal is to perform CFA motion in a

more fine-grained, non-interruptible and efficient man-

ner, without “locking” the whole OS.

7 Related Work

kGuard is inspired by the numerous compiler-based tech-

niques that explicitly or implicitly constrain control flow

and impose a specific execution policy. StackGuard [14]

and ProPolice [34] are GCC patches that extend the be-

havior of the translator for inserting a canary word prior

to the saved return address on the stack. The canary is

checked again before a function return is performed, and

execution is halted if it has been overwritten (e.g., due to

a stack-smashing attack). Stack Shield [1] is a similar ex-

tension that saves the return address, upon function entry,

into a write-protected memory area that is not affected by

buffer overflows and restores it before returning.

Generally, these approaches have limitations [9, 69].

However, they significantly mitigate real-life exploits by

assuring that functions will always return to caller sites,

incur low performance overhead, and do not require any

change to the runtime environment or platform of the

protected applications. For these reasons, they have been

adopted by mainstream compilers, such as GCC, and en-

abled by default in many BSD and Linux distributions.

9In Linux, we can check if the kernel is holding locks by

looking at the preempt_count variable in the current process’s

thread_info structure [48].

kGuard operates analogously, by hooking to the compi-

lation process and dynamically instrumenting code with

inline guards. However, note that we leverage the plugin

API of GCC, and do not require patching the compiler

itself, thus aiding the adoption of kGuard considerably.

More importantly, since stack protection is now enabled

by default, kGuard can be configured to offload the bur-

den of dealing with the integrity of return control data

to GCC. If random XOR canaries [14] are utilized, then

any attempt to tamper with saved return addresses on the

stack, for redirecting the privileged control flow to user

space, will be detected and prevented. Hence, the protec-

tion of kernel-level ret instructions with CFAs can be

turned off. Note that during our preliminary evaluation

we also measured such a scenario. The average overhead

of kGuard, with no ret protection, on system call and

I/O latency was 6.5% on x86 and 5.4% on x86-64, while

its impact on real-life applications was ≤ 0.5%. This

“offloading” cannot be performed in the case of simple

random canaries or terminator canaries. Nevertheless, it

demonstrates that our approach is indeed orthogonal to

complementary mitigation schemes, and operates nicely

with confinement checks injected during compile time.

PointGuard [13] is another GCC extension that works

by encrypting all pointers while they reside in mem-

ory and decrypting them before they are loaded into a

CPU register. PointGuard could provide some protection

against ret2usr attacks, especially if a function pointer is

read directly from user-controlled memory [20]. How-

ever, it cannot deal with cases where an attacker can nul-

lify kernel-level function pointers by exploiting a race

condition [19] or supplying carefully crafted arguments

to buggy system calls [23]. In such scenarios, the re-

spective memory addresses are altered by legitimate code

(i.e., kernel execution paths), and not directly by the at-

tacker. kGuard provides solid protection against ret2usr

attacks by policing every computed control transfer for

kernel/user space boundary violations.

Other compiler-based approaches include DFI [11]

that enforces data flow integrity based on a statically cal-

culated reaching definition analysis. However, the main

focus of DFI, and similar techniques [3, 12, 33], is the

enforcement of spatial safety for mitigating bounds vio-

lations and preventing bounds-related vulnerabilities.

Control-Flow Integrity (CFI) [2], Program Shepherd-

ing [43], and Strata [57], employ binary rewriting and

dynamic binary instrumentation (DBI) for retrofitting se-

curity enforcement capabilities into unmodified binaries.

The major issue with such approaches has been mainly

the large performance overhead they incur, as well as

the reliance on interpretation engines, which complicates

their adoption. Program Shepherding exhibits ∼100%

overhead on SPEC benchmarks, while CFI has an aver-

age overhead of 15%, and a maximum of 45%, on the

USENIX Association 	 21st USENIX Security Symposium  471

same test suite. CFI-based techniques rewrite programs

so that every branch target is given a label, and each indi-

rect branch instruction is prepended with a check, which

ensures that the target’s label is in accordance with a pre-

computed control-flow graph (CFG). Unfortunately, CFI

is not effective against ret2usr attacks. The integrity of

the CFI mechanism is guaranteed as long as the attacker

cannot overwrite the code of the protected binary, or ex-

ecute user-provided data. However, during a ret2usr at-

tack, the attacker completely controls user space mem-

ory, both in terms of contents and rights. Therefore, CFI

can be subverted by prepending user-provided shellcode

with the respective label.

As an example, consider again Snippet 1 and assume

that the attacker has managed to overwrite the func-

tion pointer sendpage with an address pointing in user

space. CFI will prepend the instruction that invokes

sendpage with an inline check that fetches a label

ID (placed right before the first instruction in functions

that sendpage can point to), and compares it with the

allowed label IDs. If the two labels match, the con-

trol transfer will be authorized. Unluckily, since the at-

tacker controls the contents and rights of the memory

that sendpage is now pointing, he can easily prepend

his code with the label ID that will authorize the control

transfer. Furthermore, Petroni and Hicks [55] noted that

computing in advance a precise CFG for a modern kernel

is a nontrivial task, due to the rich control structure and

the several levels of interrupt handling and concurrency.

CFI-based proposals can be combined with kGuard to

overcome the individual limitations of each technique.

kGuard can guarantee that privileged execution will al-

ways be confined in kernel space, thus leaving no other

options to attackers than targeting kernel-level control

flow violations, which can be solidly protected by CFI.

Garfinkel and Rosenblum proposed Livewire [36],

which was the first system that used a virtual machine

monitor (VMM) for implementing invariant-based ker-

nel protection. Similarly, Grizzard uses a VMM for mon-

itoring kernel execution and validating control flow [38].

For LMBench, he reports an average of 30% overhead,

and a maximum of 74%, on top of VMM’s performance

penalty. SecVisor [62] is a tiny hypervisor that ensures

the integrity of commodity OS kernels. It relies on phys-

ical memory virtualization for protecting against code

injection attacks and kernel rootkits, by allowing only

approved code to execute in kernel mode and ensuring

that such code cannot be modified. However, it requires

modern CPUs that support virtualization in hardware,

as well as kernel patching to add the respective hyper-

calls that authorize module loading. Along the same

lines, NICKLE [56] offers similar guarantees, without

requiring any OS modification, by relying on an inno-

vative memory shadowing scheme and real-time kernel

code authentication via VMM introspection. Petroni and

Hicks proposed state-based CFI (SBCFI) [55], which re-

ports violations of the kernel’s control flow due to the

presence of rootkits. Similarly, Lares [54] and Hook-

Safe [68] protect kernel hooks (including function point-

ers) from being manipulated by kernel malware. The fo-

cus of those techniques, however, has been kernel attes-

tation and kernel code integrity [10], which is different

from the control-flow integrity of kernel code. On the

other hand, kGuard focuses on solving a different prob-

lem: privilege escalation via hijacked kernel-level exe-

cution paths. Although VMMs provide stronger security

guarantees than kGuard, and SecVisor and NICKLE can

prevent ret2usr attacks by refusing execution from user

space while running in kernel mode, they incur larger

performance penalties and require running the whole OS

over custom hypervisors and specialized hardware. It is

also worth noting that SecVisor and NICKLE cannot pro-

tect against execution hijacking via tampered data struc-

tures containing control data [18,20]. kGuard offers solid

protection against that type of ret2usr due to the way it

handles control data stored in memory.

Supervisor Mode Execution Prevention (SMEP) [37]

is an upcoming Intel CPU feature, which prevents code

executing in kernel mode from branching to code located

in pages without the supervisor bit set in their page table

entry. Although it allows for a confinement mechanism

similar to PaX with zero performance penalty, it is plat-

form specific (i.e., x86, x86-64), requires kernel patch-

ing, and does not protect legacy systems.

8 Conclusions

We presented kGuard, a lightweight compiler-based

mechanism that protects the kernel from ret2usr attacks.

Unlike previous work, kGuard is fast, flexible, and of-

fers cross-platform support. It works by injecting fine-

grained inline guards during the translation phase that

are resistant to bypass, and it does not require any mod-

ification to the kernel or additional software such as a

VMM. kGuard can safeguard 32- or 64-bit OSs that map

a mixture of code segments with different privileges in-

side the same scope and are susceptible to ret2usr attacks.

We believe that kGuard strikes a balance between safety

and functionality, and provides comprehensive protec-

tion from ret2usr attacks, as demonstrated by our exten-

sive evaluation with real exploits against Linux.

Availability

The prototype implementation of kGuard is freely avail-

able at: http://www.cs.columbia.edu/~vpk/

research/kguard/

472  21st USENIX Security Symposium	 USENIX Association

Acknowledgments

We thank Michalis Polychronakis and Willem de Bruijn

for their valuable feedback on earlier drafts of this pa-

per. This work was supported by DARPA and the

US Air Force through Contracts DARPA-FA8750-10-2-

0253 and AFRL-FA8650-10-C-7024, respectively. Any

opinions, findings, conclusions, or recommendations ex-

pressed herein are those of the authors, and do not nec-

essarily reflect those of the US Government, DARPA, or

the Air Force.

References

[1] Stack Shield. http://www.angelfire.com/sk/

stackshield/, January 2000.

[2] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.

Control-Flow Integrity. In Proceedings of the 12th ACM Confer-

ence on Computer and Communications Security (CCS) (2005),

pp. 340–353.

[3] AKRITIDIS, P., CADAR, C., RAICIU, C., COSTA, M., AND

CASTRO, M. Preventing memory error exploits with WIT. In

Proceedings of the 29th IEEE Symposium on Security and Pri-

vacy (S&P) (2008), pp. 263–277.

[4] AZAB, A. M., NING, P., WANG, Z., JIANG, X., ZHANG, X.,

AND SKALSKY, N. C. HyperSentry: Enabling Stealthy In-

context Measurement of Hypervisor Integrity. In Proceedings

of the 17th ACM Conference on Computer and Communications

Security (CCS) (2010), pp. 38–49.

[5] BELLARD, F. QEMU, a Fast and Portable Dynamic Translator.

In Proceedings of the 7th USENIX Annual Technical Conference

(FREENIX track) (2005), pp. 41–46.

[6] BICKFORD, J., O’HARE, R., BALIGA, A., GANAPATHY, V.,

AND IFTODE, L. Rootkits on Smart Phones: Attacks, Implica-

tions and Opportunities. In Proceedings of the 11th International

Workshop on Mobile Computing Systems and Applications (Hot-

Mobile) (2010), pp. 49–54.

[7] BLETSCH, T., JIANG, X., FREEH, V. W., AND LIANG, Z.

Jump-Oriented Programming: A New Class of Code-Reuse At-

tack. In Proceedings of the 6th ACM Symposium on Infor-

mation, Computer and Communications Security (ASIACCS)

(2011), pp. 30–40.

[8] BOVET, D. P., AND CESATI, M. Understanding the Linux

Kernel, 3nd ed. O’Reilly Media, Sebastopol, CA, USA, 2005,

ch. System Startup, pp. 835–841.

[9] BULBA AND KIL3R. Bypassing StackGuard and StackShield.
Phrack 5, 56 (May 2000).

[10] CARBONE, M., CUI, W., LU, L., LEE, W., PEINADO, M., AND

JIANG, X. Mapping Kernel Objects to Enable Systematic In-

tegrity Checking. In Proceedings of the 16th ACM Conference on

Computer and Communications Security (CCS) (2009), pp. 555–

565.

[11] CASTRO, M., COSTA, M., AND HARRIS, T. Securing Soft-

ware by Enforcing Data-Flow Integrity. In Proceedings of the

7th Symposium on Operating Systems Design and Implementa-

tion (OSDI) (2006), pp. 147–160.

[12] CASTRO, M., COSTA, M., MARTIN, J.-P., PEINADO, M.,
AKRITIDIS, P., DONNELLY, A., BARHAM, P., AND BLACK, R.

Fast Byte-granularity Software Fault Isolation. In Proceedings

of the 22nd ACM Symposium on Operating Systems Principles

(SOSP) (2009), pp. 45–58.

[13] COWAN, C., BEATTIE, S., JOHANSEN, J., AND WAGLE, P.

PointGuardT M : Protecting Pointers From Buffer Overflow Vul-

nerabilities. In Proceedings of the 12th USENIX Security Sympo-

sium (USENIX Sec) (2003), pp. 91–104.

[14] COWAN, C., PU, C., MAIER, D., HINTON, H., WALPOLE, J.,

BAKKE, P., BEATTIE, S., GRIER, A., WAGLE, P., AND ZHANG,

Q. StackGuard: Automatic Adaptive Detection and Prevention

of Buffer-Overflow Attacks. In Proceedings of the 7th USENIX

Security Symposium (USENIX Sec) (1998), pp. 63–78.

[15] COX, M. J. Red Hat’s Top 11 Most Serious Flaw Types for

2009. http://www.awe.com/mark/blog/20100216.

html, February 2010.

[16] CVE. CVE-2009-1897. http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2009-1897, June 2009.

[17] CVE. CVE-2009-2692. http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2009-2692, August

2009.

[18] CVE. CVE-2009-2908. http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2009-2908, August

2009.

[19] CVE. CVE-2009-3527. http://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2009-3527, Octo-

ber 2009.

[20] CVE. CVE-2009-3547. http://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2009-3547, Octo-

ber 2009.

[21] CVE. CVE-2010-2959. http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2010-2959, August

2010.

[22] CVE. CVE-2010-3904. http://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2010-3904, Octo-

ber 2010.

[23] CVE. CVE-2010-4258. http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2010-4258, November

2010.

[24] DAN ROSENBERG. kptr_restrict for hiding kernel point-

ers. http://lwn.net/Articles/420403/, December
2010.

[25] DE C VALLE, R. Linux sock_sendpage() NULL

Pointer Dereference (PPC/PPC64 exploit). http://

packetstormsecurity.org/files/81212/Linux-

sock_sendpage-NULL-Pointer-Dereference.

html, September 2009.

[26] DE RAADT, T. CVS-200910282103. http://marc.info/?
l=openbsd-cvs&m=125676466108709&w=2, October

2009.

[27] DESIGNER, S. Getting around non-executable stack (and

fix). http://seclists.org/bugtraq/1997/Aug/63,

August 1997.

[28] DOSEMU. DOS Emulation. http://www.dosemu.org,
June 2012.

[29] DOWD, M. Application-Specific Attacks: Leveraging The Ac-

tionScript Virtual Machine. Tech. rep., IBM Corporation, April

2008.

[30] EDB. EDB-9477. http://www.exploit-db.com/

exploits/9477/, August 2009.

[31] EDB. EDB-17391. http://www.exploit-db.com/

exploits/17391/, June 2011.

[32] EDB. EDB-18080. http://www.exploit-db.com/

exploits/18080/, November 2011.

USENIX Association 	 21st USENIX Security Symposium  473

[33] ERLINGSSON, U., ABADI, M., VRABLE, M., BUDIU, M., AND

NECULA, G. C. XFI: Software Guards for System Address

Spaces. In Proceedings of the 7th Symposium on Operating Sys-

tems Design and Implementation (OSDI) (2006), pp. 75–88.

[34] ETOH, H. GCC extension for protecting applications

from stack-smashing attacks. http://www.trl.ibm.com/

projects/security/ssp/, August 2005.

[35] FREEBSD. sysutils/vbetool doesn’t work with FreeBSD 8.0-

RELEASE and STABLE. http://forums.freebsd.

org/showthread.php?t=12889, April 2010.

[36] GARFINKEL, T., AND ROSENBLUM, M. A Virtual Machine In-

trospection Based Architecture for Intrusion Detection. In Pro-

ceedings of the Annual Network & Distributed System Security

Symposium (NDSS) (February 2003).

[37] GEORGE, V., PIAZZA, T., AND JIANG, H. Technology

Insight: Intel c©Next Generation Microarchitecture Codename

Ivy Bridge. www.intel.com/idf/library/pdf/sf_

2011/SF11_SPCS005_101F.pdf, September 2011.

[38] GRIZZARD, J. B. Towards Self-Healing Systems: Re-

establishing Trust in Compromised Systems. PhD thesis, Georgia

Institute of Technology, 2006.

[39] HARDY, N. The Confused Deputy (or why capabilities might

have been invented). SIGOPS Operating Systems Review 22, 4

(October 1988), 36–38.

[40] HUND, R., HOLZ, T., AND FREILING, F. C. Return-Oriented

Rootkits: Bypassing Kernel Code Integrity Protection Mecha-

nisms. In Proceedings of the 18th USENIX Security Symposium

(USENIX Sec) (2009), pp. 383–398.

[41] INGO MOLNAR. 4G/4G split on x86, 64 GB RAM (and

more) support. http://lwn.net/Articles/39283/,

July 2003.

[42] KC, G. S., KEROMYTIS, A. D., AND PREVELAKIS, V. Counter-

ing Code-Injection Attacks With Instruction-Set Randomization.

In Proceedings of the 10th ACM Conference on Computer and

Communications Security (CCS) (2003), pp. 272–280.

[43] KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. Se-

cure Execution via Program Shepherding. In Proceedings of

the 11th USENIX Security Symposium (USENIX Sec) (2002),

pp. 191–206.

[44] KORTCHINSKY, K. CLOUDBURST: A VMware Guest to Host

Escape Story. In Proceedings of the 12th Black Hat USA (2009).

[45] LI, J., WANG, Z., JIANG, X., GRACE, M., AND BAHRAM, S.

Defeating Return-Oriented Rootkits With “Return-less” Kernels.

In Proceedings of the 5th European Conference on Computer Sys-

tems (EuroSys) (2010), pp. 195–208.

[46] LIAKH, S., GRACE, M., AND JIANG, X. Analyzing and Im-

proving Linux Kernel Memory Protection: A Model Checking

Approach. In Proceedings of the 26th Annual Computer Security

Applications Conference (ACSAC) (2010), pp. 271–280.

[47] LOSCOCCO, P., AND SMALLEY, S. Integrating Flexible Sup-

port for Security Policies into the Linux Operating System. In

Proceedings of the 3rd USENIX Annual Technical Conference

(FREENIX track) (2001), pp. 29–42.

[48] LOVE, R. Linux Kernel Development, 2nd ed. Novel Press, Indi-
anapolis, IN, USA, 2005.

[49] MCKUSICK, M. K., BOSTIC, K., KARELS, M. J., AND QUAR-

TERMAN, J. S. The Design and Implementation of the 4.4BSD

Operating System. Addison Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1996, ch. Kernel Services, pp. 49–73.

[50] MCVOY, L., AND STAELIN, C. lmbench: Portable Tools for

Performance Analysis. In Proceedings of the 1st USENIX Annual

Technical Conference (USENIX ATC) (1996), pp. 279–294.

[51] ONARLIOGLU, K., BILGE, L., LANZI, A., BALZAROTTI, D.,

AND KIRDA, E. G-Free: Defeating Return-Oriented Program-

ming through Gadget-less Binaries. In Proceedings of the 26th

Annual Computer Security Applications Conference (ACSAC)

(2010), pp. 49–58.

[52] PAX. Homepage of The PaX Team. http://pax.

grsecurity.net, June 2012.

[53] PAX TEAM. UDEREF. http://grsecurity.net/

~spender/uderef.txt, April 2007.

[54] PAYNE, B. D., CARBONE, M., SHARIF, M., AND LEE, W.

Lares: An Architecture for Secure Active Monitoring Using Vir-

tualization. In Proceedings of the 29th IEEE Symposium on Se-

curity and Privacy (S&P) (2008), pp. 233–247.

[55] PETRONI, JR., N. L., AND HICKS, M. Automated Detection of

Persistent Kernel Control-Flow Attacks. In Proceedings of the

14th ACM Conference on Computer and Communications Secu-

rity (CCS) (October 2007), pp. 103–115.

[56] RILEY, R., JIANG, X., AND XU, D. Guest-Transparent Preven-

tion of Kernel Rootkits with VMM-based Memory Shadowing.

In Proceedings of the 11th International Symposium on Recent

Advances in Intrusion Detection (RAID) (2008), pp. 1–20.

[57] SCOTT, K., AND DAVIDSON, J. Safe Virtual Execution Using

Software Dynamic Translation. In Proceedings of the 18th An-

nual Computer Security Applications Conference (ACSAC) (De-

cember 2002), pp. 209–218.

[58] SECURITYFOCUS. Xbox 360 Hypervisor Privilege Escala-
tion Vulnerability. http://www.securityfocus.com/

archive/1/461489, February 2007.

[59] SECURITYFOCUS. BID 36587. http://www.

securityfocus.com/bid/36587, October 2009.

[60] SECURITYFOCUS. BID 36939. http://www.

securityfocus.com/bid/36939, November 2009.

[61] SECURITYFOCUS. BID 43060. http://www.

securityfocus.com/bid/43060, September 2010.

[62] SESHADRI, A., LUK, M., QU, N., AND PERRIG, A. SecVisor:

A Tiny Hypervisor to Provide Lifetime Kernel Code Integrity for

Commodity OSes. In Proceedings of the 21st ACM Symposium

on Operating Systems Principles (SOSP) (2007), pp. 335–350.

[63] SIDIROGLOU, S., LAADAN, O., PEREZ, C. R., VIENNOT, N.,
NIEH, J., AND KEROMYTIS, A. D. ASSURE: Automatic Soft-

ware Self-healing Using REscue points. In Proceedings of the

14th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS) (2009),

pp. 37–48.

[64] SPENGLER, B. On exploiting null ptr derefs, disabling SELinux,

and silently fixed linux vulns. http://seclists.org/

dailydave/2007/q1/224, March 2007.

[65] STEINBERG, U., AND KAUER, B. NOVA: A Microhypervisor-
Based Secure Virtualization Architecture. In Proceedings of

the 5th European Conference on Computer Systems (EuroSys)

(2010), pp. 209–222.

[66] TINNES, J. Bypassing Linux NULL pointer dereference exploit

prevention (mmap_min_addr). http://blog.cr0.org/

2009/06/bypassing-linux-null-pointer.html,

June 2009.

[67] WANG, Z., AND JIANG, X. HyperSafe: A Lightweight Ap-

proach to Provide Lifetime Hypervisor Control-Flow Integrity. In

Proceedings of the 31st IEEE Symposium on Security and Privacy

(S&P) (2010), pp. 380–395.

[68] WANG, Z., JIANG, X., CUI, W., AND NING, P. Countering Ker-

nel Rootkits with Lightweight Hook Protection. In Proceedings

of the 16th ACM Conference on Computer and Communications

Security (CCS) (2009), pp. 545–554.

474  21st USENIX Security Symposium	 USENIX Association

[69] WILANDER, J., AND KAMKAR, M. A Comparison of Publicly

Available Tools for Dynamic Buffer Overflow Prevention. In Pro-

ceedings of the Annual Network & Distributed System Security

Symposium (NDSS) (2003).

[70] WINEHQ. Run Windows applications on Linux, BSD, Solaris

and Mac OS X. http://www.winehq.org, June 2012.

[71] WOJTCZUK, R. Subverting the Xen hypervisor. In Proceedings

of the 11th Black Hat USA (2008).

[72] ZENG, B., TAN, G., AND MORRISETT, G. Combining Control-

flow Integrity and Static Analysis for Efficient and Validated Data

Sandboxing. In Proceedings of the 18th ACM Conference on

Computer and Communications Security (CCS) (2011), pp. 29–

40.

A Step-by-step Analysis of the sendpage

ret2usr Exploit

Figure 5 illustrates the steps taken by a malicious process

to exploit the vulnerability shown in Snippet 1 (in x86).

It starts by invoking the sendfile system call with the

offending arguments (i.e., a datagram socket of a vulner-

able protocol family, such as PF_IPX). The correspond-

ing libc wrapper (0xb7f50d20) traps to the OS via the

sysenter instruction (0xb7fe2419) and the generated

software interrupt leads to executing the system call han-

dler of Linux (sysenter_do_call()). The handler

dynamically resolves the address of sys_sendfile

(0xc01d0ccf) using the array sys_call_table,

which includes the kernel-level address of every sup-

ported system call indexed by system call number

(0xc01039db).10 Privileged execution then continues

until the offending sock_sendpage() routine is in-

voked. Due to the arguments passed in sendfile, the

value of the sendpage pointer (0xfa7c8538) is NULL

and results in an indirect function call to address zero.

This transfers control to the attacker, who can execute

arbitrary code with kernel privileges.

B GCC RTL Instrumentation Internals

branchprot_instrument(), our instrumentation

callback, is invoked by GCC’s pass manager for every

translation unit after all the RTL optimizations have been

applied, and exactly before target code is emitted. At that

point, the corresponding translation unit is maintained

as graph of basic blocks (BBs) that contain chained se-

quences of RTL instructions, also known as rtx expres-

sions (i.e., LISP-like assembler code for an abstract ma-

chine with infinite registers). GCC maintains a specific

graph-based data structure (call-graph) that holds

information for every internal/external call site. How-

ever, indirect control transfers are not represented in it

10The address 0xc03fd3a8 corresponds to the kernel-level memory

address of sys_call_table.

K
E

R
N

E
L

U
S

E
R

 S
P

A
C

E

0xFFFFFFFF

0xfa7c8538:

} stack offset

} mmap offset
stack break

} brk offset

0x08048000

2

3

4

5

0xb7d7d62c:

0x08049d1d:

(0xb7f50d20)

0xc032fda5:

0xc01039db:

(0xfa7c8538)

[data + bss segment]

call 0xb7d7d62c

call *0xc03fd3a8(,%eax,4)

call *0x50(%ebx)

0x00000000

6

jmp *0x10(%ebx)

sysenter0xb7fe2419:

1

[vmalloc area]

[sendfile@libc]

[sendfile@plt]

[user heap]

[user text]

[user stack]

SHELLCODE

(0xc01d0ccf)

[kernel text]

0xC0000000

Figure 5: Control transfers that occur during the exploitation

of a ret2usr attack. The sendfile system call, on x86 Linux,

causes a function pointer in kernel to become NULL, illegally

transferring control to user space code.

and are assumed to be control-flow neutral. For that rea-

son we perform the following. We begin by iterating

over all the BBs and rtx expressions of the respective

translation unit, selecting only the computed calls and

jumps. This includes rtx objects of type CALL_INSN

or JUMP_INSN that branch via a register or memory

location. Note that ret instructions are also encoded

as rtx objects of type JUMP_INSN. Next, we modify

the rtx expression stream for inserting the CFAR and

CFAM guards. The CFAR guards are inserted by split-

ting the original BB into 3 new ones. The first hosts

all the rtx expressions before {CALL, JUMP}_INSN,

along with the random NOP sled and two more rtx ex-

pressions that match the compare (cmp) and jump (jae)

instructions shown in Snippet 3. The second BB contains

the code for loading the address of the violation handler

into the branch register (i.e., mov in x86), while the last

BB contains the actual branch expression along with the

remaining rtx expressions of the original BB. Note that

the process also involves altering the control-flow graph,

by chaining the new BBs accordingly and inserting the

proper branch labels to ensure that the injected code re-

mains inlined. CFAM instrumentation is performed in a

similar fashion.

USENIX Association 	 21st USENIX Security Symposium  475

Enhanced Operating System Security Through
Efficient and Fine-grained Address Space Randomization

Cristiano Giuffrida
Vrije Universiteit, Amsterdam

giuffrida@cs.vu.nl

Anton Kuijsten
Vrije Universiteit, Amsterdam

akuijst@cs.vu.nl

Andrew S. Tanenbaum
Vrije Universiteit, Amsterdam

ast@cs.vu.nl

Abstract

In recent years, the deployment of many application-
level countermeasures against memory errors and the in-
creasing number of vulnerabilities discovered in the ker-
nel has fostered a renewed interest in kernel-level ex-
ploitation. Unfortunately, no comprehensive and well-
established mechanism exists to protect the operating
system from arbitrary attacks, due to the relatively new
development of the area and the challenges involved.

In this paper, we propose the first design for fine-
grained address space randomization (ASR) inside the
operating system (OS), providing an efficient and com-
prehensive countermeasure against classic and emerg-
ing attacks, such as return-oriented programming. To
motivate our design, we investigate the differences with
application-level ASR and find that some of the well-
established assumptions in existing solutions are no
longer valid inside the OS; above all, perhaps, that infor-
mation leakage becomes a major concern in the new con-
text. We show that our ASR strategy outperforms state-
of-the-art solutions in terms of both performance and se-
curity without affecting the software distribution model.
Finally, we present the first comprehensive live reran-
domization strategy, which we found to be particularly
important inside the OS. Experimental results demon-
strate that our techniques yield low run-time perfor-
mance overhead (less than 5% on average on both SPEC
and syscall-intensive benchmarks) and limited run-time
memory footprint increase (around 15% during the exe-
cution of our benchmarks). We believe our techniques
can greatly enhance the level of OS security without
compromising the performance and reliability of the OS.

1 Introduction

Kernel-level exploitation is becoming increasingly pop-
ular among attackers, with local and remote exploits sur-
facing for Windows [5], Linux [2], Mac OS X [3], BSD

variants [37, 4], and embedded operating systems [25].
This emerging trend stems from a number of important
factors. First, the deployment of defense mechanisms for
user programs has made application-level exploitation
more challenging. Second, the kernel codebase is com-
plex, large, and in continuous evolution, with many new
vulnerabilities inevitably introduced over time. Studies
on the Linux kernel have shown that its codebase has
more than doubled with a steady fault rate over the past
10 years [55] and that many known but potentially crit-
ical bugs are at times left unpatched indefinitely [29].
Third, the number of targets in large-scale attacks is sig-
nificant, with a plethora of internet-connected machines
running the same kernel version independently of the
particular applications deployed. Finally, an attacker has
generally more opportunities inside the OS, for example
the ability to disable in-kernel defense mechanisms or
the option to execute shellcode at the user level (similar
to classic application-level attacks) or at the kernel level
(approach taken by kernel rootkits).

Unfortunately, existing OS-level countermeasures fail
to provide a comprehensive defense mechanism against
generic memory error exploits. A number of techniques
aim to thwart code injection attacks [65, 28, 60], but
are alone insufficient to prevent return-into-kernel-text
attacks [56] and return-oriented programming (ROP) in
general [35]. Other approaches protect kernel hooks or
generally aim at preserving control-flow integrity [69,
74, 44, 57]. Unfortunately, this does not prevent attack-
ers from tampering with noncontrol data, which may lead
to privilege escalation or allow other attacks. In addi-
tion, most of these techniques incur high overhead and
require virtualization support, thus increasing the size of
the trusted computing base (TCB).

In this paper, we explore the benefits of address space
randomization (ASR) inside the operating system and
present the first comprehensive design to defend against
classic and emerging OS-level attacks. ASR is a well-
established defense mechanism to protect user programs

476  21st USENIX Security Symposium	 USENIX Association

against memory error exploits [12, 39, 14, 72, 73]; all
the major operating systems include some support for it
at the application level [1, 68]. Unfortunately, the OS it-
self is typically not randomized at all. Recent Windows
releases are of exception, as they at least randomize the
base address of the text segment [56]. This randomiza-
tion strategy, however, is wholly insufficient to counter
many sophisticated classes of attacks (e.g., noncontrol
data attacks) and is extremely vulnerable to information
leakage, as better detailed later. To date, no strategy has
been proposed for comprehensive and fine-grained OS-
level ASR. Our effort lays the ground work to fill the gap
between application-level ASR and ASR inside the OS,
identifying the key requirements in the new context and
proposing effective solutions to the challenges involved.

Contributions. The contributions of this paper are
threefold. First, we identify the challenges and the key
requirements for a comprehensive OS-level ASR solu-
tion. We show that a number of assumptions in exist-
ing solutions are no longer valid inside the OS, due to
the more constrained environment and the different at-
tack models. Second, we present the first design for fine-
grained ASR for operating systems. Our approach ad-
dresses all the challenges considered and improves ex-
isting ASR solutions in terms of both performance and
security, especially in light of emerging ROP-based at-
tacks. In addition, we consider the application of our de-
sign to component-based OS architectures, presenting a
fully fledged prototype system and discussing real-world
applications of our ASR technique. Finally, we present
the first generic live rerandomization strategy, particu-
larly central in our design. Unlike existing techniques,
our strategy is based on run-time state migration and can
transparently rerandomize arbitrary code and data with
no state loss. In addition, our rerandomization code runs
completely sandboxed. Any run-time error at rerandom-
ization time simply results in restoring normal execution
without endangering the reliability of the OS.

2 Background

The goal of address space randomization is to ensure that
code and data locations are unpredictable in memory,
thus preventing attackers from making precise assump-
tions on the memory layout. To this end, fine-grained
ASR implementations [14, 39, 72] permute the order of
individual memory objects, making both their addresses
and their relative positioning unpredictable. This strat-
egy attempts to counter several classes of attacks.

Attacks on code pointers. The goal of these attacks
is to override a function pointer or the return address on
the stack with attacker-controlled data and subvert con-
trol flow. Common memory errors that can directly al-
low these attacks are buffer overflows, format bugs, use-

after-free, and uninitialized reads. In the first two cases,
the attack requires assumptions on the relative distance
between two memory objects (e.g., a vulnerable buffer
and a target object) to locate the code pointer correctly.
In the other cases, the attack requires assumptions on the
relative alignment between two memory objects in case
of memory reuse. For example, use-after-free attacks re-
quire control over the memory allocator to induce the al-
location of an object in the same location of a freed ob-
ject still pointed by a vulnerable dangling pointer. Simi-
larly, attacks based on stack/heap uninitialized reads re-
quire predictable allocation strategies to reuse attacker-
controlled data from a previously deallocated object. All
these attacks also rely on the absolute location of the
code the attacker wants to execute, in order to adjust the
value of the code pointer correctly. In detail, code in-
jection attacks rely on the location of attacker-injected
shellcode. Attacks using return-into-libc strategies [22]
rely on the location of a particular function—or multiple
functions in case of chained return-into-libc attacks [52].
More generic attacks based on return-oriented program-
ming [66] rely on the exact location of a number of gad-
gets statically extracted from the program binary.

Attacks on data pointers. These attacks commonly
exploit one of the memory errors detailed above to over-
ride the value of a data pointer and perform an arbitrary
memory read/write. Arbitrary memory reads are often
used to steal sensitive data or information on the mem-
ory layout. Arbitrary memory writes can also be used
to override particular memory locations and indirectly
mount other attacks (e.g., control-flow attacks). Attacks
on data pointers require the same assumptions detailed
for code pointers, except the attacker needs to locate the
address of some data (instead of code) in memory.

Attacks on nonpointer data. Attacks in this category
target noncontrol data containing sensitive information
(e.g., uid). These attacks can be induced by an arbitrary
memory write or commonly originate from buffer over-
flows, format bugs, integer overflows, signedness bugs,
and use-after-free memory errors. While unable to di-
rectly subvert control flow, they can often lead to priv-
ilege escalation or indirectly allow other classes of at-
tacks. For example, an attacker may be able to perform
an arbitrary memory write by corrupting an array index
which is later used to store attacker-controlled data. In
contrast to all the classes of attacks presented earlier,
nonpointer data attacks only require assumptions on the
relative distance or alignment between memory objects.

3 Challenges in OS-level ASR

This section investigates the key challenges in OS-level
address space randomization, analyzing the differences
with application-level ASR and reconsidering some of

USENIX Association 	 21st USENIX Security Symposium  477

the well-established assumptions in existing solutions.
We consider the following key issues in our analysis.

W⊕X. A number of ASR implementations comple-
ment their design with W⊕X protection [68]. The idea
is to prevent code injection attacks by ensuring that no
memory page is ever writable and executable at the same
time. Studies on the Linux kernel [45], however, have
shown that enforcing the same property for kernel pages
introduces implementation issues and potential sources
of overhead. In addition, protecting kernel pages in a
combined user/kernel address space design does not pre-
vent an attacker from placing shellcode in an attacker-
controlled application and redirecting execution there.
Alternatively, the attacker may inject code into W∧X re-
gions with double mappings that operating systems share
with user programs (e.g., vsyscall page on Linux) [56].

Instrumentation. Fine-grained ASR techniques typi-
cally rely on code instrumentation to implement a com-
prehensive randomization strategy. For example, Bhak-
tar et al. [14] heavily instrument the program to cre-
ate self-randomizing binaries that completely rearrange
their memory layout at load time. While complex in-
strumentation strategies have been proven practical for
application-level solutions, their applicability to OS-
level ASR raises a number of important concerns. First,
heavyweight instrumentation may introduce significant
run-time overhead which is ill-affordable for the OS.
Second, these load-time ASR strategies are hardly sus-
tainable, given the limited operations they would be able
to perform and the delay they would introduce in the boot
process. Finally, complex instrumentation may introduce
a lot of untrusted code executed with no restriction at
runtime, thus endangering the reliability of the OS or
even opening up new opportunities for attack.

Run-time constraints. There are a number of con-
straints that significantly affect the design of an OS-level
ASR solution. First, making strong assumptions on the
memory layout at load time simplifies the boot process.
This means that some parts of the operating system may
be particularly hard to randomize. In addition, existing
rerandomization techniques are unsuitable for operating
systems. They all assume a stateless model in which a
program can gracefully exit and restart with a fresh reran-
domized layout. Loss of critical state is not an option for
an OS and neither is a full reboot, which introduces unac-
ceptable downtime and loss of all the running processes.
Luckily, similar restrictions also apply to an adversary
determined to attack the system. Unlike application-level
attacks, an exploit needs to explicitly recover any critical
memory object corrupted during the attack or the system
will immediately crash after successful exploitation.

Attack model. Kernel-level exploitation allows for a
powerful attack model. Both remote and local attacks are
possible, although local attacks mounted from a compro-

mised or attacker-controlled application are more com-
mon. In addition, many known attack strategies become
significantly more effective inside the OS. For exam-
ple, noncontrol data attacks are more appealing given the
amount of sensitive data available. In addition, ROP-
based control-flow attacks can benefit from the large
codebase and easily find all the necessary gadgets to per-
form arbitrary computations, as demonstrated in [35].
This means that disclosing information on the locations
of “useful” text fragments can drastically increase the
odds of successful ROP-based attacks. Finally, the par-
ticular context opens up more attack opportunities than
those detailed in Section 2. First, unchecked pointer
dereferences with user-provided data—a common vul-
nerability in kernel development [18]—can become a
vector of arbitrary kernel memory reads/writes with no
assumption on the location of the original pointer. Sec-
ond, the combined user/kernel address space design used
in most operating systems may allow an attacker control-
ling a user program to directly leverage known applica-
tion code or data for the attack. The conclusion is that
making both the relative positioning between any two
memory objects and the location of individual objects
unpredictable becomes much more critical inside the OS.

Information leakage. Prior work on ASR has of-
ten dismissed information leakage attacks—in which the
attacker is able to acquire information about the inter-
nal memory layout and carry out an exploit in spite of
ASR—as relatively rare for user applications [14, 67,
72]. Unfortunately, the situation is completely differ-
ent inside the OS. First, there are several possible entry
points and a larger leakage surface than user applications.
For instance, a recent study has shown that uninitialized
data leading to information leakage is the most common
vulnerability in the Linux kernel [18]. In addition, the
common combined user/kernel address space design al-
lows arbitrary memory writes to easily become a vector
of information leakage for attacker-controlled applica-
tions. To make things worse, modern operating systems
often disclose sensitive information to unprivileged ap-
plications voluntarily, in an attempt to simplify deploy-
ment and debugging. An example is the /proc file sys-
tem, which has already been used in several attacks that
exploit the exposed information in conventional [56] and
nonconventional [76] ways. For instance, the /proc im-
plementation on Linux discloses details on kernel sym-
bols (i.e., /proc/kallsyms) and slab-level memory in-
formation (i.e., /proc/slabinfo). To compensate for
the greater chances of information leakage, ASR at the
finest level of granularity possible and continuous reran-
domization become both crucial to minimize the knowl-
edge acquired by an attacker while probing the system.

Brute forcing. Prior work has shown that many ex-
isting application-level ASR solutions are vulnerable to

478  21st USENIX Security Symposium	 USENIX Association

simple brute-force attacks due to the low randomization
entropy of shared libraries [67]. The attack presented
in [67] exploits the crash recovery capabilities of the
Apache web server and simply reissues the same return-
into-libc attack with a newly guessed address after ev-
ery crash. Unlike many long-running user applications,
crash recovery cannot be normally taken for granted in-
side the OS. An OS crash is normally fatal and imme-
diately hinders the attack while prompting the attention
of the system administrator. Even assuming some crash
recovery mechanism inside the OS [43, 27], brute-force
attacks need to be far less aggressive to remain unno-
ticed. In addition, compared to remote clients hiding
their identity and mounting a brute-force attack against
a server application, the source of an OS crash can be
usually tracked down. In this context, blacklisting the
offensive endpoint/request becomes a realistic option.

4 A design for OS-level ASR

Our fine-grained ASR design requires confining differ-
ent OS subsystems into isolated event-driven compo-
nents. This strategy is advantageous for a number of
reasons. First, this enables selective randomization and
rerandomization for individual subsystems. This is im-
portant to fully control the randomization and rerandom-
ization process with per-component ASR policies. For
example, it should be possible to retune the rerandomiza-
tion frequency of only the virtual filesystem after notic-
ing a performance impact under particular workloads.
Second, the event-driven nature of the OS components
greatly simplifies synchronization and state management
at rerandomization time. Finally, direct intercomponent
control transfer can be more easily prevented, thus limit-
ing the freedom of a control-flow attack and reducing the
number of potential ROP gadgets by design.

Our ASR design is currently implemented by a
microkernel-based OS architecture running on top of the
MINIX 3 microkernel [32]. The OS components are con-
fined in independent hardware-isolated processes. Hard-
ware isolation is beneficial to overcome the problems of
a combined user/kernel address space design introduced
earlier and limit the options of an attacker. In addition,
the MMU-based protection can be used to completely
sandbox the execution of the untrusted rerandomization
code. Our ASR design, however, is not bound to its cur-
rent implementation and has more general applicability.

For example, our ASR design can be directly applied
to other component-based OS architectures, including
microkernel-based architectures used in common em-
bedded OSes—such as L4 [41], Green Hills Integrity [7],
and QNX [33]—and research operating systems using
software-based component isolation schemes—such as
Singularity [36]. Commodity operating systems, in con-

MicrokernelIPC Hw interface

Proc Mgr ...SchedMem Mgr

Storage RM...Network
rand()

rand()

Disk Driver ...KBD DriverNIC Driver

rand()

User applications

Figure 1: The OS architecture for our ASR design.

trast, are traditionally based on monolithic architectures
and lack well-defined component boundaries. While this
does not prevent adoption of our randomization tech-
nique, it does eliminate the ability to selectively reran-
domize specific parts of the OS, yielding poorer flexibil-
ity and longer rerandomization times to perform whole-
OS state migration. Encouragingly, there is an emerging
trend towards allowing important commodity OS subsys-
tems to run as isolated user-space processes, including
filesystems [6] and user-mode drivers in Windows [50]
or Linux [16]. Our end-to-end design can be used to pro-
tect all these subsystems as well as other operating sys-
tem services from several classes of attacks. Note that,
while running in user space, operating system services
are typically trusted by the kernel and allowed to per-
form a variety of critical system operations. An example
is udev, the device manager for the Linux kernel, which
has already been target of several different exploits [17].
Finally, given the appropriate run-time support, our de-
sign could also be used to improve existing application-
level ASR techniques and offer better protection against
memory error exploits for generic user-space programs.

Figure 1 shows the OS architecture implementing our
ASR design. At the heart lies the microkernel, providing
only IPC functionalities and low-level resource manage-
ment. All the other core subsystems are confined into
isolated OS processes, including drivers, memory man-
agement, process management, scheduling, storage and
network stack. In our design, all the OS processes (and
the microkernel) are randomized using a link-time trans-
formation implemented with the LLVM compiler frame-
work [42]. The transformation operates on prelinked
LLVM bitcode to avoid any lengthy recompilation pro-
cess at runtime. Our link-time strategy avoids the need
for fine-grained load-time ASR, eliminating delays in the
boot process and the run-time overhead introduced by the
indirection mechanisms adopted [14]. In addition, this
strategy reduces the instrumentation complexity to the
bare minimum, with negligible amount of untrusted code
exposed to the runtime. The vast majority of our ASR

USENIX Association 	 21st USENIX Security Symposium  479

transformations are statically verified by LLVM at the
bitcode level. As a result, our approach is also safer than
prior ASR solutions relying on binary rewriting [39].

As pointed out in [14], load-time ASR has a clear
advantage over alternative strategies: the ability to cre-
ate self-randomizing binaries distributed to every user in
identical copies, thus preserving today’s software distri-
bution model. Fortunately, our novel live rerandomiza-
tion strategy can fully address this concern. In our model,
every user receives the same (unrandomized) binary ver-
sion of the OS, as well as the prelinked LLVM bitcode
of each OS component. The bitcode files are stored in a
protected disk partition inaccessible to regular user pro-
grams, where a background process periodically creates
new randomized variants of the OS components using
our link-time ASR transformation (and any valid LLVM
backend to generate the final binary). The generated vari-
ants are consumed by the randomization manager (RM),
a special component that periodically rerandomizes ev-
ery OS process (including itself). Unlike all the existing
solutions, rerandomization is applied transparently on-
line, with no system reboot or downtime required. The
conclusion is that we can directly leverage our live reran-
domization technique to randomize the original OS bi-
nary distributed to the user. This strategy retains the ad-
vantages of link-time ASR without affecting the software
distribution model.

When the OS boots up for the first time, a full reran-
domization round is performed to relinquish any unran-
domized code and data present in the original binary. To
avoid slowing down the first boot process, an option is
to perform the rerandomization lazily, for example re-
placing one OS process at the time at regular time in-
tervals. After the first round, we continuously perform
live rerandomization of individual OS components in the
background. Currently, the microkernel is the only piece
of the OS that does not support live rerandomization.
Rerandomization can only be performed after a full re-
boot, with a different variant loaded every time. While it
is possible to extend our current implementation to sup-
port live rerandomization for the microkernel, we believe
this should be hardly a concern. Microkernel implemen-
tations are typically in the order of 10kLOC, a vastly
smaller TCB than most hypervisors used for security en-
forcement, as well as a candidate for formal verification,
as demonstrated in prior work [40].

Our live rerandomization strategy for an OS process,
in turn, is based on run-time state migration, with the en-
tire execution state transparently transferred to the new
randomized process variant. The untrusted rerandomiza-
tion code runs completely sandboxed in the new variant
and, in case of run-time errors, the old variant immedi-
ately resumes execution with no disruption of service or
state loss. To support live migration, we rely on another

LLVM link-time transformation to embed relocation and
type information into the final process binary. This infor-
mation is exposed to the runtime to accurately introspect
the state of the two variants and migrate all the random-
ized memory objects in a layout-independent way.

5 ASR transformations

The goal of our link-time ASR transformation is to ran-
domize all the code and data for every OS component.
Our link-time strategy minimizes the time to produce
new randomized OS variants on the deployment plat-
form and automatically provides randomization for the
program and all the statically linked libraries. Our trans-
formation design is based on five key principles: (i) min-
imal performance impact; (ii) minimal amount of un-
trusted code exposed to the runtime; (iii) architecture-
independence; (iv) no restriction on compiler optimiza-
tions; (v) maximum randomization granularity possible.
The first two principles are particularly critical for the
OS, as discussed earlier. Architecture-independence en-
hances portability and eliminates the need for complex
binary rewriting techniques. The fourth principle dictates
compiler-friendly strategies, for example avoiding indi-
rection mechanisms used in prior solutions [12], which
inhibit a number of standard optimizations (e.g., inlin-
ing). Eliminating the need for indirection mechanisms
is also important for debuggability reasons. Our trans-
formations are all debug-friendly, as they do not signif-
icantly change the code representation—only allocation
sites are transformed to support live rerandomization, as
detailed later—and preserve the consistency of symbol
table and stack information. Finally, the last principle is
crucial to provide lower predictability and better security
than existing techniques.

Traditional ASR techniques [1, 68, 12] focus on ran-
domizing the base address of code and data regions. This
strategy is ineffective against all the attacks that make
assumptions only about relative distances/alignments be-
tween memory objects, is prone to brute forcing [67], and
is extremely vulnerable to information leakage. For in-
stance, many examples of application-level information
leakage have emerged on Linux over the years, and expe-
rience shows that, even by acquiring minimal knowledge
on the memory layout, an attacker can completely bypass
these basic ASR techniques [24].

To overcome these limitations, second-generation
ASR techniques [14, 39, 72] propose fine-grained strate-
gies to permute individual memory objects and random-
ize their relative distances/alignments. While certainly
an improvement over prior techniques, these strategies
are still vulnerable to information leakage, raising seri-
ous concerns on their applicability at the OS level. Un-
like traditional ASR techniques, these strategies make it

480  21st USENIX Security Symposium	 USENIX Association

normally impossible for an attacker to make strong as-
sumptions on the locations of arbitrary memory objects
after learning the location of a single object. They are
completely ineffective, however, in inhibiting precise as-
sumptions on the layout of the leaked object itself. This
is a serious concern inside the OS, where information
leakage is the norm rather than the exception.

To address all the challenges presented, our ASR
transformation is implemented by an LLVM link-time
pass which supports fine-grained randomization of both
the relative distance/alignment between any two memory
objects and the internal layout of individual memory ob-
jects. We now present our transformations in detail and
draw comparisons with state-of-the-art techniques.

Code randomization. The code-transformation pass
performs three primary tasks. First, it enforces a ran-
dom permutation of all the program functions. In LLVM,
this is possible by shuffling the symbol table in the in-
tended order and setting the appropriate linkage to pre-
serve the permutation at code generation time. Second, it
introduces (configurable) random-sized padding before
the first function and between any two functions in the
bitcode, making the layout even more unpredictable. To
generate the padding, we create dummy functions with a
random number of instructions and add them to the sym-
bol table in the intended position. Thanks to demand
paging, even very large padding sizes do not significantly
increase the run-time physical memory usage. Finally,
unlike existing ASR solutions, we randomize the inter-
nal layout of every function.

To randomize the function layout, an option is to per-
mute the basic blocks and the instructions in the function.
This strategy, however, would hinder important compiler
optimizations like branch alignment [75] and optimal in-
struction scheduling [49]. Nonoptimal placements can
result in poor instruction cache utilization and inadequate
instruction pipelining, potentially introducing significant
run-time overhead. To address this challenge, our pass
performs basic block shifting, injecting a dummy basic
block with a random number of instructions at the top of
every function. The block is never executed at runtime
and simply skipped over, at the cost of only one addi-
tional jump instruction. Note that the order of the origi-
nal instructions and basic blocks is left untouched, with
no noticeable impact on run-time performance. The off-
set of every instruction with respect to the address of the
function entry point is, however, no longer predictable.

This strategy is crucial to limit the power of an attacker
in face of information leakage. Suppose the attacker ac-
quires knowledge on the absolute location of a number of
kernel functions (e.g., using /proc/kallsyms). While
return-into-kernel-text attacks for these functions are still
conceivable (assuming the attacker can subvert control
flow), arbitrary ROP-based computations are structurally

prevented, since the location of individual gadgets is no
longer predictable. While the dummy basic block is in a
predictable location, it is sufficient to cherrypick its in-
structions to avoid giving rise to any new useful gadget.
It is easy to show that a sequence of nop instructions does
not yield any useful gadget on the x86 [54], but other
strategies may be necessary on other architectures.

Static data randomization. The data-transformation
pass randomly permutes all the static variables and read-
only data on the symbol table, as done before for func-
tions. We also employ the same padding strategy, except
random-sized dummy variables are used for the padding.
Buffer variables are also separated from other variables
to limit the power of buffer overflows. In addition, unlike
existing ASR solutions, we randomize the internal layout
of static data, when possible.

All the aggregate types in the C programming lan-
guage are potential candidates for layout randomization.
In practice, there are a number of restrictions. First, the
order of the elements in an array cannot be easily ran-
domized without changing large portions of the code and
resorting to complex program analysis techniques that
would still fail in the general case. Even when possi-
ble, the transformation would require indirection tables
that translate many sequential accesses into random array
accesses, sensibly changing the run-time cache behav-
ior and introducing overhead. Second, unions are cur-
rently not supported natively by LLVM and randomizing
their layout would introduce unnecessary complications,
given their rare occurrence in critical system data struc-
tures and their inherent ambiguity that already weakens
the assumptions made by an attacker. Finally, packed
structs cannot be randomized, since the code makes
explicit assumptions on their internal layout.

In light of these observations, our transformation fo-
cuses on randomizing the layout of regular struct

types, which are pervasively used in critical system data
structures. The layout randomization permutes the order
of the struct members and adds random-sized padding
between them. To support all the low-level programming
idioms allowed by C, the type transformations are oper-
ated uniformly for all the static and dynamic objects of
the same struct type. To deal with code which treats
nonpacked structs as implicit unions through pointer
casting, our transformation pass can be instructed to de-
tect unsafe pointer accesses and refrain from randomiz-
ing the corresponding struct types.

Layout randomization of system data structures is im-
portant for two reasons. First, it makes the relative dis-
tance/alignment between two struct members unpre-
dictable. For example, an overflow in a buffer allocated
inside a struct cannot make precise assumptions about
which other members will be corrupted by the overflow.
Second, this strategy is crucial to limit the assumptions

USENIX Association 	 21st USENIX Security Symposium  481

of an attacker in face of information leakage. Suppose an
attacker is armed with a reliable arbitrary kernel mem-
ory write generated by a missing pointer check. If the
attacker acquires knowledge on the location of the data
structure holding user credentials (e.g., struct cred on
Linux) for an attacker-controlled unprivileged process,
the offset of the uid member is normally sufficient to
surgically override the user ID and escalate privileges.
All the existing ASR solutions fail to thwart this attack.
In contrast, our layout randomization hinders any precise
assumptions on the final location of the uid. While brute
forcing is still possible, this strategy will likely compro-
mise other data structures and trigger a system crash.

Stack randomization. The stack randomization pass
performs two primary tasks. First, it randomizes the base
address of the stack to make the absolute location of any
stack object unpredictable. In LLVM, this can be ac-
complished by creating a dummy alloca instruction—
which allocates memory on the stack frame of the cur-
rently executing function—at the beginning of the pro-
gram, which is later expanded by the code generator.
This strategy provides a portable and efficient mecha-
nism to introduce random-sized padding for the initial
stack placement. Second, the pass randomizes the rel-
ative distance/alignment between any two objects allo-
cated on the stack. Prior ASR solutions have either ig-
nored this issue [39, 72] or relied on a shadow stack and
dynamically generated random padding [14], which in-
troduces high run-time overhead (10% in the worst case
in their experiments for user applications).

To overcome these limitations, our approach is com-
pletely static, resulting in good performance and code
which is statically verified by LLVM. In addition, this
strategy makes it realistic to use cryptographically ran-
dom number generators (e.g., /dev/random) instead
of pseudo-random generators to generate the padding.
While care should be taken not to exhaust the random-
ness pool used by other user programs, this approach
yields much stronger security guarantees than pseudo-
random generators, like recent attacks on ASR demon-
strate [24]. Our transformations can be configured to use
cryptographically random number generators for code,
data, and stack instrumentation, while, similar to prior
approaches [14], we always resort to pseudo-random
generation in the other cases for efficiency reasons.

When adopting a static stack padding strategy, great
care should be taken not to degrade the quality of the
randomization and the resulting security guarantees. To
randomize the relative distances between the objects in
a stack frame, we permute all the alloca instructions
used to allocate local variables (and function parame-
ters). The layout of every stack-allocated struct is also
randomized as described earlier. Nonbuffer variables are
all grouped and pushed to the top of the frame, close

Stack frame

Parameters
Previous frame

Saved base pointer
Return address

Local variables

New stack frame

Inter-frame padding
Previous frame

Return address
Parameters

Saved base pointer
Nonbuffer variables

Intra-frame padding
Buffer variables

Figure 2: The transformed stack layout.

to the base pointer and the return address. Buffer vari-
ables, in turn, are pushed to the bottom, with random-
sized padding (i.e., dummy alloca instructions) added
before and between them. This strategy matches our re-
quirements while allowing the code generator to emit a
maximally efficient function prologue.

To randomize the relative alignment between any two
stack frame allocations of the same function (and thus
the relative alignment between their objects), we create
random-sized padding before every function call. Albeit
static, this strategy faithfully emulates dynamically gen-
erated padding, given the level of unpredictability intro-
duced across different function calls. Function calls in-
side loops are an exception and need to be handled sepa-
rately. Loop unrolling is a possible solution, but enforc-
ing this optimization in the general case may be expen-
sive. Our approach is instead to precompute N random
numbers for each loop, and cycle through them before
each function call. Figure 2 shows the randomized stack
layout generated by our transformation.

Dynamic data randomization. Our operating sys-
tem provides malloc/mmap-like abstractions to every
OS process. Ideally, we would like to create memory al-
location wrappers to accomplish the following tasks for
both heap and memory-mapped regions: (i) add random-
sized padding before the first allocated object; (ii) add
random-sized padding between objects; (iii) permute the
order of the objects. For memory-mapped regions, all
these strategies are possible and can be implemented ef-
ficiently [39]. We simply need to intercept all the new
allocations and randomly place them in any available lo-
cation in the address space. The only restriction is for
fixed OS component-specific virtual memory mappings,
which cannot be randomized and need to be explicitly
reserved at initialization time.

For heap allocations, we instrument the code to ran-
domize the heap base address and introduce random-
sized padding at allocation time. Permuting heap ob-
jects, however, is normally impractical in standard allo-
cation schemes. While other schemes are possible—for
example, the slab allocator in our memory manager ran-
domizes block allocations within a slab page—state-of-

482  21st USENIX Security Symposium	 USENIX Association

the-art allocators that enforce a fully and globally ran-
domized heap organization incur high overhead (117%
worst-case performance penalty) [53]. This limitation is
particularly unfortunate for kernel Heap Feng Shui at-
tacks [25], which aim to carefully drive the allocator into
a deterministic exploitation-friendly state. While random
interobject padding makes these attacks more difficult, it
is possible for an attacker to rely on more aggressive ex-
ploitation strategies (i.e., heap spraying [59]) in this con-
text. Suppose an attacker can drive the allocator into a
state with a very large unallocated gap followed by only
two allocated buffers, with the latter vulnerable to under-
flow. Despite the padding, the attacker can induce a large
underflow to override all the traversed memory locations
with the same target value. Unlike stack-based over-
flows, this strategy could lead to successful exploitation
without the attacker worrying about corrupting other crit-
ical data structures and crashing the system. Unlike prior
ASR solutions, however, our design can mitigate these
attacks by periodically rerandomizing every OS process
and enforcing a new unpredictable heap permutation. We
also randomize (and rerandomize) the layout of all the
dynamically allocated structs, as discussed earlier.

Kernel modules randomization. Traditional load-
able kernel module designs share many similarities—
and drawbacks, from a security standpoint—with
application-level shared libraries. The attack presented
in [61] shows that the data structures used for dynamic
linking are a major source of information leakage and
can be easily exploited to bypass any form of random-
ization for shared libraries. Prior work on ASR [67, 14]
discusses the difficulties of reconciling sharing with fine-
grained randomization. Unfortunately, the inability to
perform fine-grained randomization on shared libraries
opens up opportunities for attacks, including probing,
brute forcing [67], and partial pointer overwrites [23].

To overcome these limitations, our design allows only
statically linked libraries for OS components and inhibits
any form of dynamic linking inside the operating sys-
tem. Note that this requirement does by no means limit
the use of loadable modules, which our design simply
isolates in independent OS processes following the same
distribution and deployment model of the core operating
system. This approach enables sharing and lazy load-
ing/unloading of individual modules with no restriction,
while allowing our rerandomization strategy to random-
ize (and rerandomize) every module in a fine-grained
manner. In addition, the process-based isolation prevents
direct control-flow and data-flow transfer between a par-
ticular module and the rest of the OS (i.e., the access is
always IPC- or capability-mediated). Finally, this strat-
egy can be used to limit the power of untrusted loadable
kernel modules, an idea also explored in prior work on
commodity operating systems [16].

6 Live rerandomization

Our live rerandomization design is based on novel auto-
mated run-time migration of the execution state between
two OS process variants. The variants share the same op-
erational semantics but have arbitrarily different memory
layouts. To migrate the state from one variant to the other
at runtime, we need a way to remap all the corresponding
global state objects. Our approach is to transform the bit-
code with another LLVM link-time pass, which embeds
metadata information into the binary and makes run-time
state introspection and automated migration possible.

Metadata transformation. The goal of our pass is to
record metadata describing all the static state objects in
the program and instrument the code to create metadata
for dynamic state objects at runtime. Access to these ob-
jects at the bitcode level is granted by the LLVM API. In
particular, the pass creates static metadata nodes for all
the static variables, read-only data, and functions whose
address is taken. Each metadata node contains three key
pieces of information: node ID, relocation information,
and type. The node ID provides a layout-independent
mechanism to map corresponding metadata nodes across
different variants. This is necessary because we random-
ize the order and the location of the metadata nodes (and
write-protect them) to hinder new opportunities for at-
tacks. The relocation information, in turn, is used by our
run-time migration component to locate every state ob-
ject in a particular variant correctly. Finally, the type is
used to introspect any given state object and migrate the
contained elements (e.g., pointers) correctly at runtime.

To create a metadata node for every dynamic state ob-
ject, our pass instruments all the memory allocation and
deallocation function calls. The node is stored before the
allocated data, with canaries to protect the in-band meta-
data against buffer overflows. All the dynamic metadata
nodes are stored in a singly-linked list, with each node
containing relocation information, allocation flags, and a
pointer to an allocation descriptor. Allocation flags de-
fine the nature of a particular allocation (e.g., heap) to
reallocate memory in the new variant correctly at migra-
tion time. The allocation descriptors, in turn, are stat-
ically created by the pass for all the allocation sites in
the program. A descriptor contains a site ID and a type.
Similar to the node ID, the site ID provides a layout-
independent mechanism to map corresponding allocation
descriptors (also randomized and write-protected) across
different variants. The type, in contrast, is determined
via static analysis and used to correctly identify the run-
time type of the allocated object (e.g., a char type with
an allocation of 7 bytes results in a [7 x char] run-
time type). Our static analysis can automatically identify
the type for all the standard memory allocators and cus-
tom allocators that use simple allocation wrappers. More

USENIX Association 	 21st USENIX Security Symposium  483

advanced custom allocation schemes, e.g., region-based
memory allocators [11], require instructing the pass to
locate the proper allocation wrappers correctly.

The rerandomization process. Our OS processes
follow a typical event-driven model based on message
passing. At startup, each process initializes its state and
immediately jumps to the top of a long-running event-
processing loop, waiting for IPC messages to serve. Each
message can be processed in cooperation with other OS
processes or the microkernel. The message dispatcher,
isolated in a static library linked to every OS process,
can transparently intercept two special system messages
sent by the randomization manager (RM): sync and init.
These messages cannot be spoofed by other processes
because the IPC is mediated by the microkernel.

The rerandomization process starts with RM loading
a new variant in memory, in cooperation with the mi-
crokernel. Subsequently, it sends a sync message to the
designated OS process, which causes the current variant
to immediately block in a well-defined execution point.
A carefully selected synchronization point (e.g., in main)
eliminates the need to instrument transient stack regions
to migrate additional state, thus reducing the run-time
overhead and simplifying the rerandomization strategy.
The new variant is then allowed to run and delivered an
init message with detailed instructions. The purpose of
the init message is to discriminate between fresh start and
rerandomization init. In the latter scenario, the message
contains a capability created by the microkernel, allow-
ing the new variant to read arbitrary data and metadata
from the old variant. The capability is attached to the IPC
endpoint of the designated OS process and can thus only
be consumed by the new variant, which by design inher-
its the old variant’s endpoint. This is crucial to transpar-
ently rerandomize individual operating system processes
without exposing the change to the rest of the system.

When the rerandomization init message is intercepted,
the message dispatcher requests the run-time migration
component to initialize the new variant properly and then
jumps to the top of the event-processing loop to resume
execution. This preserves the original control flow se-
mantics and transparently restores the correct execution
state. The migration component is isolated in a library
and runs completely sandboxed in the new variant. RM
monitors the execution for run-time errors (i.e., panics,
crashes, timeouts). When an error is detected, the new
variant is immediately cleaned up, while the old vari-
ant is given back control to resume execution normally.
When the migration completes correctly, in contrast, the
old variant is cleaned up, while the new variant resumes
execution with a rerandomized memory layout. We have
also implemented rerandomization for RM itself, which
only required some extra microkernel changes to detect
run-time errors and arbitrate control transfer between the

Figure 3: The rerandomization process.

two variants. Our run-time error detection mechanism al-
lows for safe rerandomization without trusting the (com-
plex) migration code. Moreover, the reversibility of the
rerandomization process makes detecting semantic er-
rors in the migration code a viable option. For example,
one could transparently migrate the state from one vari-
ant to another, migrate it again to another instance of the
original variant, and then compare the results. Figure 3
depicts the proposed rerandomization process.

State migration. The migration starts by transferring
all the metadata from the old variant to a local cache in
the new variant. Our capability-based design allows the
migration code to locate a root metadata descriptor in the
old variant and recursively copy all the metadata nodes
and allocation descriptors to the new variant. To auto-
mate the metadata transfer, all the data structures copied
use a fixed and predetermined layout. At the end, both
the old and the new metadata are available locally, al-
lowing the code to arbitrarily introspect the state of the
two variants correctly. To automate the data transfer, we
map every old metadata node in the local cache with its
counterpart in the new variant. This is done by pairing
nodes by ID and carefully reallocating every old dynamic
state object in the new variant. Reallocations are per-
formed in random order, thus enforcing a new unpre-
dictable permutation of heap and memory-mapped re-
gions. An interesting side effect of the reallocation pro-
cess is the compaction of all the live heap objects, an op-
eration that reduces heap fragmentation over time. Our
reallocation strategy is indeed inspired by the way a com-
pacting garbage collector operates [70].

The mapping phase generates all the perfect pairs of
state objects in the two variants, ready for data migra-
tion. Note that paired state objects may not reflect the
same type or size, due to the internal layout rerandom-
ization. To transfer the data, the migration code intro-
spects every state object in the old variant by walking
its type recursively and examining each inner state ele-
ment found. Nonpointer elements are simply transferred
by value, while pointer elements require a more care-
ful transfer strategy. To deal with layout randomization,

484  21st USENIX Security Symposium	 USENIX Association

each recursive step requires mapping the current state el-
ement to its counterpart (and location) in the new variant.
This can be easily accomplished because the old type and
the new type have isomorphic structures and only dif-
fer in terms of member offsets for randomized struct

types. For example, to transfer a struct variable with
3 primitive members, the migration code walks the orig-
inal struct type to locate all the members, computes
their offsets in the two variants, and recursively transfers
the corresponding data in the correct location.

Pointer migration. The C programming language al-
lows several programming constructs that make pointer
migration particularly challenging in the general case.
Our approach is to fully automate migration of all the
common cases and only delegate the undecidable cases
to the programmer. The first case to consider is a pointer
to a valid static or dynamic state object. When the pointer
points to the beginning of the object, we simply reini-
tialize the pointer with the address of the pointed object
in the new variant. Interior pointers (i.e., pointers into
the middle of an object) in face of internal layout reran-
domization require a more sophisticated strategy. Simi-
lar to our introspection strategy, we walk the type of the
pointed object and recursively remap the offset of the tar-
get element to its counterpart. This strategy is resilient
to arbitrary layout rerandomization and makes it easy to
reinitialize the pointer in the new variant correctly.

Another scenario of interest is a pointer which is as-
signed a special integer value (e.g., NULL or MAP FAILED

(-1)). Our migration code can explicitly recognize spe-
cial ranges and transfer the corresponding pointers by
value. Currently, all the addresses in reserved memory
ranges (e.g., zero pages) are marked as special values.

In another direction, memory addresses or other
layout-specific information may be occasionally stored
in integer variables. This is, unfortunately, a case of un-
solvable ambiguity which cannot be automatically set-
tled without programmer assistance. To this end, we sup-
port annotations to mark “hidden” pointers in the code.

Pointers stored in unions are another case of un-
solvable ambiguity. Since C does not support tagged
unions, it is impossible to resolve these cases automat-
ically. In our experiments with OS code, unions with
pointers were the only case of ambiguity that required
manual intervention. Other cases are, however, possi-
ble. For example, any form of pointer encoding or ob-
fuscation [13] would require knowledge on the particu-
lar encoding to migrate pointers correctly. Other classes
of pointers—guard pointers, uninitialized pointers, dan-
gling pointers—are instead automatically handled in our
implementation. In the last two cases, the general strat-
egy is to try to transfer the pointer as a regular pointer,
and simply reinitialize it to NULL in the new variant
whenever our dynamic pointer analysis reports an error.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

bzip2

perlbench

gcc
m

cf
m

ilc
gobm

k

hm
m

er

sjeng

libquantum

h264ref

lbm
sphinx3

SPEC
 average

devtools

N
o
rm

a
liz

e
d

 e
x
e

c
u
tio

n
 t
im

e

 ASR instrumentation
 ASR+ASRR instrumentation

Figure 4: Execution time of the SPEC CPU 2600 bench-
marks and our devtools benchmark normalized against
the baseline (no OS/benchmark instrumentation).

7 Evaluation

We have implemented our ASR design on the MINIX 3
microkernel-based operating system [32], which already
guarantees process-based isolation for all the core oper-
ating system components. The OS is x86-based and ex-
poses a complete POSIX interface to user applications.
We have heavily modified and redesigned the original OS
to implement support for our ASR techniques for all the
possible OS processes. The resulting operating system
comprises a total of 20 OS processes (7 drivers and 13
servers), including process management, memory man-
agement, storage and network stack. Subsequently, we
have applied our ASR transformations to the system and
evaluated the resulting solution.

7.1 Performance

To evaluate the performance of our ASR technique, we
ported the C programs in the SPEC CPU 2006 bench-
mark suite to our prototype system. We also put together
a devtools macrobenchmark, which emulates a typical
syscall-intensive workload with the following operations
performed on the OS source tree: compilation, find,
grep, copying, and deleting. We performed repeated
experiments on a workstation equipped with a 12-core
1.9Ghz AMD Opteron “Magny-Cours” processor and
4GB of RAM, and averaged the results. All the OS code
and our benchmarks were compiled using Clang/LLVM

2.8 with -O2 optimization level. To thoroughly stress the
system and identify all the possible bottlenecks, we in-
strumented both the OS and the benchmarks using the
same transformation in each run. The default padding
strategy used in the experiments extends the memory oc-
cupancy of every state object or struct member by 0-
30%, similar to the default values suggested in [14]. Fig-
ure 4 depicts the resulting execution times.

USENIX Association 	 21st USENIX Security Symposium  485

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Average

M
edian

M
ax

Average

M
edian

M
ax

Average

M
edian

M
ax

R
e
ra

n
d

o
m

iz
a
tio

n
 t
im

e
 (

m
s
)

 ILR Coverage: 0%
 ILR Coverage: 50%
 ILR Coverage: 100%

DRIVERSSERVERSALL

Figure 5: Rerandomization time against coverage of in-
ternal layout rerandomization.

The ASR instrumentation alone introduces 0.9% run-
time overhead on average on SPEC benchmarks and
1.1% on devtools. The average run-time overhead in-
creases to 4.8% and 1.6% respectively with ASRR in-
strumentation. The maximum overhead reported across
all the benchmarks was found for perlbench (36%
ASRR overhead). Profiling revealed this was caused
by a massive amount of dynamic memory allocations.
This test case pinpoints a potential source of overhead
introduced by our technique, which, similar to prior ap-
proaches, relies on memory allocation wrappers to in-
strument dynamically allocated objects. Unlike prior
comprehensive solutions, however, our run-time over-
head is barely noticeable on average (1.9% for ASRR
without perlbench). The most comprehensive second-
generation technique presented in [14]—which, com-
pared to other techniques, also provides fine-grained
stack randomization—introduces a run-time overhead of
11% on average and 23% in the worst case, even by in-
strumenting only the test programs. The main reasons for
the much higher overheads are the use of heavyweight
stack instrumentation and indirection mechanisms that
inhibit compiler optimizations and introduce additional
pointer dereferences for every access to code and data
objects. Their stack instrumentation, however, includes
a shadow stack implementation that could complement
our techniques to offer stronger protection against stack
spraying attacks.

Although we have not observed strong variations
in our macrobenchmark performance across different
runs, our randomization technique can potentially af-
fect the original spatial locality and yield nonoptimal
cache usage at runtime. The possible performance im-
pact introduced—inherent in all the fine-grained ASR
techniques—is subject to the particular compiler and sys-
tem adopted and should be carefully evaluated in each
particular deployment scenario.

Figure 5 shows the rerandomization time (average,

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 4 8 16 32

R
u
n

tim
e
 o

v
e
rh

e
a

d
 (

%
)

Rerandomization latency (s)

 SPEC CPU 2006 benchmarks
 devtools benchmark

Figure 6: Run-time overhead against periodic rerandom-
ization latency.

median, max) measured across all the OS components.
With no internal layout rerandomization (ILR), a generic
component completes the rerandomization process in
272ms on average. A higher ILR coverage increases
the average rerandomization time only slightly (297ms
at 100% coverage). The impact is more noticeable for
OS servers than drivers, due to the higher concentra-
tion of complex rerandomized structs (and pointers to
them) that need to be remapped during migration. Al-
beit satisfactory, we believe these times can be further
reduced, for example using indexes to speed up our dy-
namic pointer analysis. Unfortunately, we cannot com-
pare our current results against existing solutions, given
that no other live rerandomization strategy exists to date.

Finally, Figure 6 shows the impact of periodic reran-
domization on the execution time of SPEC and devtools.
The experiment was performed by rerandomizing a sin-
gle OS component at the end of every predetermined
time interval. To ensure uniform coverage, the OS com-
ponents were all rerandomized in a round-robin fashion.
Figure 6 reports a barely noticeable overhead for reran-
domization latencies higher than 20s. For lower laten-
cies, the overhead increases steadily, reaching the value
of 42.7% for SPEC and 51.9% for devtools at 1s. The
rerandomization latency defines a clear tradeoff between
performance and unobservability of the system. Reason-
able choices of the rerandomization latencies introduce
no performance impact and leave a small window with a
stable view of the system to the attacker. In some cases, a
performance penalty may also be affordable to offer extra
protection in face of particularly untrusted components.

7.2 Memory usage

Table 1 shows the average run-time virtual memory over-
head introduced by our technique inside the OS during
the execution of our benchmarks. The overhead mea-
sured is comparable to the space overhead we observed

486  21st USENIX Security Symposium	 USENIX Association

Type Overhead
ASRR state 16.1%
ASRR overall 14.6%
ASR paddinga ((8as +2ah +4a f)·10−4 + cbase)%
ASR paddingr ((2rs+0.6rh+3r f)·10−1 + cbase)%

Table 1: Average run-time virtual memory overhead
measured during the execution of our benchmarks.

for the OS binaries on the disk. In the table, we re-
port the virtual memory overhead to also account for dy-
namic state object overhead at runtime. For the aver-
age OS component, support for rerandomization intro-
duces 16.1% state overhead (the extra memory neces-
sary to store state metadata w.r.t. the original memory
occupancy of all the static and dynamic static objects)
and 14.6% overall memory overhead (the extra mem-
ory necessary to store state metadata and migration code
w.r.t. the original memory footprint) on average. The vir-
tual memory overhead (not directly translated to physical
memory overhead, as noted earlier) introduced by our
randomization strategy is only due to padding. Table 1
reports the overhead for two padding schemes using byte
granularity (but others are possible): (i) paddinga, gen-
erating an inter-object padding of a bytes, with a uni-
formly distributed in [0;as,h, f] for static, heap, and func-
tion objects, respectively; (ii) paddingr, generating an
inter-object padding of r ·s bytes, with a preceding ob-
ject of size s, and r uniformly distributed in [0;rs,h, f]
for static, heap, and function objects, respectively. The
coefficient cbase is the overhead introduced by the one-
time padding used to randomize the base addresses. The
formulations presented here omit stack frame padding,
which does not introduce persistent memory overhead.

7.3 Effectiveness

As pointed out in [14], an analytical analysis is more gen-
eral and effective than empirical evaluation in measur-
ing the effectiveness of ASR. Bhaktar et al. [14] present
an excellent analysis on the probability of exploitation
for different vulnerability classes. Their entropy anal-
ysis applies also to other second-generation ASR tech-
niques, and, similarly, to our technique, which, how-
ever, provides additional entropy thanks to internal lay-
out randomization and live rerandomization. Their anal-
ysis, however, is mostly useful in evaluating the effec-
tiveness of ASR techniques against guessing and brute-
force attacks. As discussed earlier, these attacks are far
less attractive inside the operating system. In contrast,
information leakage dominates the scene.

For this reason, we explore another direction in our
analysis, answering the question: “How much informa-

ASR1 ASR2 ASR3
Vulnerability

Buffer overflows Ar Ro Re
Format string bugs Ar Ro Re
Use-after-free Ar Ro Re
Uninitialized reads Ar Ro Re

Effect
Arbitrary memory R|W Ar Ao Ae
Controlled code injection Ar Ao Ae
Return-into-libc/text Ar N ·Ao N ·Ao
Return-oriented programming Ar N ·Ao -

Ar = Known region address
Ao = Known object address
Ae = Known element address
Ro = Known relative distance/alignment between objects
Re = Known relative distance/alignment between elements

Table 2: Comparison of ASR techniques.

tion does the attacker need to acquire for successful ex-
ploitation?”. In this respect, Table 2 compares our ASR
technique (ASR3) with first-generation techniques like
PaX [68] and comprehensive second-generation tech-
niques like the one presented in [14]. Most attacks re-
quire at least some knowledge of a memory area to cor-
rupt and of another target area to achieve the intended
effect (missing kernel pointer checks and non control
data attacks are examples of exceptions in the two cases).
Table 2 shows that first-generation techniques only re-
quire the attacker to learn the address of a memory re-
gion (e.g., stack) to locate the target correctly. Second-
generation techniques, in turn, allow the attacker to cor-
rupt the right memory location by learning the relative
distance/alignment between two memory objects.

In this respect, our internal layout randomization pro-
vides better protection, forcing the attacker to learn the
relative distance/alignment between two memory ele-
ments in the general case. For example, if the attacker
learns the relative alignment between two heap-allocated
data structures S1 and S2 and wants to exploit a vulnera-
ble dangling pointer to hijack a write intended for a mem-
ber of S1 to a member of S2, he still needs to acquire
information on the relative positioning of the members.

Similarly, our technique constraints attacks based on
arbitrary memory reads/writes to learn the address of
the target element. In contrast, second-generation tech-
niques only require knowledge of the target memory
object. This is easier to acquire, because individual
objects can be exposed by symbol information (e.g.,
/proc/kallsyms) and are generally more likely to have
their address taken (and leaked) than interior elements.
Controlled code injection shows similar differences—
spraying attacks are normally “Ar”, in contrast. Return-

USENIX Association 	 21st USENIX Security Symposium  487

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 16 32 64 128

 0

 20

 40

 60

 80

 100

 120

 140
P

(R
O

P
 P

a
y
lo

a
d

)

A
ve

ra
g

e
 S

o
u
rc

e
 F

ile
 S

iz
e

 (
K

B
yt

e
s
)

Number of Functions

 P(ROP Payload) - Call/Store
 Average Source File Size

Figure 7: The probability that state-of-the-art tech-
niques [64] can successfully generate ROP payloads to
call linked functions or perform attacker-controlled arbi-
trary memory writes. The (fitted) distribution is plotted
against the number of known functions in the program.

into-libc/text, in turn, requires the attacker to learn the
location of N chosen functions in both cases, because
our function layout randomization has no effect.

Things are different in more general ROP-based at-
tacks. Our strategy completely hinders these attacks by
making the location of the gadgets inside a function un-
predictable. Given that individual gadgets cannot have
their address taken and function pointer arithmetic is
generally disallowed in a program, the location of a gad-
get cannot be explicitly leaked. This makes informa-
tion leakage attacks ineffective in acquiring any useful
knowledge for ROP-based exploitation. In contrast, prior
techniques only require the attacker to learn the address
of any N functions with useful gadgets to mount a suc-
cessful ROP-based attack. To estimate N, we made an
analysis on GNU coreutils (v7.4), building on the re-
sults presented in [64]. Figure 7 correlates the number
of program functions with the probability of locating all
the necessary ROP gadgets, and shows, for example, that
learning 16 function addresses is sufficient to carry out
an attack in more than 80% of the cases.

Another interesting question is: “How fast can the
attacker acquire the required information?”. Our live
rerandomization technique can periodically invalidate
the knowledge acquired by an attacker probing the
system (e.g., using an arbitrary kernel memory read).
Shacham et al. [67] have shown that rerandomization
slows down single-target probing attacks by only a fac-
tor of 2. As shown in Table 2, however, many attacks
require knowledge of multiple targets when fine-grained
ASR is in place. In addition, other attacks (e.g., Heap
Feng Shui) may require multiple probing rounds to as-
sert intermediate system states. When multiple rounds
are required, the attacker is greatly limited by our reran-
domization strategy because any knowledge acquired is

only useful in the current rerandomization window. In
particular, let us assume the duration of every round to
be distributed according to some probability distribution
p(t) (e.g., computed from the probabilities given in [14]).
Hence, the time to complete an n-round probing phase is
distributed according to the convolution of the individ-
ual pi(t). Assuming the same pi(t) in every round for
simplicity, it can be shown that the expected time before
the attacker can complete the probing phase in a single
rerandomization window (and thus the attack) is:

Tattack = T ·
(∫ T

0
p∗n(τ)dτ

)−1

,

where T is the size (ms) of the rerandomization window,
n is the number of probing rounds, and p∗n(t) is the n-
fold convolution power of p(t). Since the convolution
power decreases rapidly with the number of targets n, the
attack can quickly become impractical. Given a vulner-
ability and an attack model characterized by some p(t),
this formula gives a practical way to evaluate the impact
of a given rerandomization frequency on attack preven-
tion. When a new vulnerability is discovered, this for-
mula can also be used to retune the rerandomization fre-
quency (perhaps accepting a performance penalty) and
make the attack immediately impractical, even before an
appropriate patch is developed and made available. This
property suggests that our ASR design can also be used
as the first “live-workaround” system for security vulner-
abilities, similar, in spirit, to other systems that provide
immediate workarounds to bypass races at runtime [71].

8 Related work

Randomization. Prior work on ASR focuses on ran-
domizing the memory layout of user programs, with
solutions based on kernel support [39, 1, 68], linker
support [73], compiler-based techniques [12, 14, 72],
and binary rewriting [39, 15]. A number of studies
have investigated attacks against poorly-randomized pro-
grams, including brute forcing [67], partial pointer over-
writes [23], and return-oriented programming [64, 61].
Our ASR design is more fine-grained than existing tech-
niques and robust against these attacks and information
leakage. In addition, none of the existing approaches
can support stateful live rerandomization. The general
idea of randomization has also been applied to instruc-
tion sets (to thwart code injection attacks) [38, 58, 34],
data representation (to protect noncontrol data) [13], data
structures (to mitigate rootkits) [46], memory allocators
(to protect against heap exploits) [53]. Our struct layout
randomization is similar to the one presented in [46], but
our ASR design generalizes this strategy to the internal
layout of any memory object (including code) and also

488  21st USENIX Security Symposium	 USENIX Association

allows live layout rerandomization. Finally, randomiza-
tion as a general form of diversification [26] has been
proposed to execute multiple program variants in parallel
and detect attacks from divergent behavior [20, 62, 63].

Operating system defenses. Prior work on OS de-
fenses against memory exploits focuses on control-flow
attacks. SecVisor [65] is a hypervisor-based solution
which uses memory virtualization to enforce W⊕X pro-
tection and prevent code injection attacks. Similarly,
NICKLE [60] is a VMM-based solution which stores au-
thenticated kernel code in guest-isolated shadow mem-
ory regions and transparently redirects execution to these
regions at runtime. Unlike SecVisor, NICKLE can sup-
port unmodified OSes and seamlessly handle mixed ker-
nel pages with code and data. hvmHarvard [28] is a
hypervisor-based solution similar to NICKLE, but im-
proves its performance with a more efficient instruction
fetch redirection strategy at the page level. The idea of
memory shadowing is also explored in HookSafe [69], a
hypervisor-based solution which relocates kernel hooks
to dedicated memory pages and employs a hook indi-
rection layer to disallow unauthorized overrides. Other
techniques to defend against kernel hook hijacking have
suggested dynamic monitoring strategies [74, 57] and
compiler-based indirection mechanisms [44]. Finally,
Dalton et al. [21] present a buffer overflow detection
technique based on dynamic information flow tracking
and demonstrate its practical applicability to the Linux
kernel. None of the techniques discussed here provides
a comprehensive solution to OS-level attacks. Remark-
ably, none of them protects noncontrol data, a common
target of attacks in local exploitation scenarios.

Live rerandomization. Unlike our solution, none of
the existing ASR techniques can support live rerandom-
ization with no state loss. Prior work that comes closest
to our live rerandomization technique is in the general
area of dynamic software updating. Many solutions have
been proposed to apply run-time updates to user pro-
grams [51, 47, 8, 19] and operating systems [48, 10, 9].
Our rerandomization technique shares with these solu-
tions the ability to modify code and data of a running sys-
tem without service interruption. The fundamental dif-
ference is that these solutions apply run-time changes in
place, essentially assuming a fixed memory layout where
any state transformation is completely delegated to the
programmer. Our solution, in contrast, is generic and
automated, and can seamlessly support arbitrary mem-
ory layout transformations between variants at runtime.
Other solutions have proposed process-level run-time up-
dates to release some of the assumptions on the memory
layout [30, 31], but they still delegate the state transfer
process completely to the programmer. This completely
hinders their applicability in live rerandomization scenar-
ios where arbitrary layout transformations are allowed.

9 Conclusion

In this paper, we introduced the first ASR design for op-
erating systems. To fully explore the design space, we
presented an analysis of the different constraints and at-
tack models inside the OS, while highlighting the chal-
lenges of OS-level ASR. Our analysis reveals a funda-
mental gap with long-standing assumptions in existing
application-level solutions. For example, we show that
information leakage, traditionally dismissed as a rela-
tively rare event, becomes a major concern inside the OS.
Building on these observations, our design takes the first
step towards truly fine-grained ASR for OSes. While our
prototype system is targeted towards component-based
OS architectures, the principles and the techniques pre-
sented are of much more general applicability. Our tech-
nique can also be applied to generic user programs, im-
proving existing application-level techniques in terms of
both performance and security, and opening up opportu-
nities for third-generation ASR systems. The key to good
performance (and no impact on the distribution model)
is our link-time ASR strategy used in combination with
live rerandomization. In addition, this strategy is more
portable and much safer than existing techniques, which
either rely on complex binary rewriting or require a sub-
stantial amount of untrusted code exposed to the runtime.
In our technique, the complex rerandomization code runs
completely sandboxed and any unexpected run-time er-
ror has no impact on normal execution. The key to good
security is the better randomization granularity combined
with periodic live rerandomization. Unlike existing tech-
niques, we can (re)randomize the internal layout of mem-
ory objects and periodically rerandomize the system with
no service interruption or state loss. These properties are
critical to counter information leakage attacks and truly
maximize the unobservability of the system.

10 Acknowledgments

We would like to thank the anonymous reviewers for
their insightful comments. This work has been supported
by European Research Council under grant ERC Ad-
vanced Grant 2008 - R3S3.

References
[1] ASLR: leopard versus vista. http://blog.

laconicsecurity.com/2008/01/aslr-leopard-versus-

vista.html.

[2] Linux vmsplice vulnerabilities. http://isec.pl/

vulnerabilities/isec-0026-vmsplice_to_kernel.txt.

[3] The story of a simple and dangerous kernel bug.
http://butnotyet.tumblr.com/post/175132533/the-

story-of-a-simple-and-dangerous-kernel-bug.

USENIX Association 	 21st USENIX Security Symposium  489

[4] OpenBSD’s IPv6 mbufs remote kernel buffer overflow.
http://www.securityfocus.com/archive/1/462728/

30/0/threaded, 2007.

[5] Microsoft windows TCP/IP IGMP MLD remote buffer over-
flow vulnerability. http://www.securityfocus.com/bid/

27100, 2008.

[6] FUSE: filesystem in userspace. http://fuse.sourceforge.

net/, 2012.

[7] Green hills integrity. http://www.ghs.com/products/rtos/
integrity.html, 2012.

[8] ALTEKAR, G., BAGRAK, I., BURSTEIN, P., AND SCHULTZ, A.
OPUS: online patches and updates for security. In Proc. of the
14th USENIX Security Symp. (2005), vol. 14, pp. 19–19.

[9] ARNOLD, J., AND KAASHOEK, M. F. Ksplice: Automatic re-
bootless kernel updates. In Proc. of the Fourth European Conf.
on Computer Systems (2009), pp. 187–198.

[10] BAUMANN, A., APPAVOO, J., WISNIEWSKI, R. W., SILVA,
D. D., KRIEGER, O., AND HEISER, G. Reboots are for hard-
ware: Challenges and solutions to updating an operating system
on the fly. In Proc. of the USENIX Annual Tech. Conf. (2007),
pp. 1–14.

[11] BERGER, E. D., ZORN, B. G., AND MCKINLEY, K. S. Recon-
sidering custom memory allocation. In Proc. of the 17th ACM
SIGPLAN Conf. on Object-oriented Programming, Systems, Lan-
guages, and Applications (2002), pp. 1–12.

[12] BHATKAR, S., DUVARNEY, D. C., AND SEKAR, R. Address
obfuscation: an efficient approach to combat a board range of
memory error exploits. In Proc. of the 12th USENIX Security
Symp. (2003), p. 8.

[13] BHATKAR, S., AND SEKAR, R. Data space randomization. In
Proc. of the Fifth Int’l Conf. on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment (2008), pp. 1–22.

[14] BHATKAR, S., SEKAR, R., AND DUVARNEY, D. C. Efficient
techniques for comprehensive protection from memory error ex-
ploits. In Proc. of the 14th USENIX Security Symp. (2005), p. 17.

[15] BOJINOV, H., BONEH, D., CANNINGS, R., AND MALCHEV, I.
Address space randomization for mobile devices. In Proc. of the
Fourth ACM Conf. on Wireless network security (2011), pp. 127–
138.

[16] BOYD-WICKIZER, S., AND ZELDOVICH, N. Tolerating mali-
cious device drivers in linux. In Proc. of the USENIX Annual
Tech. Conf. (2010), pp. 9–9.

[17] C-SKILLS. Linux udev trickery. http://c-skills.

blogspot.com/2009/04/udev-trickery-cve-2009-

1185-and-cve.html.

[18] CHEN, H., MAO, Y., WANG, X., ZHOU, D., ZELDOVICH, N.,
AND KAASHOEK, M. Linux kernel vulnerabilities: State-of-the-
art defenses and open problems. In Proc. of the Second Asia-
Pacific Workshop on Systems (2011).

[19] CHEN, H., YU, J., CHEN, R., ZANG, B., AND YEW, P. POLUS:
a POwerful live updating system. In Proc. of the 29th Int’l Conf.
on Software Engineering (2007), pp. 271–281.

[20] COX, B., EVANS, D., FILIPI, A., ROWANHILL, J., HU,
W., DAVIDSON, J., KNIGHT, J., NGUYEN-TUONG, A., AND
HISER, J. N-variant systems: a secretless framework for security
through diversity. In Proc. of the 15th USENIX Security Symp.
(2006), pp. 105–120.

[21] DALTON, M., KANNAN, H., AND KOZYRAKIS, C. Real-world
buffer overflow protection for userspace & kernelspace. In Proc.
of the 17th USENIX Security Symp. (2008), pp. 395–410.

[22] DESIGNER, S. Getting around non-executable stack (and fix).
http://seclists.org/bugtraq/1997/Aug/63.

[23] DURDEN, T. Bypassing PaX ASLR protection.

[24] EDGE, J. Linux ASLR vulnerabilities. http://lwn.net/

Articles/330866/, 2009.

[25] ESSER, S. Exploiting the iOS kernel. In Black Hat USA (2011).

[26] FORREST, S., SOMAYAJI, A., AND ACKLEY, D. Building di-
verse computer systems. In Proc. of the 6th Workshop on Hot
Topics in Operating Systems (1997), pp. 67–.

[27] GIUFFRIDA, C., CAVALLARO, L., AND TANENBAUM, A. S. We
crashed, now what? In Proc. of the 6th Workshop on Hot Topics
in System Dependability (2010), pp. 1–8.

[28] GRACE, M., WANG, Z., SRINIVASAN, D., LI, J., JIANG, X.,
LIANG, Z., AND LIAKH, S. Transparent protection of com-
modity OS kernels using hardware virtualization. In Proc.of the
6th Conf. on Security and Privacy in Communication Networks
(2010), pp. 162–180.

[29] GUO, P. J., AND ENGLER, D. Linux kernel developer responses
to static analysis bug reports. In Proc. of the USENIX Annual
Tech. Conf. (2009), pp. 285–292.

[30] GUPTA, D., AND JALOTE, P. On line software version change
using state transfer between processes. Softw. Pract. and Exper.
23, 9 (1993), 949–964.

[31] HAYDEN, C. M., SMITH, E. K., HICKS, M., AND FOSTER,
J. S. State transfer for clear and efficient runtime updates. In
Proc. of the Third Int’l Workshop on Hot Topics in Software Up-
grades (2011), pp. 179–184.

[32] HERDER, J. N., BOS, H., GRAS, B., HOMBURG, P., AND
TANENBAUM, A. S. Reorganizing UNIX for reliability. In Proc.
of the 11th Asia-Pacific Conf. on Advances in Computer Systems
Architecture (2006), pp. 81–94.

[33] HILDEBRAND, D. An architectural overview of QNX. In Proc.
of the Workshop on Micro-kernels and Other Kernel Architectures
(1992), pp. 113–126.

[34] HU, W., HISER, J., WILLIAMS, D., FILIPI, A., DAVIDSON,
J. W., EVANS, D., KNIGHT, J. C., NGUYEN-TUONG, A., AND
ROWANHILL, J. Secure and practical defense against code-
injection attacks using software dynamic translation. In Proc. of
the Second Int’l Conf. on Virtual Execution Environments (2006),
pp. 2–12.

[35] HUND, R., HOLZ, T., AND FREILING, F. C. Return-oriented
rootkits: bypassing kernel code integrity protection mechanisms.
In Proc. of the 18th USENIX Security Symp. (2009), pp. 383–398.

[36] HUNT, G. C., AND LARUS, J. R. Singularity: rethinking the
software stack. SIGOPS Oper. Syst. Rev. 41, 2 (2007), 37–49.

[37] JANMAR, K. FreeBSD 802.11 remote integer overflow. In Black
Hat Europe (2007).

[38] KC, G. S., KEROMYTIS, A. D., AND PREVELAKIS, V. Counter-
ing code-injection attacks with instruction-set randomization. In
Proc. of the 10th ACM Conf. on Computer and Commun. Security
(2003), pp. 272–280.

[39] KIL, C., JUN, J., BOOKHOLT, C., XU, J., AND NING, P. Ad-
dress space layout permutation (ASLP): towards Fine-Grained
randomization of commodity software. In Proc. of the 22nd An-
nual Computer Security Appl. Conf. (2006), pp. 339–348.

[40] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,
COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,
KOLANSKI, R., NORRISH, M., SEWELL, T., TUCH, H., AND
WINWOOD, S. seL4: formal verification of an OS kernel. In
Proc. of the 22nd ACM Symp. on Oper. Systems Prin. (2009),
ACM, pp. 207–220.

[41] LABS, O. K. OKL4 community site. http://wiki.ok-labs.
com/, 2012.

490  21st USENIX Security Symposium	 USENIX Association

[42] LATTNER, C., AND ADVE, V. LLVM: a compilation framework
for lifelong program analysis & transformation. In Proc. of the
Int’l Symp. on Code Generation and Optimization (2004), p. 75.

[43] LENHARTH, A., ADVE, V. S., AND KING, S. T. Recovery do-
mains: an organizing principle for recoverable operating systems.
In Proc. of the 14th Int’l Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems (2009), pp. 49–60.

[44] LI, J., WANG, Z., BLETSCH, T., SRINIVASAN, D., GRACE,
M., AND JIANG, X. Comprehensive and efficient protection of
kernel control data. IEEE Trans. on Information Forensics and
Security 6, 4 (2011), 1404–1417.

[45] LIAKH, S., GRACE, M., AND JIANG, X. Analyzing and im-
proving linux kernel memory protection: a model checking ap-
proach. In Proc. of the 26th Annual Computer Security Appl.
Conf. (2010), pp. 271–280.

[46] LIN, Z., RILEY, R. D., AND XU, D. Polymorphing software
by randomizing data structure layout. In Proc. of the 6th Int’l
Conf. on Detection of Intrusions and Malware, and Vulnerability
Assessment (2009), pp. 107–126.

[47] MAKRIS, K., AND BAZZI, R. Immediate multi-threaded dy-
namic software updates using stack reconstruction. In Proc. of
the USENIX Annual Tech. Conf. (2009), pp. 397–410.

[48] MAKRIS, K., AND RYU, K. D. Dynamic and adaptive updates
of non-quiescent subsystems in commodity operating system ker-
nels. In Proc. of the Second European Conf. on Computer Systems
(2007), pp. 327–340.

[49] MALIK, A. M., MCINNES, J., AND BEEK, P. V. Optimal basic
block instruction scheduling for Multiple-Issue processors using
constraint programming. In Proc. of the 18th IEEE Int’l Conf. on
Tools with Artificial Intelligence (2006), pp. 279–287.

[50] MICROSOFT. Windows User-Mode driver frame-
work. http://msdn.microsoft.com/en-us/windows/

hardware/gg463294, 2010.

[51] NEAMTIU, I., HICKS, M., STOYLE, G., AND ORIOL, M. Prac-
tical dynamic software updating for C. ACM SIGPLAN Notices
41, 6 (2006), 72–83.

[52] NERGAL. The advanced return-into-lib(c) exploits. Phrack Mag-
azine 4, 58 (2001).

[53] NOVARK, G., AND BERGER, E. D. DieHarder: securing the
heap. In Proc. of the 17th ACM Conf. on Computer and Commun.
Security (2010), pp. 573–584.

[54] ONARLIOGLU, K., BILGE, L., LANZI, A., BALZAROTTI, D.,
AND KIRDA, E. G-Free: defeating return-oriented programming
through gadget-less binaries. In Proc. of the 26th Annual Com-
puter Security Appl. Conf. (2010), pp. 49–58.

[55] PALIX, N., THOMAS, G., SAHA, S., CALVES, C., LAWALL, J.,
AND MULLER, G. Faults in linux: ten years later. In Proc. of
the 16th Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (2011), pp. 305–318.

[56] PERLA, E., AND OLDANI, M. A guide to kernel exploitation:
attacking the core. 2010.

[57] PETRONI,JR., N. L., AND HICKS, M. Automated detection of
persistent kernel control-flow attacks. In Proc. of the 14th ACM
Conf. on Computer and Commun. Security (2007), pp. 103–115.

[58] PORTOKALIDIS, G., AND KEROMYTIS, A. D. Fast and practical
instruction-set randomization for commodity systems. In Proc. of
the 26th Annual Computer Security Appl. Conf. (2010), pp. 41–
48.

[59] RATANAWORABHAN, P., LIVSHITS, B., AND ZORN, B. NOZ-
ZLE: a defense against heap-spraying code injection attacks. In
Proc. of the 18th USENIX Security Symp. (2009), pp. 169–186.

[60] RILEY, R., JIANG, X., AND XU, D. Guest-Transparent preven-
tion of kernel rootkits with VMM-Based memory shadowing. In
Proc. of the 11th Int’l Conf. on Recent Advances in Intrusion De-
tection (2008), pp. 1–20.

[61] ROGLIA, G. F., MARTIGNONI, L., PALEARI, R., AND BR-
USCHI, D. Surgically returning to randomized lib(c). In Proc. of
the 2009 Annual Computer Security Appl. Conf. (2009), pp. 60–
69.

[62] SALAMAT, B., GAL, A., JACKSON, T., MANIVANNAN, K.,
WAGNER, G., AND FRANZ, M. Multi-variant program execu-
tion: Using multi-core systems to defuse Buffer-Overflow vulner-
abilities. In Proc. of the 2008 Int’l Conf. on Complex, Intelligent
and Software Intensive Systems (2008), pp. 843–848.

[63] SALAMAT, B., JACKSON, T., GAL, A., AND FRANZ, M. Or-
chestra: intrusion detection using parallel execution and moni-
toring of program variants in user-space. In Proc. of the Fourth
European Conf. on Computer Systems (2009), pp. 33–46.

[64] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. Q: ex-
ploit hardening made easy. In Proc. of the 20th USENIX Security
Symp. (2011), p. 25.

[65] SESHADRI, A., LUK, M., QU, N., AND PERRIG, A. SecVisor: a
tiny hypervisor to provide lifetime kernel code integrity for com-
modity OSes. In Proc. of the 21st ACM Symp. on Oper. Systems
Prin. (2007), pp. 335–350.

[66] SHACHAM, H. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In Proc. of
the 14th ACM Conf. on Computer and Commun. Security (2007),
pp. 552–561.

[67] SHACHAM, H., PAGE, M., PFAFF, B., GOH, E., MODADUGU,
N., AND BONEH, D. On the effectiveness of address-space ran-
domization. In Proc. of the 11th ACM Conf. on Computer and
Commun. Security (2004), pp. 298–307.

[68] TEAM, P. Overall description of the PaX project. http://pax.
grsecurity.net/docs/pax.txt, 2008.

[69] WANG, Z., JIANG, X., CUI, W., AND NING, P. Countering ker-
nel rootkits with lightweight hook protection. In Proc. of the 16th
ACM Conf. on Computer and Commun. Security (2009), pp. 545–
554.

[70] WILSON, P. R. Uniprocessor garbage collection techniques.
In Proc. of the Int’l Workshop on Memory Management (1992),
pp. 1–42.

[71] WU, J., CUI, H., AND YANG, J. Bypassing races in live applica-
tions with execution filters. In Proc. of the 9th USENIX Symp. on
Operating Systems Design and Implementation (2010), pp. 1–13.

[72] XU, H., AND CHAPIN, S. J. Improving address space random-
ization with a dynamic offset randomization technique. In Proc.
of the 2006 ACM Symp. on Applied Computing (2006), pp. 384–
391.

[73] XU, J., KALBARCZYK, Z., AND IYER, R. K. Transparent run-
time randomization for security. In Proc. of the 22nd Int’l Symp.
on Reliable Distributed Systems (2003), pp. 260– 269.

[74] YIN, H., POOSANKAM, P., HANNA, S., AND SONG, D.
HookScout: proactive binary-centric hook detection. In Proc. of
the 7th Int’l Conf. on Detection of Intrusions and Malware, and
Vulnerability Assessment (2010), pp. 1–20.

[75] YOUNG, C., JOHNSON, D. S., SMITH, M. D., AND KARGER,
D. R. Near-optimal intraprocedural branch alignment. In Proc.
of the ACM SIGPLAN Conf. on Programming Language Design
and Implementation (1997), pp. 183–193.

[76] ZHANG, K., AND WANG, X. Peeping tom in the neighborhood:
keystroke eavesdropping on multi-user systems. In Proc. of the
18th USENIX Security Symp. (2009), pp. 17–32.

USENIX Association 	 21st USENIX Security Symposium  491

From Throw-Away Traffic to Bots:
Detecting the Rise of DGA-Based Malware

Manos Antonakakis‡,∗, Roberto Perdisci†,∗, Yacin Nadji∗,
Nikolaos Vasiloglou‡, Saeed Abu-Nimeh‡, Wenke Lee∗ and David Dagon∗

‡Damballa Inc., †University of Georgia
{manos,nvasil,sabunimeh}@damballa.com , perdisci@cs.uga.edu

∗Georgia Institute of Technology
{yacin.nadji, wenke}@cc.gatech.edu, dagon@sudo.sh

Abstract
Many botnet detection systems employ a blacklist of

known command and control (C&C) domains to detect
bots and block their traffic. Similar to signature-based
virus detection, such a botnet detection approach is static
because the blacklist is updated only after running an ex-
ternal (and often manual) process of domain discovery.
As a response, botmasters have begun employing domain
generation algorithms (DGAs) to dynamically produce a
large number of random domain names and select a small
subset for actual C&C use. That is, a C&C domain is ran-
domly generated and used for a very short period of time,
thus rendering detection approaches that rely on static
domain lists ineffective. Naturally, if we know how a do-
main generation algorithm works, we can generate the
domains ahead of time and still identify and block bot-
net C&C traffic. The existing solutions are largely based
on reverse engineering of the bot malware executables,
which is not always feasible.

In this paper we present a new technique to detect ran-
domly generated domains without reversing. Our insight
is that most of the DGA-generated (random) domains
that a bot queries would result in Non-Existent Domain
(NXDomain) responses, and that bots from the same bot-
net (with the same DGA algorithm) would generate sim-
ilar NXDomain traffic. Our approach uses a combination
of clustering and classification algorithms. The cluster-
ing algorithm clusters domains based on the similarity in
the make-ups of domain names as well as the groups of
machines that queried these domains. The classification
algorithm is used to assign the generated clusters to mod-
els of known DGAs. If a cluster cannot be assigned to a
known model, then a new model is produced, indicating
a new DGA variant or family. We implemented a pro-
totype system and evaluated it on real-world DNS traffic
obtained from large ISPs in North America. We report
the discovery of twelve DGAs. Half of them are variants
of known (botnet) DGAs, and the other half are brand
new DGAs that have never been reported before.

1 Introduction
Botnets are groups of malware-compromised ma-

chines, or bots, that can be remotely controlled by an
attacker (the botmaster) through a command and control
(C&C) communication channel. Botnets have become
the main platform for cyber-criminals to send spam, steal
private information, host phishing web-pages, etc. Over
time, attackers have developed C&C channels with dif-
ferent network structures. Most botnets today rely on
a centralized C&C server, whereby bots query a prede-
fined C&C domain name that resolves to the IP address
of the C&C server from which commands will be re-
ceived. Such centralized C&C structures suffer from the
single point of failure problem because if the C&C do-
main is identified and taken down, the botmaster loses
control over the entire botnet.

To overcome this limitation, attackers have used P2P-
based C&C structures in botnets such as Nugache [35],
Storm [38], and more recently Waledac [39], Zeus [2],
and Alureon (a.k.a. TDL4) [12]. While P2P botnets
provide a more robust C&C structure that is difficult to
detect and take down, they are typically harder to imple-
ment and maintain. In an effort to combine the simplicity
of centralized C&Cs with the robustness of P2P-based
structures, attackers have recently developed a number
of botnets that locate their C&C server through automat-
ically generated pseudo-random domains names. In or-
der to contact the botmaster, each bot periodically exe-
cutes a domain generation algorithm (DGA) that, given
a random seed (e.g., the current date), produces a list of
candidate C&C domains. The bot then attempts to re-
solve these domain names by sending DNS queries un-
til one of the domains resolves to the IP address of a
C&C server. This strategy provides a remarkable level
of agility because even if one or more C&C domain
names or IP addresses are identified and taken down, the
bots will eventually get the IP address of the relocated
C&C server via DNS queries to the next set of automat-
ically generated domains. Notable examples of DGA-

492  21st USENIX Security Symposium	 USENIX Association

based botnets (or DGA-bots, for short) are Bobax [33],
Kraken [29], Sinowal (a.k.a. Torpig) [34], Srizbi [30],
Conficker-A/B [26], Conficker-C [23] and Murofet [31].
A defender can attempt to reverse engineer the bot mal-
ware, particularly its DGA algorithm, to pre-compute
current and future candidate C&C domains in order to
detect, block, and even take down the botnet. However,
reverse engineering is not always feasible because the bot
malware can be updated very quickly (e.g., hourly) and
obfuscated (e.g., encrypted, and only decrypted and exe-
cuted by external triggers such as time).

In this paper, we propose a novel detection system,
called Pleiades, to identify DGA-based bots within a
monitored network without reverse engineering the bot
malware. Pleiades is placed “below” the local recursive
DNS (RDNS) server or at the edge of a network to mon-
itor DNS query/response messages from/to the machines
within the network. Specifically, Pleiades analyzes DNS
queries for domain names that result in Name Error re-
sponses [19], also called NXDOMAIN responses, i.e., do-
main names for which no IP addresses (or other resource
records) exist. In the remainder of this paper, we refer
to these domain names as NXDomains. The focus on
NXDomains is motivated by the fact that modern DGA-
bots tend to query large sets of domain names among
which relatively few successfully resolve to the IP ad-
dress of the C&C server. Therefore, to automatically
identify DGA domain names, Pleiades searches for rela-
tively large clusters of NXDomains that (i) have similar
syntactic features, and (ii) are queried by multiple po-
tentially compromised machines during a given epoch.
The intuition is that in a large network, like the ISP net-
work where we ran our experiments, multiple hosts may
be compromised with the same DGA-bots. Therefore,
each of these compromised assets will generate several
DNS queries resulting in NXDomains, and a subset of
these NXDomains will likely be queried by more than
one compromised machine. Pleiades is able to automat-
ically identify and filter out “accidental”, user-generated
NXDomains due to typos or mis-configurations. When
Pleiades finds a cluster of NXDomains, it applies statis-
tical learning techniques to build a model of the DGA.
This is used later to detect future compromised ma-
chines running the same DGA and to detect active do-
main names that “look similar” to NXDomains resulting
from the DGA and therefore probably point to the botnet
C&C server’s address.

Pleiades has the advantage of being able to discover
and model new DGAs without labor-intensive malware
reverse-engineering. This allows our system to detect
new DGA-bots before any sample of the related malware
family is captured and analyzed. Unlike previous work
on DNS traffic analysis for detecting malware-related [4]
or malicious domains in general [3, 6], Pleiades lever-

ages throw-away traffic (i.e., unsuccessful DNS resolu-
tions) to (1) discover the rise of new DGA-based botnets,
(2) accurately detect bot-compromised machines, and (3)
identify and block the active C&C domains queried by
the discovered DGA-bots. Pleiades achieves these goals
by monitoring the DNS traffic in local networks, without
the need for a large-scale deployment of DNS analysis
tools required by prior work.

Furthermore, while botnet detection systems that fo-
cus on network flow analysis [13, 36, 44, 46] or require
deep packet inspection [10, 14] may be capable of de-
tecting compromised machines within a local network,
they do not scale well to the overwhelming volume of
traffic typical of large ISP environments. On the other
hand, Pleiades employs a lightweight DNS-based moni-
toring approach, and can detect DGA-based malware by
focusing on a small fraction of all DNS traffic in an ISP
network. This allows Pleiades to scale well to very large
ISP networks, where we evaluated our prototype system.

This paper makes the following contributions:

• We propose Pleiades, the first DGA-based bot-
net identification system that efficiently analyzes
streams of unsuccessful domain name resolutions,
or NXDomains, in large ISP networks to automati-
cally identify DGA-bots.

• We built a prototype implementation of Pleiades,
and evaluated its DGA identification accuracy over
a large labeled dataset consisting of a mix of NX-
Domains generated by four different known DGA-
based botnets and NXDomains “accidentally” gen-
erated by typos or mis-configurations. Our experi-
ments demonstrate that Pleiades can accurately de-
tect DGA-bots.

• We deployed and evaluated our Pleiades prototype
in a large production ISP network for a period of 15
months. Our experiments discovered twelve new
DGA-based botnets and enumerated the compro-
mised machines. Half of these new DGAs have
never been reported before.

The remainder of the paper is organized as follows.
In Section 2 we discuss related work. We provide an
overview of Pleiades in Section 3. The DGA discovery
process is described in Section 4. Section 5 describes the
DGA classification and C&C detection processes. We
elaborate on the properties of the datasets used and the
way we obtained the ground truth in Section 6. The ex-
perimental results are presented in Section 7 while we
discuss the limitations of our systems in Section 8. We
conclude the paper in Section 9.

USENIX Association 	 21st USENIX Security Symposium  493

2 Related Work
Dynamic domain generation has been used by mal-

ware to evade detection and complicate mitigation, e.g.,
Bobax, Kraken, Torpig, Srizbi, and Conficker [26]. To
uncover the underlying domain generation algorithm
(DGA), researchers often need to reverse engineer the
bot binary. Such a task can be time consuming and re-
quires advanced reverse engineering skills [18].

The infamous Conficker worm is one of the most ag-
gressive pieces of malware with respect to domain name
generation. The “C” variant of the worm generated
50,000 domains per day. However, Conficker-C only
queried 500 of these domains every 24 hours. In older
variants of the worm, A and B, the worm cycled through
the list of domains every three and two hours, respec-
tively. In Conficker-C, the length of the generated do-
mains was between four and ten characters, and the do-
mains were distributed across 110 TLDs [27].

Stone-Gross et al. [34] were the first to report on do-
main fluxing. In the past, malware used IP fast-fluxing,
where a single domain name pointed to several IP ad-
dresses to avoid being taken down easily. However, in
domain fluxing malware uses a domain generation al-
gorithm to generate several domain names, and then at-
tempt to communicate with a subset of them. The au-
thors also analyzed Torpig’s DGA and found that the
bot utilizes Twitter’s API. Specifically, it used the sec-
ond character of the most popular Twitter search and
generated a new domain every day. It was updated to
use the second character of the 5th most popular Twitter
search. Srizbi [40] is another example of a bot that uti-
lizes a DGA by using unique magic number. Researchers
identified several unique magic numbers from multiple
copies of the bot. The magic number is XOR’ed with the
current date and a different set of domains is generated.
Only the characters “q w e r t y u i o p a s d f” are used
in the generated domain names.

Yadav et. al. proposed a technique to identify botnets
by finding randomly generated domain names [42], and
improvements that also include NXDomains and tempo-
ral correlation [43]. They evaluated their approaches by
automatically detecting Conficker botnets in an offline
dataset from a Tier-1 ISP in South Asia in the first paper,
and both the ISP dataset and a university’s DNS logs in
the second.

Villamarin-Salomon and Brustoloni [37] compared
two approaches to identify botnet C&Cs. In their first
approach, they identified domains with high query rates
or domains that were temporally correlated. They used
Chebyshev’s inequality and Mahalanobis distance to
identify anomalous domains. In their second approach,
they analyzed recurring “dynamic” DNS replies with
NXDomain responses. Their experiments showed that
the first approach was ineffective, as several legitimate

services use DNS with short time-to-live (TTL) values.
However, their second approach yielded better detection
and identified suspicious C&C domains.

Pleiades differs from the approaches described above
in the following ways. (A) Our work models five differ-
ent types of bot families including Conficker, Murofet,
Sinowal, and Bobax. (B) We model these bot families us-
ing two clustering techniques. The first utilizes the distri-
bution of the characters and 2-grams in the domain name.
The second relies on historical data that shows the rela-
tionship between hosts and domain names. (C) We build
a classification model to predict the maliciousness of do-
mains that deviate from the two clustering techniques.

Unlike previous work, our approach does not require
active probing to maintain a fresh list of legitimate do-
mains. Our approach does not rely on external reputa-
tion databases (e.g., DNSBLs); instead, it only requires
access to local DNS query streams to identify new clus-
ters of DGA NXDomains. Not only does our approach
identify new DGAs, but it also builds models for these
DGAs to classify hosts that will generate similar NXDo-
mains in the future. Furthermore, among the list of iden-
tified domains in the DGAs, our approach pinpoints the
C&C domains. Lastly, we note that our work is comple-
mentary to the larger collection of previous research that
attempts to detect and identify malicious domain names,
e.g., [3, 4].

3 System Overview
In this section, we provide a high-level overview of

our DGA-bot detection system Pleiades. As shown in
Figure 1, Pleiades consists of two main modules: a DGA
Discovery module, and a DGA Classification and C&C
Detection module. We discuss the roles of these two
main modules and their components, and how they are
used in coordination to actively learn and update DGA-
bot detection models. We describe these components in
more detail in Sections 4 and 5.

3.1 DGA Discovery
The DGA Discovery module analyzes streams of un-

successful DNS resolutions, as seen from “below” a local
DNS server (see Figure 1). All NXDomains generated by
network users are collected during a given epoch (e.g.,
one day). Then, the collected NXDomains are clustered
according to the following two similarity criteria: (1) the
domain name strings have similar statistical characteris-
tics (e.g., similar length, similar level of “randomness”,
similar character frequency distribution, etc.) and (2) the
domains have been queried by overlapping sets of hosts.
The main objective of this NXDomain clustering process
is to group together domain names that likely are auto-
matically generated by the same algorithm running on
multiple machines within the monitored network.

494  21st USENIX Security Symposium	 USENIX Association

Test NXDomain
clusters

Compromised
Hosts Report

DGA Discovery

DGA Classification and C&C Detection

Local DNS
Server

known
DGA-botnet

domains
legitimate
domains

NXDomain
Clustering

DGA Classifier

C&C Detection

NXDomains

NXDomains Active
Domains

2

1

3

4

56

DGA Filtering
filter out noise and

known DGAs

DGA-like
NXDomain

clusters
NXDomain

clusters
new DGA
models DGA Modeling

Figure 1: A high level overview of Pleiades.

Naturally, because this clustering step is unsupervised,
some of the output NXDomain clusters may contain
groups of domains that happen to be similar by chance
(e.g., NXDomains due to common typos or to mis-
configured applications). Therefore, we apply a subse-
quent filtering step. We use a supervised DGA Classifier
to prune NXDomain clusters that appear to be generated
by DGAs that we have previously discovered and mod-
eled, or that contain domain names that are similar to
popular legitimate domains. The final output of the DGA
Discovery module is a set of NXDomain clusters, each
of which likely represents the NXDomains generated by
previously unknown or not yet modeled DGA-bots.

3.2 DGA Classification and C&C Detection
Every time a new DGA is discovered, we use a su-

pervised learning approach to build models of what the
domains generated by this new DGA “look like”. In par-
ticular, we build two different statistical models: (1) a
statistical multi-class classifier that focuses on assign-
ing a specific DGA label (e.g., DGA-Conficker.C)
to the set of NXDomains generated by a host hi and (2)
a Hidden Markov Model (HMM) that focuses on finding
single active domain names queried by hi that are likely
generated by a DGA (e.g., DGA-Conficker.C) run-
ning on the host, and are therefore good candidate C&C
domains.

The DGA Modeling component receives differ-
ent sets of domains labeled as Legitimate (i.e.,
“non-DGA”), DGA-Bobax, DGA-Torpig/Sinowal,
DGA-Conficker.C, New-DGA-v1, New-DGA-v2,
etc., and performs the training of the multi-class DGA
Classifier and the HMM-based C&C Detection module.

The DGA Classification module works as follows.
Similar to the DGA Discovery module, we monitor the
stream of NXDomains generated by each client machine

“below” the local recursive DNS server.
Given a subset of NXDomains generated by a ma-

chine, we extract a number of statistical features related
to the NXDomain strings. Then, we ask the DGA Clas-
sifier to identify whether this subset of NXDomains re-
sembles the NXDomains generated by previously dis-
covered DGAs. That is, the classifier will either label the
subset of NXDomains as generated by a known DGA,
or tell us that it does not fit any model. If the subset
of NXDomains is assigned a specific DGA label (e.g.,
DGA-Conficker.C), the host that generated the NX-
Domains is deemed to be compromised by the related
DGA-bot.

Once we obtain the list of machines that appear to be
compromised with DGA-based bots, we take detection
one step further. While all previous steps focused on NX-
Domains, we now turn our attention to domain names for
which we observe valid resolutions. Our goal is to iden-
tify which domain names, among the ones generated by
the discovered DGA-based bots, actually resolve into a
valid IP address. In other words, we aim to identify the
botnet’s active C&C server.

To achieve this goal, we consider all domain names
that are successfully resolved by hosts which have been
classified as running a given DGA, say New-DGA-vX,
by the DGA Classifier. Then, we test these successfully
resolved domains against an HMM specifically trained
to recognize domains generated by New-DGA-vX. The
HMM analyzes the sequence of characters that compose
a domain name d, and computes the likelihood that d is
generated by New-DGA-vX.

We use an HMM, rather than the DGA Classifier, be-
cause for the C&C detection phase we need to classify
single domain names. The DGA Classifier is not suitable
for this task because it expects as input sets of NXDo-
mains generated by a given host to assign a label to the

USENIX Association 	 21st USENIX Security Symposium  495

DGA-bot running on that host. Some of the features used
by the DGA Classifier cannot be reliably extracted from
a single domain name (see Sections 4.1.1 and 5.2).

4 DGA Discovery
The DGA Discovery module analyzes sequences of

NXDomains generated by hosts in a monitored network,
and in a completely unsupervised way, clusters NXDo-
mains that are being automatically generated by a DGA.
We achieve this goal in multiple steps (see Figure 1).
First (Step 1), we collect sequences of NXDomains gen-
erated by each host during an epoch E. Afterwards (Step
2), we split the overall set of NXDomains generated by
all monitored hosts into small subsets, and translate each
set into a statistical feature vector (see Section 4.1.1).
We then apply the X-means clustering algorithm [24] to
group these domain subsets into larger clusters of domain
names that have similar string-based characteristics.

Separately (Step 3), we cluster the NXDomains based
on a completely different approach that takes into ac-
count whether two NXDomains are being queried by
overlapping sets of hosts. First, we build a bipartite host
association graph in which the two sets of vertices repre-
sent distinct hosts and distinct NXDomains, respectively.
A host vertex Vhi is connected to an NXDomain vertex
Vn j if host hi queried NXDomain n j. This allows us to
identify different NXDomains that have been queried by
overlapping sets of hosts. Intuitively, if two NXDomains
are queried by multiple common hosts, this indicates that
the querying hosts may be running the same DGA. We
can then leverage this definition of similarity between
NXDomains to cluster them (see Section 4.1.3).

These two distinct views of similarities among NXDo-
mains are then reconciled in a cluster correlation phase
(Step 4). This step improves the quality of the final NX-
Domains clusters by combining the clustering results ob-
tained in Step 2 and Step 3, and reduces possible noise
introduced by clusters of domains that may appear sim-
ilar purely by chance, for example due to similar typos
originating from different network users.

The final clusters represent different groups of NX-
Domains, each containing domain names that are highly
likely to be generated by the same DGA. For each of
the obtained NXDomain clusters, the question remains
if they belong to a known DGA, or a newly discovered
one. To answer this question (Step 5), we use the DGA
Classifier described in Section 5.2, which is specifically
trained to distinguish between sets of NXDomains gen-
erated by currently known DGAs. Clusters that match
previously modeled DGAs are discarded. On the other
hand, if a cluster of NXDomains does not resemble any
previously seen DGAs, we identify the cluster of NXDo-
mains as having been generated by a new, previously un-
known DGA. These NXDomains will then be sent (Step

6) to the DGA Modeling module, which will update (i.e.,
re-train) the DGA Classifier component.

4.1 NXDomain Clustering
We now describe the NXDomain Clustering module in

detail. First, we introduce the statistical features Pleiades
uses to translate small sets of NXDomains into feature
vectors, and then discuss how these feature vectors are
clustered to find similar NXDomains.

4.1.1 Statistical Features
To ease the presentation of how the statistical features

are computed, we first introduce some notation that we
will be using throughout this section.
Definitions and Notation A domain name d con-

sists of a set of labels separated by dots, e.g.,
www.example.com. The rightmost label is called
the top-level domain (TLD or T LD(d)), e.g., com.
The second-level domain (2LD or 2LD(d)) repre-
sents the two rightmost labels separated by a period,
e.g., example.com. The third-level domain (3LD
or 3LD(d)) contains the three rightmost labels, e.g.,
www.example.com, and so on.

We will often refer to splitting a sequence NX =
{d1,d2, ...,dm} of NXDomains into a number of
subsequences (or subsets) of length α , NXk =
{dr,dr+1, ...,dr+α−1}, where r = α(k − 1) + 1 and k =
1,2, ...,⌊m

α ⌋. Subscript k indicates the k-th subsequence
of length α in the sequence of m NXDomains NX . Each
of the NXk domain sequences can be translated into a
feature vector, as described below.
n-gram Features Given a subsequence NXk of α NX-

Domains, we measure the frequency distribution of n-
grams across the domain name strings, with n = 1, ..,4.
For example, for n = 2, we compute the frequency of
each 2-gram. At this point, we can compute the median,
average and standard deviation of the obtained distribu-
tion of 2-gram frequency values, thus obtaining three fea-
tures. We do this for each value of n = 1, ...,4, producing
12 statistical features in total. By measuring the median,
average and standard deviation, we are trying to capture
the shape of the frequency distribution of the n-grams.
Entropy-based Features This group of features com-

putes the entropy of the character distribution for sep-
arate domain levels. For example, we separately com-
pute the character entropy for the 2LDs and 3LDs ex-
tracted from the domains in NXk. To better understand
how these features are measured, consider a set NXk of
α domains. We first extract the 2LD of each domain
di ∈ NXk, and for each domain we compute the entropy
H(2LD(di)) of the characters of its 2LD. Then, we com-
pute the average and standard deviation of the set of val-
ues {H(2LD(di))}i=1...α . We repeat this for 3LDs and
for the overall domain name strings. We measure a total

496  21st USENIX Security Symposium	 USENIX Association

of six features, which capture the “level of randomness”
in the domains. The intuition is that most DGAs pro-
duce random-looking domain name strings, and we want
to account for this characteristic of the DGAs.

Structural Domain Features This group of features
is used to summarize information about the structure of
the NXDomains in NXk, such as their length, the num-
ber of unique TLDs, and the number of domain levels.
In total, we compute 14 features. Specifically, given
NXk, we compute the average, median, standard devi-
ation, and variance of the length of the domain names
(four features), and of the number of domain levels (four
features). Also, we compute the number of distinct char-
acters that appear in these NXDomains (one feature), the
number of distinct TLDs, and the ratio between the num-
ber of domains under the .com TLD and the number of
domains that use other TLDs (two features). The remain-
ing features measure the average, median, and standard
deviation of the occurrence frequency distribution for the
different TLDs (three features).

4.1.2 Clustering using Statistical Features
To find clusters of similar NXDomains, we proceed as

follows. Given the set NX of all NXDomains that we ob-
served from all hosts in the monitored network, we split
NX into subsets of size α , as mentioned in Section 4.1.1.
Assuming m is the number of distinct NXDomains in
NX , we split the set NX into ⌊m

α ⌋ different subsets where
α = 10.

For each of the obtained subsets NXk of NX , we com-
pute the aforementioned 33 statistical features. After we
have translated each NXk into its corresponding feature
vector, we apply the X-means clustering algorithm [24].
X-means will group the NXk into X clusters, where X is
automatically computed by an optimization process in-
ternal to X-means itself. At this point, given a cluster
C = {NXk}k=1..l of l NXDomain subsets, we simply take
the union of the NXk in C as an NXDomain cluster.

4.1.3 Clustering using Bipartite Graphs
Hosts that are compromised with the same DGA-

based malware naturally tend to generate (with high
probability) partially overlapping sets of NXDomains.
On the other hand, other “non-DGA” NXDomains are
unlikely to be queried by multiple hosts. For example,
it is unlikely that multiple distinct users make identical
typos in a given epoch. This motivates us to consider
NXDomains that are queried by several common hosts as
similar, and in turn use this similarity measure to cluster
NXDomains that are likely generated by the same DGA.

To this end, we build a sparse association matrix M,
where columns represent NXDomains and rows repre-
sent hosts that query more than two of the column NX-
Domains over the course of an epoch. We discard hosts

INPUT : Sparse matrix M ∈ ℜl×k, in which the rows represent
l hosts and the columns represent k NXDomains.

[1] : Normalize M: ∀ j = 1, ..,k
l
∑

i=1
Mi, j = 1

[2] : Compute the similarity matrix S from M: S = MT ·M
[3] : Compute the first ρ eigenvectors from S by
eigen-decomposition.

Let U ∈ ℜρ×k be the matrix containing k vectors u1, ...,uk of size
ρ resulting from the eigen-decomposition of S

(a vector ui is a reduced ρ-dimensional representation of the i-th
NXDomain).

[4] : Cluster the vectors (i.e., the NXDomains) {ui}i=1,..,k using
the X-means algorithm

OUTPUT: Clusters of NXDomains
Algorithm 1: Spectral clustering of NXDomains.

that query only one NXDomain to reduce the dimension-
ality of the matrix, since they are extremely unlikely to
be running a DGA given the low volume of NXDomains
they produce. Let a matrix element Mi, j = 0, if host hi
did not query NXDomain n j. Conversely, let Mi, j = wi if
hi did query n j, where wi is a weight.

All non-zero entries related to a host hi are assigned
the same weight wi ∼

1
ki

, where ki is the number of NX-
Domains queried by host hi. Clearly, M can be seen as a
representation of a bipartite graph, in which a host ver-
tex Vhi is connected to an NXDomains vertex Vn j with an
edge of weight wi if host hi queried NXDomain n j dur-
ing the epoch under consideration. The intuition behind
the particular method we use to compute the weights wi
is that we expect that the higher the number of unique
NXDomains queried by a host hi (i.e., the higher ki) the
less likely the host is “representative” of the NXDomains
it queries. This is in a way analogous to the inverse doc-
ument frequency used in the text mining domain [1, 7].

Once M is computed, we apply a graph partitioning
strategy based on spectral clustering [21, 22], as sum-
marized in Algorithm 1. As a first step, we compute
the first ρ eigenvectors of M (we use ρ = 15 in our
experiments), and then we map each NXDomain (each
column of M) into a ρ-dimensional vector. In effect,
this mapping greatly reduces the dimensionality of the
NXDomain vectors from the total number of hosts (the
number of rows in M) to ρ . We then used the obtained
ρ-dimensional NXDomain representations and apply X-
means to cluster the NXDomains based on their “host as-
sociations”. Namely, NXDomains are grouped together
if they have been queried by a similar set of hosts.

4.1.4 Cluster Correlation
We now have two complementary views of how the

NXDomains should be grouped based on two different
definitions of similarity between domain names. Nei-

USENIX Association 	 21st USENIX Security Symposium  497

ther view is perfect, and the produced clusters may still
contain noise. Correlating the two results helps filter the
noise and output clusters of NXDomains that are more
likely to be generated by a DGA. Cluster correlation is
performed in the following way.

Let A = {A1, ..,An} be the set of NXDomain clus-
ters obtained by using statistical features, as described
in Section 4.1.2, and B = {B1, ..,Bm} be the set of NX-
Domain clusters derived from the bipartite graph parti-
tioning approach discussed in Section 4.1.3. We com-
pute the intersection between all possible pairs of clus-
ters Ii, j = Ai ∩ B j, for i = 1, ..,n and j = 1, ..,m. All
correlated clusters Ii, j that contain less than a predefined
number λ of NXDomains (i.e., |Ii, j| < λ) are discarded,
while the remaining correlated clusters are passed to the
DGA filtering module described in Section 4.2. Clusters
that are not sufficiently agreed upon by the two cluster-
ing approaches are not considered for further processing.
We empirically set λ = 40 in preliminary experiments.

4.2 DGA Filtering
The DGA filtering module receives the NXDomain

clusters from the clustering module. This filtering step
compares the newly discovered NXDomain clusters to
domains generated by known DGAs that we have al-
ready discovered and modeled. If the NXDomains in
a correlated cluster Ii, j are classified as being generated
by a known DGA, we discard the cluster Ii, j. The rea-
son is that the purpose of the DGA Discovery module is
to find clusters of NXDomains that are generated (with
high probability) by a new, never before seen DGA. At
the same time, this filtering step is responsible for deter-
mining if a cluster of NXDomains is too noisy, i.e., if it
likely contains a mix of DGA and “non-DGA” domains.

To this end, we leverage the DGA Classifier described
in detail in Section 5. At a high level, we can treat the
DGA Classifier as a function that takes as input a set NXk
of NXDomains, and outputs a set of tuples {(lt ,st)}t=1..c,
where li is a label (e.g., DGA-Conficker.C), and si is
a score that indicates how confident the classifier is on
attributing label li to NXk, and c is the number of dif-
ferent classes (and labels) that the DGA Classifier can
recognize.

When the DGA filtering module receives a new cor-
related cluster of NXDomains Ii, j, it splits the clus-
ter into subsets of α NXDomains, and then passes
each of these subsets to the DGA Classifier. As-
sume Ii, j is divided into n different subsets. From the
DGA Classifier, we obtain as a result n sets of tuples
{{(lt ,st)}

(1)
t=1..c,{(lt ,st)}

(2)
t=1..c, ...,{(lt ,st)}

(n)
t=1..c}.

First, we consider for each set of tuples {(lt ,st)}
(k)
t=1..c

with k = 1, ..,n, the label l̂(k) that was assigned the max-
imum score. We consider a cluster Ii, j as too noisy if
the related labels l̂(k) are too diverse. Specifically, a

cluster is too noisy when the majority label among the
l̂(k),k = 1, ..n was assigned to less than θma j = 75% of
the n domain subsets. The clusters that do not pass the
θma j “purity” threshold will be discarded. Furthermore,
NXDomain clusters whose majority label is the Legit-
imate label will also be discarded.

For each remaining cluster, we perform an additional
“purity” check. Let the majority label for a given cluster
Ii, j be l∗. Among the set {{(lt ,st)}

(k)
t=1..c}k=1..n we take all

the scores st whose related lt = l∗. That is, we take the
confidence score assigned by the classifier to the domain
subsets that have been labeled as l∗, and then we compute
the average µ(st) and the variance σ2(st) of these scores
(notice that the scores st are in [0,1]). We discard clusters
whose σ2(st) is greater than a predefined threshold θσ =
0.001, because we consider the domains in the cluster as
not being sufficiently similar to the majority label class.

At this point, if µ(st)< θµ , with θµ = 0.98, we deem
the NXDomain cluster to be not similar enough to the
majority label class, and instead we label it as “new
DGA” and pass it to the DGA Modeling module. On the
other hand, if µ(st) ≥ θµ , we confirm the majority label
class (e.g., DGA-Conficker.C) and do not consider it
further.

The particular choice for the values of the above men-
tioned thresholds are motivated in Section 7.2.

5 DGA Classification and C&C Detection
Once a new DGA is reported by the DGA Discov-

ery module, we use a supervised learning approach to
learn how to identify hosts that are infected with the re-
lated DGA-based malware by analyzing the set of NX-
Domains they generate. To identify compromised hosts,
we collect the set of NXDomains NXhi generated by a
host, hi, and we ask the DGA Classifier whether NXhi
likely “belongs” to a previously seen DGA or not. If the
answer is yes, hi is considered to be compromised and
will be labeled with the name of the (suspected) DGA-
bot that it is running.

In addition, we aim to build a classifier that can ana-
lyze the set of active domain names, say ADhi , resolved
by a compromised host hi and reduce it to a smaller sub-
set CChi ⊂ ADhi of likely C&C domains generated by
the DGA running on hi. Finally, the set CChi may be
manually inspected to confirm the identification of C&C
domain(s) and related IPs. In turn, the list of C&C IPs
may be used to maintain an IP blacklist, which can be
employed to block C&C communications and mitigate
the effects of the malware infection. We now describe
the components of the DGA classification and C&C de-
tection module in more detail.

498  21st USENIX Security Symposium	 USENIX Association

5.1 DGA Modeling
As mentioned in Section 4.2, the NXDomain clusters

that pass the DGA Filtering and do not fit any known
DGA model are (automatically) assigned a New-DGA-
vX label, where X is a unique identifier. At this point,
we build two different statical models representative of
New-DGA-vX: (1) a statistical multi-class classifier that
can assign a specific DGA label to the set of NXDomains
generated by a host hi and (2) a Hidden Markov Model
(HMM) that can compute the probability that a single
active domain queried by hi was generated by the DGA
running on the host, thus producing a list of candidate
C&C domains.

The DGA Modeling module takes as input the follow-
ing information: (1) a list of popular legitimate domain
names extracted from the top 10,000 domains according
to alexa.com; (2) the list of NXDomains generated
by running known DGA-bots in a controlled environ-
ment (see Section 6); (3) the clusters of NXDomains re-
ceived from the DGA Discovery module. Let NX be one
such newly discovered cluster of NXDomains. Because
in some cases NX may contain relatively few domains,
we attempt to extend the set NX to a larger set NX ′ that
can help build better statistical models for the new DGA.
To this end, we identify all hosts that “contributed” to
the NXDomains clustered in NX from our sparse asso-
ciation matrix M and we gather all the NXDomains they
generated during an epoch. For example, for a given host
hi that generated some of the domains clustered in NX ,
we gather all the other NXDomains domains NX ′

hi
gen-

erated by hi. We then add the set NX ′ =
⋃

i NX ′
hi

to the
training dataset (marked with the appropriate new DGA
label). The reader may at this point notice that the set
NX ′

hi
may contain not only NXDomains generated by a

host hi due to running a DGA, but it may also include
NXDomains “accidentally’ generated by hi. Therefore,
this may introduce some noisy instances into the training
dataset. However, the number of “accidental” NXDo-
mains is typically very small, compared to the number of
NXDomains generated by a DGA. Therefore, we rely on
the generalization ability of the statistical learning algo-
rithms we use to smooth away the effects of this potential
source of noise. This approach works well in practice, as
we will show in Section 7.

5.2 DGA Classifier
The DGA Classifier is based on a multi-class version

of the Alternating Decision Trees (ADT) learning algo-
rithm [9]. ADT leverages the high classification accu-
racy obtained by Boosting [17], while producing com-
pact classification rules that can be more easily inter-
preted.

To detect hosts that are compromised with DGA-based
malware, we monitor all NXDomains generated by each

host in the monitored network and periodically send this
information to the DGA Classifier. Given a set NXhi
of NXDomains generated by host hi, we split NXhi into
subsets of length α , and from each of these subsets we
extract a number of statistical features, as described in
Section 4.1.1 If one of these subsets of NXDomains is
labeled by the DGA Classifier as being generated by a
given DGA, we mark host hi as compromised and we add
its IP address and the assigned DGA label to a malware
detection report.

5.3 C&C Detection
The C&C Detection module is based on Hidden

Markov Models (HMM) [28]. We use one distinct HMM
per DGA. Given the set NXD of domains generated by
a DGA D , we consider each domain d ∈ NXD sepa-
rately, and feed these domains to an HMM for training.
The HMM sees the domain names simply as a sequence
of characters, and the result of the training is a model
HMMD that given a new domain name s in input will
output the likelihood that s was generated by D .

We use left-to-right HMM as they are used in prac-
tice to decrease the complexity of the model, effectively
mitigating problems related to under-fitting. The HMM’s
emission symbols are represented by the set of characters
allowed in valid domain names (i.e., alphabetic charac-
ters, digits, ‘ ’, ‘-’, and ‘.’). We set the number of hidden
states to be equal to the average length of the domain
names in the training dataset.

During operation, the C&C Detection module receives
active domain names queried by hosts that have been pre-
viously classified by the DGA Classifier as being com-
promised with a DGA-based malware. Let hi be one such
host, and D be the DGA running on hi. The C&C Detec-
tion module will send every domain s resolved by hi to
HMMD , which will compute a likelihood score f (s). If
f (s)> θD , s is flagged as a good candidate C&C domain
for DGA D .

The threshold θD can be learned during the training
phase. First, we train the HMM with the set NXD . Then,
we use a set L of legitimate “non-DGA” domains from
Alexa. For each domain l ∈ L, we compute the likelihood
f (l) and set the threshold θD so to obtain a maximum
target false positive rate (e.g., max FPs=1%).

6 Data Collection
In this section we provide an overview of the amount

of NXDomain traffic we observed during a period of fif-
teen consecutive months (our evaluation period), start-
ing on November 1st, 2010 and ending on January 15th,
2012. Afterwards, we discuss how we collected the do-
main names used to train and test our DGA Classifier
(see Section 5).

USENIX Association 	 21st USENIX Security Symposium  499

Figure 2: Observations from NXDomain traffic collected below a set of ISP recursive DNS servers over a 439 day window.

6.1 NXDomain Traffic
We evaluated Pleiades over a 15-month period against

DNS traffic obtained by monitoring DNS messages
to/from a set of recursive DNS resolvers operated by a
large North American ISP. These servers were physically
located in the US, and served (in average) over 2 million
client hosts per day1. Our monitoring point was “below”
the DNS servers, thus providing visibility on the NXDo-
mains generated by the individual client hosts.

Figure 2(a) reports, per each day, (1) the number of
NXDomains as seen in the raw DNS traffic, (2) the num-
ber of distinct hosts that in the considered day query at
least one NXDomains, and (3) the number of distinct
(de-duplicated) NXDomains (we also filter out domain
names that do not have a valid effective TLD [15,19,20]).
The abrupt drop in the number of NXDomains and hosts
(roughly a 30% reduction) experienced between 2011-
03-24 and 2011-06-17 was due to a configuration change
at the ISP network.

On average, we observed about 5 millions (raw) NX-
Domains, 187,600 distinct hosts that queried at least one
NXDomains, and 360,700 distinct NXDomains overall,
per each day. Therefore, the average size of the associ-
ation matrix M used to perform spectral clustering (see
Section 4.1.3) was 187,600 × 360,700. However, it is
worth noting that M is sparse and can be efficiently stored
in memory. In fact, the vast majority (about 90%) of
hosts query less than 10 NXDomains per day, and there-
fore most rows in M will contain only a few non-zero
elements. This is shown in Figure 2(b), which reports
the cumulative distribution function (CDF) for the vol-
ume of NXDomains queried by a host in the monitored
network. On the other hand, Figure 2(c) shows the CDF
for the number of hosts that query an NXDomain (this
relates directly to the sparseness of M according to its

1We estimated the number of hosts by computing the average num-
ber of distinct client IPs seen per day.

columns).

6.2 Ground Truth
In order to generate the ground truth to train and eval-

uate the DGA Classifier (Section 5), we used a sim-
ple approach. To collect the NXDomains generated by
known DGA-based malware we used two different meth-
ods. First, because the DGA used by different variants of
Conficker and by Murofet are known (derived through
reverse-engineering), we simply used the respective al-
gorithms to generate a set of domain names from each
of these botnets. To obtain a sample set of domains gen-
erated by Bobax and Sinowal, whose exact DGA algo-
rithm is not known (at least not to us), we simply ex-
ecuted two malware samples (one per botnet) in a VM-
based malware analysis framework that only allows DNS
traffic2, while denying any other type of traffic. Over-
all we collected 30,000 domains generated by Conficker,
26,078 from Murofet, 1,283 from Bobax and, 1,783 from
Sinowal.

Finally, we used the top 10,000 most popular domains
according to alexa.com, with and without the www.
prefix. Therefore, overall we used 20,000 domain names
to represent the “negative” (i.e., “non-DGA”) class dur-
ing the training and testing of the DGA Classifier.

7 Analysis
In this section, we present the experimental results of

our system. We begin by demonstrating Pleiades’ mod-
eling accuracy with respect to known DGAs like Con-
ficker, Sinowal, Bobax and Murofet. Then, we elaborate
on the DGAs we discovered throughout the fifteen month
NXDomain monitoring period. We conclude the section
by summarizing the most interesting findings from the
twelve DGAs we detected. Half of them use a DGA al-
gorithm from a known malware family. The other half,

2We only allowed UDP port 53.

500  21st USENIX Security Symposium	 USENIX Association

Table 1: Detection results (in %) using 10-fold cross validation
for different values of α .

α = 5 NXDomains α = 10 NXDomains
Class T Prate FPrate AUC T Prate FPrate AUC

Bobax 95 0.4 97 99 0 99
Conficker 98 1.4 98 99 0.1 99
Sinowal 99 0.1 98 100 0 100
Murofet 98 0.7 98 99 0.2 99
Benign 96 0.7 97 99 0.1 99

to the best of our knowledge, have no known malware
association.

7.1 DGA Classifier’s Detection Results
In this section, we present the accuracy of the DGA

classifier. We bootstrap the classifier with NXDo-
mains from Bobax, Sinowal, Conficker-A, Conficker-B,
Conficker-C and Murofet. We test the classifier in two
modes. The first mode is bootstrapped with a “super”
Conficker class composed of an equal number of samples
from Conficker-A, Conficker-B and Conficker-C classes
and another with each Conficker variant as its own class.
As we mentioned in Section 5.2, the DGA classifier is
based on a multi-class version of the Alternating Deci-
sion Trees (ADT) learning algorithm [9]. We build the
vectors for each class by collecting NXDomains from
one day of Honeypot traffic (in the case of Sinowal and
Bobax) and one day of NXDomains produced by the
DGAs for Conficker-A, Conficker-B, Conficker-C and
Murofet. Finally, the domain names that were used to
represent the benign class were the first 10,000 Alexa
domain names with and without the www. child labels.

From the raw domain names in each of the classes,
we randomly selected 3,000 sets of cardinality α . As a
reminder, the values of α that we used were two, five,
ten and 30. This was to build different training datasets
in order to empirically decide which value of α would
provide the best separation between the DGA models.

We generated additional testing datasets. The domain
names we used in this case were from each class as in
the case of the training dataset but we used different days.
We do that so we get the minimum possible domain name
overlap between the training and testing datasets. We
evaluate the training datasets using two methods: 10-fold
cross validation on the training dataset and by using the
testing datasets computed from domains collected on dif-
ferent days. Both methods gave us very similar results.
Our system performed the worst in the case of the 10-
fold cross validation, therefore we chose to present this
worst-case scenario.

In Table 1, we can see the detection results using two
values for α , five and ten. We omit the results for the
other values due to space limitations. The main confu-

sion between the classes was observed in the datasets
that contained separate Conficker classes, specifically
between the classes of Conficker-A and Conficker-B. To
address this problem, we created a generic Conficker
class that had an equal number of vectors from each Con-
ficker variant. This merging of the Conficker variants
into a single “super” class allowed the DGA classifier
to correctly classify 99.72% (Table 1) of the instances
(7,986 correctly classified vs 22 incorrectly classified).
Using the datasets with the five classes of DGAs, the
weighted average of the T Prates and FPrates were 99.7%
and 0.1%, respectively. As we see in Table 1, α = 5 per-
forms reasonably well, but with a higher rate of FPs.

7.2 NXDomain Clustering Results
In this section, we will discuss results from the DGA

discovery module. In particular, we elaborate on the se-
lection of the thresholds used, the unique clusters identi-
fied and the false alerts the DGA discovery module pro-
duced over the duration of our study.

7.2.1 Correlation Thresholds
In order to set the thresholds θma j and θσ defined

in Section 4.2, we spent the first five days of Novem-
ber 2010 labeling the 213 produced clusters as DGA re-
lated (Positive) or noisy (Negative). For this experiment,
we included all produced clusters without filtering out
those with θµ =98% (or higher) “similarity” to an already
known one (see Section 4.2). In Figure 3, we can see in
the Y-axis the percentage values for the dominant (non-
benign) class in every cluster produced during these five
days. In the X-axis we can see the variance that each
dominant class had within each cluster. The results show
that the Positive and Negative assignments had a clear
cut, which we can achieve by setting the thresholds as
θma j = 75% and θσ = 0.001. These thresholds gave us
very good results throughout the duration of the experi-
ments. As we will discuss in Section 7.2.3, the DGA dis-
covery module falsely reported only five benign clusters
over a period of 15 months. All falsely reported clusters
had variance very close to 0.001.

7.2.2 New DGAs
Pleiades began clustering NXDomain traffic on the

first day of November 2010. We bootstrapped the DGA
modeler with domain names from already known DGAs
and also a set of Alexa domain names as the benign class.
In Table 2, we present all unique clusters we discovered
throughout the evaluation period. The “Malware Fam-
ily” column simply maps the variant to a known mal-
ware family if possible. We discover the malware family
by checking the NXDomains that overlap with NXDo-
mains we extracted from traffic obtained from a malware
repository. Also, we manually inspected the clusters with
the help of a security company’s threat team. The “First

USENIX Association 	 21st USENIX Security Symposium  501

Figure 3: Thresholds θma j and θσ from the first five days of
November 2010.

lymylorozig.eu
lyvejujolec.eu
xuxusujenes.eu
gacezobeqon.eu
tufecagemyl.eu
lyvitexemod.eu
mavulymupiv.eu
jenokirifux.eu
fotyriwavix.eu
vojugycavov.eu

New-DGA-v6
semk1cquvjufayg02orednzdfg.com
invfgg4szr22sbjbmdqm51pdtf.com
0vqbqcuqdv0i1fadodtm5iumye.com
np1r0vnqjr3vbs3c3iqyuwe3vf.com
s3fhkbdu4dmc00ltmxskleeqrf.com
gup1iapsm2xiedyefet21sxete.com
y5rk0hgujfgo0t4sfers2xolte.com
me5oclqrfano4z0mx4qsbpdufc.com
jwhnr2uu3zp0ep40cttq3oyeed.com
ja4baqnv02qoxlsjxqrszdziwb.com

New-DGA-v4
zpdyaislnu.net
vvbmjfxpyi.net
oisbyccilt.net
vgkblzdsde.net
bxrvftzvoc.net
dlftozdnxn.net
gybszkmpse.net
dycsmcfwwa.net
dpwxwmkbxl.net
ttbkuogzum.net

New-DGA-v5

uwhornfrqsdbrbnbuhjt.com
epmsgxuotsciklvywmck.com
nxmglieidfsdolcakggk.com
ieheckbkkkoibskrqana.com
qabgwxmkqdeixsqavxhr.com
gmjvfbhfcfkfyotdvbtv.com
sajltlsbigtfexpxvsri.com
uxyjfflvoqoephfywjcq.com
kantifyosseefhdgilha.com
lmklwkkrficnnqugqlpj.com

New-DGA-v3
clfnoooqfpdc.com
slsleujrrzwx.com
qzycprhfiwfb.com
uvphgewngjiq.com
gxnbtlvvwmyg.com
wdlmurglkuxb.com
zzopaahxctfh.com
bzqbcftfcrqf.com
rjvmrkkycfuh.com
itzbkyunmzfv.com

New-DGA-v2
71f9d3d1.net
a8459681.com
a8459681.info
a8459681.net
1738a9aa.com
1738a9aa.info
1738a9aa.net
84c7e2a3.com
84c7e2a3.info
84c7e2a3.net

New-DGA-v1

Figure 4: A sample of ten NXDomain for each DGA cluster that
we could not associate with a known malware family.

Seen” column denotes the first time we saw traffic from
each DGA variant. Finally, the “Population on Discov-
ery” column shows the variant population on the discov-
ery day. We can see that we can detect each DGA variant
with an average number of 32 “infected hosts” across the
entire statewide ISP network coverage.

Table 2: DGAs Detected by Pleiades.

Population
Malware Family First Seen on Discovery

Shiz/Simda-C [32] 03/20/11 37
Bamital [11] 04/01/11 175
BankPatch [5] 04/01/11 28
Expiro.Z [8] 04/30/11 7
Boonana [41] 08/03/11 24
Zeus.v3 [25] 09/15/11 39
New-DGA-v1 01/11/10 12
New-DGA-v2 01/18/11 10
New-DGA-v3 02/01/11 18
New-DGA-v4 03/05/11 22
New-DGA-v5 04/21/11 5
New-DGA-v6 11/20/11 10

As we see in Table 2, Pleiades reported six vari-
ants that belong to known DGA-enabled malware fami-
lies [5,8,11,25,32,41]. Six more variants of NXDomains
were reported and modeled by Pleiades but for these, to
the best of our knowledge, no known malware can be as-
sociated with them. A sample set of 10 domain names
for each one of these variants can be seen in Figure 4.

In the 15 months of our observations we observed an
average population of 742 Conficker infected hosts in the
ISP network. Murofet had the second largest population
of infected hosts at 92 per day, while the Boonana DGA
comes third with an average population of 84 infected
hosts per day. The fastest growing DGA is Zeus.v3 with
an average population of 50 hosts per day, however, dur-
ing the last four days of the experiments the Zeus.v3
DGA had an average number of 134 infected hosts. It

is worth noting the New-DGA-v1 had an average of 19
hosts per day, the most populous of the newly identified
DGAs.

7.2.3 False Reports on New DGAs
During our evaluation period we came across five cat-

egories of clusters falsely reported as new DGAs. In all
of the cases, we modeled these classes in the DGA mod-
eler as variants of the benign class. We now discuss each
case in detail.

The first cluster of NXDomains falsely reported by
Pleiades were random domain names generated by
Chrome [16,45]. Each time the Google Chrome browser
starts, it will query three “random looking” domain
names. These domain names are issued as a DNS check,
so the browser can determine if NXDomain rewriting is
enabled. The “Chrome DGA” was reported as a vari-
ant of Bobax from Pleiades. We trained a class for this
DGA and flagged it as benign. One more case of test-
ing for NXDomain rewriting was identified in a brand of
wireless access points. Connectify3, offers wireless hot-
spot functionality and one of their configuration option
enables the user to hijack the ISP’s default NXDomain
rewriting service. The device generates a fixed number
of NXDomains to test for rewriting.

Two additional cases of false reports were triggered
by domain names from the .it and .edu TLDs. These
domain names contained minor variations on common
words (i.e. repubblica, gazzetta, computer, etc.). Domain
names that matched these clusters appeared only for two
days in our traces and never again. The very short lived
presence of these two clusters could be explained if the
domain names were part of a spam-campaign that was
remediated by authorities before it became live.

The fifth case of false report originated from domain
names under a US government zone and contained the

3www.connectify.me

502  21st USENIX Security Symposium	 USENIX Association

Table 3: TPs (%) for C&C detection (1,000 training sequences).

FPs (%)
botnet 0.1 0.5 1 3 5 10
Zeus.v3 99.9 99.9 99.9 99.9 99.9 99.9
Expiro.Z 33.03 64.56 78.23 91.77 95.23 98.67
Bamital 100 100 100 100 100 100
Shiz 0 1.64 21.02 96.58 100 100
Boonana 3.8 10.69 15.59 27.67 35.05 48.43
BankPatch 56.21 70.77 93.18 99.9 99.91 99.94

string wpdhsmp. Our best guess is that these are inter-
nal domain names that were accidentally leaked to the re-
cursive DNS server of our ISP. Domain names from this
cluster appeared only for one day. This class of NXDo-
mains was also modeled as a benign variant. It is worth
noting that all falsely reported DGA clusters, excluding
the Chrome cluster, were short lived. If operators are
willing to wait a few days until a new DGA cluster is
reported by Pleiades, these false alarms would not have
been raised.

7.3 C&C Detection
To evaluate the effectiveness of the C&C Detection,

we proceeded as follows. We considered the six new
DGAs which we were able to attribute to specific mal-
ware, as shown in Table 3. Let NXi be the set of NXDo-
mains collected by the DGA Discovery (Section 4) and
DGA Modeling (Section 5.1) modules for the i-th DGA.
For each DGA, we set aside a subset NXtrain

i ⊂ NXi of
NXDomains to train an HMMi model. Then we use the
remaining NXtest

i = NXi − NXtrain
i to compute the true

positive (TP) rate of HMMi, and a set A that consists
of 602,969 unique domain names related to the consis-
tently popular domain names according to alexa.com
to compute the false positive (FP) rate. To obtain A
we first consider all domain names that have been con-
sistently ranked in the top 100,000 popular domains by
alexa.com for approximately one year. This gave us a
set T of about 60,000 “stable” popular domain names,
which we consider as legitimate domains. Then, we
monitored the stream of successful DNS queries in a
large live network for a few hours, and we added to A
all the domain names whose effective 2LD is in T .

We performed experiments with a varying number
c = |NXtrain

i | of training samples. Specifically, we set c
equal to 100, 200, 500, 1,000, 2,000, 5,000, and 10,000.
We then computed the trade-off between TPs and FPs for
different detection thresholds. In the interest of space, we
report only the results for c=1,000 in Table 3. In general,
the results improve for increasing numbers of training in-
stances. We set the detection threshold so as to obtain an
FP rate equal to 0.1%, 0.5%, 1%, 3%, 5%, and 10%. As
we can see, at FP=1% we obtained a high (> 93%) TP
rate for three out of six DGAs, and relatively good results

(> 78%) in five out of six cases. At FP=3% we have high
TP rate (> 91%) in five out of six cases.

As mentioned in Section 3, the C&C Detection mod-
ule reduces the set of domain names successfully re-
solved by a host h that have been labeled as compro-
mised with DGA-malware to a smaller set of good can-
didate C&C domains generated by the DGA. The results
in Table 3 show that if we rank the domains resolved by
h according to the likelihood assigned by the HMM, in
most cases we will only need to inspect between 1/100
to 3/100 of the active domains queried by h to discover
the C&C.

7.4 Case Studies
7.4.1 Zeus.v3

In September 2011, Pleiades detected a new DGA
that we linked to the Zeus.v3 variant a few weeks later.
The domain names collected from the machines compro-
mised by this DGA-malware are hosted in six different
TLDs: .biz,.com,.info ,.net ,.org and .ru. Ex-
cluding the top level domains, the length of the domain
names generated by this DGA are between 33 and 45
alphanumeric characters. By analyzing one sample of
the malware4 we observed that its primary C&C infras-
tructure is P2P-based. If the malware fails to reach its
P2P C&C network, it follows a contingency plan, where
a DGA-based component is used to try to recover from
the loss of C&C communication. The malware will then
resolve pseudo-random domain names, until an active
C&C domain name is found.

To date, we have discovered 12 such C&C domains.
Over time, these 12 domains resolved to five different
C&C IPs hosted in four different networks, three in the
US (AS6245, AS16626 and AS3595) and one in the
United Kingdom (AS24931). Interestingly, we observed
that the UK-based C&C IP address remained active for a
very short period of time of only a few minutes, from Jan
25, 2012 12:14:04 EST to Jan 25, 2012 12:22:37
EST. The C&C moved from a US IP (AS16626) to the
UK (AS24931), and then almost immediately back to the
US (AS3595).

7.4.2 BankPatch
We picked the BankPatch DGA cluster as a sample

case for analysis since this botnet had been active for
several months during our experiments and the infected
population continues to be significant. The C&C infras-
tructure that supports this botnet is impressive. Twenty
six different clusters of servers acted as the C&Cs for
this botnet. The botnet operators not only made use of
a DGA but also moved the active C&Cs to different net-
works every few weeks (on average). During our C&C

4Sample MD5s: 8f60afa9ea1e761edd49dfe012c22cbf and
ccec69613c71d66f98abe9cc7e2e20ef.

USENIX Association 	 21st USENIX Security Symposium  503

discovery process, we observed IP addresses controlled
by a European CERT. This CERT has been taking over
domain names from this botnet for several months. We
managed to cross-validate with them the completeness
and correctness of the C&C infrastructure. Complete in-
formation about the C&C infrastructure can be found in
Table 4.

The actual structure of the domain name used
by this DGA can be separated into a four byte pre-
fix and a suffix string argument. The suffix string
arguments we observed were: seapollo.com,
tomvader.com, aulmala.com, apon-
tis.com, fnomosk.com, erhogeld.com,
erobots.com, ndsontex.com, rte-
hedel.com, nconnect.com, edsafe.com,
berhogeld.com, musallied.com, newna-
cion.com, susaname.com, tvolveras.com
and dminmont.com.

The four bytes of entropy for the DGA were provided
by the prefix. We observe collisions between NXDo-
mains from different days, especially when only one suf-
fix argument was active. Therefore, we registered a small
sample of ten domain names at the beginning of 2012 in
an effort to obtain a glimpse of the overall distribution of
this botnet. Over a period of one month of monitoring
the sink-holed data from the domain name of this DGA,
this botnet has infected hosts in 270 different networks
distributed across 25 different countries. By observing
the recursive DNS servers from the domain names we
sinkholed, we determined 4,295 were located in the US.
The recursives we monitored were part of this list and we
were able to measure 86 infected hosts (on average) in
the network we were monitoring. The five countries that
had the most DNS resolution requests for the sinkholed
domain names (besides the US) were Japan, Canada,
the United Kingdom and Singapore. The average num-
ber of recursive DNS servers from these countries that
contacted our authorities was 22 — significantly smaller
than the volume of recursive DNS servers within the US.

8 Discussion and Limitations
Pleiades has some limitations. For example, once a

new DGA is discovered, Pleiades can build fairly accu-
rate statistical models of how the domains generated by
the DGA “look like”, but it is unable to learn or recon-
struct the exact domain generation algorithm. Therefore,
Pleiades will generate a certain number of false positives
and false negatives. However, the results we presented
in Table 1 show that Pleiades is able to construct a very
accurate DGA Classifier module, which produces very
few false positives and false negatives for α = 10. At
the same time, Table 3 shows that the C&C Detection
module, which attributes a single active domain name
to a given DGA, and also works fairly well in the ma-

Table 4: C&C Infrastructure for BankPatch.

IP addresses CC Owner

146.185.250.{89-92} RU Petersburg Int.
31.11.43.{25-26} RO SC EQUILIBRIUM
31.11.43.{191-194} RO SC EQUILIBRIUM
46.16.240.{11-15} UA iNet Colocation
62.122.73.{11-14,18} UA “Leksim” Ltd.
87.229.126.{11-16} HU Webenlet Kft.
94.63.240.{11-14} RO Com Frecatei
94.199.51.{25-18} HU NET23-AS 23VNET
94.61.247.{188-193} RO Vatra Luminoasa
88.80.13.{111-116} SE PRQ-AS PeRiQuito
109.163.226.{3-5} RO VOXILITY-AS
94.63.149.{105-106} RO SC CORAL IT
94.63.149.{171-175} RO SC CORAL IT
176.53.17.{211-212} TR Radore Hosting
176.53.17.{51-56} TR Radore Hosting
31.210.125.{5-8} TR Radore Hosting
31.131.4.{117-123} UA LEVEL7-AS IM
91.228.111.{26-29} UA LEVEL7-AS IM
94.177.51.{24-25} UA LEVEL7-AS IM
95.64.55.{15-16} RO NETSERV-AS
95.64.61.{51-54} RO NETSERV-AS
194.11.16.133 RU PIN-AS Petersburg
46.161.10.{34-37} RU PIN-AS Petersburg
46.161.29.102 RU PIN-AS Petersburg
95.215.{0-1}.29 RU PIN-AS Petersburg
95.215.0.{91-94} RU PIN-AS Petersburg
124.109.3.{3-6} TH SERVENET-AS-TH-AP
213.163.91.{43-46} NL INTERACTIVE3D-AS
200.63.41.{25-28} PA Panamaserver.com

jority of cases. Unfortunately, there are some scenarios
in which the HMM-based classification has difficulties.
We believe this is because our HMM considers domain
names simply to be sequences of individual characters.
In our future work, we plan to experiment with 2-grams,
whereby a domain name will be seen as a sequence of
pairs of characters, which may achieve better classifica-
tion accuracy for the harder to model DGAs.

For example, our HMM-based detector was unable to
obtain high true positive rates on the Boonana DGA. The
reason is that the Boonana DGA leverages third-level
pseudo-random domain names under several second-
level domains owned by dynamic DNS providers. Dur-
ing our evaluation, the hosts infected with Boonana con-
tacted DGA-generated domain names under 59 different
effective second-level domains. We believe that the high
variability in the third-level domains and the high num-
ber of effective 2LDs used by the DGA make it harder
to build a good HMM, thus causing a relatively low
number of true positives. However, in a real-world de-
ployment scenario, the true positive rate may be signif-
icantly increased by focusing on the dynamic DNS do-
mains queried by the compromised hosts. For example,
since we know that Boonana only uses dynamic DNS
domains, we can filter out any other NXDomains, and
avoid passing them to the HMM. In this scenario the

504  21st USENIX Security Symposium	 USENIX Association

HMM would receive as an input only dynamic DNS do-
mains, which typically represent a fraction of all active
domains queried by each host, and consequently the ab-
solute number of false positives can be significantly re-
duced.

As we mentioned in Section 3, detecting active DGA-
generated C&C domains is valuable because their re-
solved IP addresses can be used to update a C&C IP
blacklist. In turn, this IP blacklist can be used to block
C&C communications at the network edge, thus pro-
viding a way to mitigate the botnet’s malicious activ-
ities. Clearly, for this strategy to be successful, the
frequency with which the C&C IP addresses change
should be lower than the rate with which new pseudo-
random C&C domain names are generated by the DGA.
This assumption holds for all practical cases of DGA-
based malware we encountered. After all, the generation
of pseudo-random domains mainly serves the purpose
of making the take-down of loosely centralized botnets
harder. However, one could imagine “hybrid” botnets
that use DGA-generated domains to identify a set of peer
IPs to bootstrap into a P2P-based C&C infrastructure.
Alternatively, the DGA-generated C&C domains may be
flux domains, namely domain names that point to a IP
fluxing network. It is worth noting that such sophisti-
cated “hybrid” botnets may be quite complex to develop,
difficult to deploy, and hard to manage successfully.

Another potential limitation is due to the fact that
Pleiades is not able to distinguish between different bot-
nets whose bot-malware use the same DGA algorithm.
In this case, while the two botnets may be controlled by
different entities, Pleiades will attribute the compromised
hosts within the monitored network to a single DGA-
based botnet.

One limitation of our evaluation method is the ex-
act enumeration of the number of infected hosts in the
ISP network. Due to the location of our traffic moni-
toring sensors (below the recursive DNS server), we can
only obtain a lower bound estimate on the number of in-
fected hosts. This is because we have visibility of the IP
addresses within the ISP that generate the DNS traffic,
but lack additional information about the true number of
hosts “behind” each IP. For example, an IP address that
generates DNS traffic may very well be a NAT, firewall,
DNS server or other type of complex device that behaves
as a proxy (or relay point) for other devices. Also, ac-
cording to the ISP, the DHCP churn rate is relatively low,
and it is therefore unlikely that we counted the same in-
ternal host multiple times.

In the case of Zeus.v3, the DGA is used as a backup
C&C discovery mechanism, in the event that the P2P
component fails to establish a communication channel
with the C&C. The notion of having a DGA compo-
nent as a redundant C&C discovery strategy could be

used in the future by other malware. A large number
of new DGAs may potentially have a negative impact on
the supervised modules of Pleiades, and especially on the
HMM-based C&C detection. In fact, a misclassification
by the DGA Classifier due to the large number of classes
among which we need to distinguish may misguide the
selection of the right HMM to be used for C&C detec-
tion, thus causing an increase in false positives. In our
future work we plan to estimate the impact of such mis-
classifications on the C&C detection accuracy, and inves-
tigate whether using auxiliary IP-based information (e.g.,
IP reputation) can significantly improve the accuracy in
this scenario.

As the internals of our system become public, some
botnets may attempt to evade both the DGA discovery
and C&C detection process. As we have already dis-
cussed, it is in the malware authors’ best interest to create
a high number of DGA-related NXDomains in order to
make botnet take-over efforts harder. However, the mal-
ware could at the same time generate NXDomains not re-
lated with the C&C discovery mechanism in an effort to
mislead our current implementation of Pleiades. These
noisy NXDomains may be generated in two ways: (1)
randomly, for example by employing a different DGA,
or (2) by using one DGA with two different seeds, one
of which is selected to generate noise. In case of (1), the
probability that they will be clustered together is small.
This means that these NXDomains will likely not be part
of the final cluster correlation process and they will not
be reported as new DGA-clusters. On the other hand,
case (2) might cause problems during learning, espe-
cially to the HMM, because the noisy and “true” NXDo-
mains may be intermixed in the same cluster, thus mak-
ing it harder to learn an accurate model for the domain
names.

9 Conclusion

In this paper, we presented a novel detection system,
called Pleiades, that is able to accurately detect machines
within a monitored network that are compromised with
DGA-based bots. Pleiades monitors traffic below the lo-
cal recursive DNS server and analyzes streams of un-
successful DNS resolutions, instead of relying on man-
ual reverse engineering of bot malware and their DGA
algorithms. Using a multi-month evaluation phase, we
showed that Pleiades can achieve very high detection ac-
curacy. Moreover, over the fifteen months of the oper-
ational deployment in a major ISP, Pleiades was able to
identify six DGAs that belong to known malware fami-
lies and six new DGAs never reported before.

USENIX Association 	 21st USENIX Security Symposium  505

References
[1] K. Aas and L. Eikvil. Text categorisation: A sur-

vey., 1999.

[2] abuse.ch. ZeuS Gets More Sophisticated Us-
ing P2P Techniques. http://www.abuse.ch/
?p=3499, 2011.

[3] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee,
and N. Feamster. Building a dynamic reputation
system for DNS. In the Proceedings of 19th
USENIX Security Symposium (USENIX Security
’10), 2010.

[4] M. Antonakakis, R. Perdisci, W. Lee,
N. Vasiloglou, and D. Dagon. Detecting mal-
ware domains in the upper DNS hierarchy. In the
Proceedings of 20th USENIX Security Symposium
(USENIX Security ’11), 2011.

[5] BankPatch. Trojan.Bankpatch.C. http:
//www.symantec.com/security_
response/writeup.jsp?docid=
2008-081817-1808-99&tabid=2, 2009.

[6] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi.
EXPOSURE: Finding malicious domains using
passive dns analysis. In Proceedings of NDSS,
2011.

[7] R. Feldman and J. Sanger. The text mining hand-
book: advanced approaches in analyzing unstruc-
tured data. Cambridge Univ Pr, 2007.

[8] R. Finones. Virus:Win32/Expiro.Z. http://
www.microsoft.com/security/portal/
Threat/Encyclopedia/Entry.aspx?
Name=Virus%3AWin32%2FExpiro.Z, 2011.

[9] Y. Freund and L. Mason. The alternating deci-
sion tree learning algorithm. In Proceedings of
the Sixteenth International Conference on Machine
Learning, ICML ’99, 1999.

[10] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and
W. Lee. BotHunter: Detecting malware infection
through IDS-driven dialog correlation. In Proc.
USENIX Security, 2007.

[11] M. Geide. Another trojan bamital pattern. http:
//research.zscaler.com/2011/05/
another-trojan-bamital-pattern.
html, 2011.

[12] S. Golovanov and I. Soumenkov. TDL4 top
bot. http://www.securelist.com/en/
analysis/204792180/TDL4_Top_Bot,
2011.

[13] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Bot-
Miner: clustering analysis of network traffic for
protocol- and structure-independent botnet detec-
tion. In USENIX Security, 2008.

[14] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting
botnet command and control channels in network
traffic. In Network and Distributed System Security
Symposium (NDSS), 2008.

[15] J. Hermans. MozillaWiki TLD List. https://
wiki.mozilla.org/TLD_List, 2006.

[16] S. Krishnan and F. Monrose. Dns prefetching and
its privacy implications: when good things go bad.
In Proceedings of the 3rd USENIX conference on
Large-scale exploits and emergent threats: botnets,
spyware, worms, and more, LEET’10, pages 10–
10, Berkeley, CA, USA, 2010. USENIX Associa-
tion.

[17] L. I. Kuncheva. Combining Pattern Classifiers:
Methods and Algorithms. Wiley-Interscience,
2004.

[18] M. H. Ligh, S. Adair, B. Hartstein, and M. Richard.
Malware Analyst’s Cookbook and DVD, chapter 12.
Wiley, 2010.

[19] P. Mockapetris. Domain names - concepts
and facilities. http://www.ietf.org/rfc/
rfc1034.txt, 1987.

[20] P. Mockapetris. Domain names - implementation
and specification. http://www.ietf.org/
rfc/rfc1035.txt, 1987.

[21] M. Newman. Networks: an introduction. Oxford
University Press, 2010.

[22] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral
clustering: Analysis and an algorithm. In Advances
In Neural Information Processing Systems, pages
849–856. MIT Press, 2001.

[23] P. Porras, H. Saidi, and V. Yegneswaran. An anal-
ysis of conficker’s logic and rendezvous points.
http://mtc.sri.com/Conficker/, 2009.

[24] D. Pelleg and A. W. Moore. X-means: Extending
k-means with efficient estimation of the number of
clusters. In Proceedings of the Seventeenth Inter-
national Conference on Machine Learning, ICML
’00, pages 727–734, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc.

[25] C. POLSKA. ZeuS P2P+DGA variant
mapping out and understanding the threat.

506  21st USENIX Security Symposium	 USENIX Association

http://www.cert.pl/news/4711/
langswitch_lang/en, 2012.

[26] P. Porras. Inside risks: Reflections on conficker.
Communications of the ACM, 52:23–24, October
2009.

[27] P. Porras, H. Saidi, and V. Yegneswaran. Conficker
C analysis. Technical report, SRI International,
Menlo Park, CA, April 2009.

[28] L. R. Rabiner. Readings in speech recognition.
chapter A tutorial on hidden Markov models and
selected applications in speech recognition. 1990.

[29] P. Royal. Analysis of the kraken botnet.
http://www.damballa.com/downloads/
r_pubs/KrakenWhitepaper.pdf, 2008.

[30] S. Shevchenko. Srizbi domain generator calculator.
http://blog.threatexpert.com/2008/
11/srizbis-domain-calculator.html,
2008.

[31] S. Shevchenko. Domain name gen-
erator for murofet. http://blog.
threatexpert.com/2010/10/
domain-name-generator-for-murofet.
html, 2010.

[32] SOPHOS. Mal/Simda-C. http:
//www.sophos.com/en-us/
threat-center/threat-analyses/
viruses-and-spyware/Mal˜Simda-C/
detailed-analysis.aspx, 2012.

[33] J. Stewart. Bobax trojan analysis. http:
//www.secureworks.com/research/
threats/bobax/, 2004.

[34] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert,
M. Szydlowski, R. Kemmerer, C. Kruegel, and
G. Vigna. Your botnet is my botnet: analysis of
a botnet takeover. In Proceedings of the 16th ACM
Conference on Computer and Communications Se-
curity, CCS ’09, pages 635–647, New York, NY,
USA, 2009. ACM.

[35] S. Stover, D. Dittrich, J. Hernandez, and S. Diet-
rich. Analysis of the storm and nugache trojans:
P2P is here. In USENIX ;login:, vol. 32, no. 6, De-
cember 2007.

[36] T.-F. Yen and M. K. Reiter. Are your hosts trading
or plotting? Telling P2P file-sharing and bots apart.
In ICDCS, 2010.

[37] R. Villamarin-Salomon and J. Brustoloni. Identi-
fying botnets using anomaly detection techniques
applied to dns traffic. In 5th Consumer Communi-
cations and Networking Conference, 2008.

[38] Wikipedia. The storm botnet. http://en.
wikipedia.org/wiki/Storm_botnet,
2010.

[39] J. Williams. What we know (and learned) from the
waledac takedown. http://tinyurl.com/
7apnn9b, 2010.

[40] J. Wolf. Technical details of
srizbi’s domain generation algorithm.
http://blog.fireeye.com/research/2008/11/technical-
details-of-srizbis-domain-generation-
algorithm.html, 2008. Retreived: April, 10
2010.

[41] J. Wong. Trojan:Java/Boonana. http:
//www.microsoft.com/security/
portal/Threat/Encyclopedia/Entry.
aspx?Name=Trojan%3AJava%2FBoonana,
2011.

[42] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ran-
jan. Detecting algorithmically generated malicious
domain names. In Proceedings of the 10th annual
Conference on Internet Measurement, IMC ’10,
pages 48–61, New York, NY, USA, 2010. ACM.

[43] S. Yadav and A. N. Reddy. Winning with dns
failures: Strategies for faster botnet detection. In
7th International ICST Conference on Security and
Privacy in Communication Networks, 2011.

[44] T.-F. Yen and M. K. Reiter. Traffic aggregation for
malware detection. In Proc. International confer-
ence on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2008.

[45] B. Zdrnja. Google Chrome and (weird)
DNS requests. http://isc.sans.edu/
diary/Google+Chrome+and+weird+DNS+
requests/10312, 2011.

[46] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and
X. Luo. Detecting stealthy P2P botnets using sta-
tistical traffic fingerprints. In Annual IEEE/IFIP
International Conference on Dependable Systems
and Networks - Dependable Computing and Com-
munication Symposium, 2011.

USENIX Association 	 21st USENIX Security Symposium  507

PUBCRAWL: Protecting Users and Businesses from CRAWLers
Gregoire Jacob

University of California, Santa Barbara / Telecom SudParis
gregoire.jacob@gmail.com

Engin Kirda
Northeastern University
ek@ccs.neu.edu

Christopher Kruegel
University of California, Santa Barbara

chris@cs.ucsb.edu

Giovanni Vigna
University of California, Santa Barbara

vigna @cs.ucsb.edu

Abstract

Web crawlers are automated tools that browse the web
to retrieve and analyze information. Although crawlers
are useful tools that help users to find content on the
web, they may also be malicious. Unfortunately, unau-
thorized (malicious) crawlers are increasingly becoming
a threat for service providers because they typically col-
lect information that attackers can abuse for spamming,
phishing, or targeted attacks. In particular, social net-
working sites are frequent targets of malicious crawling,
and there were recent cases of scraped data sold on the
black market and used for blackmailing.

In this paper, we introduce PUBCRAWL, a novel ap-
proach for the detection and containment of crawlers.
Our detection is based on the observation that crawler
traffic significantly differs from user traffic, even when
many users are hidden behind a single proxy. Moreover,
we present the first technique for crawler campaign attri-
bution that discovers synchronized traffic coming from
multiple hosts. Finally, we introduce a containment
strategy that leverages our detection results to efficiently
block crawlers while minimizing the impact on legiti-
mate users. Our experimental results in a large, well-
known social networking site (receiving tens of millions
of requests per day) demonstrate that PUBCRAWL can
distinguish between crawlers and users with high ac-
curacy. We have completed our technology transfer,
and the social networking site is currently running PUB-
CRAWL in production.

1 Introduction
Web crawlers, also called spiders or robots, are tools that
browse the web in an automated and systematic fashion.
Their purpose is to retrieve and analyze information that
is published on the web. Crawlers were originally de-
veloped by search engines to index web pages, but have
since multiplied and diversified. Crawlers are now used
as link checkers for web site verification, as scrapers to
harvest content, or as site analyzers that process the col-
lected data for analytical or archival purposes [9]. While
many crawlers are legitimate and help users find relevant

content on the web, unfortunately, there are also crawlers
that are deployed for malicious purposes.

As an example, cyber-criminals perform large-scale
crawls on social networks to collect user profile infor-
mation that can later be sold to online marketers or used
for targeted attacks. In 2009, a hacker who had crawled
the popular student network StudiVZ, blackmailed the
company, threatening to sell the stolen data to gangs in
Eastern Europe [23]. In 2010, Facebook sued an en-
trepreneur who crawled more than 200 million profiles,
and who was planning to create a third-party search ser-
vice with the data that he had collected [25]. In gen-
eral, the problem of site scraping is not limited to so-
cial networks. Many sites who advertise goods, ser-
vices, and prices online desire protection against com-
petitors that use crawlers to spy on their inventory. In
several court cases, airlines (e.g., American Airlines [2],
Ryanair [20]) sued companies that scraped the airlines’
sites to be able to offer price comparisons and flights to
their customers. In other cases, attackers scraped content
from victim sites, and then simply offered the cloned in-
formation under their own label.

Many websites explicitly forbid unauthorized scrap-
ing in their terms of services. Unfortunately, such
terms are simply ignored by non-cooperating (mali-
cious) crawlers. The Robot Exclusion Protocol faces
a similar problem: Web sites can specify rules in the
robots.txt file to limit crawler accesses to certain
parts of their site [14], but a crawler has to voluntarily
follow these restrictions.

Current detection techniques rely on simple crawler
artifacts (e.g., spurious user agent strings, suspicious
referrers) and simple traffic patterns (e.g., inter-arrival
time, volume of traffic) to distinguish between human
and crawler traffic. Unfortunately, better crawler imple-
mentations can remove revealing artifacts, and simple
traffic patterns fail in the presence of proxy servers or
large corporate gateways, which can serve hundreds of
legitimate users from a single IP address. In response to
the perceived lack of effective protection, several com-
mercial anti-scraping services have emerged (e.g., Dis-

508  21st USENIX Security Symposium	 USENIX Association

til.It, SiteBlackBox, Sentor Assassin). These services
employ “patent pending heuristics” to defend against
unwanted crawlers. Unfortunately, it is not clear from
available descriptions how these services work in detail.

Many sites rely on CAPTCHAs [24] to prevent scrap-
ers from accessing web content. CAPTCHAs use
challenge-response tests that are easy to solve for hu-
mans but hard for computers. Some tests are known
to be vulnerable to automated breaking techniques [4].
Nevertheless, well-designed CAPTCHAs offer a rea-
sonable level of protection against automated attacks.
Unfortunately, their excessive use brings along usabil-
ity problems and severely decreases user satisfaction.
Other prevention techniques are crawler traps. A crawler
trap is a URL that lures crawlers into infinite loops,
using, for example, symbolic links or sets of auto-
generated pages [15]. Unfortunately, legitimate crawlers
or users may also be misled by these traps. Traps and
CAPTCHAs can only be one part of a successful de-
fense strategy, and legitimate users and crawlers must be
exposed as little as possible to them.

In this paper, we introduce a novel approach and a sys-
tem called PUBCRAWL to detect crawlers and automati-
cally configure a defense strategy. PUBCRAWL’s useful-
ness has been confirmed by a well-known, large social
networking site we have been collaborating with, and
it is now being used in production. Our detection does
not rely on easy-to-detect artifacts or the lack of fidelity
to web standards in crawler implementations. Instead,
we leverage the key observation that crawlers are auto-
mated processes, and as such, their access patterns (web
requests) result in different types of regularities and vari-
ations compared to those of real users. These regularities
and variations form the basis for our detection.

For detection, we use both content-based and timing-
based features to passively model the traffic from dif-
ferent sources. We extract content-based features from
HTTP headers (e.g., referrers, cookies) and URLs (e.g.,
page revisits, access errors). These features are checked
by heuristics to detect values betraying a crawling activ-
ity. For timing-based features, we analyze the time series
produced by the stream of requests. We then use ma-
chine learning to train classifiers that can distinguish be-
tween crawler and user traffic. Our system is also able to
identify crawling campaigns led by distributed crawlers
by looking at the synchronization of their traffic.

The aforementioned features work well for detect-
ing crawlers that produce a minimum volume of traf-
fic. However, it is conceivable that some adversaries
have access to a large botnet with hundreds of thousands
of infected machines. In this case, each individual bot
would only need to make a small number of requests to
scrape the entire site, possibly staying below the mini-
mal volume required by our models. An active response

to such attacks must be triggered, such as the injection
of crawler traps or CAPTCHAs. An active response is
only triggered when a single client sends more than a
(small) number of requests. To minimize the impact of
active responses on legitimate users, we leverage our de-
tection results to distinguish between malicious crawlers
and benign sources that produce a lot of traffic (e.g.,
proxy servers or corporate gateways). This allows us
to automatically whitelist benign sources (whose IP ad-
dresses rarely change), minimizing the impact on legiti-
mate users while denying access to unwanted crawlers.

For evaluation, we applied PUBCRAWL to the web
server logs of the social networking site we were work-
ing with. To train the system, we examined 5 days
worth of traffic, comprising 73 million requests from
813 average-volume sources (IP addresses). The logs
were filtered to focus on sources whose traffic volume
was not an obvious indicator of their type. To test the
system, we examined a set of 62 million requests coming
from 763 sources over 5 days. Our experiments demon-
strated that more sophisticated crawlers are often hard
to distinguish from real users, and hence, are difficult
to detect using traditional techniques. Using our sys-
tem, we were able to identify crawlers with high accu-
racy, including crawlers that were previously-unknown
to the social networking site. We also identified interest-
ing campaigns of distributed crawlers.

Section 2 gives an overview of the system whereas
Sections 3 to 5 provide more technical details for each
part. The configuration and evaluation of the system if
finally addressed in Sections 6 to 8. Overall, this paper
makes the following contributions:

• We present a novel technique to detect individual
crawlers by time series analysis. To this end, we
use auto-correlation and decomposition techniques
to extract navigation patterns from the traffic of in-
dividual sources.

• We introduce the first technique to detect dis-
tributed crawlers (crawling campaigns). More pre-
cisely, our system can identify coordinated activity
from multiple crawlers.

• We contain crawlers using active responses that we
strategically emit according to detection results.

• We implemented our approach in a tool called
PUBCRAWL, and performed the largest real-world
crawler detection evaluation to date, using tens of
millions of requests from a popular social network.
PUBCRAWL distinguishes crawlers from users with
high accuracy (even users behind a proxy).

2 System Overview
The goal of PUBCRAWL is to analyze the web traffic that
is sent to a destination site, and to automatically classify

USENIX Association 	 21st USENIX Security Symposium  509

the originating sources of this traffic as either crawlers
or users. The initial traffic analysis is passive and per-
formed off-line, using log data that records web site re-
quests from clients. The goal of this analysis is to build
a knowledge base about traffic sources (IP addresses).

This knowledge base is then consulted to respond to
web requests. Requests from known users or accepted
crawlers (e.g., Googlebot) are served directly. Requests
from unwanted crawlers, in contrast, are blocked. Of
course, the knowledge base may not contain an entry for
a source IP. In this case, a small number of requests is
permitted until it exceeds a given threshold: the system
then switches to active containment and, for example,
injects traps or CAPTCHAs into the response.

While the system is active, the requests are recorded
to refine the knowledge base: When PUBCRAWL identi-
fies a previously-unknown source to be a user or a legiti-
mate proxy, requests from this source are no longer sub-
jected to active responses whereas unwanted crawlers
are blacklisted. The key insight is that PUBCRAWL can
successfully identify legitimate, high-volume sources,
and these sources are very stable. This stability of high-
volume sources and the large number of low-volume
sources (tens of requests) ensure that only a small frac-
tion of users will be subjected to active responses.

The architecture of PUBCRAWL is shown in Figure 1.
The server log entries (i.e., the input) are first split into
time windows of fixed length. Running over these win-
dows, the system extracts two kinds of information: (i)
HTTP header information, including URLs and (ii) tim-
ing information in the form of time series. The ex-
tracted information is then submitted to two detection
modules (which detect individual crawlers) and an at-
tribution module (which detects crawling campaigns).
These three modules generate the knowledge base that is
leveraged by the proactive containment module for real-
time traffic. The different modules are described below:

Heuristic detection. For a given time window, the
system analyzes the requests coming from distinct
source IP addresses, and extracts different features re-
lated to HTTP header fields and URL elements. These
features are checked with heuristics to detect suspicious
values that could reveal an ongoing crawling activity
(e.g., suspicious referrers, unhandled cookies, etc.).

Traffic shape detection. When crawlers correctly set
the different HTTP fields and masquerade the user agent
string, it becomes much more difficult to tell apart slow
crawlers from busy proxies since they cannot be distin-
guished based on request volumes. Traffic shape detec-
tion addresses this problem. For a given source IP ad-
dress, the system analyzes the requests (time stamps)
over a fixed time window to build the associated time
series. Figure 2 depicts time series representing crawler

Figure 1: Architecture overview

Figure 2: YahooSlurp and MSIE 7 time series

and user traffic. One can observe distinctive patterns
that are specific to each class of traffic. Crawler traffic
tends to exhibit more regularity and stability over time.
User traffic, instead, tends to exhibit more local varia-
tions. However, over time, user traffic also shows repet-
itive patterns whose regularity is related to the “human
time scale” (e.g., daily or weekly patterns).

To determine the long-term stability of a time series
with respect to its quick variations, we leverage auto-
correlation analysis techniques. Furthermore, to sepa-
rate repetitive patterns from slow variations, we lever-
age decomposition analysis techniques. Decomposition
separates a time series into a trend component that cap-
tures slow variations, a seasonal component that cap-
tures repetitive patterns, and a component that captures
the remaining noise. We use the information extracted
from these analyses as input to classifiers for detection.
These classifiers are used to determine whether an un-
known time series belongs to a crawler or a user.

Campaign attribution. Some malicious crawlers
willingly reduce their volume of requests to remain
stealthy. This comes at a cost for the attacker in terms
of crawling efficiency (volume of retrieved data during a
specific time span). To compensate for these limitations,
malicious crawlers, just like legitimate ones, distribute
their crawling activity over multiple sources. We denote
a set of crawlers, distributed over multiple locations, and
showing synchronized activity, as a crawling campaign.

Figure 3 presents two time series that correspond to
the same crawler distributed over two hosts in different
subnets. One can observe a high level of similarity be-
tween the two time series. The key insight of our ap-
proach is that these similarities can be used to identify
the distributed crawlers that are part of a campaign.

510  21st USENIX Security Symposium	 USENIX Association

Figure 3: Distributed crawler (sources A and B)

Proactive containment. Our containment approach
uses the detection results to establish a whitelist of legit-
imate crawlers and user sources that are allowed direct
access to the site. We also compile a blacklist of unau-
thorized crawlers that need to be blocked. As mentioned
previously, other sources are granted a small number of
unrestricted accesses per day. For IPs that exceed this
threshold, the system responds by inserting CAPTCHAs
or crawler traps into response pages.

3 Crawler Detection Approach
In this section, we provide a more detailed description
of the crawler detection process in PUBCRAWL.

3.1 Heuristic detection based on headers
The heuristic detection module processes, for each
source, the HTTP header fields and URLs extracted from
the requests in the traffic log. Request-based features
have been used in the past by systems that aim to detect
crawlers [10, 11, 17, 18, 21, 22]. We selected the follow-
ing ones for our detection module:

• High error rate: The URL lists used to feed a
crawler often contain entries that belong to invalid
profile names. As a result, crawlers tend to show a
higher rate of errors when accessing profile pages.

• Low page revisit: Crawlers tend to avoid revisiting
the same pages. Users, on the other hand, tend to
regularly revisit the same profiles in their network.

• Suspicious referrer: Many crawlers ignore the re-
ferrer field in a request, setting it to null instead.
Advanced crawlers do handle the referrer field, but
give themselves away by using referrers that point
to the results of directory queries (listings).

• Ignored cookies: Many crawlers ignore cookies.
As a result, a new session identifier cookie is issued
for each request by these crawlers.

In addition to the previously-described heuristics, we
propose a number of additional, novel features:

• Unbalanced traffic: When we see multiple user
agent strings coming from one IP, we expect the re-
quests to be somewhat balanced between these dif-
ferent user agents. If one agent is responsible for
more than 99% of the requests, this is suspicious.

• Low parameter usage: Existing detectors mostly
consider the length and depth of URLs. In our case,
profile URLs show a similar length and the same
level of depth. Instead, parameters can additionally
be appended to URLs (e.g., language selection).
Crawlers typically do not use these parameters.

• Suspicious profile sequence: Crawlers often access
profiles in a sorted (alphabetic) order. This is be-
cause the pointers to profiles are often obtained
from directory queries.

Heuristics results are combined into a final classifica-
tion by a majority vote. That is, if a majority of heuristics
are triggered, we flag the source as a crawler.

3.2 Time series extraction
Our traffic shape detection significantly differs from ex-
isting work on crawler detection as we do not divide the
source traffic into sessions. Instead, we model traffic as
counting processes from which some properties are ex-
tracted, replacing the simple timing features (e.g., mean
and deviation of inter-arrival times) computed over traf-
fic sessions as in [18, 21, 22].

Deriving the time series. We model the traffic from a
source over a time window [t0, tn[as a counting process
(a particular kind of time series). A counting process
X(t) = {X(t)}tnt0 counts the number of requests that ar-
rive from a given source within n time intervals of fixed
duration, where each interval is a fraction of the entire
time window. Notice that the traffic logs must be split
into windows of at least two days to capture patterns that
repeat at the time scale of one day.

Because most statistical tests are sensitive to the total
(absolute) numbers of requests, we normalize the time
series. To this end, the amplitude of the series is first
scaled to capture the ratio of requests per time interval to
the total volume of requests produced by the source. The
time frame of the series is then normalized by setting a
common time origin: the start of all series is set to be
the arrival time of the first observed request among all
monitored sources. Formally, the normalized time series
are extracted as follows: Let S be the set of monitored
sources. Let Rs be the set of requests from a source
s ∈ S. Then, its time series Xs(t) is:

Xs(t) =

{
Card({r ∈ Rs | r.arrival ∈ [t, t+ d [})
Card({r ∈ Rs | r.arrival ∈ [t0, tn[})

}
(1)

t0 = mins∈S({minr∈Rs ({r.arrival})}) (2)

We chose d = 30 minutes as the length of each time
interval, in order to smooth the shape of the time series.
Shorter intervals made the series too sensitive to pertur-
bations in the network communications that are often in-
dependent of the source. Longer intervals, instead, make
it harder to capture interesting variations in the traffic.

USENIX Association 	 21st USENIX Security Symposium  511

3.3 Detection by traffic shape analysis
In this section, we present how we model the shape
of time series to distinguish users from crawlers. Sec-
tions 3.3.1 and 3.3.2 discuss how characteristic features
of the traffic are extracted using the auto-correlation and
decomposition analyses. Section 3.3.3 describes how
these features are used to train classifiers with the goal
of identifying crawler traffic.

3.3.1 Auto-correlation analysis
To characterize the stability of the source traffic, we
compute the Sample Auto-Correlation Function (SAC)
of the source’s time series and analyze its shape [3,
Chapt.9]. The SAC captures the dependency of values
at different points in time on the values observed for the
process at previous times (the time difference between
the two compared values is called lag). This function is a
good indicator for how the request counts vary over time.
A strong auto-correlation at small lags indicates a stable
(regular) process, which is typical for crawlers. Spikes
of auto-correlation at higher lags indicate potential sea-
sonal variations, as in the case of users (for example, a
strong auto-correlation at a lag of one day indicates that
traffic follows a regular, daily pattern).

For a given lag k, the auto-correlation coefficient rk is
computed as in Equation 3, where E denotes the mean
and V ar the variance. The SAC Function captures the
auto-correlation coefficients at different lags.

rk =
E[(X(t)− E[X(t)])× (X(t+ k)− E[X(t)])]

V ar[X(t)]
(3)

To determine the significance of the auto-correlation
coefficient at a given lag k, the coefficient is usually
compared to the standard error. If the coefficient is larger
than twice the standard error, it is statistically signifi-
cant. In this case, we say that we observe a spike at lag
k. A spike indicates that counts separated by a lag k are
linearly dependent. We use the Moving Average (MA)
model to compute the standard error at lag k [3]. Un-
like other models, the MA model does not assume that
the values of the time series are uncorrelated, random
variables. This is important, as we expect request counts
from a single source to be correlated.

Figure 4 presents the SAC Functions computed over
the time series from Figure 2. The functions were plot-
ted over 96 lags (time span of two days). The additional
(red) lines correspond to the standard errors under the
MA assumption. If we observe the shape of these SACs,
the crawler SAC shows a strong auto-correlation at small
lags, followed by a slow linear decay, but no consecu-
tive spike. The user SAC shows a less significant auto-
correlation at small lags, followed by a fast exponential
decay. However, we observe spikes at lags multiple of
0.5, corresponding to a half-daily and daily seasonality.

linear decay,
one sign alternation

exponential decay, local spikes at
lags multiple of 0.5

Figure 4: YahooSlurp and MSIE 7 SACs

Auto-correlation interpretation. Interpreting the
shape of the SAC is traditionally a manual process,
which is left to an analyst [3]. For our system, this pro-
cess needs to be automated. To this end, we introduce
three features to describe the properties of the SAC:
speed of decay, sign alternation, and local spikes.

The speed of decay captures the short-term stability of
the traffic. A slow decay indicates that the traffic is stable
over longer periods whereas a fast decay indicates that
there is little stability. The speed of decay feature can
assume four values: linear decay, exponential decay, cut-
off decay (coefficients reach a cliff and drop), no decay
(coefficients comparable to random noise).

The sign alternation identifies how often the sign of
the SAC changes. Its values are: no alternation, single
alternation, oscillation, or erratic. No or single sign al-
ternations are typical of crawlers, while user traffic po-
tentially shows more alternations.

Local spikes reflect periodicity in the traffic. A local
spike implies a repeated activity whose occurrences are
separated by a fixed time difference (lag). This is typical
for user traffic. This feature has two values: a discrete
spikes count plus a Boolean value indicating if spikes
are observed at interesting lags (half day, day).

Computing our features is a two-step process: First,
we compute “runs” over the auto-correlation coefficients
of the SAC. A run is a sequence of zeroes and ones for
each lag k, where a one indicates that a particular prop-
erty of interest holds. An auto-correlation coefficient
is characterized by four properties: positive, significant,
null, and larger than the previous value. Runs allow us
to determine how often these properties change. This
can be done by computing various statistics (e.g. mean,
variance, length) over the related runs and their subruns
(a sequence of consecutive, identical values).

In the second step, we apply a number of heuristics to
the different runs. In particular, we compare the statistics
computed for different runs with thresholds that indicate
whether a certain property changes once, frequently, or
never. The details of how we compute the runs, as well
as the heuristics that we apply, are described in detail in
Appendix A. The heuristics provide the actual feature
values: speed of decay, sign alternation and local spikes.

512  21st USENIX Security Symposium	 USENIX Association

Figure 5: YahooSlurp and MSIE 7 decompositions

3.3.2 Decomposition analysis
The events that constitute a time series are the result
of different factors that are not directly captured by the
time series; only their impact is observed. Part of these
factors slowly change over time. These factors gener-
ate slow shifts within the series that constitute its trend
component T (t). Another part of these factors repeat
over time due to periodic events. These factors gener-
ate repetitive patterns within the series that constitute its
seasonal component S(t). Unexplained short-term, ran-
dom effects constitute the remaining noise R(t).

Decomposition aims to identify the three components
of a time series such as X(t) = T (t)+S(t)+R(t). The
results of decomposition provide valuable insights into
which component has the strongest influence on the se-
ries. The decomposition is achieved using the Seasonal-
Trend decomposition procedure based on LOESS (STL).
STL moves sliding windows over the analyzed time se-
ries to compute smoothed representations of the series
using the locally weighted regression (LOESS) [6, 7].

The width of the sliding windows is chosen specifi-
cally to extract certain frequencies. In our system, we
set the window width for both the trend and the seasonal
components to 6 hours. This width had to be compara-
ble to the expected seasonality of 12 or 24 hours for user
traffic. The shorter width permits the extraction of com-
ponents that may slightly vary from day to day; a larger
width would not tolerate such variation. Figure 5 shows
the decomposition of the time series from Figure 2.

Trend variation. The trend components for crawlers
are often very stable, and thus, close to a square sig-
nal. To distinguish stable from noisy “signals”, we ap-
ply the differentiation operator ∇ (with a lag 1 and a
distance of 1) to the trend. For crawlers where the traffic
is rather stable, the differentiated trend is very close to
a null series, with the exception of spikes when an am-
plitude shift occurs. For users, the traffic shows quicker
and more frequent variations, which results in a higher
variation of the differentiated trend series. The variation
of the differentiated trend is measured using the Index of
Dispersion for Counts [12], IDC[∇T (t)]. Compared to
other statistical indicators such as the variance, the IDC,
as a ratio, offers the advantage of being normalized.

Season-to-trend ratio. Time series that correspond to
users’ traffic often exhibit repetitive patterns. These pat-

Table 1: Features characterizing traffic time series
Origin Feature name Type

Auto-correlation coefficients at lags 1 and 2, 2 x Continuous,
analysis (SAC) decay, sign alternation, 2 x Enumerate(4)

number of local spikes, 1 x Discrete
daily correlation 1 x Boolean

Decomposition differentiated trend IDC, 1 x Continuous,
analysis season over trend ratio 1 x Continuous

terns can repeat on a daily basis, weekly basis, or other
frequencies that show some significance in terms of the
human perception of time. Consequently, the seasonal
component is more important for user traffic and likely
prevails over the trend component. This is no longer
true for crawler traffic. To capture this difference be-
tween user and crawler traffic, we compute the ratio be-
tween the seasonal and trend components as shown in
Equation 4. The amplitude of the seasonality compo-
nent is computed using the difference between its maxi-
mum and minimum values (as the minimum value might
be negative). The amplitude of the trend component is
measured using a quantile operation to remove outliers
resulting from possible errors in the decomposition.

rs/t =
Max[S(t)]−Min[S(t)]

Quantile[T (t), 0.95]
(4)

3.3.3 Traffic classification
The auto-correlation and decomposition provide a set of
features that describe important characteristics related to
the traffic from a given source. These features are sum-
marized in Table 1. The type column shows, for each
feature, the domain of values: continuous or discrete
numbers, Boolean values, or labels drawn from a set of
n possibilities (written as “Enumerate(n)”).

Of course, no single feature alone is sufficient to un-
equivocally distinguish between crawler and user traffic.
Thus, PUBCRAWL trains a combination of three well-
known, simple classifiers. The first classifier is a naive
Bayes classifier that was trained using the maximum
posterior probability [19]. The conditional probabilities
for continuous attributes were estimated using weighted
local regression. The second classifier is an association
rules classifier [5]. The third classifier is a support vec-
tor machine (SVM) that was trained using a non-linear
kernel function (Gaussian Radial Basis Function - RBF).
To construct an optimal hyperplane, we chose a C-SVM
classification error function.

All three classifiers require a training phase. For this,
we make use of a labeled training set that contains time
series for both known crawlers and users. Each classifier
is trained separately on the same training data. During
the detection phase, each classifier is invoked in parallel.
To determine whether an individual source is a crawler
or a user, we use majority voting over the outputs of the
three classifiers.

USENIX Association 	 21st USENIX Security Symposium  513

Algorithm 1
Require: A time series set χ = X1(t), ..., Xn(t)
1: C = �
2: for Xi(t) in χ do
3: τ = k/Stdv[Xi(t)]
4: C∗ = candidates(C, V ol[Xi(t)],Max[Xi(t)], Stdv[Xi(t)])
5: sm, cm = maxc∈C∗ ({euclidean dist(Xi(t)), c.medoid)})
6: if sm > τ then
7: cm.add time series(Xi(t)
8: else
9: cn = new cluster(medoid = Xi(t))

10: C = C ∪ cn
11: end if
12: end for
13: return clusters set C

4 Crawling Campaign Attribution
In the previous section, we introduced our approach to
detect crawlers based on the analysis of traffic from indi-
vidual sources. However, numerous crawlers do not op-
erate independently, but work together in crawling cam-
paigns, distributed over multiple locations. By identify-
ing such campaigns, we can provide valuable forensic
information to generate the list of blacklisted sources.

Campaign attribution is achieved by identifying
crawlers that exhibit a strong similarity between their
access patterns. To detect sources that exhibit similar
patterns, we use clustering to group similar time series
coming from detected crawlers. During the training pe-
riod, we first determine a minimal intra-cluster similarity
required for crawlers to belong to a common campaign.
During detection, clustering results are used to identify
hosts that exhibit similar activity, and hence, are likely
part of a single, distributed crawler.

Time series similarity. A significant amount of liter-
ature exists on similarity measures for time series [16].
Most of this body of work aims at providing a similarity
measure that is resilient to distortion, so that time series
of similar shape can be clustered. Distortion in terms of
request volume is already handled by the normalization
that we apply when deriving the time series. On the other
hand, resilience to time distortion is not desirable. The
reason is that we want to detect sources that behave sim-
ilarly, including the time domain. As a consequence, we
leverage the (inverse) Squared Euclidean Distance. This
metric is fast and known to provide good results [13].

Incremental clustering. PUBCRAWL uses an incre-
mental clustering approach to find similar time series.
Time series coming from detected crawlers are submit-
ted one by one to our clustering algorithm described in
Algorithm 1. For each new time series, the algorithm
computes the similarity between this time series and
the medoı̈ds of existing clusters (Line 5, Algorithm 1).
When the maximal similarity, found for a given medoı̈d,
is above a threshold τ (Line 6, Algorithm 1), the time
series is added to the associated cluster. Otherwise, the
time series becomes the medoı̈d for a new cluster that is

created. τ corresponds to the minimal intra-cluster sim-
ilarity that the algorithm has to enforce. τ is computed
during the learning phase, based on a labeled dataset that
contains time series for distributed crawlers. Note that
τ is not fixed but depends on the standard deviation to
compensate for time series proving to be more “noisy”.

To speed up the process, for each incoming time se-
ries, the function candidates (Line 4, Algorithm 1) se-
lects a subset of comparable clusters. These candidate
clusters are chosen because their medoı̈ds have a volume
of requests, an amplitude and a standard deviation that
are comparable to the new time series. We found that
this selection process significantly reduced the number
of necessary computations (but also false positives).

Once all time series are processed, each cluster that
contains a sufficient number of elements is considered to
represent a crawling campaign. Sources that are part of
this cluster are flagged as parts of a distributed crawler.

5 Crawler Proactive Containment
Existing techniques to detect crawlers, including our ap-
proach, often require a non-negligible amount of traffic
before reaching a decision. To address attacks in which
an adversary leverages a large number of bots for crawl-
ing, we require an additional containment mechanism.
In PUBCRAWL, the detection modules are mainly used
to produce two lists: A whitelist of IPs corresponding to
authorized users (proxies) and legitimate crawlers, and
a blacklist of IPs corresponding to suspicious crawlers.
These lists are used to enforce an access policy for the
real-time stream of requests.

Whenever the protected web site receives a request
from a source in the whitelist, the request is granted.
Sources on the blacklist are blocked. Other sources are
considered unknown, and are treated as follows.

For each source, we check the number of requests
that were generated within a given time interval (cur-
rently, one day). If this volume remains below a mini-
mal threshold k1, the source is considered a user, and its
access to the site is granted. If k1 is chosen sufficiently
small, the amount of leaked information remains small,
even if an attacker has many machines at their disposal.

If this same volume is above a second threshold k2,
we can use our models to make a meaningful decision
and either whitelist or blacklist this source.

When the number of requests from a source is be-
tween k1 and k2, unknown sources are exposed to ac-
tive responses such as CAPTCHAs and crawler traps.
By modifying k1 and k2, a number of trade-offs can
be made. When k1 increases, fewer users are exposed
to active responses, but it is easier for large-scale, dis-
tributed attackers to steal data. When k2 increases, our
system will be more precise in making decisions be-
tween crawlers and users but we expose more users to

514  21st USENIX Security Symposium	 USENIX Association

active responses. In Section 6, we show that, for rea-
sonable settings of the thresholds k1 and k2, only a very
small fraction of requests and IP addresses are subjected
to active responses, while the amount of pages that even
large botnets can scrape remains small.

In practice, PUBCRAWL will only be used for “anony-
mous” requests. These are requests from users who do
not have an account on the site or have not logged in.
When a user authenticates (logs in), subsequent requests
will contain a cookie that grants direct access to the site
(and authenticated requests are rate-limited on an indi-
vidual basis). This is important to consider when dis-
cussing why IP addresses form the basis for our white-
and blacklists. In fact, we are aware that making de-
cisions based on IP addresses can be challenging; IP
addresses are only a weak and imperfect mechanism to
identify the source of requests. However, for anonymous
requests, the IP address is the only reliable information
that is available to the server (since the client completely
controls the request content).

One problem with using IP addresses is that a ma-
licious crawler (or bot) on an infected home computer
might regularly acquire a new IP address through dhcp.
Thus, the blacklist can become stale quickly. We address
this problem by allowing each individual IP address only
a small number k1 of unrestricted accesses (before active
containment is enabled). While each fresh IP address
does allow a bot a new set of requests, IP addresses are
not changing rapidly enough so that attackers can draw
a significant advantage. Another problem is that the IP
address of a whitelisted, legitimate proxy could change,
subjecting the users behind it to unwanted, active con-
tainment. Our experimental results (in Section 6) show
that this is typically not the case, and legitimate, high-
traffic sources are relatively stable. Finally, it is pos-
sible that an attacker compromises a machine behind a
whitelisted proxy and abuses it as a crawler. To protect
against this case, our system enforces a maximum traffic
volume after which the whitelist status is revoked and
the IP address is treated as unknown.

To keep the access control lists up-to-date, PUB-
CRAWL continuously re-evaluates unknown sources and
entries on the whitelist. Entries in the blacklist are ex-
pired after some days. Moreover, users ca always au-
thenticate to the site to bypass PUBCRAWL’s checks.

6 Evaluation
We implemented PUBCRAWL in Python, with an inter-
face to R [1] for the time series analysis. The system
was developed and evaluated in cooperation with a large,
well-known social network. More precisely, we used
ten days of real-world request data taken from the web
server logs of the social network, and we received feed-
back from expert practitioners in assessing the quality of

our results. The evaluation yielded a favorable outcome,
and our detection system is now integrated into the pro-
duction environment of a large social networking site.

6.1 Dataset presentation
The ten days of web server logs contain all requests to
public profile pages of the social networking site we
used as a case study. Public profiles are accessible by
anyone on the Internet without requiring the client to
be logged in. The social network provider has expe-
rienced that almost all crawling activity to date comes
from clients that are not logged into their system. The
reason is that authenticated users are easy to track and
to throttle. Handling large volumes of non-authenticated
traffic from a single source is most difficult; this traffic
might be the result of anonymous users surfing behind a
proxy, or it might be the result of crawling. Making this
distinction is not straightforward.

The log files contain eight fields for each request:
time, originating IP address, Class-C subnet, user-
agent, target URL, server response, referrer, cookie. The
IP address and the Class-C subnet fields were encrypted
to avoid privacy issues. Thus, we can only determine
whether two requests originate from the same client, or
from two clients that are part of the same /24 network.
The remaining information is unmodified. This allows
us to check for suspicious user agents, and to determine
the profile names that are accessed. The server response
can be used to determine whether the visited profile ex-
ists or not. In addition, the referrer indicates the previ-
ous website visited by the client. The cookie contains,
in our case, a session identifier that is set by the social
networking site to track individual clients.

Data prefiltering. Given that the social network is
very popular, the log files are large – they contain tens
of millions of requests per day that originate from mil-
lions of different IP addresses. As a result, we introduce
a prefiltering process to reduce the data to a volume that
is manageable by our time series analyses. To this end,
we leverage the fact that, by looking at the volume of re-
quests from a single source, certain clients can be imme-
diately discarded: we can safely classify all sources that
generate more than 500,000 requests per day as crawlers.

Sources that generate less than 1,000 requests per day
are also put aside because our time-series-based tech-
niques require a minimum number of data points to pro-
duce statistically meaningful results. These sources are
handled by the active containment policy.

In our experiments, the prefiltering process reduced
the number of requests that need to be analyzed by a
factor of two. More importantly, however, the number
of clients (IP addresses) that need to be considered is
reduced by about four orders of magnitude.

USENIX Association 	 21st USENIX Security Symposium  515

Ground truth. Obtaining ground truth for any real-
world data is difficult. We followed a semi-automated
approach to establish the ground truth for our datasets.

For the initial labels, we used heuristic detection (Sec-
tion 3.1), which represents the state-of-the-art in crawler
detection. We then contacted the social network site,
which had access to the actual (non-encrypted) IP ad-
dresses. Based on their feedback, we made readjust-
ments to the initial ground truth labels. More precisely,
we first marked sources as legitimate crawlers when they
operated from IP ranges associated with popular search
engines. In addition, IP addresses that belong to well-
known companies were labeled as users. For borderline
cases, if an IP address was originating traffic from users
who successfully logged on to the site, we tagged this IP
as a user. Overall, we observed that current heuristics of-
ten incorrectly classify high volume sources as crawlers.

In a next step, we performed an extensive manual
analysis of the sources (by looking at the time series,
checking user agent string values, ...). We made a second
set of adjustments to the ground truth. In particular, we
found a number of crawlers that were missed by heuris-
tic detection. These crawlers were actively attempting to
mimic the behavior of a browser: user agent strings from
known web browsers, cookie and referrer management,
and slow runs at night. Some examples of mimicry are
discussed in Appendix B. These cases are very inter-
esting because they underline the need for more robust
crawler detection approaches such as PUBCRAWL.

Finally, we manually checked for similar time series,
and correlated this similarity with user agent strings and
class-C subnets. This information was used to build a
reference clustering to evaluate the campaign attribution.

6.2 Training detection and attribution
For training, we used a first dataset S0, which contained
five days worth of traffic recorded between the 1st and
the 5th of August 2011. After prefiltering, this dataset
consists of ∼73 million requests generated by 813 IP
addresses. Given this number of IP addresses, manual
investigation for the ground truth was possible.

Heuristic detection. We used the training set to in-
dividually determine suitable thresholds for the detec-
tion heuristics. We verified the results of the configured
heuristics over the training set S0 with the ground truth.
The results are given in Table 2. In this table, a true pos-
itive (TP) means a correctly identified crawler. A true
negative (TN) is a correctly identified user. The results
are split between heuristics over features from existing
work and new features introduced in this paper. We can
see that the new features greatly improve the detection
rate when combined with existing ones. Still, the final
detection rate of 75.54% illustrated the need for more
robust features.

Table 2: Training: Accuracy for heuristic detection.
Rates Former features New features Combined features

TP/FN 41.32%/58.68% 82.31%/17.69% 75.54%/24.46%
TN/FP 100.00%/0.00% 84.00%/16.00% 96.00%/04.00%

Table 3: Training: Accuracy for traffic shape detection.
Crawlers (TP/FN) Bayes Rules SVM Vote
Cross validation 98.39% 96.36% 98.55% 98.99%/01.01%
Two third split 97.45% 96.19% 95.11% 96.90%/03.10%
Users (TN/FP) Bayes Rules SVM Vote
Cross validation 79.09% 78.91% 81.91% 82.91%/17.09%
Two third split 78.84% 78.22% 80.44% 82.28%/17.72%

Table 4: Training: Accuracy for campaign attribution.
Precision Recall Accuracy

99.03% 85.54% 94.35%

Traffic shape detection. To train the classifiers for de-
tection, we used S0 that contained 709 crawler sources
and 104 user sources. To determine the quality of the
training over S0, we used both five-fold cross validation
and a validation by splitting the data into two thirds for
training and one third for testing. The results are shown
in Table 3. The table shows that our system obtains a
crawler detection rate above 96.9%. It also shows the
benefit of voting, as the final output of classification is
more accurate than each individual classifier.

Interestingly, the dataset was not evenly balanced be-
tween crawlers and users. The majority of sources
that produce more than thousand requests per day are
crawlers. However, the dataset also contains a non-
trivial amount of user sources. Thus, it is not possible
to simply block all IP addresses that send more than one
thousand requests. In fact, since the user sources are typ-
ically proxies for a large user population, blocking these
nodes would be particularly problematic. We thus veri-
fied the accuracy specifically for user sources in Table 3.
Given the bias towards crawlers, the accuracy for users
is slightly lower but remains at around 83%.

It must be noticed that traffic shape detection results
show interesting improvements compared to heuristic
detection that is close to the approach deployed in exist-
ing work. This approach produces more accurate results
while using features that are more robust to evasion.

Campaign attribution. For campaign attribution, the
clustering algorithm presented in Section 4 needs to be
configured with a τ that defines the minimal, desired
similarity within clusters. To determine this threshold,
we ran a bisection clustering algorithm on the training
dataset S0. The algorithm first assumes that all ele-
ments (time series) are part of a single, large cluster.
Then, it iteratively splits clusters until each time series
is part of a single cluster. We analyzed the entire clus-
ter hierarchy to find the reference clusters as well as
the necessary cut points to obtain them. The cut points
of reference clusters indicated us the minimal similar-
ity that we related to the deviation to determine that

516  21st USENIX Security Symposium	 USENIX Association

k = 350 was the linear coefficient giving optimal values
for τ . For the candidate selection, the following thresh-
olds were chosen: volume = 25%, amplitude = 35%,
deviation = 30%, so that these thresholds avoid ad-
ditional false positives while creating no false negatives
compared to the results without candidate selection.

To evaluate the quality of the campaign attribution, we
ran our clustering algorithm on the 709 crawler sources
from S0. We use the precision to measure how well the
clustering algorithm distinguished between time series
that are different, and the recall to measure how well
our technique recognizes similar time series. To evaluate
the successful attribution rate, we use the accuracy to
measure how well the clustering results can be used to
detect distributed crawlers and thus campaigns.

The clustering results are shown in Table 4. One can
see that the algorithm offers a good precision. The recall
is a bit lower: Closer examination revealed that a few
large reference clusters were split into multiple clusters.
For example, Bingbot had its 209 corresponding time
series split into 5 subclusters. Fortunately, recall is less
important in our attribution scenario. The reason is that
split clusters do not prevent us to detect a campaign in
most cases; instead, a campaign is simply split into sev-
eral smaller ones.

6.3 Evaluating detection capabilities
For testing, the social networking site provided an addi-
tional dataset S1, which contained five extra days worth
of traffic. After prefiltering, this dataset consisted of
∼62 million requests generated by 763 IP addresses.
Unlike the training, the testing was performed on site at
the social networking site. Hence, the traffic logs could
be analyzed with non-encrypted IPs.

Heuristic detection. We compared the results for the
heuristic detection over the testing set S1 with the
ground truth we had (semi-automatically) established
previously. As shown in Table 5, the detection rate
slightly decreases to 71.60%, but remains comparable
to the rate over the training set.

Traffic shape detection. To test the classifiers trained
over S0, we deployed the traffic shape detection ap-
proach over the test set S1. The results for this exper-
iment are presented in Table 6. According to the table,
the global accuracy of 94.89% remains very close to the
95% of accuracy observed for the training set.

Since the goal of the detection module is to build
whitelists and blacklists of sources, we computed indi-
vidual results for the following four subsets: users (5%)
and legitimate crawlers (65%) to be whitelisted, and
unauthorized crawlers (7%) and masquerading crawlers
(23%) to be blacklisted. Unauthorized crawlers are
agents that can be recognized by their user agent string

Table 5: Testing: Accuracy for heuristic detection.
Rates Former features New features Combined features

TP/FN 31.19%/68.81% 86.24%/14.76% 71.60%/28.40%
TN/FP 100.00%/0.00% 87.18%/12.82% 94.87%/05.13%

Table 6: Testing: Accuracy for traffic shape detection.
Bayes Rules SVM Vote

Global 93.05% 87.55% 94.36% 94.89%
Legitimate crawlers 92.54% 87.10% 97.18% 93.95%
Unauthorized crawlers 88.89% 96.27% 100.00% 100.00%
Masquerading crawlers 98.27% 86.71% 98.84% 98.84%
Crawlers (TP/FN) 93.66% 87.68% 97.79% 95.58%/04.42%
Users (TN/FP) 82.50% 85.00% 32.50% 82.50%/17.50%

Table 7: Testing: Accuracy for campaign attribution.
Precision Recall Accuracy

92.84% 80.63% 91.89%

but are not supposed to crawl the site. Masquerading
crawlers are malicious crawlers trying to masquerade as
real browsers to remain stealthy and to avoid detection.

We achieve perfect detection for unauthorized
crawlers. In particular, the system was able to detect
crawlers such as ISA connectivity checker, Yandexbot,
YooiBot, or Exabot. Results are also very good for mas-
querading browsers, with a detection rate close to 99%.
The detection rate slightly drops to 94% for legitimate
crawlers such as Baiduspider, Bingbot, Googlebot or Ya-
hooslurp. But 4% of these false negatives are related
to Google FeedFetcher. In principle, the requests from
FeedFetcher are triggered by user requests. As a result,
its time series are individually recognized as user traffic.

By combining heuristic detection and traffic shape de-
tection, the detection rates were not improved further.
The reason is that the crawlers detected by heuristics
were already included in the set of crawlers detected by
traffic shape. This observations confirms our belief that
traffic shape detection is stronger than heuristic detec-
tion based on HTML and URL features.

To gain a better understanding of our results, we asked
for feedback from the social networking site. The net-
work administrators confirmed that a large number of
crawlers were previously unknown to them (and they
subsequently white- or blacklisted the IPs). Since de-
anonymized IP addresses were available to us, we could
check the sources of these crawlers. Interestingly, sev-
eral sources were proxies of universities, where crawler
traffic was mixed with user activity. Because of the mix
of user and crawler activity, the current detection tech-
niques did not raise alerts. Note that such mix of ac-
tivity must be taken into consideration for blacklisting
(e.g., the university administrators can be warned that
unauthorized crawling is coming from their network and
asked to take appropriate measure). In such cases, it is a
policy decision whether to blacklist the IP or not. Also,
recall that requests from users who are logged-in is not
affected.

USENIX Association 	 21st USENIX Security Symposium  517

Performance. To process the entire dataset S1, several
instances of the modules for heuristic detection, traffic
shape detection and campaign attribution were run over
five parallel processes that required roughly 45 minutes
to run. This time included loading the data into the
database, generating the time series, and performing the
different analyses. The experiments were run on a single
server (with 4 cores and 24 GB of RAM).

6.4 Evaluation of campaign attribution
To evaluate the quality of the campaign attribution tech-
nique, we ran our clustering algorithm over the crawler
sources from the de-anonymized testing set S1. The re-
sults of the experiment are shown in Table 7. One can
see that the precision and recall have slightly dropped
compared to the training set. The intra-cluster similarity
threshold τ might not be optimal anymore. Nonethe-
less, the attribution accuracy remains at 91.89%, which
is close to the 94% obtained during training.

Overall, we obtain 238 clusters from the 763 distinct
source IPs. Looking at these clusters, we started to ob-
serve interesting campaigns when a cluster contained 3-
4 or more elements (hosts). Table 8 provides a descrip-
tion of these campaigns. The first campaigns correspond
to legitimate crawlers. Interestingly, the campaign as-
sociated to Feedfetcher, whose crawlers evaded traffic
shape detection, is successfully identified. Even if the
Feedfetcher traffic is similar to user traffic, Google dis-
tributes the requests (i.e., load-balances) over multiple
IPs, explaining that their time series are synchronized.
Table 8 also presents five campaigns showing suspicious
user-agent strings, and five campaigns masquerading as
legitimate browsers or search engine spiders. Another
interesting case is the campaign where crawlers send
requests as Gecko/20100101 FireFox. This campaign
shows a significant number of clusters because it uses
rotating IP addresses over short time periods. However,
it is still detected because the active IP addresses were
operating loosely synchronized. The social network op-
erators showed a particular interest in this case, and they
are now relying on our system to detect such threats that
are difficult to detect otherwise.

6.5 Evaluation of proactive containment
The evaluation was performed over a dataset S2 of non-
filtered traffic. The dataset contained ∼110 million re-
quests from ∼11 million IP sources.

Figure 6 shows the cumulative distribution function
(CDF) for the fraction of IPs (y-axis) that send (at most)
a certain number of requests (x-axis). One can see that
most IPs (more than 98.7%) send only a single request
per day. This is important because it means that most
sources (IPs) will never be affected by active contain-
ment. Figure 7 shows the situation for requests instead

Table 8: Identified Crawling Campaigns.
Agent #Clust. #ClassC #IP Req/day

Legitimate crawlers
Bingbot 5 11 211 6 million
Googlebot 5 2 42 4 million
+ Feedfetcher 4 4 65 –
Yahooslurp 4 9 71 500 thousand
Baiduspider 1 1 23 50 thousand
Voilabot 3 3 20 19 thousand
Facebookexternalhit/1.1 1 1 8 14 thousand
Crawlers with suspicious agent strings
” ” 2 16 22 330 thousand
Python-urllib/1.17 2 51 54 140 thousand
Mozilla(compatible;ICS) 1 10 10 70 thousand
EventMachine HTTP Client 1 3 3 3 thousand
Gogospider 1 2 3 2 thousand
Masquerading crawlers
Gecko/200805906 FireFox 1 10 73 350 thousand
Gecko/20100101 FireFox 9 12 25 60 thousand
MSIE6 NT5.2 TencentTraveler 1 1 30 7 thousand
Mozilla(compatible; Mac OS X) 1 1 4 8 thousand
googlebot(crawl@google.com) 1 1 4 1 thousand

of IPs. That is, the figure shows the CDF for the fraction
of total requests (y-axis) over the maximum number of
requests per source (x-axis). One can see that roughly
45% of all request are sent by sources that send at most
100 requests. The graph highlights that a little over 40%
of all requests are done by sources that make only a sin-
gle request. One can also see that a significant amount
of the total requests are incurred by a few heavy hitter
IPs that make tens of thousands to millions of requests.

Containment impact. We use these two graphs to dis-
cuss the impact of the two containment thresholds: k1,
below which sources have unrestricted access to the site,
and k2, above which sources can be examined by our
analysis (and hence, properly whitelisted or blacklisted).

We can see from Figure 6 that if we choose k1 low
enough, we can guarantee that only a tiny number of
sources will be impacted. For example, by setting k1 =
100, we see that 99.98% of the sources will not be im-
pacted at all. If an attacker wants to take advantage of
this unrestricted access, he would require 5,000 crawlers
running in parallel to reach the crawling rate of a sin-
gle crawler agent from Googlebot. Looking back at
Table 8 for real-world examples, the lowest rate of re-
quests we observed for a distributed crawler was for the
Gecko/20100101 FireFox campaign using rotating IPs.
Even in this case, the amount of requests per agent was
above a few hundreds per day. Thus, we consider values
for k1 between 10 and 100.

To choose k2, we have a trade-off between the amount
of traffic that will be impacted by active responses and
the quality of our detection. We see the fraction of re-
quests that are impacted by plotting k1 and k2 over Fig-
ure 7 and reading the difference over the y-axis. Table 9
lists the proportion of impacted traffic for various con-
crete settings of k1 and k2. If we keep k2 at 1,000 and
choose 20 for k1, we expect active responses to impact
less than 0.1% of all IP sources and only about 3.24%

518  21st USENIX Security Symposium	 USENIX Association

Figure 6: CDF of the source IPs over traffic volumes

Figure 7: CDF of the requests over traffic volumes

Table 9: Requests (%) impacted by containment
k1/k2 100 500 1000 2000 5000 10000
10 1.49% 2.95% 3.75% 4.82% 6.27% 7.88%
15 1.20% 2.66% 3.46% 4.53% 5.98% 7.58%
20 0.99% 2.44% 3.24% 4.32% 5.77% 7.37%
25 0.81% 2.27% 3.07% 4.14% 5.59% 7.19%
50 0.37% 1.83% 2.63% 3.70% 5.15% 6.75%
100 0.00% 1.46% 2.26% 3.33% 4.78% 6.38%

of the overall requests. Of course, we expect that these
3.24% of requests do contain a non-trivial amount of
traffic from stealthy crawlers. When k1 is increased, the
impact on legitimate users decreases. The downside is
that large botnets can scrape larger parts of the site.

Sources stability. The whitelist approach for legiti-
mate, high-volume sources (over k2) works well only
when IP sources remain stable for user proxies and le-
gitimate crawlers. To verify this assumption, we stud-
ied the IP evolution between the training set S0 and the
testing set S1. Considering crawlers, 66.9% of IPs were
both present in S0 and S1. Looking at the stable IPs, they
correspond either to legitimate crawlers (e.g., Google-
bot, Bingbot) or large crawling campaigns (e.g., Python,
Firefox from Table 8). Unstable crawler IPs correspond
to unauthorized and masquerading crawlers.

Most importantly, looking at high-volume users
(proxies), 81.8% of IPs were both present in S0 and
S1 (about one month apart). Thus, whitelisting these
sources would work well and, hence, we would not see

much negative effect for (non-authenticated) users when
using active containment. Moreover, the 18.2% of non-
stable IPs are mainly due to sources whose volume was
close to the prefiltering threshold. These sources might
have been stripped from S0 or S1 by prefiltering.

Overall, our results demonstrate that PUBCRAWL can
thwart large-scale malicious crawlers and botnets while
interfering with a small number of legitimate requests.

7 Limitations
Our system has proven to be useful in the real-world,
and it is currently deployed by the social networking site
as a part of their crawler mitigation efforts. However,
as with many other areas in security, there is no silver
bullet, and sophisticated attackers might try to bypass
our system. Nevertheless, PUBCRAWL significantly in-
creases the difficulty bar for the attackers.

Detection limitations. An attacker might try to thwart
the heuristics-based and traffic-shape-based detection
modules. The traffic shape detection has two main re-
quirements: 1) a large-enough volume of requests is re-
quired for the time series to be statistically significant,
2) at least two days of traffic are required for the auto-
correlation and decomposition analyses.

While traffic shape detection is well-suited for detect-
ing crawlers of sufficient volume, because of require-
ment 1), it is not particularly well-suited to detect “slow”
distributed crawlers that send a very small number of re-
quests from hundreds of thousands of hosts. For this,
campaign attribution is more appropriate. Because of
requirement 2), it is not well suited either to detect “ag-
gressive” (noisy) crawlers in real-time. For this, heuris-
tic detection is more appropriate.

To address the problem of “slow” and “aggressive”
crawlers, PUBCRAWL combines the detection modules
with a containment strategy. Aggressive crawlers are ini-
tially slowed down by active responses, until they are de-
tected and blacklisted. Slow crawlers can at most make
k1 requests before the active response component is ac-
tivated. Moreover, since slow crawlers require a larger
number of machines, the effect of the active response
component is magnified (applied to each crawler).

Another way to avoid detection is traffic reshaping.
That is, an attacker could try to engineer the crawler traf-
fic so that it closely mimics the behavior of actual users.
The attacker would first have 1) to craft valid HTTP traf-
fic (headers) and 2) to design a stealthy visiting policy
both in terms of topology and timing. In terms of topol-
ogy, the attacker would have to craft a non-suspicious
sequence of URLs to visit (based on order and revisit
behavior). In terms of timing, he would have to craft
the volume and distribution of requests over time so that
the traffic shape remains similar to user traffic. Overall,

USENIX Association 	 21st USENIX Security Symposium  519

mimicking the behavior of users would require a non-
trivial effort on behalf of the attacker to learn the prop-
erties of user traffic, especially given that only the social
network has a global overview of the incoming traffic.

Attribution limitations. If an attacker wants to bypass
our campaign attribution method, he has to ensure that
all nodes of his distributed crawler behave differently.
Sets of rotating IPs are already successfully detected.
To break the synchronization between the nodes, simple
time shifts would not be sufficient: Existing similarity
measures for time series (e.g., dynamic time warping)
can be used to recover from shifts. An attacker would
have to completely break the synchronization between
its different crawlers while shaping for each one a dif-
ferent traffic behavior (which needs to be similar to user
traffic to avoid individual detection).

Containment limitations. If attackers do not succeed
in whitelisting their crawlers, they can willingly main-
tain their traffic volume under the containment threshold
k1. To crawl a good portion of a social network with mil-
lions of pages requires a significant crawling infrastruc-
ture, and building or renting botnets over long periods
of time might be prohibitively expensive for most adver-
saries. Attackers can also increase their traffic volume
until the blocking threshold k2. In this case, they would
have to find a solution to automatically bypass active re-
sponses (resolve CATPCHAs or identify crawler traps).

8 Related Work
We are not the first one to study the problem of detecting
web crawlers. However, we are the first to propose a
solution to distributed crawlers, and we are the first to
have used an extensive, large-scale real-world dataset to
evaluate and validate our approach.

Similar to [18,21,22], PUBCRAWL relies on machine
learning techniques to extract characteristic properties of
traffic that can help to distinguish crawlers from users.
However, the features we use for the learning process
are different. Compared to [11, 17, 21, 22], the similar
features we extract from the HTTP headers and URLs
are fed to heuristic detection. Our experiments demon-
strate that these features are not reliable.

For traffic shape detection and its learning process, we
used timing features instead. Compared to [18, 21, 22],
the results of the auto-correlation and decomposition
analyses prove to be more robust. That is, the ex-
tracted properties are harder to evade by attackers than
the simple time and volume statistics used by previous
approaches (e.g., the average or the variance of inter-
arrival times between requests).

In our detection approach, most of the features ex-
tracted from the time series are designed to express the
regularity of web traffic. In [8], the authors already

leveraged the notion of regularity of crawler traffic for
detection. To extract the relevant information, the au-
thors rely on Fast Fourier Transformations. However,
both crawler and user traffics show regularities, but they
do so at different levels. We thus use decomposition
techniques to distinguish between different types of reg-
ularities: Crawler regularity can be observed within the
trend component, whereas user regularity can be ob-
served within the seasonal component.

Existing crawler detection approaches mainly remain
deployed offline – just like our detection approach based
on traffic shape. However, a significant novelty of our
approach is that we integrate our detection process into a
proactive containment strategy to protect from crawlers
in real-time. This is similar to [18] where the authors ad-
dress real-time containment. The containment approach
they propose relies on the detection results from an in-
cremental classification system where crawler models
evolve over time. Instead, we chose a more realistic,
practical white- and blacklisting approach where sources
are blocked on a per IP basis.

An interesting contribution of our work is the formal-
ization of the traffic by time series, which allows us to
address the problem of crawling campaign attribution
and distributed crawlers detection using clustering. We
have also evaluated our tool on a much larger scale than
previous work, which has used requests that are in the
order of thousands. Finally, in our experiments, we ob-
served and identified real-world evasion techniques that
target some of the traffic features used in previous work.
Hence, we provide evidence that attackers today are in-
vesting significant effort to evade some of the straight-
forward and well-known crawler detection techniques.

9 Conclusion
To defend against malicious crawling activities, many
websites deploy heuristics-based techniques. As a re-
action, crawlers have increased in sophistication. They
now frequently mimic the behavior of browsers, as well
as distribute their activity over multiple hosts.

This paper introduced PUBCRAWL, a novel approach
for the detection and containment of crawlers. The key
insight of our system is that the traffic shape of crawlers
and users differ significantly so that they can be auto-
matically identified using time series analysis. We also
propose the first technique that is able to identify crawl-
ing campaigns by detecting the synchronized activity of
distributed crawlers using time series clustering. Fi-
nally, we introduce an active containment mechanism
that strategically uses active responses to maximize pro-
tection and minimize user annoyance.

Our experiments with a large, popular social network-
ing site demonstrate that PUBCRAWL can distinguish
users with accuracy and filter out crawlers. Our detec-

520  21st USENIX Security Symposium	 USENIX Association

tion approach is currently deployed in production by the
social networking site we collaborated with.

Acknowledgment
We would like to thank the people working at the social net-
work with whom we collaborated, as well as Secure Business
Austria for their support. This work was supported by the Of-
fice of Naval Research (ONR) under Grant N000140911042
and the National Science Foundation (NSF) under grants CNS-
0845559, CNS-0905537 and CNS-1116777.

References
[1] The R Project for Statistical Computing. http://www.

r-project.org/.
[2] 67th District Court, Tarrant County, Texas. Cause NO.

067-194022-02: American Airlines, Inc. vs. FareChase,
Inc. http://www.fornova.net/documents/
AAFareChase.pdf, 2003.

[3] B. L. Bowerman, R. T. O’Connell, and A. B. Koehler. Forecast-
ing, Time Series, and Regression – An applied approach – Fourth
edition. Thomson Brook/Cole, 2005.

[4] E. Burzstein, R. Bauxis, H. Paskov, D. Perito, C. Fabry, and
J. Mitchell. The Failure of Noise-Based Non-Continuous Audio
Captchas. In IEEE Security and Privacy, 2011.

[5] P. Clark and T. Niblett. The CN2 Induction Algorithm. Machine
Learning, 3(4):261–283, 1989.

[6] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpen-
ning. STL: a Seasonal-Trend Decomposition Procedure based
on Loess. Journal of Official Statistics, 6(1):3–73, 1990.

[7] W. S. Cleveland and S. J. Devlin. Locally Weighted Regression:
an Approach to Regression Analysis by Local Fitting. J. Am.
Stat. Assoc, 83:596–610, 1988.

[8] M. D. Dikaiakosa, A. Stassopouloub, and L. Papageorgioua. An
Investigation of Web Crawler Behavior: Characterization and
Metrics. Computer Networks, 28:880–897, 2005.

[9] D. Doran and S. S. Gokhale. Discovering New Trends in Web
Robot Traffic through Functional Classification. In Proc. of the
IEEE International Symposium on Networking Computing and
Applications (NCA), pages 275–278, 2008.

[10] D. Doran and S. S. Gokhale. Web Robot Detection Techniques:
Overview and Limitations. Data Mining and Knowledge Discov-
ery, 22(1-2):183–210, 2011.

[11] W. Guo, S. Ju, and Y. Gu. Web Robot Detection Techniques
based on Statistics of their Requested URL Resources. In Proc.
of the International Conference on Computer Supported Coop-
erative Work in Design (CSCWD), pages 302–306, 2005.

[12] R. Gusella. Characterizing the Variability of Arrival Processes
with Indexes of Dispersion. ”IEEE J. Sel. Areas Commun.,
9(2):203–211, 1991.

[13] E. Keogh and S. Kasetty. On the Need for Time Series Data
Mining Benchmarks: a Survey and Empirical Demonstration. In
Proc. of the ACM International Conference on Knowledge Dis-
covery and Data Mining (SIGKDD), pages 102–111, 2002.

[14] M. Koster. A Method for Web Robots Control. Technical report,
RFC draft, 1996.

[15] M. Lamberton, E. Levy-Abegnoli, and P. Thubert. System and
Method for Enabling a Web Site Robot Trap. United States
Patent No. US 6,925,465 B2, 2005.

[16] T. W. Liao. Clustering of Time Series Data – a Survey. Pattern
Recognition, 38(11):1857–1874, 2005.

[17] X. Lin, L. Quan, and H. Wu. An Automatic Scheme to Catego-
rize User Sessions in Modern HTTP Traffic. In Proc. of GLOBE-
COM, pages 1485–1490, 2008.

[18] A. G. Lourenço and O. O. Belo. Applying Clickstream Data
Mining to Real-Time Web Crawler Detection and Containment
using ClickTips Platform. In Advances in Data Analysis, Proc. of
the 30th Annual Conference of the Gesellschaft für Klassifikation
e.V., pages 351–358. Springer, 2007.

[19] A. McCallum and K. Nigam. A Comparison of Event Models
for Naive Bayes Text Classification. In AAAI FICML Workshop
on Learning for Text Categorization, 1998.

[20] Pinsent Masons. Ryanair wins German court victory in
screen-scraping injunction. http://www.theregister.
co.uk/2008/07/11/ryanair_screen_scraping_
victory/, 2008.

[21] A. Stassopoulou and M. D. Dikaiakos. Crawler detection: A
bayesian approach. In Proc. of the International Conference on
Internet Surveillance and Protection (ICISP), 2006.

[22] P.-N. Tan and V. Kumar. Discovery of Web Robot Sessions based
on their Navigational Patterns. Data Mining and Knowledge Dis-
covery, 6(1):9–35, 2002.

[23] Tech Crunch. Hacker arrested for blackmail-
ing StudiVZ and other social networks. http:
//eu.techcrunch.com/2009/10/21/
hacker-arrested-for-blackmailing-studivz-
and-other-social-networks/, 2009.

[24] L. von Ahn, M. Blum, N. Hopper, and J. Langford. The
CAPTCHA Project. Technical report, Carnegie Mellon Univer-
sity, 2000.

[25] P. Warden. How I got sued by Facebook. http:
//petewarden.typepad.com/searchbrowser/
2010/04/how-i-got-sued-by-facebook.html,
2010.

A Interpreting auto-correlation functions
This section describes how we compute the values of the three
features describing the shape of the Sample Auto-Correlation
Function (SAC). We first compute runs over four SAC char-
acteristics: trend (increase/decrease), sign (positive/negative),
significance (spikes), and null (lags with null correlation). The
run computations are shown in Equations 5-8 for the auto-
correlation coefficient rk that ranges over all k lags.

Trend: trk =

{
1 if k = 1 or |rk| ≥ |rk−1|
0 else

(5)

Sign: srk =

{
1 if rk ≥ 0

0 else
(6)

Significance: prk =

{
1 if |rk| ≥ 2× sk
0 else

(7)

Null: nrk =

{
1 if |rk| ≤ 0.1×max{|rk|}
0 else

(8)

Based on the previously-computed runs (as well as ampli-
tude values), we determine the three properties of the SAC: Ta-
ble 10 lists the heuristics to determine the decay, Table 11 lists
the heuristics to determine the sign alternation, and Table 12
lists the heuristics to identify local spikes.

B Crawlers mimicking user behavior
Table 13 shows examples of crawlers that we found in our
dataset. The first example in the table represents an easy
crawler to detect: The user-agent points to the Python pro-
gramming framework, which is popular among crawlers, no

USENIX Association 	 21st USENIX Security Symposium  521

Table 10: Heuristics to determine the speed of decay of the SAC
Characteristic Metric Expected Value Interpretation Feature Value

Amplitude difference between low no overall decrease in the No decay
first and last lags amplitude of the coefficients (white noise)

Trend runs mean of the average balanced proportion between
runs values increases and decreases
number of runs high high number of inflections

points in the function
Null runs mean of the low observed coefficients are

runs values not residuals

Amplitude difference between above quick decrease in the Cut-off
first and middle lags average amplitude of the coefficients

Spike runs length of the low coefficients become insignificant
first run after a short number of lags
length of the longest high the function contains long intervals
null valued run of insignificant coefficients

Null runs mean of the above the function coefficients tend
runs values average quickly towards 0
lag of the first low the function converges towards
positive run 0 in the small lags

Amplitude difference between below slow decrease in the Linear
first and middle lags average amplitude of the coefficients decay

Trend runs number of runs low low number of inflections
points in the function

Spike runs length of the above coefficients remain significant
first run low after a longer number of lags

Spike runs length of the above coefficients remain significant
first run low after a longer number of lags

Null runs mean of the low the function coefficients tend
runs values slowly towards 0

- - all decaying functions that are Exponential
neither cut off nor linear decay

Table 11: Heuristics to determine the sign alternation property of the SAC
Characteristic Metric Expected Value Interpretation Feature Value

Sign runs number of runs equal 1 no sign change No alternation

Sign runs number of runs equal 2 single sign change Single alternation

Sign runs number of runs above important number of Oscillations
average sign changes

variance of the below sign changes occur
runs length average at regular periods

- - sign changes are Erratic
unpredictable alternation

Table 12: Heuristics to determine the local spikes of the SAC
Characteristic Metric Expected Values Interpretation Feature Value

Spike runs lags of positive runs above 1 first spike must be ignored Local spike
length of positive runs low short spikes centered around a lag (lag, length)

referrer is set, the cookies transmitted by the server are ig-
nored, the dispersion index is low, indicating regular traffic,
and the error rate is too high to be generated by a user fol-
lowing links. The next examples introduce different evasion
techniques by mimicry. Examples 2 to 7 use user-agent string
masquerading. Examples 4 and 5 set their referrer to the result
of a directory query, whereas Example 7 uses mainly profiles
URL as referrers, just like during human browsing. Exam-
ples 6 to 8 handle cookies with different policies: Examples 6
and 7 reuse the same cookie for a fixed number of requests,
whereas Example 8 reuses the same cookie for a fixed period of
time. More advanced techniques of traffic shaping can also be
found, where the timing and the targeting of requests is mod-

ified to look similar to user traffic. Example 6 interrupts its
activity at night to avoid raising suspicion. Examples 6 and 7
show a high fraction of revisited pages, which is more typi-
cal for human behavior. These examples indicate that crawlers
already attempt to bypass existing detection heuristics.

522  21st USENIX Security Symposium	 USENIX Association

Table 13: Evasion techniques observed for different crawlers.
Source Referrer Cookie IDC[X(t)] Overlap Errors Traffic

Grey cells correspond to observed properties of the crawler traffic that are close to browser traffic, they might correspond to evasion attempts.

IP: null referrer no cookie reuse 517.79 00.0% 12.7%
B2ED1877DE4DC83B3DF0ED8AFF68E6B0490B5107
User-agent string:
Python-urllib/1.17

IP: null referrer no cookie reuse 10.49 01.3% 01.4%
8DB9FE9C5D0796FF7E9BFB05201EE55A9052C586
User-agent string:
Mozilla/4.0 (Windows; U; Windows NT 6.1; en-US; rv...)

IP: null referrer no cookie reuse 7502.97 00.0% 00.4%
A30B14FA5261FA04C612F5E938FCB349C28CBF58
User-agent string:
Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)

IP: directory query no cookie reuse 246.12 00.2% 00.2%
43DB44548E1AB95696703B92DBBD778CB44EC4E4 as referrer (all
User-agent string: starting with
Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1) same letter)

IP: directory query no cookie reuse 430.32 00.1% 00.3%
62A7DF089C1700ACF7A2B1A1614418E97C4ED42B as referrer (all
User-agent string: starting with
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV...) same letter)

IP: null referrer reuse cookie 9669.75 11.7% 03.3%
3E680C6B9A92070AB608671486DC332AD2B7083F for next 3
User-agent string: requests
Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.1)

IP: only 1.6% of reuse cookie 4.35 29.3% 00.3%
2DC89E853294C1F0797002C4211FE005E39BEA52 null referrers, for next 100
User-agent string: rest is all requests
Mozilla/4.0 (compatible; MSIE 5.0b2; Windows NT...) public profiles

IP: null referrer reuse cookies 59.42 02.7% 01.2%
3CBEF4B3A90AA47F6517260D78371EDBFE09E9A7 for requests
User-agent string: in a 15 min
ia archiver (+http://www.alexa.com/site/help/webma...) interval

USENIX Association 	 21st USENIX Security Symposium  523

Enemy of the State:

A State-Aware Black-Box Web Vulnerability Scanner

Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna

University of California, Santa Barbara

{adoupe, cavedon, chris, vigna}@cs.ucsb.edu

Abstract

Black-box web vulnerability scanners are a popular

choice for finding security vulnerabilities in web appli-

cations in an automated fashion. These tools operate in

a point-and-shoot manner, testing any web application—

regardless of the server-side language—for common se-

curity vulnerabilities. Unfortunately, black-box tools

suffer from a number of limitations, particularly when

interacting with complex applications that have multi-

ple actions that can change the application’s state. If

a vulnerability analysis tool does not take into account

changes in the web application’s state, it might overlook

vulnerabilities or completely miss entire portions of the

web application.

We propose a novel way of inferring the web applica-

tion’s internal state machine from the outside—that is, by

navigating through the web application, observing dif-

ferences in output, and incrementally producing a model

representing the web application’s state.

We utilize the inferred state machine to drive a black-

box web application vulnerability scanner. Our scanner

traverses a web application’s state machine to find and

fuzz user-input vectors and discover security flaws. We

implemented our technique in a prototype crawler and

linked it to the fuzzing component from an open-source

web vulnerability scanner.

We show that our state-aware black-box web vulnera-

bility scanner is able to not only exercise more code of

the web application, but also discover vulnerabilities that

other vulnerability scanners miss.

1 Introduction

Web applications are the most popular way of delivering

services via the Internet. A modern web application is

composed of a back-end, server-side part (often written

in Java or in interpreted languages such as PHP, Ruby,

or Python) running on the provider’s server, and a client

part running in the user’s web browser (implemented in

JavaScript and using HTML/CSS for presentation). The

two parts often communicate via HTTP over the Internet

using Asynchronous JavaScript and XML (AJAX) [20].

The complexity of modern web applications, along

with the many different technologies used in various ab-

straction layers, are the root cause of vulnerabilities in

web applications. In fact, the number of reported web

application vulnerabilities is growing sharply [18, 41].

The occurrence of vulnerabilities could be reduced

by better education of web developers, or by the use

of security-aware web application development frame-

works [10, 38], which enforce separation between struc-

ture and content of input and output data. In both cases,

more effort and investment in training is required, and,

therefore, cost and time-to-market constraints will keep

pushing for the current fast-but-insecure development

model.

A complementary approach for fighting security vul-

nerabilities is to discover and patch bugs before mali-

cious attackers find and exploit them. One way is to use

a white-box approach, employing static analysis of the

source code [4, 15, 17, 24, 28]. There are several draw-

backs to a white-box approach. First, the potential ap-

plications that can be analyzed is reduced to only those

applications that use the target programming language.

In addition, there is the problem of substantial false pos-

itives. Finally, the source code of the application itself

may be unavailable.

The other approach to discovering security vulnera-

bilities in web applications is by observing the applica-

tion’s output in response to a specific input. This method

of analysis is called black-box testing, as the applica-

tion is seen as a sealed machine with unobservable in-

ternals. Black-box approaches are able to perform large-

scale analysis across a wide range of applications. While

black-box approaches usually have fewer false positives

than white-box approaches, black-box approaches suffer

524  21st USENIX Security Symposium	 USENIX Association

login.php index.php

view.php

Figure 1: Navigation graph of a simple web application.

from a discoverability problem: They need to reach a

page to find vulnerabilities on that page.

Classical black-box web vulnerability scanners crawl

a web application to enumerate all reachable pages and

then fuzz the input data (URL parameters, form values,

cookies) to trigger vulnerabilities. However, this ap-

proach ignores a key aspect of modern web applications:

Any request can change the state of the web application.

In the most general case, the state of the web applica-

tion is any data (database, filesystem, time) that the web

application uses to determine its output. Consider a fo-

rum that authenticates users, an e-commerce application

where users add items to a cart, or a blog where visitors

and administrators can leave comments. In all of these

modern applications, the way a user interacts with the

application determines the application’s state.

Because a black-box web vulnerability scanner will

never detect a vulnerability on a page that it does not

see, scanners that ignore a web application’s state will

only explore and test a (likely small) fraction of the web

application.

In this paper, we propose to improve the effectiveness

of black-box web vulnerability scanners by increasing

their capability to understand the web application’s inter-

nal state. Our tool constructs a partial model of the web

application’s state machine in a fully-automated fashion.

It then uses this model to fuzz the application in a state-

aware manner, traversing more of the web application

and thus discovering more vulnerabilities.

The main contributions of this paper are the following:

• A black-box technique to automatically learn a

model of a web application’s state.

• A novel vulnerability analysis technique that lever-

ages the web application’s state model to drive

fuzzing.

• An evaluation of our technique, showing that both

code coverage and effectiveness of vulnerability

analysis are improved.

S_0

index.php

S_1
login.php

index.php

view.php

Figure 2: State machine of a simple web application.

2 Motivation

Crawling modern web applications means dealing with

the web application’s changing state. Previous work in

detecting workflow violations [5, 11, 17, 30] focused on

navigation, where a malicious user can access a page that

is intended only for administrators. This unauthorized

access is a violation of the developer’s intended work-

flow of the application.

We wish to distinguish a navigation-based view of the

web application, which is simply derived from crawling

the web application, from the web application’s internal

state machine. To illustrate this important difference, we

will use a small example.

Consider a simple web application that has only three

pages, index.php, login.php, and view.php. The

view.php page is only accessible after the login.php

page is accessed. There is no logout functionality. A

client accessing this web application might make a series

of requests like the following:

�index.php, login.php, index.php, view.php,

index.php, view.php�
Analyzing this series of requests from a navigation

perspective creates a navigation graph, shown in Fig-

ure 1. This graph shows which page is accessible from

every other page, based on the navigation trace. How-

ever, the navigation graph does not represent the infor-

mation that view.php is only accessible after accessing

login.php, or that index.php has changed after re-

questing login.php (it includes the link to view.php).

What we are interested in is not how to navigate the

web application, but how the requests we make influence

the web application’s internal state machine. The sim-

ple web application described previously has the internal

state machine shown in Figure 2. The web application

starts with the internal state S 0. Arrows from a state

show how a request affects the web application’s inter-

nal state machine. In this example, in the initial state,

index.php does not change the state of the application,

however, login.php causes the state to transition from

S 0 to S 1. In the new state S 1, both index.php and

view.php do not change the state of the web applica-

tion.

The state machine in Figure 2 contains important in-

formation about the web application. First, it shows that

login.php permanently changes the web application’s

USENIX Association 	 21st USENIX Security Symposium  525

state, and there is no way to recover from this change.

Second, it shows that the index.php page is seen in two

different states.

Now the question becomes: “How does knowledge of

the web application’s state machine (or lack thereof) af-

fect a black-box web vulnerability scanner?” The scan-

ner’s goal is to find vulnerabilities in the application, and

to do so it must fuzz as many execution paths of the

server-side code as possible1. Consider the simple appli-

cation described in Figure 2. In order to fuzz as many

code paths as possible, a black-box web vulnerability

scanner must fuzz the index.php page in both states S 0

and S 1, since the code execution of index.php can fol-

low different code paths depending on the current state

(more precisely, in state S 1, index.php includes a link

to view.php, which is not present in S 0).

A black-box web vulnerability scanner can also use

the web application’s state machine to handle requests

that change state. For example, when fuzzing the

login.php page of the sample application, a fuzzer will

try to make several requests to the page, fuzzing different

parameters. However, if the first request to login.php

changes the state of the application, all further requests to

login.php will no longer execute along the same code

path as the first one. Thus, a scanner must have knowl-

edge of the web application’s state machine to test if the

state was changed, and if it was, what requests to make

to return the application to the previous state before con-

tinuing the fuzzing process.

We have shown how a web application’s state machine

can be leveraged to improve a black-box web vulnerabil-

ity scanner. Our goal is to infer, in a black-box manner,

as much of the web application’s state machine as possi-

ble. Using only the sequence of requests, along with the

responses to those requests, we build a model of as much

of the web application’s state machine as possible. In

the following section, we describe, at a high level, how

we infer the web application’s state machine. Then, in

Section 4, we provide the details of our technique.

3 State-Aware Crawling

In this section, we describe our state-aware crawling ap-

proach. In Section 3.1, we describe web applications and

define terms that we will use in the rest of the paper.

Then, in Section 3.2, we describe the various facets of

the state-aware crawling algorithm at a high level.

1Hereinafter, we assume that the scanner relies on fuzzer-based

techniques. However, any other automated vulnerability analysis tech-

nique would benefit from our state-aware approach.

3.1 Web Applications

Before we can describe our approach to inferring a web

application’s state, we must first define the elements that

come into play in our web application model.

A web application consists of a server component,

which accepts HTTP requests. This server component

can be written in any language, and could use many

different means of storage (database, filesystem, mem-

cache). After processing a request, the server sends back

a response. This response encapsulates some content,

typically HTML. The HTML content contains links and

forms which describe how to make further requests.

Now that we have described a web application at a

high level, we need to define specific terms related to

web applications that we use in the rest of this paper.

• Request—The HTTP request made to the web ap-

plication. Includes anything (typically in the form

of HTTP headers) that is sent by the user to the web

application: the HTTP Method, URL, Parameters

(GET and POST), Cookies, and User-Agent.

• Response—The response sent by the server to the

user. Includes the HTTP Response Code and the

content (typically HTML).

• Page—The HTML page that is contained in the re-

sponse from a web application.

• Link—Element of an HTML page that tells the

browser how to create a subsequent request. This

can be either an anchor or a form. An anchor al-

ways generates a GET request, but a form can gener-

ate either a POST or GET request, depending on the

parameters of the form.

• State—Anything that influences the web applica-

tion’s server-side code execution.

3.1.1 Web Application Model

We use a symbolic Mealy machine [7] to model the web

application as a black-box. A Mealy machine is an au-

tomaton where the input to the automaton, along with

the current state, determines the output (i.e., the page

produced by the response) and the next state. A Mealy

machine operates on a finite alphabet of input and out-

put symbols, while a symbolic Mealy machine uses an

infinite alphabet of input and output symbols.

This model of a web application works well because

the input to a web application, along with the current

state of the web application, determines the output and

the next state. Consider a simple e-commerce web appli-

cation with the state machine show in Figure 3. In this

state graph, all requests except for the ones leaving a state

526  21st USENIX Security Symposium	 USENIX Association

S_0 no_items
POST /login.php

GET /logout.php
item_in_cart

POST /add_item.php

GET /delete_item.php

S_1GET /logout.php

purchased_item

POST /purchase.php

POST /login.php

S_2
GET /logout.php

POST /login.php

Figure 3: The state machine of a simple e-commerce application.

bring the application back to the same state. Therefore,

this state graph does not show all the request that can be

made to the application, only the subset of requests that

change the state.

For instance, in the initial state S 0, there is only

one request that will change the state of the applica-

tion, namely POST /login.php. This change logs

the user into the web application. From the state

no items, there are two requests that can change the

state, GET /logout.php to return the user to state S 0

and POST /add item.php to add an item to the user’s

shopping cart.

Note that the graph shown in Figure 3 is not a

strongly connected graph—that is, every state cannot

be reached by every other state. In this example, pur-

chasing an item is a permanent action, it irrecoverably

changes the state (there is no link from purchased item

to item in cart). Another interesting aspect is that

one request, GET /logout.php, leads to three differ-

ent states. This is because once the web application’s

state has changed, logging out, and then back in, does

not change the state of the cart.

3.2 Inferring the State Machine

Inferring a web application’s state machine requires the

ability to detect when the state of the web application has

changed. Therefore, we start with a description of the

state-change detection algorithm, then explain the other

components that are required to infer the state machine.

The key insight of our state-change algorithm is the

following: We detect that the state of the web application

has changed when we make an identical request and get

a different response. This is the only externally visible

effect of a state-change: Providing the same input causes

a different output.

Using this insight, our state-change detection algo-

rithm works, at a high level, as follows: (1) Crawl the

web application sequentially, making requests based on

a link in the previous response. (2) Assume that the state

stays the same, because there is no evidence to the con-

trary. (3) If we make a request identical to a previous

request and get a different response, then we assume that

some request since the last identical request changed the

state of the web application.

The intuition here is that a Mealy machine will, when

given the same input in the same state, produce the same

output. Therefore, if we send the same request and get a

different output, the state must have changed. By detect-

ing the web application’s state changes only using inputs

and outputs, we are agnostic with respect to both what

constitutes the state information and where the state in-

formation is located. In this way, we are more generic

than approaches that only consider the database to hold

the state of the application, when in fact, the local file

system or even memory could hold part of the web ap-

plication’s state.

The state-change detection algorithm allows us to infer

when the web application’s state has changed, yet four

other techniques are necessary to infer a state machine:

the clustering of similar pages, the identification of state-

changing requests, the collapsing of similar states, and

navigating.

Clustering similar pages. We want to group together

pages that are similar, for two reasons: To handle infinite

sections of web applications that are generated from the

same code (e.g., the pages of a calendar) and to detect

when a response has changed.

Before we can cluster pages, we model them using the

links (anchors and forms) present on the page. The in-

tuition here is that the links describe how the user can

interact with the web application. Therefore, changes to

what a user can do (new or missing links) indicate when

the state of the web application has changed. Also, in-

finite sections of a web application will share the same

link structure and will cluster together.

With our page model, we cluster pages together based

on their link structure. Pages that are in different clusters

are considered different. The details of this approach are

described in Section 4.1.

Determining the state-changing request. The state-

change detection algorithm only says that the state has

changed, however we need to determine which request

actually changed the state. When we detect a state

change, we have a temporal list of requests with identical

requests at the start and end. One of the requests in this

list changed the state. We use a heuristic to determine

which request changed the state. This heuristic favors

newer requests over older requests, POST requests over

GET requests, and requests that have previously changed

USENIX Association 	 21st USENIX Security Symposium  527

the state over those that have never changed the state.

The details are described in Section 4.2.

Collapsing similar states. The state-change detection

algorithm detects only when the state has changed, how-

ever, we need to understand if we returned to a previ-

ous state. This is necessary because if we detect a state

change, we want to know if this is a state we have pre-

viously seen or a brand new state. We reduce this prob-

lem to a graph coloring problem, where the nodes are

the states and an edge between two nodes means that the

states cannot be the same. We add edges to this graph

by using the requests and responses, along with rules to

determine when two states cannot be the same. After the

graph is colored, states that are the same color are col-

lapsed into the same state. Details of this state-merging

technique are provided in Section 4.3.

Navigating. We have two strategies for crawling the web

application.

First, we always try to pick a link in the last response.

The rational behind choosing a link in the last response

is that we emulate a user browsing the web application.

In this way, we are able to handle multi-step processes,

such as previewing a comment before it is committed.

Second, for each state, we make requests that are the

least likely to change the state of the web application.

The intuition here is that we want to first see as much of a

state as possible, without accidentally changing the state,

in case the state change is permanent. Full details of how

we crawl the web application are provided in Section 4.4

4 Technical Details

Inferring a web application’s state machine requires con-

cretely defining aspects such as page clustering or navi-

gation. However, we wish to stress that this is one imple-

mentation of the state machine inference algorithm and

it may not be optimal.

4.1 Clustering Similar Pages

Our reason for grouping similar pages together is

twofold: Prevent infinite scanning of the website by

grouping the “infinite” areas together and detect when

the state has changed by comparing page responses in an

efficient manner.

4.1.1 Page Model

The output of a web application is usually an HTML

document (it can actually be any arbitrary content, but

we only consider HTML content and HTTP redirects).

An HTML page is composed of navigational informa-

tion (anchors and forms) and user-readable content. For

Page

/html/body/div/span/a /html/body/div/form

/user /post

profile.php edit.php

(id, page) (all, sorted) (text, email, id)

(0) (0, 1) (5) (NULL) (5)

Figure 4: Representation of a page’s link vectors stored

in a prefix tree. There are five links present on this tree,

as evidenced by the number of leaf nodes.

our state-change detection algorithm, we are not inter-

ested in changes to the content, but rather to changes in

the navigation structure. We focus on navigation changes

because the links on a page define how a user can inter-

act with the application, thus, when the links change, the

web application’s state has changed.

Therefore, we model a page by composing all the an-

chors and forms. First, every anchor and form is trans-

formed into a vector constructed as follows:

�dompath, action, params, values�

where:

• dompath is the DOM (Document Object Model)

path of the HTML link (anchor or form);

• action is a list where each element is from the href

(for anchors) or action (for forms) attribute split

by ‘/’;

• params is the (potentially empty) set of parameter

names of the form or anchor;

• values is the set of values assigned to the parameters

listed in params.

For instance, an anchor tag with the href attribute of

/user/profile.php?id=0&page might have the fol-

lowing link vector:

�/html/body/div/span/a, /user, profile.php, (id, page), (0)�

All link vectors of a page are then stored in a prefix

tree. This prefix tree is the model of the page. A prefix

tree for a simple page with five links is shown in Fig-

ure 4. The link vector previously described is highlighted

in bold in Figure 4.

528  21st USENIX Security Symposium	 USENIX Association

APT

(/html/body/div/span/a, /html/body/div/form) REDIRECT (/html/body/table/div/a)

(/user, /post) /messages (/comments)

(profile.php, edit.php) show.php (all.php)

((id, page), (all, sorted), (text, email, id)) (id) (sorted)

((0), (0, 1), (5), (NULL), (5)) ((5), (5, 3), (1), (YES), (10)) (1) (NULL) (ASC) (DSC) (RAND)

Figure 5: Abstract Page Tree. Every page’s link vector is stored in this prefix tree. There are seven pages in this tree.

The page link vector from Figure 4 is highlighted in bold.

HTTP redirects are handled as a special case, where

the only element is a special redirect element having the

target URL as the value of the location attribute.

4.1.2 Page Clustering

To cluster pages, we use a simple but efficient algorithm.

As described in the previous section, the model of a page

is a prefix tree representing all the links contained in the

page.

These prefix trees are translated into vectors, where

every element of this vector is the set of all nodes of a

given level of the prefix tree, starting from the root. At

this point, all pages are represented by a page link vector.

For example, Figure 4 has the following page link vector:

�(/html/body/div/span/a, /html/body/div/form),
(/user, /post),
(profile.php, edit.php),
((id, page), (all, sorted), (text, email, id)),
((0), (0, 1), (5), (NULL), (5))�

The page link vectors for all pages are then stored in

another prefix tree, called the Abstract Page Tree (APT).

In this way, pages are mapped to a leaf of the tree. Pages

which are mapped to the same leaf have identical page

link vectors and are considered to be the same page. Fig-

ure 5 shows an APT with seven pages. The page from

Figure 4 is bold in Figure 5.

However, we want to cluster together pages whose

page link vectors do not match exactly, but are similar

(e.g., shopping cart pages with a different number of el-

ements in the cart). A measure of the similarity between

two pages is how many elements from the beginning of

their link vectors are the same between the two pages.

From the APT perspective, the higher the number of an-

cestors two pages (leaves) share, the closer they are.

Therefore, we create clusters of similar pages by se-

lecting a node in the APT and merging into one cluster,

called an Abstract Page, all the leaves in the correspond-

ing subtree. The criteria for deciding whether to cluster

a subtree of depth n from the root is the following:

• The number of leaves is greater than the median

number of leaves of all its siblings (including itself);

in this way, we cluster only subtrees which have a

larger-than-usual number of leaves.

• There are at least f (n) leaves in the subtree, where

f (n) is inversely related to n. The intuition is that

the fewer ancestors a subtree has in common (the

higher on the prefix tree it is), the more pages it must

have to cluster them together. We have found that

the function f (n) = 8(1+ 1
n+1

) works well by ex-

perimental analysis on a large corpus of web pages.

• The pages share the same dompath and the first ele-

ment of the action list of the page link vector; in this

way, all the pages that are clustered together share

the same link structure with potentially different pa-

rameters and values.

4.2 Determine the State-Changing Request

When a state change is detected, we must determine

which request actually changed the web application’s

state. Recall that we detect a state change when we make

a request that is identical to a previous request, yet has

different output. At this point, we have a list of all the

requests made between the latest request R and the re-

quest R′ closest in time to R such that R is identical to R′.

We use a heuristic to determine which request in this list

changed the web application’s state, choosing the request

i between R′ and R which maximizes the function:

score(ni,transition,ni,seen,distancei)

USENIX Association 	 21st USENIX Security Symposium  529

where:

• ni,transition is the number of times the request caused

a state transition;

• ni,seen is the number of times the request has been

made;

• distancei is how many requests have been made be-

tween request R and request i.

The function score is defined as:

score(ni,transition,ni,seen,distancei) =

1− (1−
ni,transition+1

ni,seen+1
)2 + BOOSTi

distancei+1

BOOSTi is .2 for POST requests and .1 for GET requests.

We construct the score function to capture two prop-

erties of web applications:

1. A POST request is more likely to change the state

than a GET request. This is suggested by the HTTP

specification, and score captures this intuition with

BOOSTi.

2. Resistant to errors. Because we cannot prove that

the selected request changed the state, we need to be

resistant to errors. That is why score contains the ra-

tio of ni,transition to ni,seen. In this way, if we acciden-

tally choose the wrong state-changing request once,

but then, later, make that request many times with-

out changing the state, we are less likely to choose

it as a state-changing request.

4.3 Collapsing Similar States

Running the state detection algorithm on a series of re-

quests and responses will tell us when the state has

changed. At this point, we consider each state unique.

This initial state assignment, though, is not optimal, be-

cause even if we encounter a state that we have seen in

the past, we are marking it as new. For example, in the

case of a sequence of login and logout actions, we are

actually flipping between two states, instead of entering

a new state at every login/logout. Therefore, we need

to minimize the number of different states and collapse

states that are actually the same.

The problem of state allocation can be seen as a graph-

coloring problem on a non-planar graph [27]. Let each

state be a node in the graph G. Let two nodes a and b be

connected by an edge (meaning that the states cannot be

the same) if either of the following conditions holds:

1. If a request R was made when the web application

was in states a and b and results in pages in different

clusters. The intuition is that two states cannot be

the same if we make an identical request in each

state yet receive a different response.

2. The two states a and b have no pages in common.

The idea is to err on the conservative side, thus we

require that two states share a page before collaps-

ing the states into one.

After adding the edges to the graph by following the

previous rules, G is colored. States assigned the same

color are considered the same state.

To color the nodes of G, we employ a custom greedy

algorithm. Every node has a unique identifier, which is

the incremental number of the state as we see it in the

request-response list. The nodes are ordered by identi-

fier, and we assign the color to each node in a sequential

way, using the highest color available (i.e., not used by

its neighbors), or a new color if none is available.

This way of coloring the nodes works very well for

state allocation because it takes into account the temporal

locality of states: In particular, we attempt to assign the

highest available color because it is more likely for a state

to be the same as a recently seen state rather than one

seen at the beginning of crawling.

There is one final rule that we need to add after the

graph is colored. This rules captures an observation

about transitioning between states: If a request, R, tran-

sitions the web application from state a1 to state b, yet,

later when the web application is in state a2, R transitions

the web application to state c, then a1 and a2 cannot be

the same state. Therefore, we add an edge from a1 to a2

and redo the graph coloring.

We continue enforcing this rule until no additional

edges are added. The algorithm is guaranteed to con-

verge because only new edges are added at every step,

and no edges are ever removed.

At the end of the iteration, the graph coloring output

will determine the final state allocation—all nodes with

the same color represent the same state (even if seen at

different stages during the web application crawling pro-

cess).

4.4 Navigating

Typical black-box web vulnerability scanners make con-

current HTTP requests to a web application to increase

performance. However, as we have shown, an HTTP

request can influence the web application’s state, and,

in this case, all other requests would occur in the new

state. Also, some actions require a multi-step, sequential

process, such as adding items to a shopping cart before

purchasing them. Finally, a user of the web application

does not browse a web application in this parallel fash-

ion, thus, developers assume that the users will browse

sequentially.

530  21st USENIX Security Symposium	 USENIX Association

def fuzz_state_changing(fuzz_request):

make_request(fuzz_request)

if state_has_changed ():

if state_is_reversible ():

make_requests_to_revert_state ()

if not back_in_previous_state ():

reset_and_put_in_previous_state ()

else:

reset_and_put_in_previous_state ()

Listing 1: Psuedocode for fuzzing state-changing

request.

Our scanner navigates a web application by mimicking

a user browsing the web application sequentially. Brows-

ing sequentially not only allows us to follow the devel-

oper’s intended path through the web application, but it

enables us to detect which requests changed the web ap-

plication’s state.

Thus, a state-aware crawler must navigate the applica-

tion sequentially. No concurrent requests are made, and

only anchors and forms present in the last visited page

are used to determine the next request. In the case of

a page with no outgoing links we go back to the initial

page.

Whenever the latest page does not contain unvisited

links, the crawler will choose a path from the current

page towards another page already seen that contains

links that have not yet been visited. If there is no path

from the current page to anywhere, we go back to the

initial page. The criteria for choosing this path is based

on the following intuitions:

• We want to explore as much of the current state as

possible before changing the state, therefore we se-

lect links that are less likely to cause a state transi-

tion.

• When going from the current page to a page with an

unvisited link, we will repeat requests. Therefore,

we should choose a path that contains links that we

have visited infrequently. This give us more infor-

mation about the current state.

The exact algorithm we employ is Dijkstra Shortest

Path Algorithm [14] with custom edge length. This edge

length increases with the number of times we have previ-

ously visited that link. Finally, the edge length increases

with how likely the link is to cause a state change.

5 State-Aware Fuzzing

After we crawl the web application, our system has in-

ferred, as much as possible, the web application’s state

machine. We use the state machine information, along

with the list of request–responses made by the crawler, to

drive a state-aware fuzzing of the web application, look-

ing for security vulnerabilities.

To fuzz the application in a state-aware manner, we

need the ability to reset the web application to the initial

state (the state when we started crawling). We do not use

this ability when crawling, only when fuzzing. It is nec-

essary to reset the application when we are fuzzing an

irreversible state-changing request. Using the reset func-

tionality, we are able to recover from these irreversible

state changes.

Adding the ability to reset the web application does

not break the black-box model of the web application.

Resetting requires no knowledge of the web application,

and can be easily performed by running the web applica-

tion in a virtual machine.

Our state-aware fuzzing starts by resetting the web ap-

plication to the initial state. Then we go through the re-

quests that the crawler made, starting with the initial re-

quest. If the request does not change the state, then we

fuzz the request as a typical black-box scanner. However,

if the request is state-changing, we follow the algorithm

shown in Listing 1. The algorithm is simple: We make

the request, and if the state has changed, traverse the in-

ferred state machine to find a series of requests to tran-

sition the web application to the previous state. If this

does not exist, or does not work, then we reset the web

application to the initial state, and make all the previ-

ous requests that the crawler made. This ensures that the

web application is in the proper state before continuing

to fuzz.

Our state-aware fuzzing approach can use any fuzzing

component. In our implementation, we used the fuzzing

plugins of an open-source scanner, w3af [37]. The

fuzzing plugins take an HTTP request and generate vari-

ations on that request looking for different vulnerabili-

ties. Our state-aware fuzzing makes those requests while

checking that the state does not unintentionally change.

6 Evaluation

As shown in previous research [16], fairly evaluating

black-box web vulnerability scanners is difficult. The

most important, at least to end users, metric for compar-

ing black-box web vulnerability scanners is true vulner-

abilities discovered. Comparing two scanners that dis-

cover different vulnerabilities is nearly impossible.

There are two other metrics that we use to evaluate

black-box web vulnerability scanners:

• False Positives. The number of spurious vulnera-

bilities that a black-box web vulnerability scanner

reports. This measures the accuracy of the scan-

ner. False positives are a serious problem for the

end user of the scanner—if the false positives are

USENIX Association 	 21st USENIX Security Symposium  531

Application Description Version Lines of Code

Gallery Photo hosting. 3.0.2 26,622

PhpBB v2 Discussion forum. 2.0.4 16,034

PhpBB v3 Discussion forum. 3.0.10 110,186

SCARF Stanford conference and research forum. 2007-02-27 798

Vanilla Forums Discussion forum. 2.0.17.10 43,880

WackoPicko v2 Intentionally vulnerable web application. 2.0 900

WordPress v2 Blogging platform. 2.0 17,995

WordPress v3 Blogging platform. 3.2.1 71,698

Table 1: Applications that we ran the crawlers against to measure vulnerabilities discovered and code coverage.

high, the user must manually inspect each vulner-

ability reported to determine the validity. This re-

quires a security-conscious user to evaluate the re-

ports. Moreover, false positives erode the user’s

trust in the tool and make the user less likely to use

it in the future.

• Code Coverage. The percentage of the web appli-

cation’s code that the black-box web vulnerability

scanner executes while it crawls and fuzzes the ap-

plication. This measures how effective the scanner

is in exercising the functionality of the web applica-

tion. Moreover, code coverage is an excellent met-

ric for another reason: A black-box web vulnera-

bility scanner, by nature, cannot find a vulnerability

along a code path that it does not execute. There-

fore, greater code coverage means that a scanner

has the potential to discover more vulnerabilities.

Note that this is orthogonal to fuzzing capability:

A fuzzer—no matter how effective—will never be

able to discover a vulnerability on a code path that

it does not execute.

We use both the metrics previously described in our

evaluation. However, our main focus is on code cover-

age. This is because a scanner with greater code cover-

age will be able to discover more vulnerabilities in the

web application.

However, code coverage is not a perfect metric. Evalu-

ating raw code coverage percentage numbers can be mis-

leading. Ten percent code coverage of an application

could be horrible or excellent depending on how much

functionality the application exposes. Some code may

be intended only for installation, may be only for ad-

ministrators, or is simply dead code and cannot be ex-

ecuted. Therefore, comparing code coverage normalized

to a baseline is more informative, and we use this in our

evaluation.

6.1 Experiments

We evaluated our approach by running our state-aware-

scanner along with three other vulnerability scanners

Scanner Description Language Version

wget GNU command-line

website downloader.

C 1.12

w3af Web Application At-

tack and Audit Frame-

work.

Python 1.0-stable

skipfish Open-source, high-

performance vulnera-

bility scanner.

C 2.03b

state-

aware-

scanner

Our state-aware vul-

nerability scanner.

Python 1.0

Table 2: Black-box web vulnerability scanners that we

compared.

against eight web applications. These web applications

range in size, complexity, and functionality. In the rest of

this section, we describe the web applications, the black-

box web vulnerability scanners, and the methodology we

used to validate our approach.

6.1.1 Web Applications

Table 1 provides an overview of the web applications

used with a short description, a version number, and lines

of executable PHP code for each application. Because

our approach assumes that the web application’s state

changes only via requests from the user, we made slight

code modifications to three web applications to reduce

the influence of external, non-user driven, forces, such as

time. Please refer to Appendix A for a detailed descrip-

tion of each application and what was changed.

6.1.2 Black-Box Web Vulnerability Scanners

This section describes the black-box web vulnerability

scanners that were compared against our approach, along

with the configuration or settings that were used. Ta-

ble 2 contains a short description of each scanner, the

scanner’s programming language, and the version num-

ber. Appendix B shows the exact configuration that was

used for each scanner.

532  21st USENIX Security Symposium	 USENIX Association

wget is a free and open-source application that is used

to download files from a web application. While not a

vulnerability scanner, wget is a crawler that will make

all possible GET requests it can find. Thus, it provides an

excellent baseline because vulnerability scanners make

POST requests as well as GET requests and should dis-

cover more of the application than wget.

wget is launched with the following options: recur-

sive, download everything, and ignore robots.txt.

w3af is an open-source black-box web vulnerability

scanner which has numerous fuzzing modules. We en-

abled the blindSqli, eval, localFileInclude, osCommand-

ing, remoteFileInclude, sqli, and xss fuzzing plugins.

skipfish is an open-source black-box web vulnerability

scanner whose focus is on high speed and high perfor-

mance. Skipfish epitomizes the “shotgun” approach, and

boasts about making more than 2,000 requests per sec-

ond to a web application on a LAN. Skipfish also at-

tempts to guess, via a dictionary or brute-force, directory

names. We disabled this behavior to be fair to the other

scanners, because we do not want to test the ability to

guess a hidden directory, but how a scanner crawls a web

application.

state-aware-scanner is our state-aware black-box vul-

nerability scanner. We use HtmlUnit [19] to issue the

HTTP requests and render the HTML responses. Af-

ter crawling and building the state-graph, we utilize the

fuzzing plugins from w3af to generate fuzzing requests.

Thus, any improvement in code coverage of our crawler

over w3af is due to our state-aware crawling, since the

fuzzing components are identical.

6.1.3 Methodology

We ran each black-box web vulnerability scanner against

a distinct, yet identical, copy of each web application.

We ran all tests on our local cloud [34].

Gallery, WordPress v2, and WordPress v3 do not re-

quire an account to interact with the website, thus each

scanner is simply told to scan the test application.

For the remaining applications (PhpBB v2, PhpBB v3,

SCARF, Vanilla Forums, and WackoPicko v2), it is diffi-

cult to fairly determine how much information to give the

scanners. Our approach only requires a username/pass-

word for the application, and by its nature will discover

the requests that log the user out, and recover from them.

However, other scanners do not have this capability.

Thus, it is reasonable to test all scanners with the same

level of information that we give our scanner. However,

the other scanners lack the ability to provide a username

and password. Therefore, we did the next best thing: For

those applications that require a user account, we log into

the application and save the cookie file. We then instruct

the scanner to use this cookie file while scanning the web

application.

While we could do more for the scanners, like prevent-

ing them from issuing the logout request for each appli-

cation, we believe that our approach strikes a fair com-

promise and allows each scanner to decide how to crawl

the site. Preventing the scanners from logging out of the

application also limits the amount of the application they

will see, as they will never see the web application from

a guest’s perspective.

6.2 Results

Table 3 shows the results of each of the black-box web

vulnerability scanners against each web application. The

column “% over Baseline” displays the percentage of

code coverage improvement of the scanner against the

wget baseline, while the column “Vulnerabilities” shows

total number of reported vulnerabilities, true positives,

unique true positives among the scanners, and false pos-

itives.

The prototype implementation of our state-aware-

scanner had the best code coverage for every application.

This verifies the validity of our algorithm: Understand-

ing state is necessary to better exercise a web application.

Figure 6 visually displays the code coverage percent

improvement over wget. The most important thing to

take from these results is the improvement state-aware-

scanner has over w3af. Because we use the fuzzing com-

ponent of w3af, the only difference is in our state-aware

crawling. The results show that this gives state-aware-

scanner an increase in code coverage from as little as half

a percent to 140.71 percent.

Our crawler discovered three unique vulnerabilities,

one each in PhpBB v2, SCARF, and WackoPicko v2.

The SCARF vulnerability is simply a XSS injection on

the comment form. w3af logged itself out before fuzzing

the comment page. skipfish filed the vulnerable page un-

der “Response varies randomly, skipping checks.” How-

ever, the content of this page does not vary randomly, it

varies because skipfish is altering it. This random cate-

gorization also prevents skipfish from detecting the sim-

ple XSS vulnerability on WackoPicko v2’s guestbook.

This result shows that a scanner needs to understand the

web application’s internal state to properly decide why a

page’s content is changing.

Skipfish was able to discover 15 vulnerabilities in

Vanilla Forums. This is impressive, however, 14 stem

from a XSS injection via the referer header on an error

page. Thus, even though these 14 vulnerabilities are on

different pages, it is the same root cause.

Surprisingly, our scanner produced less false positives

than w3af. All of w3af’s false positives were due to

faulty timing detection of SQL injection and OS com-

USENIX Association 	 21st USENIX Security Symposium  533

Scanner Application % over Baseline Vulnerabilities

Reported True Unique False

state-aware-scanner Gallery 16.20% 0 0 0 0

w3af Gallery 15.77% 3 0 0 3

skipfish Gallery 10.96% 0 0 0 0

wget Gallery 0%

state-aware-scanner PhpBB v2 38.34% 4 3 1 1

skipfish PhpBB v2 5.10% 3 2 0 1

w3af PhpBB v2 1.04% 5 1 0 4

wget PhpBB v2 0%

state-aware-scanner PhpBB v3 115.45% 0 0 0 0

skipfish PhpBB v3 60.21% 2 0 0 2

w3af PhpBB v3 16.16% 0 0 0 0

wget PhpBB v3 0%

state-aware-scanner SCARF 67.03% 1 1 1 0

skipfish SCARF 55.66% 0 0 0 0

w3af SCARF 21.55% 0 0 0 0

wget SCARF 0%

state-aware-scanner Vanilla Forums 30.89% 0 0 0 0

w3af Vanilla Forums 1.06% 0 0 0 0

wget Vanilla Forums 0%

skipfish Vanilla Forums -2.32% 17 15 2 2

state-aware-scanner WackoPicko v2 241.86% 5 5 1 0

skipfish WackoPicko v2 194.77% 4 3 1 1

w3af WackoPicko v2 101.15% 5 5 1 0

wget WackoPicko v2 0%

state-aware-scanner WordPress v2 14.49% 0 0 0 0

w3af WordPress v2 12.49% 0 0 0 0

wget WordPress v2 0%

skipfish WordPress v2 -18.34% 1 0 0 1

state-aware-scanner WordPress v3 9.84% 0 0 0 0

w3af WordPress v3 9.23% 3 0 0 3

skipfish WordPress v3 3.89% 1 0 0 1

wget WordPress v3 0%

Table 3: Results of each of the black-box web vulnerability scanners against each application. The table is sorted by

the percent increase in code coverage over the baseline scanner, wget.

manding. We believe that using HtmlUnit prevented

our scanner from detecting these spurious vulnerabili-

ties, even though we use the same fuzzing component

as w3af.

Finally, our approach inferred the state machines of

the evaluated applications. These state machines are very

complex in the large applications. This complexity is

because modern, large, application have many actions

which modify the state. For instance, in WackoPicko v2,

a user can log in, add items to their cart, comment on

pictures, delete items from their cart, log out of the appli-

cation, register as a new user, comment as this new user,

upload a picture, and purchase items. All of these ac-

tions interact to form a complex state machine. The state

machine our scanner inferred captures this complex se-

ries of state changes. The inferred WackoPicko v2 state

machine is presented in Figure 7.

7 Limitations

Although dynamic page generation via JavaScript is sup-

ported by our crawler as allowed by the HtmlUnit frame-

work [19], proper AJAX support is not implemented.

This means that our prototype executes JavaScript when

the page loads, but does not execute AJAX calls when

clicking on links.

Nevertheless, our approach could be extended to han-

dle AJAX requests. In fact, any interaction with the web

application always contains a request and response, how-

ever the content of the response is no longer an HTML

page. Thus, we could extend our notion of a “page” to

typical response content of AJAX calls, such as JSON or

XML. Another way to handle AJAX would be to follow

a Crawljax [33] approach and covert the dynamic AJAX

calls into static pages.

534  21st USENIX Security Symposium	 USENIX Association

-20%

0%

20%

40%

60%

80%

100%

120%

Gallery

PhpBB
v2

PhpBB v3

SCARF

Vanilla Forums

WackoPicko v2

WordPress v2

WordPress v3

190%

210%

230%

250%
P

er
ce

n
ta

g
e

Im
p

ro
v
em

en
t
O

v
er

w
g

et
state-aware-scanner

w3af
skipfish

Figure 6: Visual representation of the percentage increase of code coverage over the baseline scanner, wget. Important

to note is the gain our scanner, state-aware-scanner, has over w3af, because the only difference is our state-aware

crawling. The y-axis range is broken to reduce the distortion of the WackoPicko v2 results.

Another limitation of our approach is that our scanner

cannot be used against a web application being accessed

by other users (i.e., a public web application), because

the other users may influence the state of the application

(e.g., add a comment on a guestbook) and confuse our

state change detection algorithm.

8 Related Work

Automatic or semi-automatic web application vulnera-

bility scanning has been a hot topic in research for many

years because of its relevance and its complexity.

Huang et al. developed a tool (WAVES) for assess-

ing web application security with which we share many

points [24]. Similarly to us, they have a scanner for find-

ing the entry points in the web application by mimicking

the behavior of a web browser. They employ a learn-

ing mechanism to sensibly fill web form fields and al-

low deep crawling of pages behind forms. Attempts to

discover vulnerabilities are carried out by submitting the

same form multiple times with valid, invalid, and faulty

inputs, and comparing the result pages. Differently from

WAVES, we are using the knowledge gathered by the

first-phase scanner to help the fuzzer detect the effect of

a given input. Moreover, our first-phase scanner aims not

only at finding relevant entry-points, but rather at build-

ing a complete state-aware navigational map of the web

application.

A number of tools have been developed to try to au-

tomatically discover vulnerabilities in web applications,

produced as academic prototypes [4,17,22,25,28,29,31],

as open-source projects [8,9,37], or as commercial prod-

ucts [1, 23, 26, 35].

Multiple projects [6,16,42,43] tackled the task of eval-

uating the effectiveness of popular black-box scanners

(in some cases also called point-and-shoot scanners).

The common theme in their results is a relevant discrep-

ancy in vulnerabilities found across scanners, along with

low accuracy. Authors of these evaluations acknowledge

the difficulties and challenges of the task [21, 43]. In

particular, we highlighted how more deep crawling and

reverse engineering capabilities of web applications are

needed in black-box scanners, and we also developed the

WackoPicko web application which contains known vul-

nerabilities [16]. Similarly, Bau et al. investigated the

presence of room for research in this area, and found im-

provement is needed, in particular for detecting second-

order XSS and SQL injection attacks [6].

Reverse engineering of web applications has not been

widely explored in the literature, to our knowledge.

Some approaches [13] perform static analysis on the

code to create UML diagrams of the application.

Static analysis, in fact, is the technique mostly em-

ployed for automatic vulnerability detection, often com-

bined with dynamic analysis.

USENIX Association 	 21st USENIX Security Symposium  535

385

397

POST /cart/action.php?action=purchase

400

GET /users/logout.php

200

231

POST /cart/action.php?action=purchase

261

POST /comments/add_comment.php

970

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

1055

894

POST /cart/action.php?action=purchase

1240

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

1157

GET /users/logout.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

899

POST /comments/add_comment.php

290

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9
GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

325

POST /cart/action.php?action=purchase

POST /cart/action.php?action=delete

417

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

350

POST /users/login.php
POST /users/register.php

169

POST /comments/add_comment.php POST /cart/action.php?action=purchase

POST /comments/add_comment.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

904

POST /comments/add_comment.php

794

813

POST /comments/add_comment.php

POST /comments/add_comment.php

147

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

780

POST /comments/add_comment.php

POST /comments/add_comment.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

POST /cart/action.php?action=delete

1641

GET /users/logout.php

1248

POST /cart/action.php?action=delete

1328

GET /users/logout.php

1256

GET /users/logout.php

543

POST /comments/add_comment.php

549

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

POST /comments/add_comment.php

424

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

POST /comments/add_comment.php

1536

GET /users/logout.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9
GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

857

POST /comments/add_comment.php

879

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

884

POST /comments/add_comment.php

1615

GET /users/logout.php

1389

POST /comments/add_comment.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

889

POST /comments/add_comment.php

GET /users/logout.php

874

POST /comments/add_comment.php

1756

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

POST /comments/add_comment.php

1669

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

1725

GET /users/logout.php

GET /users/logout.php

POST /comments/add_comment.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

0

91

POST /passcheck.php

93

POST /users/login.php
POST /users/register.php

523

471

POST /passcheck.php

POST /users/login.php
POST /users/register.php

POST /users/login.php
POST /users/register.php

726

POST /passcheck.php

POST /users/login.php
POST /users/register.php

POST /passcheck.php

POST /users/login.php
POST /users/register.php

POST /users/login.php
POST /users/register.php

POST /passcheck.php

POST /users/login.php
POST /users/register.php

GET /users/logout.php

POST /users/login.php
POST /users/register.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

907

GET /users/logout.php
POST /users/login.php

POST /users/register.php

POST /users/login.php
POST /users/register.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

GET /users/logout.php

POST /users/login.php
POST /users/register.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

GET /users/logout.php

1735

POST /users/login.php
POST /users/register.php

POST /users/login.php
POST /users/register.php

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

1769

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

1782

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

GET /cart/action.php?action=add&picid=7
GET /cart/action.php?action=add&picid=8
GET /cart/action.php?action=add&picid=9

GET /cart/action.php?action=add&picid=14
GET /cart/action.php?action=add&picid=15

Figure 7: State machine that state-aware-scanner inferred for WackoPicko v2.

Halfond et al. developed a traditional black-box vul-

nerability scanner, but improved its result by leveraging

a static analysis technique to better identify input vec-

tors [22].

Pixy [28] employed static analysis with taint propa-

gation in order to detect SQL injection, XSS and shell

command injection, while Saner [4] used sound static

analysis to detect failures in sanitization routines. Saner

also takes advantage of a second phase of dynamic anal-

ysis to reduce false positives. Similarly, WebSSARI [25]

also employed static analysis for detecting injection vul-

nerabilities, but, in addition, it proposed a technique for

runtime instrumentation of the web application through

the insertion of proper sanitization routines.

Felmetsger et al. investigated an approach for detect-

ing a different type of vulnerability (some categories of

logic flaws) by combining execution traces and symbolic

model checking [17]. Similar approaches are also used

for generic bug finding (in fact, vulnerabilities could be

considered a subset of the general bug category). Csall-

ner et al. employ dynamic traces for bug finding and for

dynamic verification of the alerts generated by the static

analysis phase [12]. Artzi et al., on the other hand, use

symbolic execution and model checking for finding gen-

eral bugs in web applications [3].

On a completely separate track, efforts to improve web

application security push the developers toward writing

secure code in the first place. Security experts are ty-

536  21st USENIX Security Symposium	 USENIX Association

ing to achieve this goal by either educating the devel-

opers [40] or designing frameworks which prohibit the

use of bad programming practices and enforce some se-

curity constraints in the code. Robertson and Vigna de-

veloped a strongly-typed framework which statically en-

forces separation between structure and content of a web

page, preventing XSS and SQL injection [38]. Also

Chong et al. designed their language for developers to

build web applications with strong confidentiality and

integrity guarantees, by means of compile-time and run-

time checks [10].

Alternatively, consequences of vulnerabilities in web

applications can be mitigated by trying to prevent the

attacks before they reach some potentially vulnerable

code, like, for example, in the already mentioned Web-

SSARI [25] work. A different approach for blocking at-

tacks is followed by Scott and Sharp, who developed a

language for specifying a security policy for the web ap-

plication; a gateway will then enforce these policies [39].

Another interesting research track deals with the prob-

lem of how to explore web pages behind forms, also

called the hidden web [36]. McAllister et al. monitor

user interactions with a web application to collect sen-

sible values for HTML form submission and generate

test cases that can be replayed to increase code cover-

age [32]. Although not targeted to security goals, the

work of Raghavan and Garcia-Molina is relevant for our

project for their contribution in classification of different

types of dynamic content and for their novel approach

for automatically filling forms by deducing the domain

of form fields [36]. Raghavan and Garcia-Molina car-

ried out further research in this direction, by reconstruct-

ing complex and hierarchical query interfaces exposed

by web applications.

Moreover, Amalfitano et al. started tackling the prob-

lem of reverse engineering the state machine of client-

side AJAX code, which will help in finding the web ap-

plication server-side entry points and in better understat-

ing complex and hierarchical query interfaces [2].

Finally, we need to mention the work by Berg et al.

in reversing state machines into a Symbolic Mealy Ma-

chine (SMM) model [7]. Their approach for reversing

machines cannot be directly applied to our case because

of the infeasibility of fully exploring all pages for all the

states, even for a small subset of the possible states. Nev-

ertheless, the model they propose for a SMM fits our

needs.

9 Conclusion

We have described a novel approach to inferring, as

much as possible, a web application’s internal state ma-

chine. We leveraged the state machine to drive the state-

aware fuzzing of web applications. Using this approach,

our crawler is able to crawl—and thus fuzz—more of the

web application than a classical state-agnostic crawler.

We believe our approach to detecting state change by dif-

ferences in output for an identical response is valid and

should be adopted by all black-box tools that wish to un-

derstand the web application’s internal state machine.

Acknowledgements

This work was supported by the Office of Naval Research

(ONR) under Grant N000141210165, the National Sci-

ence Foundation (NSF) under grant CNS-1116967, and

by Secure Business Austria.

References

[1] ACUNETIX. Acunetix Web Vulnerbility Scanner. http://www.

acunetix.com/.

[2] AMALFITANO, D., FASOLINO, A., AND TRAMONTANA, P. Re-

verse Engineering Finite State Machines from Rich Internet Ap-

plications. In 2008 15th Working Conference on Reverse Engi-

neering (2008), IEEE, pp. 69–73.

[3] ARTZI, S., KIEZUN, A., DOLBY, J., TIP, F., DIG, D., PARAD-

KAR, A., AND ERNST, M. Finding bugs in web applications

using dynamic test generation and explicit state model checking.

IEEE Transactions on Software Engineering (2010).

[4] BALZAROTTI, D., COVA, M., FELMETSGER, V., JOVANOVIC,

N., KIRDA, E., KRUEGEL, C., AND VIGNA, G. Saner: Com-

posing Static and Dynamic Analysis to Validate Sanitization in

Web Applications. In 2008 IEEE Symposium on Security and

Privacy (2008), IEEE, pp. 387–401.

[5] BALZAROTTI, D., COVA, M., FELMETSGER, V., AND VIGNA,

G. Multi-module Vulnerability Analysis of Web-based Applica-

tions. In Proceedings of the ACM conference on Computer and

Communications Security (CCS) (2007), pp. 25–35.

[6] BAU, J., BURSZTEIN, E., GUPTA, D., AND MITCHELL, J. State

of the Art: Automated Black-Box Web Application Vulnerability

Testing. In Security and Privacy (SP), 2010 IEEE Symposium on

(2010), IEEE, pp. 332–345.

[7] BERG, T., JONSSON, B., AND RAFFELT, H. Regular Inference

for State Machines using Domains with Equality Tests. In Pro-

ceedings of the Theory and practice of software, 11th interna-

tional conference on Fundamental approaches to software engi-

neering (2008), Springer-Verlag, pp. 317–331.

[8] BYRNE, D. Grendel-Scan. http://www.grendel-scan.

com/.

[9] CHINOTEC TECHNOLOGIES. Paros. http://www.

parosproxy.org/.

[10] CHONG, S., VIKRAM, K., AND MYERS, A. SIF: Enforcing con-

fidentiality and integrity in web applications. In Proceedings of

16th USENIX Security Symposium on USENIX Security Sympo-

sium (2007), USENIX Association, p. 1.

[11] COVA, M., BALZAROTTI, D., FELMETSGER, V., AND VIGNA,

G. Swaddler: An Approach for the Anomaly-based Detection of

State Violations in Web Applications. In Proceedings of the Inter-

national Symposium on Recent Advances in Intrusion Detection

(RAID 2007) (2007), pp. 63–86.

[12] CSALLNER, C., SMARAGDAKIS, Y., AND XIE, T. DSD-

Crasher: A hybrid analysis tool for bug finding. ACM Trans-

actions on Software Engineering and Methodology (TOSEM) 17,

2 (2008), 1–37.

USENIX Association 	 21st USENIX Security Symposium  537

[13] DI LUCCA, G., FASOLINO, A., PACE, F., TRAMONTANA, P.,

AND DE CARLINI, U. WARE: a tool for the reverse engi-

neering of Web applications. In Sixth European Conference

on Software Maintenance and Reengineering, 2002. Proceedings

(2002), pp. 241–250.

[14] DIJKSTRA, E. W. A Note on Two Problems in Connexion with

Graphs. Numerische Mathematik 1 (1959), 269–271.

[15] DOUPÉ, A., BOE, B., KRUEGEL, C., AND VIGNA, G. Fear

the EAR: Discovering and Mitigating Execution After Redirect

Vulnerabilities. In Proceedings of the 18th ACM Conference on

Computer and Communications Security (CCS 2011) (Chicago,

IL, October 2011).

[16] DOUPÉ, A., COVA, M., AND VIGNA, G. Why Johnny Can’t

Pentest: An Analysis of Black-box Web Vulnerability Scanners.

In Detection of Intrusions and Malware, and Vulnerability As-

sessment (DIMVA 2010) (2010), Springer, pp. 111–131.

[17] FELMETSGER, V., CAVEDON, L., KRUEGEL, C., AND VIGNA,

G. Toward Automated Detection of Logic Vulnerabilities in Web

Applications. In Proceedings of the USENIX Security Symposium

(Washington, DC, August 2010).

[18] FOSSI, M. Symantec Global Internet Security Threat Report.

Tech. rep., Symantec, April 2009. Volume XIV.

[19] GARGOYLE SOFTWARE INC. HtmlUnit. http://htmlunit.

sourceforge.net/.

[20] GARRETT, J. J. Ajax: A New Approach to Web Appli-

cations. http://www.adaptivepath.com/ideas/essays/

archives/000385.php, Feb. 2005.

[21] GROSSMAN, J. Challenges of Automated Web Application Scan-

ning. Blackhat Windows 2004, 2004.

[22] HALFOND, W., CHOUDHARY, S., AND ORSO, A. Penetration

testing with improved input vector identification. In Software

Testing Verification and Validation, 2009. ICST’09. International

Conference on (2009), IEEE, pp. 346–355.

[23] HP. WebInspect. https://download.hpsmartupdate.com/

webinspect/.

[24] HUANG, Y.-W., HUANG, S.-K., LIN, T.-P., AND TSAI, C.-H.

Web application security assessment by fault injection and behav-

ior monitoring. In Proceedings of the 12th international confer-

ence on World Wide Web (New York, NY, USA, 2003), WWW

’03, ACM, pp. 148–159.

[25] HUANG, Y.-W., YU, F., HANG, C., TSAI, C.-H., LEE, D.-

T., AND KUO, S.-Y. Securing web application code by static

analysis and runtime protection. In WWW ’04: Proceedings of

the 13th international conference on World Wide Web (New York,

NY, USA, 2004), ACM, pp. 40–52.

[26] IBM. AppScan. http://www-01.ibm.com/software/

awdtools/appscan/.

[27] JENSEN, T. R., AND TOFT, B. Graph Coloring Problems.

Wiley-Interscience Series on Discrete Mathematics and Opti-

mization. Wiley, 1994.

[28] JOVANOVIC, N., KRUEGEL, C., AND KIRDA, E. Static anal-

ysis for detecting taint-style vulnerabilities in web applications.

Journal of Computer Security 18, 5 (2010), 861–907.

[29] KALS, S., KIRDA, E., KRUEGEL, C., AND JOVANOVIC, N.

Secubat: a Web Vulnerability Scanner. In Proceedings of the

15th international conference on World Wide Web (2006), ACM,

pp. 247–256.

[30] LI, X., AND XUE, Y. BLOCK: A Black-box Approach for De-

tection of State Violation Attacks Towards Web Applications. In

Proceedings of the Annual Computer Security Applications Con-

ference (ACSAC 2011) (Orlando, FL, December 2011).

[31] LI, X., YAN, W., AND XUE, Y. SENTINEL: Securing Database

from Logic Flaws in Web Applications. In CODASPY (2012),

pp. 25–36.

[32] MCALLISTER, S., KIRDA, E., AND KRUEGEL, C. Leverag-

ing User Interactions for In-Depth Testing of Web Applications.

In Recent Advances in Intrusion Detection (2008), Springer,

pp. 191–210.

[33] MESBAH, A., BOZDAG, E., AND VAN DEURSEN, A. Crawling

AJAX by Inferring User Interface State Changes. In Web En-

gineering, 2008. ICWE ’08. Eighth International Conference on

(july 2008), pp. 122 –134.

[34] NURMI, D., WOLSKI, R., GRZEGORCZYK, C., OBERTELLI,

G., SOMAN, S., YOUSEFF, L., AND ZAGORODNOV, D. The

Eucalyptus Open-Source Cloud-Computing System. In Cluster

Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM In-

ternational Symposium on (may 2009), pp. 124 –131.

[35] PORTSWIGGER. Burp Proxy. http://www.portswigger.

net/burp/.

[36] RAGHAVAN, S., AND GARCIA-MOLINA, H. Crawling the hid-

den web. In Proceedings of the International Conference on Very

Large Data Bases (2001), Citeseer, pp. 129–138.

[37] RIANCHO, A. w3af – Web Application Attack and Audit Frame-

work. http://w3af.sourceforge.net/.

[38] ROBERTSON, W., AND VIGNA, G. Static Enforcement of

Web Application Integrity Through Strong Typing. In Proceed-

ings of the USENIX Security Symposium (Montreal, Quebec CA,

September 2009).

[39] SCOTT, D., AND SHARP, R. Abstracting application-level web

security. In Proceedings of the 11th international conference on

World Wide Web (2002), ACM, pp. 396–407.

[40] SPI DYNAMICS. Complete Web Application Security: Phase

1 – Building Web Application Security into Your Development

Process. SPI Dynamics Whitepaper, 2002.

[41] STEVE, C., AND MARTIN, R. Vulnerability Type Distributions

in CVE. Mitre report, May (2007).

[42] SUTO, L. Analyzing the Accuracy and Time Costs of Web Ap-

plication Security Scanners, 2010.

[43] VIEIRA, M., ANTUNES, N., AND MADEIRA, H. Using Web

Security Scanners to Detect Vulnerabilities in Web Services. In

Dependable Systems & Networks, 2009. DSN’09. IEEE/IFIP In-

ternational Conference on (2009), IEEE, pp. 566–571.

538  21st USENIX Security Symposium	 USENIX Association

A Web Applications

This section describes the web applications along with

the functionality against which we ran the black-box web

vulnerability scanner.

Gallery is an open-source photo hosting application.

The administrator can upload photos and organize them

into albums. Guests can then view and comment on

the uploaded photos. Gallery has AJAX functional-

ity but gracefully degrades (is fully functional) without

JavaScript. No modifications were made to the applica-

tion.

PhpBB v2 is an open-source forum software. It allows

registered users to perform many actions such as cre-

ate new threads, comment on threads, and message other

users. Version 2 is notorious for the amount of security

vulnerabilities it contains [6], and we included it for this

reason. We modified it to remove the “recently online”

section on pages, because this section is based on time.

PhpBB v3 is the latest version of the popular open-

source forum software. It is a complete rewrite from

Version 2, but retains much of the same functionality.

Similar to PhpBB v2, we removed the “recently online”

section, because it is time-based.

SCARF, the Stanford Conference And Research Fo-

rum, is an open-source conference management sys-

tem. The administrator can upload papers, and regis-

tered users can comment on the uploaded papers. We

included this application because it was used by previ-

ous research [5,11,30,31]. No modifications were made

to this application.

Vanilla Forums is an open-source forum software sim-

ilar in functionality to PhpBB. Registered users can cre-

ate new threads, comment on threads, bookmark in-

teresting threads, and send a message to another user.

Vanilla Forums is unique in our test set in that it uses

the path to pass parameters in a URL, whereas all other

applications pass parameters using the query part of

the URL. For instance, a specific user’s profile is GET

/profile/scanner1, while a discussion thread is lo-

cated at GET /discussion/1/how-to-scan. Vanilla

Forums also makes extensive use of AJAX, and does not

gracefully degrade without JavaScript. For instance, with

JavaScript disabled, posting a comment returns a JSON

object that contains the success or failure of the com-

ment posting, instead of an HTML response. We modi-

fied Vanilla Forums by setting an XSRF token that it used

to a constant value.

WackoPicko v2 is an open-source intentionally vulnera-

ble web application which was originally created to eval-

uate many black-box web vulnerability scanners [16]. A

registered user can upload pictures, comment on other

user’s pictures, and purchase another user’s picture. Ver-

sion 2 contains minor tweaks from the original paper, but

no additional functionality.

WordPress v2 is an open-source blogging platform. An

administrator can create blog posts, where guests can

leave comments. No changes were made to this appli-

cation.

WordPress v3 is an up-to-date version of the open-

source blogging platform. Just like the previous version,

administrators can create blog posts, while a guest can

comment on blog posts. No changes were made to this

application.

B Scanner Configuration

The following describes the exact settings that were used

to run each of the evaluated scanners.

• wget is run in the following way:

wget -rp -w 0 --waitretry=0 -nd

--delete-after --execute robots=off

• w3af settings:

misc-settings

set maxThreads 0

back

plugins

discovery webSpider

audit blindSqli, eval,

localFileInclude, osCommanding,

remoteFileInclude, sqli, xss

• skipfish is run in the following way:

skipfish -u -LV -W /dev/null -m 10

USENIX Association 	 21st USENIX Security Symposium  539

Aurasium: Practical Policy Enforcement for Android Applications

Rubin Xu
Computer Laboratory

University of Cambridge
Cambridge, UK

Rubin.Xu@cl.cam.ac.uk

Hassen Saı̈di
Computer Science Laboratory

SRI International
Menlo Park, USA

hassen.saidi@sri.com

Ross Anderson
Computer Laboratory

University of Cambridge
Cambridge, UK

Ross.Anderson@cl.cam.ac.uk

Abstract
The increasing popularity of Google’s mobile platform
Android makes it the prime target of the latest surge in
mobile malware. Most research on enhancing the plat-
form’s security and privacy controls requires extensive
modification to the operating system, which has signif-
icant usability issues and hinders efforts for widespread
adoption. We develop a novel solution called Aurasium
that bypasses the need to modify the Android OS while
providing much of the security and privacy that users de-
sire. We automatically repackage arbitrary applications
to attach user-level sandboxing and policy enforcement
code, which closely watches the application’s behavior
for security and privacy violations such as attempts to re-
trieve a user’s sensitive information, send SMS covertly
to premium numbers, or access malicious IP addresses.
Aurasium can also detect and prevent cases of privilege
escalation attacks. Experiments show that we can apply
this solution to a large sample of benign and malicious
applications with a near 100 percent success rate, with-
out significant performance and space overhead. Aura-
sium has been tested on three versions of the Android
OS, and is freely available.

1 Introduction

Google’s Android OS is undoubtedly the fastest grow-
ing mobile operating system in the world. In July 2011,
Nielsen placed the market share of Android in the U.S.
at 38 percent of all active U.S. smartphones [9]. Weeks
later, for the period ending in August, Nielsen found that
Android has risen to 43 percent. More important, among
those who bought their phones in June, July, or August,
Google had a formidable 56 percent market share. This
unprecedented growth in popularity, together with the
openness of its application ecosystem, has attracted ma-
licious entities to aggressively target Android. Attacks
on Android by malware writers have jumped by 76 per-
cent over the past three months according to a report by

MacAfee [29], making it the most assaulted mobile op-
erating system during that period. While much of the
initial wave of Android malware consisted of trojans that
masquerade as legitimate applications and leak a user’s
personal information or send SMS messages to premium
numbers, recent malware samples indicate an escalation
in the capability and stealth of Android malware. In par-
ticular, attempts are made to gain root access on the de-
vice through escalation of privilege [37] to establish a
stealthy permanent presence on the device or to bypass
Android permission checks.

Fighting malware and securing Android-powered de-
vices has focused on three major directions. The first
one consists of statically [20] and dynamically [12, 36]
analyzing application code to detect malicious activities
before the application is loaded onto the user’s device.
The second consists of modifying the Android OS to in-
sert monitoring modules at key interfaces to allow the
interception of malicious activity as it occurs on the de-
vice [19, 27, 17, 33, 13]. The third approach consists of
using virtualization to implement rigorous separation of
domains ranging from lightweight isolation of applica-
tions on the device [35] to running multiple instances of
Android on the same device through the use of a hyper-
visor [26, 30, 11].

Two fundamental and intertwined problems plague
these approaches. The first is that the definition of ma-
licious behavior in an Android application is hard to as-
certain. Access to privacy- and security-relevant parts
of Android’s API is controlled by an install-time appli-
cation permission system. Android users are informed
about what data and resources an application will have
access to, and user consent is required before the appli-
cation can be installed. These explicit permissions are
declared in the application package. Install-time permis-
sions provide users with control over their privacy, but
are often coarse-grained. A permission granted at install
time is granted as long as the application is installed on
the device. While an application might legitimately re-

540  21st USENIX Security Symposium	 USENIX Association

quest access to the Internet, it is not clear what connec-
tions it may establish with remote servers that may be
malicious. Similarly, an application might legitimately
require sending SMS messages. Once the SMS permis-
sion is granted, there are no checks to prevent the appli-
cation from sending SMS messages to premium numbers
without user consent. In fact, the mere request for SMS
permission by an application can be deemed malicious
according to a recent Android applications analysis [24],
where it is suggested that 82 percent of malicious ap-
plications require permissions to access SMS. A recent
survey [18] exposes many of the problems [22, 14] as-
sociated with application components interactions, dele-
gation of permission, and permission escalation attacks
due to poor or missing security policy specifications by
developers. This prompted early work [21] on security
policy extension for Android.

The second problem is that any approach so far that
attempts to enhance the platform’s security and privacy
controls based on policy extensions requires extensive
modification to the operating system. This has significant
usability issues and hinders any efforts for widespread
adoption. There exists numerous tablet and phone mod-
els with different hardware configurations, each running
a different Android OS version with its own customiza-
tions and device drivers. This phenomenon, also known
as the infamous Android version fragmentation problem
[16] demonstrates that it is difficult to provide a custom-
built Android for all possible devices in the wild. And
it is even more difficult to ask a normal user to apply
the source patch of some security framework and com-
pile the Android source tree for that user’s own device.
These issues will prevent many OS-based Android secu-
rity projects from being widely adopted by the normal
users. Alternatively, it is equally difficult to bring to-
gether Google, the phone manufacturers, and the cellular
providers to introduce security extensions at the level of
the consumer market, due to misaligned incentives from
different parties.

Our Approach We aim at addressing these challenges
by providing a novel, simple, effective, robust, and de-
ployable technology called Aurasium. Conceptually, we
want Aurasium to be an application-hardening service: a
user obtains arbitrary Android applications from poten-
tially untrusted places, but instead of installing the ap-
plication as is, pushes the application through the Aura-
sium black box and gets a hardened version. The user
then installs this hardened version on the phone, assured
by Aurasium that all of the application’s interactions are
closely monitored for malicious activities, and policies
protecting the user’s privacy and security are actively en-
forced.

Aurasium does not need to modify the Android OS

at all; instead, it enforces flexible security and privacy
polices to arbitrary applications by repackaging to at-
tach sandboxing code to the application itself, which per-
forms monitoring and policy enforcement. The repack-
aged application package (APK) can be installed on a
user’s phone and will enforce at runtime any defined
policy without altering the original APK’s functionali-
ties. Aurasium exploits Android’s unique application ar-
chitecture of mixed Java and native code execution to
achieve robust sandboxing. In particular, Aurasium in-
troduces libc interposition code to the target application,
wrapping around the Dalvik virtual machine (VM) under
which the application’s Java code runs. The target appli-
cation is also modified such that the interposition hooks
get placed each time the application starts.

Aurasium is able to interpose almost all types of in-
teractions between the application and the OS, enabling
much more fine-grained policy enforcement than An-
droid’s built-in permission system. For instance, when-
ever an application attempts to access a remote site on the
Internet, the IP of the remote server is checked against
an IP blacklist. Whenever an application attempts to
send an SMS message, Aurasium checks whether the
number is a premium number. Whenever an applica-
tion tries to access private information such as the In-
ternational Mobile Equipment Identity (IMEI), the Inter-
national Mobile Subscriber Identity (IMSI), stored SMS
messages, contact information, or services such as cam-
era, voice recorder, or location, a policy check is per-
formed to allow or disallow the access. Aurasium also
monitors I/O operations such as write and read. We eval-
uated Aurasium against a large number of real-world An-
droid applications and achieved over 99 percent success
rate. Repackaging an arbitrary application using Aura-
sium is fast, requiring an average of 10 seconds.

Our main contributions are that

• We have built an automated system to repackage
arbitrary APKs where arbitrary policies protecting
privacy and ensuring security can be enforced.

• We have developed a set of policies that take advan-
tage of advances in malware intelligence such as IP
blacklisting.

• We provide a way of protecting users from mali-
cious applications without making any changes to
the underlying Android architecture. This makes
Aurasium a technology that can be widely de-
ployed.

• Aurasium is a robust technology that was tested on
three versions of Android. It has low memory and
runtime overhead and, unlike other approaches, is
more portable across the different OS versions.

2

USENIX Association 	 21st USENIX Security Symposium  541

The paper is organized as follows: Section 2 provides
the some background information on the architecture of
Android and then goes through details about the archi-
tecture, enforceable policies and deployment methods of
Aurasium. In Section 3 we evaluate Aurasium with re-
spect to its robustness in repackaging applications, as
well as the overhead introduced by the repackaging pro-
cess. Section 4 describes threat models against Aurasium
and mitigation techniques. Related work and conclusions
are discussed in Section 5 and Section 6, respectively.

2 Aurasium

2.1 Android
Android, the open source mobile operating system de-
veloped by the Open Handset Alliance led by Google,
is gaining increasing popularity and market share among
smartphones. Built on top of a Linux 2.6 kernel, Android
introduces a unique application architecture designed to
ensure performance, security, and application portabil-
ity. Rigorous compartmentalization of installed applica-
tions is enforced through traditional Linux permissions.
Additional permission labels are assigned to applications
during install time to control the application’s access to
security and privacy-sensitive functionalities of the OS,
forming a mandatory access-control scheme.

Android employs an inter-process communication
(IPC) mechanism called Binder [6] extensively for inter-
actions between applications as well as for application-
OS interfaces. Binder is established by a kernel driver
and exposed as a special device node on which individ-
ual applications operate. Logically, the IPC works on the
principle of thread migration. A thread invoking an IPC
call with Binder appears as if it migrates into the target
process and executes the code there, hopping back when
the result is available. All the hard work such as taking
care of argument marshalling, tracking object references
across processes, and recursions of IPC calls is handled
by Binder itself.

Android applications are mainly implemented in Java,
with the compiled class files further converted into
Dalvik bytecode, running on the proprietary register-
based Dalvik VM. It is similar to the JVM, but designed
for a resource-constrained environment with a higher
code density and smaller footprint. Applications are
tightly coupled with a large and function-rich Android
framework library (c.f. J2SE). Also, applications are
free to include compiled native code as standalone Linux
shared object (.so) files. The interaction between an ap-
plication’s Java and native code is well defined by the
Java Native Interface (JNI) specification and supported
by Android’s Native Development Kit (NDK). In reality,
the complexity of using native code means that only a

small number of applications employ native code for the
most performance-critical tasks.

2.2 System Design

Aurasium is made up of two major components: the
repackaging mechanism that inserts instrumentation
code into arbitrary Android applications and the moni-
toring code that intercepts an application’s interactions
with the system and enforces various security policies.
The repackaging process makes use of existing open
source tools augmented with our own glue logic to re-
engineer Android applications. The monitoring code em-
ploys user-level sandboxing and interposition to intercept
the application’s interaction with the OS. Aurasium is
also able to reconstruct the high-level IPC communica-
tion from the low-level system call data, which allows it
to monitor virtually all of Android’s APIs.

2.2.1 Application-OS Interaction

Under the hood, some of Android’s OS APIs are han-
dled by the kernel directly, while others are implemented
at user-mode system services and are callable via inter-
process communication methods. However, in almost all
scenarios the application does not need to distinguish be-
tween the two, as these APIs have already been fully en-
capsulated in the framework library and the applications
just need to interact with the framework through well-
documented interfaces. Figure 1 shows in detail the lay-
ers of the framework library in individual applications’
address space.

Application Code

Framework Code - Java

Framework Code - Native (C++)

Java Native Interface

libandroid runtime.solibdvm.so libbinder.so

libc.solibm.so libstdc++.so
Kernel Boundary

Process Boundary

Linux Kernel

Aurasium

Figure 1: Android Application and Framework Structure

The top level of the framework is written in Java and is
the well-documented part of the framework with which
applications interact. This hides away the cumbersome

3

542  21st USENIX Security Symposium	 USENIX Association

details from the application’s point of view, but in order
to realize the required operations it will hand over the re-
quest to the low-level part of the framework implemented
in native code. The native layer of the framework con-
sists of a few shared objects that do the real work, such as
communicating with the Dalvik VM or establishing the
mechanism for IPC communication. If we dive lower,
we find that these shared objects are in fact also relying
on shared libraries at even lower levels. There, we find
Android’s standard C libraries called Bionic libc. The
Bionic libc will initiate appropriate system calls into the
kernel that completes the required operation.

For example, if the application wants to download a
file from the Internet, it has multiple ways to do so, rang-
ing from fully managed HttpURLConnection class to
low-level Socket access. No matter what framework
APIs the application decides to use, they will all land
on the connect() method in the OSNetworkSystem

Java class in order to create the underlying TCP socket.
This connect() method in turn transfers control to
libnativehelper.so, one of the shared objects in the
native layer of the framework, which again delegates
the request to the connect() method in libc.so. The
socket is finally created by libc issuing a system call into
the Linux kernel.

No matter how complex the upper layer framework li-
brary may be, it will always have to go through appropri-
ate functions in the Bionic libc library in order to interact
with the OS itself. This gives a reliable choke point at
which the application’s interactions with the OS can be
examined and modified. The next section explains how
function calls from the framework into libc can be inter-
posed neatly.

2.2.2 Efficient Interposition

Similar to the traditional Linux model, shared objects
in Android are relocatable ELF files that are mapped
into the process’s address space when loaded. To save
memory and avoid code duplication, all shared objects
shipped with Android are dynamically linked against the
Bionic libc library. Because a shared object like libc can
be loaded into arbitrary memory address, dynamic link-
ing is used to resolve the address of unknown symbols at
load time. For an ELF file that is dynamically linked
to some shared object, its call sites to the shared ob-
ject functions are actually jump instructions to some stub
function in the ELF’s procedure linkage table (PLT). This
stub function then performs a memory load on some en-
try in the ELF’s global offset table (GOT) in order to re-
trieve the real target address of this function call to which
it then branches. In other words, the ELF’s global offset
table contains an array of function pointers of all dynam-
ically linked external functions referenced by its code.

During dynamic linking this table is filled with appropri-
ate function pointers; this is controlled by the metadata
stored in the ELF file, such as which GOT entry maps to
which function in which shared object.

This level of indirection introduced by dynamic link-
ing can be exploited to implement the required interpo-
sition mechanism neatly: it is sufficient to go through
every loaded ELF file and overwrite its GOT entries with
pointers to our monitoring functions. This is equivalent
to doing the dynamic linking again but substituting func-
tion pointers of interposition routines1.

Because Java code is incapable of directly modifying
process memory, we implemented our interposition rou-
tines in C++ and compiled them to native code. All the
detour functions are also implemented in C++ and they
will preprocess the relevant function call arguments be-
fore feeding them to Aurasium’s policy logic. We try to
minimize the amount of native code because it is gener-
ally difficult to write and test. As a result most of the
policy logic is implemented in Java, which also means it
can take advantage of many helper functions in the stan-
dard Android framework. However, in the preprocessing
step of the IPC calls we make an effort to reconstruct
the inter-process communication parameters as well as
high-level Java objects out of marshalled byte streams
in our native code. It turns out that despite the system
changes between Android 2.2, 2.3 and 3.x, the IPC pro-
tocol remains largely unaffected2 and hence our interpo-
sition code is able to run on all major Android versions
reliably.

With all these facilities in place, Aurasium is capa-
ble of intercepting virtually all framework APIs and en-
forcing many classes of security and privacy policies on
them. It remains to be discussed what policies we cur-
rently implement (Section 2.3) and how reliable Aura-
sium’s sandboxing mechanism is (Section 4). But before
that, let us explain how we repackage an Android appli-
cation such that Aurasium’s sandboxing code is inserted.

2.2.3 APK Repackaging

Android applications are distributed as a single file called
an Android Application Package (APK) (Figure 2). An
APK file is merely a Java JAR archive containing the
compiled manifest file AndroidManifest.xml, the ap-
plication’s code in the form of dex bytecode, compiled
XML resources such as window layout and string con-
stant tables, and other resources like images, sound and
native libraries. It also includes its own signature in a
form identical to the standard Java JAR file signatures.

1We did not consider other advanced dynamic linking techniques
such as lazy linking here because they are not adopted in the current
Android OS. They can be dealt with similarly.

2An exception is the introduction of Strict Mode from version

4

USENIX Association 	 21st USENIX Security Symposium  543

Android Package (.apk)

classes.dex resources.arsc

uncompiled resources

AndroidManifest.xml

Aurasium
Native

Library

Aurasium
Component
Declaration

Decompiled
smali files

Aurasium
Java Code

Figure 2: Android Application Package

Because the Aurasium code contains both a native li-
brary for low-level interposition and high-level Java code
that executes the policy logic, we need a way of in-
serting both into the target APK. Adding a native li-
brary is trivial as native libraries are standalone Linux
shared object (.so) files and are stored as is. Adding
Java code is slightly tricky because Android requires all
the application’s compiled bytecode to reside in a sin-
gle file called classes.dex. To insert Aurasium’s Java
code into an existing application, we have to take the
original classes.dex, disassemble it back to a col-
lection of individual classes, add Aurasium’s classes,
and then re-assemble everything back to create the new
classes.dex.

There exist open source projects that can perform such
task. For example, smali [7], an assembler/disassembler
for dex files, and android-apktool [1], which is an
integrated solution that can process not only code but
also compiled resources in APK files.3 In Aurasium we
adopt apktool in our repackaging process. In the de-
code phase, apktool takes in an APK file, disassembles
its dex file, and produces a directory such that each byte-
code file maps to a single Java class, and its path corre-
sponds to the package hierarchy, together with all other
resources in the original APK file. Aurasium’s Java code
is then merged into the directory and apktool is en-
gaged again to assemble the bytecode back into a new
classes.dex file. Together with other resources, a new
APK file is finally produced.

In reality, before producing the final APK file there is
one more thing to do: merely merging Aurasium code
into the target application does not automatically imply
that it will run. We need to make sure that Aurasium
code is invoked somehow, preferably before any of the
original application code, so that the application does not
execute any of its code before Aurasium’s sandboxing is
established. One option would be to modify the applica-
tion’s entry point so that it points to Aurasium. This turns

2.3 Gingerbread.
3apktool is actually built on top of a fork of smali.

out to be not as easy as one might expect. Android appli-
cations often possess many possible entry points, in the
sense that every public application component including
activity, service, broadcast receiver, and content provider
can be invoked directly and hence they all act as entry
points.

In Aurasium we take a different approach: The
Android SDK allows an application to specify an
Application class in its manifest file which will
be instantiated by the runtime whenever the applica-
tion is about to start. By declaring Aurasium as this
Application class, Aurasium runs automatically be-
fore any other parts of the application. There is a small
caveat that the original application may have already de-
fined such Application class. In this case, we trace
the inheritance of this class until we find the root base
class. This class will have to be inherited directly from
Application, and we modify its definition (which is
in the decompiled bytecode form) such that it inherits
from Aurasium’s Application class instead. This al-
lows Aurasium to be instantiated as before, and being
the root class ensures that Aurasium gets run before the
application’s Application class is instantiated.

Figure 2 illustrates the composition of an APK and the
various Aurasium modules added at repackaging time.

2.2.4 Application Signing

The last thing to worry about is that when an application
is modified and repackaged, its signature is inevitably
destroyed and there is no way to re-sign the applica-
tion under its original public key. We believe this is a
problem, but manageable. Every Android application
is indeed required to have a valid signature, but signa-
tures in Android work more like a proof of authorship,
in the sense that applications signed by the same certifi-
cate are believed to come from the same author, hence
they are trusted by each other and enjoy certain flexibil-
ities within Android’s security architecture, e.g., signa-
ture permission. Application updates are also required
to be signed with the same certificate as the original ap-
plication. Other than that, signatures impose few other
restrictions, and developers often use self-signed certifi-
cates for their applications.

This observation means that Aurasium can just re-
sign the repackaged application using a new self-signed
certificate. To preserve the authorship relation, Aura-
sium performs the re-signing step using a parallel set
of randomly generated Aurasium certificates, maintain-
ing a one-to-one mapping between this set to arbitrary
developer certificates. In other words, whenever Aura-
sium is about to re-sign an application, it first verifies
the validity of the old signature. If it passes, then Aura-
sium will proceed to sign the application with its own

5

544  21st USENIX Security Symposium	 USENIX Association

certificate that corresponds to the application’s original
certificate, or a newly generated one if this application
has not been encountered earlier. In this way, the equiv-
alence classes of authorship among applications are still
maintained by Aurasium’s re-signing procedure. Prob-
lems can still arise if Aurasium re-signs only a partial set
of applications in the cases of application updates or ap-
plications intending to cooperate with their siblings. We
consider these cases non-severe, with one reason being
that Aurasium is more likely to be applied to a standalone
application from a non-trusted source where application
updates and application cooperation are not common.

Because all private keys of the generated certificates
need to be stored4 for future queries, the re-signing pro-
cess contains highly confidential information and, hence,
requires careful protection. It should be (physically) sep-
arated from Aurasium’s other services and perceived as
an oracle with minimal interfaces to allow re-signing an
already-signed application. For higher assurance, hard-
ware security modules could be used.

2.2.5 Aurasium’s Security Manager

Aurasium-wrapped applications are self-contained in the
sense that the policy logic and the relevant user inter-
face are included in the repackaged application bundle,
and so are remembered user decisions stored locally in
the application’s data directory. Alternatively, Aurasium
Security Manager (ASM) can also be installed, enabling
central handling of policy decisions of all repackaged
application on the device. Depending on the enforced
polices at repackaging time, an application queries the
ASM for a policy decision via IPC mechanisms with in-
tents describing the sensitive operation it is about to per-
form, and the ASM either prompts the user for consent,
uses a remembered user decision recorded earlier, or au-
tomatically makes a decision without user interaction by
enforcing a predefined policy embedded at repackaging
time. The policy logic in individual applications prefers
delegating policy decisions to the ASM, and will fall
back to local decisions only if a genuine ASM instance
is not detected on the device.

Using ASM for central policy decision management
has one major advantage: policy logic can be controlled
globally, and it can also be improved by updating the
ASM instance on the device. For example, IP address
blacklisting and whitelisting can be managed and kept
up to date by ASM. Repackaged applications are able
to take advantage of better policy logics once ASM is
updated, even after they have been repackaged and de-
ployed to users’ devices. There is a tradeoff between the
flexibility of ASM and the efficiency of repackaged ap-

4Alternatively, these new certificates can be generated from the
original certificate under a master key.

plication, though. In extreme cases, a repackaged appli-
cation can proxy every IPC call to ASM, but this would
be vastly inefficient. In our implementation ASM is con-
sulted only with high-level summaries of potential sensi-
tive operations, the set of which is fixed at repackaging
time.

2.3 Policies
Now that we have demonstrated the ability to repackage
arbitrary applications with Aurasium to insert monitor-
ing code, we discuss various security policies that lever-
age this technique. It is important to point out that these
are just some examples that we implemented as a proof
of concept so far. Aurasium itself provides a flexible
framework under which many more potent policies are
possible.

We are interested primarily in enforcing some security
policy that protects the device from untrusted applica-
tions. This includes not only attempts by the application
to access sensitive information, leaking to the outside
world or modifying it, but also attempts by the applica-
tion to escalate privilege and to gain root access on the
device by running suspicious system calls and loading
native libraries. Aurasium’s architecture and design al-
low us to implement many of the already-proposed poli-
cies such as dynamically constraining permissions [33],
or setting up default dummy IMEI and IMSI numbers as
well as phone numbers, as in [27].

The following subsections describe a set of policies
that are easily checkable by Aurasium. The enforcement
of these policies is supported by Aurasium intercepting
the following functions:

• ioctl()

This is the main API through which all IPCs are
sent. By interposing this and reconstructing the
high-level IPC communication, Aurasium is able to
monitor most Android system APIs and enforce the
privacy and SMS policies, and modifying the IPC
arguments and results on the fly. In certain cases
such as content providers, Aurasium replaces the re-
turned Cursor object with a wrapper class to allow
finer control over the returned data.

• getaddrinfo() and connect()

These functions are responsible for DNS resolving
and socket connection. Intercepting them allows
Aurasium to control the application’s Internet ac-
cess.

• dlopen(), fork() and execvp()

The loading of native code from Java and execution
of external programs are provided by these func-
tions, which Aurasium monitors.

6

USENIX Association 	 21st USENIX Security Symposium  545

• read(), write()

These functions reflect access to the file system. In-
tercepting them allows Aurasium to control private
and shared files accesses.

• open() and reflection APIs in libdvm.so5

These functions are intercepted to prevent malicious
applications from circumventing Aurasium’s sand-
boxing. Because Aurasium may stores policy de-
cisions in the application’s local directory, it must
prevent the application from tampering with the de-
cision file. open() is hooked such that whenever it
is invoked on the decision file it will check the JNI
call stack and allow only Aurasium code to success-
fully open the file. The various reflection APIs are
also guarded to prevent malicious applications from
modifying Aurasium’s Java-based policy logic by
reflection.

2.3.1 Privacy Policy

The most obvious set of policies that can be defined re-
lates to users’ privacy. These policies protect the pri-
vate data of the user such as the IMEI, IMSI, phone
number, location, stored SMS messages, phone conver-
sations, and contact list. These policies can be checked
by monitoring access to the system services provided by
the Framework APIs. While many APIs are available
to access system services, they all translate to a single
call to the ioctl() system call. By monitoring calls to
ioctl(), and parsing the data that is transmitted in the
call, we are able to determine which service is being ac-
cessed and alert the user.

Figure 3: Enforcement of Privacy Policies: Access to
Phone Number

Figure 3 illustrates how Aurasium intercepts a request
made by an application to access the user’s phone num-
ber. Aurasium displays a warning message and prompts

5Dalvik java lang reflect Method invokeNative(),
Dalvik java lang reflect Field setField() and
Dalvik java lang reflect Field setPrimitiveField()

the user to either accept the requested access or deny
it. The user can also make Aurasium store that user’s
answer to the request so that the same request never
prompts the user for approval again and the cached an-
swer is used instead. Finally, the user has the option to
terminate the application.

Aurasium is capable of intercepting requests for the
IMEI (Figure 4) and IMSI identifiers. Both the IMEI and
IMSI numbers are often abused by applications to track
users and devices for analytics and advertisement pur-
poses, but are also used by malware to identify victims.

Similar policies are also implemented for accessing
device location and contact list. In all of the above cases,
if the user denies an request for the private information,
Aurasium will provide shadow data to the application in-
stead, similar to the approach in [27];

Figure 4: Enforcement of Privacy Policies: Access to
IMEI from repackaged Android Market Security Tool
malware.

2.3.2 Preventing SMS Abuse

Figure 5 illustrates how Aurasium intercepts SMS mes-
sages sent to a premium number, which is initiated by the
malicious application AndroidOS.FakePlayer [2] found
in the wild. Aurasium displays the destination number as
well as the SMS’s content, so users can make informed
decision on whether to allow the operation or not. In
this case, the malware is most likely to attempt to sub-
scribe to some premium service covertly. We also ob-
served malware NickySpy [3] leaking device IMEI via
SMS in another test run. We believe automatic classifi-
cation on SMS number and content is possible to further
reduce user intervention.

2.3.3 Network Policy

Similarly to the privacy policies, we enforce a set of net-
work policies that regulate how an application is allowed
to interact with the network. Since the Android permis-
sion scheme allows unrestricted access to the Internet
when an application is installed, we enforce finer-grained

7

546  21st USENIX Security Symposium	 USENIX Association

Figure 5: Enforcement of SMS Sending

policies that are expressed as a combination of the fol-
lowing:

• restrict the application to only a particular web do-
main or set of IP addresses

• restrict the application from connecting to a remote
IP address known to be malicious

Figure 6: Enforcement of Network Policies: Access to
an IP address with an unverified level of maliciousness

We use an IP blacklisting provided by the Bothunter
network monitoring tool [4] to harvest information about
malicious IP addresses. For each connection, the service
retrieves information about the remote location, and the
warning presented to the user indicates the level of ma-
liciousness of the remote location (Figure 6). We also
display the geo-location of the remote IP. It would be
possible to include more threat intelligence from various
diverse sources.

2.3.4 Privilege Escalation Policy

In addition to the privacy policy and the network policy,
we implement a policy that warns the user when a suspi-
cious execvp is invoked. Aurasium intervenes whenever
the application tries to execute external ELF binaries.

Knowing the attack signatures based on suspicious ex-
ecutables can prevent certain types of escalation of priv-
ilege attacks. Figure 7 illustrates an interception of the
su command. The Aurasium warning indicates that the
application is trying to gain root access on a potentially
rooted phone by executing the su command.

In another scenario, Aurasium warns the user when the
application is about to load a native library. Malicious
native code can interfere with Aurasium and potentially
break out of its sandbox, which we discuss further in sec-
tion 4.

Figure 7: Enforcement of Privilege Escalation Policy

2.3.5 Automatic Embedding of policies

Our implementation allows us to naturally compare the
behavior of an application against a policy expressed not
as a single event such as a single access to private data, to
a system service or a single invocation of a system call,
but as a sequence of such events. We plan on automat-
ically embedding into an application code an arbitrary
user-defined policy expressible in an automaton.

2.4 Deployment Models
Driven by the need for deployable mobile security solu-
tions for Android and other platforms, we support mul-
tiple deployment models for Aurasium. The unrestricted
and open nature of the Android Market allows us to
provide Aurasium hardened and repackaged applications
to users directly. Here, we discuss several deployment
models for Aurasium that users can directly use without
modifying the Android OS on their phones.

2.4.1 Web Interface

We have a web interface6 that allows users to upload ar-
bitrary applications and download the Aurasium repack-
aged and hardened version. Aurasium can be employed
to repackage any APKs that the user possesses.

6www.aurasium.com

8

USENIX Association 	 21st USENIX Security Symposium  547

2.4.2 Cooperation with Application Markets

We are exploring collaborations with Android markets
run by mobile service providers to deploy Aurasium.
Subscribers to the mobile service who get their applica-
tions from the official Android market supported by the
mobile provider will have all their applications packaged
with Aurasium for protection.

2.4.3 Deployment in the Cloud

Another deployment model consists of writing a custom
download application that runs on a user’s phone so that
whenever a user browses an Android market and wishes
to download an application, the application is pulled and
sent to the Aurasium cloud service where the application
is repackaged and then downloaded to the user’s phone.
This may be more accessible as users no longer need to
interact with Aurasium’s web interface manually.

2.4.4 Phone Deployment

Similarly to the cloud service, we plan on porting the
repackaging tool to the Android phone itself. That is, we
will be able to repackage an application on the device
itself.

2.4.5 Corporate Environment

Many corporations have security concerns about mobile
devices in their infrastructure and Aurasium can help to
establish the desired security and privacy polices on ap-
plications to be installed on these devices. These An-
droid devices should be configured to allow installing
only Aurasium-protected applications (by means of APK
signatures for example), while the applications can be
provided by some methods described above, such as an
internal repackaging service or a transparent repackaging
proxy between the application market and the device.

3 Evaluation

We have evaluated Aurasium on a collection of Android
applications to ensure that the application repackaging
succeeds and that our added code does not impede the
original functionality of the application. We have con-
ducted a broad evaluation that includes a large number of
benign applications as well as malware collection. Our
evaluation was conducted on a Samsung Nexus S phone
running Android 2.3.6 “Gingerbread”.

3.1 Setting Up An Evaluation Framework
Aurasium consists of scripts that implement the repack-
aging process described in Figure 2. It transforms each

APK file in the corpus to the corresponding hardened
repackaged application. We scripted to load the applica-
tion onto the Nexus S phone, start the application auto-
matically, and capture the logs generated by Aurasium.
Android Monkey [8] is used to randomly exercise the
user interface (UI) of the application.
Monkey is a program running on Android that feeds

the application with pseudo-random streams of user
events such as clicks and touches, as well as a number
of system-level events. We use Monkey to stress-test the
repackaged applications in a random yet repeatable man-
ner. The captured logs allow us to determine whether the
application has started and is being executed normally or
whether it crashes due to our repackaging process. As a
random fuzzer, Monkey is fundamentally unable to ex-
ercise all execution paths of an application. But in our
setup, running random testing over a large number of in-
dependent applications proves useful, covering most of
Aurasium’s policy logic and revealing several bugs.

3.2 Repackaging Evaluation
We first performed an evaluation to determine how many
APK files can successfully be repackaged by Aurasium.
Table 1 shows a breakdown of the Android APK files cor-
pus on which we ran our evaluation. We applied Aura-
sium to 3491 applications crawled from a third-party
application store7 and 1260 known malicious applica-
tions [39]. Table 1 shows the success rate of repackaging
for each category of applications.

Type of App #of Apps Repackaging Success
Rate

App store corpus 3491 99.6%(3476)
Malware corpus 1260 99.8%(1258)

Table 1: Repackaging Evaluation Results

We have a near 100% success rate in repackaging ar-
bitrary applications. Our failures to repackage an appli-
cation are due to bugs in apktool in disassembling and
reassembling the hardened APK file. We are working on
improving apktool to achieve a 100% success rate.

3.3 Runtime Robustness
As we pointed out earlier, Aurasium is able to run on
all major Android versions (2.2, 2.3, 3.x) without any
problem. We performed the robustness evaluation on a
Samsung Nexus S phone running Android 2.3.6 (which
is among the most widely used Android distributions

7http://lisvid.com

9

548  21st USENIX Security Symposium	 USENIX Association

2.3.3− 2.3.7 [10]). For each hardened application we
use Monkey to exercise the application’s functionalities
by injecting 500 random UI events. These hardened ap-
plications are built with a debug version of Aurasium
that will output a log message when Aurasium success-
fully intercepts an API invocation. Out of 3476 suc-
cessfully repackaged application, we performed tests on
3189 standalone runnable applications8 on the device.
We were able to start all of the applications in the sense
that Aurasium successfully reported the interception of
the first API invocation for all of them.

3.4 Performance Evaluation

We take two Android benchmark applications from the
official market and apply Aurasium to them in order to
check if Aurasium introduces significant performance
overhead to a real-world application. In both cases, the
benchmark scores turn out to be largely unaffected by
Aurasium (Table 2).

Benchmark App without with
Aurasium Aurasium

AnTuTu Benchmark 2900 Pts 2892 Pts
BenchmarkPi 1280 ms 1293 ms

Table 2: Performance on Benchmark Applications

Aurasium introduces the most overhead when the ap-
plication performs API invocations, which is not the
most important test factor of these benchmarks. So we
synthesized an artificial application that performs a large
number of API invocations, in order to find Aurasium’s
performance overhead in the worst cases. Because these
APIs all involve IPC with remote system services, they
are expected to induce the most overhead as Aurasium
needs to fully parse the Binder communication. Results
in Table 3 show that Aurasium introduces an overhead
of 14% to 35% in three cases, which we believe is ac-
ceptable as IPC-based APIs are not frequently used by
normal applications to become the performance bottle-
neck. In objective testing we did not feel any lagging
when playing with an Aurasium-hardened application.

3.5 Size Overhead

We evaluated application size after being repackaged
with Aurasium code, as shown in Figure 8. On aver-
age, Aurasium increases the application size by only 52

8The rest are applications that do not have a main launchable Activ-
ity, and applications that fail to install due to clashes with pre-installed
version.

200 API Without With Overhead
Invocations Aurasium Aurasium
Get Device Info 106 ms 143 ms 35%
Get Last Location 41 ms 55 ms 34%
Query Contact List 1270 ms 1340 ms 14%

Table 3: Performance on Synthesized Application

Kb, which is a very small overhead for the majority of
applications.

Size Increase After Repackaging / Kb

N
o.

 o
f A

pp
s

20 40 60 80 100 120 140

0
20

40
60

80

Mean: 52.2

Figure 8: Application Size Increase After Repackaging.

3.6 Policies Enforcement
We observe the various behaviors intercepted from the
3031 runnable applications that were previously repack-
aged and run on the Nexus S device under Monkey. Table
4 shows a breakdown of the application corpus into per-
mission requested in the manifest file of the applications.
It also shows which applications actually make use of the
permission to access the requested service.

Permission Requested Accessed
Internet Permission 2686 1305
GPS Permission 846 132
Phone State Permission 1243 378

Table 4: Permission Requested and Permissions Used

Due to the random fuzzing nature of our evaluation,

10

USENIX Association 	 21st USENIX Security Symposium  549

the accessed permission is most likely to be an underes-
timate. We also observed that 226 applications included
native code libraries in their application bundle.

4 Attack Surfaces

Because fundamentally Aurasium code runs in the same
process context as the application’s code, there is no
strong barrier between the application and Aurasium.
Hence, it is non-trivial to argue that Aurasium can re-
liably sandbox arbitrary Android applications. We de-
scribe possible ways that a malicious application can
break out of Aurasium’s policy enforcement mechanism
and discuss possible mitigation against them.

4.1 Native Code
Aurasium relies on being able to intercept calls to Bionic
libc functions by means of rewriting function pointers
in a module’s global offset table. This is robust against
arbitrary Java code, but a malicious application can em-
ploy native code to bypass Aurasium completely either
by restoring the global offset table entries, by making
relevant system calls using its own libc implementation
rather than going through the monitored libc, or by tam-
pering with the code or private data of Aurasium. How-
ever, because Android runtime requires applications to
bootstrap as Java classes, the first load of native code
in even malicious applications has to go through a well-
defined and fixed pathway as defined by JNI. This gives
us an upper hand in dealing with potential untrusted na-
tive code: because of the way our repackaging process
works, Aurasium is guaranteed to start before the appli-
cation’s code and hence be able to intercept the applica-
tion’s first attempt to load alien native code (invocation
of dlopen() function in libc). As a result, Aurasium
is guaranteed to detect any potential circumvention at-
tempts by a malicious application.

What can Aurasium do with such an attempt? Silently
denying the load of all native code is not satisfactory be-
cause it will guarantee an application crash and some
legitimate applications use native code. Even though
Aurasium has the power to switch off the unknown na-
tive code, the collateral damage caused by false positives
would be too severe.

If Aurasium is to give binary decisions on whether or
not to load some unknown native code, then it reduces
to the arms race between malware and antivirus software
that we have seen for years. Aurasium tries to classify
native code in Android applications, while malware au-
thors craft and obfuscate it to avoid being detected. It is
better not to go down the same road; and a much neater
approach would be letting the native code run, but not
with unlimited power.

Previous work [28, 40, 34] on securely executing un-
trusted native code provides useful directions for exam-
ple, by using dynamic binary translation. In our sce-
nario we are required to restrict the application’s native
code from writing to guarded memory locations (to pre-
vent tampering with Aurasium and the libc interposition
mechanism), using special machine instructions (to ini-
tiate system calls without going through libc), and per-
forming arbitrary control flow transfer into libc. Due to
time constraints we have not implemented such facilities
in Aurasium. Currently, Aurasium prompts the user for
a decision, and informs the user that if the load is al-
lowed then Aurasium can be rendered ineffective from
this point onwards. We consider this problem a high pri-
ority for future work.

Unlike the filtering-based hybrid sandboxes that are
prone to the ‘time of check/time of use’ race condi-
tions [25, 38], Aurasium’s sandboxing mechanism is del-
egation based and hence much easier to defend against
this class of attack.

4.2 Java Code
A possible attack on Aurasium would be using Java’s
reflection mechanism to interfere with the operation of
Aurasium. Because currently Aurasium’s policy en-
forcement logic is implemented in Java, a malicious ap-
plication can use reflection to modify Aurasium’s inter-
nal data structures and hence affect its correct behavior.
We prevent such attacks by hooking into the reflection
APIs in libdvm.so and preventing reflection access to
Aurasium’s internal classes.

Note that dynamically loaded Java code (via Dex-
ClassLoader) poses no threat to Aurasium, as the code is
still executed by the same Dalvik VM instance and hence
cannot escape Aurasium’s sandbox. Native Java methods
map to a dynamically loaded binary shared object library
and are subject to the constraints discussed in the previ-
ous section, which basically means that attempts of using
them will always be properly flagged by Aurasium.

4.3 Red Pill
Currently Aurasium is not designed to be stealthy. The
existence of obvious traces such as changed application
signature, the existence of Aurasium native library and
Java classes allow applications to find out easily whether
it is running under Aurasium or not. A malicious ap-
plication can then refuse to run under Aurasium, forcing
the user to use the more dangerous vanilla version. A
legitimate application may also verify its own integrity
(via application signature) to prevent malicious repack-
aging by malware writers. Due to Aurasium’s control
over the application’s execution, it is possible to clean

11

550  21st USENIX Security Symposium	 USENIX Association

up these traces for example by spoofing signature access
to PackageManager, but fundamentally this is an arms
race and a determined adversary will win.

5 Related Work

With the growing popularity of Android and the growing
malware threat it is facing, many approaches to secur-
ing Android have been proposed recently. Many of the
traditional security approaches adopted in desktops have
been migrated to mobile phones in general and Android
in particular. Probably the most standard approach is to
use signature-based malware detection, which is in its in-
fancy when it comes to mobile platforms. This approach
is ineffective against zero-day attacks, and there is little
reason to believe that it will be more successful in the
mobile setting. Program analysis and behavioral analy-
sis have been more successfully applied in the context of
Android.

Static Analysis Static analysis of Android applica-
tion package files is relatively more straightforward than
static analysis of malware prevalent on desktops in gen-
eral. Obfuscation techniques [41] used in today’s mal-
ware are primarily aimed at impeding static analysis.
Without effective ways to deobfuscate native binaries,
static analysis will always suffer major drawbacks. Be-
cause of the prevalence of malware on x86 Windows
machines, little effort has been focusing on reverse en-
gineering ARM binaries. Static analysis of Java code
is much more attainable through decompilation of the
Dalvik bytecode. The DED [20] and dex2jar [5] are
two decompilers that aim at achieving translation from
Dalvik bytecode to Java bytecode.

Dynamic Analysis Despite its limitations, dynamic
analysis remains the preferred approach among re-
searchers and antivirus companies to profile malware and
extract its distinctive features. The lack of automated
ways to explore all the state space is often a hindering
factor. Techniques such as multipath exploration [31]
can be useful. However, the ability of mobile malware
to load arbitrary libraries might limit the effectiveness of
such techniques. The honeynet project offers a virtual
machine for profiling Android Applications [36] simi-
lar to profiling desktop malware. Stowaway [23] is a
tool that detects overprivilege in compiled Android ap-
plications. Testing is used on the Android API in order
to build the permission map that is necessary for detect-
ing overprivilege, and static analysis is used to determine
which calls an application invokes.

Monitoring The bulk of research related to securing
Android has been focused on security policy exten-
sion and enforcement for Android starting with [21].
TaintDroid [19] taints private data to detect leakage of
users’ private information modifying both Binder and the
Dalvik VM, but extends only partially to native code.
Quire [17] uses provenance to track permissions across
application boundaries through the IPC call chain to pre-
vent permission escalation of privilege attacks. Crepe
[15] allows access to system services requested through
install-time permission only in a certain context at run-
time. Similarly, Apex [33] uses user-defined runtime
constraints to regulate applications’ access to system ser-
vices. AppFence [27] blocks application access to data
from imperious applications that demand information
that is unnecessary to perform their advertised function-
ality, and covertly substitute shadow data in place. Air-
mid [32] uses cooperation between in-network sensors
and smart devices to identify the provenance of malicious
traffic.

Virtualization Recent approaches to Android security
have focused on bringing virtualization technology to
Android devices. The ability to run multiple version of
the Android OS on the same physical device allows for
strong separation and isolation but comes at a higher per-
formance cost. L4Android [30] is an open source project
derived from the L4Linux project. L4Android combines
both the L4Linux and Google modifications of the Linux
kernel and thus enables running Android on top of a mi-
crokernel. To address the performance issues when us-
ing virtualization, Cells in [11], is a lightweight virtu-
alization architecture where multiple phones run on the
same device. It is possible to run multiple versions of
Android on a bare metal hypervisor and ensure strong
isolation where shared security-critical device drivers run
in individual virtual machines, which is demonstrated
by [26]. Finally, logical domain separation, where two
single domains are considered and isolation is enforced
as a dataflow property between the logical domains with-
out running each domain as a separate virtual machine,
can also be employed [35].

6 Conclusion and Future Work

We have presented Aurasium, a robust and effective tech-
nology that protects users of the widely used Android OS
from malicious and untrusted applications. Unlike many
of the security solutions proposed so far, Aurasium does
not require rooting and device reflashing.

Aurasium allows us to take full control of the execu-
tion of an application. This allows us to enforce arbi-
trary policies at runtime. By using the Aurasium security

12

USENIX Association 	 21st USENIX Security Symposium  551

manager (ASM), we are able to not only apply policies
at the individual application level but across multiple ap-
plications simultaneously. This allows us to effectively
orchestrate the execution of various applications on the
device and mediate their access to critical resources and
user’s private data. This allows us to also detect attempts
by multiple applications to collaborate and implement a
malicious logic. With its overall low overhead and high
repackaging success rate, it is possible to imagine Aura-
sium implementing an effective isolation and separation
at the application layer without the need of complex vir-
tualization technology.

Even though Aurasium currently only treats applica-
tions as black boxes and focuses on its external behav-
ior, the idea of enforcing policy at per-application level
by repackaging applications to attach side-by-side moni-
toring code is very powerful. By carefully instrumenting
the application’s Dalvik VM instance on the fly, it is even
possible to apply more advanced dynamic analysis such
as information flow and taint analysis, and we leave this
as a possible direction of future work. We also plan on
expanding our investigation of the potential threat mod-
els against Aurasium and provide practical ways to mit-
igate them, especially in the case of executing untrusted
native code.

7 Acknowledgments

This material is based on work supported by the Army
Research Office under Cyber-TA Grant No. W911NF-
06-1-0316 and by the National Science Foundation Grant
No. CNS-0716612.

References
[1] Android apktool: A tool for reengineering Android apk files.

code.google.com/p/android-apktool/.

[2] Android.OS/Fakeplayer. www.f-secure.com/v-

descs/trojan_androidos_fakeplayer_a.shtml.

[3] Android.OS/NickiSpy. www.maikmorgenstern.de/

wordpress/?tag=androidnickispy.

[4] Bothunter community threat intelligence feed.
http://www.bothunter.net.

[5] dex2jar: A tool for converting Android’s .dex format to Java’s
.class format. code.google.com/p/dex2jar/.

[6] OpenBinder. www.angryredplanet.com/~hackbod/

openbinder/docs/html/.

[7] smali: An assembler/disassembler for Android’s dex format.
code.google.com/p/smali/.

[8] UI/Application exerciser Monkey. developer.android.com/

guide/developing/tools/monkey.html.

[9] In U.S. market, new smartphone buyers increasingly embrac-
ing Android. blog.nielsen.com/nielsenwire/online_

mobile/, sep 2011.

[10] ANDROID OPEN SOURCE PROJECT. Platform versions.
developer.android.com/resources/dashboard/

platform-versions.html.

[11] ANDRUS, J., DALL, C., HOF, A. V., LAADAN, O., AND NIEH,
J. Cells: a virtual mobile smartphone architecture. In Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Sys-
tems Principles (New York, NY, USA, 2011), SOSP ’11, ACM,
pp. 173–187.

[12] BLÄSING, T., SCHMIDT, A.-D., BATYUK, L., CAMTEPE,
S. A., AND ALBAYRAK, S. An Android application sand-
box system for suspicious software detection. In 5th Interna-
tional Conference on Malicious and Unwanted Software (MAL-
WARE’2010) (Nancy, France, France, 2010).

[13] BURGUERA, I., ZURUTUZA, U., AND NADJM-TEHRANI, S.
Crowdroid: behavior-based malware detection system for An-
droid. In Proceedings of the 1st ACM Workshop on Security
and Privacy in Smartphones and Mobile devices (New York, NY,
USA, 2011), SPSM ’11, ACM, pp. 15–26.

[14] CHIN, E., FELT, A. P., GREENWOOD, K., AND WAGNER, D.
Analyzing inter-application communication in Android. In Pro-
ceedings of the 9th International Conference on Mobile Systems,
Applications, and Services (New York, NY, USA, 2011), Mo-
biSys ’11, ACM, pp. 239–252.

[15] CONTI, M., NGUYEN, V. T. N., AND CRISPO, B. Crepe:
context-related policy enforcement for Android. In Proceed-
ings of the 13th International Conference on Information Security
(Berlin, Heidelberg, 2011), ISC’10, Springer-Verlag, pp. 331–
345.

[16] DEGUSTA, M. Android orphans: Visualizing a sad history of
support. theunderstatement.com/post/11982112928/

android-orphans-visualizing-a-sad-history-of-

support.

[17] DIETZ, M., SHEKHAR, S., PISETSKY, Y., SHU, A., AND WAL-
LACH, D. S. Quire: lightweight provenance for smart phone
operating systems. In Proceedings of the 20th USENIX Confer-
ence on Security (Berkeley, CA, USA, 2011), SEC’11, USENIX
Association, pp. 23–23.

[18] ENCK, W. Defending users against smartphone apps: Techniques
and future directions. In Proceedings of the 7th International
Conference on Information Systems Security (Kolkata, India, dec
2011), ICISS.

[19] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. N. TaintDroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. In Proceedings of the 9th USENIX Conference on Oper-
ating Systems Design and Implementation (Berkeley, CA, USA,
2010), OSDI’10, USENIX Association, pp. 1–6.

[20] ENCK, W., OCTEAU, D., MCDANIEL, P., AND CHAUDHURI,
S. A study of Android application security. In Proceedings of
the 20th USENIX conference on Security (Berkeley, CA, USA,
2011), SEC’11, USENIX Association, pp. 21–21.

[21] ENCK, W., ONGTANG, M., AND MCDANIEL, P. On lightweight
mobile phone application certification. In Proceedings of the
16th ACM Conference on Computer and Communications Secu-
rity (New York, NY, USA, 2009), CCS ’09, ACM, pp. 235–245.

[22] ENCK, W., ONGTANG, M., AND MCDANIEL, P. Understanding
Android security. IEEE Security and Privacy 7 (January 2009),
50–57.

[23] FELT, A. P., CHIN, E., HANNA, S., SONG, D., AND WAG-
NER, D. Android permissions demystified. In Proceedings of the
18th ACM Conference on Computer and Communications Secu-
rity (New York, NY, USA, 2011), CCS ’11, ACM, pp. 627–638.

13

552  21st USENIX Security Symposium	 USENIX Association

[24] FELT, A. P., FINIFTER, M., CHIN, E., HANNA, S., AND WAG-
NER, D. A survey of mobile malware in the wild. In Proceed-
ings of the 1st ACM Workshop on Security and Privacy in Smart-
phones and Mobile Devices (Oct. 2011), SPSM ’11, ACM, pp. 3–
14.

[25] GARFINKEL, T., PFAFF, B., AND ROSENBLUM, M. Ostia: A
delegating architecture for secure system call interposition. In
Proceedings of the Network and Distributed Systems Security
Symposium (February 2004).

[26] GUDETH, K., PIRRETTI, M., HOEPER, K., AND BUSKEY, R.
Delivering secure applications on commercial mobile devices:
the case for bare metal hypervisors. In Proceedings of the 1st
ACM Workshop on Security and Privacy in Smartphones and
Mobile devices (New York, NY, USA, 2011), SPSM ’11, ACM,
pp. 33–38.

[27] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER, S., AND
WETHERALL, D. These aren’t the droids you’re looking for:
retrofitting Android to protect data from imperious applications.
In Proceedings of the 18th ACM Conference on Computer and
Communications Security (New York, NY, USA, 2011), CCS ’11,
ACM, pp. 639–652.

[28] KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. P.
Secure execution via program shepherding. In Proceedings of the
11th USENIX Security Symposium (Berkeley, CA, USA, 2002),
USENIX Association, pp. 191–206.

[29] LABS, M. McAfee threats report: Second quarter
2011. www.mcafee.com/us/resources/reports/rp-

quarterly-threat-q2-2011.pdf, aug 2011.

[30] LANGE, M., LIEBERGELD, S., LACKORZYNSKI, A., WARG,
A., AND PETER, M. L4Android: a generic operating system
framework for secure smartphones. In Proceedings of the 1st
ACM Workshop on Security and Privacy in Smartphones and
Mobile devices (New York, NY, USA, 2011), SPSM ’11, ACM,
pp. 39–50.

[31] MOSER, A., KRUEGEL, C., AND KIRDA, E. Exploring mul-
tiple execution paths for malware analysis. In Proceedings of
the 2007 IEEE Symposium on Security and Privacy (Washington,
DC, USA, 2007), SP ’07, IEEE Computer Society, pp. 231–245.

[32] NADJI, Y., GIFFIN, J., AND TRAYNOR, P. Automated remote
repair for mobile malware. In Proceedings of the 2011 Annual
Computer Security Applications Conference (Washington, DC,
USA, 2011), ACSAC ’10, ACM.

[33] NAUMAN, M., KHAN, S., AND ZHANG, X. Apex: extending
Android permission model and enforcement with user-defined
runtime constraints. In Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security (New
York, NY, USA, 2010), ASIACCS ’10, ACM, pp. 328–332.

[34] SCOTT, K., KUMAR, N., VELUSAMY, S., CHILDERS, B.,
DAVIDSON, J. W., AND SOFFA, M. L. Retargetable and re-
configurable software dynamic translation. In Proceedings of
the international symposium on Code Generation and Optimiza-
tion: feedback-directed and runtime optimization (Washington,
DC, USA, 2003), CGO ’03, IEEE Computer Society, pp. 36–47.

[35] SVEN, B., LUCAS, D., ALEXANDRA, D., STEPHAN, H.,
AHMAD-REZA, S., AND BHARGAVA, S. Practical and
lightweight domain isolation on Android. In Proceedings of the
1st ACM Workshop on Security and Privacy in Smartphones and
Mobile devices (New York, NY, USA, 2011), SPSM ’11, ACM,
pp. 51–62.

[36] THE HONEYNET PROJECT. Android reverse engineering virtual
machine. www.honeynet.org/node/783.

[37] VIDAS, T., VOTIPKA, D., AND CHRISTIN, N. All your droid are
belong to us: a survey of current Android attacks. In Proceedings

of the 5th USENIX Workshop On Offensive Technologies (Berke-
ley, CA, USA, 2011), WOOT’11, USENIX Association, pp. 10–
10.

[38] WATSON, R. N. M. Exploiting concurrency vulnerabilities in
system call wrappers. In Proceedings of the first USENIX Work-
shop On Offensive Technologies (Berkeley, CA, USA, 2007),
USENIX Association, pp. 2:1–2:8.

[39] YAJIN, Z., AND XUXIAN, J. Dissecting android malware: Char-
acterization and evolution. In Proceedings of the 33rd IEEE Sym-
posium on Security and Privacy (may 2012).

[40] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R.,
ORMANDY, T., OKASAKA, S., NARULA, N., AND FULLAGAR,
N. Native client: a sandbox for portable, untrusted x86 native
code. Commun. ACM 53 (January 2010), 91–99.

[41] YOU, I., AND YIM, K. Malware obfuscation techniques: A brief
survey. In Proceedings of the 2010 International Conference on
Broadband, Wireless Computing, Communication and Applica-
tions (Washington, DC, USA, 2010), BWCCA ’10, IEEE Com-
puter Society, pp. 297–300.

14

USENIX Association 	 21st USENIX Security Symposium  553

AdSplit: Separating smartphone advertising from applications

Shashi Shekhar
shashi.shekhar@rice.edu

Michael Dietz
mdietz@rice.edu

Dan S. Wallach
dwallach@rice.edu

Abstract
A wide variety of smartphone applications today rely on
third-party advertising services, which provide libraries
that are linked into the hosting application. This situ-
ation is undesirable for both the application author and
the advertiser. Advertising libraries require their own
permissions, resulting in additional permission requests
to users. Likewise, a malicious application could sim-
ulate the behavior of the advertising library, forging the
user’s interaction and stealing money from the advertiser.
This paper describes AdSplit, where we extended An-
droid to allow an application and its advertising to run
as separate processes, under separate user-ids, eliminat-
ing the need for applications to request permissions on
behalf of their advertising libraries, and providing ser-
vices to validate the legitimacy of clicks, locally and re-
motely. AdSplit automatically recompiles apps to extract
their ad services, and we measure minimal runtime over-
head. AdSplit also supports a system resource that allows
advertisements to display their content in an embedded
HTML widget, without requiring any native code.

1 Introduction

The smartphone and tablet markets are growing in leaps
and bounds, helped in no small part by the availability of
specialized third-party applications (“apps”). Whether
on the iPhone or Android platforms, apps often come
in two flavors: a free version, with embedded adver-
tising, and a pay version without. Both models have
been successful in the marketplace. To pick one exam-
ple, the popular Angry Birds game at one point brought
in roughly equal revenue from paid downloads on Ap-
ple iOS devices and from advertising-supported free
downloads on Android devices [10]. They now offer
advertising-supported free downloads on both platforms.

We cannot predict whether free or paid apps will dom-
inate in the years to come, but advertising-supported ap-
plications will certainly remain prominent. Already, a

cottage industry of companies offer advertising services
for smartphone application developers.

Today, these services are simply pre-compiled code li-
braries, linked and shipped together with the application.
This means that a remote advertising server has no way
to validate a request it receives from a user legitimately
clicking on an advertisement. A malicious application
could easily forge these messages, generating revenue for
its developer while hiding the advertisement displays in
their entirety. To create a clear trust boundary, advertis-
ers would benefit from running separately from their host
applications.

In Android, applications must request permission at
install time for any sensitive privileges they wish to ex-
ercise. Such privileges include access to the Internet, ac-
cess to coarse or fine location information, or even ac-
cess to see what other apps are installed on the phone.
Advertisers want this information to better profile users
and thus target ads at them; in return, advertisers may
pay more money to their hosting applications’ develop-
ers. Consequently, many applications which require no
particular permissions, by themselves, suffer permission
bloat—being forced to request the privileges required by
their advertising libraries in addition to any of their own
needed privileges. Since users might be scared away
by detailed permission requests, application developers
would also benefit if ads could be hosted in separate ap-
plications, which might then make their own privilege
requests or be given a suitable one-size-fits-all policy.

Finally, separating applications from their advertise-
ments creates better fault isolation. If the ad system fails
or runs slowly, the host application should be able to
carry on without inconveniencing the user. Addressing
these needs requires developing a suitable software ar-
chitecture, with OS assistance to make it robust.

The rest of the paper is organized as follows: in Sec-
tion 2 we present a survey of thousands of Android ap-
plications, and estimate the degree of permission bloat
caused by advertisement libraries. Section 3 discusses

554  21st USENIX Security Symposium	 USENIX Association

the design objectives of AdSplit and how we can borrow
ideas from how web advertisements are secured. Sec-
tion 4 describes our Android-based implementation, and
Section 5 quantifies its performance. Section 6 provides
details about a simple binary rewriter to adapt legacy
apps to use our system. Section 7 considers how we
might eliminate native code libraries for advertisements
and go with a more web-like architecture. Finally, Sec-
tion 8 discusses a variety of policy issues.

2 App analysis

The need to monetize freely distributed smartphone ap-
plications has given rise to many different ad provider
networks and libraries. The companies competing for
business in the mobile ad world range from established
web ad providers like Google’s AdMob to a variety of
dedicated smartphone advertising firms.

With so many options for serving mobile ads, many
app developers choose to include multiple ad libraries.
Additionally, there is a new trend of advertisement ag-
gregators that have the aggregator choose which ad li-
brary to use in order to maximize profits for the devel-
oper.

While we’re not particularly interested in advertising
market share, we want to understand how these ad li-
braries behave. What permissions do they require? And
how many apps would be operating with fewer permis-
sions, if only their advertisement systems didn’t require
them? To address these questions, we downloaded ap-
proximately 10,000 free apps from the Android Market
and the Amazon App Store and analyzed them.

How many ad libraries? Fig 1 shows the distribution
of the number of advertisement libraries used by apps in
our sample. Of the apps that use advertisements, about
35% include two or more advertising libraries.

Permissions required. We found that some ad li-
braries need more permissions than those mentioned in
the documentation; also, the set of permissions may
change with the version of the ad library. Table 1 shows
some of the required and optional permission sets for a
number of popular Android ad libraries. The permissions
listed as optional are not required to use the ad library
but may be requested in order to improve the quality of
advertisements; for example, some ad libraries will use
location information to customize ads. A developer us-
ing such a library has the choice of including location-
targeted ads or not. Presumably, better targeted ads will
bring greater revenue to the application developer.

Figure 1: Number of apps with ad libraries installed.

Permission bloat. In Android, an application requests
a set of permissions at the time it’s installed. Those per-
missions must suffice for all of the app’s needs and for
the needs of its advertising library. We decided to mea-
sure how many of the permissions requested are used ex-
clusively by the advertising library (i.e., if the advertising
library were removed, the permission would be unneces-
sary).

This analysis required decompiling our apps into dex
format [3] using the android-apktool [23]. For each app,
we then extracted a list of all API calls made. Since
advertising libraries have package names that are easy
to distinguish, it’s straightforward to separate their API
calls from the main application. To map the list of API
calls to the necessary permissions, we use the data gath-
ered by Felt et al. [18]. This allows us to compute the
minimal set of permissions required by an application,
with and without its advertisement libraries. We then
compare this against the formal list of permissions that
each app requests from the system.

There may be cases where an app speculatively at-
tempts to use an API call that requires a permission that
was never granted, or there may be dead code that ex-
ercises a permission, but will never actually run. Our
analysis will err on the side of believing that an applica-
tion requires a permission that, in fact, it never uses. This
means that our estimates of permission bloat are strictly
a lower bound on the actual volume of permissions that
are requested only to support the needs of the advertising
libraries.

Our results, shown in Fig. 2, are quite striking. 15% of
apps requesting Internet permissions are doing it for the
sole benefit of their advertising libraries. 26% of apps re-
questing coarse location permissions are doing it for the
sole benefit of their advertising libraries. 47% of apps

USENIX Association 	 21st USENIX Security Symposium  555

Ad Library In
te

rn
et

N
et

w
or

kS
ta

te

R
ea

dP
ho

ne
St

at
e

W
ri

te
E

xt
er

na
lS

to
ra

ge

C
oa

rs
eL

oc
at

io
n

C
al

lP
ho

ne

AdMob [22] � � ◦
Greystripe [25] � � �
Millennial
Media [36]

� � � �

InMobi [29] � ◦ ◦ ◦
MobClix [38] � ◦ �
TapJoy [53] � � � �
JumpTap [32] � � � ◦

�(required), ◦ (optional)

Table 1: Different advertising libraries require different
permissions.

requesting permission to get a list of the tasks running
on the phone (the ad libraries use this to check if the
application hosting the advertisement is in foreground)
are doing it for the sole benefit of their advertising li-
braries. These results suggest that any architecture that
separates advertisements from applications will be able
to significantly reduce permission bloat. (In concurrent
work to our own, Grace et al. [24] performed a static
analysis of 100 thousand Android apps and found ad-
vertisement libraries uploading sensitive information to
remote ad servers. They also found that some advertise-
ment libraries were fetching and dynamically executing
code from remote ad servers.)

3 Design objectives

Advertisement services have been around since the very
beginnings of the web. Consequently, these services have
adapted to use a wide variety of technologies that should
be able to influence our AdSplit design.

3.1 Advertisement security on the web
Fundamentally, a web page with a third-page advertise-
ment falls under the rubric of a mashup, where multiple
web servers are involved in the presentation of a single
web page.

Many web pages isolate advertisements from con-
tent by placing ads in an iframe [55]. The content
hosted in an iframe is isolated from the hosting web-
page and browsers allow only specific cross frame in-

Figure 2: Distribution of types of permissions reduced
when advertisements are separated from applications.

teractions [6, 40], protecting the advertisement against
intrusions from the host page (although there have been
plenty of attacks [51, 47, 50]). Another valuable prop-
erty of the iframe is that it allows an external web server
to distinguish between requests coming from the adver-
tisement from requests that might be forged. Standard
web security mechanisms assist with this; browsers en-
force the same origin policy, restricting the host web
page from making arbitrary connections to the advertiser.
Defenses against cross site request forgery, like the Ori-
gin header [5], further aid advertisers in detecting fraud-
ulent clicks.

Adapting these ideas to a smartphone requires signifi-
cant design changes. Most notably, it’s common for An-
droid applications to request the privilege to make arbi-
trary Internet connections. There is nothing equivalent
to the same origin policy, and consequently no way for a
remote server to have sufficient context, from any given
click request it receives, to determine whether that click
is legitimate or fraudulent. This requires AdSplit to in-
clude several new mechanisms.

3.2 Adapting these ideas to AdSplit

The first and most prominent design decision of AdSplit
is to separate a host application from its advertisements.
This separation has a number of ramifications:

556  21st USENIX Security Symposium	 USENIX Association

Specification for advertisements. Currently the ad li-
braries are compiled and linked with their corre-
sponding host application. If advertisements are
separate, then the host activities must contain the
description of of which advertisements to use. We
introduced a method by which the host activity can
specify the particular ad libraries to be used.

Permission separation. AdSplit allows advertisements
and host applications to have distinct and indepen-
dent permission sets.

Process separation. AdSplit advertisements run in sep-
arate processes, isolated from the host application.

Lifecycle management. Advertisements only need to
run when the host application is running, otherwise
they can be safely killed; similarly once the host
application starts running, the associated advertise-
ment process must also start running. Our system
manages the lifecycle of advertisements.

Screen sharing. Advertisements are displayed inside
host activity, so if advertisements are separated
there should be a way to share screen real estate be-
tween advertisements and host application. AdSplit
includes a mechanism for sharing screen real estate.

Authenticated user input. Advertisements generate
revenue for their host applications; this revenue is
typically dependent on the amount of user interac-
tion with the advertisement. The host application
can try to forge user input and generate fraudulent
revenue, hence the advertisements should have a
way to determine that any input events received
from host application are genuine. AdSplit includes
a method by which advertising applications can
validate user input, validate that they are being
displayed on-screen, and pass that verification, in
an unforgeable fashion, to their remote server.

In the next section, we will describe how AdSplit
achieves these design objectives.

4 Implementation

While many aspects of our design should be applicable
to any smartphone operating system, we built our system
on Android, and there are a number of relevant Android
features that are important to describe.

4.1 Background
Android applications present themselves to the user as
one or more activities, which are roughly analogous to
windows in a traditional window system. Activities in

Ad

Buy! Cool! Stuff!

Sample App

(transparent, so ad is visible)

Figure 3: Screen sharing between host and advertisement
apps.

Android are maintained on a stack, simplifying the user
interface and enabling the “back” button to work consis-
tently across applications. This switching between activ-
ities as well as other related functions to activity lifecycle
are performed by the ActivityManager service.

When an activity is started, the ActivityManager cre-
ates appropriate data structures for the activity, schedules
the creation of a process for activity, and puts activity-
related information on a stack. There is a separate Win-
dowManager that manages the z-order of windows and
maintains their association with activities. The Activity-
Manager informs the WindowManager about changes to
activity configuration. Since we want to factor out the
advertising code into a separate process / activity, this
will require a variety of changes to ensure that the user
experience is unchanged.

An app using AdSplit will require the collaboration of
three major components: the host activity, the advertise-
ment activity, and the advertisement service. The host
activity is the app that the user wants to run, whether a
game, a utility, or whatever else. It then “hosts” the ad-
vertisement activity, which displays the advertisement.
There is a one-to-one mapping between host activity and
advertisement activity instances. The Unix processes be-
hind these activities have distinct user-ids and distinct
permissions granted to them. To coordinate these two
activities, we have a central advertisement service. The
ad service is responsible for delivering UI events to the
ad activity. It also verifies that the ad activity is being
properly displayed and that the UI clicks aren’t forged.
(More on the verification task in Section 4.4.)

AdSplit builds on Quire [13], which prototyped a fea-

USENIX Association 	 21st USENIX Security Symposium  557

ture shown in Fig. 3, allowing the host and advertise-
ment activities to share the screen together. First the
window for advertisement activity is layered just below
the host activity window. The host activity window con-
tains transparent regions where advertisement will be
displayed. Standard Android features allow the adver-
tisement activity to verify that the user can actually see
the ads.

4.2 Advertisement pairing

In AdSplit, we wish to take existing Android applications
and separate out their advertising to follow the model de-
scribed above. We first must explain the variety of dif-
ferent ways in which an existing application might ar-
range for an advertisement to be displayed. We will use
Google’s AdMob system as a running example. Other
advertisement systems behave similarly, at least with re-
spect to displaying banner ads. (For simplicity of discus-
sion, we ignore full-screen interstitial ads.)

With current Android applications, if a developer
wants to include an advertisement from AdMob in an ac-
tivity of her application, she imports the AdMob library,
and then either declares an AdMob.AdView in the XML
layout, or she generates an instance of AdMob.AdView
and inserts it in directly into the view hierarchy. This
works without issue since all AdMob classes are loaded
alongside the hosting application; they are separated only
by having different package names.

Once we separate advertisements from applications,
neither of these techniques will work, since the code
isn’t there any more. We first need a new mechanism.
Later, in Section 6, we will describe how AdSplit does
this transformation automatically.

We added a AppFrame element, which can appear in
the XML manifest, allowing the system to attach a sub-
sidiary activity to its host. This results in a distinct activ-
ity for the advertisement as well as a local stub to support
the same API as if the advertisement code was still local
to the host application. The stub packages up requests
and passes them onto the advertisement service.

One complication of this process is that advertising li-
braries like AdMob were engineered to have one copy
running in each process. If we create a single, global
instance of any given advertising library, it won’t have
been engineered to maintain the state of the many origi-
nal applications which hosted it.

Consequently, the advertisement service must manage
distinct advertisement applications for each host applica-
tion. If ten different applications include AdMob, then
there need to be ten different AdMob user-ids in the sys-
tem, mapping one-to-one with the host applications. The
advertisement service is then responsible for ensuring
that the proper host application speaks to the proper ad-

vertising application.
This is sufficient to ensure that the existing advertising

libraries can run without requiring modifications. One
complication concerns Android’s mechanism for sharing
processes across related activities. When a new activ-
ity is launched and there is already a process associated
with the user-id of the application, Android will launch
the new activity in the same process as the old one [2].
If there is already an instance of an activity running, for
example, then Android will just resume the activity and
bring its activity window to the front of the stack. This
is normally a feature, ensuring that there is only a sin-
gle process at a time for any given application. However,
for AdSplit, we need to ensure that advertising apps map
one-to-one with hosting apps and we must ensure that
their activity windows stay “glued” to their hosts’ ac-
tivities. Consequently, we changed the default Android
behavior such that advertisement activities are differenti-
ated based not only by user-id, but also by the host activ-
ity. AdSplit thus required modest changes in how activ-
ities are launched and resumed as well as how windows
are managed.

4.3 Permission separation
With Android’s install-time permission system, an appli-
cation requests every permission it needs at the time of
its installation. As we described in Section 2, advertis-
ing libraries cause significant bloat in the permission re-
quests made by their hosting applications. Our AdSplit
architecture allows the advertisements to run as separate
Android users with their own isolated permissions. Host
applications no longer need to request permissions on be-
half of their advertisement libraries.

We note that AdSplit makes no attempt to block a host
application from explicitly delegating permissions to its
advertisements. For example, the host application might
obtain fine-grained location permissions (i.e., GPS coor-
dinates with meter-level accuracy) and pass these coor-
dinates to an advertising library which lacks any loca-
tion permissions. Plenty of other Android extensions, in-
cluding TaintDroid [15] and Paranoid Android [46], offer
information-flow mechanisms that might be able to for-
bid this sort of thing if it was considered undesirable. We
believe these techniques are complementary to our own,
but we note that if we cannot create a hospitable environ-
ment for advertisers, they will have no incentive to run in
an environment like AdSplit. We discuss this and other
policy issues further in Section 8.

4.4 Click fraud
AdSplit leverages mechanisms from Quire [13] to detect
counterfeit events, thus defeating the opportunity for an

558  21st USENIX Security Symposium	 USENIX Association

Android host application to perform a click fraud attack
against its advertisers. While a variety of strategies are
used to defeat click fraud on the web (see, e.g., Juels
et al. [31]), we need distinct mechanisms for AdSplit,
since a smartphone is a very different environment from
a web browser.

Quire uses an system built around HMAC-SHA1
where every process has a shared key with a system
service. This allows any process to cheaply compute a
“signed statement” and send it anywhere else in the sys-
tem. The ultimate recipient can then ask the system ser-
vice to verify the statement. Quire uses this on user-
generated click events, before they are passed to the host
activity. The host activity can then delegate a click or
any other UI event, passing it to the advertising activity
which will then validate it without being required to trust
the host activity. The performance overhead is minimal.

Quire has support for making these signed statements
meaningful to remote network services. Unlike the web,
where we might trust a browser to speak truthfully about
the context of an event (see Section 3.1), any app might
potentially send any message to any network service. In-
stead, Quire provides a system service that can validate
one of these messages, re-sign it using traditional public-
key cryptography, and send it to a remote service over
the network.

Quire’s event delivery mechanism is summarized in
Fig. 4. The touch event is first signed by the input sys-
tem and delivered to the host activity. The stub in the
host activity then forwards the touch event to advertise-
ment service which verifies the touch event and forwards
it to the advertisement activity instance. This could
then be passed to another system service (not shown)
which would resign and transmit the message as de-
scribed above.

Despite Quire’s security mechanisms, there are still
several ways the host might attempt to defraud the adver-
tiser. First, a host application might save old click events
with valid signatures, potentially replaying them onto an
advertisement. We thus include timestamps for adver-
tisements to validate message freshness. Second, a host
may send genuine click events but move the AdView, we
prevent this kind of tampering by allowing the advertise-
ment service to query layout information about the host
activity. Third, a host application might attempt to hide
the advertising. Android already includes mechanism
for an activity to sort out its visibility to the screen [21]
(touch events may include a flag that indicates the win-
dow is obscured); our advertising service uses these to
ensure that the ad was being displayed at the time the
click occurred.

It’s also conceivable that the host application could
simply drop input events rather than passing them to
the advertising application. This is not a concern be-

Input
Event

System

Host
Activity

Quire
Authority
Manager

Ad
Activity

Add
HMAC

signature

Verify
HMAC

Figure 4: Motion event delivery to the advertisement ac-
tivity.

cause the host application has no incentive to do this.
The host only makes money from clicks that go through,
not from clicks that are denied. (Advertising generally
works on two different business models: payment per
impression and payment per click. In our AdSplit ef-
forts, we’re focused on per-click payments, but the same
Quire authenticated RPC mechanisms could be used in
per-impression systems, with the advertisement service
making remotely verifiable statements about the state of
the screen.) The host activity can also use a clickjacking
attack by anticipating the location of user touch and mov-
ing AdView to the intended location. Our implementa-
tion currently does not prevent this attack; ads could cer-
tainly check that they were visible at the proper location
for at least some minimum duration before considering a
click to be valid.

4.5 Summary

AdSplit, as we’ve described it so far, would not leverage
the Quire RPC mechanisms by default, since no off-the-
shelf advertising library has been engineered to use it.
There are other pragmatic issues, such as how the adver-
tisement applications might be installed and managed.
We address these issues in Sections 7 and 8. Nonetheless,
we now have a workable skeleton design for AdSplit that
we have implemented and benchmarked.

USENIX Association 	 21st USENIX Security Symposium  559

5 Performance

In order to evaluate the performance overhead of our sys-
tem we performed our experiments on a standard An-
droid developer phone, the Nexus One, which has a
1GHz ARM core (a Qualcomm QSD 8250), 512MB of
RAM, and 512MB of internal Flash storage. We con-
ducted our experiments with the phone displaying the
home screen and running the normal set of applications
that spawn at start up. We replaced the default “live wall-
paper” with a static image to eliminate its background
CPU load. All of our benchmarks are measured using
the Android Open Source Project’s (AOSP) Android 2.3
(“Gingerbread”) plus the relevant portions of Quire, as
discussed earlier.

Our performance analysis focuses on the effect of Ad-
Split on user interface responsiveness as well as the extra
CPU and memory overhead.

5.1 Effect on UI responsiveness
We performed benchmarking to determine the overhead
of AdSplit on touch event throughput. By default An-
droid has a 60 event per second hard coded limit; for our
experiments we removed this limit. Table 2 shows the
event throughput in terms of number of touch events per
second. (The overhead added by our system is due to
passing touch events from the host activity to the adver-
tisement activity. There is also additional overhead due
to the additional traversal of the view hierarchy in the ad-
vertisement activity.) We can see the our system can still
support about 183 events per second which is well above
the default limit of 60. Furthermore, the Nexus One is
much slower than current-generation Android hardware.
CPU overhead, even in this extreme case, appears to be
a non-issue.

Stock Android AdSplit Ratio
229.96 183.12 0.796

Table 2: Comparison of click throughput (Events/sec),
averaged over 1 million events.

5.2 Memory and CPU overhead
Measuring memory overhead on Android is complicated
since Android optimizes memory usage by sharing read-
only data for common libraries. Consequently, if an ac-
tivity has several copies of a UI widget, the effective
overhead of adding a new instance of the same widget is
low. Every advertisement library that we examined dis-
plays advertisements by embedding a WebView. A We-
bView is an instance of web browser. When the host ac-

tivity already has a WebView instance, a fairly common
practice, and it includes an advertisement, then most of
the code for the advertisement WebView will be shared,
yielding a relatively low additional overhead for the ad-
vertisement. (In our experiments we found out that mul-
tiple WebViews in the same activity will share their cook-
ies, which means that an advertisement can steal cookies
from any other WebViews in the activity.)

Consequently, in order to determine the actual mem-
ory overhead of separating advertisements from their
host applications, we need to differentiate between the
cases when host activities contain an instance of Web-
View and when they don’t. We did our measurements
by running the AdMob library, both inside the applica-
tion and in a separate advertisement activity. To measure
memory overhead we used procrank [14], which tells us
the proportional set size (Pss) and unique set size (Uss).
Pss is the amount of memory shared with other pro-
cesses, divided equally among the processes who share
it. Uss is the amount of memory used uniquely by the
one process. Table 3 lists our results for the memory
measurements.

Activity setup Memory Overhead (MB)
Host Activity Ad Activity
Pss Uss Pss Uss

Without Ad or
WebView

2.46 1.44 - -

Only WebView 5.52 3.30 - -
Only AdMob 9.67 6.58 - -
WebView and
AdMob

9.82 6.73 - -

AdMob with Ad-
Split

2.46 1.56 9.55 6.56

WebView and
AdMob with
AdSplit

5.15 3.35 9.29 6.58

Table 3: Memory overhead for host and advertisement
activities with different system configurations.

In interpreting our results we are primarily concerned
with the sum of Pss and Uss. From the table, we see
that starting with a simply activity without any WebView
(due to AdMob or its own), consumes about 3.9 MB.
This increases to about 9 MB if the activity has a We-
bView. Having AdMob loaded and displaying an adver-
tisement takes about 16.3 MB of memory. When an ac-
tivity has both WebView and AdMob, the total memory
used is only about 16.5 MB, demonstrating the efficiency
of Android’s memory sharing.

With AdMob in a separate process, we expect to pay
additional costs for Android to manage two separate ac-

560  21st USENIX Security Symposium	 USENIX Association

Figure 5: Layout query time vs view depth of host activ-
ity (average of 10K runs).

tivities, two separate processes, and so forth. The total
memory cost in this configuration, with AdMob running
in AdSplit and no other WebView, is about 20.2 MB,
roughly a 4 MB increase relative to AdMob running lo-
cally. Furthermore, when a separate WebView is running
in the host activity, there is no longer an opportunity to
share the cost of that WebView. The total memory use
in this scenario is 24.4 MB, or roughly an 8 MB increase
relative to hosting AdMob locally. We expect we would
see similar overheads with other advertising libraries.

The CPU overhead is same as the overhead of addi-
tional Dalvik virtual machine on Android. In fact, since
the advertisement activities run in the background, they
run with lower priority and can be safely killed without
any issues.

As discussed in Section 4.4, we allow advertisement
service to query layout information (type, position and
transparency of views) about the host activity to prevent
UI rearrangement attacks. In order to evaluate the over-
head of layout information queries we experimented with
different view configurations for host activities and var-
ied the depth of AdView in the view hierarchy. Fig. 5
shows how the query overhead varies with view depth.
The additional depth adds a small (1 ms) overhead.
These queries will run infrequently—only once per click.

In summary, while AdSplit does introduce a marginal
amount of additional memory and CPU cost, these will
have negligible impact in practice.

6 Separation for legacy apps

The amount of permissions requested by mobile apps and
lack of information about how they are used has been a

cause of concern (see, e.g., the U.S. government’s Fed-
eral Trade Commission study of privacy disclosures for
children’s smartphone apps [17]). To some extent, the
potential for information leakage is driven by advertise-
ment permission bloat, so separating out the ad systems
and treating them distinctly is a valuable goal.

As we showed in Section 2, a significant number of
current apps with embedded advertising libraries would
immediately benefit from AdSplit, reducing the permis-
sion bloat necessary to host embedded ads. This section
describes a proof-of-concept implementation that can au-
tomatically rewrite an Android application to use Ad-
Split. Something like this could be deployed in an app
store or even directly on the smartphone itself.

Figure 6 sketches the rewriting process. First the ap-
plication is decompiled using android-apktool, convert-
ing dex bytecode into smali files. (Smali is to dex byte-
code what assembly language is to binary machine code;
smali is the human-readable version.) Because smali
files are organized into directories based on their pack-
age names, it’s trivial to distinguish the advertisement
libraries from their hosting applications. All we have to
do is delete the advertisement code and drop in a stub
library, supporting the same API, which calls out to the
AdSplit advertisement service. We also analyze the per-
missions required without the advertisement present (see
Section 2), remove permissions which are no longer nec-
essary, and edit the manifest appropriately.

For our proof of concept, we decided to focus our at-
tention on AdMob. Our techniques would easily gen-
eralize to support other advertising libraries, if desired.
(Alternatively we believe we have a better solution, de-
scribed next in Section 7.)

Our stub library was straightforward to implement.
We manually implemented a handful of public methods
from the AdMob library, whereafter we constructed a
standard Android IPC message to send to the AdSplit
advertising service. It worked.

While it would be tempting to use automated tools to
translate an entire API in one go, any commercial im-
plementation would require significant testing and, in-
evitably, there would be corner cases where the auto-
mated tool didn’t quite do the right thing. Instead, since
there are a fairly small number of advertising vendors,
we imagine that each one would best be supported by
hand-written code, perhaps even supplied directly by the
vendor in collaboration with an app store that did the
rewriting.

Unfortunately, there are a number of significant prob-
lems that would stand in the way of an automated rewrit-
ing architecture becoming the preferred method of de-
ploying AdSplit.

USENIX Association 	 21st USENIX Security Symposium  561

com.
example.

app

AndroidManifest.xml

com/example/app

com/admob/android

com/admob/android

Decompile

AdMob stub library

AndroidManifest.xml

Modified
manifest

com/example/app

com/admob/android

com.
example.

appCompile

Manifest
processor

Figure 6: Automated separation of advertisement libraries from their host applications.

Ad installation. When advertisements exist as distinct
applications in the Android ecosystem, they will need to
be installed somehow. We’re hesitant to give the host ap-
plication the necessary privileges to install a third-party
advertising application. Perhaps an application could de-
clare that it had a dependency on a third-party app, and
the main installer could hide this complexity from the
user, in much the same way that common Linux package
installers will follow dependencies as part of the instal-
lation process for any given target.

Ad permissions. Even if we can get the ad libraries
installed, we have the challenge of understanding what
permissions to grant them. Particularly when many ad-
vertising libraries know how to make optional use of a
permission, such as measuring the smartphone’s location
if it’s allowed, how should we decide if the advertisement
application has those permissions? Must we install mul-
tiple instances of the advertising application based on the
different subsets of permissions that it might be granted
by the host application? Alternatively, should we go with
a one-size-fits-all policy akin to the web’s same-origin-
policy? What’s the proper “origin” for an application that
was installed from an app store? Unfortunately, there
is no good solution here, particularly not without gener-
ating complex user interfaces to manage these security
policies.

Similarly, what should we do about permissions that
many users will find to be sensitive, such as learning
their fine-grained location, their phone number, or their
address book? Again, the obvious solutions involve cre-
ating dialog boxes and/or system settings that users must
interact with, which few user will understand, and which
advertisers and application authors will all hate.

Ad unloading. Like any Android application, an ad-
vertisement application must be prepared to be killed at
any time—a consequence of Android’s resource manage-
ment system. This could have some destabilizing conse-
quences if the hosting application is trying to commu-
nicate with its advertisement and the ad is killed. Also,
what happens if a user wants to uninstall an advertising
application? Should that be forbidden unless every host
application which uses it is also uninstalled?

7 Alternative design: HTML ads

While struggling with the shortcomings outlined above
with the installation and permissions of advertising ap-
plications, we hit upon an alternative approach that uses
the same AdSplit architecture. The solution is to expand
on something that advertising libraries are already doing:
embedded web views (see Section 5.2).

If an ad creator want to purchase advertising on smart-
phones, they want to specify their advertisements the
same way they do for the web: as plain text, images, or
perhaps as a “rich” ad using JavaScript. Needless to say,
a wide variety of tools are available to create and man-
age such ads, and mobile advertising providers want to
make it easy for ads to appear on any platform (iPhone,
Android, etc.) without requiring heroic effort from the
ad creator.

Consequently, all of the advertising libraries we exam-
ined simply include a WebView within themselves. All
of the native Android code is really nothing more than a
wrapper around a WebView. Based on this insight, we
suggest that AdSplit will be easiest to deploy by provid-
ing a single advertising application, build into the An-
droid core distribution, that satisfies the typical needs of

562  21st USENIX Security Symposium	 USENIX Association

Android advertising vendors.
Installation becomes a non-issue, since the only

advertiser-provided content in the system is HTML,
JavaScript, and/or images. We still use the rest of the Ad-
Split architecture, running the WebView with a separate
user-id, in a separate process and activity, ensuring that a
malicious application cannot tamper with the advertise-
ments it hosts. We still have the AdSplit advertisement
service, leveraging Quire, to validate user events before
passing them onto the WebView. We only need to extend
the WebView’s outbound HTTP transactions to include
Quire RPC signatures, allowing the remote advertising
server to have confidence in the provenance of its adver-
tising clicks.

Security permissions are more straightforward. The
same-origin-policy, standard across all the web, applies
perfectly to HTML AdSplit. Since the Android Web-
View is built on the same Webkit browser as the stan-
dalone “Browser” application, it has the same security
machinery to enforce the same-origin-policy.

Keeping all this in mind we introduced a new form of
WebView specifically targeted for HTML ads: the Ad-
WebView. The AdWebView is a way to host HTML
ads in a constrained manner. We introduced two ad-
vertisement specific permissions which can be controlled
by the user. These permissions control whether ads can
make internet connections or use geolocation features of
HTML5.

When an ad inside an AdWebView requests to load a
url or performs call to HTML5 geolocation api, the Ad-
WebView performs a permission check to verify if the
associated advertisement origin has the needed advertise-
ment permission. These advertisement permissions can
be managed by the user.

About the only open policy question is whether we
should allow AdSplit HTML advertisements to maintain
long-term tracking cookies or whether we should dis-
able any persistent state. Certainly, persistent cookies
are a standard practice for web advertising, so they seem
like a reasonable feature to support here a well. AdWeb-
View, by default, doesn’t support persistent cookies, but
it would be trivial to add.

Implementation. We built an advertising application
that embeds an AdWebView widget, as discussed above.
The host application in this case specifies the URL of the
advertisement server to be loaded in the AdWebView at
initialization. We were successfully in downloading and
running advertisements from our sample advertisement
server.

Performance. Memory and performance overheads
are indistinguishable from our AdMob experiments.
Both versions host a WebView in a separate process, and

it’s the same HTML/JavaScript content running inside
the WebView.

8 Policy

While AdSplit allows for and incentivizes applications to
run distinct from their advertisements, there are a variety
of policy and user experience issues that we must still
address.

8.1 Advertisement blocking
Once advertisements run as distinct processes, some
fraction of the Android users will see this as an oppor-
tunity to block advertisements for good. Certainly, with
web browsers, extension like AdBlock and AdBlock Plus
are incredibly popular. The Chrome web store lists these
two extensions in its top six1 with “over a million” in-
stalls of each. (Google doesn’t disclose exact numbers.)

The Firefox add-ons page offers more details, claim-
ing that AdBlock Plus is far and away the most popu-
lar Firefox extension, having been installed just over 14
million times, versus 7 million for the next most popular
extension2. The Mozilla Foundation estimates that 85%
of their users have installed an extension [39]. Many will
install an ad blocker.

To pick one example, Ars Technica, a web site popular
with tech-savvy users, estimated that about 40% of its
users ran ad blockers [35]. At one point, it added code to
display blank pages to these users in an attempt to cajole
them into either paying for ad-free “premium” service,
or at least configuring their ad blocker to “white list” the
Ars Technica website.

Strategies such as this are perilous. Some users, faced
with a broken web site, will simply stop visiting it rather
than trying to sort out why it’s broken. Of course, many
web sites instead employ a variety of technical tricks to
get around ad blockers, ensuring their ads will still be
displayed.

Given what’s happening on the web, it’s reasonable to
expect a similar fraction of smartphone users might want
an ad blocker if it was available, with the concomitant
arms race in ad block versus ad display technologies.

So long as users have not “rooted” their phones, a va-
riety of core Android services can be relied upon by host
applications to ensure that the ads they’re trying to host
are being properly displayed with the appropriate adver-
tisement content. Similarly, advertising applications (or
HTML ads) can make SSL connections to their remote
servers, and even embed the proper remote server’s pub-
lic key certificate, to ensure they are downloading data

1https://chrome.google.com/webstore/category/popular
2https://addons.mozilla.org/en-US/firefox/extensions/?sort=users

USENIX Association 	 21st USENIX Security Symposium  563

from the proper source, rather than empty images from a
transparent proxy.

Once a user has rooted their phone, of course, all bets
are off. While it’s hard to measure the total number of
rooted Android phones, the CyanogenMod Android dis-
tribution, which requires a rooted phone for installation,
is installed on roughly 722 thousand phones3—a tiny
fraction of the hundreds of millions of Android phones
reported to be in circulation [43]. Given the relatively
small market share where such hacks might be possible,
advertisers might be willing to cede this fraction of the
market rather than do battle against it.

Consequently, for the bulk of the smartphone market-
place, advertising apps on Android phones offer greater
potential for blocking-detection and blocking-resistance
than advertising on the web, regardless of whether they
are served by in-process libraries or by AdSplit. Given
all the other benefits of AdSplit, we believe advertisers
and application vendors would prefer AdSplit over the
status quo.

8.2 Permissions and privacy
Some advertisers would appear to love their ability to
learn additional data about the user, including their loca-
tion, their contacts, and the other apps running on their
phone, and so forth. This information can help profile a
user, which can help target ads. Targeted ads, in turn, are
worth more money to the advertiser and thus worth more
money to the hosting application. When we offer HTML
style advertisements, with HTML-like security restric-
tions, the elegance of the solution seems to go against
the higher value profiling that advertisers desire.

Leaving aside whether it’s legal for advertisers to col-
lect this information, we have suggested that a host ap-
plication could make its own requests that violate the
users’ privacy and pass these into the AdSplit advertis-
ing app. Can we disincentivize such behavior? We hope
that, if we can successfully reduce apps’ default requests
for privileges that they don’t really need, then users will
be less accustomed to seeing such permission requests.
When they do occur, users will push back, refusing to
install the app. (Reading through the user-authored com-
ments in the Android Market, many apps with seem-
ingly excessive permission requirements will often have
scathing comments from users, along with technical jus-
tifications posted by the app authors to explain why each
permission is necessary.)

Furthermore, if advertisers ultimately prefer the Ad-
Split architecture, perhaps due to its improved resis-
tance to click fraud and so forth, then they will be
forced to make the trade-off between whether they pre-
fer improved integrity of their advertising platform,

3http://stats.cyanogenmod.com/

or whether they instead want less integrity but more
privacy-violating user details.

9 Related Work

Android has become quite popular with the security com-
munity, with researchers considering many aspects of the
system.

9.1 Android advertisements

A number of researchers have considered the Android
advertisement problem concurrent with our own work.

AdDroid [45] proposed a separation of advertisements
similar to our HTML ads design (outlined in Section 7)
by introducing a system service for advertisements. Ad-
Droid does not use our process separation or otherwise
defeat a malicious host application.

Leontiadis et al. [33] proposed market mechanisms
which through peer pressure and user reviews incen-
tivizes developers to reduce permission bloat due to ad-
vertisements. They introduced a separate advertisement
service which exposes an intent which apps can sub-
scribe to. Apps display advertisements in a specific UI
gadget similar to our AdView. To limit privacy leaks,
they monitor the flow of data between advertisement ser-
vice and apps and use the information to reduce revenue
of misbehaving apps and advertisements.

Roesner et al. [49] described user driven access con-
trol gadgets (ACGs). The kernel manages input isolation
and provides a trusted path to ACGs, solving a problem
similar to what we address in AdSplit with Quire signed
statements.

While not directly considering security issues, Pathak
et al. [44] analyzed the energy use in popular mobile apps
and found that 65%-75% of apps energy budget is spent
in third-party advertisement libraries. We note that Ad-
Split’s process separation architecture allows the operat-
ing system to easily distinguish between advertisements
and their hosting applications, allowing for a variety of
energy management policies.

9.2 Web security

AdSplit considers an architecture to allow for controlled
mashups of advertisements and applications on a smart-
phone. The web has been doing this for a while (as dis-
cussed in Section 3.1). Additionally, researchers have
considered a variety of web extensions to further contain
browser components in separate processes [26, 48], in-
cluding constructing browser-based multi-principal op-
erating systems [28, 54].

564  21st USENIX Security Symposium	 USENIX Association

9.3 JavaScript sandboxes

Caja [37] and ADsafe [1] work as JavaScript sand-
boxes which use static and dynamic checks to safely
host JavaScript code. They use a safe subset of
JavaScript, eliminating dangerous primitives like eval
or document.write that could allow an advertisement
to take over an entire web page. Instead, advertisements
are given a limited API to accomplish what they need.
AdSplit can trivially host advertisements built against
these systems, and as their APIs evolve, they could be
directly supported by out AdWebView class. Addition-
ally, because we run the AdWebView in a distinct process
with its own user-id and permissions, we provide a strong
barrier against advertisement misbehavior impacting the
rest of the platform.

9.4 Advertisement privacy

Privad [27] and Juels et al. [30] address security issues
related to privacy and targeted advertising for web ads.
They use client side software that prevents behavior pro-
filing of users and allows targeted advertisements with-
out compromising user privacy.

AdSplit does not address privacy problems related to
targeted advertisements but it provides framework for
implementing various policies on advertisements.

9.5 Smart phone platform security

As mobile phone hardware and software increase in com-
plexity the security of the code running on a mobile de-
vices has become a major concern.

The Kirin system [16] and Security-by-Contract [12]
focus on enforcing install time application permissions
within the Android OS and .NET framework respec-
tively. These approaches to mobile phone security allow
a user to protect themselves by enforcing blanket restric-
tions on what applications may be installed or what in-
stalled applications may do, but do little to protect the
user from applications that collaborate to leak data or
protect applications from one another.

Saint [42] extends the functionality of the Kirin sys-
tem to allow for runtime inspection of the full system
permission state before launching a given application.
Apex [41] presents another solution for the same prob-
lem where the user is responsible for defining run-time
constraints on top of the existing Android permission
system. Both of these approaches allow users to specify
static policies to shield themselves from malicious ap-
plications, but don’t allow apps to make dynamic policy
decisions.

CRePE [11] presents a solution that attempts to artifi-
cially restrict an application’s permissions based on envi-

ronmental constraints such as location, noise, and time-
of-day. While CRePE considers contextual information
to apply dynamic policy decisions, it does not attempt to
address privilege escalation attacks.

9.5.1 Privilege escalation

XManDroid [8] presents a solution for privilege es-
calation and collusion by restricting communication at
runtime between applications where the communication
could open a path leading to dangerous information flows
based on Chinese Wall-style policies [7] (e.g., forbidding
communication between an application with GPS privi-
leges and an application with Internet access). While this
does protect against some privilege escalation attacks,
and allows for enforcing a more flexible range of poli-
cies, applications may launch denial of service attacks on
other applications (e.g., connecting to an application and
thus preventing it from using its full set of permissions)
and it does not allow the flexibility for an application to
regain privileges which they lost due to communicating
with other applications.

One feature of Quire that is not used in AdSplit is
its ability to defeat confused deputy attacks, by annotat-
ing IPCs with the entire call chain. In concurrent work
to Quire, Felt et al. present a solution to what they
term “permission re-delegation” attacks against deputies
on the Android system [20]. With their “IPC inspec-
tion” system, apps that receive IPC requests are poly-
instantiated based on the privileges of their callers, en-
suring that the callee has no greater privileges than the
caller. IPC inspection addresses the same confused
deputy attack as Quire’s “security passing” IPC anno-
tations, however the approaches differ in how inten-
tional deputies are handled. With IPC inspection, the
OS strictly ensures that callees have reduced privileges.
They have no mechanism for a callee to deliberately of-
fer a safe interface to an otherwise dangerous primitive.
Unlike Quire, however, IPC inspection doesn’t require
apps to be recompiled or any other modifications to be
made to how apps make IPC requests.

(AdSplit does not require Quire’s IPC inspection sys-
tem, and thus also does not require apps to be recompiled
to have the semantics described in this paper.)

More recent work has focused on kernel extensions
that can observe IPC traffic, label files, and enforce a
variety of policies [9, 52]. These systems can enhance
the assurance of many of the above techniques by cen-
tralizing the policy specification and enforcement mech-
anisms.

USENIX Association 	 21st USENIX Security Symposium  565

9.5.2 Dynamic taint analysis on Android

The TaintDroid [15] and ParanoidAndroid [46] projects
present dynamic taint analysis techniques to preventing
runtime attacks and data leakage. These projects attempt
to tag objects with metadata in order to track information
flow and enable policies based on the path that data has
taken through the system. TaintDroid’s approach to in-
formation flow control is to restrict the transmission of
tainted data to a remote server by monitoring the out-
bound network connections made from the device and
disallowing tainted data to flow along the outbound chan-
nels.

AdSplit allows ads to run in separate processes but ap-
plications can still pass sensitive information to separated
advertisements. TaintDroid and ParanoidAndroid can be
used to detect and prevent any such flow of information.
Thus they are complementary to AdSplit.

10 Future Work

The work in this paper touches on a trend that will be-
come increasingly prevalent over the next several years:
the merger of the HTML security model and the smart-
phone application security model. Today, HTML is
rapidly evolving from its one-size-fits-all security origins
to allow additional permissions, such access to location
information, for specific pages that are granted those per-
missions by the user. HTML extensions are similarly
granted varying permissions rather than having all-or-
nothing access [4, 34].

On the flip side, iOS apps originally ran with full, un-
restricted access to the platform, subject only to vague
policies enforced by human auditors. Only access to lo-
cation information was restricted. In contrast, the An-
droid security model restricts the permissions of apps,
with many popular apps running without any optional
permissions at all. Despite this, Android malware is
a growing problem, particularly from third-party app
stores (see, e.g., [19, 56]). Clearly, there’s a need for
more restrictive Android security, more like the one-size-
fits-all web security model.

While the details of how exactly web apps and smart-
phone apps will eventually combine, our paper shows
where this merger is already underway: when web con-
tent is embedded in a smartphone app. Well beyond ad-
vertising, a variety of smartphone apps take the strategy
of using native code to set up one or more web views,
then do the rest in HTML and JavaScript. This has sev-
eral advantages: it makes it easier to support an app
across many different smartphone platforms. It also al-
lows authors to quickly update their apps, without need-
ing to go through a third-party review process.

These trends, plus the increasing functionality in

HTML5, suggest that “native” apps may well be entirely
supplanted by some sort of “mobile HTML” variant, not
unlike HP/Palm’s WebOS, where every app is built this
way4.

Maybe this will result in a industry battle royale, but
it will also offer the ability to ask a variety of interesting
security questions. For example, consider the proposed
“web intents” standard5. How can an “external” web in-
tent interact safely with the “internal” Android intent sys-
tem? Both serve essential the same purpose and use sim-
ilar mechanisms. We, and others, will pursue these new
technologies toward their (hopefully) interesting conclu-
sions.

11 Conclusion

We have presented AdSplit, an Android-based advertis-
ing system that provides advertisers integrity guarantees
against potentially hostile applications that might host
them. AdSplit leverages several mechanisms from Quire
to ensure that UI events are correct and to communicate
to the outside world in a fashion that hosting applica-
tions cannot forge. AdSplit runs with marginal perfor-
mance overhead and, with our HTML-based design, of-
fers a clear path toward widespread adoption. AdSplit
not only protects advertisers against click fraud and ad
blocking, it also reduces the need for permission bloat
among advertising-supported free applications, and has
the potential to reduce the incentive for applications to
leak privacy-sensitive user information in return for bet-
ter advertising revenues.

Acknowledgments

We would like to thank Adrienne Porter Felt, David Wag-
ner, Adam Pridgen, and Daniel Sandler for their valuable
feedback. This work builds on our prior Quire project.
We would like to thank Yuliy Pisetsky and Anhei Shu for
their assistance and efforts. This work was supported in
part by NSF grants CNS-1117943 and CNS-0524211.

References

[1] ADsafe. ADsafe, Feb. 2012. http://www.adsafe.org.

[2] Android. Processes and Threads | Android Develop-
ers, Nov. 2011. http://developer.android.com/guide/topics/
fundamentals/processes-and-threads.html.

[3] Android Open Source Project. dex - Dalvik Executable
Format, Nov. 2007. http://source.android.com/tech/dalvik/
dex-format.html.

4http://developer.palm.com/blog
5http://webintents.org/

566  21st USENIX Security Symposium	 USENIX Association

[4] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protect-
ing browsers from extension vulnerabilities. In 17th Net-
work and Distributed System Security Symposium (NDSS
’10), San Diego, CA, Feb. 2010.

[5] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses
for cross-site request forgery. In 15th ACM Conference
on Computer and Communications Security (CCS ’08),
Alexandria, VA, Oct. 2008.

[6] A. Barth, C. Jackson, and J. C. Mitchell. Securing frame
communication in browsers. In 17th USENIX Security
Symposium, San Jose, CA, July 2008.

[7] D. F. C. Brewer and M. J. Nash. The Chinese wall security
policy. In Proceedings of the 1989 IEEE Symposium on
Security and Privacy, pages 206–214, Oakland, CA, May
1989.

[8] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-
R. Sadeghi. XManDroid: A new Android evolution
to mitigate privilege escalation attacks. Technical Re-
port TR-2011-04, Technische Universität Darmstadt, Apr.
2011. http://www.trust.informatik.tu-darmstadt.de/fileadmin/
user_upload/Group_TRUST/PubsPDF/xmandroid.pdf.

[9] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R.
Sadeghi, and B. Shastry. Towards taming privilege-
escalation attacks on Android. In 19th Network and
Distributed System Security Symposium (NDSS ’12), San
Diego, CA, Feb. 2012.

[10] T. Cheshire. In depth: How Rovio made Angry
Birds a winner (and what’s next). Wired, Mar.
2011. http://www.wired.co.uk/magazine/archive/2011/04/
features/how-rovio-made-angry-birds-a-winner.

[11] M. Conti, V. T. N. Nguyen, and B. Crispo. CRePE:
Context-related policy enforcement for Android. In 13th
Information Security Conference (ISC ’10), Boca Raton,
FL, Oct. 2010.

[12] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts,
F. Piessens, I. Siahaan, and D. Vanoverberghe. Security-
by-contract on the .NET platform. Information Security
Technical Report, 13(1):25–32, 2008.

[13] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wal-
lach. Quire: Lightweight provenance for smart phone op-
erating systems. In 20th USENIX Security Symposium,
San Francisco, CA, Aug. 2011.

[14] eLinux.org. Android Memory Usage, Feb. 2012. http:
//elinux.org/Android_Memory_Usage.

[15] W. Enck, P. Gilbert, C. Byung-gon, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In 9th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
’10), pages 393–408, Vancouver, B.C., Oct. 2010.

[16] W. Enck, M. Ongtang, and P. McDaniel. On lightweight
mobile phone application certification. In 16th ACM Con-
ference on Computer and Communications Security (CCS
’09), Chicago, IL, Nov. 2009.

[17] Federal Trade Commission. Mobile Privacy for Kids:
Current Privacy Disclosures are Disappointing, Feb.
2012. http://ftc.gov/os/2012/02/120216mobile_apps_kids.
pdf.

[18] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android Permissions Demystified. In 18th ACM Confer-
ence on Computer and Communications Security (CCS
’11), Chicago, IL, 2011.

[19] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner.
A survey of mobile malware in the wild. In 1st ACM
Workshop on Security and Privacy in Smartphones and
Mobile Devices (SPSM ’11), Chicago, IL, Oct. 2011.

[20] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission re-delegation: Attacks and defenses.
In 20th USENIX Security Symposium, San Fansisco, CA,
Aug. 2011.

[21] Google. View: Android developer reference, Feb.
2011. http://developer.android.com/reference/android/view/
View.html#Security.

[22] Google Inc. Google AdMob Ads Android Fundamen-
tals, Nov. 2011. http://code.google.com/mobile/ads/docs/
android/fundamentals.html.

[23] Google Project Hosting. android-apktool - A tool for
reengineering Android apk files, Feb. 2012. http://code.
google.com/p/android-apktool.

[24] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe
exposure analysis of mobile in-app advertisements. In 5th
ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec ’12), Tucson, AZ, Apr. 2012.

[25] GreyStripe Inc. Android - SDK Integration Overview,
Nov. 2011. http://wiki.greystripe.com/index.php/Android#
AndroidManifest.xml.

[26] C. Grier, S. Tang, and S. T. King. Secure web browsing
with the OP web browser. In 2008 IEEE Symposium on
Security and Privacy, Oakland, CA, May 2008.

[27] S. Guha, B. Cheng, and P. Francis. Privad: Practi-
cal privacy in online advertising. In 8th Symposium on
Networked Systems Design and Implementation (NSDI),
Boston, MA, Mar. 2011.

[28] J. Howell, C. Jackson, H. J. Wang, and X. Fan. Mashu-
pOS: Operating system abstractions for client mashups.
In 11th USENIX Workshop on Hot Topics in Operating
Systems (HotOS ’07), pages 1–7, 2007.

[29] InMobi. InMobi Android SDK - Version a300, Nov. 2011.
http://developer.inmobi.com/wiki/index.php?title=Android.

[30] A. Juels. Targeted advertising ... and privacy too. In
2001 Conference on Topics in Cryptology: The Cryp-
tographer’s Track at RSA (CT-RSA 2001), San Francisco,
CA, Apr. 2001.

[31] A. Juels, S. Stamm, and M. Jakobsson. Combating click
fraud via premium clicks. In 16th USENIX Security Sym-
posium, Boston, MA, 2007.

[32] Jumptap. Jumptap Android SDK Integration, Nov.
2011. https://support.jumptap.com/index.php/Jumptap_
Android_SDK_Integration.

USENIX Association 	 21st USENIX Security Symposium  567

[33] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo.
Don’t kill my ads! Balancing privacy in an ad-supported
mobile application market. In 12th Workshop on Mobile
Computing Systems & Applications (HotMobile ’12), San
Diego, CA, Feb. 2012.

[34] L. Liu, X. Zhang, G. Yan, and S. Chen. Chrome exten-
sions: Threat analysis and countermeasures. In 19th Net-
work and Distributed System Security Symposium (NDSS
’12), San Diego, CA, Feb. 2012.

[35] L. McGann. How Ars Technica’s “experiment”
with ad-blocking readers built on its community’s
affection for the site. Nieman Journalism Lab,
Mar. 2010. http://www.niemanlab.org/2010/03/how-ars-
technica-made-the-ask-of-ad-blocking-readers/.

[36] Millenial Media. Millennial Media Android SDK - Ver-
sion 4.5.0, Nov. 2011. http://wiki.millennialmedia.com/
index.php/Android.

[37] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay.
Caja: Safe active content in sanitized JavaScript. Google,
Dec. 2007. http://google-caja.googlecode.com/files/caja-
2007.pdf.

[38] Mobclix. Mobclix SDK Integration Guide Version 3.1.0,
Nov. 2011. https://developer.mobclix.com/help/advertising/
sdk_api/android.

[39] Mozilla Foundation. How Many Firefox Users Have Add-
Ons Installed? 85%!, June 2011. http://blog.mozilla.com/
addons/2011/06/21/firefox-4-add-on-users/.

[40] MSDN. About Cross-Frame Scripting and Secu-
rity., Oct. 2011. http://msdn.microsoft.com/en-us/library/
ms533028(v=vs.85).aspx.

[41] M. Nauman, S. Khan, and X. Zhang. Apex: extending
Android permission model and enforcement with user-
defined runtime constraints. In 5th ACM Symposium
on Information, Computer and Communications Secu-
rity(ASIACCS ’10), pages 328–332, Beijing, China, Apr.
2010.

[42] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel.
Semantically rich application-centric security in Android.
In 25th Annual Computer Security Applications Confer-
ence (ACSAC ’09), Honolulu, HI, Dec. 2009.

[43] M. Panzarino. Google: About 190 Million Android
Devices Activated Worldwide. That’s About 576900
A Day Since May. The Next Web, Oct. 2011.
http://thenextweb.com/google/2011/10/13/google-190-
million-android-devices-activated-worldwide-thats-about-
576900-a-day-since-may/.

[44] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy
spent inside my app? Fine grained energy accounting on
smartphones with eprof. In 7th ACM European Confer-
ence on Computer Systems (EuroSys ’12), Bern, Switzer-
land, Apr. 2012.

[45] P. Pearce, A. P. Felt, and D. Wagner. AdDroid: Priv-
ilege separation for applications and advertisers in An-
droid. In 7th ACM Symposium on Information, Computer
and Communications Security (AsiaCCS ’12), Seoul, Ko-
rea, May 2012.

[46] G. Portokalidis, P. Homburg, K. Anagnostakis, and
H. Bos. Paranoid Android: Zero-day protection for smart-
phones using the cloud. In Annual Computer Security
Applications Conference (ACSAC ’10), Austin, TX, Dec.
2010.

[47] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Mon-
rose. All your iFRAMEs point to us. In 17th USENIX
Security Symposium, San Jose, CA, July 2008.

[48] C. Reis and S. D. Gribble. Isolating web programs in
modern browser architectures. In 4th ACM European
Conference on Computer systems (EuroSys ’09), Nurem-
berg, Germany, Apr. 2009.

[49] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J.
Wang, and C. Cowan. User-Driven Access Control: Re-
thinking permission granting in modern operating sys-
tems. In 2012 IEEE Symposium on Security and Privacy,
Berkeley, CA, May 2012.

[50] G. Rydstedt, E. Bursztein, and D. Boneh. Framing attacks
on smart phones and dumb routers: Tap-jacking and geo-
localization. In USENIX Workshop on Offensive Tech-
nologies (wOOt ’10), Washington, DC, Aug. 2010.

[51] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson.
Busting frame busting: a study of clickjacking vulnerabil-
ities at popular sites. In IEEE Oakland Web 2.0 Security
and Privacy (W2SP ’10), Oakland, CA, May 2010.

[52] S. Smalley. The case for SE Android. In
Linux Security Summit 2011, Santa Rosa, CA, Sept.
2011. http://selinuxproject.org/~jmorris/lss2011_slides/
caseforseandroid.pdf.

[53] Tapjoy. Getting Started with Publisher SDK, Nov.
2011. http://knowledge.tapjoy.com/integration-8-x/android/
publisher/getting-started-with-offers-sdk.

[54] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choud-
hury, and H. Venter. The multi-principal OS construction
of the Gazelle web browser. In 18th USENIX Security
Symposium, Montreal, Canada, Aug. 2009.

[55] World Wide Web Consortium (W3C). Frames in
HTML Documents, Nov. 2011. http://www.w3.org/TR/
REC-html40/present/frames.html#h-16.5.

[56] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you,
get off of my market: Detecting malicious apps in official
and alternative Android markets. In 19th Network and
Distributed System Security Symposium (NDSS ’12), San
Diego, CA, Feb. 2012.

USENIX Association 	 21st USENIX Security Symposium  569

DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views
for Dynamic Android Malware Analysis

Lok Kwong Yan†‡ Heng Yin†

†Syracuse University ‡Air Force Research Laboratory
Syracuse, New York, USA Rome, New York, USA

{loyan, heyin}@syr.edu

Abstract
The prevalence of mobile platforms, the large market
share of Android, plus the openness of the Android Mar-
ket makes it a hot target for malware attacks. Once a mal-
ware sample has been identified, it is critical to quickly
reveal its malicious intent and inner workings. In this
paper we present DroidScope, an Android analysis plat-
form that continues the tradition of virtualization-based
malware analysis. Unlike current desktop malware anal-
ysis platforms, DroidScope reconstructs both the OS-
level and Java-level semantics simultaneously and seam-
lessly. To facilitate custom analysis, DroidScope ex-
ports three tiered APIs that mirror the three levels of an
Android device: hardware, OS and Dalvik Virtual Ma-
chine. On top of DroidScope, we further developed sev-
eral analysis tools to collect detailed native and Dalvik
instruction traces, profile API-level activity, and track in-
formation leakage through both the Java and native com-
ponents using taint analysis. These tools have proven to
be effective in analyzing real world malware samples and
incur reasonably low performance overheads.

1 Introduction
Android is a popular mobile operating system that is in-
stalled in millions of devices and accounted for more
than 50% of all smartphone sales in the third quarter of
2011 [22]. The popularity of Android and the open na-
ture of its application marketplace makes it a prime tar-
get for attackers. Malware authors can freely upload ma-
licious applications to the Android Market1 waiting for
unsuspecting users to download and install them. Ad-
ditionally, numerous third-party alternative marketplaces
make delivering malicious applications even easier. In-
deed recent research has shown that malicious applica-
tions exist in both the official and unofficial marketplaces
with a rate of 0.02% and 0.2% respectively [41].

1The Android Market has been superceded by the Android Apps
Store in Google Play.

Malware analysis and exploit diagnosis on desktop
systems is well researched. It is widely accepted that
dynamic analysis is indispensable, because malware is
often heavily obfuscated to thwart static analysis. Fur-
thermore, runtime information is often needed for exploit
diagnosis. In particular, much work has leveraged virtu-
alization techniques, either whole-system software emu-
lation or hardware virtualization, to introspect and ana-
lyze illicit activities within the virtual machine [11, 15,
18, 31, 33, 39, 37].

The advantages of virtualization-based analysis ap-
proaches are two-fold: 1) as the analysis runs under-
neath the entire virtual machine, it is able to analyze even
the most privileged attacks in the kernel; and 2) as the
analysis is performed externally, it becomes very diffi-
cult for an attack within the virtual machine to disrupt
the analysis. The downside, however, is the loss of se-
mantic contextual information when the analysis com-
ponent is moved out of the box. To reconstruct the se-
mantic knowledge, virtual machine introspection (VMI)
is needed to intercept certain kernel events and parse ker-
nel data structures [16, 21, 24]. Based on this idea, sev-
eral analysis platforms (such as Anubis [1], Ether [15],
and TEMU [35]) have been implemented.

Despite the fact that Android is based on Linux, it
is not straightforward to take the same desktop analy-
sis approach for Android malware. There are two lev-
els of semantic information that must be rebuilt. In the
lower level, Android is a Linux operating system where
each Android application (or App in short) is encapsu-
lated into a process. Within each App, a virtual machine
(known as the Dalvik Virtual Machine) provides a run-
time environment for the App’s Java components.

In essence, to enable the virtualization-based analysis
approach for Android malware analysis, we need to re-
construct semantic knowledge at two levels: 1) OS-level
semantics that understand the activities of the malware
process and its native components; and 2) Java-level se-
mantics that comprehend the behaviors in the Java com-

1

570  21st USENIX Security Symposium	 USENIX Association

ponents. Ideally, to capture the interactions between Java
and native components, we need a unified analysis plat-
form that can simultaneously rebuild these two semantic
views and seamlessly bind these two views with the exe-
cution context.

With this goal in mind, we designed and implemented
a new analysis platform, DroidScope, for Android mal-
ware analysis. DroidScope is built on top of QEMU (a
CPU emulator [3]) and is able to reconstruct the OS-
level and Java-level semantic views completely from the
outside. Enriched with the semantic knowledge, Droid-
Scope further provides a set of APIs to help analysts
implement custom analysis plugins. To demonstrate the
capability of DroidScope, we have implemented several
tools, including native instruction tracer and Dalvik in-
struction tracer to obtain detailed instruction traces, API
tracer to log an App’s interactions with the Android sys-
tem, and taint tracker to analyze information leakage.

We evaluated the performance impacts of these tools
on 12 different benchmarks and found that the instru-
mentation overhead is reasonably low and taint analysis
performance (from 11 to 34 times slowdown) is compa-
rable with other taint analysis systems. We further eval-
uated the capability of these tools using two real world
Android malware samples: DroidKungFu and Droid-
Dream. They both have Java and native components as
well as payloads that try to exploit known vulnerabili-
ties. We were able to analyze their behavior without any
changes to the virtual Android device, and obtain valu-
able insights.

In summary, this paper makes the following contribu-
tions:

• We describe two-level virtual machine introspection to
rebuild the Linux and Dalvik contexts of virtual An-
droid devices. Dalvik introspection also includes a
technique to dynamically disable Dalvik Just-In-Time
compilation.

• We present DroidScope, a new emulation based An-
droid malware analysis engine that can be used to an-
alyze the Java and native components of Android Ap-
plications. DroidScope exposes an event-based anal-
ysis interface with three sets of APIs that correspond
to the three different abstraction levels of an Android
Device, hardware, Linux and Dalvik.

• We developed four analysis tools on DroidScope. The
native instruction tracer and Dalvik instruction tracer
provide detailed accounts of the analysis sample’s exe-
cution, while the API tracer provides a high level view
of how the sample interacts with the rest of the system.
The taint tracker implements dynamic taint analysis
on native instructions but is capable of tracking taint
through Java Objects with the help of the Dalvik view
reconstruction. These tools were used to instrument

Linux Kernel

Zygote
System
Services

 Dalvik VM

Java
Component

Java
Component

Java Libraries Java Libraries

Native
Component

Java Libraries

System
Libraries

System
Libraries

System
Libraries

JNI

Figure 1: Overview of Android System

and analyze two real-world malware samples: Droid-
KungFu and DroidDream.

2 Background and Motivation
In this section, we give an overview of the Android sys-
tem and existing Android malware analysis techniques to
motivate our new analysis platform.

2.1 Android System Overview
Figure 1 illustrates the architecture of the Android sys-
tem from the perspective of a system programmer. At
the lowest level, the Android system uses a customized
Linux kernel to manage various system resources and
hardware devices. System services, native applications
and Apps run as Linux processes. In particular, Zygote
is the parent process for all Android Apps. Each App
is assigned its own unique user ID (uid) at installation
time and group IDs (gids) corresponding to requested
permissions. These uids and gids are used to control
access to system resources (i.e, network and file system)
like on a normal Linux system.

All Apps can contain both Java and native compo-
nents. Native components are simply shared libraries
that are dynamically loaded at runtime. The Dalvik vir-
tual machine (DVM), a shared library named libdvm.so,
is then used to provide a Java-level abstraction for the
App’s Java components. At the same time, the Java Na-
tive Interface (JNI) is used to facilitate communications
between the native and Java sides.

To create a Java component, an App developer first
implements it in Java, compiles it into Java bytecode, and
then converts it into Dalvik bytecode. The result is a
Dalvik executable called a dex file. The developer can
also compile native code into shared libraries, .so files,
with JNI support. The dex file, the shared libraries and
any other resources, including the AndroidManifest.xml
file that describes the App, are packaged together into an
apk file for distribution.

For instance, DroidKungFu is a malicious puzzle

2

USENIX Association 	 21st USENIX Security Symposium  571

game found in alternative marketplaces [25]. Its Java
component exfiltrates sensitive information and awaits
commands from the bot master. Its native component is
used as a shell to execute those commands and it also in-
cludes three resource files that are encrypted exploits tar-
geting known vulnerabilities, adb setuid exhaustion and
udev [12], in certain versions of Android.

For security analysts, once a new Android malware
instance has been identified, it is critical to quickly re-
veal its malicious functionality and understand its inner-
workings. This often involves both static and dynamic
analysis.

2.2 Android Malware Analysis
Like malware analysis on the desktop environment, An-
droid malware analysis techniques can fall into two cat-
egories: static and dynamic. For static analysis, the sam-
ple’s dex file can be analyzed by itself or it can be disas-
sembled and further decompiled into Java using tools like
dex2jar and ded [13]. Standard static program analysis
techniques (such as control-flow analysis and data-flow
analysis) can then be performed. As static analysis can
give a complete picture, researchers have demonstrated
this approach to be very effective in many cases [20].

However, static analysis is known to be vulnerable
to code obfuscation techniques, which are common-
place for desktop malware and are expected for An-
droid malware. In fact, the Android SDK includes a
tool named Proguard [34] for obfuscating Apps. An-
droid malware may also generate or decrypt native com-
ponents or Dalvik bytecode at runtime. Indeed, Droid-
KungFu dynamically decrypts the exploit payloads and
executes them to root the device. Moreover, researchers
have demonstrated that bytecode randomization tech-
niques can be used to completely hide the internal logic
of a Dalvik bytecode program [14]. Static analysis also
falls short for exploit diagnosis, because a vulnerable
runtime execution environment is needed to observe and
analyze an exploit attack and pinpoint the vulnerability.

Complementary to static analysis, dynamic analysis is
immune to code obfuscation and is able to see the mali-
cious behavior on an actual execution path. Its downside
is lack of code coverage, although it can be ameliorated
by exploiting multiple execution paths [6, 9, 31]. The
Android SDK includes a set of tools, such as adb and
logcat, to help developers debug their Apps. With
JDWP (Java Debug Wire Protocol) support, the debug-
ger can even exist outside of the device. However, just
like how desktop malware detects and disables debug-
gers, malicious Android Apps can also detect the pres-
ence of these tools, and then either evade or disable the
analysis. The fundamental reason is that the debugging
components and malware reside in the same execution
environment with the same privileges.

Linux Kernel

Zygote
System
Services

 Dalvik VM

Java
Component

Java
Component

Java Libraries Java Libraries

Native
Component

Java Libraries

System
Libraries

System
Libraries

System
Libraries

JNI

OS-level
View

Java-level
View

DroidScope

Instrum
entation Interface

API
Tracer

Native
Insn. Tracer

Dalvik
Insn. Tracer

Taint
Tracker

Java
Component

Java
Component

Figure 2: DroidScope Overview

Virtualization based analysis has proven effective
against evasion, because all of the analysis components
are out of the box and are more privileged than the run-
time environment being analyzed, including the mal-
ware. Based on dynamic binary translation and hard-
ware virtualization techniques, several analysis plat-
forms [1, 15, 38] have been built for analyzing desktop
malware. These platforms are able to bridge the seman-
tic gap between the hardware-level view from the virtual
machine monitor and the OS-level view within the vir-
tual machine using virtual machine introspection tech-
niques [16, 21, 24].

However, these tools cannot be immediately used for
Android malware analysis. Android has two levels of
semantic views, OS and Java, that need to be recon-
structed versus the one for desktop malware. To enable
virtualization-based analysis for Android malware, we
need a unified analysis platform that reconstructs these
two levels of views simultaneously and seamlessly binds
these two views such that interactions between Java com-
ponents and native components can be monitored and an-
alyzed.

3 Architecture
DroidScope’s architecture is depicted in Figure 2. The
entire Android system (including the malware) runs on
top of an emulator, and the analysis is completely per-
formed from the outside. By integrating the changes into
the emulator, the Android system remains unchanged
and different virtual devices can be loaded. To ensure the
best compatibility with virtual Android devices, we ex-
tended the QEMU [3] based Android emulator that ships
with the Android SDK. This is done in three aspects: 1)
we introspect the guest Android system and reconstruct
OS-level and Java-level views simultaneously; 2) as a
key binary analysis technique, we implement dynamic
taint analysis; and 3) we provide an analysis interface to
help analysts build custom analysis tools. Furthermore,
we made similar changes to a different version of QEMU

3

572  21st USENIX Security Symposium	 USENIX Association

to enable x86 support.
To demonstrate the capabilities of DroidScope, we

have developed several analysis tools on it. The API
tracer monitors the malware’s activities at the API level
to reason about how the malware interacts with the An-
droid runtime environment. This tool monitors how the
malware’s Java components communicate with the An-
droid Java framework, how the native components inter-
act with the Linux system, and how Java components and
native components communicate through the JNI inter-
face.

The native instruction tracer and Dalvik instruction
tracer look into how a malicious App behaves internally
by recording detailed instruction traces. The Dalvik in-
struction tracer records Dalvik bytecode instructions for
the malware’s Java components and the native instruc-
tion tracer records machine-level instructions for the na-
tive components (if they exist).

The taint tracker observes how the malware obtains
and leaks sensitive information (e.g., GPS location, IMEI
and IMSI) by leveraging the taint analysis component
in DroidScope. Dynamic taint analysis has been pro-
posed as a key technique for analyzing desktop malware
particularly with respect to information leakage behav-
ior [18, 39]. It is worth noting that DroidScope performs
dynamic taint analysis at the machine code level. With
semantic knowledge at both OS and Java levels, Droid-
Scope is able to detect information leakage in Java com-
ponents, native components, or even collusive Java and
native components.

We have implemented DroidScope to support both
ARM and x86 Android systems. Due to the fact that the
ARM architecture is most widely used for today’s mo-
bile platforms, we focus our discussion on ARM support,
which is also more extensively tested.

4 Semantic View Reconstruction
We discuss our methodology for rebuilding the two lev-
els of semantic views in this section. We first discuss how
information about processes, threads, memory mappings
and system calls are rebuilt at runtime. This constitutes
the OS-level view. Then from the memory mapping, we
locate the Dalvik Virtual Machine and further rebuild the
Java or Dalvik-level view.

4.1 Reconstructing the OS-level View
The OS-level view is essential for analyzing native com-
ponents. It also serves a basis for obtaining the Java-level
view for analyzing Java components. The basic tech-
niques for reconstructing the OS-level view have been
well studied for the x86 architecture and are generally
known as virtual machine introspection [16, 21, 24]. We
employ similar techniques in DroidScope. We begin by
first describing our changes to the Android emulator to

enable basic instrumentation support.

Basic Instrumentation QEMU is an efficient CPU em-
ulator that uses dynamic binary translation. The normal
execution flow in QEMU is as follows: 1) a basic block
of guest instructions is disassembled and translated into
an intermediate representation called TCG (Tiny Code
Generator); 2) the TCG code block is then compiled
down to a block of host instructions and stored in a
code cache; and 3) control jumps into the translated code
block and guest execution begins. Subsequent execution
of the same guest basic blocks will skip the translation
phase and directly jump into the translated code block in
the cache.

To perform analysis, we need to instrument the trans-
lated code blocks. More specifically, we insert extra
TCG instructions during the code translation phase, such
that this extra analysis code is executed in the execu-
tion phase. For example. in order to monitor context
switches, we insert several TCG instructions to call a
helper function whenever the translation table registers
(system control co-processor c2 base0 and c2 base1 in
QEMU) are written to.

With basic instrumentation support, we extract the fol-
lowing OS-level semantic knowledge: system calls, run-
ning processes, including threads, and the memory map.

System Calls A user-level process has to make system
calls to access various system resources and thus obtain-
ing its system call behavior is essential for understanding
malicious Apps. On the ARM architecture, the service
zero instruction svc #0 (also known as swi #0) is used to
make system calls with the system call number in register
R7. This is similar to x86 where the int 0x80 instruction
is used to transition into privileged mode and the system
call number is passed through the eax register.

To obtain the system call information, we instrument
these special instructions, i.e. insert the additional TCG
instructions, to call a callback function that retrieves ad-
ditional information from memory. For important sys-
tem calls (e.g. open, close, read, write, connect, etc.), the
system call parameters and return values are retrieved as
well. As a result, we are able to understand how a user-
level process accesses the file system and the network,
communicates with another process, and so on.

Processes and Threads From the operating system per-
spective, Android Apps are user-level processes. There-
fore, it is important to know what processes are active
and which one is currently running. In Linux kernel 2.6,
the version used in Gingerbread (Android 2.3), the basic
executable unit is the task which is represented by the
task struct structure. A list of active tasks is main-
tained in a task struct list which is pointed to by
init task. To make this information readily available
to analysis tools, DroidScope maintains a shadow task

4

USENIX Association 	 21st USENIX Security Symposium  573

list with select information about each task.

To distinguish between a thread and a process, we
gather a task’s process identifier pid as well as its thread
group identifier tgid. The pgd (the page global di-
rectory that specifies the memory space of a process),
uid (the unique user ID associated with each App), and
the process’ name are also maintained as part of the
shadow task list. Additionally, our experience has shown
that malware often escalates its privileges or spawns
child process(es) to perform additional duties. Thus,
our shadow task list also contains the task’s credentials,
i.e. uid, gid, euid, egid as well as the process’
parent pid.

Special attention is paid to a task’s name since the
comm field in task struct can only store up to 15
characters. This is often insufficient to store the App’s
full name, making it difficult to pinpoint a specific App.
To address this issue, we also obtain the complete appli-
cation name from the command line cmdline, which
is pointed to by the mm struct structure pointed to by
task struct. Note that the command line is located
in user-space memory, which is not shared like kernel-
space memory where all the other structures and fields
reside. To retrieve it, we must walk the task’s page table
to translate the virtual address into a physical one and
then read it based on the physical address.

According to the design of the Linux kernel, the
task struct for the current process can be easily
located. The current thread info structure is al-
ways located at the (stack pointer & 0x1FFF), and
thread info has a pointer pointing to the current
task struct. We iterate through all active tasks by
following the doubly linked task struct list. We
also update our shadow list whenever the base informa-
tion changes. We do this by monitoring four system calls
sys fork, sys execve, sys clone and sys prctl, and updat-
ing the shadow task list when they return.

Memory Map The Dalvik Virtual Machine, libraries
and dex files are all memory mapped and we rely on the
knowledge of their memory addresses for introspection.
Therefore, it is important to understand the memory map
of an App. This is especially true for the latest version of
Android, Ice Cream Sandwich, since address space lay-
out randomization is enabled by default.

To obtain the memory map of a process, we iterate
through the process’ list of virtual memory areas by fol-
lowing the mmap pointer in the mm struct pointed to
by the task struct. To ensure the freshness of the
memory map information, we intercept the sys mmap2
system call and update the shadow memory map when it
returns.

rIBase:dvmAsmInstructionStart

array-length

instance-of

move/from16

move

nop

ldrh r7, [r4, #2]!
and ip, r7, #255
add pc, r8, ip, lsl #6
push{r4,r5,r6,r7,r8,r9,sl,fp,lr}
sub sp, sp, #4
.
.
nop
nop
nop

lsr r3, r7, #12
lsr r9, r7, #8
ldr r0, [r5, r3, lsl #2]
and r9, r9, #15
cmp r0, #0
.
.
cmp r0, r1
beq<dvmAsmSisterStart+0xe4>
b<dvmAsmSisterStart+0xd0>

Opcode * 0x40

 0x0

0x40

0x80

0x800

0x840

Figure 3: Dalvik Opcode Emulation Layout in mterp

4.2 Reconstructing the Dalvik View

With the OS-level view and knowledge of how the DVM
operates internally, we are able to reconstruct the Java or
Dalvik view, including Dalvik instructions, the current
machine state, and Java objects. Some of the details are
presented in this section.

Dalvik Instructions The DVM’s main task is to exe-
cute Dalvik bytecode instructions by translating them
into corresponding executable machine code. In Ginger-
bread and thereafter, it does so in two ways: interpreta-
tion and Just-In-Time compilation (JIT) [8].

The interpreter, named mterp, uses an offset-
addressing method to map Dalvik opcodes to machine
code blocks as shown in Figure 3. Each opcode has 64
bytes of memory to store the corresponding emulation
code, and any emulation code that does not fit within the
64 bytes use an overflow area, dvmAsmSisterStart,
(see instance-of in Figure 3). This design simpli-
fies the emulation of Dalvik instructions. mterp simply
calculates the offset, opcode ∗ 64, and jumps to the cor-
responding emulation block.

This design also simplifies the reverse conversion from
native to Dalvik instructions as well: when the pro-
gram counter (R15) points to any of these code re-
gions, we are sure that the DVM is interpreting a byte-
code instruction. Furthermore, it is trivial to determine
the opcode of the currently executing Dalvik instruc-
tion. In DroidScope we first identify the virtual ad-
dress of rIBase, the beginning of the emulation code re-
gion, and then calculate the opcode using the formula
(R15 − rIBase)/64. rIBase is dynamically calculated
as the virtual address of libdvm.so (obtained from the
shadow memory map in the OS-level view) plus the off-
set of dvmAsmInstructionStart (a debug sym-
bol). If the debug symbol is not available, we can identify
it using the signature for Dalvik opcode number 0 (nop).

5

574  21st USENIX Security Symposium	 USENIX Association

Update
Program Counter(PC)

Is Code in JIT
code cache?

Execute JIT
 code block

Emulate Code
Using mterp

Yes

No

Decrement block
Counter

Is Counter 0?

Request JIT
Compilation for
Code block and

reset Counter

Yes

No

Figure 4: High Level Flowchart of mterp and JIT

The Just-In-Time compiler was introduced to improve
performance by compiling heavily used, or hot, Dalvik
instruction traces (consisting of multiple code blocks) di-
rectly into native machine code. While each translation
trace has a single entry point, there can be multiple ex-
its known as chaining cells. These chaining cells either
chain to other translation traces or to default entry points
of the mterp interpreter. Overall, JIT provides an excel-
lent performance boost for programs that contain many
hot code regions, although it makes fine-grained instru-
mentation more difficult. This is because JIT performs
optimization on one or more Dalvik code blocks and thus
blurs the Dalvik instruction boundaries.

An easy solution would be to completely disable JIT
at build time, but it could incur a heavy performance
penalty and more importantly it require changes to the
virtual device, which we want to avoid. Considering
that we are often only interested in a particular section
of Dalvik bytecode (such as the main program but not
the rest of system libraries), we choose to selectively dis-
able JIT at runtime. Analysis plugins can specify the
code regions for which to disable JIT and as a result only
the Dalvik blocks being analyzed incur the performance
penalty. All other regions and Apps still benefit from
JIT.

Figure 4 shows the general flow of the DVM. When
a basic block of Dalvik bytecode needs to be emulated,
the Dalvik program counter is updated to reflect the new
block’s address. That address is then checked against
the translation cache to determine if a translated trace for
the block already exists. If it does, the trace is executed.
If it does not then the profiler will decrement a counter
for that block. When this counter reaches 0, the block
is considered hot and a JIT compilation requested. To
prevent thrashing, the counter is reset to a higher value
and emulation using mterp commences. As can be seen
in the flow chart, as long as the requested code is not in
the code cache, then mterp will be used to emulate the

V4 (In 2)

V3 (In 1)

V2 (In 0)

V1

V0

R0:
R1:
R2:
R3:
R4: rPC
R5: rFP
R6: rGLUE
R7: rINST
R8: rIBASE
R9:
R10:
R11:
R12:
R13:
R14:
R15: PC+4

framework.jar@
classes.dex

mterp

InterpState

InterpState
{
 …
 Jvalue retval;
 ...
 Thread* self;
 …
}

android.app.ContextImpl.SharedPreferencesImpl.getInt:(Ljava/lang/String;I)I:

lib
d

v
m

.s
o

String

Integer

“this”

S
ta

c
k
 g

ro
w

s

low address

Figure 5: Dalvik Virtual Machine State

code.
The dvmGetCodeAddr function is used to deter-

mine whether a translated trace exists. It returns NULL
if a trace does not exist and the address of the corre-
sponding trace if it does. Thus, to selectively disable
JIT, we instrument the DVM and set the return value of
dvmGetCodeAddr to NULL for any translated trace we
wish to disable. To show that our change to the virtual
machine state does not have any ill side-effects, we make
the following arguments. First, if the original return
value was NULL then our change will not have any side
effects. Second, if the return value was a valid address,
then by setting it to NULL, the profile counter is decre-
mented and if 0, i.e. the code region deemed hot again,
another compilation request is issued for the block. In
this case, the code will be recompiled taking up space in
the code-cache. This can be prevented by not instrument-
ing the dvmGetCodeAddr call from the compiler.

In addition to preventing the translated trace from be-
ing executed, setting the value to NULL also prevents it
from being chained to other traces. This is the desired
behavior. For the special case where a translation trace
has already been chained and thus dvmGetCodeAddr
is not called, we flush the JIT cache whenever the dis-
abled JIT’ed code regions change. This is done by mark-
ing the JIT cache as full during the next garbage collec-
tion event, which leads to a cache flush. While this is not
a perfect solution, we have found it to be sufficient.

In all cases, the only side effect is wasted CPU cy-
cles due to compilation; the execution logic is unaffected.
Therefore, the side effects are deemed inconsequential.

DVM State Figure 5 illustrates how the DVM main-
tains the virtual machine state. When mterp is emulating
Dalvik instructions, the ARM registers R4 through R8
store the current DVM execution context. More specifi-
cally, R4 is the Dalvik program counter, pointing to the
current Dalvik instruction. R5 is the Dalvik stack frame
pointer, pointing to the beginning of the current stack

6

USENIX Association 	 21st USENIX Security Symposium  575

ClassObject*

lock

ArrayObject*

hashcode

offset (0)

count (5)in
s
ta

n
c
e
D

a
ta

struct StringObject {
 Object obj;
 u4 instanceData[1];
};

struct ArrayObject {
 Object obj;
 u4 length;
 u8 contents[1];
};

ClassObject*

lock

align_pad

0x0048 'H', 0x0045 'e'

0x006c 'l', 0x006c 'l'

0x006f 'o', 0x0000

c
o
n
te

n
t s

V3 (In 1)

0x0000, 0x0000

java.lang.String ClassObject

struct Object {
 ClassObject* clazz;
 u4 lock;
};

char[] ClassObject

Figure 6: String Object Example

frame. R6 points to the InterpState data structure,
called glue. R7 contains the first two bytes of the cur-
rent Dalvik instruction, including the opcode. Finally R8
stores the base address of the mterp emulation code for
the current DVM instruction. In x86, edx, esi, edi
and ebx are used to store the program counter, frame
pointer, mterp base address and the first two bytes of the
instruction respectively. The glue object can be found
on the stack at a predefined offset.

Dalvik virtual registers are 32 bits and are stored in
reverse order on the stack. They are referenced relative
to the frame pointer R5. Hence, the virtual register V0
is located at the top of the stack (pointed to by the ARM
register R5,) and the virtual register V1 sits on top of V0
in memory, and so forth. All other Dalvik state infor-
mation (such as return value and thread information) is
obtained through glue pointed to by R6.

After understanding how DVM state is maintained, we
are able to reconstruct the state from the native machine
code execution. That is, by examining the ARM registers
and relative data structures, we can get the current DVM
program counter, frame pointer, all virtual registers, and
so on.

Java Objects Java Objects are described using two data
structures. Firstly, ClassObject describes a class type and
contains important information about that class: the class
name, where it is defined in a dex file, the size of the ob-
ject, the methods, and the location of the member fields
within the object instances. To standardize class repre-
sentations, Dalvik creates a ClassObject for each defined
class type and implicit class type, e.g. arrays. For exam-
ple there is a ClassObject that describes a char[]which
is used by java.lang.String. Moreover, if the App
has a two dimensional array, e.g. String[][], then
Dalvik creates a ClassObject to describe the String[]
and another to describe the array of the previously de-
scribed String[] class.

Secondly, as an abstract type, Object describes a run-
time object instance, i.e. member fields. Each Object

has a pointer to the ClassObject that it is an instance
of plus a tail accumulator array for storing all member
fields. Dalvik defines three types of Objects, DataOb-
ject, StringObject and ArrayObject that are all pointed to
by generic Object*s. The correct interpretation of any
Object* fully depends on the ClassObject that it points
to.

We use a simple String (”Hello”) to illustrate the
interpretation process. Figure 6 depicts the different
data structures involved as well as the struct defini-
tions on top. To access the String, we first follow the
reference in the virtual register V3. Since Java ref-
erences are simply Object*s, V3 points to an Ob-
ject. To determine the type of the object, we follow
the first 4 bytes to the ClassObject structure. This Clas-
sObject instance describes the java.lang.String
class. Internally, Dalvik does not store the String data
inside the StringObject and instead use a char[].
Consequently, instanceData[0] is used to store
the reference to the corresponding char[] object and
instanceData[3] is used to store the number of
characters in the String, 5 in this case.

We then obtain the String’s data by following
instanceData[0] to the character array. Once again
we must follow the Object* within the new object to
correctly interpret it as an ArrayObject. Note that since
ARM EABI requires all arrays to be aligned to its ele-
ment size and u8 is 8 bytes in length, we inserted an im-
plicit 4 byte align pad into the ArrayObject to ensure
that the contents array is properly aligned. Given the
length of the String from the StringObject and the cor-
roborating length in the ArrayObject, the ”Hello” String
is found in the contents array encoded in UTF-16.

4.3 Symbol Information
Symbols (such as function name, class name, field name,
etc.) provide valuable information for human analysts to
understand program execution. Thus, DroidScope seeks
to make the symbols readily available by maintaining a
symbol database. For portability and ASLR support, we
use one database of offsets to symbols per module. At
runtime, finding a symbol by a virtual address requires
first identifying the containing module using the shadow
memory map, and then calculating the offset to search
the database.

Native library symbols are retrieved statically through
objdump and are usually limited to Android libraries
since malware libraries are often stripped of all symbol
information. On the other hand, Dalvik or Java symbols
are retrieved dynamically and static symbol information
through dexdump is used as a fallback. This has the ad-
vantage of ensuring the best symbol coverage for opti-
mized dex files and even dynamically generated Dalvik
bytecode.

7

576  21st USENIX Security Symposium	 USENIX Association

E
v
en

ts

instruction begin/end context switch

register read/write system call method begin

memory read/write task begin/end

block begin/end task updated

memory map updated

Q
u

ery
 &

 S
et

memory read/write query symbol database query symbol database

get current context interpret Java object

register read/write get task list get/set DVM state

taint set/check taint set/check objects

disable JIT

NativeAPI LinuxAPI DalvikAPI

Dalvik instruction begin

memory r/w with pgd

Table 1: Summary of DroidScope APIs

We rely on the data structures of DVM to retrieve sym-
bols at runtime. For example, the Method structure con-
tains two pointers of interest. insns points to the start
of the method’s bytecode, the symbol address, and name
points to the name. Conveniently, the glue structure
pointed to by R6 has a field method that points to the
Method structure for the currently executing method.

There are times when this procedure fails though, e.g.
if the corresponding page of the dex file has not been
loaded into memory yet. In these cases, we first try to
look up the information in a local copy of the correspond-
ing dex file, and if that fails as well, use the static symbol
information from dexdump. DroidScope uses this same
basic method of relying on the DVM’s data structures to
retrive class and field names as well.

5 Interface & Plugins
DroidScope exports an event based interface for instru-
mentation. We describe the general layout of the APIs,
present an example of how tools are implemented, and
finally describe available tools in this section.

5.1 APIs
DroidScope defines a set of APIs to facilitate custom
analysis tool development. The APIs provide instrumen-
tation on different levels: native, OS and Dalvik, to mir-
ror the context levels of a real Android device. At each
level, the analysis tool can register callbacks for different
events, and also query or set various kinds of information
and controls. Table 1 summarizes these APIs.

At the native level, one can register callbacks for in-
struction start and end, basic block start and end, mem-
ory read and write, and register read and write. One can
also read and write memory and register content. As
taint analysis is implemented at the machine code level,
one can also set and check taint in memory and regis-
ters. Currently, the taint propagation engine only sup-
ports copy and arithmetic operations, control flow depen-
dencies are not tracked.

At the OS level, one can register callbacks for context
switch, system call, task start, update (such as process

name), and end, and memory map update. One can also
query symbols, obtain the task list, and get the current
execution context (e.g., current process and thread). At
the Dalvik level, one can instrument at the granularity
of Dalvik instructions and methods. One can query the
Dalvik symbols, parse and interpret Java objects, read
and modify DVM state, and selectively disable JIT for
certain memory regions. Through the Dalvik-view, one
can also set and check taint in Java Objects as well.

5.2 Instrumentation Optimization
A general guideline for performance optimization in dy-
namic binary translation is to shift computation from the
execution phase to the translation phase. For instance, if
we need to instrument a function call at address x using
basic blocks, then we should insert the instrumentation
code for the block at x when it is being translated instead
of instrumenting every basic block and look for x at exe-
cution time.

We follow this guideline in DroidScope. Conse-
quently, our instrumentation logic becomes more com-
plex. When registering for an event callback, one can
specify a specific location (such as a function entry) or a
memory range (to trace instructions or functions within a
particular module). Therefore, our instrumentation logic
supports single value comparisons and range checks for
controlling when and where event callbacks are inserted
during the translation phase.

The instrumentation logic is also dynamic, because we
often want to register and unregister a callback at execu-
tion time. For example, when the virtual device starts,
only the OS-view instrumentation is enabled so the An-
droid system can start quickly as usual. When we start
analyzing an App, instrumentation code is inserted to
reconstruct the Dalvik view and to perform analysis as
requested by the plugin. When instrumenting a func-
tion return, the return address will be captured from the
link register R14 at the function entry during execution,
and a callback is registered at the return address. Af-
ter the function has returned, this callback is removed.
Then when the analysis has finished, other instrumenta-
tion code is removed as well. To maintain consistency,
DroidScope invalidates the corresponding basic blocks
in the translated code cache whenever necessary so that
the new instrumentation logic can be enforced. Hence,
the instrumentation logic in DroidScope is complex and
dynamic. These details are hidden from the analysis plu-
gins.

5.3 Sample Plugin
Figure 7 presents sample code for implementing a simple
Dalvik instruction tracer. The init function at L19 will
be invoked once this plugin is loaded in DroidScope. In
init, it specifies which program to analyze by calling the

8

USENIX Association 	 21st USENIX Security Symposium  577

 1. void opcode_callback(uint32_t opcode) {
 2. printf("[%x] %s\n", GET_RPC, opcodeToStr(opcode));
 3. }
 4.
 5. void module_callback(int pid) {
 6. if (bInitialized || (getIBase(pid) == 0))
 7. return;
 8.
 9. gva_t startAddr = 0, endAddr = 0xFFFFFFFF;
10.
11. addDisableJITRange(pid, startAddr, endAddr);
12. disableJITInit(getGetCodeAddrAddress(pid));
13. addMterpOpcodesRange(pid, startAddr, endAddr);
14. dalvikMterpInit(getIBase(pid));
15. registerDalvikInsnBeginCb(&opcode_callback);
16. bInitialized = 1;
17. }
18.
19. void _init() {
20. setTargetByName("com.andhuhu.fengyinchuanshuo");
21. registerTargetModulesUpdatedCb(&module_callback);
22. }

Figure 7: Sample code for Dalvik Instruction Tracer

setTargetByName function. It also registers a callback
module callback to be invoked when module informa-
tion is updated. module callback will check if the DVM
is loaded and if so, disable JIT for the entire memory
space (L9 and L11.) It also registers a callback, op-
code callback, for Dalvik instructions. When invoked,
opcode callback prints the opcode information.

This sample code will print all Dalvik instructions for
the specified App, including the main program and all
the libraries. If we are only interested in the execu-
tion of the main program, we can add a function call
like getModAddr(”example@classes.dex”, &startAddr,
&endAddr) at L10. This function locates the dex file in
the shadow memory map and stores its start and end ad-
dresses in the appropriate variables. The rest of the code
can be left untouched.

5.4 Analysis Plugins
To demonstrate the capability of DroidScope for analyz-
ing Android malware, we have implemented four analy-
sis plugins: API tracer, native instruction tracer, Dalvik
instruction tracer, and taint tracker.

API tracer monitors how an App (including Java and
native components) interacts with the rest of the sys-
tem through system and library calls. We first log all
of the App’s system calls by registering for system call
events. We then build a whitelist of the virtual device’s
built-in native and Java libraries. As modules are loaded
into memory, any library not in the whitelist is marked
for analysis. We instrument the invoke* and execute*
Dalvik bytecodes to identify and log method invoca-
tions, including those of the sample. The log contains
the currently executing Java thread, the calling address,
the method being invoked as well as a dump of its in-
put parameters. Since Java Strings are heavily used, we
try to convert all Strings into native strings before log-
ging them. We then instrument the move-result* byte-
code instructions to detect when system methods return
and gather the return values. We do not instrument any

of the other bytecodes to improve performance. To log
library calls from the App’s native components, we reg-
ister for the block end event for blocks that are located in
the App’s native components. When the callback for the
block end event is invoked, we check if the next block is
within the Apps native components or not. If not, we log
this event.

Native instruction tracer registers ARM or x86 in-
struction callbacks to gather information about each in-
struction including the raw instruction, its operands (reg-
ister and memory) and their values.

Dalvik instruction tracer follows the basic logic of
the above example and logs the decoded instruction to
a file in the dexdump format. The operands, their values
and all available symbol information, e.g. class, field and
method names, are logged as well.

Taint tracker utilizes the dynamic taint analysis APIs
to analyze information leakage in an Android App. It
specifies sensitive information sources (such as IMEI,
IMSI, and contact information) as tainted and keeps track
of taint propagation at the machine code level until they
reach sinks, e.g. sys write and sys send. With the OS
and Dalvik views, it further creates a graphical represen-
tation to visualize how sensitive information has leaked
out. To construct the graph, we first identify function and
method boundaries. Whenever taint is propagated, we
add a node to represent the currently executing function
or method and nodes for the tainted memory locations.
Since methods operate on Java Objects, we further try to
identify the containing Object and create a node for it in-
stead of the simple memory location. Currently, we only
do this check against the method’s input parameters and
the current Object, e.g. ”this”. Further improvements are
left as future work.

To identify method boundaries, we look for match-
ing invoke* or execute* and move-result* Dalvik instruc-
tions. We do not rely on the return* instructions since
they are executed in the invokee context, which might not
be instrumented, e.g. inside an API. Since there are mul-
tiple ways for native code to call and return from func-
tions plus malicious code is known to jump into the mid-
dle of functions, we do not rely on native instructions
to determine function boundaries. Instead, we treat the
nearest symbol that is less than or equal to the jump tar-
get in the symbol database as the function.

6 Evaluation
We evaluated DroidScope with respect to efficiency and
capability. To evaluate efficiency, we used 7 benchmark
Apps from the official Android Market: AnTuTu Bench-
mark (ABenchMark) by AnTuTu, CaffeineMark by Ravi
Reddy, CF-Bench by Chainfire, Mobile processor bench-
mark (Multicore) by Andrei Karpushonak, Benchmark
by Softweg, and Linpack by GreeneComputing. We then

9

578  21st USENIX Security Symposium	 USENIX Association

ABenchMark

CaffieneMark

CFBench/Native

CFBench/Java

CFBench/Overall

CPUBench (ms)

Multicore (ms)

Softweg/CPU

Softweg/Graphics

Softweg/Memory

Linpack/Singlethread

Linpack/Multithread

0% 20% 40% 60% 80% 100% 120%

0% 20% 40% 60% 80% 100% 120%

NOJIT Baseline Context Only API Tracer

Dalvik
Instruction
Tracer

Taint Tracker

Percent of Baseline

Percent of Baseline

Figure 8: Benchmark Results

ran the benchmarks while using the different automatic
analysis tools described above on the benchmarks them-
selves. The results are presented in Section 6.1. To
evaluate capability, we analyzed two real world Android
malware samples: DroidKungFu and DroidDream in de-
tail, which will be presented in Sections 6.2 and 6.3.
These samples were obtained from the Android Malware
Genome project [40].

Experimental Setup All experiments were conducted
on an Acer 4830TG with a Core i5 @ 2.40GHz and 3GB
of RAM running Xubuntu 11.10. The Android guest is
a Gingerbread build configured as ”user-eng” for ARM
with the Linux 2.6.29 kernel and uses the QEMU default
memory size of 96 MB. No changes were made to the
Android source.

6.1 Performance
To measure the performance impact of instrumentation,
we took the analysis tools and targeted the benchmark
Apps while the Apps performed their tests. This was re-
peated 5 times. As the baseline, we ran these benchmarks

on the default Android emulator without any instrumen-
tation. Since DroidScope selectively disables JIT on the
Apps, we also obtained a NOJIT baseline with JIT com-
pletely disabled at build time. The performance results
are summarized in the bar chart in Figure 8. Each tool
is associated with a set of bars that shows its benchmark
results (y-axis) relative to the baseline as a percentage.
The ARM Instruction Tracer results are excluded as they
are similar to the taint tracker results.

Please note that the benchmarks are not perfect repre-
sentations of performance as evidenced by the > 100%
results. For example, in CPUBenchmark the standard de-
viation, σ , for Baseline, Dalvik tracer and Context Only
is only 1%. This means that the results are consistent for
each plugin, but might not be across plugins. Further-
more, we removed the Softweg filesystem benchmarking
results due to high variability, σ > 27%.

We can see from Figure 8 that the overhead
(Context Only) of reconstructing the OS-level view
is very small, up to 7% degradation. The taint tracker
has the worst performance as expected, because it reg-
isters for instruction level events. The taint tracker in-
curs 11x to 34x slowdown, which is comparable to other
taint analysis tools [10, 39] on the x86 architecture. A
special case is seen in the Dalvik instruction tracer re-
sult for CaffeineMark. This result is attributed to the fact
that the tracer dynamically retrieves symbol information
from guest memory for logging.

The benefits of dynamically disabling JIT is evident
in some Java based benchmarks such as Linpack, CF-
Bench/Java and CaffeineMark. For those benchmarks,
the API tracer’s performance is greater than that of the
NOJIT Baseline, despite the fact that instrumentation is
taking place. This difference is due to Java libraries, such
as String methods, still benefiting from JIT in the API
tracer.

6.2 Analysis of DroidKongFu
The DroidKungFu malware contains three components.
First, the core logic is implemented in Java and is con-
tained within the com.google.ssearch package.
This is the main target of our investigation. Second are
the exploit binaries which are encrypted in the apk, de-
crypted by the Java component and then subsequently
executed. Third is a native library that is used as a shell.
It contains JNI exported functions that can run shell com-
mands and is the main interface for command and con-
trol. Unfortunately the command and control server was
unavailable at the time of our test and thus we did not
analyze this feature.

Discovering the Internal Logic We began our investi-
gation by running the API tracer on the sample and an-
alyzing the log. We first looked for system calls of in-
terest and found a sys open for a file named “gjsvro”.

10

USENIX Association 	 21st USENIX Security Symposium  579

getPermission {
 if checkPermission() then doSearchReport(); return
 if !isVersion221() then
 if getPermission1() then return
 if exists("bin/su" or "xbin/su") then
 getPermission2(); return
 if !isVersion221() then getPermission3(); return
}

Figure 9: getPermission Pseudocode

There was also a subsequent sys write to the file from
a byte array. We later found that this array is actu-
ally part of a Java ArrayObject which was populated
by the Utils.decrypt method, which is part of Droid-
KungFu. Since decrypt takes a byte array as the param-
eter, we were able to search backwards and identify that
this particular array was read from an asset inside the
App’s package file called ”gjsvro”. It means that dur-
ing execution, DroidKungFu decrypts an asset from its
package and generates the ”gjsvro” file. We then found
that DroidKungFu called Runtime.exec with parameters
“chmod 4755” and the name of the file, making the file
executable and setting the setuid bit. After that, it called
Runtime.exec again for “su” which led to a sys fork. Fur-
thermore, the file path for “gjsvro” was then written to
a ProcessImpl OutputStream, followed immedi-
ately by “exit”. Since this stream is piped to the child’s
stdin, we know that the intention of “su” was to open a
shell which is then used to execute “gjsvro” followed by
“exit” to close the shell. This did not work though since
“su” did not execute successfully.

Next we used the Dalvik instruction tracer to obtain
a Dalvik instruction trace. The trace showed that the
decrypt and Runtime.exec methods were invoked from
a method called getPermission2, which was called from
getPermission following a comparison using the result
of isVersion221 and some file existence checks. To get a
more complete picture of the getPermission method, we
ran dexdump and built the overview pseudocode shown
in Figure 9 . It is evident that to explore the getPermis-
sion1 and getPermission3, we must instrument the sam-
ple and change the return values of the different method
invocations.

With the Dalvik view support, we manipulated the re-
turn values of isVersion221 and exist methods and were
able to explore all three methods getPermission1, get-
Permission2, and getPermission3. They are essentially
different ways to obtain the root privilege on different
Android configurations. getPermission1 and getPermis-
sion2 only uses the “gjsvro” exploit. The main difference
is that getPermission1 uses Runtime.exec to execute the
exploit while the other uses the “su” shell. On the other
hand, getPermission3 decrypts “ratc”, “killall” (a wrap-
per for “ratc”) and “gjsvro” and executes them using its
own native library. As the API tracer monitors both

UrlEncodedFormEntity.<init>

AbstractHttpClient.execute()

sys_write(34, 0x405967d0, 397)

String @ 0x4056a448
“imei=123456789012345&ostype=...”

byte[] @ 405967c0 / void* @ 405967d0
“POST /search/sayhi.php HTTP/1.1...”

String @ 0x40524e80
“123456789012345”

getDeviceId()

Figure 10: Taint Graph for DroidKungFu

Java and native components, our logs show that the li-
brary then calls sys vfork and sys execve to execute the
commands. This indicates that getPermission3 was try-
ing to run both “udev” exploit and “rage against the cage”
(ratc) exploits.

Analyzing Root Exploits Since Gingerbread has al-
ready been patched against these exploits, they never ex-
ecuted correctly. To further analyze these root exploits,
we first needed to remove the corresponding patches
from the virtual device build. Here we focus on “ratc,”
since “udev” is analyzed in the same manner. Due to
space constraints we present the exploit diagnosis of
“ratc” in Appendix A.

We first ran the API tracer on the ratc exploit, but did
not observe any malicious behavior in the API log. We
did see suspicious behavior in the process log provided as
part of the OS-view reconstruction. Particularly, we ob-
served that numerous ratc processes (descendants of the
original ratc process) were spawned, the adbd process
with uid 2000 ended, followed by more ratc processes
and then by an adbd process with uid 0 or root. This
signifies that the attack was successful. It is worth not-
ing that the traditional adb based dynamic analysis would
fail to observe the entire exploiting process because adbd
is killed at the beginning.

Further analysis of the logs and descendent processes
showed that there are in fact three types of ratc processes.
The first is the original ratc process that simply iterates
through the /proc directory looking for the pid of the
adbd process. Its child then forked itself until sys fork re-
turned -11 or EAGAIN. At this point it wrote some data
to a pipe and resumed forking. In the grandchild process
we see a call to sys kill to kill the adbd process followed
by attempts to locate the adbd process after it re-spawns.

Triggering Data leakage Reverting back to the default
Gingerbread build, we sought to observe the informa-
tion leakage behavior in doSearchReport. As depicted

11

580  21st USENIX Security Symposium	 USENIX Association

in Figure 9, this involves instrumenting checkPermission
during execution of getPermission. The Dalvik instruc-
tion trace shows that doSearchReport invokes update-
Info, which obtains sensitive information about the de-
vice including the device model, build version and IMEI
amongst other things. We also observed outgoing HTTP
requests, which failed because the server was down. We
then redirected these HTTP requests to our own HTTP
server by adding a new entry into /etc/hosts. To fur-
ther analyze this information leakage, we used the taint
tracker and built a simplified taint propagation graph,
which is shown in Figure 10. Objects, both Java and
native, are represented by rectangular nodes while meth-
ods are represented by oval nodes. We see that UrlEn-
codedFormEntity (the constructor) propagated the orig-
inal tainted IMEI number in the String @ 0x40524e80
to a second String that looks like an HTTP request. The
taint then propagated to a byte array at 0x405967c0 by
AbstractHttpClient.execute. We finally see the taint ar-
riving at the sink at sys write. Note that sys write used
a void* at 0x405967d0, which is the contents array of
the byte array Object (see the StringObject example in
Section 4.2). This is expected since JNI provides direct
access to arrays to save on the cost of memcpy.

6.3 Analysis of DroidDream
Like analyzing DroidKungFu, we first used the API
tracer to get a basic understanding of DroidDream, and
then obtained instruction traces and analyzed informa-
tion leakage.

From the log generated by the API tracer and the
shadow task list, we found that there are two Droid-
Dream processes. “com.droiddream.lovePositions,” the
main process, does not exhibit any malicious behavior
except using Runtime.exec to execute “logcat -c” which
clears Android’s internal log. Again, this behavior indi-
cates that traditional Android debugging tools fall short
for malware analysis.

“com.droiddream.lovePositions:remote,” the other
process, is the malicious one. The logs show that Droid-
Dream retrieves the IMSI number along with other sen-
sitive information like IMEI, and encodes them into an
XML String. Then we observed a failed attempt to open
a network connection to 184.105.245.17:8080.
In order to observe this networking behavior, we instru-
ment the return values of sys connect and sys write to
make DroidDream believe these network operations are
successful.

Using the taint tracker, we marked these information
sources as tainted and obtained taint propagation graphs,
which confirm that DroidDream did leak sensitive infor-
mation from these sources to a remote HTTP server. The
graph for leaking IMSI information is illustrated in Fig-
ure 11. We simplified the graph and annotated it to in-

String @ 0x40522a10
“310260000000000”

getSubscriberId()

Formatter.format()

byte[] @ 0x405232a8

String @ 0x40523288
“<?xml version="1.0" ...”

getBytes()

crypt()

sys_write(33, 405261a8, 257)

API Native Memory

ByteArrayInputStream

Figure 11: Taint Graph for DroidDream

clude crypt which is the DroidDream method used to
xor-encrypt the byte array. The graph shows that get-
SubscriberId is used to obtain the IMSI from the system
as a String @ 0x40522a10. The IMSI String, along with
other information, is then encoded into an XML format
using format. The resulting String is then converted into
a byte[] @ 0x405232a8 for encryption by crypt. The
encrypted version is used to create a ByteArrayInput-
Stream. For brevity, we use a generic “API Native Mem-
ory” node to illustrate that the taint further propagates
through memory until the eventual sink at sys write.

We further investigated the crypt method by augment-
ing the Dalvik instruction tracer to track taint propaga-
tion and generate a taint-annotated Dalvik instruction
trace. Not only do we see the byte array being xor-ed
with a static field name “KEYVALUE,” we also see that
the encryption is being conducted on the byte[] in-place.
A snippet of the trace log is depicted in Figure 12.

DroidDream also includes the udev and ratc ex-
ploits (unencrypted), plus the native library terminal like
DroidKungFu. Since we have already analyzed them in
DroidKungFu, we skipped the analysis on them in Droid-
Dream.

7 Discussion
Limited Code Coverage Dynamic analysis is known to
have limited code coverage, as it only explores a single
execution path at a time. To increase code coverage, we
may explore multiple execution paths as demonstrated in
previous work [6, 9, 31]. In the experiments, we demon-
strated that we can discover different execution paths by
manipulating the return values of system calls, native

12

USENIX Association 	 21st USENIX Security Symposium  581

[43328f40] aget-byte v2(0x01), v4(0x405232a8), v0(186)
 Getting Tainted Memory: 40523372(2401372)
 Adding M@410accec(42c5cec) len = 4
[43328f44] sget-object v3(0x0000005e), KEYVALUE// field@0003
[43328f48] aget-byte v3(0x88), v3(0x4051e288), v1(58)
[43328f4c] xor-int/2addr v2(62), v3(41)
 Getting Tainted Memory: 410accec(42c5cec)
 Adding M@410accec(42c5cec) len = 4
[43328f4e] int-to-byte v2(0x17), v2(23)
 Getting Tainted Memory: 410accec(42c5cec)
 Adding M@410accec(42c5cec) len = 4
[43328f50] aput-byte v2(0x17), v4(0x405232a8), v0(186)
 Getting Tainted Memory: 410accec(42c5cec)
 Adding M@40523372(2401372) len = 1

Figure 12: Excerpt of Dalvik Instruction Trace for
DroidDream. A Dalvik instruction entry shows the location
of the current instruction in square brackets, the decoded in-
struction plus the values of the virtual registers in parenthesis.
A taint log entry is indented and shows tainted memory being
read or written to. The memory’s physical address is shown in
parenthesis and the total bytes tainted is represented by ”len.”

APIs and even internal Dalvik methods of the App. This
simple approach works fairly well in practice although a
more systematic approach is desirable. One method is to
perform symbolic execution to compute path constraints
and then automatically explore other feasible paths. We
have not yet implemented symbolic execution and leave
it as future work. In particular, we seek to use tainting in
conjunction with the Dalvik view to implement a sym-
bolic execution engine at the Dalvik instruction level.

Detecting and Evading DroidScope In the desktop en-
vironment, malware becomes increasingly keen to the
execution environment. Emulation-resistant malware de-
tect if they are running within an emulated environment
and evade analysis by staying dormant or simply crash-
ing themselves. Researchers have studied this problem
for desktop malware [2, 26, 36]. The same problem has
not arisen for Android malware analysis. However, as
DroidScope or similar analysis platforms become widely
adopted to analyze Android malware, we anticipate sim-
ilar evasion techniques will eventually appear. As mal-
ware may detect the emulated environment using emula-
tion bugs in the emulator, some efforts have been made to
detect bugs in the CPU emulators and thus can improve
emulation accuracy [28, 29].

More troubling are the intrinsic differences between
the emulated environment and mobile systems. Mobile
devices contain numerous sensors, e.g. GPS, motion and
audio, with performance profiles which might be difficult
to emulate. While exploring multiple execution paths
may be used to bypass these types of tests, they might
still not be sufficient. For example we have observed
that Android, as an interactive platform, can be sensitive
to the performance overhead due to analysis. If the anal-

ysis takes too long, certain timeout events are triggered
leading to different execution paths. The analyst must
be aware of these new challenges. In summary, further
investigation in this area is needed.

8 Related Work
Virtual Machine Introspection Virtual Machine Intro-
spection is a family of techniques that rebuild a guest’s
context from the virtual machine monitor [21, 24]. This
is achieved by understanding the important kernel data
structures (such as the task list) and extracting impor-
tant information from these data structures. For closed-
source operating systems, it is difficult to have complete
understanding of the kernel data structures. To solve this
problem, Dolan-Gavitt et al. developed a technique that
automatically generates introspection tools by first mon-
itoring the execution of a similar tool within the guest
system and then mimicking the same execution outside
of the guest system [16]. With deep understanding of the
Android kernel, DroidScope is able to intercept certain
kernel functions and traverse proper kernel data struc-
tures to reconstruct the OS level view. In comparison,
DroidScope takes it one step further to reconstruct the
Dalvik/Java view, such that both Java and native compo-
nents from an App can be analyzed simultaneously and
seamlessly.

Dynamic Binary Instrumentation PIN [27], Dy-
namoRIO [5], and Valgrind [32] are powerful dynamic
instrumentation tools that analyze user-level programs.
They are less ideal for malware analysis, because they
share the same memory space with user-level mal-
ware and thus can be subverted. Bernat et al. used
a formal model to identify observable differences due
to instrumentation of sensitive instructions and created
a sensitivity-resistant instrumentation tool called SR-
Dyninst [4]. Like the other tools though, it cannot be
used to analyze kernel-level malware.

Anubis [1], PinOS [7], TEMU [35], and Ether [15] are
based on CPU emulators and hypervisors. They have the
full system view of the guest system and thus are better
suited for malware analysis. These systems only sup-
port the x86 architecture and Ether, in principle, cannot
support ARM, because it relies on the hardware virtual-
ization technology on x86. A new port must be devel-
oped for ARM virtualization [30]. While Atom based
mobile platforms are available, ARM still dominates the
Android market and thus ARM based analysis is impor-
tant. To the best of our knowledge, DroidScope is the
first fine-grained dynamic binary instrumentation frame-
work that supports the ARM architecture and provides a
comprehensive interface for Android malware analysis.
We do not however support control flow tainting or dif-
ferent tainting profiles like Dytan [10]. Since Dytan is

13

582  21st USENIX Security Symposium	 USENIX Association

based on PIN, it is theoretically feasible to port the tool
to PIN for ARM [23], although it will still be limited to
analyzing user-level malware.

Dalvik Analysis Tools Enck et al. used ded to convert
Dalvik bytecode into Java bytecode and soot to further
convert it into Java source code to identify data flow
violations [20]. While powerful, the authors note that
some violations could not be identified due to code re-
covery failures. DroidRanger is a static analysis tool that
operates on Dalvik bytecode directly and was success-
ful in identifying previously unknown malicious Apps in
Android marketplaces [41]. TaintDroid and DroidBox
are two examples of dynamic analysis tools for Android
applications [17, 19]. TaintDroid is a specially crafted
DVM that supports taint analysis of Dalvik instructions
and across API calls. DroidBox is a project that uses
TaintDroid to build an android application sandbox for
analysis purposes. The biggest advantage of using Taint-
Droid is that it runs on actual devices. All of the hard-
ware, sensors, vendor software and unpredictable intrica-
cies that come with a real device are there. This can’t be
achieved in an emulated environment. The major nega-
tive of all these tools is that they are limited to analyzing
the Java portion of Apps. Thus, if there is a native com-
ponent, like DroidKungFu has, they will not be able to
fully analyze it.

9 Conclusion
We presented DroidScope, a fine grained dynamic binary
instrumentation tool for Android that rebuilds two lev-
els of semantic information: operating system and Java.
This information is provided to the user in a unified in-
terface to enable dynamic instrumentation of both the
Dalvik bytecode as well as native instructions. In this
manner, the analyst is able to reveal the behavior of a
malware sample’s Java and native components as well
as interactions between them and the rest of the system
as evidenced by the successful analysis of DroidKungFu
and DroidDream using DroidScope. These capabilities
are provided to the analyst without changing the guest
Android system and particularly with JIT intact. Our per-
formance evaluation showed the benefits of dynamically
disabling JIT for targeted analysis such as API tracing.
The overall performance seems reasonable as well.

Acknowledgements
We thank the anonymous reviewers for their insightful
comments towards improving this paper. This work is
supported in part by the US National Science Founda-
tion NSF under Grants #1018217 and #1054605. Any
opinions, findings, and conclusions made in this material
are those of the authors and do not necessarily reflect the
views of the NSF or the Air Force Research Laboratory.

References
[1] Anubis: Analyzing Unknown Binaries. http://anubis.

iseclab.org/.

[2] BALZAROTTI, D., COVA, M., KARLBERGER, C., KRUEGEL,
C., KIRDA, E., AND VIGNA, G. Efficient Detection of Split
Personalities in Malware. In Proceedings of the Network and
Distributed System Security Symposium (NDSS) (San Diego, CA,
February 2010).

[3] BELLARD, F. QEMU, a fast and portable dynamic translator.
In USENIX Annual Technical Conference, FREENIX Track (April
2005).

[4] BERNAT, A. R., ROUNDY, K., AND MILLER, B. P. Efficient,
sensitivity resistant binary instrumentation. In Proceedings of the
2011 International Symposium on Software Testing and Analysis
(New York, NY, USA, 2011), ISSTA ’11, ACM, pp. 89–99.

[5] BRUENING, D., GARNETT, T., AND AMARASINGHE, S. An in-
frastructure for adaptive dynamic optimization. In International
Symposium on Code Generation and Optimization (CGO’03)
(March 2003).

[6] BRUMLEY, D., HARTWIG, C., KANG, M. G., LIANG, Z., NEW-
SOME, J., POOSANKAM, P., AND SONG, D. BitScope: Auto-
matically dissecting malicious binaries. Tech. Rep. CS-07-133,
School of Computer Science, Carnegie Mellon University, Mar.
2007.

[7] BUNGALE, P. P., AND LUK, C.-K. PinOS: a programmable
framework for whole-system dynamic instrumentation. In Pro-
ceedings of the 3rd international conference on Virtual execution
environments (2007), VEE ’07, pp. 137–147.

[8] CHENG, B., AND BUZBEE, B. A JIT com-
piler for android’s dalvik VM. http://www.
google.com/events/io/2010/sessions/
jit-compiler-androids-dalvik-vm.html, 2010.
Google I/O.

[9] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E: A
platform for in-vivo multi-path analysis of software systems. In
Proceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems (AS-
PLOS) (Mar. 2011).

[10] CLAUSE, J., LI, W., AND ORSO, A. Dytan: a generic dynamic
taint analysis framework. In Proceedings of the 2007 Interna-
tional Symposium on Software Testing and Analysis (ISSTA’07)
(2007), pp. 196–206.

[11] CRANDALL, J. R., AND CHONG, F. T. Minos: Control data
attack prevention orthogonal to memory model. In Proceedings
of the 37th International Symposium on Microarchitecture (MI-
CRO’04) (December 2004).

[12] Cve-2009-1185. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2009-1185.

[13] ded: Decompiling Android Applications. http://siis.cse.
psu.edu/ded/index.html.

[14] Dynamic, metamorphic (and opensource) virtual machines.
http://archive.hack.lu/2010/Desnos_Dynamic_
Metamorphic_Virtual_Machines-slides.pdf.

[15] DINABURG, A., ROYAL, P., SHARIF, M., AND LEE, W. Ether:
malware analysis via hardware virtualization extensions. In Pro-
ceedings of the 15th ACM Conference on Computer and Commu-
nications Security (2008), pp. 51–62.

[16] DOLAN-GAVITT, B., LEEK, T., ZHIVICH, M., GIFFIN, J., AND
LEE, W. Virtuoso: Narrowing the semantic gap in virtual ma-
chine introspection. In Proceedings of the 2011 IEEE Symposium
on Security and Privacy (Washington, DC, USA, 2011), SP ’11,
IEEE Computer Society, pp. 297–312.

14

USENIX Association 	 21st USENIX Security Symposium  583

[17] Droidbox: Android application sandbox. http://code.
google.com/p/droidbox/.

[18] EGELE, M., KRUEGEL, C., KIRDA, E., YIN, H., AND SONG, D.
Dynamic Spyware Analysis. In Proceedings of the 2007 Usenix
Annual Conference (Usenix’07) (June 2007).

[19] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. N. Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. In Proceedings of the 9th USENIX conference on Op-
erating systems design and implementation (Berkeley, CA, USA,
2010), OSDI’10, USENIX Association, pp. 1–6.

[20] ENCK, W., OCTEAU, D., MCDANIEL, P., AND CHAUDHURI,
S. A study of android application security. In Proceedings of the
20th USENIX Security Symposium (2011).

[21] GARFINKEL, T., AND ROSENBLUM, M. A virtual machine in-
trospection based architecture for intrusion detection. In Pro-
ceedings of Network and Distributed Systems Security Symposium
(NDSS’03) (February 2003).

[22] Gartner says sales of mobile devices grew 5.6 percent in third
quarter of 2011; smartphone sales increased 42 percent. http:
//gartner.com/it/page.jsp?id=1848514, 2011.

[23] HAZELWOOD, K., AND KLAUSER, A. A dynamic binary in-
strumentation engine for the arm architecture. In Proceedings
of the 2006 international conference on Compilers, architecture
and synthesis for embedded systems (New York, NY, USA, 2006),
CASES ’06, ACM, pp. 261–270.

[24] JIANG, X., WANG, X., AND XU, D. Stealthy malware detection
through vmm-based ”out-of-the-box” semantic view reconstruc-
tion. In Proceedings of the 14th ACM conference on Computer
and Communications Security (CCS’07) (October 2007).

[25] Security alert: New sophisticated android malware droidkungfu
found in alternative chinese app markets. http://www.csc.
ncsu.edu/faculty/jiang/DroidKungFu.html.

[26] KANG, M. G., YIN, H., HANNA, S., MCCAMANT, S., AND
SONG, D. Emulating emulation-resistant malware. In Pro-
ceedings of the 2nd Workshop on Virtual Machine Security (VM-
Sec’09) (November 2009).

[27] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD,
K. Pin: Building customized program analysis tools with dynamic
instrumentation. In Proc. of 2005 Programming Language Design
and Implementation (PLDI) conference (june 2005).

[28] MARTIGNONI, L., MCCAMANT, S., POOSANKAM, P., SONG,
D., AND MANIATIS, P. Path-exploration lifting: Hi-fi tests for
lo-fi emulators. In Proceedings of the 17th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (London, UK, Mar. 2012).

[29] MARTIGNONI, L., PALEARI, R., ROGLIA, G. F., AND BR-
USCHI, D. Testing cpu emulators. In Proceedings of the 18th
International Symposium on Software Testing and Analysis (IS-
STA’09) (2009), pp. 261–272.

[30] MIJAR, R., AND NIGHTINGALE, A. Virtualization is coming to
a platform near you. Tech. rep., ARM Limited, 2011.

[31] MOSER, A., KRUEGEL, C., AND KIRDA, E. Exploring mul-
tiple execution paths for malware analysis. In Proceedings of
the 2007 IEEE Symposium on Security and Privacy(Oakland’07)
(May 2007).

[32] NETHERCOTE, N., AND SEWARD, J. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In PLDI (2007),
pp. 89–100.

[33] PORTOKALIDIS, G., SLOWINSKA, A., AND BOS, H. Argos:
an emulator for fingerprinting zero-day attacks. In EuroSys 2006
(April 2006).

[34] Proguard. http://proguard.sourceforge.net.

[35] TEMU: The BitBlaze dynamic analysis component. http://
bitblaze.cs.berkeley.edu/temu.html.

[36] YAN, L.-K., JAYACHANDRA, M., ZHANG, M., AND YIN, H.
V2E: Combining hardware virtualization and software emulation
for transparent and extensible malware analysis. In Proceedings of
the Eighth Annual International Conference on Virtual Execution
Environments (VEE’12) (March 2012).

[37] YIN, H., LIANG, Z., AND SONG, D. HookFinder: Identifying
and understanding malware hooking behaviors. In Proceedings of
the 15th Annual Network and Distributed System Security Sympo-
sium (NDSS’08) (February 2008).

[38] YIN, H., AND SONG, D. Temu: Binary code analysis via whole-
system layered annotative execution. Tech. Rep. UCB/EECS-
2010-3, EECS Department, University of California, Berkeley,
Jan 2010.

[39] YIN, H., SONG, D., MANUEL, E., KRUEGEL, C., AND KIRDA,
E. Panorama: Capturing system-wide information flow for mal-
ware detection and analysis. In Proceedings of the 14th ACM
Conferences on Computer and Communication Security (CCS’07)
(October 2007).

[40] ZHOU, Y., AND JIANG, X. Dissecting android malware: Char-
acterization and evolution. In Proceedings of the 33rd IEEE Sym-
posium on Security and Privacy (Oakland 2012) (San Francisco,
CA, USA, May 2012), IEEE.

[41] ZHOU, Y., WANG, Z., ZHOU, W., AND JIANG, X. Hey, you, get
off of my market: Detecting malicious apps in official and alter-
native android markets. In Proceedings of the 19th Network and
Distributed System Security Symposium (San Diego, CA, Febru-
ary 2012).

A Trace-Based Exploit Diagnosis of “ratc”
In this section, we provide an example of exploit diagno-
sis using DroidScope and the ARM instruction tracer on
“ratc”. These results corroborate with publicly available
information on “ratc” and the setuid exhaustion vulnera-
bility.

We know that adbd is supposed to downgrade its priv-
ileges by setting its uid to AID SHELL (2000), and yet
adbd retained its root privileges after the attack. Thus,
in an effort to identify the root cause of the vulnerability,
we used DroidScope to gather an ARM instruction trace
that includes both user and kernel code.

A simplified and annotated log is shown in Figure 13.
In the log, the instruction’s address comes first fol-
lowed by a colon, the decoded instruction and then the
operands. We have also indented the instructions to il-
lustrate the relative stack depth.

The log begins when setgid returns from the ker-
nel space and returns back to adb main at address
0x0000c3a4. Almost immediately, the log shows setuid
being called. After transitioning into kernel mode, we
see sys setuid being called followed by a call to set user.
Later we see set user returning an error code 0xfffffff5
which is (-11 in 2’s complement or -EAGAIN).

Tracing backwards in the log reveals that this error
code was the result of the RLIMIT NPROC check in
set user. This reveals why setuid failed to downgrade

15

584  21st USENIX Security Symposium	 USENIX Association

;;;setgid returns from kernel back to adbd
0000813c: pop {r4, r7}
00008140: movs r0, r0
00008144: bxpl lr : Read Oper[0]. R14, Val = 0xc3a5
;; Return back to 0xc3a4 (caller) in Thumb mode

;;;adbd_main sets up for setuid
0000c3a4: movs r0, #250
0000c3a6: lsls r0, r0, #3 : Write Oper[0]. R0, Val = 0x7d0

;; 250 * 8 = 0x7d0 = 2000 = AID_SHELL

...

;;;Start of setuid section
;;; 213 is syscall number for sys_setuid
00008be0: push {r4, r7} : Write Oper[0]. M@be910bb8, Val = 0x7d0

;; push AID_SHELL onto the stack
00008be4: mov r7, #213
00008be8: svc 0x00000000

;; Make sys call

;;; === TRANSITION TO KERNEL SPACE ===

;;;sys_setuid then calls set_user in kernel mode

;;;inside sys_setuid
;; Has rlimit been reached?
c0048944: cmp r2, r3 : Read Oper[0]. R3, Val = 300 Read Oper[1]. R2, Val = 300

;;; RLIMIT(300) is reached and !init_user so return -11
c0048960: mvn r0, #10 : Write Oper[0]. R0, Val = 0xfffffff5

;; the return value is now -11 or -EAGAIN
c0048964: ldmib sp, {r4, r5, r6, fp, sp, pc}

;;;Return back to sys_setuid which returns back to userspace

;;; === RETURN TO USERSPACE ===

;;;setuid continues
00008bec: pop {r4, r7}
00008bf0: movs r0, r0 : Read Oper[0]. R0, Val = 0xfffffff5

;; -11 is still here

;;;Return back to adb_main at 0xc3ac (the return address) above
;;; Immediately starts other work, does not check return code
0000c3ac: ldr r7, [pc, #356] : Read Oper[0]. M@0000c514, Val = 0x19980330

Write Oper[0]. R7, Val = 0x19980330
;; 0x19980330 is _LINUX_CAPABILITY_VERSION

Figure 13: Annotated adbd trace

adbd’s privileges. Further analysis of the log shows that
the return value from setuid was not used by adbd nor
was a call to getuid seen. The same applies to setgid.
This indicates that adbd failed to ensure that it is no
longer running as root. Thus, our analysis shows that
the vulnerability is due to two factors, RLIMIT NPROC
and failure to check the return code by adbd.

16

USENIX Association 	 21st USENIX Security Symposium  585

STING: Finding Name Resolution Vulnerabilities in Programs

Hayawardh Vijayakumar, Joshua Schiffman and Trent Jaeger
Systems and Internet Infrastructure Security Laboratory,

Department of Computer Science and Engineering,
The Pennsylvania State University

{hvijay,jschiffm,tjaeger}@cse.psu.edu

Abstract
The process of name resolution, where names are re-
solved into resource references, is fundamental to com-
puter science, but its use has resulted in several classes
of vulnerabilities. These vulnerabilities are difficult for
programmers to eliminate because their cause is exter-
nal to the program: the adversary changes namespace
bindings in the system to redirect victim programs to a
resource of the adversary’s choosing. Researchers have
also found that these attacks are very difficult to prevent
systematically. Any successful defense must have both
knowledge about the system namespace and the program
intent to eradicate such attacks. As a result, finding and
fixing program vulnerabilities to such as attacks is our
best defense. In this paper, we propose the STING test
engine, which finds name resolution vulnerabilities in
programs by performing a dynamic analysis of name res-
olution processing to produce directed test cases when-
ever an attack may be possible. The key insight is that
such name resolution attacks are possible whenever an
adversary has write access to a directory shared with the
victim, so STING automatically identifies when such di-
rectories will be accessed in name resolution to produce
test cases that are likely to indicate a true vulnerability
if undefended. Using STING, we found 21 previously-
unknown vulnerabilities in a variety of Linux programs
on Ubuntu and Fedora systems, demonstrating that com-
prehensive testing for name resolution vulnerabilities is
practical.

1 Introduction

The association between names and resources is funda-
mental to computer science. Using names frees computer
programmers from working with physical references to
resources, allowing the system to store resources in the
way that it sees fit, and enables easy sharing of resources,
where different programs may use the different names for

the same object. When a program needs access to a re-
source, it presents a name to a name server, which uses
a mechanism called name resolution to obtain the corre-
sponding resource.

While name resolution simplifies programming in
many ways, its use has also resulted in several types
of vulnerabilities that have proven difficult to eliminate.
Adversaries may control inputs to the name resolution
process, such as namespace bindings, which they can
use to redirect victims to resources of the adversaries’
choosing. Programmers often fail to prevent such at-
tacks because they fail to validate names correctly, fol-
low adversary-supplied namespace bindings, or lack in-
sight into which resources are accessible to adversaries.
Table 1 lists some of the key classes of these vulnerabil-
ities.

While a variety of system defenses for these attacks
have been proposed, particularly for name resolution at-
tacks based on race conditions [14, 20, 22, 39, 40, 48, 50–
52, 57], researchers have found that such defenses are
fundamentally limited by a lack of knowledge about the
program [12]. Thus, the programmers’ challenge is to
find such vulnerabilities before adversaries do. How-
ever, finding such vulnerabilities is difficult because the
vectors for name resolution attacks are outside the pro-
gram. Table 1 shows that adversaries may control names-
pace bindings to redirect victims to privileged resources
of their choice, using what we call improper binding at-
tacks or redirect victims to resources under the adver-
saries’ control, using what we call improper resource at-
tacks. Further, both kinds of attacks may leverage the
non-atomicity of various system calls to create races,
such as the time-of-check-to-time-of-use (TOCTTOU)
attacks [6,38], which makes them even more difficult for
victims to detect.

Researchers have explored the application of dynamic
and static analysis to detect namespace resolution at-
tacks. Dynamic analyses [1, 32, 35, 36, 56] log observed
system calls to detect possible problems, such as check-

586  21st USENIX Security Symposium	 USENIX Association

Attack CWE ID
Improper Binding Attacks
UNIX Symlink Following CWE-61
UNIX Hard Link Following CWE-62
Improper Resource Attacks
Resource Squatting CWE-283
Untrusted Search Path CWE-426
Attacks Caused by Either Bindings or Resources
TOCTTOU Race Condition CWE-362

Table 1: Classes of name resolution attacks.

use pairs that may be used in TOCTTOU attacks. How-
ever, the existence of problems does not necessarily
mean that the program is vulnerable. Many of the check-
use pairs found were not exploitable. Static analyses use
syntactic analyses [6,53] and/or semantic models of pro-
grams to check for security errors [15, 44], sometimes
focusing on race conditions [27]. These static analyses
do not model the system environment, however, so they
often produce many false positives. In addition, several
of these analyses result in false negatives as they rely
on simpler models of program behavior (e.g., finite state
machines), limited alias analysis, and/or manual annota-
tions.

The key insight is that such name resolution attacks
are possible only when an adversary has write access to
a directory shared with the victim. Using this write ac-
cess, adversaries can plant files with names used by vic-
tims or create bindings to redirect the victim to files of
the adversaries’ choice. Chari et al. [14] demonstrated
that when victims use such bindings and files planted by
adversaries attacks are possible, so they built a system
mechanism to authorize the bindings used in name reso-
lution. However, we find that only a small percentage of
name resolutions are really accessible to adversaries and
most of those are defended by programs. Further, the
solution proposed by Chari et al. is prone to false posi-
tives, as any pure system solution is, because it lacks in-
formation about the programs’ expected behaviors [12].
Instead, we propose to test programs for name resolu-
tion vulnerabilities by having the system assume the role
of an adversary, performing modifications that an adver-
sary is capable of, at runtime. Using the access control
policy and a list of adversarial subjects, the system can
determine whether an adversary has write access to a di-
rectory to be used in a name resolution. If so, the sys-
tem prepares an attack as that adversary would and de-
tect whether the program was exploited or immune to
the attack (e.g., did the program follow the symbolic link
created?). This is akin to directed black-box testing [23],
where a program is injected with a dictionary of com-
monly known attacker inputs.

In this paper, we design and implement the STING test

engine, which finds name resolution vulnerabilities in
programs by performing a dynamic analysis of name res-
olution processing to produce directed test cases when-
ever an attack may be possible. STING is an extension
to a Linux Security Module [58] that implements the ad-
ditional methods described above to provide comprehen-
sive, system-wide testing for name resolution vulnera-
bilities. Using STING, we found 21 previously-unknown
name resolution vulnerabilities in 19 different programs,
ranging from startup scripts to mature programs, such as
cups, to relatively new programs, such as x2go. We de-
tail several bugs to demonstrate the subtle cases that can
be found using STING. Tests were done on Ubuntu and
Fedora systems, where interestingly some bugs only ap-
peared on one of the two systems because of differences
in the access control policies that implied different ad-
versary access.

This research makes the following novel contribu-
tions:

• We find that name resolution attacks are always pos-
sible whenever a victim resolves a name using a
directory where its adversaries have permission to
create files and/or links, as defined in Section 3. If a
victim uses such a directory in resolving a name, an
adversary may redirect them to a resource of the ad-
versary’s choosing, compromising victims that use
such resources unwittingly.

• We develop a method for generating directed test
cases automatically that uses a dynamic analysis to
detect when an adversary could redirect a name res-
olution in Section 4.1.

• We develop a method for system-wide test case pro-
cessing that detects where victims are vulnerable to
name resolution attacks, restores program state to
continue testing, and manages the testing coverage
in Section 4.2.

• We implement a prototype system STING for Linux
3.2.0 kernel, and run STING on the current versions
of Linux distributions, discovering 21 previously-
unknown name resolution vulnerabilities in 13 dif-
ferent programs. Perhaps even more importantly,
STING finds that 90% of adversary-accessible name
resolutions are defended by programs correctly,
eliminating many false positives.

We envision that STING could be integrated into sys-
tem distribution testing to find programs that do not ef-
fectively defend themselves from name resolution at-
tacks given that distribution’s access control policy be-
fore releasing that distribution to the community of
users.

USENIX Association 	 21st USENIX Security Symposium  587

2 Problem Definition

Processes frequently require system level resources like
files, libraries, and sockets. Since the system’s manage-
ment of these objects is unknown to the process, names
are used as convenient references to the desired resource.
A name resolution server is responsible for converting
the requested resource name to the desired object via a
namespace binding. Typical namespaces in Unix-based
systems include the filesystem and System V IPC names-
paces (semaphores, shared memory, message queues,
etc.). Some namespaces may even support many-to-one
mappings (e.g., multiple pathnames may be linked to the
same file inode).

Unfortunately, various name resolution attacks are
possible when an attacker is able to affect this indirection
between the desired resource and its name. In this sec-
tion, we broadly outline two classes of name resolution
attacks and give several instances of them. We then dis-
cuss how previous efforts attempt to defend against these
attacks and their limitations. Finally, we present our so-
lution, STING, that overcomes many of these shortcom-
ings.

V / var mail root

A

open("/var/

mail/root")

Filesystem Namespace

etc passwd Link

V / var mail

root
(adversary

mail

contents)

A

open("/var/

mail/root")

Filesystem Namespace

Improper
Resource

Attack

Improper
Binding
Attack

- binding - resource

Figure 1: Improper binding and improper resource attacks. A
and V are adversary and victim processes respectively.

2.1 Name Resolution Attacks

Malicious parties can control the name resolution pro-
cess by modifying the namespace’s binding to trick
victim processes into accessing unintended resources.
We find that these attacks can be categorized into two
classes. The first, improper binding attacks, are when
attackers introduce bindings to resources outside of the
attackers control. This can give adversary indirect access
to the resource through the victim. Such attacks are in-
stances of the confused deputy [33]. The second class,
improper resource attacks, is when an attacker creates an

unexpected binding to a resource the adversary controls.
Instances of these attacks depend on the namespace.

For example, the filesystem namespace is often exploited
through malicious path bindings like symbolic links and
the creation of files with frequently used names. Con-
sider a mail reader program running as root attempting
to check mail from /var/mail/root. Users in the mail
group are permitted to place files in this directory for the
program to read and send. Figure 1 demonstrates how
name resolution attacks from both categories could be
performed on this program.

• Symbolic link following: The adversary wishes to
exfiltrate a protected file (/etc/passwd) that it can-
not normally access. Since users in group mail are
permitted to create (and delete) bindings (files) in
/var/mail, the adversary inserts a symbolic link
/var/mail/root in the namespace that is bound to
the desired file. If a victim mail program running as
root does not check for this link, it might inadver-
tently leak the protected file. A similar attack can be
launched through hard links. This is an instance of
an improper binding attack, where adversaries use
control of bindings to redirect victim programs with
privileges to access or modify resources the adver-
saries cannot directly.

• Squatting: Even if the mail program defends itself
against link following attacks, the adversary could
simply squat a file on /var/mail. If the mail pro-
gram accepts this file, the adversary could spoof the
contents of mail read by root. This is an example
of an improper resource attack, where the adversary
uses control of bindings to create a resource under
her control when the victim does not expect to in-
teract with the adversary.

• Untrusted search path: Programs frequently rely
on files like system libraries or configuration files,
but the names they supply to access these files
may be wrong. One frequent cause is the program
supplying a name relative to its working directory,
which causes a problem if the working directory is
adversary controlled. Adversaries can then simply
bind arbitrary resources at these filenames, possi-
bly gaining control of the victim’s program. This
is another instance of an improper resource attack,
where the adversary supplies an improper resource
to the victim.

While the attacks an adversary can carry out are well
known, the ways in which programs defend themselves
are often ad hoc and complex [13]. Even the most
diligent programs may fail to catch all the ways in
which an adversary might manipulate these namespaces.

588  21st USENIX Security Symposium	 USENIX Association

Moreover, defenses to these attacks can often be cir-
cumvented through time-of-check-to-time-of-use (TOCT-
TOU) attacks. To do this, the adversary waits until the
mail program checks that /var/mail/root is a regular
file prior to opening it and then switches the file to a link
before the open call is made. Given the variety of possi-
ble name resolution attacks and the complex code needed
to defend against them, it should come as little surprise
that vulnerabilities of this type continue to be uncovered.
Such attacks contribute 5-10% of CVE entries each year.

2.2 Detecting Name Resolution Attacks
Researchers have explored a variety of dynamic and
static analyses to detect instances of name resolution at-
tacks, particularly TOCTTOU attacks. However, all such
analyses are limited in some ways when applied to the
problem of detecting name resolution attacks.

Static Analysis Static analyses of TOCTTOU at-
tacks vary from syntactic analyses specific to check-use
pairs [6, 53], to building various models of programs to
check for security errors [15,44,45], to race conditions in
general [27]. However, static analyses are disconnected
from essential environmental information, such as the
system’s access control policy to determine whether an
adversary can even launch an attack. For example, a pro-
gram may legitimately accesses files in /proc without
checking for name resolution attacks; however, the same
cannot be done in /tmp. Thus, these analyses yield a
significant number of false positives. Further, static tech-
niques are limited to TOCTTOU attacks, due to the ab-
sence of standardized program checks against name res-
olution attacks in general.

Dynamic Analysis Dynamic analyses [1,32,35,36,56]
typically take a system-wide view, logging observed sys-
tem calls from processes to detect possible problems,
such as check-use pairs. Dynamic analyses can also de-
tect specific vulnerabilities, either at runtime [36] or after
the fact [35]. Compared to static analyses, dynamic anal-
yses can take into account the system’s environment, but
suffer the disadvantage of being unaware of the internal
code of the program. In addition, the quality of dynamic
analysis is strongly dependent on the test cases produced.
Because name resolution attacks require an active adver-
sary, the problem is to produce adversary actions in a
comprehensive manner. Using benign system traces may
identify some vulnerabilities, such as those built-in to the
normal system configuration [13], but will miss many
other feasible attacks. Finally, any dynamic analysis
must distinguish program actions that are safe from those
that are vulnerable effectively. We have found that pro-
grams successfully defend themselves from a large per-

centage of the attempted name resolution attacks (only
12.5% were vulnerable), so test case processing must
find cases where program defenses are actually missing
or fail. Since previous dynamic analyses lack insight into
the program, several false positives have resulted.

Symbolic Execution Researchers have recently had
success finding the conditions under which a program
is vulnerable using symbolic execution [7, 8, 10, 11, 18,
19, 25, 29–31, 46]. Symbolic execution has been used to
produce test cases for programs to look for bugs [9, 37],
to generate filters automatically [8, 18], and to generate
test cases to leverage vulnerabilities in programs [3] au-
tomatically. In these symbolic execution analyses, the
program is analyzed to find constraints on the input val-
ues that lead to a program instruction of interest (i.e.,
where an error occurs). Then, the symbolic execution
engine solves for those constraints to produce a concrete
test case that when executed would follow the same path.
Finding name resolution attacks using symbolic execu-
tion may be difficult because the conditions for attack are
determined mainly by the operating environment rather
than the program. While symbolic execution often re-
quires a model of the environment in which to examine
the program, the environment needs to be the focus of
analysis for finding name resolution attacks.

2.3 Our Solution

As a result, we use a dynamic analysis to find name
resolution vulnerabilities, but propose four key enhance-
ments to overcome the limitations of prior analyses of all
types.

First, each name resolution system call is evaluated at
runtime to find the bindings used in resolution and to de-
termine whether an adversary is capable of applying one
or more of the attack types listed in Table 1. If so, a test
case resource is automatically produced at an adversary-
redirected location in the namespace and provided to the
victim. As a result, test cases are only applied where
adversaries have the access necessary to perform such
attacks.

Second, we track the victim’s use of the test case re-
source to determine whether it accepts the resource as
legitimate. If the victim uses the resource (e.g., reads
from it), we log the program entrypoint1 that obtained
the resource as vulnerable. While it is not always pos-
sible to exploit such a flaw to compromise the program,
this approach greatly narrows the number of false posi-
tives while still locating several previously-unknown true

1A program entrypoint is a program instruction that invoked the
name resolution system call, typically indirectly via a library (e.g.,
libc).

USENIX Association 	 21st USENIX Security Symposium  589

vulnerabilities. We also log the test cases run by program
entrypoint to avoid repeating the same attack.

Third, another problem with dynamic analysis is
ensuring that the analysis runs comprehensively even
though programs may fail or take countermeasures when
attacks are detected. We take steps to keep programs
running regardless of whether they fall victim to the at-
tack or not. Our test case resources use the same data as
the expected resource to enable vulnerable programs to
continue, and we automatically revert namespaces after
completion of a test and restart programs that terminate
when an attempted attack on them is detected.

3 Testing Model

In this section, we define an adversarial model that we
use to generate test cases that can be used to identify pro-
gram vulnerabilities.

Our goal is to discover vulnerabilities that will com-
promise the integrity of a process. Classically, an in-
tegrity violation is said occur when a lower integrity pro-
cess provides input to a higher integrity process or ob-
ject [5, 16]. For the name resolution attacks described in
the last section (see Table 1), integrity violations are cre-
ated in two ways: (1) improper binding attacks, where
adversaries may redirect name resolutions to resources
that are normally not modifiable by adversaries, enabling
adversaries to modify higher integrity objects, and (2)
improper resource attacks, where adversaries may redi-
rect name resolutions to resources that are under the ad-
versaries’ control, enabling adversaries to deliver lower
integrity objects to processes. In this section, we define
how such attacks are run and detected to identify the re-
quirements for the dynamic analysis.

A nameserver performs namespace resolution by us-
ing a sequence of namespace bindings, bi j = (ri,n j,rk),
to retrieve resource rk from resource ri given a name n j.
In a file system, ri is a directory, n j is an element of the
name supplied to the nameserver for resolution, and rk
is another directory or a file. Attacks are possible when
adversaries of a victim program have access to modify
binding bi j to (ri,n j,rk′) or create such a binding if it
does not exist, enabling them to redirect the victim’s pro-
cess to a resource r′k instead of rk. Since bindings cannot
be modified like files, adversaries generally require the
delete permission to remove the old binding and the cre-
ate permission to create the desired binding to perform
such modification. Two types of name resolution attacks
are possible when adversaries have such permission (e.g.,
write permission to directories in UNIX systems).

Improper binding attacks use the permission to
modify a binding to create a link (symbolic or hard) to an
existing resource that is inaccessible to the adversary, as

in symbolic and hard link attacks described above. That
is, the improper binding may lead to privilege escalation
for the adversary by redirecting the victim process to use
an existing resource on behalf of that adversary.

Improper resource attacks use the permission to
modify a binding to create a new resource controlled by
the adversary. That is, the adversary tries to trick the
victim into using the improper resource to enable the ad-
versary to provide malicious input to the victim, such as
in resource squatting and untrusted search path attacks
described above.

STING discovers name resolution vulnerabilities by
identifying scenarios where an attack is possible and gen-
erating test cases to validate the vulnerability. Whenever
a name resolution system call is requested by the vic-
tim (i.e., a system call that converts a name to a resource
reference, such as open), STING finds the bindings that
would be used in the namespace resolution process to de-
termine whether an adversary of the process has access to
modify one or more of these bindings. If so, STING gen-
erates an attack test case by producing a test case re-
source, which emulates either an existing, privileged re-
source or a new adversary-controlled resource, and ad-
justing the bindings as necessary to resolve to that re-
source. A reference to this test case resource is returned
to the victim.

Vulnerability in the Victim. We define a victim to be
vulnerable if the victim runs an accept system call using
a reference to the test case resource.

A victim accepts a test case resource if it runs an ac-
cept system call, a system call that uses the returned ref-
erence to the test case resource to access resource data
(e.g., read or write). If a victim is tricked into reading
or writing a resource inaccessible to the adversary, the
adversary can modify the resource illicitly2. If a victim
is tricked into reading or writing a resource that is con-
trolled by the adversary, then the adversary can control
the victim’s processing.

4 Design

The design of STING is shown in Figure 2. STING is di-
vided into two phases. The attack phase of STING is
invoked at the start of a name resolution system call.
STING resolves the name itself to obtain the bindings that
would be used in normal resolution, and then determines
whether an attack is possible using the program’s adver-
sary model. When an attack is possible, STING chooses
an attack from the list in Table 1 that has not already
been tried and produces a test case resource and asso-

2A read operation on a test case resource is indicative of integrity
problems if the resource is opened with read-write access.

590  21st USENIX Security Symposium	 USENIX Association

Syscall
Invocation

Shadow
Resolution

(name,
entry point) Attack

Conditions
Satisfied?

Adversary
Model

Resouce

Possible
Adversaries

Attack Search History
Program:Entry Point Attack History

mail:0xbeef Squat: No
Hardlink: Yes
Symlink: ???

xord:0x4cb3 Squat: ???

Untested
Attack

Handle
SyscallNo

Rollback Information
Program:Entry Point Changes

mail:0xbeef /var/mail/root ->
/etc/high_int_file

Attack
Namespace

Yes

Record changes
 to namespaceIndicate attack

in progress

Resume

(a) Launching an attack

Syscall
Invocation

Program
vulnerable to
modified

resource?

Tainted
Resouce

Handle
SyscallNo

Record
Vulnerability

Recover
from changes

Yes

Attack Search History
Program:Entry Point Attack History

mail:0xbeef Squat: No
Hardlink: Yes
Symlink: ???

xord:0x4cb3 Squat: ???

Rollback Information

Changes

mail:0xbeef /var/mail/root ->
/etc/high_int_file

Program:Entry Point

(b) Detecting a vulnerability

Figure 2: STING consists of two phases: (a) launching an attack, and (b) detecting a vulnerability due to the attack and recovering
original namespace state.

ciated bindings to launch the attack. The detect phase
of STING is invoked on accept system calls. This phase
detects if a process “accepted” STING’s changes, indi-
cating a vulnerability, and records the vulnerability in-
formation in the previously added entry in the attack his-
tory. STING reverts the namespace to avoid side-effects.
These two phases are detailed below.

STING is designed to test systems, not just individual
programs, so STING will generate test cases for any pro-
gram in the system that has an adversary model should
the opportunity arise. To control the environment under
which a program is run, STING intercepts execve sys-
tem calls. For example, programs that may be run by
unprivileged users (e.g., setuid programs) are started in
an adversary’s home directory by this interception code.
Other than initialization, the attack and detect phases are
the same for all processes.

4.1 Attack Phase
Shadow resolution. Whenever a name resolution sys-
tem call is performed, STING needs identify whether an
attack is possible against that system call. The first step
is to collect the bindings that would normally be used
in the resolution. We cannot use the existing name res-
olution mechanism, however, since that has side-effects
that may impact the process and also does not gather the
desired bindings for evaluation. Instead, we perform a
shadow resolution that only collects the bindings.

There are two challenges with shadow resolution.
First, we have to ensure that all name resolution opera-
tions performed by the system are captured in the shadow
resolution. This task can be tricky because some name
resolution is performed indirectly. For example, exec
resolves the interpreter that executes the program in the
“shebang” line in addition to the program whose name is
an argument to the system call. To capture all the name
resolution code, we use Cscope 3 to find all the system

3http://cscope.sourceforge.net/

calls that invoke a fundamental function of name reso-
lution, do_path_lookup. Using this we find 62 system
calls that do name resolution for the Linux filesystem.
The three System V IPC system calls that do name reso-
lution were identified manually.

Second, we need to modify the name resolution code
to collect the bindings used without causing side-effects
in the system. Fortunately, the name resolution code in
Linux does not cause side-effects itself. The system call
code that uses name resolution creates the side-effects.
Thus, we simply invoke the name resolution functions
directly when the system call is received. Some effort
must be taken to format the call to the name resolution
code at the start of the system call, but fortunately the
necessary information is available (name, flags, etc.).

Find vulnerable bindings. To carry out an attack,
STING has to determine whether any adversary of the
program has the necessary permissions to the bindings
involved in the resolution. To answer this question, we
need to identify the program’s adversaries and evaluate
the permissions these adversaries have to bindings effi-
ciently. We note that the specific permissions necessary
to launch an attack are specified in Section 3.

We do not want the dynamic analysis to depend on a
single adversary model for the system, but instead per-
mit the use of program-specific adversary models. The
adversaries of a process are determined by the process’s
subject (i.e., in the access control policy) and optional
program-specific sets of subjects and/or objects that are
adversaries or adversary-controlled, respectively. From
this information, a comprehensive set of adversary sub-
jects are computed. Using a discretionary access control
(DAC) policy, an adversary is any subject other than the
victim and the trusted superuser root. Chari et al. used
the DAC policy in their dynamic analysis [13], which
worked adequately for root processes but incurred some
false positives for processes run under other subjects. For
systems that enforce a mandatory access control (MAC)
policy, methods have been devised to compute the adver-

USENIX Association 	 21st USENIX Security Symposium  591

saries of individual subjects [34, 49]. We note that MAC
adversaries may potentially be running processes under
the same DAC user, so they are typically finer-grained.

Finding the permissions of a process’s adversaries at
runtime must be done efficiently. If a process has several
adversaries, the naive technique of querying the access
control policy for each adversary in turn is unacceptable.
To solve this, we observe we can precompute the adver-
saries of particular process as in a capability-list, where
each process has a list of tuples consisting of an object
(or label in a MAC policy), a list of adversaries with cre-
ate permission to that object (or label), and the list of
adversaries with delete permission to that object (or la-
bel). We store these in a hash table for quick lookup at
runtime.

Identify possible attacks. Once we identify a binding
that is accessible to an adversary, we need to choose an
attack from which to produce a test case. For improper
binding attacks, an attack needs to modify a binding from
an existing resource to the target resource using a sym-
bolic or hard link. Such attacks are only possible in the
Linux filesystem namespace, where a single file (inode)
may have multiple names.

Improper resource attacks are applicable across all
namespaces. We consider two instances of improper re-
source attacks (see Table 1). For resource squatting, at-
tacks are only meaningful if the adversary can supply a
resource with a lower integrity than the victim intended
to access. To determine the victim’s intent, we simply
check if a non-adversarial subject has permissions to sup-
ply the resource the adversary is attacking 4. This occurs
in directories shared by parties at more than one integrity
level. If so, we assume that the victim intended to access
the higher integrity file (i.e., one that could be created by
a non-adversarial subject), and attempt a squatting attack
which succeeds if the victim later accepts the test case re-
source. MOPS [44] uses a similar but narrower heuristic
to identify intent and detect ownership stealing attacks,
which are another case of resource squatting attacks.

Launch an attack. Launching an attack involves
making modifications to the namespace to generate re-
alistic attack scenarios. Different attacks modify the
namespace in different ways. For improper binding at-
tacks, we create a new test case resource (e.g., file)
that represents a privileged resource, and change the
adversary-modifiable bindings to point to it (e.g., sym-
bolic link). For improper resource attacks, we replace
the existing resource (if present) with a new test case re-
source and binding.

Modification of the filesystem namespace in particular
presents challenges of backing up existing files, rollback

4We discount root superuser permissions while checking non-
adversarial subjects, as otherwise root will be a non-adversary in any
directory.

and multiple views for different subjects. First, we have
to change the file system to create the test cases, such
as deleting existing files. Second, once the test case fin-
ishes, we need to rollback the namespace to its original
state. While we can back up files (costing the overhead
of copy), other resources such as UNIX domain sockets
are hard or impossible to rollback once destroyed. An-
other requirement is that the attack should only be visible
to the appropriate victim subjects having the attacker as
an adversary. Thus, direct modification of the existing
filesystem is undesirable.

To solve the above problems, we take inspiration from
the related problem of filesystem unions. Union filesys-
tems unite two or more filesystems (called branches) to-
gether [2,59]. A common use-case is in Live CD images,
where the base filesystem mounted from a CDROM is
read-only, and a read-write branch (possibly temporary)
is mounted on top to allow changes. When a file on the
lower branch is modified, it is “copied up” to the up-
per branch and thereafter hides the corresponding lower
branch file. “Whiteouts” are created on the upper branch
for deleted files.

To support STING, our general strategy is thus to have
a throw-away “upper branch” mounted on top of the un-
derlying filesystem “lower branch”. STING creates re-
sources only on the upper branch. As STING does not
deal with data, files are created empty. Next, STING di-
rects operations to upper branches if the resource exists
on the upper branch and was created by an adversary to
the currently running process. This enables different pro-
cesses to have different views of the filesystem names-
pace.

Once a test case resource is created, we taint it us-
ing extended attributes to identify when it is used in an
accept system call5, signaling a vulnerability. We also
record rollback information about the resources created
in a rollback table.

These changes to the bindings have to be done as the
adversary. The most straightforward option is to have a
separate “adversary process” that is scheduled in to per-
form needed changes. This was the first option we ex-
plored; however, it introduced significant performance
degradation due to scheduling. Instead, we perform the
change using the currently running victim process itself.
We change the credentials of the victim process to that of
the adversary, carry out the change, and then revert to the
victim’s original credentials. We do this without leaving
behind side effects on the victim process’ state. For ex-
ample, if we create a namespace binding using open, we
close the opened file descriptor.

5Some filesystems do not support extended attributes. Since we use
tmpfs as the upper branch, we extended it to add such support for our
testing. For other namespaces such as IPCs, we store the taint status in
a field in the security data structure defined by SELinux.

592  21st USENIX Security Symposium	 USENIX Association

There are some cases where the system needs to revert
a test case resource back to a “benign” version. “Check”
system calls [56] (e.g., stat, lstat) resolve the name
to verify properties of the resource, so attacks should
present a benign resource to prevent the victim from de-
tecting the attack. We simply redirect such accesses to
the lower branch.

In addition to adversarial modification of the names-
pace, STING also changes process attributes relevant to
name resolution. In particular, it changes the work-
ing directory a process is launched in to an adversary-
controlled directory.

We want to prevent STING from launching the same
attack multiple times. Trying the same attack on the same
system call prevents forward exploration of the attack
space and further program code from being exercised. A
unique attack associates an attack type with a particular
system call entrypoint in the program. Thus, when we
launch an attack, we check an attack history that stores
which attack types have been attempted already and their
result (see Figure 2). We do not attempt multiple binding
changes for an attack type. We have not found any pro-
grams that perform different checks for name resolution
attacks based on the names used. Tracking such history
requires unique identification of system call entrypoints
in the program, which we discuss in Recording below.

4.2 Detect Phase

Detect vulnerability. Detecting whether a victim is vul-
nerable to an attack is relatively straightforward – we
simply have to determine if the program “accepted” the
test case resource. Definition of acceptance for different
attacks are presented in Table 2. On the other hand, we
conclude that the program defends itself properly from
an attack if it: (1) exits without accepting the test case
resource or (2) retries the operation at the same program
entrypoint. When detection determines that a victim is
vulnerable or invulnerable, it fills this information in the
attack history entry created during the attack phase, and
optionally logs the fact.

STING detects successful attacks by identifying use of
a test case resource. Each test case resource is marked
when returned to the victim. To detect when a victim
uses a test case resource, we must have access to the in-
ode, so such checking is integrated with the access con-
trol mechanism (e.g., Linux Security Module). Once a
test case resource is found, we need to determine if it
is being accepted by retrieving the system call invoked.
As an access control check may apply to multiple sys-
tem calls, we have to retrieve the identity of the system
call from the state of the calling process. Vulnerabilities
found have their attack history record logged into user
space.

Attack Accept
Symbolic link write-like, read, readlink
Hard link write-like, read
File squat write-like, read
UNIX-domain socket squat connect

System V IPC squat msgsnd, semop, shmat

Table 2: Table showing calls that signify acceptance, and there-
fore detection, for various attacks. write-like system calls are
any calls that modifies the resource’s data or metadata (e.g.,
fchmod).

We note that the process of detecting a vulnerability
is the same for all attack types, including those based on
race conditions. STING automatically switches resources
between check and use as discussed above, so we only
need to detect when an untrusted resource is accepted.
fstat is not an accept system call, so the “use” of the
test case resource in that system call does not indicate a
vulnerability. Thus, if the program should somehow de-
tect an attack using fstat, preventing further use of the
test case resource, then STING will not record a vulnera-
bility.

Update attack history. Once a particular attack has
been tried on a system call, trying it again in future invo-
cations of the program is redundant and may prevent fur-
ther code from being exercised. Avoiding this problem
requires storing attacks tested for system calls in the at-
tack history. The challenge is unique identification of the
system call entrypoint, which uniquely identifies the in-
struction from which the program made the system call.
To find this instruction, we perform a backtrace of the
user stack to find the first frame within the program that
is not in the libraries. We also extend our system to sup-
port interpreters by porting interpreter debugging code
into the kernel that locates and parses interpreter data
structures to the current line number in the script, for the
Bash, PHP and Python interpreters. Only between 11 and
59 lines of code were necessary for each interpreter. We
use the current line number in the script as the entrypoint
for interpreted programs.

Namespace recovery. Finally, we make changes so
that STING can work online despite changing the names-
pace state. While it appears that such changes could
cause processes to crash, we have not found this to be
the case. Unlike data fuzzing, we find changes in names-
pace state do not cause programs to arbitrarily crash,
as we preserve data and only change resource meta-
data. When an attack succeeds, the only change needed
is to redirect the access to the corresponding resource
in the lower branch of the unioned filesystem that con-
tains the actual data (if one exists), and delete the re-
source in the upper branch. On the other hand, if the
attack fails, STING again deletes the resource in the up-

USENIX Association 	 21st USENIX Security Symposium  593

per branch. Programs that protect themselves proceed in
two ways. First, the program might retry the same sys-
tem call again. Interestingly, we find this happens in a
few programs (Section 6.2). In this case, STING will not
launch an attack at that entrypoint again, and the pro-
gram again continues. Second, the program might exit.
If so, STING records that the attack failed at that entry-
point and restarts the program with its original arguments
(recorded via execve interception). For many programs
that exit, restarting them from the beginning does not af-
fect system correctness. Thus, we find our tool can per-
form online without complex logic. We are currently ex-
ploring how to integrate process checkpointing and roll-
back [17] to carry out recovery more gracefully for the
exit cases.

5 Implementation

Victim

Process

Shadow

Name

Resolve

Test

Attack

Conditions

Get

Process

Entrypoint

Launch

Attack

Detect

Vulnerable

Access
Record

Modify

Environment

Core

Sting

Adversary

Model

Log and

History

Recover

Syscall

Begin

LSM

Hooks

S
Y

S
 C

A
L

L

S
Y

S
 R

E
T

User Space

Kernel Space

Figure 3: STING is implemented in the Linux kernel and hooks
on to the system call beginning and LSM hooks. It has a modu-
lar implementation. We show here in particular the interaction
between user and kernel space.

Figure 3 shows the overall implementation of STING .
STING is implemented in the Linux 3.2.0 kernel. It hooks
into LSM through the SELinux function avc_has_perm

for its detect phase, and into the beginning of system
calls for its attack phase. STING has an extensible archi-
tecture, with modules registering themselves, and rules
specifying the order and conditions under which mod-
ules are called.

The modules implement functionality corresponding
to the steps shown in the design (Figure 2). The en-
trypoint module uses the process’ eh frame ELF sec-
tion to perform the user stack unwinding. eh frame

replaces the DWARF debug frame section, and is en-
abled by default on Ubuntu 11.10 and Fedora 15 systems.
Stack traces in interpreters yield an entrypoint inside the
interpreter, and not the currently executing script. We
extended our entrypoint module to identify line num-
bers inside scripts for the Bash, PHP and Python inter-
preters [54].

Server Programs Installed
BIND DNS Server Apache Web Server
MySQL Database PHP
Postfix Mail Server Postgresql Database
Samba File Server Tomcat Java Server

Table 3: Server programs installed on Ubuntu and Fedora.

The data for the MAC adversary model is pushed into
the kernel through a special file, and code to use each of
these to decide adversary access is in the test attack con-
ditions module. After launching an attack, the modified
resources are tainted through extended attributes for later
detection when a victim program uses the resource. We
had to extend the tmpfs filesystem to handle extended
attributes. The recording module can print vulnerabili-
ties as they are detected, and also log the vulnerabilities
and search history into userspace files through relayfs.
A startup script loads the attack search history into the
kernel during bootup, so the same attacks are not tried
again.

We prototyped a modified version of the UnionFS
filesystem [59] for STING. We mount a tmpfs as the up-
per branch, and the root filesystem as the lower branch.
The main change involved redirecting to the upper or
lower branches depending on a subject’s adversaries, and
disabling irrelevant UnionFS features such as copy-up.

6 Evaluation

We first evaluate STING ’s ability to finding bugs, as well
as broader security issues in Section 6.1. We then ana-
lyze the suitability of STING as an online testing tool in
Section 6.2

6.1 Security Evaluation
The aim of the security evaluation is to show that:

• STING can detect real vulnerabilities with a high
percentage of them being exploitable in both newer
programs, and older, more mature programs, and

• Normal runtime and static analysis would result in a
large number of false positives, and normal runtime
would also miss some attacks.

We tested STING on the latest available versions of
two popular distributions - Ubuntu 11.10 and Fedora
16. In both cases, we installed the default base Desktop
distribution, and augmented them with various common
server programs (Table 3). Note that STING requires no
additional special setup; it simply reacts to normal name
resolution requests at runtime. We collected data on both
systems over a few days of normal usage.

594  21st USENIX Security Symposium	 USENIX Association

Adversary model Total Resolutions Adversary Access Vulnerable
DAC - Ubuntu 2345 134 (5.7%) 21 (0.9%)
DAC - Fedora 1654 66 (4%) 5 (0.3%)

Table 4: Table showing the total number of distinct entrypoints
invoking system calls performing namespace resolutions, num-
ber accessible to adversaries under an adversary model, and
number of interfaces for which STING detected vulnerabilities.

6.1.1 Finding Vulnerabilities

Using a DAC attacker model, in total, STING found
26 distinct vulnerable resolutions across 20 distinct pro-
grams (including scripts). Of the 26 vulnerable resolu-
tions, 5 correspond to problems already known but un-
fixed. 17 of these vulnerabilities are latent [13], meaning
a normal local user would have to gain privileges of some
other user and can then attempt further attacks. For ex-
ample, one bug we found required the privileges of the
user postgres to carry out a further attack on root.
This can be achieved, for example, by remote network
attackers compromising the PostgreSQL daemon. For
all vulnerabilities found, we manually verified the source
code that a name resolution vulnerability existed. Sev-
eral bugs were reported, of which 2 were deemed not
exploitable (although a name resolution vulnerability ex-
isted) (Section 6.1.3).

Table 4 shows the total number of distinct name res-
olutions received by STING that were attackable . This
data shows challenges facing static and normal runtime
analysis. Only 4-5.7% of the total name resolutions
are accessible to the adversary under the DAC adver-
sary model. Therefore, static analysis that looks at the
program alone will have a large number of false pos-
itives, because programs do not have to protect them-
selves from name resolutions inaccessible to the adver-
sary. Second, normal runtime analysis cannot differen-
tiate between when programs are vulnerable and when
they protect themselves appropriately. We found only
7.5-15.6% of the name resolutions accessible to the ad-
versary are actually vulnerable to different name reso-
lution attacks. Further, 6 of these vulnerabilities would
simply not have been uncovered during normal runtime;
they are untrusted search paths that require programs to
be launched in insecure directories.

Table 5 shows the total number of vulnerabilities by
type. A single entrypoint may be vulnerable to more than
one type of attack. We note that STING was able to find
vulnerabilities of all types, including 7 that required race
conditions.

Table 6 shows the various programs across which vul-
nerabilities were found. Interestingly, we note that 6
of the 24 vulnerable name resolutions in Ubuntu were
found in Ubuntu-specific scripts. For example, CVE-

Type of vulnerability Total
Symlink following 22
Hardlink following 14
File squatting 10
Untrusted search 6
Race conditions 7

Table 5: Number and types of vulnerabilities we found. Race
is the number of TOCTTOU vulnerabilities, where a check is
made but the use is improper. A single entrypoint in Table 6
may be vulnerable to more than one kind of attack.

Program Vuln. Priv. Escalation Distribution Previously
Entry DAC: uid->uid known

dbus-daemon 2 messagebus->root Ubuntu Unknown
landscape 4 landscape->root Ubuntu Unknown
Startup scripts (3) 4 various->root Ubuntu Unknown
mysql 2 mysql->root Ubuntu 1 Known
mysql upgrade 1 mysql->root Ubuntu Unknown
tomcat script 2 tomcat6->root Ubuntu Known
lightdm 1 *->root Ubuntu Unknown
bluetooth-applet 1 *->user Ubuntu Unknown
java (openjdk) 1 *->user Both Known
zeitgeist-daemon 1 *->user Both Unknown
mountall 1 *->root Ubuntu Unknown
mailutils 1 mail->root Ubuntu Unknown
bsd-mailx 1 mail->root Fedora Unknown
cupsd 1 cups->root Fedora Known
abrt-server 1 abrt->root Fedora Unknown
yum 1 sync->root Fedora Unknown
x2gostartagent 1 *->user Extra Unknown
19 Programs 26 21 Unknown

Table 6: Number of vulnerable entrypoints we found in vari-
ous programs, and the privilege escalation that the bugs would
provide.

2011-4406 and CVE-2011-3151 were assigned to two
bugs in Ubuntu-specific scripts that STING found. Fur-
ther, the programs containing vulnerabilities range from
mature (e.g., cupsd) to new (e.g., x2go). We thus be-
lieve that STING can help in detecting vulnerabilities be-
fore an adversary, if run on test environments before they
are deployed.

MAC adversary model. We carried out similar ex-
periments for a MAC adversary model on Fedora 16’s
default SELinux policy. We assume an adversary limited
only by the MAC labels, and allow the adversary per-
missions to run as the same DAC user. This is one of the
aims of SELinux – even if a network daemon running as
root gets compromised, it should still not compromise
the whole system arbitrarily. However, we found that the
SELinux policy allowed subjects we consider untrusted
(such as the network-facing daemon sendmail_t) cre-
ate permissions to critical labels such as etc_t. Thus
STING immediately started reporting vulnerable name
resolutions whenever any program accessed /etc. Thus,
either the SELinux policy has to be made stricter, the ad-
versary model must be weakened for mutual trust among
all these programs, or all programs have to defend them-
selves from name resolution attacks in /etc (which is
probably impractical). This problem is consistent with
the findings that /etc requires exceptional trust in the
SELinux policy reported elsewhere [42].

USENIX Association 	 21st USENIX Security Symposium  595

01 /* filename = /var/mail/root */

02 /* First, check if file already exists */

03 fd = open (filename, flg);

04 if (fd == -1) {
05 /* Create the file */

06 fd = open(filename, O_CREAT|O_EXCL);

07 if (fd < 0) {
08 return errno;

09 }
10 }
11 /* We now have a file. Make sure

12 we did not open a symlink. */

13 struct stat fdbuf, filebuf;

14 if (fstat (fd, &fdbuf) == -1)

15 return errno;

16 if (lstat (filename, &filebuf) == -1)

17 return errno;

18 /* Now check if file and fd reference the same file,

19 file only has one link, file is plain file. */

20 if ((fdbuf.st_dev != filebuf.st_dev

21 || fdbuf.st_ino != filebuf.st_ino

22 || fdbuf.st_nlink != 1

23 || filebuf.st_nlink != 1

24 || (fdbuf.st_mode & S_IFMT) != S_IFREG)) {
25 error (_("%s must be a plain file

26 with one link"), filename);

27 close (fd);

28 return EINVAL;

29 }
30 /* If we get here, all checks passed.

31 Start using the file */

32 read(fd, ...)

Figure 4: Code from the GNU mail program in mailutils

illustrating a squat vulnerability that STING found.

6.1.2 Examples

In this section, we present particular examples highlight-
ing STING’s usefulness, and also broader lessons.

Mail Programs. GNU mail is the default mail client
on Ubuntu 11.10, in which STING found a vulnerability.
This example shows the difficulty of proper checking in
programs, and why detection tools with low false pos-
itives are necessary – programmers can easily get such
checks wrong, and there are no standardized ways to
write code to defend against various name resolution at-
tacks.

The code shows the program preparing to read the file
/var/mail/root. In summary, this program creates an
empty file when the file doesn’t already exist (lines 4-
10), using flags (O_EXCL) to ensure that a fresh file is
created. The program performs several checks to verify
the safety of the file opened, guarding against race con-
ditions and link traversal (both symbolic and hard links)
(11-29). Unfortunately, the program fails to protect it-
self against a squatting attack if the file already exists, as
it does not check st_uid or st_gid; any user in group
mail can control the contents of root’s inbox. Interest-
ingly, it protects itself against squatting attacks on line
6.

X11 script STING found a race condition exploitable
by a symbolic link attack on the script that creates
/tmp/.X11-unix in Ubuntu 11.10. The code snippet
is shown in Figure 5. The aim of the script is to cre-

01 SOCKET_DIR=/tmp/.X11-unix

...

02 set_up_socket_dir () {
03 if ["$VERBOSE" != no]; then

04 log_begin_msg "Setting up X server socket directory"

05 fi

06 if [-e $SOCKET_DIR] && [! -d $SOCKET_DIR]; then

07 mv $SOCKET_DIR $SOCKET_DIR.$$

08 fi

09 mkdir -p $SOCKET_DIR

10 chown root:root $SOCKET_DIR

11 chmod 1777 $SOCKET_DIR

12 do_restorecon $SOCKET_DIR

13 ["$VERBOSE" != no] && log_end_msg 0 || return 0

14 }

Figure 5: Code from an X11 startup script in Ubuntu 11.10 that
illustrates a race condition that STING found.

ate a root-owned directory /tmp/.X11-unix. Lines 6-8
check if such a file already exists that is not a directory,
and if so, moves it away so a directory can be created.
In Line 9, the programmer creates the directory, and as-
sumes it will succeed, because the previous code had just
moved any file that might exist. However, because /tmp
is a shared directory, an adversary scheduled in between
the moving of the file and the mkdir might again create
a file in /tmp/.X11-unix, thus breaking the program-
mer’s expectation. If the file is a link pointing to, for ex-
ample, /etc/shadow, the chmod on Line 11 will make
it world-readable. STING was able to detect this race
condition by changing the resource into a symbolic link
after the move and before the creation on line 9, as it acts
just before the system call on line 9. This script has ex-
isted for many years, showing how it is easy to overlook
such conditions. This also shows how STING can syn-
chronously produce any race condition an adversary can,
because it is in the system. This script was independently
fixed by Ubuntu in its latest release. The discussion page
for the bug [21] shows how such checks are challenging
to get right even for experienced programmers. Conse-
quently, manually scanning source code can also easily
miss such vulnerabilities.

mountall This program has an untrusted search path
that is not executed in normal runtime but was dis-
covered by STING. This Ubuntu-specific utility simply
mounts all filesystems in /etc/fstab. When launched
in an untrusted directory, it issues mount commands that
search for files such as none and fusectl in the cur-
rent working directory. If these are symbolic links, then
the contents of these files are read through readlink,
and put in /etc/mtab. Thus, the attacker can influence
/etc/mtab entries and potentially confuse utilities that
depend on this file, such as unmounters. This is an exam-
ple of how very specific conditions are required to detect
the attack – the program needs to be launched in an ad-
versarial directory, and the name searched for needs to
be a symbolic link. Normal runtime would not give any
hint of such attacks.

596  21st USENIX Security Symposium	 USENIX Association

postgresql init script. This vulnerability high-
lights the challenge facing developers and OS distrib-
utors. This script runs as root, and is vulnerable to
symbolic and hard link attacks on accessing files in
/etc/postgresql. That directory is owned by the user
postgres, which could be compromised by remote at-
tacks on PostgreSQL, who can then use this vulnerabil-
ity to gain root privileges. The problem is that the de-
velopers who wrote the script did not expect the direc-
tory /etc/postgresql to be owned by a non-root user.
However, the access control policy did not reflect this as-
sumption. STING is useful in finding such discrepancies
in access control policies as it can run with attacker mod-
els based on different policies.

6.1.3 False Positives

Two issues in STING cause false positives.
Random Name. The programs

yum, abrt-server, zeitgeist-daemon in Ta-
ble 6 were vulnerable to name resolution attacks, but
defended themselves by creating files with random
names. Library calls such as mktemp are used to create
such names. STING cannot currently differentiate be-
tween “random” and “non-random” names. Exploiting
such vulnerabilities requires the adversary to guess
the filename, which may be challenging given proper
randomness. In any case, such bugs can be fixed by
adding the O_EXCL flag to open when creating files.

Program Internals. STING does not know the in-
ternal workings of a program. Thus, it cannot know if
use of a resource from a vulnerable name resolution can
affect the program or not, and simply marks it for fur-
ther perusal. A vulnerable name resolution involving
a write-like accept operation can always be exploited.
However, whether those involving read can be exploited
depends on the internals of the program. Eight of the
26 vulnerable name resolutions in Table 6 are due to
read. While this has led to some false positives (two
additional vulnerable name resolutions involving read

not in Table 6 were deemed to not affect program func-
tioning), STING narrows the programmers’ effort signifi-
cantly. Nonetheless, more knowledge regarding program
internals would improve the accuracy even further.

6.2 Performance Evaluation

We measured the performance of STING to assess its
suitability as an online testing tool. While the perfor-
mance of STING is of not of primary importance be-
cause it is meant to be run on test environments in non-
production systems before deployment, it must neverthe-
less be responsive to online testing. We measured per-
formance using micro- and macro-benchmarks. While

Case Time (µs) Overhead
Attack Phase: open system call

Base 14.57 –
+ Find Vulnerable Bindings 31.44 2.15×
+ Obtain entrypoint and 211.20 12.33×
check attack history
+ Launch attack 365.87 25.1×

Detect Phase: read system call
Base 8.73 –
+ Detect vulnerability 9.18 1.05×
+ Namespace recovery 63.08 7.22×

Table 7: Micro-overheads for system calls showing median
over 10000 system call runs.

Benchmark Base STING Overhead
Apache 2.2.20 151.65s 163.79s 8%
compile
Apachebench:
Throughput 231.77Kbps 221.89Kbps 4.33%
Latency 1.943ms 2.088ms 7.46%

Table 8: Macro-benchmarks showing compilation and Apache-
bench throughput and latency overhead. The standard deviation
was less than 3% of the mean.

STING does cause noticeable overhead, it did not impede
our testing. All tests were done on a Dell Optiplex 980
machine with 8GB of RAM.

Micro-performance (Table 7) was measured by the
time taken for individual system calls under varying con-
ditions. For an attack launch, system call overhead is
caused by the time to (1) detect adversary accessibility,
(2) get and compare process entrypoint against attack
history, and (3) launch the attack. The main overhead
is due to obtaining the entrypoint to check the attack his-
tory and carrying out the attack. However, obtaining the
entrypoint is required only if the name resolution is ad-
versary accessible (around 4-5.7% in Table 4), and an
attack is launched only once for a particular entrypoint,
thereby alleviating their impact on overall performance.
For the detection phase, we have (1) detect vulnerable
access, and (2) rollback namespace. Namespace recov-
ery through rollback is expensive, but occurs only once
per attack launched.

Macro-benchmarks (Table 8) showed upto 8% over-
head. Apache compilation involved a lot of name res-
olutions and temporary file creation. During our system
tests, the system remained responsive enough to carry out
normal tasks, such as browsing the Internet using Firefox
and checking e-mail. We are investigating further oppor-
tunities to improve performance.

Program retries and restarts. We came across thir-
teen programs that retried a name resolution system call
on failure due to a STING attack test case. The most

USENIX Association 	 21st USENIX Security Symposium  597

common case was temporary file creation – programs
retry until they successfully create a temporary file with
a random name. Programs that retry integrate well with
STING , which maintains its attack history and does not
retry the same attacks on the same entrypoints. On the
other hand, a few programs exited on encountering an at-
tack by STING . We currently simply restart such pro-
grams (Section 4.2). For example, dbus-daemon ex-
ited during boot due to a STING test case and had to
be restarted by STING to continue normal boot. How-
ever, programs may lose state across restarts. We are in-
vestigating integrating process checkpoint and rollback
mechanisms [17].

7 Related Work

Related work that deals with detecting name resolution
attacks was presented in Section 2.2. Here, we discuss
dynamic techniques to detect other types of program
bugs, and revisit some dynamic techniques that detect
name resolution attacks.

Black-box testing. Fuzz testing, an instance of black-
box testing, runs a program under various input data test
cases to see if the program crashes or exhibits unde-
sired behavior. Particular program entrypoints (usually
network or file input) are fed totally random input with
the hope of locating input filtering vulnerabilities such as
buffer overflows [24, 41, 47]. Black-box fuzzing gener-
ally does not scale because it is not directed. To alleviate
this, techniques use some knowledge of the semantics
of data expected at program entrypoints. SNOOZE [4]
is a tool to generate fuzzing scenarios for network pro-
tocols using which bugs in programs were discovered.
TaintScope [55] is a directed fuzzing tool that generates
fuzzed input to pass checksum code in programs. Web
application vulnerability scanners [23] supply very spe-
cific strings to detect XSS and SQL injection attacks.

We find a parallel can be drawn between our approach
and directed black-box testing, where semantics of in-
put data is known. While such techniques change the
data presented to a program to exercise program paths
with possible vulnerabilities, we change the resource, or
the metadata presented to the application for the same
purpose. Thus, STING can be viewed as an instance
of black-box testing that changes the namespace state to
evaluate program responses.

Taint Tracking. Taint techniques track flow of tainted
data inside programs. They can be used to find bugs
given specifications [60], or can detect secrecy leaks in
programs [26]. Flax [43] uses a taint-enhanced fuzzing
approach to detect input filtering vulnerabilities in web
applications. However, taint tracking by itself does not
actively change any data presented to applications, and
thus has different applications.

Dynamic Name Resolution Attacks Detection. As
mentioned in Section 2.2, most dynamic analysis are spe-
cific to detecting TOCTTOU attacks. Chari et al. [13]
present an approach to defend against improper binding
attacks; however, they cannot detect them until they ac-
tively occur in the system. We use active adversaries to
generate test cases and to exercise potentially vulnerable
paths in programs to detect vulnerabilities that would not
occur in normal runtime traces. Further, none of the ap-
proaches deal with improper resource attacks, of which
we detect several.

8 Discussion

Other System State Attacks. More program vulnerabil-
ities may be detected by modifying system state. For ex-
ample, non-reentrant signal handlers can be detected by
delivering signals to a process already handling a signal.
Similarly, return values of system calls can be changed
to cause conditions suitable for attack (e.g., call to drop
privileges fails). While STING could be easily extended
to perform these attacks, we believe that these cases are
more easily handled through static analysis, as standard
techniques are available (e.g., lists of non-reentrant sys-
tem calls, unchecked return value) through tools such as
Fortify [28]. For the reasons we have seen, no such stan-
dard techniques are available for name resolution attacks.

Solutions. One of the more effective ways we have
seen programs defending against improper binding at-
tacks is by dropping privileges. For example, the priv-
ileged part of sshd drops privileges to the user whenever
accessing user files such as .ssh/authorized_keys.
Thus, even if code is vulnerable to improper binding at-
tacks, the user cannot escalate privileges.

User directory. Administrators running as root

should take extreme care when in user-owned directo-
ries, as there are several opportunities for privilege esca-
lation. For example, we found during our testing that if
the Python interpreter is started in a user-owned direc-
tory, Python searches for modules in that directory. If a
user has malicious libraries, then they will be loaded in-
stead. More race conditions are also exploitable as a user
can delete even root-owned files in her directory.

Integration with Black-box Testing. We believe that
STING can also integrate with other data fuzzing plat-
forms [41]. Such tools need special environments (e.g.,
attaching to running processes with debuggers) to carry
out their tests on running programs. Instead, we can take
input from these platforms and use STING to feed such
input into running processes. Since STING also takes into
account the access control policy, opportunities to supply
adversarial data can readily be located.

Deployment. We envision that STING would be de-
ployed during Alpha and Beta testing of distribution re-

598  21st USENIX Security Symposium	 USENIX Association

leases. We plan to package STING for distributions, so
users can easily install it through the distribution’s pack-
age managers. STING will test various programs as users
are running them, and program vulnerabilities found can
be fixed before the final release. Being a runtime anal-
ysis tool, STING can possibly find more vulnerabilities
as it improves its runtime coverage. Even if a small per-
centage of users install the tool, we expect a significant
increase in the runtime coverage, because different users
configure and run programs in different ways.

9 Conclusion

In this paper, we introduced STING, a tool that detects
name resolution vulnerabilities in programs by dynami-
cally modifying system state. We examine the deficien-
cies of current static and normal runtime analysis for
detecting name resolution vulnerabilities. We classify
name resolution attacks into improper binding and im-
proper resource attacks. STING checks for opportunities
to carry out these attacks on victim programs based on
an adversary model, and if an adversary exists, launches
attacks as an adversary would by modifying namespace
state visible to the victim. STING later detects if the vic-
tim protected itself from the attack, or it was vulnerable.
To allow online operation, we propose mechanisms for
rolling back the namespace state. We tested STING on
Fedora 15 and Ubuntu 11.10 distributions, finding 21
previously unknown vulnerabilities across various pro-
grams. We believe STING shall be useful in detecting
name resolution vulnerabilities in programs before at-
tackers. We plan to release and package STING for dis-
tributions for this purpose.

References
[1] A. Aggarwal and P. Jalote. Monitoring the security health of soft-

ware systems. In ISSRE-06, pages 146–158, 2006.
[2] Aufs. http://aufs.sourceforge.net/.
[3] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. Aeg:

Automatic exploit generation. In Network and Distributed System
Security Symposium, Feb. 2011.

[4] G. Banks et al. . Snooze: Toward a stateful network protocol
fuzzer. In of Lecture Notes in Computer Science, 2006.

[5] K. J. Biba. Integrity considerations for secure computer systems.
Technical Report MTR-3153, MITRE, April 1977.

[6] M. Bishop and M. Digler. Checking for race conditions in file
accesses. Computer Systems, 9(2), Spring 1996.

[7] P. Boonstoppel, C. Cadar, and D. Engler. Rwset: attacking path
explosion in constraint-based test generation. In Proceedings of
the Theory and practice of software, 14th international confer-
ence on Tools and algorithms for the construction and analysis
of systems, 2008.

[8] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. To-
wards automatic generation of vulnerability-based signatures. In
Proceedings of the 2006 IEEE Symposium on Security and Pri-
vacy, 2006.

[9] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems

programs. In Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation, pages 209–224,
2008.

[10] C. Cadar and D. R. Engler. Execution generated test cases: How
to make systems code crash itself. In SPIN, 2005.

[11] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: Automatically generating inputs of death. ACM
Trans. Inf. Syst. Secur., 12(2), 2008.

[12] X. Cai et al. . Exploiting Unix File-System Races via Algorithmic
Complexity Attacks. In IEEE SSP ’09, 2009.

[13] S. Chari and P. Cheng. Bluebox: A policy-driven, host-based
intrusion detection system. ACM Transaction on Infomation and
System Security, 6:173–200, May 2003.

[14] S. Chari et al. Where do you want to go today? escalating privi-
leges by pathname manipulation. In NDSS ’10, 2010.

[15] B. Chess. Improving computer security using extended static
checking. In Proceedings of the 2002 IEEE Symposium on Se-
curity and Privacy, 2002.

[16] D. D. Clark and D. R. Wilson. A comparison of commercial and
military computer security policies. Security and Privacy, IEEE
Symposium on, 0:184, 1987.

[17] Container-based checkpoint/restart prototype. http://lwn.

net/Articles/430279/.
[18] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado.

Bouncer: securing software by blocking bad input. In SOSP,
pages 117–130, 2007.

[19] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: end-to-end containment of
internet worms. In Proceedings of the twentieth ACM symposium
on Operating systems principles, 2005.

[20] C. Cowan, S. Beattie, C. Wright, and G. Kroah-Hartman. Race-
guard: Kernel protection from temporary file race vulnerabilities.
In Proceedings of the 10th USENIX Security Symposium, Berke-
ley, CA, USA, 2001. USENIX Association.

[21] init script x11-common creates directories in insecure man-
ners. http://bugs.debian.org/cgi-bin/bugreport.

cgi?bug=661627.
[22] D. Dean and A. Hu. Fixing races for fun and profit. In Proceed-

ings of the 13th USENIX Security Symposium, 2004.
[23] Doup, Adam and Cova, Marco and Vigna, Giovanni. Why Johnny

Can’t Pentest: An Analysis of Black-Box Web Vulnerability
Scanners. In DIMVA, 2010.

[24] W. Drewry and T. Ormandy. Flayer: exposing application inter-
nals. In Proceedings of the first USENIX workshop on Offensive
Technologies, 2007.

[25] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input gener-
ation for database applications. In Proceedings of the 2007 in-
ternational symposium on Software testing and analysis, ISSTA
’07, 2007.

[26] W. Enck et al. Taintdroid: an information-flow tracking system
for realtime privacy monitoring on smartphones. In Proceedings
of the 9th USENIX conference on Operating systems design and
implementation, 2010.

[27] D. Engler and K. Ashcraft. Racerx: effective, static detection of
race conditions and deadlocks. In Proceedings of the nineteenth
ACM symposium on Operating systems principles, 2003.

[28] Hp fortify static code analyzer (sca). https://www.fortify.

com/products/hpfssc/source-code-analyzer.html.
[29] P. Godefroid. Compositional dynamic test generation. SIGPLAN

Not., 2007.
[30] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated

random testing. In Proceedings of the 2005 ACM SIGPLAN con-
ference on Programming language design and implementation,
2005.

[31] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated white-
box fuzz testing. In Network Distributed Security Symposium
(NDSS). Internet Society, 2008.

USENIX Association 	 21st USENIX Security Symposium  599

[32] B. Goyal, S. Sitaraman, and S. Venkatesan. A unified approach
to detect binding based race condition attacks. In International
Workshop on Cryptology And Network Security, 2003.

[33] N. Hardy. The confused deputy. Operating Systems Review,
22:36–38, 1988.

[34] T. Jaeger, R. Sailer, and X. Zhang. Analyzing Integrity Protec-
tion in the SELinux Example Policy. In Proceedings of the 12th
USENIX Security Symp., 2003.

[35] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting
past and present intrusions through vulnerability-specific predi-
cates. In Proceedings of the twentieth ACM symposium on Op-
erating systems principles, SOSP ’05, pages 91–104, New York,
NY, USA, 2005. ACM.

[36] C. Ko and T. Redmond. Noninterference and intrusion detection.
In Proceedings of the 2002 IEEE Symposium on Security and Pri-
vacy, pages 177–, Washington, DC, USA, 2002. IEEE Computer
Society.

[37] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Au-
tomating mimicry attacks using static binary analysis. In Pro-
ceedings of the 14th conference on USENIX Security Symposium
- Volume 14, pages 11–11, Berkeley, CA, USA, 2005. USENIX
Association.

[38] W. S. McPhee. Operating system integrity in OS/VS2. IBM Syst.
J., 13:230–252, September 1974.

[39] OpenWall Project - Information security software for open envi-
ronments. http://www.openwall.com/, 2008.

[40] J. Park, G. Lee, S. Lee, and D.-K. Kim. Rps: An extension of
reference monitor to prevent race-attacks. In PCM (1) 04, 2004.

[41] Peach fuzzing platform. http://peachfuzzer.com/.
[42] S. Rueda, D. H. King, and T. Jaeger. Verifying compliance of

trusted programs. In Proceedings of the 17th USENIX Security
Symposium, pages 321–334, Aug. 2008.

[43] P. Saxena et al. Flax: Systematic discovery of client-side valida-
tion vulnerabilities in rich web applications. In NDSS, 2010.

[44] B. Schwarz, H. Chen, D. Wagner, J. Lin, W. Tu, G. Morrison, and
J. West. Model checking an entire linux distribution for security
violations. In Proceedings of the 21st Annual Computer Security
Applications Conference, 2005.

[45] B. Schwarz, H. Chen, D. Wagner, J. Lin, W. Tu, G. Morrison, and
J. West. Model checking an entire linux distribution for security
violations. In Proceedings of the 21st Annual Computer Security
Applications Conference, pages 13–22, Washington, DC, USA,
2005. IEEE Computer Society.

[46] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit test-
ing engine for c. In Proceedings of the 10th European software

engineering conference held jointly with 13th ACM SIGSOFT in-
ternational symposium on Foundations of software engineering,
2005.

[47] Sharefuzz. http://sourceforge.net/projects/

sharefuzz/.
[48] K. suk Lhee and S. J. Chapin. Detection of file-based race condi-

tions. Int. J. Inf. Sec., 2005.
[49] W. Sun, R. Sekar, G. Poothia, and T. Karandikar. Practical proac-

tive integrity protection: A basis for malware defense. In Pro-
ceedings of the 2008 IEEE Symposium on Security and Privacy,
May 2008.

[50] D. Tsafrir, T. Hertz, D. Wagner, and D. Da Silva. Portably solv-
ing file tocttou races with hardness amplification. In Proceedings
of the 6th USENIX Conference on File and Storage Technolo-
gies, FAST’08, pages 13:1–13:18, Berkeley, CA, USA, 2008.
USENIX Association.

[51] E. Tsyrklevich and B. Yee. Dynamic detection and prevention
of race conditions in file accesses. In Proceedings of the 12th
USENIX Security Symposium, pages 243–255, 2003.

[52] P. Uppuluri, U. Joshi, and A. Ray. Preventing race condition at-
tacks on file-systems. In SAC-05, 2005.

[53] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. Its4: A static
vulnerability scanner for c and c++ code. In ACSAC, 2000.

[54] H. Vijayakumar, G. Jakka, S. Rueda, J. Schiffman, and T. Jaeger.
Integrity Walls: Finding Attack Surfaces from Mandatory Access
Control Policies. In AsiaCCS, 2012.

[55] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A Checksum-
Aware Directed Fuzzing Tool for Automatic Software Vulnera-
bility Detection. In IEEE Symposium on Security and Privacy,
2010.

[56] J. Wei et al. Tocttou vulnerabilities in unix-style file systems: an
anatomical study. In USENIX FAST ’05, 2005.

[57] J. Wei et al. A methodical defense against TOCTTOU attacks:
the EDGI approach. In IEEE International Symp. on Secure Soft-
ware Engineering (ISSSE) , 2006.

[58] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-
Hartman. Linux Security Modules: General security support for
the Linux kernel. In Proceedings of the 11th USENIX Security
Symposium, pages 17–31, August 2002.

[59] C. P. Wright and E. Zadok. Unionfs: Bringing File Systems To-
gether. Linux Journal, pages 24–29, December 2004.

[60] W. Xu, E. Bhatkar, and R. Sekar. Taint-enhanced policy enforce-
ment: A practical approach to defeat a wide range of attacks. In
In 15th USENIX Security Symposium, pages 121–136, 2006.

USENIX Association 	 21st USENIX Security Symposium  601

Tracking Rootkit Footprints with a Practical Memory Analysis System

Weidong Cui
Microsoft Research

wdcui@microsoft.com

Zhilei Xu
Massachusetts Institute of Technology

timxu@mit.edu

Marcus Peinado
Microsoft Research

marcuspe@microsoft.com

Ellick Chan
University of Illinois at Urbana-Champaign

emchan@illinois.edu

Abstract

In this paper, we present MAS, a practical memory anal-
ysis system for identifying a kernel rootkit’s memory
footprint in an infected system. We also present two
large-scale studies of applying MAS to 848 real-world
Windows kernel crash dumps and 154,768 potential mal-
ware samples.

Error propagation and invalid pointers are two key
challenges that stop previous pointer-based memory
traversal solutions from effectively and efficiently ana-
lyzing real-world systems. MAS uses a new memory
traversal algorithm to support error correction and stop
error propagation. Our enhanced static analysis allows
the MAS memory traversal to avoid error-prone opera-
tions and provides it with a reliable partial type assign-
ment.

Our experiments show that MAS was able to analyze
all memory snapshots quickly with typical running times
between 30 and 160 seconds per snapshot and with near
perfect accuracy. Our kernel malware study observes
that the malware samples we tested hooked 191 differ-
ent function pointers in 31 different data structures. With
MAS, we were able to determine quickly that 95 out of
the 848 crash dumps contained kernel rootkits.

1 Introduction

Kernel rootkits represent a significant threat to computer
security because, once a rootkit compromises the OS ker-
nel, it owns the entire software stack which allows it to
evade detections and launch many kinds of attacks. For
instance, the Alureon rootkit [1] was infamous for steal-
ing passwords and credit card data, running botnets, and
causing a large number of Windows systems to crash.
Kernel rootkits also present a serious challenge for mal-
ware analysis because, to hide its existence, a rootkit at-
tempts to manipulate the kernel code and data of an in-
fected system.

An important task in detecting and analyzing kernel
rootkits is to identify all the changes a rootkit makes to
an infected OS kernel for hijacking code execution or
hiding its activities. We call these changes a rootkit’s
memory footprint. We perform this task in two common
scenarios: We detect if real-world computer systems are
infected by kernel rootkits. We also analyze suspicious
software in a controlled environment. One can use either
execution tracing or memory analysis in a controlled en-
vironment, but is usually limited to memory analysis for
real-world systems. In this paper we focus on the mem-
ory analysis approach since it can be applied in both sce-
narios.

After many years of research on kernel rootkits, we
still lack a practical memory analysis system that is ac-
curate, robust, and performant. In other words, we ex-
pect such a practical system to correctly and quickly
identify all memory changes made by a rootkit to arbi-
trary systems that may have a variety of kernel modules
loaded. Furthermore, we lack a large-scale study of ker-
nel rootkit behaviors, partly because there is no practi-
cal system that can analyze memory infected by kernel
rootkits in an accurate, robust and performant manner.

In this paper, we present MAS, a practical memory
analysis system for identifying a rootkit’s memory foot-
print. We also present the results of two large-scale ex-
periments in which we use MAS to analyze 837 kernel
crash dumps of real-world systems running Windows 7,
and 154,768 potential malware samples from the reposi-
tory of a major commercial anti-malware vendor. These
are the two major contributions of this paper.

Previous work [2, 3, 19] has established that, to iden-
tify a rootkit’s memory footprint, we need to check not
only the integrity of kernel code and static data but also
the integrity of dynamic data, and the real challenge lies
in the latter task.

In order to locate dynamic data, these systems first lo-
cate static data objects in each loaded module, then re-
cursively follow the pointers in these objects and in all

602  21st USENIX Security Symposium	 USENIX Association

newly identified data objects, until no new data object
can be added. Unlike the earlier systems, KOP [3] in-
cludes generic pointers (e.g., void∗) in its memory traver-
sal, and shows that failing to do so will prevent the mem-
ory traversal from reaching about two thirds of the dy-
namic objects.

Previous solutions do not sufficiently address an im-
portant practical problem of this memory traversal pro-
cedure: its tendency to accumulate and propagate errors.
A typical large real-world kernel memory image is bound
to contain invalid pointers. That is, there are likely to be
dynamic objects with pointer fields not pointing to valid
objects. Following such pointers results in objects being
incorrectly included in the object mapping. Worse, such
identification errors can be propagated due to the nature
of the recursive, greedy memory traversal. A single in-
correctly identified data object may cause many more
mistakes in the subsequent traversal.

Invalid pointers may exist for a variety of reasons. For
example, an object may have been allocated, but not yet
initialized. KOP is exposed to a second source of poten-
tial errors. KOP tries to follow all generic pointers. If the
pointer type cannot be uniquely determined, KOP tries
to decide the correct type using a heuristic. A fraction of
these guesses are bound to be incorrect.

In light of these problems, we design MAS to con-
trol the number of errors that arise from following invalid
pointers and to contain their effects. Instead of perform-
ing a greedy memory traversal that is vulnerable to error
propagation, MAS uses a new traversal scheme to sup-
port error correction. MAS also uses static analysis to
derive information that can be used to uniquely identify
many objects and their types without having to rely on
the recursive traversal procedure. Furthermore, MAS is
not subject to errors caused by ambiguous pointers, i.e.,
pointers whose type cannot be uniquely determined. It
uses an enhanced static analysis to identify unique types
for a large fraction of generic pointers and ignores all
remaining ambiguous pointers. While this may reduce
coverage, it will never cause an object to be recognized
incorrectly. Our evaluation will show that the impact on
coverage is minor. Finally, before accepting an object,
MAS checks a number of constraints, including new con-
straints we derive from our static analysis.

We implemented a prototype of MAS and compared
it with KOP on eleven crash dumps of real-world sys-
tems running Windows Vista SP1. MAS’s performance
is one order of magnitude better than KOP regarding both
static analysis and memory traversal. MAS did not miss
or misidentify any function pointers found by KOP, but
KOP missed or misidentified up to 40% of suspicious
function pointers (i.e., function pointers that point to un-
trusted code).

In our large-scale experiments, we ran MAS over

crash dumps taken from 837 real-world systems run-
ning Windows 7 and memory snapshots taken from Win-
dows XP SP3 VMs subjected to one of 154,768 potential
real-world malware samples. For the Windows 7 crash
dumps, MAS took 105 seconds to analyze a single dump
on average. It identified a total of about 400,000 suspi-
cious function pointers. We were able to verify the cor-
rectness of all but 24 of them. Moreover, with the results
of MAS, we were able to quickly identify 90 Windows 7
crash dumps (and five Windows Vista SP1 crash dumps)
that were infected by kernel rootkits. In our study of
malware samples, MAS required about 30 seconds to
analyze each VM memory snapshot. Our study shows
that the kernel rootkits we tested hooked 191 function
pointer fields in 31 data structures. It also shows that
many malware samples had identical footprints, which
suggests that we can use MAS to detect new malware
samples/families that have different memory footprints.

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of the paper. Sections 3 and
4 describe the design of MAS and explain the algorithms
used for static analysis and memory traversal. Section 5
explains how we evaluate the set of objects found by
MAS for suspicious activity. Section 6 describes our
implementation of MAS. Section 7 describes our evalua-
tion of MAS. Section 8 and Section 9 describe two large-
scale experiments in which we analyze malware samples
and identify rootkits from crash dumps. Sections 10 and
Section 11 discuss related work and limitations. Finally,
Section 12 concludes the paper.

2 Overview

The goal of MAS is to identify all memory changes a
rootkit makes for hijacking execution and hiding its ac-
tivities. MAS does so in three steps: static analysis,
memory traversal, and integrity checking.

Static Analysis: MAS takes the source code of the OS
kernel and drivers as the input and uses a pointer
analysis algorithm to identify candidate types for
generic pointers such as void∗ and linked list con-
structs. Furthermore, it also computes the associa-
tions between data types and pool tags [18].

Memory Traversal: MAS tries to identify dynamic
data objects in a given memory snapshot. Besides
the snapshot, the input includes the type related in-
formation derived from static analysis and the sym-
bol information [15] for each loaded module (if it is
available).

Integrity Checking: MAS identifies the memory
changes a rootkit makes by inspecting the integrity
of code, static data and dynamic data (recognized

2

USENIX Association 	 21st USENIX Security Symposium  603

from memory traversal). In addition to checking
if some code section is modified, MAS detects two
kinds of violations: (1) a function pointer points to
a memory region outside of a list of known good
modules; (2) a data object is hidden from a system
program. The list of identified integrity violations
is the final output of MAS. Such information can be
used to detect if a system is infected by a rootkit or
analyze a rootkit’s behavior.

Next we describe these three steps in detail.

3 Static Analysis

In this section, we present our demand-driven pointer
analysis algorithm. After that, we describe how we use
this algorithm to identify candidate types for generic
pointers and data types associated with pool tags.

3.1 Demand-Driven Pointer Analysis
We use demand-driven pointer analysis because we do
not need the alias information for all the variables in a
program, which traditional pointer analyses compute. In-
stead, we only compute the alias sets of generic pointers,
a small portion of all the variables in a program.

Our demand-driven pointer analysis follows largely
the approach of Zheng and Rugina [27]. Since our goal
is to precisely identify candidate types for generic point-
ers, we extend Zheng and Rugina’s pointer analysis to
be field-sensitive, context-sensitive and partially flow-
sensitive. We achieve partial flow-sensitivity by convert-
ing a program to the Static Single Assignment (SSA)
form conservatively. We enforce context-sensitivity in
a way similar to [23]. We handle indirect calls in our
analysis as well.

Next we will summarize the approach of [27] and pro-
vide a detailed description of our extension to field sen-
sitivity.

3.1.1 Program Expression Graph

The algorithm of [27] operates on a Program Expression
Graph (PEG), a graph representation of all expressions
and assignments in a C-like program. In this paper, we
represent an expression as a C variable with ∗ (for the
dereference operation), & (for the take-address opera-
tion) and → (for the field operation). In a PEG, the nodes
are program expressions, and the edges are of two kinds:

Assignment Edge (A): For each assignment e1 = e2,
there is an A-edge from e2 to e1.

Dereference Edge (D): For each dereference ∗e, there
is a D-edge from e to ∗e; for each address &e, there
is a D-edge from &e to e.

!"
!"

#"$"%&'"
(#"$"%)'"
(&"$"*'"

!")"$"*"

%&" &" (&"

#" (#")"%)"

*"

+"
+"
+"

!"
!"
!"

!"

!"
!"

!"
+"
+"

+"

+"
+"

+"

!"
!"

!"

Figure 1: Sample program and its PEG

For each A and D edge, there is also a corresponding
inverse edge in the opposite direction, denoted by A and
D. The edges can also be treated as relations between the
corresponding nodes; so relations A and D are the inverse
relations of A and D. Figure 1 shows a sample program
and its PEG.

3.1.2 CFL-Reachability

In addition to the A and D relations (edges), we further
define two relations between expressions (nodes):

Value Alias (V): If a and b may evaluate to the same
value, we say they are value aliases, represented as
aV b.

Memory Alias (M): If the addresses of a and b may de-
note to the same location, we say they are memory
aliases, represented as aMb.

Given an interesting expression p, our pointer analy-
sis searches for the set of expressions q such that pV q.
We call this set thevalue alias set of p. Similar to [27],
we formulate the computation of the V relation as a
Context-Free Language (CFL) reachability problem [21]
over the program expression graph. Specifically, a rela-
tion R over the nodes of a PEG can be formulated as a
CFL-reachability problem by constructing a grammar G
such that a node pair (a,b) has the relation R if and only
if there is a path from a to b such that the sequence of
labels along the path belongs to the language L(G). The
context-free grammar GV for value and memory alias re-
lations is:

Value Aliases: V ::= M | MAV | VAM
Memory Aliases: M ::= ε | DV D

The grammar GV has non-terminals V and M, and ter-
minals A, A, D, and D. Readers can verify that the sample
PEG in Figure 1 contains a path from b to c with label se-
quence DADADDA that can be produced by the V non-
terminal in GV . So the grammar successfully deducts
that b and c are value aliases. The intuition behind each
production rule is:

M ::= ε a is a memory alias of itself.

3

604  21st USENIX Security Symposium	 USENIX Association

��
��

��
��
��

��

����������� ������������������������� �������������������������

� ������������ � ������������������� � �������������������

�����
������
��� �������

��
�������

����

����

��
��

�� ��
��

����
��
��

Figure 2: The relation of struct, field, and base pointer;
and the corresponding PEG representation.

M ::= DV D Given ∗pDpV qD∗q then, because p and q
are value aliases, ∗p and ∗q are memory aliases.

V ::= M Memory aliases are also value aliases.

V ::=VAM Given aV bAcMd, the value of a propagates
to c, which may reside in the same memory as d.
Thus, a and d are value aliases. Similarly V ::=
MAV .

Given this grammar, Zheng and Rugina go on to con-
struct a hierarchical state machine and design an algo-
rithm that decides whether two expressions are memory
aliases. They also sketch an extension of the alias analy-
sis algorithm for computing the value alias set of a single
expression, which we adopt in MAS. Next, we describe
how we extend the basic grammar to achieve field sensi-
tivity.

3.1.3 Field Sensitivity

Field-sensitivity is necessary for our pointer analysis
since we want to distinguish a generic pointer field from
other fields in the same data structure. Field-insensitive
analysis, on the other hand, treats all fields in a data struc-
ture as the structure itself.

Fields in C can be represented by means of pointer
arithmetic: given a base pointer p and a field f , &(p →
f) is the field pointer which points to a field inside the
structure ∗p. We use p+ f to denote &(p → f), and
p+ f is in fact the result of offsetting p by a fixed number
of bytes determined by field f . The other constructs p →
f (= ∗(p+ f)) and a. f (= (&a)→ f = ∗(&a+ f)) are
merely syntactic sugar, as shown in Figure 2.

To support field-sensitivity in our pointer analysis, we
first add edges to the PEG to represent the field relations.
For every field descriptor, we create a field label fi. Then
for each base pointer p, if its field pointer p+ fi exists
in the program, we add an edge labeled fi from p to p+
fi and an inverse edge fi in the opposite direction. As
shown in Figure 2.

Zheng and Rugina [27] suggest adding V ::= fiV fi to
the grammar GV for field-sensitivity. With this addition,
the grammar becomes:

M ::= (DV D)?
V ::= M | (M?A)∗V (AM?)∗ | fiV fi

typedef struct {

void *header; // call this field F

int status;

} KOBJECT;

KOBJECT *x, *y;

*x = *y;

Figure 3: Example code of struct assignment.

However, we observe that this is insufficient to track
all the value aliases because of a feature in C called struct
assignment. One can assign a structure to another as
if they were both simple variables, and the effect is the
same as doing assignments between corresponding fields
recursively (because each field can possibly be an em-
bedded structure).

Figure 3 shows a simple example where handling
struct assignment becomes crucial to the analysis. x →
header and y → header are value aliases, as well as
x → status and y → status. However, the extended gram-
mar suggested by Zheng and Rugina can not capture
these alias relationships correctly. The relevant edges
connecting from x → header to y → header produce the
label sequence D f DAD f D, which cannot be generated
from the “V” non-terminal in Zheng and Rugina’s ex-
tended grammar. Struct assignment is a common fea-
ture widely used in various programs. We must handle it
properly when computing value aliases.

Struct assignment can only happen when the two vari-
ables involved are of the same type, and that type is
precisely known to the compiler. Taking advantage of
this property, we have an effective and efficient fix for
Zheng and Rugina’s algorithm. In the program expres-
sion graph, we expand each struct assignment to the in-
dividual assignments of all corresponding fields. In the
example code, ∗x = ∗y is expanded to x → header = y →
header;x → status = y → status. If some field is an em-
bedded struct, then this expansion is done recursively,
eventually down to the “leaf” fields. The program ex-
pression graph built this way is free of struct assignment,
and Zheng and Rugina’s extended grammar works prop-
erly on this kind of PEG.

3.2 Type Candidate Inference

We have implemented Zheng and Rugina’s algorithm
with our extension to do demand-driven pointer analysis.
MAS uses this pointer analysis to derive the set of type-
related information for identifying dynamic data object
in memory traversal. The set of type-related information
has two parts: candidate types for generic pointers and
candidate types for pool tags [18] Note that we use can-
didate types and type candidates interchangeably. Next
we will describe how we derive them in detail.

4

USENIX Association 	 21st USENIX Security Symposium  605

3.2.1 Candidate Types of Generic Pointers

A generic pointer is a pointer whose type definition does
not reveal the actual type of the data it refers to. In MAS,
we consider two kinds of generic pointers: void∗ and
pointers in linked list constructs. We consider linked list
constructs because the declared type of its pointer fields
does not reflect the larger data structure it links together
in the list.

For an expression p of type void∗, its candidate types
are the set of types of its value aliases. For instance,
given FOO ∗ q; void ∗ p; p = q, we get p’s candidate
type as FOO∗. To derive the candidate types for a pointer
field fi of type void∗, we need to consider all its instances.
Thus, fi’s candidate types are the set of types of all the
value aliases of the pointer field’s instances in the form
of X → fi.

We need to solve two problems to compute candidate
types for pointer fields in linked list constructs. First,
we are concerned with the larger data structures that are
linked together in a list. When a linked list pointer field’s
value alias is in the form of &(a−> fi), we say its nested
candidate type is &(A−> fi) where a’s type is A∗. This
nested candidate type allows us to identify the larger data
structure A when the linked list pointer points to its field
fi. For simplicity, we still use candidate types when we
discuss linked list constructs.

Second, the head node and the entry nodes in a linked
list tend to have different data structures. If we do not
differentiate them, the candidate types of a linked list
pointer field will have both types, which causes unnec-
essary type ambiguity. To solve this problem, we lever-
age the semantics of APIs for linked list constructs. For
instance, InsertTailList is a function in Windows [16] for
inserting an entry at the tail of a doubly linked list. It
takes two parameters, ListHead and Entry. To differenti-
ate the list head and entry, we compute the value alias
sets of ListHead/InsertTailList and Entry/InsertTailList,
where a/ f unc represents the parameter a of a function
f unc. Then we match value aliases from each set based
on the call stack. For each valid pair of &(a → fi) and
&(b → f j), we derive that a list head at &(A → fi) has a
nested candidate type of &(B → f j) where a’s type is A∗
and b’s type is B∗. This approach requires prior knowl-
edge of all linked list constructs and their APIs. Given
the limited number of such constructs, it is not a hurdle
for adapting MAS to large programs like the Windows
kernel and drivers.

To control the number of candidate types, we apply
three refinement techniques to the basic algorithm. First,
for every linked list pointer p, MAS excludes all value
aliases q of p if q’s type is different from p. This is be-
cause we did not observe any link list pointers being con-
verted to other types, and such value aliases are almost

struct A {

struct C ac;

struct D ad;

};

struct B {

struct C bc;

struct E be;

};

Figure 4: Example of a common nested type.

always false positives introduced by imprecise analysis.
Second, for each pointer path from p to its value alias q,
we check if it involves a type cast to void∗. If so, we will
ignore the path. We do this for two reasons: the type be-
fore the cast has already revealed the candidate type, and
we avoid the noisy aliases following the type cast. Third,
when there are multiple candidate types, we look for the
largest common nested types among all candidate types.
If such a common nested type exists, we use it as the sin-
gle candidate type. In the example shown in Figure 4,
the largest common nested type of struct A and struct B
is struct C.

3.2.2 Candidate Types of Pool Tags

In recent Windows operating systems, pool tags [18] are
used to track memory allocations of one or more par-
ticular data types by a kernel component. A pool tag
is a four-character literal passed to the pool manager at
a memory allocation or deallocation. One such API is
ExAllocatePoolWithTag. For many pool tags, a memory
block with a particular pool tag is always allocated for
a unique data type. For instance, “Irp ” is always for
the data type IRP. In MAS, we use static analysis to au-
tomatically unearth the associations between a pool tag
and data types and use them in our memory traversal.
We call the types associated with a pool tag the candidate
types for the pool tag. Note that such associations are not
limited to Windows. In the Linux kernel, the slab allo-
cator is used to provide specialized per-type allocations.
In this paper, our design and implementation are focused
on supporting Windows kernel pool management. But
the techniques can be easily ported to support Linux ker-
nel memory management.

Our approach for computing pool tag’s type infor-
mation is similar to the approach used for linked
list constructs. Taking ExAllocatePoolWithTag
as an example, we first compute the value
alias sets for return/ExAllocatePoolWithTag and
Tag/ExAllocatePoolWithTag, where the former rep-
resents the return value of ExAllocatePoolWithTag and
the latter is the pool tag parameter. Since pool tags are
usually specified directly at function calls for memory
allocations, we do a simple traversal by following as-

5

606  21st USENIX Security Symposium	 USENIX Association

signments on the program expression graph to compute
the “value alias” set of Tag/ExAllocatePoolWithTag.
Then we match the value aliases in each set based on the
call stack. For instance, given the following code, our
analysis will infer that the pool tag ’DooF’ is associated
with the type FOO.

FOO ∗ f = (FOO∗) ExAllocatePoolWithTag(NonPagedPool,
sizeo f (FOO), ′DooF ′);

4 Memory Traversal

In this section, we describe how MAS locates dynamic
data objects in a given memory snapshot and identifies
their types. The inputs to this step include the mem-
ory snapshot, the type related information derived from
static analysis, and the symbol information [15] for each
loaded module in the memory snapshot (if it is available).

The basic memory traversal in MAS is similar to pre-
vious work [2, 3, 19]. It first locates the static objects
in each loaded module based on the symbol informa-
tion, then performs a breadth-first traversal by follow-
ing pointers in the static objects and all newly identified
data objects until no new object is added. MAS follows
generic pointers for which our static analysis was able to
derive a unique type. In the absence of a robust method
for resolving multiple type candidates during memory
traversal, MAS ignores all ambiguous pointers.

In order to increase coverage, MAS uses the associa-
tions between a pool tag and data types that may appear
in memory blocks labeled with this tag. We directly iden-
tify data objects (i.e., without following a pointer) when
a pool tag is only associated with a single data type.

Invalid pointers are common in kernel memory for
many reasons. There may be a lag between the time
a pool block is allocated and the time it is initialized.
Also, a dangling pointer may point to a pool block that
was freed and allocated again for different use. There
exist even data objects that are partially initialized due to
performance optimizations (or programming errors).

Our solution to invalid pointers have two main com-
ponents: constraint checking and error correction. We
only add a new data object during memory traversal or
during type assignment based on pool tags if it satisfies
the following constraints.

• Size Constraint: a data object must lie completely
within a memory block. (We collect the information
of all allocated memory blocks before the memory
traversal.)

• Pointer Constraint: a data object’s pointer fields
must either be null or point to the kernel address
range.

• Enum Constraint: a data object’s enum fields must
take a valid enum value which is stored in the PDB
files.

• Pool Tag Constraint: the type of a data object must
be in the set of data types associated with the pool
block in which the data object is located.

KOP [3] only checks size and pointer constraints,
which is not effective for smaller sized objects since they
tend to have fewer pointer fields and fit into most mem-
ory blocks. The checking of pool tag constraints allows
MAS to mitigate this problem.

A final constraint states that two incompatible objects
cannot occupy overlapping addresses. We say two over-
lapped objects are type compatible if their overlapped
parts have equivalent types (i.e., with the same mem-
ory layout after being expanded into primitive types and
pointers). For example, one object may be a sub struc-
ture of the other object. We check this constraint before
accepting an object. A violation of this constraint is a
clear indication that an error has been made or is about
to be made. Either the new object or the existing object
that collides with it must be wrong.

We select one of the two objects based on several con-
fidence criteria. Objects that we found without following
pointers, such as global variables or objects identified
through pool tags, are not subject to invalid pointer er-
rors. We always select such objects over other objects.
If both objects were found by following pointers, we
select the larger object, since we typically check more
constraints for larger objects. If the decision is to reject
the existing object, we also remove all objects that were
added by following its pointers recursively and cannot be
reached from other objects.

5 Integrity Checking

The last step in identifying a kernel rootkit’s memory
footprint is to perform integrity checking. The inputs to
integrity checking include the memory snapshot, the list
of data objects identified from memory traversal, the pdb
and image file of each loaded module when it is avail-
able. Note that the set of image files serves as the white
list of trusted code.

A rootkit tampers with kernel memory for two main
purposes: run its own code and hide its own activity. To
do so, a rootkit either hijacks kernel execution by mod-
ifying code or function pointers or directly manipulates
kernel data. MAS checks three kinds of integrity as fol-
lows.

• Code Integrity: trusted code in memory should
match with the image file on disk.

6

USENIX Association 	 21st USENIX Security Symposium  607

• Function Pointer Integrity: function pointers should
point to the trusted code.

• Visibility Integrity: data objects found by MAS
should be visible to system tools (e.g., those avail-
able in a debugger for listing processes and mod-
ules).

The visibility integrity checking allows MAS to report
hidden objects such as hidden processes and hidden mod-
ules. For instance, to find hidden processes, MAS uses a
debugger command (e.g., !process) to get the list of pro-
cesses in a memory snapshot, then compares it with the
process objects found by memory traversal. If a process
object is not in the list returned by the debugger com-
mand, it is marked as a hidden process. To check func-
tion pointer integrity, MAS inspects not only well known
hooking points such as the system call table but also each
function pointer in the data objects identified from the
memory traversal. Function pointers that point to a mem-
ory region outside of the trusted code are reported as sus-
picious function pointers. Violations of code integrity are
reported as suspicious code hooks.

MAS can be used in two scenarios: detect if a real-
world system is infected by rootkits or analyze the be-
havior of a malware sample in a controlled environment.
If the white list of trusted code is complete, any integrity
violation can be automatically attributed to rootkit in-
fection. It is trivial to construct such a complete list
based on a copy of a clean system in a controlled envi-
ronment. However, when checking real-world systems,
such a complete list may be available in some cases (e.g.,
machines inside an enterprise or virtual machines in a
cloud) but not always. When the list of trusted code is
incomplete, we will need an expert to inspect integrity
violations reported by MAS before deciding if a system
is infected. We will report our experiences of detecting
rootkits from real-world crash dumps in Section 9.

6 Implementation

We implemented MAS with 12,000 lines of C++ code for
the static analysis and 24,000 lines of code for memory
traversal and integrity checking.

For static analysis, we developed a PREfast [14] plu-
gin to extract information from the AST trees generated
by the Microsoft C/C++ compiler. We implemented the
pointer analysis as a stand alone DLL that, upon request,
computes the value alias set for a given program expres-
sion based on the information extracted by the PREfast
plugin. Since our pointer analysis is demand-driven and
can run in parallel, we implemented our type candidate
lookup to take advantage of that. We run a separate par-
allel job for each generic pointer. After all parallel jobs

are done, we merge the inferred type relations together.
We implemented the parallel type candidate lookup on a
cluster running Windows HPC Server 2008 R2 [17].

For analyzing memory snapshots, the key logic was
implemented as an extension of WinDbg [13]. In ad-
dition, we implemented a DLL based on the Debug In-
terface Access SDK [12] to programmatically access the
symbol information stored in PDB files [15].

During memory traversal, we frequently access two
kinds of data, allocated memory blocks and data objects
identified, where a memory block may contain multiple
data objects and no two data objects overlap in memory.
We use a multi-level data structure in MAS in order to
obtain fast store and retrieve operations for the two kinds
of type data. At the bottom level, we use a page-table
like data structure to achieve fast lookup for an arbitrary
address. Here a hash table simply based on the starting
addresses of allocated memory blocks cannot meet our
need because a given memory address may fall into the
middle of a memory block. Given a memory address,
if there exists a memory block that covers it, the lookup
in the bottom-level structure returns a pointer to a data
structure that stores all the information for the memory
block. In this data structure, we use a sorted list to store
all the data objects identified in the memory block. We
choose a sorted list because the number of data objects
on a single memory block is small.

To speed up type check, we maintain a cache of
matched subtypes and their offsets for each aggregate
type and check the cache first before doing the type con-
sistency check in a brute force way. We choose to use
a cache because, for an aggregate type, type consistency
checks usually occur repeatedly for a small number of its
nested types.

7 Evaluation

This section evaluates the accuracy, robustness and per-
formance of MAS. We perform the evaluation on three
sets of memory snapshots: (a) 154,768 memory snap-
shots derived from our large scale kernel malware anal-
ysis; (b) a set of 837 real-world crash dumps from end
user machines running Windows 7; (c) a set of 11 real-
world crash dumps from end user machines running Win-
dows Vista SP1. The last set of Windows Vista SP1 crash
dumps allowed us to compare MAS directly to KOP [3].
For our analysis on real-world crash dumps, the white
list of trusted code contains all the binaries available on
Microsoft’s symbol server. For our analysis of malware
samples, the white list of trusted code contains all the bi-
naries from a clean VM image. Our experiments were
conducted on a machine running Intel Xeon Quad-Core
2.93 GHz with 12 GB RAM unless specified otherwise.

7

608  21st USENIX Security Symposium	 USENIX Association

Id Size (MB) Modules Fct. ptrs. MAS Fct. ptrs. KOP FP. KOP FN. KOP
1 245 154 64 43 22 21
2 149 144 55 47 28 8
3 305 203 673 N/A N/A N/A
4 270 157 257 236 37 21
5 247 159 75 45 19 30
6 127 125 46 38 9 8
7 315 157 283 265 30 18
8 250 141 105 97 26 8
9 204 144 50 40 26 10

10 255 141 167 157 24 10
11 312 203 235 189 11 46

Table 1: Results on eleven Windows Vista SP1 crash dumps. “Fct. ptrs.” represents the number of function pointers
correctly identified by MAS or KOP.

7.1 Accuracy and Robustness

The goal of this section is to evaluate the accuracy and
robustness of MAS. We face the general difficulty that it
is hard and time consuming to obtain an object mapping
that is known to be correct (i.e., ground truth) even in a
controlled environment. For the real-world crash dumps
for which we had no data beyond the crash dumps them-
selves, it appears unclear if and how a ground truth could
be established. Given these methodological difficulties,
much of the evidence we present in this section has to be
indirect.

Our first data set consists of the outputs of MAS on
the 837 Windows 7 crash dumps. We tried to estab-
lish whether the function pointers reported by MAS as
suspicious are indeed function pointers. We inspected
whether the target of the function pointers appeared to be
the beginning of a function. The vast majority of func-
tion pointer targets contained a small set of code patterns
corresponding to function preambles. This allowed us
to automate most of pointer checks by running a pro-
gram that checks for these patterns. We inspected the
remaining pointers manually. We applied a second crite-
rion to the function pointers whose targets did not appear
to be code. We accepted all function pointer candidates
that were fields in objects whose existence could be de-
rived directly and unambiguously from the symbol infor-
mation. This included global variables and objects that
could be reached from global variables by following only
uniquely determined typed pointers. This left us with a
total of 24 dubious pointers out of total of 398,987 func-
tion pointers that MAS had output.

The eleven Windows Vista SP1 crash dumps in our
data set allowed us to perform a direct comparison with
KOP. We examined manually all discrepancies between
the outputs of MAS and KOP. KOP appeared to suffer
from both false positives and false negatives (see Ta-

ble 1). We first examined all function pointers returned
by MAS and found that they are valid. Then we exam-
ined manually the targets of all function pointers reported
by KOP that had not been output by MAS. None of the
targets appeared to be the start of a function. Thus, we
classified these pointers as false positives for KOP (FP.
KOP in Table 1). We also observed a number of func-
tion pointers that were found by MAS, but not by KOP.
Since we had concluded that the targets of these point-
ers are function entry points, we classified them as false
negatives for KOP (FN. KOP in Table 1). KOP missed
as much as 40% of the function pointers found by MAS.
Furthermore, KOP as much as 40% of the function point-
ers reported by KOP appear to be incorrect.

We also tried to interpret the function pointers returned
by MAS. A large fraction of the reported function point-
ers appeared to point to third-party drivers that were not
included in our static analysis. However, in addition to
detecting the footprints of widely used anti-virus soft-
ware, we also found clear signs of rootkit infections in
five out of the eleven crash dumps. We will discuss how
we detect rootkits in real-world crash dumps in Section 9.

Next, we attempted to estimate the internal consis-
tency of the objects found by MAS. We examined the
complete kernel object mappings produced by MAS for
inconsistent pointers. These are pointers whose type is
incompatible with the object type that the object map-
ping has assigned to the pointer’s target. For example,
an object mapping might contain an object of type T1 at
address A. Another object in the mapping might contain
a pointer P of some other type T2 �= T1 that also points to
A. P is an inconsistent pointer. Such inconsistencies may
exist even if the object mapping is error free because of
invalid pointers in objects and because of memory cor-
ruptions in the crash dump. But they may also indicate
errors in the object mapping, for example as a result of
following invalid pointers. We call an object inconsis-

8

USENIX Association 	 21st USENIX Security Symposium  609

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

1 2 3 4 5 6 7 8 9 10 11

Figure 5: Percentage of inconsistent objects in the object
mappings for MAS (left) and KOP (right). KOP did not
produce a result for the third dump.

tent if it is the target of at least one inconsistent pointer.
Figure 5 displays the percentage of inconsistent objects
in the object mappings found by MAS and KOP for the
Windows Vista SP1 crash dumps. We consider this num-
ber to be an indication of the correctness of the object
mapping. On average, the object mappings produced by
MAS contain 0.5% inconsistent objects. This number is
1% for the objects mappings produced by KOP.

7.2 Performance
This section evaluates the running time of MAS.

Static Analysis We performed the static analysis for
Windows XP SP3, Windows Vista SP1 and Windows 7.
Our evaluation is focused on Windows Vista SP1 since it
allows us to compare MAS and KOP directly. The static
analysis on Windows Vista SP1 includes the Windows
kernel and a set of 63 standard drivers (such as win32k,
ntfs and tcpip). This is the same set of drivers analyzed
by KOP. The code base has 3.5 million lines of code. The
program expression graph has 2.2 million nodes and 7.3
million edges. MAS performed almost 23,000 candidate
type lookups.

We performed the static analysis on a 100 node cluster
running Windows Server 2008 R2 HPC Edition, where
each node has two Quad-Core 2.5 GHz Xeon processors
with 16 GB RAM. Each node was used to perform 228
candidate type lookups. The whole static analysis took
less than 5 hours. The corresponding time for KOP re-
ported in [3] is 48 hours on a somewhat older, single pro-
cessor machine.

The key advantage of MAS over KOP is that MAS’s
static analysis can run in parallel. This allows MAS to

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11

Figure 6: Running times in seconds of MAS (left) and
KOP (right) on eleven real-world Windows Vista SP1
crash dumps. KOP did not produce a result for the third
dump.

finish the static analysis in 5 hours on 100 nodes. On the
other hand, the combined machine time of 500 hours is
much larger than KOP’s running time. This is partly be-
cause MAS does not achieve perfect parallelization. For
instance, it takes 0.5 hour to load the program expres-
sion graph into memory on every node; alias analyses
for indirect calls are computed on demand on each node
and thus are not shared, which causes repeated computa-
tions as well. Furthermore, MAS converts a program to
the Static Single Assignment (SSA) form conservatively,
which increases the computation.

Dynamic Analysis Next, we report on the total run-
ning times of memory traversal and integrity checking of
MAS on three sets of memory snapshots. Figure 6 dis-
plays the running times of MAS and KOP on the eleven
Windows Vista SP1 crash dumps. On average, MAS
(160 seconds per dump) is more than 9 times faster than
KOP (24.5 minutes per dump). KOP failed to terminate
on crash dump 3 within the two hour time limit we had
set.

Figure 7 displays the distribution of MAS’s running
times on the 837 Windows 7 crash dumps. The running
times are concentrated between 40 and 160 seconds. The
average running time is 105 seconds, and 99.9% of all
runs complete in less than 5 minutes.

Finally, the average running time of MAS on the
154,768 memory snapshots from our large-scale mal-
ware study is 31 seconds. The running time distribution
is highly concentrated around this value.

In summary, our experiments demonstrate that MAS
can quickly and accurately analyze real-world crash
dumps as well as memory snapshots of virtual machines.

9

610  21st USENIX Security Symposium	 USENIX Association

Figure 7: Running time (in seconds) distribution of MAS
on 837 real-world Windows 7 crash dumps.

When compared directly, MAS was nearly an order of
magnitude faster than KOP. MAS did not misidentify or
miss any functions pointers found by KOP in the eleven
Windows Vista SP1 dumps, but KOP missed or misiden-
tified as much as 40% of the suspicious function point-
ers.

8 Kernel Malware Study

In this section we present the results of our study of
a large collection of 154,768 potential malware sam-
ples that we obtained from a major vendor of anti-virus
software. These samples originated from a variety of
sources. Their behavior was unknown to us. This in-
cluded the question whether a sample even contained
malware. All samples were different types of Windows
binaries: executables (.exe), dynamically linked libraries
(.dll) and drivers (.sys).

We used MAS to analyze the samples. More precisely,
for each sample, we booted a clean Windows XP SP3
VM with 256 MB of RAM and one virtual processor and
loaded and executed it. We ran .exe’s directly. We ran
.dll’s with the help of a standard executable that loads a
dll and causes its DllMain function to be executed. We
loaded drivers (.sys) using the service control manager
(sc.exe). After launching the sample, we waited for one
minute, then took a memory snapshot of the VM, con-
verted it into a Windows crash dump and ran MAS over
the crash dump.

In order to gain additional insight into the events that
take place in the VM, we wrote a driver that makes most
of the kernel address space of the VM not executable
(by setting the corresponding bits in the page tables) and
catches and records any non-execute (NX) page faults.
The driver also records the loading and unloading of ker-
nel modules and the allocation and deallocation of pool

blocks. We loaded the driver in the VM before launching
the sample.

We used a 25 node compute cluster to evaluate all
154,768 samples. The cluster nodes were running Win-
dows Server 2008 R2. We used Hyper-V as our Virtual
Machine Monitor. On each cluster node, we ran between
4 and 8 VMs, running a total of 164 VMs simultaneously
at any time. Each job ran for 2 to 3 minutes. Since the
VM jobs were I/O bound we took a number of measures
to manage disk traffic: The VMs used differencing disks
based on a single base image. We interleaved the startup
of VMs such that the I/O intensive phases at the begin-
ning and end of some jobs coincided with the one minute
idle period of other jobs. All 154,768 jobs completed in
less than 48 hours.

MAS reported kernel behaviors for only 89,474 of the
samples. We analyzed the events recorded by our driver
for the remaining 65,294 samples for which MAS had
output no results. The driver logs showed that, in all but
1286 cases, neither module loading nor non-executable
page faults were recorded. For the 1286 samples, the
driver logs showed that no non-executable page faults
were detected, and some modules were loaded after the
sample was launched but all of the modules had been un-
loaded before the memory snapshot was taken. Based on
this evidence, it appears that the memory snapshots for
which MAS reported no results did not contain any data
that MAS should have reported.

There are several potential reasons for the relatively
large number of samples without reportable kernel be-
haviors. As stated above, some of the samples may sim-
ply not have been malware. Also, the crude way in which
we launch the samples may have caused samples to fail
to execute. It may also have caused malware not to be-
come active. Techniques for reliably triggering malware
have been studied elsewhere [5, 8] and are not the focus
of this paper. The rest of this section presents the results
of our analysis for the 89,474 samples for which MAS
reported kernel behaviors.

8.1 General Behavior Statistics

Table 2 displays counts on the different categories of ker-
nel behavior we observed. The count for a category is the
number of samples that displayed behavior in that cate-
gory. Some samples displayed behaviors in more than
one category. Most categories correspond to modifica-
tions of static data structures that can be detected with ex-
isting tools. IDT represents modifications to the function
pointers in the processor’s interrupt descriptor table. Sy-
senter represents modifications to the hardware register
that determines the target address of a sysenter instruc-
tion. Callgate represents similar modifications to func-
tion pointers in hardware-defined call gate structures.

10

USENIX Association 	 21st USENIX Security Symposium  611

Category Count
IDT 20
Sysenter 1
Callgate 23
Syscall Table (SSDT) 3652
Hidden Process 1476
Hidden Module 43828
Code Hooks 17744
Module Imports and Exports 103
Function Pointer 84051

Table 2: Distribution of malware behaviors.

The next group of categories represents static
software-defined function pointers. The system call table
(SSDT) is a table of function pointers to the individual
system call handler functions. Hidden process and hid-
den module stand for attempts to hide processes or mod-
ules by removing them from the data structures Windows
maintains to keep track of processes and loaded mod-
ules. Code Hooks represent modifications of legitimate
executable code. Module Imports and Exports represent
tampering with the function pointers in the import and
export lists of loaded modules.

Finally, the Function Pointer category includes mod-
ifications to function pointers in data objects found in
MAS’s memory traversal. Most of the objects are dy-
namic data (i.e., reside in the kernel pool) and some of
them are from global variables. This is by far the most
frequent category. About 94% of the samples display
this behavior in some form. Since this is also the one
category for which existing tools provide at best limited
information, we examined it in more detail.

8.2 Function Pointer Hooking
We found that the samples were hooking a total of
191 unique function pointer fields from 31 different
data structures belonging to the Windows kernel and
five drivers (ntfs, fastfat, ndis, fltmgr, null). Fig-
ure 8 shows the number of samples that hooked each
of the 191 function pointer fields. We observe a high
concentration on a small set of pointers and a long
tail. The two plateaus between 0 and 60 correspond
mostly to function pointers from nt! DRIVER OBJECT

and nt! FAST IO DISPATCH. Almost 50% of the func-
tion pointers were hooked by only one or two samples.

We also counted the number of distinct dynamic func-
tion pointers hooked by each sample. The distribution
is displayed in Figure 9. It is highly concentrated. Al-
most half the samples hook exactly 32 function pointers.
There is a smaller concentration around the value 4. This
high concentration suggests that versions or exact copies

1

10

100

1000

10000

100000

1 51 101 151

Figure 8: Number of samples that hooked each of the
191 different function pointers for which MAS detected
hooking.

of the same underlying malware are present in a large
number of samples. We further investigated this obser-
vation by clustering the samples.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

0 10 20 30 40 50 60 70

Figure 9: Distribution of the number of dynamic function
pointers hooked by each sample

8.3 Clustering
To cluster samples, we first extracted the following infor-
mation from MAS’s report as a sample’s footprint. For
each suspicious function pointer, we use a tuple includ-
ing “FUNCPTR” (indicating this tuple is about function
pointers), function pointer field name, and data struc-
ture name. To differentiate the cases when different
known drivers are hooked, we replaced the data struc-
ture name (“nt! DRIVER OBJECT”) with a driver name
(e.g., “\Driver \disk”) for known drivers. For each code
hook, we use a tuple including “CODEHOOK”, mod-
ule name, function name, offset, and the number of

11

612  21st USENIX Security Symposium	 USENIX Association

1

10

100

1000

10000

100000

1 51 101 151 201 251 301 351 401

Figure 10: Sizes of clusters of samples with identical
MAS footprints.

bytes that were modified. For hidden modules or pro-
cesses, we simply used a tuple “HIDDEN MODULE”
or “HIDDEN PROC”. We handled other behaviors sim-
ilarly. Note that we carefully chose not to include any
names or values that are easily modifiable by malware
(e.g., a malicious driver’s name or a hidden module’s
name). The tuples in each sample’s footprint are sorted
so that we can easily compare two samples’ signatures.

We assigned samples into the same cluster if they had
identical footprints. This mapped the 89,474 samples
into 414 clusters whose sizes ranged from 1 to 30,411.
A total of 272 clusters contained at least two samples.
Figure 10 shows the distribution of cluster sizes.

To understand whether all samples in a cluster used
a single kernel driver, we counted the number of differ-
ent sized drivers loaded by samples in each cluster (see
Figure 11). A total of 209 clusters have at least two dif-
ferent sized drivers loaded. This indicates that different
malicious kernel drivers have shown identical MAS foot-
prints. Thus we can potentially use MAS’s footprints to
automatically detect new malware samples. We leave the
investigation of this approach to future work.

9 Crash Dump Study

In this section we report our experience in using MAS to
detect kernel rootkits in real-world crash dumps. Since
the white list of trusted code is incomplete for the end
user machines from which the crash dumps were col-
lected, we cannot automate the process of rootkit detec-
tion entirely. However, we can leverage the findings from
our kernel malware study to identify suspicious crash
dumps before manually inspecting them.

From Table 2 we can see that the three most common
behaviors of rootkits are hooking function pointers, hid-

0

10

20

30

40

50

60

70

1 51 101 151 201 251 301 351 401

Figure 11: The numbers of different sized drivers loaded
by samples of each cluster.

ing modules, and placing code hooks. Since many suspi-
cious function pointers reported by MAS point to benign
third-party drivers that are not on our white list, simply
using the existence of suspicious function pointers is not
an effective way to identify suspicious crash dumps. For
rootkits that hook both function pointers and hide mod-
ules, the hooked function pointers usually do not point to
a loaded module but either a pool block, a hidden module
or some other memory region. We used this observation
to ignore function pointers whose targets fall into loaded
modules. We are aware that this may cause us to miss
non-stealthy kernel malware that simply installs a driver.
To handle such cases, we would need to either grow the
white list or do more manual analysis. We also ignore
function pointers whose targets do not appear to be the
beginning of a function since they do not allow us to dif-
ferentiate reliably between buggy rootkits and memory
corruptions. In our study we used these conditions to do
initial filtering to identify suspicious dumps. This initial
filtering was done automatically.

For the eleven Windows Vista SP1 crash dumps, we
found seven of them to be suspicious after the ini-
tial filtering. Our manual investigation confirmed that
five crash dumps contain rootkits (e.g., hooking sev-
eral driver’s dispatch routines, hiding its own driver).
The other two were benign because the code hooks
were placed by two anti-virus systems. Each of them
hooked one of two very frequently called functions,
KiFastCallEntry and SwapContext. We concluded that a
code hook was placed by anti-virus software if the hook’s
target falls into a module and internet search results in-
dicated that the module belongs to an anti-virus vendor
based on the module’s name.

For the 837 Windows 7 crash dumps, we found 177
suspicious dumps after the initial filtering. We quickly
verified that 85 dumps that contain hidden modules were

12

USENIX Association 	 21st USENIX Security Symposium  613

all infected by kernel rootkits. Out of the remaining 92
crash dumps, 82 dumps only contain code hooks, and the
other ten contain suspicious function pointers that do not
point to a loaded module. We manually analyzed these
ten dumps and found that five of them contain rootkits
and the other five have corrupted global function tables
which let them pass the initial filtering. We cannot decide
if the corruptions were due to a rootkit or a kernel bug.
The 82 dumps with only code hooks have 37 different
hooking patterns. For each hooking pattern, we picked
one dump and manually inspected it with MAS’s report.
Surprisingly, all the code hooks appeared to be placed by
anti-virus software.

In summary, with the process described above, we
were able to quickly identify five Windows Vista SP1
dumps and 90 Windows 7 dumps that contain kernel
rootkits. All the manual inspections described in this sec-
tion took a total of less than one hour. This demonstrates
that MAS is an effective tool for identifying rootkit foot-
prints in real-world systems.

10 Related Work

MAS is not the first system that attempts to identify a
kernel rootkit’s footprint in a memory snapshot. But it is
the first practical system that can do so with high accu-
racy, robustness and performance.

Our work was inspired by KOP [3]. While KOP is
the first system to type dynamic data in a kernel memory
snapshot with very high coverage, it lacks in robustness
and performance. Our evaluation has shown that MAS is
an order of magnitude faster than KOP in both static anal-
ysis and memory traversal. More importantly, when ana-
lyzing real-world crash dumps of systems running Win-
dows Vista SP1, we observed no errors in MAS’s output.
In contrast, up to 40% of the function pointers reported
by KOP appeared to be incorrect.

Kernel integrity checking has been studied in a large
body of work. SBCFI [19] and Gibraltar [2] both lever-
age type definitions and manual annotations to traverse
memory and inspect function pointers. Both fall short in
data coverage as a result of not handling generic point-
ers [3]. A recent system called OSck [7] also discovers
kernel rootkits by detecting modifications to kernel data.
Instead of memory traversal, OSck identifies kernel data
and their types by taking advantage of the slab allocation
scheme used in Linux. It provides per-type allocations
and enables direct identification of kernel data types. The
slab allocator is unavailable on Windows operating sys-
tems, which makes Osck less useful for Windows. This
problem cannot be solved by the mapping between pool
tags and data types since it is not a one-to-one mapping.
Worse, a pool tag may correspond to different types, and
several data structures may be stored in one pool block.

MAS leverages source code and program-defined
types to identify dynamic data and their types. Several
other systems have tried to solve this problem without ac-
cess to source code and type definitions. Laika [4] uses
Bayesian unsupervised learning to infer data structures
and their instances. REWARDs [11] recognizes dynamic
data and their types when they are passed as parame-
ters to known APIs at runtime. TIE [10] reverse engi-
neers data type abstractions from binary programs based
on type reconstruction theory and is not limited to a sin-
gle execution trace. These reverse engineering tools are
more effective for analyzing small to medium scale pro-
grams than for large-scale programs like the Windows
kernel. Both MAS and KOP demonstrate that source
code is critical for achieving high data coverage when
analyzing kernel memory snapshots.

WhatsAt [20] is a tool for dynamic heap type in-
ference. It uses type information embedded in debug
symbols and attempts to assign a compatible program-
defined type to each heap block by checking type con-
straints. If a block is untypable, WhatsAt uses it as a
hint for heap corruptions and type safety violations. The
main difference between WhatsAt and MAS is that what-
sat cannot scale to large programs such as the Windows
kernel.

MAS leverages a new demand-driven pointer analysis
algorithm to enable precise but fast analysis for identi-
fying type candidates for generic pointers in large-scale
C/C++ programs. The key idea behind the demand-
driven analysis is to formulate the pointer analysis prob-
lem as a Context-Free Language (CFL) reachability
problem, which was explored in previous work [21,
24, 23, 27]. In [21], Reps first introduced the concept
of transforming program analysis problems to graph-
reachability problems. In [24], Sridharan et. al. apply
this idea to demand-driven points-to analysis for Java.
In [23], Sridharan and Bodik present a refinement-based
algorithm for demand-driven context-sensitive analysis
for Java. In [27], Zheng and Rugina describe a demand-
driven alias analysis algorithm for C. We adopt their al-
gorithm and extend it to support field-sensitivity. We also
achieve context-sensitivity in a way similar to [23]. In
KOP [3], Carbone et. al. extend the algorithm presented
in [6] to be context- and field-sensitive. The key advan-
tage of MAS over KOP is that MAS’s static analysis can
run in parallel.

MAS works on memory snapshots to analyze kernel
rootkit behavior. Several other systems [9, 22, 26] have
used virtualization-based dynamic tracing for the same
purpose. Soft-timer based attacks [25] are detectable by
MAS since the callback function pointer injected by the
malware is always in memory and can potentially be de-
tected by MAS.

13

614  21st USENIX Security Symposium	 USENIX Association

11 Limitations

A key limitation faced by MAS is that an attacker who is
familiar of MAS’s design can potentially disrupt MAS’s
memory traversal by manipulating the kernel memory.
MAS checks several constraints (see Section 4) before
adding a new data object. If an attacker were able to find
some pointer or enum fields in a data structure that may
take arbitrary values without crashing the OS, he could
potentially mislead MAS to reject instances of such a
data structure by changing them to violate the pointer or
enum constraints. The impact of this limitation remains
unclear because we are not aware of such data structures.
Moreover, even when such data structures exist, it is un-
clear if they will affect the identification of security sen-
sitive data (e.g., hooked function pointers).

Another limitation of MAS is due to the existing im-
plementation in Windows. Currently an attacker can
modify the tag of a pool block without crashing Win-
dows, and thus use it to mislead MAS. However, this lim-
itation can be eliminated if the pool manager checks the
tag of a pool block against the expected pool tag passed
as a function argument when the pool block is freed.

12 Conclusions

We have presented MAS, a practical memory analy-
sis system that can accurately and quickly identify a
rootkit’s memory footprint. We applied MAS to analyze
848 crash dumps collected from end user machines and
154,768 potential malware samples obtained from a ma-
jor anti-virus vendor. Our experiments show that MAS
was able to quickly analyze all memory snapshots with
typical running times between 30 and 160 seconds per
snapshot and with near perfect accuracy. With MAS, we
were able to quickly identify 95 crash dumps that con-
tain rootkits. Our kernel malware study shows that rootk-
its hooked 191 different function pointers in 31 different
data structures. Furthermore, it demonstrates that many
malware samples installed different kernel drivers but
had identical memory footprints, which suggests a fu-
ture research direction on leveraging memory footprints
to automatically detect new malware samples.

Acknowledgments

We would like to thank the anonymous reviewers
for their helpful feedback. We are very grateful to
many colleagues for their valuable feedback, sugges-
tions and help throughout the effort of making MAS
real: Alex Moshchuk, Anil Francis Thomas, Barry Bond,
Bryan Parno, Chris Hawblitzel, David Molnar, Dennis
Batchelder, Eddy Hsia, Galen Hunt, Gloria Mainar-Ruiz,

Helen Wang, Jay Stokes, Jeffrey Chung, Jen-Lung Chiu,
Jim Jernigan, Pat Winkler, Randy Treit, Reuben Olinsky,
Rich Draves, Ryan Kivett, Scott Lambert, Tim Shoultz,
YongKang Zhu.

References
[1] The Alureon rootkit. http://en.wikipedia.org/wiki/

Alureon.

[2] BALIGA, A., GANAPATHY, V., AND IFTODE, L. Automatic in-
ference and enforcement of kernel data structure invariants. In
Proceedings of the 24th Annual Computer Security Applications
Conference (2008).

[3] CARBONE, M., CUI, W., LU, L., LEE, W., PEINADO, M., AND
JIANG, X. Mapping kernel objects to enable systematic integrity
checking. In Proceedings of the 16th ACM Conference on Com-
puter and Communications Security (CCS) (November 2009).

[4] COZZIE, A., STRATTON, F., XUE, H., AND KING, S. T. Dig-
ging for data structures. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2008), OSDI’08, USENIX Association,
pp. 255–266.

[5] DINABURG, A., ROYAL, P., SHARIF, M., AND LEE, W. Ether:
Malware analysis via hardware virtualization extensions. In Pro-
ceedings of the 15th ACM Conference on Computer and Commu-
nications Security (CCS 2008) (October 2008).

[6] HEINTZE, N., AND TARDIEU, O. Ultra-fast aliasing analysis us-
ing CLA - a million lines of C code in a second. In SIGPLAN
Conference on Programming Language Design and Implementa-
tion (2001).

[7] HOFMANN, O. S., DUNN, A. M., KIM, S., ROY, I., AND
WITCHEL, E. Ensuring operating system kernel integrity with
OSck. In Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (New York, NY, USA, 2011), ASPLOS ’11, ACM,
pp. 279–290.

[8] KOLBITSCH, C., KIRDA, E., AND KRUEGEL, C. The power
of procrastination: Detection and mitigation of execution-stalling
malicious code. In Proceedings of the 18th ACM Conference on
Computer and Communications Security (CCS 2011) (October
2011).

[9] LANZI, A., SHARIF, M., AND LEE, W. K-tracer: A system
for extracting kernel malware behavior. In Proceedings of the
16th Annual Network and Distributed System Security Sympo-
sium (2009).

[10] LEE, J., AVGERINOS, T., AND BRUMLEY, D. Tie: Principled
reverse engineering of types in binary programs. In Proceedings
of the 18th Annual Network and Distributed System Security Sym-
posium (Feb. 2011), pp. 251–268.

[11] LIN, Z., ZHANG, X., AND XU, D. Automatic reverse engineer-
ing of data structures from binary execution. In Proceedings of
the 17th Annual Network and Distributed System Security Sym-
posium (NDSS’10) (San Diego, CA, February 2010).

[12] MICROSOFT. Debug interface access SDK. http://msdn.

microsoft.com/en-us/library/x93ctkx8(VS.71).aspx.

[13] MICROSOFT. Debugging Tools for Windows. http:

//www.microsoft.com/whdc/devtools/debugging/

default.mspx.

[14] MICROSOFT. PREfast. http://msdn.microsoft.com/

en-us/library/ff550543(v=vs.85).aspx.

14

USENIX Association 	 21st USENIX Security Symposium  615

[15] MICROSOFT. Symbols and symbol files. http:

//msdn.microsoft.com/en-us/library/windows/

hardware/ff558825(v=vs.85).aspx.

[16] MICROSOFT. Windows driver kit. http://msdn.microsoft.
com/en-us/windows/hardware/gg487428.aspx.

[17] MICROSOFT. Windows HPC Server 2008 R2. http://www.

microsoft.com/hpc.

[18] MICROSOFT. Windows kernel pool tags. http:

//msdn.microsoft.com/en-us/windows/hardware/

gg463213.aspx.

[19] NICK L. PETRONI, J., AND HICKS, M. Automated detection
of persistent kernel control-flow attacks. In Proceedings of the
14th ACM Conference on Computer and Communications Secu-
rity (CCS) (October 2007).

[20] POLISHCHUK, M., LIBLIT, B., AND SCHULZE, C. W. Dynamic
heap type inference for program understanding and debugging. In
Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (New York, NY,
USA, 2007), POPL ’07, ACM, pp. 39–46.

[21] REPS, T. Program analysis via graph reachability. In Proceed-
ings of the 1997 International Logic Programming Symposium
(October 1997).

[22] RILEY, R., JIANG, X., AND XU, D. Multi-aspect profiling
of kernel rootkit behavior. In Proceedings of the 4th ACM
SIGOPS/EuroSys Conference on Computer Systems (April 2009).

[23] SRIDHARAN, M., AND BODIK, R. Refinement-based context-
sensitive points-to analysis for java. In Proceedings of the 2006
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI) (June 2006).

[24] SRIDHARAN, M., GOPAN, D., SHAN, L., AND BODIK, R.
Demand-driven points-to analysis for Java. In Proceedings of the
20th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems Languanges, and Applications (OOPSLA) (Octo-
ber 2005).

[25] WEI, J., PAYNE, B. D., GIFFIN, J., AND PU, C. Soft-timer
driven transient kernel control flow attacks and defense. In
Proceedings of the 24th Annual Computer Security Applications
Conference (ACSAC 2008) (December 2008).

[26] YIN, H., SONG, D., MANUEL, E., KRUEGEL, C., AND KIRDA,
E. Panorama: Capturing system-wide information flow for
malware detection and analysis. In Proceedings of the 14th
ACM Conferences on Computer and Communication Security
(CCS’07) (October 2007).

[27] ZHENG, X., AND RUGINA, R. Demand-driven alias analysis for
C. In Proceedings of the 35th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL) (January
2008).

15

USENIX Association 	 21st USENIX Security Symposium  617

TACHYON: Tandem Execution for Efficient Live Patch Testing

Matthew Maurer
maurer@cmu.edu

Carnegie Mellon University

David Brumley
dbrumley@cmu.edu

Carnegie Mellon University

Abstract
The vast number of security incidents are caused by

exploits against vulnerabilities for which a patch is al-
ready available, but that users simply did not install.
Patch installation is often delayed because patches must
be tested manually to make sure they do not introduce
problems, especially at the enterprise level.

In this paper we propose a new tandem execution ap-
proach for automated patch testing. Our approach is
based on a patch execution consistency model which
maintains that a patch is safe to apply if the executions
of the pre and post-patch program only differ on at-
tack inputs. Tandem execution runs both pre and post-
patch programs simultaneously in order to check for ex-
ecution consistency. We have implemented our tech-
niques in TACHYON, a system for online patch testing
in Linux. TACHYON is able to automatically check and
verify patches without source access.

1 Introduction

Most attacks target known vulnerabilities for which there
are already patches. For example, Microsoft reported
that only 0.12activity in the first half of 2011 involved a
zero-day attack for which a patch has been available for
a month or less [19]. For the other 99.88%, exploits were
successful simply because available patches were not in-
stalled. These statistics indicate that one of the best ways
to reduce security incidents due to exploits is to simply
patch vulnerable systems.

The need to rapidly deploy security patches in enter-
prise environments is hampered by the need to also test
patches for problems. Bad patches often have more busi-
ness risk than a security breach, suggesting that the abil-
ity to test patches and guard against such problems might
result in faster deployment of security patches. Measures
currently deployed in cloud environments deal with ran-
dom failures, rather than systematic ones caused by bad

patches. As a result, current best practices amount to
manual testing, which is slow, error-prone, and expen-
sive. For example, NIST best practices recommend man-
ual patch testing (which is slow) on pre-production envi-
ronments (which are expensive to acquire and maintain)
when available, or simply waiting to see if others report a
problem or not [18]. While such approaches prevent bad
patches from being applied, they increase the vulnerabil-
ity window. Even when a pre-production environment
is provided through virtualization, reducing the cost sub-
stantially, auxiliary services, such as databases, must be
simulated. This leads to excessive administration over-
head and compute overhead. Additionally, effects are
captured in an often ad-hoc manner (e.g. by recording
network traces), which can miss changes the administra-
tor did not think to look for. For example, the US Air
Force implements a centralized patch testing procedure
for their half million managed machines, but as a result,
delay patch rollout by up to a quarter year [14].

If we could automatically test patches, then we could
shorten the vulnerable time window between when a
patch is released until it is installed. However, automated
patch testing faces several challenges.

First, in order to faithfully check that functionality is
preserved in a patch, we should be able to test a patch on
the system it will ultimately protect. Second, in order to
be widely applicable, we should be able to test patches
in the common scenario where the patch is a new binary
program, as source is often not available. Third, we want
to minimize manual effort. As patches can change the
semantics of a program, a human will likely always need
to be in the loop to determine if the semantic changes
are meaningful. However, we still wish to automate the
system as much as possible. Unfortunately, there is very
little work on automated patch testing, and no previous
work addresses all these requirements.

In this paper we propose the first techniques for live
patch testing via tandem execution. Our insight is that
current manual testing checks whether the executions of

618  21st USENIX Security Symposium	 USENIX Association

a pre-patch and post-patch binary produce different out-
puts on known inputs. We call this observational equiv-
alence between pre and post-patch.

Tandem execution uses this insight to automate patch
testing by simultaneously running both programs on the
same input. More specifically, in tandem execution one
program runs live on the system (e.g., the patched pro-
gram), with all system calls (syscalls) being serviced by
the kernel. The second version of the program (e.g.,
the unpatched program) runs in tandem, but with each
syscall to the kernel simulated by replaying the side ef-
fects from the corresponding calls of the live version.
The replay prevents duplicating side-effects, such as
writing to the same file twice.

If the two programs deviate on the syscalls issued, or
the arguments to syscalls, then they are not observation-
ally equivalent. We record the deviation and inform the
user of the potential problem. At this point, the actions
that can be taken are to halt the program, or to specify
that the deviation is permitted. In order to continue test-
ing, the user provides a rewrite rule that specifies how to
handle the deviation, and automated patch testing con-
tinues. In our experiments we show that rewrite rules are
small when needed, and often completely unnecessary
for security-related fixes.

We implement our approach in a system called
TACHYON. TACHYON is based upon syscall replay tech-
niques for binary programs, but with a new twist. Ex-
isting system call replay schemes are designed to record
system calls from one run of a binary for replay against
exactly the same binary, e.g., [1, 11, 22]. Since both
record and replay are against the same binary, the record
step only needs to conceptually keep a snapshot of the
memory cells affected by the syscall. The affected mem-
ory cells are typically determined by differencing the pre
and post-syscall memory state. During replay, the mem-
ory cells at exactly the same addresses are replayed with
the recorded data.

The twist in our setting is we want to replay syscalls
to a different binary. Typically the two binaries will
have a different memory layout, and may make differ-
ent syscalls. For example, the system may have ASLR
enabled, or a patch may change a buffer from the too-
small size of 1024 bytes to the just-right size of 4096.
In either case, all pointers are likely to have different ad-
dresses between the patched and unpatched versions. As
a result, previous raw memory snapshot and replay ap-
proaches do not work.

To address our twist, TACHYON takes a semantic-
based approach to replay only the semantically mean-
ingful information from a syscall in a recording during
replay, rather than capturing details like pointer values
which may change between patches. Our approach is
enabled by three techniques. First, we extend the C

type system to include a full description of the syscall
side-effects. The description enables TACHYON to iden-
tify semantically meaningful arguments and results in
syscalls instead of relying on blind memory differenc-
ing. The work to annotate the system calls needs to be
performed once, and can be reused for all programs. Sec-
ond, TACHYON utilizes a rewrite rule system to compare
syscall sequences for equivalence and rewrite if neces-
sary. The rewrite system gives the end-user the abil-
ity to say when deviations are permitted in a systematic
manner. Third, TACHYON uses syscall interposition tech-
niques to record the effects of syscalls on a live program,
and replay those effects to simulate syscalls on the tan-
dem program.

Tandem execution makes patch testing in new scenar-
ios possible. For example, a test administrator can run
the pre-patch binary live and the post-patch in-tandem
on the same system. Any deviation reported is either (a)
a bug in the patch, or (b) an exploit against the buggy
program that is averted in the patched program, or (c)
a permitted change that changes IO behavior. In all
cases, the administrator should be informed of the devia-
tion. Alternately, a security-conscious administrator may
run the patched version live, noting deviations with the
pre-patched version. In either case, the tandem execu-
tion achieves live patch testing without duplicating side-
effects. The closest current best practices come to similar
results requires mirroring a production environment with
a pre-production environment, which is expensive and
requires significant effort to maintain. We discuss other
possible applications such as creating honeypots in § 7.

We have implemented and evaluated TACHYON on a
number of security patches, and demonstrated that our
techniques can successfully detect deviations. We have
also performed micro-benchmarks that show our imple-
mentation is efficient with respect to the amount of I/O
performed. We show our implementation records full
syscall information faster than strace, a tracing tool
targeted at binary programs, and is efficient in compari-
son to an untraced run.

Contributions. The main contribution of this paper is
techniques for live tandem execution for patch testing.
These techniques automate a large part of patch testing,
thus reducing the vulnerability window for unpatched
systems. In particular:
• We are the first to propose techniques for auto-

mated patch testing that address all the above chal-
lenges; we have implemented them in TACHYON.
We demonstrate where we run both the unpatched
and patched binary and use tandem execution to de-
tect deviations. An additional benefit of tandem ex-
ecution is that it can utilize extra cores for the secu-
rity purpose of patch testing.

2

USENIX Association 	 21st USENIX Security Symposium  619

Replayed
Program (P')

Traced
Program (P)

Type
System

Rewrite
Rules

Tachyon
Replayer

Tachyon
Recorder

Matching

S
yscall

S
tream

Figure 1: Tachyon System Overview

• We develop a type system that fully encapsulates
the side effects of syscalls necessary for replay. Our
type system is similar to [11], but does not require
source code access or explicit developer coopera-
tion.

• We propose a light-weight rule-based system for
checking syscall stream equivalence (and rewriting
if necessary) when the sequence of syscalls between
the patched and unpatched binary are not exactly the
same.

• We have implemented our techniques in TACHYON
using Haskell (a type-safe language) and validated
the techniques experimentally. Our system is ro-
bust enough to handle single-threaded and multi-
threaded programs. We evaluate our approach on
several real-world patches, as well as synthetic
benchmarks, to show the effectiveness and perfor-
mance of TACHYON.

2 Design of TACHYON

2.1 Overview of TACHYON and Challenges
The overall architecture of TACHYON is shown in Fig-
ure 1. In this paper we call the program running live P
(e.g., the patched program) and the program running in-
tandem with simulated syscalls P′ (e.g., the unpatched
program). TACHYON is a user-land program that uti-
lizes the Linux ptrace facility to interpose on syscalls is-
sued by P and P′. Like replay schemes, TACHYON has a
recorder and a replay module. The recorder records the
stream of system calls issued by P and outputs a stream
of tuples 〈C,�I, �O〉 where C is the system call number,�I is
a list of inputs to the system call, and �O is a list of out-
puts. The replay module interposes on P′, and for each
syscall C with arguments�I made by P′, simulates the OS
by returning �O.

Listing 1: Example patch
1 − i n t fd = open (” / tmp / f i l e A ” , O RDONLY) ;
2 + i n t fd = open (” / tmp / f i l e B ” , O RDWR) ;
3 − i n t ∗ s t o r a g e = m a l lo c (. . .) ;
4 −/∗ . . . Do some p r o c e s s i n g w i t h s t o r a g e . . ∗ /
5 + f s t a t (fd , s t a t B u f) ;
6 char∗ incoming = ma l l oc (c h u n k s i z e) ;
7 s s i z e t s i z e = r e a d (fd , incoming , c h u n k s i z e) ;
8 i f (s i z e != −1)
9 w r i t e (fdOut , incoming , s i z e) ;

Consider the example shown in Listing 1, with the
patch difference being displayed in diff style with full
context. The first edit changes the file opened from
/tmp/fileA to /tmp/fileB. The next few edits re-
move an unneeded call to malloc, and add fstat.
The rest of the program is the same. Note that since a
malloc call was removed, the returned memory chunk
for incoming will be at a different address, even on
systems with a deterministic memory layout. Overall,
this patch example illustrates three challenges: patches
may change arguments to system calls, may change sys-
tem calls issued, may change memory allocation pat-
terns, and any of these changes may have effects on sub-
sequent execution.

The above challenges motivate three main require-
ments of live patch testing as distinguished from a nor-
mal replay system. First, instead of offline replay, a live
patch testing solution should be online where P produces
the syscall stream that P′ should consume. Second, a live
patch tester should not depend upon pointers because ab-
solute memory addresses may change between runs. For
example, P′ and P may issue calls to malloc for dif-
ferent amounts or ASLR may be enabled. Either case
prevents patch testing. As a result, we cannot determine
�O by simply diffing the memory state before and after a
syscall, as in previous syscall replay schemes [11, 22].
Additionally, memory diffing does not allow us to deter-
mine the inputs �I to system calls. As a good live patch
tester should verify the inputs as well, we need some way
to extract all inputs of a system call. Without a semantic
model, we will be unable to both locate all the relevant
components of the input, and to avoid capturing irrele-
vant components. Thus, we need a semantic model of the
inputs. Third, since a patch may remove or add system
calls, the live patch testing scheme should allow for the
syscall stream to be rewritten during replay. This can be
accounted for by allowing rewriting of the tuple stream
〈C,�I, �O〉.

3

620  21st USENIX Security Symposium	 USENIX Association

2.2 System Calls and Side-Effects
TACHYON needs to determine what the semantic inputs
and outputs to a syscall are in order to record and replay
them. Specifically, it needs to (1) determine the types of
arguments to a syscall, (2) differentiate input from out-
put, and (3) pointers from the pointed-to data. While ex-
isting C syscall prototypes are sufficient for (1), they do
not provide enough information for (2) and (3). Consider
the read syscall declaration:

1 s s i z e t r e a d (i n t fd , void ∗buf , s i z e t c o u n t) ;

This C declaration misses crucial information. First,
it gives no clue how the void pointer buf works. How
big is it? Is it null-terminated? Are the contents rele-
vant before the call, after, or both? We need to answer all
these questions in order to copy the appropriate semantic
data. We can see that even the assertion that a pointer
points at some data before or after the system call is not
the case, as with sbrk (pointer points at the end of your
address space) and mmap (one pointer is only a sugges-
tion). read is one of the simple cases; several syscalls
have complicated dependencies between input and out-
put parameters, as will be discussed later in §3.

TACHYON addresses the challenges associated with
understanding the semantics of syscalls by adding type
annotations, as described in §3. The TACHYON anno-
tation language is a light-weight dependent type system
that says how to parse the inputs and arguments into se-
mantic data at runtime. These type annotations only need
to be written once per system call, and are portable across
systems with the same syscall signatures.

2.3 Syscall Stream Rewriting
Many patches also change the sequence of syscalls made
in addition to the actual parameters. Consider Listing 1.
The system call stream when executing the patched pro-
gram is 〈...,open,fstat,read,write, ...〉. However,
the call after open in the unpatched program is read,
not fstat.

New patched versions often have new system call pat-
terns that cause the program to behave differently at an
IO level. It is not possible to tell whether a particular
change in system call patterns is valid without a human
to validate it. For example, if it turns out the above code
is just shifting a few things around and adding a new
inconsequential call to fstat, then the user may want
to ignore the deviation. However, the fstat may have
been inserted for security, and a deviation may indicate
an attack. When opening files in /tmp/ a common se-
curity practice is to then call fstat to obtain the user ID
and group ID of the file to make sure they are correct in

order to detect race conditions. TACHYON should report
the deviation and halt execution in such instances.

Although we cannot automatically decide which de-
viations matter, TACHYON does automate finding devi-
ations, as well as provide a mechanism to ignore such
deviations when found to continue testing. The rewriting
engine relies upon rules that are created for each patched
program that detail how to handle semantic differences.
For example, if a system administrator decides the above
deviation is inconsequential a rule can be written to ig-
nore the fstat call. Alternatively, patch creators could
write such rules and distribute them with their patches to
aid testing.

2.4 Road Map
In the rest of this paper, we first describe the TACHYON
type system in detail. We then discuss how TACHYON
rewrites system calls, as well as some common rules
we have found in patches we have tested. We next de-
scribe our implementation and evaluation. We finally
discuss several applications of TACHYON outside auto-
mated patch testing.

3 System Call Types

The C function declarations for syscalls do not describe
all side-effects. TACHYON proposes an extension to the
C type declarations to encode all semantic information
necessary to record which parameters are inputs, which
are outputs, and how to identify all bytes for each param-
eter. While this problem has been attacked before [11],
our particular needs are different due to the binary only-
nature of our approach, as we discuss in § 9.

The TACHYON type system takes advantage of the
user-space/kernel-space barrier for interposition. The
barrier provides a clean separation that can be monitored
without requiring source to the program. In addition, the
barrier allows TACHYON to not monitor internal kernel
state. The reason is that the only way P′ and P can in-
teract with the underlying system is via TACHYON, and
TACHYON’s mechanism ensures that both programs see
an identical state. This is a vital complexity reduction.

TACHYON uses a limited form of lightweight de-
pendent types (types which depend on values). Our
lightweight use avoids pitfalls such as undecidability
normally associated with dependent types. In the rest
of this section, we first provide an intuition on the issues
and how dependent types are used, and then describe the
full system.

4

USENIX Association 	 21st USENIX Security Symposium  621

3.1 Intuition
A basic approach for recording syscalls is to decorate C
types with information about which parameters should
be treated as inputs, outputs, or both. We call such an-
notations the IO class for each parameter. In order to
specify how to copy output parameters, we also need to
know the size of their values. The size information is
needed because we need to copy all output bytes from
buf in the monitored program P to the address space of
P′. For example, we could imagine annotating the read
call as:

1 s s i z e t r e a d (i n t fd , void o u t p u t ∗ buf{ r e t } ,
s i z e t c o u n t) ;

The parameter buf has been annotated as an output
parameter, thus should be copied and replayed to P′.
The annotation also specifies that ret bytes should be
copied, where ret is the return value.

Unfortunately, such simple annotations are insufficient
with many data structures, such as vectors. A prime ex-
ample of a difficult system call is readv, which pro-
vides vectored reads of a file descriptor. Its C type dec-
laration is:

1 s s i z e t r e a d v (i n t fd , c o n s t s t r u c t i o v e c ∗ iov ,
i n t i o v c n t) ;

2 s t r u c t i o v e c {
3 void ∗ i o v b a s e ; /∗ S t a r t i n g a d d r e s s ∗ /
4 s i z e t i o v l e n ; /∗ Num b y t e s i n i o v b a s e ∗ /
5 } ;

The main issue demonstrated is that a complete descrip-
tion of the IO behavior of parameters may refer to other
parameters. The iov base length is determined by
iov len, and the total number of iov items is given
by iovcnt. readv is not alone: it has many friends
such as writev, preadv, and pwritev. In order to
handle such cases, we need a type system that allows us
to express relationships between parameter values.

TACHYON uses lightweight dependent types that can
express relationships between the value of one parameter
and the value of another. We view types as a tree, and use
dependent types to walk the tree to determine a value.

The types allow us to walk from the top of the tree,
or from the current parameter. In TACHYON, we specify
readv as:

1 s s i z e t r e a d v (i n t fd , c o n s t s t r u c t i n p u t o u t p u t
i o v e c i n ∗ i o v { i o v c n t } , i n t i o v c n t) ;

2 s t r u c t i o v e c i n {
3 void i n p u t ∗ i o v b a s e {undo (s e l f) . i o v l e n } ;
4 s i z e t i o v l e n ;
5 }

readv

int fd

const struct iovec *iov{iovcnt}

int iovcnt

0 n

void *iov_base{undo(self).iov_len}

size_t iov_len

self

undo(self)

undo(self).iov_len

Figure 2: A lookup in action

We now call the struct iovecin, because while both
readv and writev take an iovec, they are used dif-
ferently, and so are assigned differing types (specifically,
in one case the buffers inside are output, while in the
other they are input). The only new annotations com-
pared to before are undo and self, which are used to
walk the type tree to reference other fields. The seman-
tic meaning is that iov base is iov len bytes. self
refers to the location at which the current value is being
read from. undo simply says to step back along what-
ever indexing step was done to get there. In this case, this
means that self represents the tree traversal up through
that instance of iov base. The “undo” brings us up
a level, to be looking at the struct. Then, we index the
struct to iov len and are done. Figure 2 graphically
shows the type tree for readv and how the syntax ex-
presses fields in the tree.

3.2 The Tachyon Type System
The full TACHYON dependent type system is shown in
Figure 3, and is taken directly from the TACHYON source
code in Haskell. The language is similar to BNF, where
non-terminals are to the left of the equal sign, and brack-
ets denote a list (e.g., [A] is a list with elements of type
A).

In TACHYON’s language, IOC represents an IO class,
that is, whether the pointer is input, output, or both. T
represents some form of termination, to allow us to in-
clude null-terminated data. NT is for null-terminated
data; UT is for unterminated data. If a pointer is null-
terminated, reading will cease when a 0 is hit, if this hap-
pens prior to the end of the buffer. The index operation
is used on both arrays and structs, where the i’th index
refers to the i’th field (counting from 0).

The types available are

• Small - These correspond to basic integer C types,

5

622  21st USENIX Security Symposium	 USENIX Association

1 data SysSig = SysSig Type [Type]
2 data Type = Smal l I n t
3 | S t r u c t [Type]
4 | P t r IOC Type Bound T
5 data T = NT | UT
6 data IOC = In | Out | InOut
7 data Bound = Cons t I n t | Lookup Lookup
8 data Lookup = Ret | Arg I n t | Index I n t Lookup

| S e l f | Undo Lookup

Figure 3: The TACHYON annotation language

like char or long, and indicate values that should
not be treated as pointers. The type parameter is
the number of bytes of the type, e.g., Small(1) is a
1-byte value corresponding to a char.

• Struct - an aggregate of other types. Note that pre-
vious replay work treated such types as raw buffers
because they could determine size by simply diffing
memory before and after a syscall. In live replay,
we explicitly lay out all fields because the underly-
ing types may yield further information.

• Ptr - a pointer annotated with an IO class, the type
of element it is pointing to, a way to tell how many
elements it points to, and whether or not it respects
a null termination convention.

We introduce the concept of a “lookup”. This is just
a series of steps that can be performed from either the
arguments of a function in the case of an input or in/out
class pointer, or the arguments and return value in the
case of an output pointer, to arrive at a memory location
or register. This is demonstrated in Figure 2. The Ret
and Arg constructs for a lookup are used to allow us to
reference the return value or various arguments in a sys-
tem call, respectively. This is just the generalization of
the tree walking described earlier.

Given this, the encoding of a bound as either a con-
stant or a lookup is rather natural. It is the use of this
bound that makes us lightly dependently typed—the type
depends on the data in question.

Finally, we can build the fundamental structure all this
is for—the system signature. A system signature, indi-
cated by SysSig, is what is assigned to each system call
in order to allow the tracer to record and play back its ef-
fects. The first parameter is the type of the return value,
and the second is a list of the types of its arguments.

Type Checking TACHYON Declarations. The
TACHYON types need only be written once for each
system call, and can be reused for any program. How-
ever, since they are written manually, we would like to
prevent mistakes. In order to achieve this, TACHYON

also provides type-checking to make sure the annotations
make sense. In particular, TACHYON checks:

1. Bounds are numbers, not pointers or something
else.

2. Bounds use only information which is available for
the IO class of the pointer (e.g., input class may not
use the return value as a size).

3. Output pointers do not contain structure; they are
raw data.

4. Types are potentially compatible with the original C
type.

These checks ensure annotations which are usable, self-
consistent, and match the C type.

4 System Call Stream Deviation Detection
and Rewriting

Patches often add, delete, or modify new system calls
in the original buggy program. Our example in List-
ing 1 shows all three cases. When the streams of syscalls
differ, then the two programs are semantically different.
While this means we cannot automatically tell if the dif-
ferences are meaningful, we can (a) automatically detect
deviations and (b) rewrite deviations when informed by
the user that the semantic differences are permitted. The
heart of detection and rewriting is TACHYON’s syscall
stream matching and rewriting engine.

4.1 Stream Matching
TACHYON uses a rule-based system for rewriting system
call streams during execution, designed to be employed
by a user of the tracing software to explain to the system
what behaviors it should consider equivalent. The rules
must consume a sequence of system calls by P, and pro-
duce a corresponding set of system calls for P′ to make in
order to allow for writing call results into P′ and checking
that P′ indeed matches the particular equivalence rule.

As we execute, we have two streams of tuples.
TACHYON represents the stream from P as 〈Ci,�Ii, �Oi〉,
and the stream from P′ as 〈C′

i ,�I
′
i ,
�O′

i〉. The easy case is
when the two programs are semantically equivalent by
issuing the same system calls, i.e., ∀i : Ci = C′

i ∧�Ii =�I′i .
In this case no rule is needed, and TACHYON will send
the corresponding �Oi for each�Ii to P′.

Any time the syscall input arguments do not line up,
TACHYON reports a semantic deviation. In order to per-
mit some deviations, TACHYON provides the ability to
rewrite the system call stream. The rewrite engine takes
in a set of rewriting rules f . Each rewrite rule fk is a
function which takes in 〈Ci,�Ii, �Oi〉 and 〈C′

i ,�I
′
i 〉. The rule

uses pattern matching to decide if it applies, and if so,
returns a pair of equivalent syscall streams to perform a

6

USENIX Association 	 21st USENIX Security Symposium  623

substitution with. After a match, the stream continues to
be consumed by the simulated program P′.

The overall mechanism can be used for:

• Determining roughly equivalent syscalls, e.g., many
small writes being patched to be one big rewrite.

• Ignoring syscalls, e.g., the P program issues a call
that is not needed by P′.

• Limited reordering, e.g., allowing for syscalls to be
switched.

4.2 Rewriting Rules
Each rewrite rule f takes a system call (the one made by
P) and the input to a potential system call made by P′,
and returns a substitution in the stream. The substitution
is implemented as a pair of lists, where the left list indi-
cates the syscalls consumed by the rule, and the right list
indicates the corresponding substitution produced by the
rule. The type signature for f in TACHYON is:

Syscall → SysReq → Maybe ([Syscall], [Syscall])

where the “Maybe” indicates that the rule may also re-
turn that no substitution was performed.

The rewriting rules are pure functions, which means
they have no access to outside resources like the current
syscall stream or application state. By being pure we
ensure that rewrite rules can be applied in any order. In
addition, it ensures that the rule engine itself will not con-
tinually accumulate state, i.e., while individual rewrites
may take substantial space, the space used will remain
constant in the number of system calls which have gone
through, which is vital to an online system.

During execution, the matching engine maintains a
queue of syscalls executed by the live program P. Sup-
pose the queue contains any syscall x that is not write,
but the simulated program P′ issues a write syscall.
The simplest rule is to ignore the write. This is accom-
plished by adding a write to the queue before x. When
the matching engine re-examines the queue, it will match
the still-pending write to the one in the queue, and not
report a deviation.

In TACHYON, the rule is written as:

1 i g n o r e W r i t e : : S y s c a l l
2 −> SysReq
3 −> Maybe ([S y s c a l l] , [S y s c a l l])
4 i g n o r e W r i t e x (Wr i t e 2 buf sz) =
5 Ju s t ([x] ,
6 [S y s c a l l (Wr i t e 2 buf sz) sz , x])
7 i g n o r e W r i t e = Nothing

This rule fires when line 4 is matched. This occurs
when P issues a syscall x that doesn’t match P′’s syscall
write. On line 5 the rule directs it to consume whatever

is on the stream at the moment, and replace it on line 6
with the stream of Write followed by x. This can be
thought of as “faking” the call for Write to the stream
matcher so that it does not report a deviation. On line 7,
we catch the case where our conditions are not met, and
indicate we did not modify the stream.

The simple, no-look-behind method of replaying with
this equivalence is to replay the stream normally until a
match fails. At this point, the two syscalls that failed
to match are fed into all rewrite rules, and their replace-
ment list for the original stream is checked. If there is
still more than one rewrite rule remaining, one is chosen
arbitrarily. In future work, checkpointing could be used
here to allow for the ability to rewind if the wrong re-
placement was chosen. In practice, the rules we tested
have only yielded one matching rewrite.

A more complex example is what we call write split-
ting, which occurs when a larger write in the original
program is translated into two smaller writes in the re-
played program. This is useful if the buffer size used in a
transmission was decreased during the patch, as it allows
for a roughly equivalent operation—writing one part of
the message, then the other—to be treated the same as the
original system call writing the entire message. A con-
crete example would the difference between the program
fragments:

1 −# d e f i n e CHUNK 4096
2 +# d e f i n e CHUNK 1024
3 w h i l e (buf < end) {
4 buf += w r i t e (fd , buf , min (end − buf ,

CHUNK)) ;
5 }

In the patched case here, we will see on average 4
times as many system calls, but fundamentally, the same
thing is happening. A rewriting rule for write splitting
says that a sequence of previous writes can be used to fill
on big write request:

1 w r i t e S p l i t : : S y s c a l l
2 −> SysReq
3 −> Maybe ([S y s c a l l] , [S y s c a l l])
4 w r i t e S p l i t (S y s c a l l (Wr i t e fd buf sz0) sz)

−−s z i s r e t u r n s i z e
5 (Wr i t e fd ’ buf ’ sz ’)
6 | (fd == fd ’)
7 && (sz ’ < sz)
8 && ((take sz ’ buf) == buf ’)
9 = Jus t ([S y s c a l l (Wr i t e fd buf sz0) sz] ,

10 [S y s c a l l (Wr i t e fd ’ buf ’ sz ’) sz ’ ,
11 S y s c a l l (Wr i t e fd ’ (drop sz ’ buf)
12 (sz0 − sz ’))
13 (sz − sz ’))
14 w r i t e S p l i t = Nothing

7

624  21st USENIX Security Symposium	 USENIX Association

This rule states that if we have a write call in the orig-
inal stream, and the replayed program is trying to make
a non-matching write call, but it matches on the file de-
scriptor, and has a smaller size, and the write it is trying
to make is a prefix of the original write, then we can re-
place the original write with two smaller writes, the first
of which is the target write, and the second of which is
set up to represent the rest of the write.

In line 6, we do a sanity check that the file descrip-
tors we are writing to are the same, followed by a similar
check in line 7 that the request from P′ has a smaller size
than the original form P. Finally, in line 8 we make sure
that what is trying to be written is a prefix of the appropri-
ate length of the original write. Given these conditions,
we know that we can provide a replacement rule which
will allow the trace to proceed. In line 9, it tells its caller
to consume the most recent call, asserting that it matches
the call passed into us. In line 10, we see the first call that
is going to end up on the new stream, which matches the
input vector we’ve received from P′, and so will allow the
trace to continue. In the 11,12, and 13, the function re-
turns an additional item for the system call stream, which
represents the rest of the write that has been split. In 14,
we catch the case where we don’t apply, and simply re-
turn no pattern.

5 Architecture

TACHYON is built to target Linux for the x86-64 architec-
ture via the ptrace call, written in Haskell. An abstrac-
tion barrier is in place around ptrace, to ensure the
technique’s generality and portability to other systems
with similarly powered tracing libraries. Haskell was
chosen for abstract data type support, multi-OS portabil-
ity, relative speed, and a monadic abstraction layer that
proved useful for our tracing environment.

ptrace TACHYON uses the ptrace system call to
accomplish system interposition. Use of ptrace starts
with initialization, in which options are set and the re-
mote process either volunteers itself for tracing, or is
traced via a command to attach to its pid. Then, wait
and wait4 are used in an event loop to get status infor-
mation about processes (which are paused when gener-
ating one of these messages) and are then resumed at a
later time.

The wakeup and sleep powers are implemented by se-
lectively choosing to not resume or resume threads at
system call boundaries. While this only enables us to
support putting the currently running thread to sleep, we
never needed to stop any thread for which we were not
currently processing an event.

Trace Abstraction. The trace abstraction layer is de-
signed to expose only primitives we believe to be con-
structible on all platforms for portability purposes. Ad-
ditionally, the interface was higher level than the tracing
interface directly available on most platforms, enabling
easier authoring of the code. Fundamentally, a handler
is provided for events which the tracing interface detects
and sends back. The potential events currently supported
are pre/post syscall, and process split. Available to the
callback is the ability to put threads to sleep, wake them
up, read and write registers, and read or write memory in
the target process.

Multithreading tolerance. Up until now, we have
considered only programs using one thread. However,
many modern programs use multiple threads in their nor-
mal operation. For example, curl in § 6 uses them dur-
ing DNS lookup.

To deal with threads, TACHYON employs techniques
inspired by the field of deterministic multithreading
(DMT)[2, 3, 15]. A DMT mechanism is one that makes a
program insensitive to the scheduler as an input. That is,
given the same inputs other than kernel scheduler action,
it will yield the same outputs.

In TACHYON, we enforce an ordering over system call
events. We differentiate from a mismatched system call
in need of rewriting and a thread being early or late by
choosing to block the thread if the thread IDs on the
syscalls don’t match, and invoke the rewrite engine if
they do match, but the system calls don’t. This forms a
looser notion of consistency than is used in regular DMT,
but is sufficient for our purposes. However, applying a
real DMT system in addition to our techniques would
likely yield an even more robust treatment of threading
able to deal with shared memory data transfers and other
such intricacies, as we discuss in § 8.

Special Syscalls. While in general the simulated ap-
plication P′ uses the effects of syscalls from the live P,
TACHYON does have a few exceptions. The exceptions
occur when a syscall result from P cannot be emulated in
P′. This usually occurs when there is something which
is part of the thread life cycle or virtual memory system,
which are not facilities that can be directly accessed by
TACHYON. Luckily, there are only a limited number of
cases.

The first is sbrk(), which is the syscall responsible
for dynamic memory allocation. Luckily, this particu-
lar call can be passed through, as it does not modify OS
state, it only serves to modify the process’s VM system.

When a clone() occurs, we match input arguments
like any other system call, and then allow it through.
ptrace feeds us an event notifying us as soon as the
new thread exists, and pauses that thread before it can do

8

USENIX Association 	 21st USENIX Security Symposium  625

anything so that we can attach to it. This event is also part
of the synchronized system call stream. TACHYON then
registers that new thread and its pair between emulated
tid and real tid, and proceeds with normal operation.

The exit group() system call works like any
other, except that it acts as an end-of trace marker. We
currently only accept full application exit, in which all
threads are simultaneously terminated, but there is no
reason our techniques could not be extended to individ-
ual thread destruction.

The most complicated is mmap(), which maps a file
or device into memory. Our implementation depends
upon the operations performed on the region. The read-
/write case would be extremely expensive to monitor, as
all writes are effects, so we would have to interpose on
every memory write to that page, and so this case is disal-
lowed entirely. It might be possible to deal with writable
mapped files or shared regions shared outside the pro-
gram, using page faults and slow execution, or some
form of snapshot trick. We leave this as future work.

In the read only case however, the translation is
straightforward. Rather than issuing the mapping as re-
quested, we instead simply ask for a private mapping
of the same size this thread received during recording,
and fill that buffer with the contents that memory con-
tained after the initial map. Private mappings of anony-
mous memory are also easy to support, and are be simply
passed through. Finally, in the case of shared memory,
we can allow it if it is both anonymous and our multi-
threading system is in place. This could be extended to
allow for non-anonymous shared memory by spawning
fake file descriptors to the region, but is left as future
work.

Other system calls for which we would need to add
special implementation to allow them to be serviced by
the kernel, but still safely matched include munmap,
mprotect, fork, sigaction, sigreturn, and
exit. These were unneeded for our test cases and were
not implemented.

6 Evaluation

We have evaluated TACHYON with respect to three main
questions. First, can TACHYON detect deviations where
the patched program is semantically different than the
unpatched, and how hard is it to write rules to ignore de-
viations that do not matter? Second, what is the perfor-
mance factors for TACHYON, including best and worst
case settings? Third, what is the performance on real
programs? In this section, we describe our results.

Program Issue ID Description

cURL CVE-2011-2192 Improper key delegation

mplayer EDB-ID 11792 Table index out of bounds

php5 CVE-2012-0832 Bad Argument handling

php5 CVE-2011-1938 Buffer Overflow

ncompress CVE-2001-1413 Buffer overflow

htget CVE-2004-0852 Buffer overflow

gs CVE-2010-1869 Buffer Overflow

glftpd EDB-ID-476 Buffer Overflow

socat CVE-2004-1484 Format String

corehttp CVE-2009-3586 Off-by-one Buffer

Figure 4: Successfully Detected Deviations for Security
Patches

6.1 Detecting Deviations
To test the effectiveness of TACHYON, we used it on
real patches to detect known deviations. The patches
we tested are shown in Figure 4. In this experiment, we
tested the program on normal inputs, and verified that
TACHYON did not report a deviation. We then tested on
inputs that triggered known deviations, e.g., exploits in
the original program or bugs in the patch.

For cURL, the patched vulnerability was an informa-
tion disclosure bug. In the unpatched version, Kerberos
credentials were (accidentally) forwarded instead of just
a proof the user was authorized. We verified that the un-
patched program would send credentials, and the patched
program did not. In order to test the patch and allow nor-
mal operation of safe inputs, we had to write two rules
for cURL that totaled 11 lines. The rules were necessary
because cURL added a non-security feature that affected
file descriptors in their patch.

CVE-2011-4885 addresses a problem in PHP where
hash collisions are easy to find, which can be used to
launch a remote denial of service attack. TACHYON re-
quired no rewrite rules to run the patch on safe inputs.
The patch, however, broke the argument handling for ar-
rays after loading many arguments. CVE-2012-083 ad-
dressed this problem. For CVE-2012-083, we again re-
quired no rewrite rules for safe inputs.

CVE-2011-4885 and CVE-2012-0832 demonstrate
a patch that is broken, and provide motivation for
TACHYON. Since CVE-2011-4885 fixed a purported vul-
nerability, it should be applied immediately. However,
after applying CVE-2011-4885, a new vulnerability is in-
troduced. TACHYON detects those new exploits as devi-
ations immediately. In particular, we checked exploits
(addressed in CVE-2012-0832) that were unknown in

9

626  21st USENIX Security Symposium	 USENIX Association

2011, and verified that they caused detected deviations.
Thus, if an administrator had been running TACHYON,
and immediately applied the patch, they would detect ex-
ploits immediately against the vulnerability introduced.

The EDB-ID 11792, CVE-2001-1412, and CVE-
2004-0852 all patch typical security bugs by adding in-
line checks. These checks did not change the system call
pattern or arguments, thus no rules were needed for patch
testing.

For CVE-2010-1869, gs’s memory problems required
a rewrite rule to admit additional or skipped calls to brk.
8 lines were required for these rewrite rules. Three lines
were required for EDB-ID-476 to allow for rewriting of
the format of a usage message. Four were required to
deal with the new lstats in the patch for CVE-2009-
3586.

6.2 False Positive Testing
To show that TACHYON is fairly precise, we tested it on
the most recent 207 patches to coreutils. (The number
207 was chosen because that was how far backwards
we could go easily with an automated building system.)
From this, we found that in 18 cases out of 1656 exe-
cutions, a deviation was reported, or TACHYON crashed.
Looking at the output, 16 of these were TACHYON bugs,
but are not systematic, so that re-running the test pro-
duced correct results. 2 of these were actual deviations.
In the first, a call to fadvise() was introduced into
cp. An equivalence can be reached with a one-line
rewrite rule. In the second, a buffer size was changed.
The read/write splitting/coalescing rules described ear-
lier in this paper allow an equivalence to be reached.
Overall, this indicates that while TACHYON is not per-
fectly bug free, it never reported a deviation when one
had not happened, and deviations that should be accept-
able could be easily expressed in the rule system.

We also ran TACHYON on patches for two common
utilities with no known vulnerabilities: /bin/ls and
/bin/cat, and used them interactively. In the one
month testing period, TACHYON was able to use tan-
dem execution on these utilities for normal day-to-day
use with no perceived slowdown. Further, TACHYON re-
ported no deviations (i.e., had no false positives).

6.3 Micro-benchmarks
TACHYON has three main sources of overhead: our ap-
proach to syscall interposition, transferring bytes from
the source to the sync application, and running both P′

and P in tandem. Overall we measured a linear overhead
for both data transfer and system calls, and 0% of CPU
time, as detailed below.

Syscall interposition overhead. TACHYON is a user-
space system call interposition scheme, which imposes
additional context switches but provides for a clean sep-
aration of interposition, kernel, and user-space applica-
tion. Our user-space interposition has 4 context switches
per call issued by the live application P. For each syscall
in P, TACHYON context switches from P to the kernel,
from the kernel to TACHYON, from TACHYON back to
the kernel, and finally back to P. Normal operation only
has two context switches: from user to kernel space, and
back again.

In order to test the effect of these two extra switches,
we wrote a simple program that executed getpid() in
a tight loop. We were sure to call the system call di-
rectly, as the standard version of getpid() in C actu-
ally caches its result.

Data copy overhead. TACHYON needs to copy the out-
put data from P to P′. A first naive implementation actu-
ally incurred 6 copies. TACHYON originally copied out-
put data from P into TACHYON for syscall rewriting, and
then copied it to P′. Each copy between systems was ac-
tually two copies: one from the user-space into kernel
space, and one from kernel-space into user-space. This
lead to a huge slowdown in early benchmarks (over 6x).
To reduce this, we added the ability to the Linux kernel to
map a remote process’s memory via /proc/pid/mem
under most situations, making the normal case of reading
from the remote process only have one copy.

In Figure 5, we see the overhead is in a linear relation-
ship. The overhead here is the total overhead time for
the system. While they make a difference for small data
transfers, they are rapidly dominated. This can be seen
by the rapid transition to a tight grouping around a linear
relationship.

In Figure 6, we again observe a nice linear relation-
ship, showing no residual effects on performance from
processing a system call. It shows that it takes less than
a second of overhead to process 60,000 syscalls.

When varying the CPU load of the traced program,
no noticeable difference in execution time was noticed,
as we do not intercept regular computation, only system
calls.

Given this, if it is known how many system calls are
used, how much data is being transferred, and how much
time is being spent on the CPU, we can model how long
a given workload would take under our tracer. TACHYON
previously incurred a large number of copies and control
transfers to move buffers around in comparison with the
register fetching it does for simple system calls, and the
remote memory fetch path is not optimized in the OS.
However, a kernel patch allowing for mmap to be used
on the special file /proc/pid/mem considerably ame-
liorate this, resulting in the new statistics above.

10

USENIX Association 	 21st USENIX Security Symposium  627

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 2000 4000 6000 8000 10000 12000

Ov
er

he
ad

 (s
ec

on
ds

)

Data Transferred (4 KB Chunks)

Data Transfer Overhead

Transfer Overhead
Least Squares Fit

Figure 5: Data Transfer Overhead

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60

Ov
er

he
ad

 (s
ec

on
ds

)

Thousands of System Calls

Syscall Overhead

System Call Overhead
Least Squares Fit

Figure 6: Syscall Overhead

Tandem execution CPU time. The final source of
overhead is in CPU operations. Since TACHYON sleeps
when system calls are not being issued, it does not slow
down applications that are CPU-intensive. This is a
significant advantage over instruction-level interposition
tools such as Pin [16] and Valgrind [21], which typically
suffer at least several times overhead.

However, we are running both P′ and P. We verified
that TACHYON can utilize independent cores to run both
programs with no additional overhead (other than the
memory transfer and syscall overhead measured above).
Thus, we conclude that TACHYON can utilize multi-core
to test patches.

Efficiency on real programs. To test the efficiency
of TACHYON interposition, we measured its tandem ex-
ecution against strace and gdb’s reverse execution.
strace is a tool built on top of ptrace used to mon-
itor system calls. gdb allows programs to back-step
through operations.1 Note these tools have different
goals than TACHYON; we only use them to evaluate per-
formance.
gdb’s replay mechanism derived from its reversible

debugging support. However, it proved wholly unsuit-
able for regions of more than a few instructions. Due to
a lack of SSE support, memcpy would be improperly re-
wound and replayed. Additionally, even then the record-
ing overhead was more than 100x native execution, and
built up a huge memory data structure, making it imprac-
tical to benchmark.

The results compared to strace are shown in Fig-
ure 7. Overall, TACHYON was faster, sometimes by
a large margin, than a comparable syscall interposition
scheme. This is partially because TACHYON can and
does process some of its overhead while the traced pro-
gram is doing work, but mostly due to the massively

1We were unable to test against what is likely the most similar sys-
tem, R2 [11], as it is both Windows only and requires build-time sup-
port (as well as not being public).

Program Load TACHYON strace

compress 32M Random 1.41 19.78

primegaps First 35 1.00 1.00

mencoder h264 1.07 1.12

Figure 7: Tracing Performance (relative to native execu-
tion)

improved facility for retrieving remote memory via our
patch to mmap /proc/pid/mem.

Web Server Tests. We also tested the throughput
of lighttpd and thttpd when monitored under
TACHYON. In this test, we use ApacheBench (ab) config-
ured to make 1000 requests in two threads, downloading
4096 byte web page. We ran the experiment in two sce-
narios: on localhost and across the Internet.

In the network experiment, the web servers ran at one
university, and requests were made from another univer-
sity on the opposite US coast. There was no detectable
degradation for thttpd, and only about a 30% slow-
down for lighttpd. Essentially, what this shows is
that while the system does not deal well with applica-
tions whose progress is primarily based on the rate at
which they can issue system calls, when we move closer
to a real deployment, applications do not tend to have
that as their primary limiting factor.

In the second experiment, we ran ab on localhost. This
is a worst-case test because both web servers spin in a
tight loop on a syscall (lighttpd spins on epoll,
and thttpd on poll). This creates a pathological case
for TACHYON, because the application spends most of
its time neither doing IO, nor doing computation, but in-
stead spends most of its time moving across the system
call barrier.

TACHYON took 8.9 times longer on lighttpd

11

628  21st USENIX Security Symposium	 USENIX Association

(throughput decreased to 10% of original values) and
14.2 times longer on thttpd (throughput decreased to
7% of original values).

To round things out, we also ran a test over a few hops
on the local network. As expected, intermediate results
were measured to be between the two, with 1.17 times
untraced completion to complete the test with thttpd,
and 3.72 times untraced completion to complete the test
with lighttpd.

With a more real network (or a more complicated we-
bapp), we can see the slowdown is lessened. With a real
network, epoll will spend more time waiting, dimin-
ishing the perceived effects.

7 Discussion

Other Patch Testing Scenarios. While throughout
this paper we have focused on online patch testing where
the patched version is run live, we could also run the
unpatched version live. We note that the live program
can continue executing after a deviation, but currently
the syscall sync application cannot. Thus, by running the
patched live, we are assuming that after a deviation the
right thing is to continue executing the patched version.
However, by running the unpatched version live, we can
check for incompatibilities while allowing for the origi-
nal program to continue executing after a deviation.

Honeypots. TACHYON can also be used as a type of
lightweight honeypot. Let P be a patch for a security
vulnerability, and P′ be the vulnerable program. Observe
that P and P′ differ on exploits by definition. By running
P and P′ in-tandem, TACHYON will report a deviation on
attacks.

A clever approach to running a honeypot is to run P as
the live program, with P′ as the sync. In this setting an
attacker only seeing the buggy program. TACHYON will
report attacks, e.g., by logging a deviation when shell-
code tries to execute /bin/sh. However, the system is
safe from a real compromise because TACHYON can be
configured to abort execution after the deviation.

Debugging. One of the most difficult to debug classes
of bugs is commonly known as heisenbugs. These are
bugs which will seemingly randomly occur or not occur
with all of the inputs the programmer knows about held
constant. These traces, and the associated replay mech-
anism, provide a way to step through the program in a
completely deterministic way, so that once a heisenbug
has been caught with tracing on, it has been captured and
the sequence leading to it can be carefully explored and
debugged. As we capture all inputs, this also makes it
possible for the programmer to debug a crash that took

place on another machine, without having to try to repli-
cate the OS state to reproduce the crash.

Efficiency. Recall TACHYON uses user-land syscall in-
terposition, and has our approach to syscall interposition
as its primary source of overhead Currently, interposing
on each system call on the live program requires 4 con-
text switches. TACHYON context switches from P to the
kernel, from the kernel to TACHYON, from TACHYON
back to the kernel, and finally back to P. Normal op-
eration only has two context switches: from user to ker-
nel space, and back again. A kernel-space interposition
scheme would also have only two switches.

Recall from § 6 the overhead from copying data is al-
most linear in the amount data transferred between P and
P′. A basic in-kernel approach would still have a linear
overhead (since data has to be copied into both virtual
memory spaces), but likely with a smaller constant fac-
tor.

Our user-land approach was chosen because it offers a
clean separation of functionality, isn’t kernel dependent,
and offers an easier development environment. Moving
the system call interposition into the kernel would not
have these advantages, but would likely improve perfor-
mance. We leave further study of in-kernel tandem exe-
cution schemes as future work.

8 Limitations and Future Work

TACHYON could be extended to provide better deter-
minism for shared memory. At the moment, because
TACHYON does not schedule individual memory opera-
tions, multithreaded programs which have concurrency
bugs could run differently under TACHYON. (Non-
concurrency bugs are not a problem.) One approach
would be to incorporate recent advances in DMT, e.g.,
[2, 3, 8, 15] into TACHYON. This would also allow for
effectful shared memory.

TACHYON currently does not support virtual
dynamically-linked shared objects (vDSO), a sec-
tion of kernel memory mapped into the user-space
process to allow for more efficient calls. Unfortunately,
some system calls made through a vDSO do not trigger
the ptrace trap. However, vDSOs are known to
provide increased efficiency, so being able to trap that
interface could be an improvement, and limit host
system modification.

9 Related Work

Our approach is motivated by existing replay systems. At
a high level, previous work in this area has focused on
system call replay (e.g., [11, 22]), virtual-machine level

12

USENIX Association 	 21st USENIX Security Symposium  629

replay (e.g., [12, 17, 24]), and instruction-level replay
schemes (e.g., [1, 10, 22]). These systems address the
related but different problem of replay against the same
binary, e.g., for debugging, while we want to replay to a
different binary for patch testing.

Delta Execution [23] uses a similar insight to us for
testing, namely that patches tend to change very little,
and the majority of the program should remain the same.
To accomplish this, they structure execution so that it
splits every place in which the patch modified the code,
and attempts to merge the execution afterwards, check-
ing that the overall state change during the split matched
appropriately. Their approach has the additional advan-
tage of avoiding duplicate computation. TACHYON dif-
ferentiates itself from this work primarily in its general-
ity; specifically, it works at a binary-only level, it allows
matching global effects (e.g. heap changes and IO), can
be configured to allow specific non-matching global ef-
fects, and allows for structure size changing. Fundamen-
tally, Delta Execution attacks the problem at the level of
matching internal state, while TACHYON attacks it from
the point of view of observational equivalence from the
outside world.

Where Delta Execution places their consistency level
inside the application state, which is more specific than
us, Capo [20] attacks it from the point of what signals are
coming into and going out of the computer. This wins
them several benefits, namely the ability to deal with
fewer effects and a lesser need for a rewrite or match-
ing system (for example, coalescing or splitting reads or
writes is free). Unfortunately, this system also needs spe-
cialized hardware and in-kernel code to operate. While
we have used kernel code to accelerate TACHYON under
Linux, it is not required or fundamental to the technique.

Like TACHYON, R2 [11] designed a type system to
express all side-effects, but for the purpose of describ-
ing intercepted APIs at the source level. R2 [11] dif-
fers from TACHYON in that it targets developers, inter-
poses at the function level (thus requires source), and
replays recorded syscalls against the same binary. Al-
though the problem setting is different, there are numer-
ous good ideas that could be borrowed for live replay if
source was available. For example, R2 proposed analyz-
ing the call graph to find efficient cut points at which to
perform interposition, while we always interpose at ev-
ery syscall. Unfortunately, we at the binary only level
cannot easily prove that a set of interposition points form
a complete cut. Additionally, R2’s annotation language
is actually too powerful, and allows for the expression
of types that we cannot appropriately interact with at
a binary-only level without compile-time assistance, as
it allowed for the computation of arbitrary expressions.
We instead limited ourself to navigating trees of point-
ers, which turns out to be sufficient for the vast majority

of system calls.
We record system calls and discover divergences when

system call requests do not line up. Another approach
would be to perform replay at the instruction level, which
would be useful for pinpointing the first point of diver-
gence. This could be done by augmenting instruction-
level replay systems like PinPlay [22], and gdb[10] 7.0
and above to take into account differences in memory
layout. In undodb [1], memory snapshots and individ-
ually optimized system calls are used to accomplish re-
verse execution.

Alternatively, one could utilize VM playback mech-
anisms [9, 12, 24] to simulate patches at the whole-
machine level. However, testing then requires accurately
replaying very low level events. We chose system calls
over instruction level or whole-machine level because
system call interposition is significantly cheaper, thus
more amenable to end-user deployment scenarios. Addi-
tionally, rewriting system calls is much more reasonable
than rewriting low level events.

Another recent idea in interacting with multiple pro-
grams which should meet the same specification, simi-
lar to our patched and unpatched pair, is the idea of N-
Variant systems [7]. It intends to increase reliability by
forcing any exploit or otherwise bad input sent as input
to cause the same bad effect in other versions of the soft-
ware in order to actually occur. There are some similari-
ties here, but our techniques are aimed at fundamentally
differing process images, while theirs are aimed at the
same underlying code put together in different ways.

Our system does not find new inputs for patch testing.
While we assume live or recorded inputs, one could re-
play both systems on automatically generated inputs as
well. For example, we could use test cases produced by
automated systems such as KLEE [6], BitBlaze [4], and
BAP [13].

Brumley et al. have previously proposed deviation de-
tection at the binary level [5]. The main goal in this work
is to automatically generate likely deviations, which is a
different problem than tandem execution. Once a candi-
date deviation is generated, the deviation was manually
validated (Section 3.3 [5]). Our approach could be used
to validate deviations automatically at the syscall level.

10 Conclusion

In this paper, we presented TACHYON, a system for test-
ing binary-only patches on real inputs in a live sys-
tem. We have demonstrated an efficient way to de-
scribe interface boundaries on C-style declarations using
a lightweight dependent type system. Our experiments
show TACHYON is able to automatically detect deviations
on real programs. We also suggest our techniques may
apply to other problem domains, such as honeypots.

630  21st USENIX Security Symposium	 USENIX Association

References
[1] undodb. http://undo-software.com, Nov. 2011.

[2] AVIRAM, A., WENG, S.-C., HU, S., AND FORD, B. Efficient
system-enforced deterministic parallelism. In Proceedings of the
9th USENIX conference on Operating systems design and imple-
mentation (Berkeley, CA, USA, 2010), OSDI’10, USENIX As-
sociation, pp. 1–16.

[3] BERGAN, T., ANDERSON, O., DEVIETTI, J., CEZE, L., AND
GROSSMAN, D. Coredet: a compiler and runtime system for de-
terministic multithreaded execution. SIGARCH Comput. Archit.
News 38 (March 2010), 53–64.

[4] BitBlaze binary analysis project. http://bitblaze.cs.
berkeley.edu, 2007.

[5] BRUMLEY, D., CABALLERO, J., LIANG, Z., NEWSOME, J.,
AND SONG, D. Towards automatic discovery of deviations in
binary implementations with applications to error detection and
fingerprint generation. In Proceedings of the USENIX Security
Symposium (Boston, MA, Aug. 2007).

[6] CADAR, C., DUNBAR, D., AND ENGLER, D. Klee: Unassisted
and automatic generation of high-coverage tests for complex sys-
tems programs. In Proceedings of the USENIX Symposium on
Operating System Design and Implementation (2008).

[7] COX, B., EVANS, D., FILIPI, A., ROWANHILL, J., AND HU, W.
N-variant systems: A secretless framework for security through
diversity. In USENIX Security Symposium (2006), no. August,
pp. 1–16.

[8] CUI, H., WU, J., GALLAGHER, J., GUO, H., AND YANG, J. Ef-
ficient deterministic multithreading through schedule relaxation.
In Proceedings of the Twenty-Third ACM Symposium on Operat-
ing Systems Principles (New York, NY, USA, 2011), SOSP ’11,
ACM, pp. 337–351.

[9] DUNLAP, G. W., KING, S. T., CINAR, S., BASRAI, M. A., AND
CHEN, P. M. Revirt: Enabling intrusion analysis through virtual-
machine logging and replay. In In Proceedings of the 2002 Sym-
posium on Operating Systems Design and Implementation (OSDI
(2002), pp. 211–224.

[10] FSF. Documentation for GDB, 7.3.1 ed., Sept. 2011.

[11] GUO, Z., WANG, X., TANG, J., LIU, X., XU, Z., WU, M.,
KAASHOEK, M. F., AND ZHANG, Z. R2: An application-level
kernel for record and replay. In OSDI (2008), pp. 193–208.

[12] HERROD, S. The amazing vm record/replay feature in vmware
workstation 6. http://communities.vmware.com/
community/vmtn/cto/steve/blog/2007/04/18/
the-amazing-vm-recordreplay-feature-in-
vmware-workstation-6, Apr. 2007.

[13] JAGER, I., AVGERINOS, T., SCHWARTZ, E., AND BRUMLEY,
D. BAP: A binary analysis platform. In Proceedings of the Con-
ference on Computer Aided Verification (2011).

[14] LANE, B. A. The USAF standard desktop configuration (SDC).
download.microsoft.com, June 2007.

[15] LIU, T., CURTSINGER, C., AND BERGER, E. D. Dthreads: effi-
cient deterministic multithreading. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2011), SOSP ’11, ACM, pp. 327–336.

[16] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD,
K. Pin: Building customized program analysis tools with dy-
namic instrumentation. In Proceedings of the ACM Conference
on Programming Language Design and Implementation (June
2005).

[17] MAGNUSSON, P. S., CHRISTENSSON, M., ESKILSON, J.,
FORSGREN, D., HÅLLBERG, G., HÖGBERG, J., LARSSON, F.,
MOESTEDT, A., AND WERNER, B. Simics: A full system sim-
ulation platform. Computer 35 (February 2002), 50–58.

[18] MELL, P., BERGERON, T., AND HENNING, D. Creating a Patch
and Vulnerability Management Program. National Institution of
Standards and Technology, Nov. 2005.

[19] MICROSOFT. Microsoft security intelligence report vol. 11. Tech.
rep., Microsoft, 2011.

[20] MONTESINOS, P., HICKS, M., KING, S. T., AND TORRELLAS,
J. Capo. ACM SIGPLAN Notices 44, 3 (Feb. 2009), 73.

[21] NETHERCOTE, N., AND SEWARD, J. Valgrind: A program su-
pervision framework. In Proceedings of the Third Workshop on
Runtime Verification (Boulder, Colorado, USA, July 2003).

[22] PATIL, H., PEREIRA, C., STALLCUP, M., LUECK, G., AND
COWNIE, J. Pinplay: a framework for deterministic replay and
reproducible analysis of parallel programs. In Proceedings of the
8th annual IEEE/ACM international symposium on Code gener-
ation and optimization (New York, NY, USA, 2010), CGO ’10,
ACM, pp. 2–11.

[23] TUCEK, J., XIONG, W., AND ZHOU, Y. Efficient online vali-
dation with delta execution. ACM SIGPLAN Notices 44, 3 (Feb.
2009), 193.

[24] XU, M., MALYUGIN, V., SHELDON, J., VENKITACHALAM,
G., WEISSMAN, B., AND INC, V. Retrace: Collecting execution
trace with virtual machine deterministic replay. In In Proceed-
ings of the 3rd Annual Workshop on Modeling, Benchmarking
and Simulation, MoBS (2007).

14

USENIX Association 	 21st USENIX Security Symposium  631

Privacy-Preserving Social Plugins

Georgios Kontaxis,† Michalis Polychronakis,† Angelos D. Keromytis,† Evangelos P. Markatos*

†Columbia University, *FORTH-ICS

{kontaxis,mikepo,angelos}@cs.columbia.edu, markatos@ics.forth.gr

Abstract

The widespread adoption of social plugins, such as Face-

book’s Like and Google’s +1 buttons, has raised con-

cerns about their implications to user privacy, as they en-

able social networking services to track a growing part of

their members’ browsing activity. Existing mitigations in

the form of browser extensions can prevent social plugins

from tracking user visits, but inevitably disable any kind

of content personalization, ruining the user experience.

In this paper we propose a novel design for privacy-

preserving social plugins that decouples the retrieval of

user-specific content from the loading of a social plugin.

In contrast to existing solutions, this design preserves the

functionality of existing social plugins by delivering the

same personalized content, while it protects user privacy

by avoiding the transmission of user-identifying infor-

mation at load time. We have implemented our design

in SafeButton, an add-on for Firefox that fully supports

seven out of the nine social plugins currently provided by

Facebook, including the Like button, and partially due to

API restrictions the other two. As privacy-preserving so-

cial plugins maintain the functionality of existing social

plugins, we envisage that they could be adopted by social

networking services themselves for the benefit of their

members. To that end, we also present a pure JavaScript

design that can be offered transparently as a service with-

out the need to install any browser add-ons.

1 Introduction

Social plugins enable third-party websites to offer per-

sonalized content by leveraging the social graph, and al-

low their visitors to seamlessly share, comment, and in-

teract with their social circles [12]. For example, Face-

book’s Like button, probably the most widely deployed

social plugin [33], enables users to leave positive feed-

back for the web page in which it has been embedded,

share the page with their social circle, and view their

like-minded friends. Google’s “+1” button [16] offers al-

most identical features to the Like button, while similar

widgets are also available from other popular social net-

working services (SNSs) such as Twitter and LinkedIn.

Social plugins offer multifaceted benefits to both con-

tent providers and members of SNSs, a fact that is re-

flected by the tremendous growth in their adoption. In-

dicatively, as of June 2012, more than two million web-

sites have incorporated some of Facebook’s social plu-

gins, while more than 35% of the top 10,000 websites

include Like buttons—a percentage three times higher

than just one year ago [33]. Unfortunately, as the num-

ber of websites that incorporate social plugins increases,

so does the portion of their visitor’s browsing history that

gets exposed.

To personalize the content of third-party web pages,

social plugins connect to the SNS and transmit a unique

user identifier—usually contained in an HTTP cookie—

along with the URL of the visited page. Consequently,

the SNS receives detailed information about every visit

of its members to any page with embedded social plu-

gins. Considering the increasing adoption rate of so-

cial plugins, a constantly growing part of its members’

browsing history can be precisely tracked.

More importantly, the cookies used in social plugins

are linked to user profiles that typically contain the per-

son’s name, email address, and other private information.

Although third-party tracking cookies as used by adver-

tising networks and traffic analytics services also aim to

track the pages visited by a specific user [43], in essence

they track the pages opened using a particular browser

instance running on a device with a given IP address.

While this can already be considered as personally iden-

tifying information to some extent, in addition to that in-

formation, social plugins reveal much more: the brows-

ing history of individuals.

The important implications of social plugins to user

privacy were identified soon after their release [34, 54],

and concerns have been intensifying [34, 37]. As avoid-

632  21st USENIX Security Symposium	 USENIX Association

ing becoming a member of any SNS is often rather

difficult (even users that are not interested in the so-

cial aspects of a service can be affected, e.g., Gmail

users can still be tracked through Google’s “+1” buttons),

privacy-conscious users can resort to browser extensions

that block user-identifying information from reaching the

SNS through social plugins [27, 15, 7, 4, 28, 45].

Depending on the subtlety of their approach, ranging

from stripping cookies and headers from the plugin’s re-

quests to preventing the plugin from loading, some or

none of its user interaction functionality may be pre-

served. However, as user-identifying information never

reaches the SNS, all these solutions completely disable

any kind of content personalization. As an example, for

a Like button, even logged in members will be viewing

just the total number of “likes” for the page (Fig. 1a), in-

stead of the names and pictures of their friends who have

liked the page (Fig. 1c).

We believe that the majority of users are not even

aware of the privacy issues stemming from the preva-

lence of social plugins. For this reason, we argue that

any solution can be effective only if it can be deployed

by SNSs themselves, so as to protect all users without

requiring any action on their behalf. Crucially, content

personalization and user interaction are two key features

of existing social plugins. Any solution that lacks either

of them, or introduces even a slight compromise in user

experience, is not likely to be adopted by SNSs.

Driven by these two observations, in this paper we pro-

pose a novel design for privacy-preserving social plu-

gins, which fulfills two seemingly contradicting goals:

it protects user privacy by avoiding the transmission of

user-identifying information at load time, while it offers

identical functionality to existing social plugins by pro-

viding the same personalized content. The main idea is

to decouple the retrieval of private information from the

loading of a social plugin by prefetching all data from

the user’s social circle that might be needed in the con-

text of a social plugin. Any missing non-private data is

retrieved on demand without revealing the identity of the

user to the SNS. Local (private) and server-side (public)

data are then combined to render a pixel-by-pixel identi-

cal version of the same personalized content that would

have been rendered by existing social plugins.

To demonstrate the feasibility of our design, we have

implemented SafeButton, an add-on for Firefox that pro-

vides privacy-preserving versions of existing social plu-

gins, as they are provided by the major SNSs. Based

on our experimental evaluation, the local disk space con-

sumed by SafeButton for storing the private data required

for handling the nine different social plugins currently

provided by Facebook is in the order of a few megabytes

for typical users, and 145MB for the extreme case of a

user with 5,000 friends. At the same time, due to re-

Figure 1: Different states of Facebook’s Like button for

a user that (a) has never logged in on Facebook from this

particular browser or is not a member of Facebook at all,

(b) has previously logged in but is currently logged out,

(c) is currently logged in (personalized view).

duced network overhead, SafeButton renders social plu-

gins 64% faster compared to their original versions. Our

design can be readily adopted by existing SNSs, and be

offered transparently as a service to their members with-

out the need to install any additional software.

Our work makes the following main contributions:

• We propose a novel design for privacy-preserving

social plugins that i) prevents the SNS from track-

ing its members’ browsing activities, and ii) pro-

vides the same functionality as existing social plug-

ins with no compromises in content personalization.

• We have implemented SafeButton, a Firefox exten-

sion that currently provides privacy-preserving ver-

sions of Facebook’s social plugins.

• We evaluate our implementation and demonstrate

the feasibility of the proposed design in terms of

functionality, effectiveness, and performance.

• We describe in detail a pure JavaScript implemen-

tation of our design that can be offered by existing

SNSs as a transparent service to their members.

2 User Tracking through Social Plugins

2.1 Social Plugins

Social plugins are provided by the major social network-

ing services in the form of “widgets” that can be embed-

ded in any web page, usually in the form of an IFRAME

element. After downloading the page, the browser is-

sues a subsequent request to fetch and load the content

of the plugin, as shown in Fig. 2 (step 2). The domain

that serves the social plugins is the same as the one that

hosts the SNS itself, and thus any state that the browser

maintains for the SNS in the form of HTTP cookies [17]

is transmitted along with the request for the social plugin.

Assuming the user has an active session with the SNS,

the site will associate the request with the user’s profile,

USENIX Association 	 21st USENIX Security Symposium  633

Figure 2: Loading phase of social plugins. After a page

is fetched (1), the browser loads the IFRAME of the so-

cial plugin (2). If the user is logged in on the SNS,

the plugin receives and displays personalized informa-

tion (3). Users are identified (and can be tracked) through

the HTTP cookies included in the request.

and respond with personalized content tailored to that

particular user and visited web page (step 3 in Fig. 2).

Otherwise, if the user has not logged in on the SNS from

that particular browser before, or has never registered at

all, the social plugin will display only generic, publicly

accessible information for that page.

For instance, Fig. 1 shows the different modes of

the Like button depending on the browser’s cookies for

facebook.com. If a user does not have an account or has

not logged in on Facebook using that browser, the plugin

displays only the total number of “likes” and prompts

the user to sign up (a). If a user is currently logged

in, the plugin displays personalized information, includ-

ing some of the names and pictures of the user’s friends

that have liked the page (c). Interestingly, while a user

is logged out (b), the plugin does not prompt for sign-

up; depending on how cookies are cleared, some user-

identifying information may persist even upon user exit.

2.2 Privacy Issues

With publishers reporting multifold increases in traf-

fic [35], and the continuous addition of new gestures

and social features by the major social networking ser-

vices [36], it is expected that the explosive popularity

of social plugins will only continue to grow. As more

sites employ social plugins, the potential for broader

user tracking increases. With more than 35% of the

top 10,000 most visited websites having Like buttons in

their pages (as of June 2012) [33], a good part of the

daily browsing history of 901 million active Facebook

users [8] is technically available to Facebook. We should

stress that the same issue holds for all other major social

networking services that provide social plugins, includ-

ing Google and Twitter.

The privacy issues related to the use of HTTP cook-

ies are a well-known problem. Since their introduction

in 1995, cookies have been extensively used by advertis-

ing networks for building user profiles and tracking the

browsing activity of users across the web [51]. Although

user tracking through social plugins resembles this kind

of cross-site tracking through third-party cookies [43],

there is one key difference.

An advertising network uses cookies to track the same

user across all affiliate sites that host the network’s ad-

vertisements, but cannot easily link the derived activity

pattern to the actual identity of the user. In contrast, so-

cial plugins use cookies associated with real user profiles

on the respective social networking site, which typically

contain an abundance of personally identifiable informa-

tion [47]. In essence, instead of tracking anonymous

users, social plugins enable tracking of named persons.

Advertising agencies can also potentially associate a

user profile with a person’s identity by combining infor-

mation from other sources, e.g., in cooperation with one

or more affiliate websites on which users provide contact

information for registration. Social networking services,

though, do not have to collude with another party be-

cause they already have access to both extensive person-

ally identifiable information, as well as to a broad net-

work of sites that host social plugins.

2.3 Preventing Privacy Leaks

One might think that if users diligently log out of the

social networking site, they will be safe from the pri-

vacy leaks caused by its social plugins. Unfortunately,

this seems a rather daunting task for users that rely daily

on Google, Facebook, Twitter, and other popular SNSs

for their personal and professional communication and

social interaction activities. To provide convenience for

frequent use, these sites follow a single sign-on approach

for all offered services, and prompt users to stay logged

in indefinitely through “keep me logged in” features.

Consequently, users typically remain logged in through-

out the whole duration of their online presence.

In some cases, even after a user logs out, the cookies of

the SNS might not be cleared completely, and personally

identifiable information may still persist [9]. For exam-

ple, even after logging out of Facebook, a cookie with a

user identifier remains in the browser, enabling features

such as pre-filling a returning user’s email address in the

634  21st USENIX Security Symposium	 USENIX Association

log in form, or avoiding to unnecessarily prompt existing

members to sign up, as shown in Fig. 1(b).

Blocking of third-party cookies could be considered

a mitigation to this problem, since most of the major

web browsers (Chrome, Firefox, Internet Explorer) have

adapted their security policy to prevent third parties from

reading (in addition to writing) cookies. Therefore, even

though the SNS’s domain appears both as a first party

(when a user visits the site directly) and as a third party

(when a social plugin is embedded in a page), in the lat-

ter case the SNS no longer receives any cookies. How-

ever, with the exception of Internet Explorer, blocking

of third-party cookies is not enabled by default. Internet

Explorer will do so, but white-lists same-domain cook-

ies set by first parties that return a P3P header [30] (even

a dummy one), which both Facebook and Google [25]

appear to be doing. Moreover, even if a user chooses

explicitly to block third-party cookies, there are known

bypass techniques [2], such as faking an interaction with

the embedded page through a script-initiated form sub-

mission in Safari, or opening the embedded page in a

pop-up window that gets treated by the browser as a first

party [53], which interestingly in Chrome is not hindered

by pop-up blocking [3].

The Do Not Track HTTP header [5] is an encouraging

recent initiative that allows users to opt out of tracking by

advertising networks and analytics services. Although

currently not supported by any SNS, if it were adopted,

Do Not Track could allow users to choose whether they

want to opt in for the personalized versions of social plu-

gins or not. However, users who would opt in for the per-

sonalized versions (or who would not opt out, depending

on the default setting) could still be tracked.

This situation drives privacy-conscious users towards

browser extensions that block the transmission of user-

identifying information through social plugins [27, 15,

7, 4, 28, 45]. For instance, Facebook Blocker [7] re-

moves completely the IFRAME elements of social plug-

ins from visited web pages. Instead of blocking social

plugins completely, ShareMeNot [28] simply removes

the sensitive cookies from the social plugin’s requests at

load time. When a user explicitly interacts with a plu-

gin, the cookies are then allowed to go through, enabling

the action to complete normally. Although this approach

strikes a balance between usability and privacy, it still

completely disables any content personalization.

3 Design

3.1 Requirements

The design of privacy-preserving social plugins is driven

by two key requirements: i) provide identical functionality

to existing social plugins in terms of content personaliza-

tion and user interaction, and ii) avoid the transmission of

user-identifying information to the social networking ser-

vice before any user interaction takes place. The first re-

quirement is necessary for ensuring that users receive the

full experience of social plugins, as currently offered by

the major SNSs. Existing solutions against user track-

ing do not provide support for content personalization,

and thus are unlikely to be embraced by SNSs and con-

tent providers. The second requirement is mandatory for

preventing SNSs from receiving user-identifying infor-

mation whenever users merely view a page and do not

interact with a social plugin.

We consider as user-identifying information any piece

of information that can be used to directly associate a so-

cial plugin instance with a user profile on the SNS, such

as a cookie containing a unique user identifier. The IP

address of a device or a browser fingerprint can also be

considered personally identifying information, and could

be used by a shady provider for user tracking. However,

the accuracy of such signals cannot be compared with

the ability of directly associating a visit to a page with

the actual person that visits the page, due to factors that

introduce uncertainty [52], such as DHCP churn, NAT,

proxies, multiple users using the same browser, and other

aspects that obscure the association of a device with the

actual person behind it. Users can mitigate the effect

of these signals to their privacy by browsing through an

anonymous communication network [38], and ensuring

that their browser has a non-unique fingerprint [39].

When viewed in conjunction, the two requirements

seem contradicting. Content personalization presumes

knowledge of the person for whom the content will be

personalized. Nevertheless, the approach we propose

satisfies both requirements, and enables a social plugin

instance to render personalized content without reveal-

ing any user-identifying information to the SNS.

3.2 Overall Approach

Social plugins present the user with two different types

of content: private information, such as the names and

pictures of friends who like a page, and public informa-

tion, such as the total number of “likes.” The main idea

behind our approach is to maintain a local copy of all

private information that can possibly be needed for ren-

dering any personalized content for a particular user, and

query the social networking service only for public infor-

mation that can be requested anonymously.

This approach satisfies our first requirement, since all

the required private information for synthesizing and pre-

senting personalized content is still available to the social

plugin locally, while any missing public information can

be fetched on demand. User interaction is not hindered

in any way, as user actions are handled in the same way

USENIX Association 	 21st USENIX Security Symposium  635

as in existing social plugins. Our second requirement

is also accomplished, because all communication of a

privacy-preserving social plugin with the SNS for load-

ing its content does not include any user-identifying in-

formation. Only public information about the page might

be requested, which can be retrieved anonymously.

The whole process is coordinated by the Social Plugin

Agent, which runs in the context of the browser and has

three main tasks: i) upon first run, gathers all private data

that might be needed through the user’s profile and social

circle, and stores it in a local DataStore, ii) periodically,

synchronizes the DataStore with the information avail-

able online by adding or deleting any new or stale entries,

and iii) whenever a social plugin is encountered, synthe-

sizes and presents the appropriate content by combining

private, personalized information from the local Data-

Store and public, non-personalized information through

the SNS. Maintaining a local copy of the user’s social in-

formation is a continuous process, and takes place trans-

parently in the background. Once all necessary informa-

tion has been mirrored during the bootstrapping phase,

the DataStore is kept up to date periodically.

Going back to the example of the Like button, the

private information that must be stored locally for its

privacy-preserving version should suffice for properly

rendering any possible instance of its personalized con-

tent for any third-party page the user might encounter. This

can be achieved by storing locally all the “likes” that all

of the user’s friends have ever made, as well as the names

and thumbnail pictures of the user’s friends. Note that

all the above information is available through the profile

history of the user’s friends, which is always accessible

while the user is logged in.

Although keeping all this state locally might seem

daunting at first, as we demonstrate in Sec. 5.2, the re-

quired space for storing all the necessary private infor-

mation for privacy-preserving versions of all Facebook’s

existing social plugins is just 5.4MB for the typical case

of a user with 190 friends, and 145MB for an extreme

case of a user with 5,000 friends. No information that is

not accessible under the user’s credentials is ever needed,

and daily synchronization typically requires the trans-

mission of a few kilobytes of data.

Continuing with the Like button as an example, Fig. 3

illustrates the process of rendering its privacy-preserving

version. Upon visiting a third-party page, the Social Plu-

gin Agent requests from the SNS the total number of

“likes” for that particular page, without providing any

user-identifying information (step 3). In parallel, it looks

up the URL of the page in the DataStore and retrieves the

names and pictures of the friends that have liked the page

(if any). Once the total number of “likes” arrives (step 4),

it is combined with the local information and the unified

personalized content is presented to the user (5).

Figure 3: The loading phase of privacy-preserving so-

cial plugins. When a social plugin is encountered (1), the

Social Plugin Agent intervenes between the plugin and

the SNS (2). The agent requests (3) and receives (4) only

publicly accessible content, e.g., the page’s total number

of “likes,” without revealing any user-identifying infor-

mation to the SNS. The agent then combines this data

with personalized information that is maintained locally,

and presents the unified content to the user (5).

Further optimizations are possible for avoiding query-

ing for non-personalized content at load time. Depend-

ing on the plugin and the kind of information it pro-

vides, public information for frequently visited pages can

be cached, while public information for highly popu-

lar pages can be prefetched. For example, information

such as the total number of “likes” for a page that a user

visits several times a day can be updated only once per

day without introducing a significant inconsistency, al-

lowing the Social Plugin Agent to occasionally serve the

Like button using solely local information. Similarly, the

SNS can regularly push to the agent the total number of

“likes” for the top 10K most “liked” pages. In both cases,

the elimination of any network communication on every

cache hit not only reduces the rendering time, but also

protects the user’s browsing pattern even further.

4 Implementation

To explore the feasibility of our approach we have imple-

mented SafeButton, an add-on for Firefox (version 7.0.1)

that provides privacy-preserving versions of existing so-

cial plugins. SafeButton is written in JavaScript and

XUL [23], and relies on the XPCOM interfaces of Fire-

fox to interact with the internals of the browser. Figure 4

636  21st USENIX Security Symposium	 USENIX Association

Figure 4: Overall architecture of SafeButton. A Request Handler (1) intercepts the HTTP requests of social plugins.

Privacy-preserving implementations of the supported plugins (2) combine public remote data (3b), which can be

cached in the X-Cache for improving network performance (3a), and private data from the user’s social circle, which

are maintained locally in the DataStore (4), and deliver the same personalized content (5) as the original plugins.

provides an overview of SafeButton’s main components,

which are described below. A detailed description of how

the components are put together to handle a Like button

is provided at the end of this section.

Request Handler The main task of the Request Han-

dler is to intercept the HTTP requests of a social plugin at

load time, and hand off the event to an appropriate call-

back handler function. The requests are intercepted using

a set of filters based on signatures that capture the target

URL of each plugin. These signatures are received from

the Social Plugin Provider Interface, along with the call-

back handlers that should be invoked whenever a filter is

triggered. The Request Handler provides as an argument

to these callbacks a reference to the DOM of the page

that contains the social plugin that triggered the filter.

We have implemented the Request Handler by

registering an observer for HTTP requests (http-

on-modify-request notification) using XPCOM’s

nsIObserverService. This allows the inspection code

to lie inline in the HTTP request creation process, and

either intercept and modify requests (e.g., by stripping

HTTP cookies or other sensitive headers), or drop them

entirely when necessary.

Social Plugin Provider Interface The Social Plugin

Provider Interface serves as an abstraction between the

Request Handler and different Provider Modules that sup-

port the social plugins offered by different social net-

working services. This extensible design enables more

networks and plugins to be supported in the future. In

the current version of SafeButton, we have implemented

a Provider Module for the social plugins offered by Face-

book. We take advantage of the Graph API [10] to down-

load the user’s private social information that needs to be

stored locally, and access any other public content on de-

mand. We should stress that, although an option, we do

not employ any kind of web scraping to acquire informa-

tion from pages accessible through the user’s profile.

A Provider Module for a SNS consists of: i) the signa-

tures that will be used by the Request Handler for inter-

cepting the HTTP requests of the platform’s social plu-

gins, ii) the callback handler functions that implement

the core functionality of each social plugin based on lo-

cal and remote social information, and iii) the necessary

logic for initializing the DataStore and keeping it up to

date with the information that is available online.

Each callback function implements the core function-

ality for rendering a particular social plugin. Its main

task is to retrieve the appropriate private social data from

the DataStore, request any missing public data from the

SNS (without revealing any user-identifying informa-

tion), and compile the two into the personalized content

that will be displayed. The function then updates the

DOM of the web page through the page reference that

was passed by the Request Handler.

DataStore The DataStore keeps locally all the private

social data that might be required for rendering person-

alized versions of any of the supported social plugins.

All information is organized in a SQLite database that

is stored in the browser’s profile folder for the user that

has installed SafeButton. Upon first invocation, SafeBut-

ton begins the process of prefetching the necessary data.

This process takes place in the background, and relies on

the detection of browser idle time and event scheduling

to operate opportunistically without interfering with the

user’s browsing activity.

In our implementation for Facebook, data retrieval be-

gins with information about the user’s friends, including

each friend’s name, thumbnail picture, and unique iden-

tifier in Facebook’s social graph. Then, for each friend,

SafeButton retrieves events of social activity such as the

pages that a friend has liked or shared, starting with the

oldest available event and moving onward. In case the

USENIX Association 	 21st USENIX Security Symposium  637

download process is interrupted, e.g., if the users turns

off the computer, it continues from where it left off the

next time the browser is started.

Updating the DataStore is an incremental process that

takes place periodically. Fortunately, the current version

of the Graph API offers support for incremental updates.

As we need to query for any new activity using a separate

request for each friend (a Graph API function for multi-

ple user updates would be welcome), we do so gracefully

for each friend every two hours, or, if the browser is not

idle, in the next idle period. We have empirically found

the above interval to strike a good balance between the

timeliness of the locally stored information and the in-

curred network overhead. In our future work, we plan to

employ a more elaborate approach based on an exponen-

tial backoff algorithm, so that a separate adaptive update

interval can be maintained for different friend groups ac-

cording to their “chattiness.”

Note that we also need to address the consistency of

the locally stored data with the corresponding data that

is available online. For instance, friends may “like” a

page and later on “unlike” it, thereby deleting this activ-

ity from their profile. Unfortunately, the Graph API cur-

rently does not offer support for retrieving any kind of

removal events. Nevertheless, SafeButton periodically

fetches the entire set of activities for each friend (at a

much slower pace than the incremental updates), and re-

moves any stale entries from the DataStore.

X-Cache The X-Cache holds frequently used public in-

formation and meta-information, such as the total num-

ber of “likes” for a page or the mapping between page

URLs and objects in the Facebook graph. A hit in the

X-Cache means that no request towards the social net-

working service is necessary for rendering a social plu-

gin. This improves significantly the time it takes for the

rendering process to complete, and at the same time does

not reveal the IP address of the user to the SNS.

Use Case: Facebook Like Button Here we enrich the

running case of the Facebook Like button from Sec. 3

with the technical details of the behavior of SafeButton’s

components, as shown by the relevant steps in Fig. 4.

Upon visiting a web page with an embedded Like

button in the form of an IFRAME, the browser

will issue an HTTP request towards Facebook to

load and subsequently render the contents of that

IFRAME. The Request Handler intercepts this re-

quest and attempts to match its URL against the

set of signatures of the supported social plugins,

which will trigger a match for the regular expres-

sion http[s]?:\/\/www\.facebook\.com\/plugins\/

like\.php. Subsequently, the handler invokes the

callback associated with this signature and pass as an

argument the plugin’s URL and a reference to the DOM

of the page that contains the social plugin (step 1).

The first action of the callback function is to query

X-Cache for any cached non-personalized information

about the button and the page it is referring to. This in-

cludes the mapping between the page’s URL and its ID in

the Facebook graph, along with the global count of users

who have “liked” the page (step 3a). In case of a miss,

a request made through the Graph API retrieves that in-

formation (step 3b). The request is stripped from any

Facebook cookies that the browser unavoidably appends

to it. The response is then added to X-Cache for future

reference. After retrieving the global count of users, the

names (and if the developer has chosen so, the thumbnail

pictures) of the user’s friends that have liked the page are

retrieved from the LocalStore (step 4).

Finally, the reference to the DOM of the embedding

page (passed by the handler in step 1), is used to update

the IFRAME where the original Like button would have

been with exactly the same content (step 5).

5 Experimental Evaluation

5.1 Supported Facebook Plugins

In this section we discuss the social plugins offered by

Facebook and evaluate the extend to which SafeButton

can support them in respect to two requirements: i) user

privacy, and ii) support for personalized content. Table 1

lists the nine social plugins currently offered by Face-

book. For each plugin, we provide a brief categorization

of its “view” functionality, i.e., the content presented to

the user according to whether it is based on public (non-

personalized) or private (personalized) information, as

well as its “on-click” functionality, i.e., the type of ac-

tion that a user can take.

Although SafeButton interferes with the “view” func-

tionality of existing social plugins, it does not affect their

“on-click” functionality, allowing users to interact nor-

mally as with the original plugins. As shown in Ta-

ble 2, SafeButton currently provides complete support

for seven out of the nine social plugins currently offered

by Facebook.

The Like button and its variation, the Like Box, are

fully functional; the count, names, and pictures of the

user’s friends are retrieved from the DataStore, while

the total number “likes” is requested on demand anony-

mously. The Recommendations plugin presents a list

of recommendations for pages from the same site, with

those made by friends appearing first. Recommendations

from the user’s friends are stored locally, so SafeBut-

ton can render those that are relevant to the visited site

on top. The list is then completed with public recom-

mendations by others, which are retrieved on demand.

638  21st USENIX Security Symposium	 USENIX Association

Facebook Public Personalized User

Social Plugin Content Content Action

Like Button Total number of people that have liked the

page

Names and pictures of friends that have

liked the page

Like page

Send Button - - Send content/page URL

Comments List of user comments Friends’ comments appear on top Post comment

Activity Feed List of user activities (likes, comments,

shared pages)

Friends’ activities appear on top -

Recommendations List of user recommendations (likes) Friends’ recommendations appear on top -

Like Box Total number of people that have liked the

Facebook Page, names and pictures of some

of them, list of recent posts from the Page

Names and pictures of friends that have

liked the page are shown first

Like page

Registration - User’s Name, picture, birthday, gender, lo-

cation, email (prefilled in registration form)

Register

Facepile - Names and pictures of friends that have

liked the page

-

Live Stream User messages - Post message

Table 1: Public vs. Personalized content in Facebook’s social plugins [12].

Exposed information Personalized

Facebook during loading Content with

Social Plugin Original SafeButton SafeButton

Like Button IP addr. + cookies IP addr. Complete

Send Button IP addr. + cookies None Complete

Comments IP addr. + cookies IP addr. Partial1

Activity Feed IP addr. + cookies IP addr. Partial2

Recommendations IP addr. + cookies IP addr. Complete

Like Box IP addr. + cookies IP addr. Complete

Registration IP addr. + cookies None Complete

Facepile IP addr. + cookies IP addr. Complete

Live Stream IP addr. + cookies IP addr. Complete

1 When all comments are loaded at once, all personalized content is

complete. In case they are loaded in a paginated form, some of the

friends’ comments (if any) might not be shown in the first page.
2 Some of the friends’ comments (if any) might be omitted (access to

comments is currently not supported by Facebook’s APIs).

Table 2: For 7 out of the 9 Facebook social plugins,

SafeButton provides exactly the same personalized con-

tent without exposing any user-identifying information.

Similarly to the Like button, Facepile presents pictures

of friends who have liked a page, and that information

is already present in the DataStore. The Send, Register,

and Login buttons do not present any kind of dynamic

information, and thus can be rendered instantly without

issuing any network request.

Similarly to the Recommendations plugin, content

personalization in the Comments plugin consists of giv-

ing priority to comments made by friends. SafeButton

retrieves the non-personalized version of the plugin, and

reorders the received comments so that friends’ com-

ments are placed on top. When all comments for a page

are fetched at once, the personalized information pre-

sented by SafeButton is fully consistent with the origi-

nal version of the plugin. However, when comments are

presented in a paginated form, only the first sub-page

is loaded. The current version of the Graph API does

not support the retrieval of comments (e.g., in contrast

to “likes”), and thus in case friends’ comments appear

deeper than the first sub-page, SafeButton will not show

them on top (a workaround would be to download all

subsequent comment sub-pages, but for popular pages

this would result in a prohibitive amount of data).

The Activity Feed plugin is essentially a wrapper for

showing a mix of “likes” and comments by friends, and

thus again SafeButton’s output lacks any friends’ com-

ments. Note that our implementation is based solely on

the functionality provided by the Graph API [10], and

we refrain from scraping of web content for any missing

information. Ideally, future extensions of the Graph API

will allow SafeButton to fully support the personalized

content of all plugins. We discuss this and other missing

functionality that would facilitate SafeButton in Sec. 7.

5.2 Space Requirements

To explore the local space requirements of SafeButton,

we gathered a data set that simulates the friends a user

may have. Starting with a set of friends from the authors’

Facebook profiles, we crawled the social graph and iden-

tified about 300,000 profiles with relaxed privacy settings

that allow unrestricted access to all profile information,

including the pages that person has liked or shared in the

past. From these profiles, we randomly selected a set

of 5,000—the maximum number of friends a person can

have on Facebook [6].

USENIX Association 	 21st USENIX Security Symposium  639

Data 190 Friends 5,000 Friends

Names, IDs of Friends 10.5KB 204.8KB

Photos of Friends 463.4KB 11.8MB

Likes of Friends 4.6MB 126.7MB

Shares of Friends 318.4KB 7.0MB

Total 5.4MB 145.7MB

Average (per friend) 29.2KB 29.7KB

Table 3: Storage space requirements for the average case

of 190 friends and the borderline case of 5,000 friends.

To quantify the space needed for storing the required

data from a user’s social circle, we initialized SafeBut-

ton using the above 5,000 profiles. In detail, SafeButton

prefetches the names, IDs, and photos of all friends, and

the URLs of all pages they have liked or shared. Al-

though we have employed a slow-paced data retrieval

process (5sec delay between consecutive requests), the

entire process for all 5,000 friends took less than 10

hours. For typical users with a few hundred friends, boot-

strapping completes in less than a hour. As already men-

tioned, users are free to use the browser during that time

or shut it down and resume the process later.

Table 3 shows a breakdown of the consumed space for

the average case of a user with 190 friends [58] and the

extreme case of a user with 5,000 friends, which totals

5.4MB and 145.7MB, respectively. Evidently, consumed

space is dominated by “likes,” an observation consistent

with the prevailing popularity of the Like button com-

pared to the other social plugins. To gain a better un-

derstanding of storage requirements for different users,

Fig. 5 shows the consumed space as a function of the

number of friends, which as expected increases linearly.

We should note that the above results are specific for

the particular data set, and the storage space might in-

crease for users with more “verbose” friends. Further-

more, the profile history of current members will only

continue to grow as time passes by, and the storage space

for older users in the future will probably be larger. Nev-

ertheless, these results are indicative for the overall mag-

nitude of SafeButton’s storage requirements, which can

be considered reasonable even for current smartphones,

while the storage space of future devices can only be ex-

pected to increase.

To further investigate the distribution of “likes,” the

factor that dominates local space, we plot in Fig. 6 the

CDF of the number of “likes” of each user in our data

set. The median user has 122 “likes,” while there are

some users with much heavier interaction: about 10% of

the users have more than 504 “likes.” The total num-

ber of “likes” was 1,110,000, i.e., 222 per user on aver-

age. This number falls within the same order of mag-

Number of Friends

0 1 10 100 1000 5000

L
o

c
a

l
S

p
a

c
e

 (
M

B
)

0

1

10

100
146

5.4MB for a user
with 190 friends
(avg. friend count
on Facebook)

11.3MB for a user with 400 friends
(avg. friend count in dataset)

Figure 5: Local space consumption for the required in-

formation from a user’s social circle as a function of the

number of friends. For the average case of a user with

190 friends, SafeButton needs just 5.4MB.

Number of Likes

0 1 10 100 1000 4500

%
 o

f
U

s
e

rs

0

10

20

30

40

50

60

70

80

90

100

Median: 122 Likes

90th Percentile: 504 Likes

Figure 6: CDF of the number of “likes” of each user.

nitude as previously reported statistics, which suggest

that there are about 381,861 “likes” per minute on Face-

book [31]. With a total population of about 901 million

active users [8], this results in about 217 “likes” per user

per year. These results indicate that our data set is not

particularly biased towards excessively active or inactive

profiles.

Besides the storage of social information, SafeBut-

ton maintains the X-Cache for quick access to frequently

used non-personalized information about a social plugin.

To get an estimate about its size requirements, we vis-

ited the home pages of the first 1,000 of the top web-

sites according to alexa.com that contained at least one

Facebook social plugin. About 82.4% of the identified

plugins corresponded to a Like Button or Like Box, 14%

to Facebook Connect, 3% to Recommendations, 0.5% to

Send Button, and 0.1% to Facepile and Activity Box. Af-

ter visiting all above sites, X-Cache grew to no more than

850KB, for more than 2,500 entries.

5.3 Speed

In this experiment, we explore the rendering time of

social plugins with and without SafeButton. Specif-

640  21st USENIX Security Symposium	 USENIX Association

ically, we measured the time from the moment the

HTTP request for loading the IFRAME of a Like

button is sent by the browser, until its content is

fully rendered in the browser window. To do so,

we instrumented Firefox with measurement code trig-

gered by http-on-modify-request notifications [20]

and pageshow events [21]. We chose to measure the ren-

dering time for the IFRAME instead of the entire page

to eliminate measurement variations due to other remote

elements in the page. This is consistent with the way a

browser renders a page, since IFRAMEs are loaded in

parallel with the rest of its elements.

We consider the following three scenarios: i) Firefox

rendering a Like button unobstructed, and Firefox with

SafeButton rendering a Like button when there is ii) an

X-Cache miss or iii) an X-Cache hit. For the original

Like button, we used a hot browser cache to cancel out

loading times for any required external elements, such

as CSS and JavaScipt files. Using SafeButton, visiting

a newly or infrequently accessed webpage will result in

a miss in the X-Cache. For a Like button, this means

that besides looking up the relevant information in the

local DataStore, SafeButton must (anonymously) query

Facebook to retrieve the total number of “likes.” For

frequently accessed pages, such personalized informa-

tion will likely already exist in the X-Cache, and thus

SafeButton does not place any network request at all.

Using a set of the first 100 among the top websites ac-

cording to alexa.com that contain a Like button, we mea-

sured the loading time of the Like button’s IFRAME for

each site (each measurement was repeated 1,000 times).

Figure 7 shows the median loading time across all sites

for each scenario, as well as its breakdown according to

the events that take place during loading. The rendering

time for the original Like button is 351ms, most of which

is spent for communication with Facebook. In particu-

lar, it takes 130ms from the moment the browser issues

the request for the IFRAME until the first byte of the re-

sponse is received, and another 204ms for the completion

of the transfer. In contrast, SafeButton is much faster, as

it needs 127ms for rendering the Like button in case of

an X-Cache miss (2.8 times faster than the original), and

just 24ms in case of an X-Cache hit (14.6 times faster),

due to the absence of any network communication.

The difference in the response times for the network

requests placed by the original Like button and SafeBut-

ton in case of an X-Cache miss can be associated with the

different API used and amount of data returned in each

case. SafeButton uses the Graph API to retrieve just the

total number of “likes,” which is returned as a raw ASCII

value that is just a few bytes long. In contrast, the origi-

nal plugin communicates with a different endpoint from

the side of Facebook, and fetches a full HTML page with

embedded CSS and JavaScript content. While these two

Time in milliseconds

0 50 100 150 200 250 300 350

SafeButton
 X−Cache hit

SafeButton
 X−Cache miss

Original
 Social Plugin

Processing

Network: request dispatch to first response byte

Network: first response byte to end of transmission

DataStore lookup

HTTP
Response

Lookup

Figure 7: Loading time for Like button with and without

SafeButton. Even when the total number of “likes” is not

available in the X-Cache, SafeButton is 2.8 times faster.

requests need a similar amount of time from the moment

they are placed until the first response byte is received

from the server, they differ by two orders of magnitude in

terms of the time required to complete the transfer. Even

if Facebook optimizes its own plugins in the future, we

expect the rendering speed of SafeButton to be compara-

ble in case of an X-Cache miss, and still much faster in

case of an X-Cache hit.

5.4 Effectiveness

As presented in Sec. 3, we rely on a set of heuristics

that match the target URL of each supported social plu-

gin to intercept and treat them accordingly so as to pro-

tect the user’s privacy. To evaluate the effectiveness and

accuracy of our approach, we carried out the follow-

ing experiment. Using tcpdump, we captured a network

trace of all outgoing communication of a test PC in our

lab while surfing the web for a week through Firefox

equipped with SafeButton. We then inspected the trace

and found that no cookie was ever transmitted in any

HTTP communication with facebook.com or any of its

sub-domains.

This was a result of the following “fail-safe” ap-

proach. Besides the signatures of the supported so-

cial plugins, SafeButton inspects all communication with

facebook.com and strips any cookies from requests ini-

tiated by third-party pages. Next, we performed the

reverse experiment: using the same browser equipped

with SafeButton, we surfed www.facebook.com and inter-

acted with the site’s functionality without any issues for

a long period. Careful inspection of the log generated by

SafeButton proved that no in-Facebook communication

was hindered at any time.

USENIX Association 	 21st USENIX Security Symposium  641

Figure 8: Privacy-preserving social plugins serviced by

a SNS. Here: the loading of a social plugin in a third-

party page. The code of the social plugin agent is always

fetched from a secondary domain to avoid leaking cook-

ies set by the primary domain of the SNS. The URL of

the target page is passed via a fragment identifier, so it is

never transmitted to the SNS. The agent synthesizes and

renders the personalized content of the social plugin.

6 Privacy-preserving Social Plugins as a

Service: A Pure JavaScript Design

As many users are typically not aware of the privacy

issues of social plugins, they are not likely to install

any browser extension for their protection. For instance,

NoScript [27], a Firefox add-on which blocks untrusted

JavaScript code from being executed, has roughly just 2

million downloads, and AdBlock [1], an add-on which

prevents advertisement domains from loading as third

parties in a web page, has been downloaded 14 million

times. At the same time, Firefox has 450 million active

users [24], which brings the adoption rate of the above

security add-ons to 0.4% and 3.1%, respectively. For

this reason, in this section we present a pure JavaScript

implementation of privacy-preserving social plugins that

could be employed by social networking services them-

selves for the protection of their members.

The use case would not be much different from now:

web developers would still embed an IFRAME element

that loads the social plugin from the SNS. However,

instead of serving a traditional social plugin, the SNS

serves a JavaScript implementation of a social plugin

agent in respect to the design presented in Sec. 3. The

agent then fetches personalized information from the

browser’s local storage, requests non-personalized infor-

mation from the SNS, and renders the synthesized con-

Figure 9: Privacy-preserving social plugins serviced by

a SNS. Here: securely communicating the user’s session

identifier to the social plugin agent when logging in on

the SNS. Although the agent is hosted on a secondary

domain, it receives and stores the identifier from the pri-

mary domain through the postMessage function, allow-

ing it to place asynchronous authenticated requests for

accessing the user’s profile information.

tent according to the specified social plugin. The feasi-

bility of the above design is supported by existing web

technologies such as IndexedDB [19], which provide a

JavaScript API for managing a local database, similar to

the DataStore used in SafeButton.

The most challenging aspect of this implementa-

tion is to prevent the leakage of user-identifying in-

formation during the loading of a social plugin. If

the IFRAME of the social plugin agent is hosted

on the same (sub)domain as the SNS itself (e.g.,

socialnetwork.com), then the request for fetching its

JavaScript code would also transmit the user’s cookies

for the SNS. At the same time, the agent would need to

know the URL of the embedding page for which it has

personalized the social plugin’s content. If the URL is

passed as a parameter to that initial request, the situation

is obviously as problematic as in current social plugins.

A solution would be to leave out the URL of the page

from the request for loading the social plugin agent.

However, there should be a way to communicate this in-

formation to the agent once its JavaScript code has been

loaded by the browser. This can be achieved through

a fragment identifier [32] in the URL from which the

agent is loaded. Fragment identifiers come as the last

part of a URL, and begin with a hash mark (#) char-

642  21st USENIX Security Symposium	 USENIX Association

acter. According to the HTTP specification [18], frag-

ment identifiers are never transmitted as part of a re-

quest to a server. Thus, during the loading of a social

plugin in a third-party page, instead of passing an ex-

plicit parameter with the URL of the embedding page, as

in www.socialnetwork.com/sp-agent.js?url=<URL> , it

can be passed through a fragment identifier, as in www.

socialnetwork.com/sp-agent.js#<URL>. The informa-

tion about the URL of the visited page never leaves the

browser, and remains accessible to the JavaScript code of

the agent, which can then parse the hypertext reference

of its container and extract the fragment identifier.

Unfortunately, this approach is still not secure in prac-

tice. The URL of the embedding page is usually also

transmitted as part of the HTTP Referer [sic] header

by most browsers. Therefore, even if we omit the tar-

get URL from the HTTP parameters of the request, the

server will receive it anyway, allowing the SNS to cor-

relate this information with the user’s cookies that are

transmitted as part of the same request.

To overcome this issue, the social plugin agent can

be hosted on a secondary domain, different than the

primary domain of the SNS, as also proposed by Do

Not Track [5]. For instance, in this design the agent

could be hosted under socialnetwork-cdn.net instead

of socialnetwork.com, as shown in Fig. 8. This prevents

the browser from appending the user’s cookies whenever

a social plugin is encountered (step 2), since its IFRAME

will be served from a different domain than the one for

which the cookies were set. The rest of the steps are

analogous to Fig. 3.

Still, the social plugin agent must be able to issue au-

thenticated requests towards the SNS for accessing the

user’s profile and retrieving the necessary private social

information that must be maintained locally. This re-

quires access to the user’s cookies, and specifically to

the identifier of the authenticated session that the user

has with the SNS.

A solution to this problem can be achieved by taking

advantage of the windows.postMessage [22] JavaScript

API, which allows two different origins to communicate.

When the user logs in on the SNS, the login page con-

tains a hidden IFRAME loaded through HTTPS from

the secondary domain on which the social plugin agent

is hosted, as shown in Fig. 9 (step 2). The login page

then communicates to the agent’s IFRAME the session

identifier of the user through postMessage (step 3). The

IFRAME executes JavaScript code that stores locally the

user identifier under its own domain, making it acces-

sible to the plugin agent. The agent can then read the

session identifier from its own local storage, and place

authenticated requests towards the SNS for accessing the

user’s profile (step 4) and synchronizing the required in-

formation with the locally stored data. When the user ex-

plicitly logs out from the social networking site, the log

out page follows a similar process to erase the identifier

from the local storage of the agent.

In respect to supporting multiple users per browser in-

stance and protecting the personal information stored lo-

cally, encryption can be employed to shield any sensi-

tive information, such as the names or identifiers of a

user’s friends. In accordance with the communication

of the session identifier described above, a user-specific

cryptographic key can be communicated from the SNS

to the social plugin agent. The plugin can then use this

key to encrypt sensitive information locally. The key

is kept only in memory. Each time the plugin agent

loads, it spawns a child IFRAME towards the social net-

working site. The request for the child IFRAME will

normally have the user’s cookies appended. Finally,

that child IFRAME, once loaded, can communicate via

postMessage the encryption key back to the plugin agent.

7 Discussion

Strict Mode of Operation Although SafeButton does

not send any cookies to the social networking service,

it still needs to make non-authenticated requests towards

the SNS to fetch public information for some social plu-

gins (e.g., for Facebook plugins, the information shown

in column “Public Content” in Table 1). These requests

unavoidably expose the user’s IP address to the SNS.

Some users might not feel comfortable with exposing

their IP address to the SNS (even when no cookies are

sent), as this information could be correlated by the SNS

with other sources of information, and could eventually

lead to the exposure of the users’ true identity. For such

privacy-savvy users, we consider a “paranoid” mode of

operation in which SafeButton does not reveal the user’s

IP address to the social networking service when en-

countering a social plugin in a third-party page, by sim-

ply not retrieving any public information about the page.

Unavoidably, some social plugins are then rendered us-

ing solely the locally available personalized information,

e.g., for the Like button, the total number of “likes” for

the page will be missing.

Alternatively, given the very low traffic incurred by

SafeButton’s non-authenticated queries to the SNS, these

can be carried out transparently by SafeButton through

an anonymous communication network such as Tor [38].

Given that social plugins are loaded in parallel with the

rest of the page’s elements, this would minimally affect

the browsing experience (compared to browsing solely

through Tor).

Potential Challenges with Future Social Plugins. Al-

though SafeButton currently supports all social plugins

USENIX Association 	 21st USENIX Security Symposium  643

offered by Facebook, and our approach is extensible so

as to handle the plugins of other social networking ser-

vices, we consider two potential challenges with future

plugins [44]. First, future personalization functionality

could include social information from a user’s second de-

gree friends, i.e., the friends of his friends, or rely on the

analysis of data from the entire user population of the so-

cial network. Second, this type of personalization could

involve proprietary algorithms not available to the client-

side at run-time.

We believe that our approach could be adapted to sup-

port such developments. We find it realistic that such

extended analysis will take place offline, and result in

the calculation of a product that will be stored and taken

into account in real-time during content personalization.

Therefore, it will not be necessary to have at the client

side neither the analysis algorithms nor the entire dataset.

The stored outcome of the analysis, e.g., some extra

weight on the social graph or additional meta-data, could

be available to through the developer’s API, and be taken

into account by SafeButton during content personaliza-

tion. At the same time, the social networking service is

not deprived of the data necessary to carry out such anal-

ysis. Our approach protects user privacy when accessing

the “view” functionality of social plugins, but when users

explicitly interact with them, their actions and any corre-

sponding data are transmitted to the SNS.

Profile Management As users may access the web via

more than one devices, it reasonable to assume that they

will require a practical way to use SafeButton in all of

them. Although installing SafeButton on each browser

should be enough, this will result to the synchronization

of the locally stored information with the SNS for each

instance separately. In our future work, we will con-

sider the use of cloud storage for keeping fully-encrypted

copies of the local DataStore and X-Cache, and synchro-

nizing them across all the user’s browser instances, in

the same spirit as existing settings and bookmark syn-

chronization features of popular browsers [29, 14].

Keeping a local copy of private information that is nor-

mally accessible only through the social networking ser-

vice might be considered a security risk, as it would be

made readily available to an attacker that gains unautho-

rized access to the user’s system. At that point, though,

the attacker would already have access to the user’s cre-

dentials (or could steal them by installing a keylogger on

the compromised host) and could easily gather this infor-

mation from the SNS anyway.

In any case, users could opt-in for keeping the DataS-

tore encrypted, although this would require them to pro-

vide a password to SafeButton (similarly to the above

mentioned settings synchronization features). For the

pure JavaScript implementation, though, as discussed in

Section 6, the cryptographic key can be supplied by the

SNS upon user login, making the process completely

transparent to the user.

Security in Multi-user Environments We now con-

sider the operation of SafeButton in a multi-user environ-

ment where more than one users share the same browser

instance. In general, sharing the same browser instance is

a bad security practice, because after users are done with

a browsing session they may leave sensitive information

behind, such as stored passwords, cookies, and browsing

history. Ideally, users should maintain their own browser

instance or accounts in the operating system.

SafeButton retrieves private information when users

are logged in the SNS, and stores it locally even after

they log out, as it would be inefficient to erase it every

single time. Multiple users are supported by monitor-

ing the current cookies for that domain of the SNS, and

serving personalized content only for the user that is cur-

rently logged in. Local entries that belong to a user ID

that does not match the one currently logged in are never

returned. Obviously, users that share the same OS ac-

count can access each other’s locally stored data, since

they are contained in the same DataStore instance, un-

less they have opted in for keeping their data encrypted,

as discussed earlier.

Shortcomings of the Graph API Throughout this pa-

per we have briefly mentioned some obstacles we have

encountered, namely shortcomings in the developer API

provided by Facebook, in respect to our objective of pro-

tecting the user’s privacy while maintaining full func-

tionality for the social plugins. We summarize these is-

sues here and discuss how the social networks in general

could support us.

User Activity Updates through the API. Currently the

Facebook API [10] offers access to the social graph but

there is no way to receive updates or “diffs” when some-

thing changes. For instance, we retrieve a friend’s “likes”

through the API, we are also able to fetch only new

“likes” from a point forward, but are unable to receive

notice when that friend “unlikes.” A friend “activity” or

“history” function could significantly aid our implemen-

tation in keeping an accurate local store.

Accuracy of the Provided Information. Sometimes, the

API calls and documentation offered to developers differ

slightly from the actual behavior of a plugin when it is of-

fered by the SNS itself [11]. This creates a predicament

for developers wishing to replicate the functionality.

Support for All Social Information that is Otherwise Ac-

cessible. We consider it reasonable for the API to pro-

vide access to information that is accessible via the so-

cial plugins offered by the SNS itself or via the profile

pages of its users. For instance, there is no API call to

644  21st USENIX Security Symposium	 USENIX Association

access the comments of a specific user, although they ap-

pear in the user’s profile page. Scrapping could retrieve

them, but this practice is not ideal. Therefore, in our case,

we have to resolve to practices that result in reduced ac-

curacy, such as anonymously retrieving a sample of the

comments of a page and placing the comments of a user’s

friends at the top, if present in the sample. Retrieving the

entire set of comments could be inefficient for pages with

too many comments.

Alternatively, Facebook could provide a call for re-

trieving just the user IDs of all the commenters, and an-

other call for specifying a set of IDs for which to retrieve

the actual comments. In that case, we could hide the IDs

of a user’s friends among a group of k strangers and re-

quest their comments for that page [56].

8 Related Work

Do Not Track [5] is a browser technology which enables

users to signal, via an HTTP header, that they do not wish

to be tracked by websites they do not explicitly visit. Un-

fortunately there are no guarantees that such a request

will be honored by the receiving site or not.

Krishnamurthy et al. [46] studied privacy leaks in on-

line social networking services. They identified the pres-

ence of embedded content from third-party domains in

the interactions of a user with the SNS itself and stress

that the combination with personal information inside an

SNS could pose a significant threat to user privacy.

There has been significant work in the interplay be-

tween SNSs and privacy. For example, there has been

some focus on protecting privacy in SNS against third-

party applications installed in a user’s profile within the

social network [41, 40, 55]. Facecloak [49] shields a

user’s personal information from a SNS and any third-

party interaction, by providing fake information to the

SNS and storing actual, sensitive information in an en-

crypted form on a separate server. The authors in Fly-

ByNight [48] propose the use of public key cryptography

among friends in a SNS so as to protect their information

from a curious social provider and potential data leaks.

Recent work has focused on how to support personal-

ized advertisements without revealing the user’s personal

information to the providing party. Adnostic [57] offers

targeted advertising while preserving the user’s privacy

by having the web browser profile the user, through the

monitoring of his browsing history, and inferring his in-

terests. It then downloads diverse content from the ad-

vertising server and selects which part of it to display to

the user. Similarly, RePriv [42] enables the browser to

mine a user’s web behavior to infer guidelines for con-

tent personalization, which are ultimately communicated

to interested sites. Our approach differs in principle as

the model of these previous systems prevents a web site

from building a profile for the user while we decouple

the identification step the user undergoes, to access his

already existing social profile, with his subsequent re-

quests for content personalization.

Mayer et al. [50] highlight the threats against user pri-

vacy by the cross-site tracking capabilities of third-party

web services. The authors detail a plethora of tracking

technologies used by the embedded pages of advertise-

ment, analytics, and social networking services. Their

work demonstrates the high level of sophistication in

web tracking technologies, and their resiliency against

browser countermeasures.

Roesner et al. [53] study the tracking ecosystem of

third-party web services and discuss current defenses, in-

cluding third-party cookie blocking. They identify cases

where tracking services actively try to evade such restric-

tions by bringing themselves in a first party position, e.g.,

by spawning pop-up windows. Moreover, the authors

present cases in which services are treated as first par-

ties when visited directly and intentionally by the users,

and at the same time appear embedded as third parties

in web sites, as is the case with social networking ser-

vices and their social plugins. Overall, they conclude that

current restrictions imposed by browsers against third-

party tracking are not fool-proof, and at the same time

find more than 500 tracking services, some with the ca-

pability to capture more than 20% of a user’s browsing

behavior.

A series of browser add-ons exist [7, 26] that block so-

cial plugins from the web pages a user visits by removing

them or preventing them from loading, in a manner sim-

ilar to what Adblock [1] does for advertisements. How-

ever, they come at the cost of full loss of functionality as

social plugins are completely removed from a page. Note

that some of these add-ons are poorly implemented and

naively remove the social plugins only after they have ap-

peared on a page, meaning that the corresponding HTTP

request containing user-identifying information has al-

ready been issued towards the server.

ShareMeNot [28, 53] is a Firefox add-on that strips

user cookies from a series of HTTP requests that the

web browser issues to load social plugins. As a result,

no user-identifying information is sent to the social net-

working service until the user explicitly interacts with

the social plugin. The downside of this approach is that

users are deprived of any personalized information of-

fered by the plugin, e.g., the number and names of any

of their friends that might have already interacted with

a page. In other words, users view these social plug-

ins as if they were logged out from the respective SNS

(or browsing in “incognito” mode). Our approach differs

from ShareMeNot in that it focuses on providing the full

content personalization of existing social plugins while

protecting user privacy.

USENIX Association 	 21st USENIX Security Symposium  645

9 Conclusion

Concerns about the interplay between social plugins and

privacy are mounting rapidly. Tensions have reached the

point that even governments consider to outlaw Face-

book’s Like button [13]. Recently, in an official response

to questions regarding user privacy asked by the govern-

ment of Norway, it was stated that “Facebook does not

use cookies to track people visiting websites using the Like

button” [37]. The current design of social plugins, as

provided by all major social networking services, com-

bined with empirical evidence [9], stresses the need for

changes so that words align with actions. We want to

believe that SNSs treat the privacy of their members as

an issue of the utmost importance, and we hope that they

are willing to ensure it through technical means.

In this paper, we have presented a novel design for

privacy-preserving social plugins, which provide exactly

the same user experience as existing plugins, and at the

same time prevent SNSs from being able to track the

browsing activities of their users. We have described in

detail how this design can be offered transparently as a

service to users of existing SNSs without the need to in-

stall any additional software, and thus envisage that it

could be adopted for the protection of their member’s

privacy. SafeButton, our proof-of-concept implemen-

tation of this design as a browser add-on for Firefox,

demonstrates the practicality of our approach. SafeBut-

ton is publicly available, and currently supports full con-

tent personalization in a privacy-preserving way and with

minimal space overhead for seven out of the nine so-

cial plugins offered by Facebook, while it loads them 2.8

times faster compared to their original versions.

Availability

SafeButton is publicly available as an open source

project at http://www.cs.columbia.edu/~kontaxis/

safebutton/

Acknowledgements

This work was supported in part by the FP7-PEOPLE-

2009-IOF project MALCODE and the FP7 project

SysSec, funded by the European Commission under

Grant Agreements No. 254116 and No. 257007. This

work was also supported by the National Science Foun-

dation through Grant CNS-09-14312, with additional

support from Google. Any opinions, findings, conclu-

sions, or recommendations expressed herein are those of

the authors, and do not necessarily reflect those of the US

Government or the NSF.

References

[1] AdBlock Plus. https://addons.mozilla.org/
en-US/firefox/addon/adblock-plus/.

[2] Browser Security Handbook - Third-party cookie rules.

http://code.google.com/p/browsersec/wiki/
Part2#Third-party_cookie_rules.

[3] Chromium - Don’t play plugin instances inside suppressed

popups? http://code.google.com/p/chromium/
issues/detail?id=3477.

[4] Disconnect. http://disconnect.me/.

[5] Do Not Track - Universal Web Tracking Opt Out. http://
donottrack.us/.

[6] Facebook - How many Pages can I like? https://www.
facebook.com/help/?faq=116603848424794.

[7] Facebook Blocker. http://webgraph.com/
resources/facebookblocker/.

[8] Facebook Fact Sheet. http://newsroom.fb.com/
content/default.aspx?NewsAreaId=22.

[9] Facebook fixes logout issue, explains cook-

ies. http://nikcub.appspot.com/
facebook-fixes-logout-issue-explains-cookies .

[10] Facebook Graph API. http://developers.facebook.
com/docs/reference/api/.

[11] Facebook Like Button Count Inaccuracies.

http://faso.com/fineartviews/21028/
facebook-like-button-count-inaccuracies .

[12] Facebook Plugins. http://developers.facebook.
com/docs/plugins/.

[13] Facebook’s Like button illegal in German state. http://
news.cnet.com/8301-1023_3-20094866-93/
facebooks-like-button-illegal-in-german-state/ .

[14] Firefox Sync. http://www.mozilla.org/en-US/
mobile/sync/.

[15] Ghostery. http://www.ghostery.com/.

[16] Google +1 button. http://www.google.com/+1/
button/.

[17] HTTP state management. http://www.ietf.org/rfc/
rfc2109.txt.

[18] Hypertext Transfer Protocol 1.1. http://www.ietf.
org/rfc/rfc2616.txt.

[19] Indexed Database API. http://www.w3.org/TR/
IndexedDB/.

[20] MDN - Intercepting Page Loads. https://developer.
mozilla.org/en/XUL_School/Intercepting_
Page_Loads.

[21] MDN - Pageshow Event. https://developer.
mozilla.org/en/using_firefox_1.5_caching#
pageshow.

[22] MDN - window.postMessage. https://developer.
mozilla.org/en/DOM/window.postMessage.

[23] MDN - XML User Interface Language. https://
developer.mozilla.org/En/XUL.

[24] Mozilla At a Glance. http://blog.mozilla.org/
press/ataglance/.

[25] MSDN Blogs - Google Bypassing User Privacy Settings.

646  21st USENIX Security Symposium	 USENIX Association

http://blogs.msdn.com/b/ie/archive/2012/02/
20/google-bypassing-user-privacy-settings.
aspx.

[26] No Likie. https://chrome.google.com/webstore/
detail/pockodjapmojcccdpgfhkjldcnbhenjm .

[27] NoScript. https://addons.mozilla.org/en-US/
firefox/addon/noscript/.

[28] ShareMeNot. http://sharemenot.cs.washington.
edu/.

[29] The Chromium projects - Sync. http://www.chromium.
org/developers/design-documents/sync.

[30] The Platform for Privacy Preferences Specification.

http://www.w3.org/TR/P3P/.

[31] Time Magazine - One Minute on Facebook. http://
www.time.com/time/video/player/0,32068,
711054024001_2037229,00.html.

[32] Uniform Resource Identifier. http://www.ietf.org/
rfc/rfc3986.txt.

[33] Widgets Distribution. http://trends.builtwith.
com/widgets.

[34] An Open Letter to Facebook CEO Mark Zuckerberg,

June 2010. https://www.eff.org/files/filenode/
social_networks/OpenLettertoFacebook.pdf.

[35] Facebook + Media - The Value of a Liker, Sept. 2010.

https://www.facebook.com/note.php?note_
id=150630338305797.

[36] 5 ways Facebook’s new features will fuel social shop-

ping, Sept. 2011. http://mashable.com/2011/09/
29/facebook-social-shopping/.

[37] Facebook’s response to questions from the

Data Inspectorate of Norway, Sept. 2011.

http://www.datatilsynet.no/upload/
Dokumenter/utredningeravDatatilsynet/
FromFacebook-Norway-DPA.pdf.

[38] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the

second-generation onion router. In Proceedings of the 13th

USENIX Security Symposium, pages 303–320. USENIX

Association, 2004.

[39] P. Eckersley. How unique is your web browser? In Pro-

ceedings of the 10th international conference on Privacy

Enhancing Technologies, pages 1–18. Springer, 2010.

[40] M. Egele, A. Moser, C. Kruegel, and E. Kirda. PoX: Pro-

tecting users from malicious facebook applications. In Pro-

ceedings of the 9th Annual IEEE international conference

on Pervasive Computing and Communications (PerCom),

Workshop Proceedings, pages 288–294. IEEE Computer

Society, 2011.

[41] A. Felt and D. Evans. Privacy protection for social network-

ing platforms. In Proceedings of the 2008 IEEE Workshop

on Web 2.0 Security and Privacy, 2008.

[42] M. Fredrikson and B. Livshits. RePriv: Re-envisioning in-

browser privacy. In Proceedings of the 2011 IEEE Sympo-

sium on Security and Privacy, pages 131–146. IEEE Com-

puter Society, 2011.

[43] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Pro-

tecting browser state from web privacy attacks. In Proceed-

ings of the 15th international World Wide Web Conference

(WWW), pages 737–744. ACM, 2006.

[44] A. Kobsa. Privacy-enhanced personalization. Communica-

tions of the ACM, 50:24–33, August 2007.

[45] G. Kontaxis, M. Polychronakis, and E. P. Markatos. Su-

doWeb: Minimizing information disclosure to third parties

in single sign-on platforms. In Proceedings of the 14th In-

formation Security Conference, pages 197–212. Springer,

2011.

[46] B. Krishnamurthy and C. E. Wills. Characterizing privacy in

online social networks. In Proceeedings of the 1st Workshop

on Online Social Networks, pages 37–42. ACM, 2008.

[47] B. Krishnamurthy and C. E. Wills. On the leakage of per-

sonally identifiable information via online social networks.

SIGCOMM Computer Communication Review, 40, 2010.

[48] M. M. Lucas and N. Borisov. FlyByNight: mitigating the

privacy risks of social networking. In Proceedings of the

7th ACM workshop on Privacy in the ElecTronic Society

(PETS), pages 1–8. ACM, 2008.

[49] W. Luo, Q. Xie, and U. Hengartner. FaceCloak: An archi-

tecture for user privacy on social networking sites. In Pro-

ceedings of the international conference on computational

science and engineering, pages 26–33. IEEE Computer So-

ciety, 2009.

[50] J. R. Mayer and J. C. Mitchell. Third-Party Web Tracking:

Policy and Technology. In Proceedings of the 2012 IEEE

Symposium on Security and Privacy. IEEE Computer Soci-

ety, 2012.

[51] L. I. Millett, B. Friedman, and E. Felten. Cookies and web

browser design: toward realizing informed consent online.

In Proceedings of the SIGCHI conference on Human factors

in computing systems. ACM, 2001.

[52] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. My

botnet is bigger than yours (maybe, better than yours): why

size estimates remain challenging. In Proceedings of the

first workshop on Hot topics in understanding Botnets (Hot-

Bots). USENIX Association, 2007.

[53] F. Roesner, T. Kohno, and D. Wetherall. Detecting and de-

fending against third-party tracking on the web. In Proceed-

ings of the 9th USENIX conference on Networked Systems

Design and Implementation (NSDI). USENIX Association,

2012.

[54] A. Roosendaal. Facebook tracks and traces everyone: Like

this! http://ssrn.com/abstract=1717563.

[55] K. Singh, S. Bhola, and W. Lee. xbook: Redesigning pri-

vacy control in social networking platforms. In Proceedings

of the 18th USENIX Security Symposium, pages 249–266.

USENIX Association, 2009.

[56] L. Sweeney. k-anonymity: a model for protecting pri-

vacy. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 10:557–570, October 2002.

[57] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and

S. Barocas. Adnostic: Privacy preserving targeted adver-

tising. In Proceedings of the 17th Network and Distributed

System Security Symposium (NDSS). IEEE Internet Society,

2010.

[58] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow.

The anatomy of the facebook social graph. CoRR,

abs/1111.4503, 2011.

USENIX Association 	 21st USENIX Security Symposium  647

Social Networking with Frientegrity:
Privacy and Integrity with an Untrusted Provider

Ariel J. Feldman, Aaron Blankstein, Michael J. Freedman, and Edward W. Felten

Princeton University

Abstract
Today’s social networking services require users to trust

the service provider with the confidentiality and integrity
of their data. But with their history of data leaks and
privacy controversies, these services are not always de-
serving of this trust. Indeed, a malicious provider could
not only violate users’ privacy, it could equivocate and
show different users divergent views of the system’s state.
Such misbehavior can lead to numerous harms including
surreptitious censorship.

In light of these threats, this paper presents Frientegrity,
a framework for social networking applications that can be
realized with an untrusted service provider. In Frientegrity,
a provider observes only encrypted data and cannot devi-
ate from correct execution without being detected. Prior
secure social networking systems have either been decen-
tralized, sacrificing the availability and convenience of a
centralized provider, or have focused almost entirely on
users’ privacy while ignoring the threat of equivocation.
On the other hand, existing systems that are robust to
equivocation do not scale to the needs social networking
applications in which users may have hundreds of friends,
and in which users are mainly interested the latest updates,
not in the thousands that may have come before.

To address these challenges, we present a novel method
for detecting provider equivocation in which clients col-
laborate to verify correctness. In addition, we introduce an
access control mechanism that offers efficient revocation
and scales logarithmically with the number of friends. We
present a prototype implementation demonstrating that
Frientegrity provides latency and throughput that meet the
needs of a realistic workload.

1. Introduction
Popular social networking sites have hundreds of millions
of active users [20]. They have enabled new forms of
communication, organization, and information sharing; or,
as Facebook’s prospectus claims, they exist “to make the
world more open and connected” [60]. But by now, it is
widely understood that these benefits come at the cost of
having to trust these centralized services with the privacy
of one’s social interactions. The history of these services
is rife with unplanned data disclosures (e.g., [22, 40]), and

these services’ centralization of information makes them
attractive targets for attack by malicious insiders and out-
siders. In addition, social networking sites face pressure
from government agencies world-wide to release infor-
mation on demand, often without search warrants [24].
Finally and perhaps worst of all, the behavior of service
providers themselves is a source of users’ privacy con-
cerns. Providers have repeatedly changed their privacy
policies and default privacy settings, and have made public
information that their users thought was private [46, 47].

Less recognized, however, is the extent to which users
trust social networking sites with the integrity of their data,
and the harm that a malicious or compromised provider
could do by violating it. Prior work on secure social
networking has focused primarily on privacy and largely
neglected integrity, or at most employed digital signatures
on users’ individual messages [5, 53, 54, 56]. But a ma-
licious provider could be more insidious. For example,
bloggers have claimed that Sina Weibo, a Chinese mi-
croblogging site, tried to disguise its censorship of a user’s
posts by hiding them from the user’s followers but still
showing them to the user [51]. This behavior is an exam-
ple of server equivocation [34, 39], in which a malicious
service presents different clients with divergent views of
the system state. We argue that to truly protect users’ data,
a secure social networking service should defend against
this sort of attack.

To address the security concerns surrounding social net-
working, numerous prior works (e.g., [5, 17, 56]) have
proposed decentralized designs in which the social net-
working service is provided not by a centralized provider,
but by a collection of federated nodes. Each node could
either be a service provider of a user’s choice or the user’s
own machine or those of her friends. We believe that
decentralization is the wrong, or at least an insufficient,
approach, however, because it leaves the user with an un-
enviable dilemma: either sacrifice availability, reliability,
and convenience by storing her data on her own machine,
or entrust her data to one of several providers that she
probably does not know or trust any more than she would
a centralized provider.

In light of these problems, we present Frientegrity, a
framework for building social networking services that
protects the privacy and integrity of users’ data from a

1

648  21st USENIX Security Symposium	 USENIX Association

potentially malicious provider, while preserving the avail-
ability, reliability, and usability benefits of centralization.
Frientegrity supports familiar social networking features
such as “walls,” “news feeds,” comment threads, and pho-
tos, as well as common access control mechanisms such
as “friends,” “friends-of-friends,” and “followers.” But
in Frientegrity, the provider’s servers only see encrypted
data, and clients can collaborate to detect server equivo-
cation and other forms of misbehavior such as failing to
properly enforce access control. In this way, Frientegrity
bases its confidentiality and integrity guarantees on the
security of users’ cryptographic keys, rather than on the
service provider’s good intentions or the correctness of its
complex server code. Frientegrity remains highly scalable
while providing these properties by spreading system state
across many shared-nothing servers [52].

To defend against server equivocation, Frientegrity en-
forces a property called fork* consistency [33]. A fork*-
consistent system ensures that if the provider is honest,
clients see a strongly-consistent (linearizable [27]) order-
ing of updates to an object (e.g., a wall or comment thread).
But if a malicious provider presents a pair of clients with
divergent views of the object, then the provider must pre-
vent the clients from ever seeing each other’s subsequent
updates lest they identify the provider as faulty.

Prior systems have employed variants of fork* consis-
tency to implement network file systems [33, 34], key-
value stores [7, 38, 50], and group collaboration sys-
tems [21] with untrusted servers. But these systems as-
sumed that the number of users would be small or that
clients would be connected to the servers most of the time.
As a result, to enforce fork* consistency, they presumed
that it would be reasonable for clients to perform work
that is linear in either the number of users or the number
of updates ever submitted to the system. But these as-
sumptions do not hold in social networking applications
in which users have hundreds of friends, clients are Web
browsers or mobile devices that connect only intermit-
tently, and users typically are interested only in the most
recent updates, not in the thousands that may have come
before.

To accommodate these unique scalability challenges,
we present a novel method of enforcing fork* consistency
in which clients collaborate to detect server equivocation.
This mechanism allows each client to do only a small
portion of the work required to verify correctness, yet is
robust to collusion between a misbehaving provider and
as many as f malicious users, where f is a predetermined
security parameter per object.

Access control is another area where social network-
ing presents new scalability problems. A user may have
hundreds of friends and tens of thousands of friends-of-
friends (FoFs) [19]. Yet, among prior social networking
systems that employ encryption for access control (e.g.,

[5, 9, 37]), many require work that is linear in the number
of friends, if not FoFs, to revoke a friend’s access (i.e.,
to “un-friend”). Frientegrity, on the other hand, supports
fast revocation of friends and FoFs, and also gives clients
a means to efficiently verify that the provider has only
allowed writes from authorized users. It does so through a
novel combination of persistent authenticated dictionar-
ies [12] and key graphs [59].

To evaluate the scalability of Frientegrity, we imple-
mented a prototype that simulates a Facebook-like service.
We demonstrate that Frientegrity is capable of scaling with
reasonable performance by testing this prototype using
workloads with tens of thousands of updates per object
and access control lists containing hundreds of users.

Roadmap In §2, we introduce Frientegrity’s goals and
the threat model against which it operates. §3 presents an
overview of Frientegrity’s architecture using the task of
fetching a “news feed” as an example. §4 delves into the
details of Frientegrity’s data structures and protocols for
collaboratively enforcing fork* consistency on an object,
establishing dependencies between objects, and enforcing
access control. §5 discusses additional issues for untrusted
social networks such as friend discovery and group admin-
istration. We describe our prototype implementation in
§6 and then evaluate its performance and scalability in §7.
We discuss related work in §8 and then conclude.

2. System Model
In Frientegrity, the service provider runs a set of servers
that store objects, each of which corresponds to a famil-
iar social networking construct such as a Facebook-like
“wall”, a comment thread, or a photo or album. Clients
submit updates to these objects, called operations, on be-
half of their users. Each operation is encrypted under a
key known only to a set of authorized users, such as a
particular user’s friends, and not to the provider. Thus,
the role of the provider’s servers is limited to storing op-
erations, assigning them a canonical order, and returning
them to clients upon request, as well as ensuring that only
authorized clients can write to each object. To confirm
that servers are fulfilling this role faithfully, clients collab-
orate to verify their output. Whenever a client performs a
read, it checks whether the response is consistent with the
responses that other clients received.

2.1 Goals
Frientegrity should satisfy the following properties:

Broadly applicable: If Frientegrity is to be adopted, it
must support the features of popular social networks such
as Facebook-like walls or Twitter-like feeds. It must also
support both the symmetric “friend” and “friend-of-friend”
relationships of services like Facebook and the asymmetric
“follower” relationships of services like Twitter.

2

USENIX Association 	 21st USENIX Security Symposium  649

Keeps data confidential: Because the provider is un-
trusted, clients must encrypt their operations before sub-
mitting them to the provider’s servers. Frientegrity must
ensure that all and only the clients of authorized users can
obtain the necessary encryption keys.

Detects misbehavior: Even without access to objects’
plaintexts, a malicious provider could still try to forge
or alter clients’ operations. It could also equivocate and
show different clients inconsistent views of the objects.
Moreover, malicious users could collude with the provider
to deceive other users or could attempt to falsely accuse
the provider of being malicious. Frientegrity must guar-
antee that as long as the number of malicious users with
permission to modify an object is below a predetermined
threshold, clients will be able to detect such misbehavior.

Efficient: Frientegrity should be sufficiently scalable to
be used in practice. In particular, a client that is only in-
terested in the most recent updates to an object should not
have to download and check the object in its entirety just
so that the it can perform the necessary verification. Fur-
thermore, because social networking users routinely have
hundreds of friends and tens of thousands of friends-of-
friends [19], access control list changes must be performed
in time that is better than linear in the number of users.

2.2 Detecting Server Equivocation
To prevent a malicious provider from forging or modi-
fying clients’ operations without detection, Frientegrity
clients digitally sign all their operations with their users’
private keys. But as we have discussed, signatures are not
sufficient for correctness, as a misbehaving provider could
still equivocate about the history of operations.

To mitigate this threat, Frientegrity employs fork* con-
sistency [33].1 In fork*-consistent systems, clients share
information about their individual views of the history by
embedding it in every operation they send. As a result, if
clients to whom the provider has equivocated ever com-
municate, they will discover the provider’s misbehavior.
The provider can still fork the clients into disjoint groups
and only tell each client about operations by others in its
group, but then it can never again show operations from
one group to the members of another without risking de-
tection. Furthermore, if clients are occasionally able to
exchange views of the history out-of-band, even a provider
which forks the clients will not be able to cheat for long.

1Fork* consistency is a weaker variant of an earlier model
called fork consistency [39]. They differ in that under fork con-
sistency, a pair of clients only needs to exchange one message
to detect server equivocation, whereas under fork* consistency,
they may need to exchange two. Frientegrity enforces fork*
consistency because it permits a one-round protocol to submit
operations, rather than two. It also ensures that a crashed client
cannot prevent the system from making progress.

Ideally, to mitigate the threat of provider equivocation,
Frientegrity would treat all of the operations performed on
all of the objects in the system as a single, unified history
and enforce fork* consistency on that history. Such a
design would require establishing a total order on all of the
operations in the system regardless of the objects to which
they belonged. In so doing, it would create unnecessary
dependencies between unrelated objects, such as between
the “walls” of two users on opposite sides of the social
graph. It would then be harder to store objects on different
servers without resorting to either expensive agreement
protocols (e.g., Paxos [31]) or using a single serialization
point for all operations.

Instead, like many scale-out services, objects in Frien-
tegrity are spread out across many servers; these objects
may be indexed either through a directory service [1, 23]
or through hashing [15, 30]. The provider handles each
object independently and only orders operations with re-
spect to the other operations in the same object. Clients,
in turn, exchange their views of each object to which they
have access separately. Thus, for efficiency, Frientegrity
only enforces fork* consistency on a per-object basis.

There are situations, however, when it is necessary to
make an exception to this rule and specify that an opera-
tion in one object happened after an operation in another.
Frientegrity allows clients to detect provider equivocation
about the order of such a pair of operations by supply-
ing a mechanism for explicitly entangling the histories of
multiple objects (see §3.4).

2.3 Threat Model
Provider: We assume that the provider may be actively
malicious. It may not only attempt to violate the confiden-
tiality of users’ social interactions, but also may attempt to
compromise their integrity through either equivocation or
by directly tampering with objects, operations, or access
control lists (ACLs).

Although Frientegrity makes provider misbehavior de-
tectable, it does not prevent a malicious provider from
denying service, either by blocking all of a client’s updates
or by erasing the encrypted data it stores. To mitigate this
threat, clients could replicate their encrypted operations
on servers run by alternate providers. Furthermore, if
provider equivocation creates inconsistencies in the sys-
tem’s state, clients can resolve them using fork-recovery
techniques, such as those employed by SPORC [21]. We
argue, however, that because Frientegrity allows provider
misbehavior to be detected quickly, providers will have
an incentive to avoid misbehaving out of fear of legal
repercussions or damage to their reputations.

The provider does not have access to the contents of
objects or the contents of the individual operations that
clients upload, because they are encrypted under keys that
it does not know. In addition, because users’ names are

3

650  21st USENIX Security Symposium	 USENIX Association

also encrypted, the provider can only identify users by
pseudonyms, such as the hash of the public keys they
use within the system. Nevertheless, we do not seek to
hide social relationships: we assume that the provider
can learn the entire pseudonymous social graph, including
who is friends with whom and who interacts with whom,
by analyzing the interconnections between objects and
by keeping track of which pseudonyms appear in which
objects, (e.g., by using social network deanonymization
techniques [4, 43]).

Preventing the provider from learning the social graph
is likely to be impossible in practice because even if
users used a new pseudonym for every new operation,
the provider would still be able to infer a great deal from
the size and timing of their operations. After all, in most
social networking applications, the first thing a user does
when she signs in is check a “news feed” which is com-
prised of her friends’ most recent updates. In order to con-
struct the news feed, she must query each of her friend’s
feed objects in succession, and in so doing reveal to the
provider which feed objects are related.

Users and Clients: We assume that users may also be
malicious and may use the clients they control to attempt
to read and modify objects to which they do not have
access. In addition, malicious users may collude with
the provider or with other users to exceed their privileges
or to deceive honest users. They may also attempt to
falsely accuse the provider of misbehavior. Finally, we
assume that some clients may be controlled by Sybil users,
created by the provider to subvert the clients’ defenses
against server equivocation.

Frientegrity’s security is based on the assumption, how-
ever, that among the users which have access to a given
object, no more than some constant f will be malicious
(Byzantine faulty). We believe that this assumption is rea-
sonable because a user can only access an object if she has
been explicitly invited by another user with administrator
privileges for the object (e.g., Alice can only access Bob’s
wall if he explicitly adds her as a friend). As we describe
in §4.1, this assumption allows clients to collaborate to
detect provider misbehavior. If a client sees that at least
f + 1 other users have vouched for the provider’s output,
the client can assume that it is correct.

Client code: We assume the presence of a code authen-
tication infrastructure that can verify that the application
code run by clients is genuine. This mechanism might rely
on code signing or on HTTPS connections to a trusted
server (different from the untrusted service provider used
as part of Frientegrity’s protocols).

3. System Overview

As discussed above, to ensure that the provider is behav-
ing correctly, Frientegrity requires clients to verify the

…

Provider

Srv 1
 Srv 2
 Srv 3
 Srv n

Bob’s wall

Bob’s ACL history

Bob’s ACL

Alice

depends

readObject(‘Bob’s wall’)

2

3

1

Decrypt
 Verify

Figure 1: A client fetches a news feed in Frientegrity by
reading the latest posts from her friends’ walls, as well as
information to verify, authenticate, and decrypt the posts.

output that they receive from the provider’s servers. As
a result, whenever clients retrieve the latest updates to an
object, the provider’s response must include enough infor-
mation to make such verification possible. In addition, the
provider must furnish the key material that allows autho-
rized clients with the appropriate private keys to decrypt
the latest operations. Thus, when designing Frientegrity’s
protocols and data structures, our central aim was to en-
sure that clients could perform the necessary verification
and obtain the required keys efficiently.

To explain these mechanisms, we use the example of
a user Alice who wants to fetch her “news feed” and
describes the steps that her client takes on her behalf. For
simplicity, in this and subsequent examples throughout
the paper, we often speak of users, such as Alice, when we
really mean to refer to the clients acting on their behalf.

3.1 Example: Fetching a News Feed
Alice’s news feed consists of the most recent updates
to the sources to which she is subscribed. In Facebook,
for example, this typically corresponds to the most recent
posts to her friends’ “walls”, whereas in Twitter, it is made
up of the most recent tweets from the users she follows.
At a high level, Frientegrity performs the following steps
when Alice’s fetches her news feed, as shown in Figure 1.

1. For each of Alice’s friends, Alice’s sends a readOb-
ject RPC to the server containing the friend’s wall
object.

2. In response to a readObject RPC for a friend Bob,
a well-behaved server returns the most recent opera-
tions in Bob’s wall, as well as sufficient information
and key material for Alice to verify and decrypt them.

3. Upon receiving the operations from Bob’s wall, Al-
ice performs a series of verification steps aimed at
detecting server misbehavior. Then, using her pri-
vate key, she decrypts the key material and uses it to
decrypt the operations. Finally, when she has veri-
fied and decrypted the recent wall posts from all her

4

USENIX Association 	 21st USENIX Security Symposium  651

friends, she combines them and optionally filters and
prioritizes them according to a client-side policy.

For Alice to verify the response to each readObject, she
must be able to check the following properties efficiently:

1. The provider has not equivocated about the wall’s
contents: The provider must return enough of the
wall object to allow Alice to guarantee that history
of the operations performed on the wall is fork* con-
sistent.

2. Every operation was created by an authorized user:
The provider must prove that each operation from the
wall that it returns was created by a user who was
authorized to do so at the time that the operation was
submitted.

3. The provider has not equivocated about the set of
authorized users: Alice must be able to verify that
the provider did not add, drop, or reorder users’ mod-
ifications to the access control list that applies to the
wall object.

4. The ACL is not outdated: Alice must be able to
ensure that the provider did not roll back the ACL
to an earlier version in order to trick the client into
accepting updates from a revoked user.

The remainder of this section summarizes the mecha-
nisms with which Frientegrity enforces these properties.

3.2 Enforcing Fork* Consistency
Clients defend against provider equivocation about the
contents of Bob’s wall or any other object by comparing
their views of the object’s history, thereby enforcing fork*
consistency. Many prior systems, such as BFT2F [33] and
SPORC [21], enforced fork* consistency by having each
client maintain a linear hash chain over the operations that
it has seen. Every new operation that it submits to the
server includes the most recent hash. On receiving an op-
eration created by another client, a client in such systems
checks whether the history hash included in the operation
matches the client’s own hash chain computation. If it
does not, the client knows that the server has equivocated.

The problem with this approach is that it requires each
client to perform work that is linear in the size of the
entire history of operations. This requirement is ill suited
to social networks because an object such as Bob’s wall
might contain thousands of operations dating back years.
If Alice is only interested in Bob’s most recent updates,
as is typically the case, she should not have to download
and check the entire history just to be able to detect server
equivocation. This is especially true considering that when
fetching a news feed, Alice must read all of her friends’
walls, and not just Bob’s.

To address these problems, Frientegrity clients verify
an object’s history collaboratively, so that no single client

needs to examine it in its entirety. Frientegrity’s collab-
orative verification scheme allows each client to do only
a small portion of the work, yet is robust to collusion
between a misbehaving provider and as many as f mali-
cious users. When f is small relative to the number of
users who have written to an object, each client will most
likely only have to do work that is logarithmic, rather than
linear, in the size of the history (as our evaluation demon-
strates in §7.5). We present Frientegrity’s collaborative
verification algorithm in §4.1.

3.3 Making Access Control Verifiable
A user Bob’s profile is comprised of multiple objects in ad-
dition to his wall, such as photos and comment threads. To
allow Bob to efficiently specify the users allowed to access
all of these objects (i.e., his friends), Frientegrity stores
Bob’s friend list all in one place as a separate ACL. ACLs
store users’ pseudonyms in the clear, and every operation
is labeled with the pseudonym of its creator. As a result,
a well-behaved provider can reject operations that were
submitted by unauthorized users. But because the provider
is untrusted, when Alice reads Bob’s wall, the provider
must prove that it enforced access control correctly on
every operation it returns. Thus, Frientegrity’s ACL data
structure must allow the server to construct efficiently-
checkable proofs that the creator of each operation was
indeed authorized by Bob.

Frientegrity also uses the ACL to store the key material
with which authorized users can decrypt the operations on
Bob’s wall and encrypt new ones. Consequently, ACLs
must be designed to allow clients with the appropriate pri-
vate keys to efficiently retrieve the necessary key material.
Moreover, because social network ACLs may be large,
ACL modifications and any associated rekeying must be
efficient.

To support both efficiently-checkable membership
proofs and efficient rekeying, Frientegrity ACLs are imple-
mented as a novel combination of persistent authenticated
dictionaries [12] and key graphs [59]. Whereas most
prior social networking systems that employ encryption
required work linear in the number of friends to revoke a
user’s access, all of Frientegrity’s ACL operations run in
logarithmic time.

Even if it convinces Alice that every operation came
from someone who was authorized by Bob at some point,
the provider must still prove that it did not equivocate
about the history of changes Bob made to his ACL. To ad-
dress this problem, Frientegrity maintains an ACL history
object, in which each operation corresponds to a change
to the ACL and which Alice must check for fork* con-
sistency, just like with Bob’s wall. Frientegrity’s ACL
data structure and how it interacts with ACL histories are
further explained in §4.3.

5

652  21st USENIX Security Symposium	 USENIX Association

3.4 Preventing ACL Rollbacks
Even without equivocating about the contents of either
Bob’s wall or his ACL, a malicious provider could still
give Alice an outdated ACL in order to trick her into ac-
cepting operations from a revoked user. To mitigate this
threat, operations in Bob’s wall are annotated with depen-
dencies on Bob’s ACL history (the red dotted arrow in
Figure 1). A dependency indicates that a particular oper-
ation in one object happened after a particular operation
in another object. Thus, by including a dependency in an
operation that it posts to Bob’s wall, a client forces the
provider to show anyone who later reads the operation
an ACL that is at least as new as the one that the client
observed when it created the operation. In §4.2, we ex-
plain the implementation of dependencies and describe
additional situations where they can be used.

4. System Design
Clients interact with Frientegrity primarily by reading and
writing objects and ACLs via the following four RPCs: 2

• readObject(objectID, k, [otherOps]). Returns the k
most recent operations in object objectID, and option-
ally, a set of additional earlier operations from the
object (otherOps). But as we explain in the previous
section, the provider must also return enough opera-
tions from the object to allow the client to verify that
the provider has not equivocated and proofs from the
ACL that show that every operation came from an
authorized user. In addition, it must return key ma-
terial from the ACL that allows the client to decrypt
the object.
• writeObject(objectID, op). Submits the new operation

op to object objectID. Every new operation is signed
by the user that created it. To allow clients to enforce
fork* consistency, it also includes a compact repre-
sentation of the submitting client’s view of object’s
state. (This implies that the client must have read the
object at least once before submitting an update.)
• readACL(aclID, [userToAdd] [userToRemove]). Re-

turns ACL aclID and its corresponding ACL history
object. As an optimization, the client can optionally
specify in advance that it intends to add or remove
particular users from the ACL so that the provider
only has to return the portion of the ACL that the
client needs to change.
• writeACL(aclID, aclUpdate). Submits an update to

ACL aclID. Only administrator users (e.g., the owner
of a Facebook-like profile) can modify the ACL. The
objects to which the ACL applies are encrypted under
a key that is shared only among currently authorized

2For brevity, we omit RPCs for creating new objects and
ACLs and for adding new users to the system.

users. Thus, to add a user, the client must update the
ACL so that it includes the encryption of this shared
key under the new user’s public key. To remove a
user, the ACL must be updated with a new shared key
encrypted such that all remaining users can retrieve
it. (See §4.3.3.)

The remainder of this section describes how Frientegrity
makes these RPCs possible. It discusses the algorithms
and data structures underlying object verification (§4.1),
dependencies between objects (§4.2), and verifiable access
control §4.3).

4.1 Making Objects Verifiable
4.1.1 Object Representation

Frientegrity’s object representation must allow clients to
compare their views of the object’s history without requir-
ing any of them to have the entire history. Representing
an object as a simple list of operations would be insuffi-
cient because it is impossible to compute the hash of a list
without having all of the elements going back to the first
one. As a result, objects in Frientegrity are represented as
history trees.

A history tree, first introduced by Crosby et al. [11] for
tamper-evident logging, is essentially a versioned Merkle
tree [41]. Like an ordinary Merkle tree, data (in this case,
operations) are stored in the leaves, each internal node
stores the hash of the subtree below it, and the hash of the
root covers the tree’s entire contents. But unlike a static
Merkle tree, a history tree allows new leaves (operations)
to be added to the right side of the tree. When that occurs,
a new version of the tree is created and the hashes of the
internal nodes are recomputed accordingly.

This design has two features that are crucial for Frien-
tegrity. First, as with a Merkle tree, subtrees containing
unneeded operations can be omitted and replaced by a
stub containing the subtree’s hash. This property allows
a Frientegrity client which has only downloaded a subset
of an object’s operations to still be able to compute the
current history hash. Second, if one has a version j history
tree, it is possible to compute what the root hash would
have been as of version i < j by pretending that operations
i + 1 through j do not exist, and by then recomputing the
hashes of the internal nodes.

Frientegrity uses history trees as follows. Upon receiv-
ing a new operation via a writeObject RPC, the server
hosting the object adds it to the object’s history tree, up-
dates the root hash, and then digitally signs the hash. This
server-signed hash is called a server commitment and is
signed to prevent a malicious client from later falsely ac-
cusing the server of cheating.

When Alice reads an object of version i by calling read-
Object, the server responds with a pruned copy of the
object’s history tree containing only a subset of the opera-

6

USENIX Association 	 21st USENIX Security Symposium  653

0
 9� 10� 12� 13
 14
 15

Figure 2: A pruned object history that a provider might
send to a client. Numbered leaves represent operations and
filled boxes represent stubs of omitted subtrees. The solid
arrow represents the last operation’s prevCommitments.
Dashed arrows represent other prevCommitments.

tions, along with Ci, the server commitment to version i
of the object. If Alice then creates a new operation, she
shares her view of the history with others by embedding
Ci in the operation’s prevCommitment field. If Bob later
reads the object, which by then has version j ≥ i, he can
compare the object he receives with what Alice saw by
first computing what the root hash would have been at
version i from his perspective and then comparing it to the
prevCommitment of Alice’s operation. If his computed
value C�i does not equal Ci, then he knows the server has
equivocated.

4.1.2 Verifying an Object Collaboratively

But how many operations’ prevCommitments does a client
need to check in order to be confident that the provider
has not misbehaved? Clearly, if the client checks every
operation all the way back to the object’s creation, then
using a history tree provides no advantage over using a
hash chain. Consequently, in Frientegrity, each client only
verifies a suffix of the history and trusts others to check
the rest. If we assume that there are at most f malicious
users with write access to an object, then as long as at
least f + 1 users have vouched for a prefix of the history,
subsequent clients do not need to examine it.

To achieve this goal, every client executes the following
algorithm to verify an object that it has fetched. In re-
sponse to a readObject RPC, the provider returns a pruned
object history tree that includes all of the operations the
client requested along with any additional ones that the
client will need to check in order to verify the object.
Because the provider knows the client’s verification algo-
rithm, it can determine a priori which operations the client
will need. For simplicity, the algorithm below assumes
that only one user needs to vouch for a prefix of the history
in order for it to be considered trustworthy (i.e., f = 0).
We relax this assumption in the next section.

1. Suppose that Alice fetches an object, and the provider
replies with the pruned object shown in Figure 2. Be-
cause the object has version 15, the provider also
sends Alice its commitment C15. On receiving the
object, she checks the server’s signature on C15, re-
computes the hashes of the internal nodes, and then
verifies that her computed root hash C�15 matches C15.
Every operation she receives is signed by the user
that created it, and so she verifies these signatures as
well.

2. Alice checks the prevCommitment of the last opera-
tion (op15), which in this case is C12.3 To do so, Alice
computes what the root hash would have been if op12
were the last operation and compares her computed
value to C12. (She must have op12 to do this.)

3. Alice checks the prevCommitment of every operation
between op12 and op15 in the same way.

4. Frientegrity identifies every object by its first opera-
tion.4 Thus, to make sure that the provider did not
give her the wrong object, Alice checks that op0 has
the value she expects.

4.1.3 Correctness of Object Verification

The algorithm above aims to ensure that at least one hon-
est user has checked the contents and prevCommitment
of every operation in the history. To see how it achieves
this goal, suppose that op15 in the example was created
by the honest user Bob. Then, C12 must have been the
most recent server commitment that Bob saw at the time
he submitted the operation. More importantly, however,
because Bob is honest, Alice can assume that he would
have never submitted the operation unless he had already
verified the entire history up to op12. As a result, when
Alice verifies the object, she only needs to check the con-
tents and prevCommitments of the operations after op12.
But how was Bob convinced that the history is correct up
to op12? He was persuaded the same way Alice was. If the
author of op12 was honest, and op12’s prevCommitment
was Ci, then Bob only needed to examine the operations
from opi+1 to op12. Thus, by induction, as long as writers
are honest, every operation is checked even though no
single user examines the whole history.

Of course in the preceding argument, if any user col-
ludes with a malicious provider, then the chain of verifica-
tions going back to the beginning of the history is broken.
To mitigate this threat, Frientegrity clients can tolerate up
to f malicious users by looking back in the history until
they find a point for which at least f + 1 different users

3An operation’s prevCommitment need not refer to the imme-
diately preceding version. This could occur, for example, if the
operation had been submitted concurrently with other operations.

4Specifically, an objectID is equal to the hash of its first
operation, which contains a client-supplied random value, along
with the provider’s name and a provider-supplied random value.

7

654  21st USENIX Security Symposium	 USENIX Association

have vouched. Thus, in the example, if f = 2 and op13,
op14, and op15 were each created by a different user, then
Alice can rely on assurances from others about the history
up to op9, but must check the following operations herself.

Frientegrity allows the application to use a different
value of f for each type of object, and the appropriate f
value depends on the context. For example, for an object
representing a Twitter-like feed with a single trusted writer,
setting f = 0 might be reasonable. By contrast, an object
representing the wall of a large group with many writers
might warrant a larger f value.

The choice of f impacts performance: as f increases,
so does the number of operations that every client must
verify. But when f is low relative to the number of writers,
verifying an object requires logarithmic work in the history
size due to the structure of history trees. We evaluate this
security vs. performance trade-off empirically in §7.5.

4.2 Dependencies Between Objects
Recall that, for scalability, the provider only orders the
operations submitted to an object with respect to other op-
erations in the same object. As a result, Frientegrity only
enforces fork* consistency on the history of operations
within each object, but does not ordinarily provide any
guarantees about the order of operations across different
objects. When the order of operations spanning multi-
ple objects is relevant, however, the objects’ histories can
be entangled through dependencies. A dependency is an
assertion of the form 〈 srcObj, srcVers, dstObj, dstVers,
dstCommitment 〉, indicating that the operation with ver-
sion srcVers in srcObj happened after operation dstVers
in dstObj, and that the server commitment to dstVers of
dstObj was dstCommitment.

Dependencies are established by authorized clients in
accordance with a policy specified by the application.
When a client submits an operation to srcObj, it can create
a dependency on dstObj by annotating the operation with
the triple 〈 dstObj, dstVers, dstCommitment 〉. If another
client subsequently reads the operation, the dependency
serves as evidence that dstObj must have at least been
at version dstVers at the time the operation was created,
and the provider will be unable to trick the client into
accepting an older version of dstObj.

As described in §3.4, Frientegrity uses dependencies
to prevent a malicious provider from tricking clients into
accepting outdated ACLs. Whenever a client submits a
new operation to an object, it includes a dependency on
the most recent version of the applicable ACL history that
it has seen.5 Dependencies have other uses, however. For
example, in a Twitter-like social network, every retweet
could be annotated with a dependency on the original

5The annotation can be omitted if the prior operation in the
object points to the same ACL history version.

tweet to which it refers. In that case, a provider that
wished to suppress the original tweet would not only have
to suppress all subsequent tweets from the original user
(because Frientegrity enforces fork* consistency on the
user’s feed), it would also have to suppress all subsequent
tweets from all the users who retweeted it.

Frientegrity uses Merkle aggregation [11] to implement
dependencies efficiently. This feature of history trees al-
lows the attributes of the leaf nodes to be aggregated up
to the root, where they can be queried efficiently. In Frien-
tegrity, the root of every object’s history tree is annotated
with a list of the other objects that the object depends
on, along with those objects’ most recent versions and
server commitments. To prevent tampering, each node’s
annotations are included in its hash, so that incorrectly
aggregated values will result in an incorrect root hash.

4.3 Verifiable Access Control
4.3.1 Supporting Membership Proofs

When handling a readObject RPC, Frientegrity ACLs
must enable the provider to construct proofs that demon-
strate to a client that every returned operation was created
by an authorized user. But to truly demonstrate such autho-
rization, such a proof must not only show that a user was
present in the ACL at some point in time, it must show
that the user was in the ACL at the time the operation
was created (i.e., in the version of the ACL on which the
operation depends). As a result, an ACL must support
queries not only on the current version of its state, but
on previous versions as well. The abstract data type that
supports both membership proofs and queries on previous
versions is known as a persistent authenticated dictionary
(PAD). Thus, in Frientegrity, ACLs are PADs.

To realize the PAD abstract data type, an ACL is im-
plemented as a binary search tree in which every node
stores both an entry for a user and the hash of the subtree
below it.6 To prove that an entry u exists, it suffices for the
provider to return a pruned tree containing the search path
from the root of the tree to u, in which unneeded subtrees
in the path are replaced by stubs containing the subtrees’
hashes. If the root hash of the search path matches the
previously-known root hash of the full tree, a client can
be convinced that u is in the ACL.

To support queries on previous versions of their states,
ACLs are copy-on-write. When an administrator updates
the ACL before calling writeACL, it does not modify any

6Our ACL construction expands on a PAD design from
Crosby et al. [12] that is based on a treap [2]. A treap is a
randomized search tree that is a cross between a tree and a
heap.In addition to a key-value pair, every node has a priority,
and the treap orders the nodes both according to their keys and
according to the heap property. If nodes’ priorities are chosen
pseudorandomly, the tree will be balanced in expectation.

8

USENIX Association 	 21st USENIX Security Symposium  655

Ek_left(k)!
Ek_right(k)!

Ek_Alice_pub(k)!

Alicepseudonym! RW!
User: Priv:

parent

left child right child
Figure 3: ACLs are organized as trees for logarithmic access
time. Figure illustrates Alice’s entry in Bob’s ACL.

nodes directly. Instead, the administrator copies each node
that needs to be changed, applies the update to the copy,
and then copies all of its parents up to the root. As a result,
there is a distinct root for every version of the ACL, and
querying a previous version entails beginning a search at
the appropriate root.

4.3.2 Preventing Equivocation about ACLs

To authenticate the ACL, it is not enough for an administra-
tor to simply sign the root hash of every version, because
a malicious provider could still equivocate about the his-
tory of ACL updates. To mitigate this threat, Frientegrity
maintains a separate ACL history object that stores a log
of updates to the ACL. An ACL history resembles an or-
dinary object, and clients check it for fork* consistency
in the same way, but the operations that it contains are
special ModifyUserOps. Each version of the ACL has a
corresponding ModifyUserOp that stores the root hash as
of that version and is signed by an administrator.

In summary, proving that the posts on a user Bob’s
wall were created by authorized users requires three steps.
First, for each post, the provider must prove that the post’s
creator was in Bob’s ACL by demonstrating a search path
in the appropriate version of the ACL. Second, for each
applicable version of Bob’s ACL, the provider must pro-
vide a corresponding ModifyUserOp in Bob’s ACL history
that was signed by Bob. Finally, the provider must supply
enough of the ACL history to allow clients to check it for
fork* consistency, as described in §4.1.2.

4.3.3 Efficient Key Management and Revocation

Like many prior systems designed for untrusted servers
(e.g., [5, 21, 25, 37]), Frientegrity protects the confiden-
tiality of users’ data by encrypting it under a key that is
shared only among currently authorized users. When any
user’s access is revoked, this shared key must be changed.
Unfortunately, in most of these prior systems, changing
the key entails picking a new key and encrypting it under
the public key of the remaining users, thereby making
revocation expensive.

To make revocation more efficient, Frientegrity orga-
nizes keys into key graphs [59]. But rather than maintain-

ing a separate data structure for keys, Frientegrity stores
keys in same ACL tree that is used for membership proofs.
As shown in Figure 3, each node in Bob’s ACL not only
contains the pseudonym and privileges of an authorized
user, such as Alice, it is also assigned a random AES key
k. k is, in turn, encrypted under the keys of its left and
right children, kle f t and kright, and under Alice’s public key
kAlice pub.7 This structure allows any user in Bob’s ACL to
follow a chain of decryptions up to the root of the tree and
obtain the root key kBob root. As a result, kBob root is shared
among all of Bob’s friends and can be used to encrypt
operations that only they can access. Because the ACL
tree is balanced in expectation, the expected number of
decryptions required to obtain kBob root is logarithmic in
the number of authorized users. More significantly, this
structure makes revoking a user’s access take logarithmic
time as well. When a node is removed, only the keys along
the path from the node to the root need to be changed and
reencrypted.

4.3.4 Supporting Friends-of-Friends

Many social networking services, including Facebook,
allow users to share content with an audience that includes
not only their friends, but also their “friends-of-friends”
(FoFs). Frientegrity could be extended naively to support
sharing with FoFs by having Bob maintain a separate key
tree, where each node corresponded to a FoF instead of a
friend. This approach is undesirable, however, as the size
of the resulting tree would be quadratic in the number of
authorized users. Instead, Frientegrity stores a second FoF
key k′ in each node of Bob’s ACL. Similar to the friend
key k, k′ is encrypted under the FoF keys of the node’s
left and right children, k′le f t and k′right. But instead of being
encrypted under kAlice pub, k′ is encrypted under kAlice root,
the root key of Alice’s ACL. Thus, any of Alice’s friends
can decrypt k′ and ultimately obtain k′Bob root, which can
be used to encrypt content for any of Bob’s FoFs.

The FoF design above assumes, however, that friend
relationships are symmetric: Bob must be in Alice’s
ACL in order to obtain kAlice root. To support asymmet-
ric “follower-of-follower” relationships, such as Google+
“Extended Circles,” Frientegrity could be extended so
that a user Alice maintains a separate public-private
key pair 〈kAlice FoF pub, kAlice FoF priv〉. Alice could then
give kAlice FoF priv to her followers by encrypting it under
kAlice root, and she could give kAlice FoF pub to Bob. Finally,
Bob could encrypt k′ under kAlice FoF pub.

7To lower the cost of changing k, k is actually encrypted un-
der an AES key kuser which is, in turn, encrypted under kAlice pub.

9

656  21st USENIX Security Symposium	 USENIX Association

5. Extensions

5.1 Discovering Friends
Frientegrity identifies users by pseudonyms, such as the
hashes of their public keys. But to enable users to discover
new friends, the system must allow them to learn other
users’ real names under certain circumstances. In Frien-
tegrity, we envision that the primary way a user would
discover new friends is by searching through the ACLs
of her existing friends for FoFs that she might want to
“friend” directly. To make this possible, users could en-
crypt their real names under the keys that they use to share
content with their FoFs. A user Alice’s client could then
periodically fetch and decrypt the real names of her FoFs
and recommend them to Alice as possible new friends. Al-
ice’s client could rank each FoF according to the number
of mutual friends that Alice and the FoF share by counting
the number of times that the FoF appears in an ACL of
one of Alice’s friends.

Frientegrity’s design prevents the provider from offering
site-wide search that would allow any user to locate any
other users by their real names. After all, if any user could
search for any other user by real name, then so could
Sybils acting on behalf of a malicious provider. We believe
that this limitation is unavoidable, however, because there
is an inherent trade-off between users’ privacy and the
effectiveness of site-wide search even in existing social
networking systems.8 Thus, a pair of users who do not
already share a mutual friend must discover each other, by
exchanging their public keys out-of-band.

5.2 Multiple Group Administrators
As we describe in §4.3, when a user Alice reads another
user Bob’s wall, she verifies every wall post by consult-
ing Bob’s ACL. She, in turn, verifies Bob’s ACL using
Bob’s ACL history, and then verifies each relevant Modi-
fyUserOp by checking for Bob’s signature. To support
features like Facebook Groups or Pages, however, Fri-
entegrity must be extended to enable multiple users to
modify a single ACL and to allow these administrators be
added and removed dynamically. But if the set of admin-
istrators can change, then, as with ordinary objects, a user
verifying the ACL history must have a way to determine
that every ModifyUserOp came from a user who was a
valid administrator at the time the operation was created.
One might think the solution to this problem is to have
another ACL and ACL history just to keep track of which
users are administrators at any given time. But this pro-

8For example, in 2009, Facebook chose to weaken users’
privacy by forcing them to make certain information public, such
as their genders, photos, and current cities. It adopted this policy,
which it later reversed, so that it would be easier for someone
searching for a particular user to distinguish between multiple
users with the same name [46].

posal merely shifts the problem to the question of who is
authorized to write to these data structures.

Instead, we propose the following design. Changes
to the set of administrators would be represented as spe-
cial ModifyAdminOp. Each ModifyAdminOp would be
included in the ACL history alongside the ModifyUserOp,
but would also have a pointer to the previous ModifyAd-
minOp. In this way, the ModifyAdminOp would be linked
together to form a separate admin history, and clients
would enforce fork* consistency on this history using
a linear hash chain in the manner of BFT2F [33] and
SPORC [21]. When a client verifies the ACL history,
it would download and check the entire admin history
thereby allowing it to determine whether a particular user
was an administrator when it modified the ACL history.
Although downloading an entire history is something that
we have otherwise avoided in Frientegrity, the cost of
doing so here likely is low: Even when the set of reg-
ular users changes frequently, the set of administrators
typically does not.

5.3 Dealing with Conflicts
When multiple clients submit operations concurrently, con-
flicts can occur. Because servers do not have access to
the operations’ plaintexts, Frientegrity delegates conflict
resolution to the clients, which can employ a number of
strategies, such as last-writer-wins, operational transfor-
mation [21], or custom merge procedures [55]. In practice,
however, many kinds of updates in social networking sys-
tems, such as individual wall posts, are append operations
that are inherently commutative, and thus require no spe-
cial conflict resolution.

5.4 Public Feeds with Many Followers
Well-known individuals and organizations often use their
feeds on online social networks to disseminate information
to the general public. These feeds are not confidential, but
they would still benefit from a social networking system
that protected their integrity. Such feeds pose scalability
challenges, however, because they can have as many as
tens of millions of followers.

Fortunately, Frientegrity can be readily adapted to sup-
port these feeds efficiently. Because the object correspond-
ing to such a feed does not need to be encrypted, its ACL
does not need to store encryption keys. The ACL is only
needed to verify that every operation in the object came
from an authorized writer. As a result, the size of the
object’s ACL need only be proportional to the number of
users with write access to the object, which is often only a
single user, rather than to the total number of followers.

Popular feeds would also not prevent applications from
using dependencies to represent retweets in the manner
described in §4.2. Suppose that Alice retweets a post from
the feed of a famous individual, such as Justin Bieber.

10

USENIX Association 	 21st USENIX Security Symposium  657

Then, in such a design, the application would establish
a dependency from Alice’s feed to Justin Bieber’s. But
because dependencies only modify the source object (in
this case Alice’s feed), they would not impose any ad-
ditional performance penalty on reads of Justin Bieber’s
feed. Thus, even if Justin Bieber’s posts are frequently
retweeted, Frientegrity could still serve his feed efficiently.

6. Implementation
To evaluate Frientegrity’s design, we implemented a pro-
totype that simulates a simplified Facebook-like service.
It consists of a server that hosts a set of user profiles and
clients that fetch, verify, and update them. Each user
profile is comprised of an object representing the user’s
“wall,” as well as an ACL and ACL history object repre-
senting the user’s list of friends. The wall object is made
up of operations, each of which contains an arbitrary byte
string, that have been submitted by the user or any of her
friends. The client acts on behalf of a user and can perform
RPCs on the server to read from and write to the walls of
the user or user’s friends, as well as to update the user’s
ACL. The client can simulate the work required to build
a Facebook-like “news feed” by fetching and verifying
the most recent updates to the walls of each of the user’s
friends in parallel.

Our prototype is implemented in approximately 4700
lines of Java code (per SLOCCount [58]) and uses the
protobuf-socket-rpc [16] library for network communica-
tion. To support the history trees contained in the wall and
ACL history objects, we use the reference implementation
provided by Crosby et al. [13].

Because Frientegrity requires every operation to be
signed by its author and every server commitment to be
signed by the provider, high signature throughput is a
priority. To that end, our prototype uses the Network Se-
curity Services for Java (JSS) library from Mozilla [42] to
perform 2048-bit RSA signatures because, unlike Java’s
default RSA implementation, it is written in native code
and offers significantly better performance. In addition,
rather than signing and verifying each operation or server
commitment individually, our prototype signs and verifies
them in batches using spliced signatures [10, 13]. In so do-
ing, we improve throughput by reducing the total number
of cryptographic operations at the cost of a small potential
increase in the latency of processing a single message.

7. Experimental Evaluation
Social networking applications place a high load on
servers, and they require reasonably low latency in the
face of objects containing tens of thousands of updates
and friend lists reaching into the hundreds and thousands.
This section examines how our Frientegrity prototype per-
forms and scales under these conditions.

0.01 .1 1 10 100
Rate (tweets/day)

0.01%
0.1%

1%
10%

100%

U
se

rC
C

D
F

Figure 4: Distribution of post rates for Twitter users. 1% of
users post at least 14 times a day, while 0.1% post at least 56
times a day.

All tests were performed on machines with dual 4-core
Xeon E5620 processors clocked at 2.40 GHz, with 11 GB
of RAM and gigabit network interfaces. Our evaluation
ran with Oracle Java 1.6.0.24 and used Mozilla’s JSS cryp-
tography library to perform SHA256 hashes and RSA
2048 signatures. All tests, unless otherwise stated, ran
with a single client machine issuing requests to a separate
server machine on the same local area network, and all
data is stored in memory. A more realistic deployment
over the wide-area would include higher network latencies
(typically an additional tens to low hundreds of millisec-
onds), as well as backend storage access times (typically
in low milliseconds in datacenters). These latencies are
common to any Web service, however, and so we omit any
such synthetic overhead in our experiments.

7.1 Single-object Read and Write Latency

To understand how large object histories may get in prac-
tice, we collected actual social network usage data from
Twitter by randomly selecting over 75,000 users with pub-
lic profiles. Figure 4 shows the distribution of post rates
for Twitter users. While the majority of users do not tweet
at all, the most active users post over 200 tweets per day,
leading to tens of thousands of posts per year.

To characterize the effect of history size on read and
write latency, we measured performance of these opera-
tions as the history size varies. For each read, the client
fetched an object containing the five most recent opera-
tions along with any other required to verify the object.
As shown in Figure 5, write latency was approximately
10 ms (as it includes both a server and client signature
in addition to hashing), while read latency was approxi-
mately 6 ms (as it includes a single signature verification
and hashing). The Figure’s table breaks down median
request latency to its contributing components. As ex-
pected, a majority of the time was spent on public-key
operations; a faster signature verification implementation
or algorithm would correspondingly increase performance.
While the latency here appears constant, independent of
the history size, the number of hash verifications actually
grows logarithmically with the history. This observed be-
havior arises because, at least up to histories of 25,000

11

658  21st USENIX Security Symposium	 USENIX Association

0 5K 10K 15K 20K 25K
Object History Size

0

2

4

6

8

10

12

14
R

es
po

ns
e

L
at

en
cy

(m
s)

Write
Read

Read Server Data Fetches 0.45 ms 7.5%
Network and Data Serialization 1.06 ms 17.5%
Client Signature Verification 3.55 ms 58.8%
Other (incl. Client Decrypt, Hashing) 0.98 ms 16.3%

Total Latency 6.04 ms

Write Client Encryption 0.07 ms 0.7%
Client Signature 4.45 ms 41.7%
Network and Data Serialization 0.64 ms 6.0%
Server Signature 4.31 ms 40.4%
Other (incl. Hashing) 1.21 ms 11.3%

Total Latency 10.67 ms

Figure 5: Read and write latency for Frientegrity as the ob-
ject history size increases from 0 to 25000. Each data point
represents the median of 1000 requests. The dots above and
below the lines indicate the 90th and 10th percentiles for
each trial. The table breaks down the cost of a typical me-
dian read and write request.

0 500 1000 1500
Object History Size

0

200

400

600

800

1000

R
es

po
ns

e
L

at
en

cy
(m

s)

Frientegrity Read

Read
Write

Figure 6: Latency for requests in a naive implementation
using hash chains. The red arrow indicates the response
time for Frientegrity read requests at an object size of 2000.
Each data point is the median of 100 requests. The error
bars indicate the 90th and 10th percentiles.

operations, the constant-time overhead of a public-key
signature or verification continues to dominate the cost.

Next, we performed these same microbenchmarks on
an implementation that verifies object history using a hash
chain, rather than Frientegrity’s history trees. In this exper-
iment, each client was stateless, and so it had to perform
a complete verification when reading an object. This
verification time grows linearly with the object history

Object Signatures 7210 B
History Tree Hashes 640 B
Dependency Annotations 224 B
Other Metadata 1014 B

ACL ACL PAD 453 B
Signatures in ACL History 1531 B
Hashes in ACL History Tree 32 B
Other Metadata 226 B

Total Overhead 11300 B

Table 1: Sources of network overhead of a typical read of
an object’s five most recent updates.

size, as shown in Figure 6. Given this linear growth in
latency, verifying an object with history size of 25,000
operations would take approximately 10 s in the implemen-
tation based on a hash chain compared to Frientegrity’s
6 ms.

The performance of hash chains could be improved by
having clients cache the results of previous verifications
so they would only need to verify subsequent operations.
Even if clients were stateful, however, Figure 4 shows that
fetching the latest updates of the most prolific users would
still require hundreds of verifications per day. Worse still,
following new users or switching between client devices
could require tens of thousands of verifications.

7.2 Network Overhead

When network bandwidth is limited, the size of the mes-
sages that Frientegrity sends over the network can impact
latency and throughput. To understand this effect, we
measure the overhead that Frientegrity’s verification and
access control mechanisms add to an object that is fetched.
Table 1 provides a breakdown of the sources of overhead
in a read of the five most recent operations in an object.
The object is comprised of 100 operations all created by
a single writer. We assume that the ACL that applies to
the object only contains a single user and his associated
encrypted key and that the ACL history object contains
only two operations (an initial operation and the operation
that added the single user).

As shown in Table 1, the total overhead added by Fri-
entegrity is 11,300 B, which would add approximately
90 ms of download time on a 1 Mbps link. Not surpris-
ingly, the majority of the overhead comes from the signa-
tures on individual operations and in prevCommitments.
The object history tree contains 14 signatures, and the
ACL history contains another four. Together, this many
2048-bit RSA bare signatures would require 4068 bytes,
but because Frientegrity employs spliced signatures, they
require additional overhead in exchange for faster signing
and verification.

12

USENIX Association 	 21st USENIX Security Symposium  659

7.3 Latency of Fetching a News Feed
To present a user with a news feed, the client must perform
one readObject RPC for each of the user’s friends, and so
we expect the latency of fetching a news feed to scale lin-
early with the number of friends. Because clients can hide
network latency by pipelining requests to the server, we
expect the cost of decryption and verification to dominate.

To evaluate the latency of fetching a news feed, we
varied the number of friends from 1 to 50. We repeated
each experiment 500 times and computed the median of
the trials. A linear regression test on the results showed
an overhead of 3.557 ms per additional friend (with a
correlation coefficient of 0.99981). As expected, the value
is very close to the cost of client signature verification and
decryption from Figure 5.

Users in social networks may have hundreds of friends,
however. In 2011, the average Facebook user had
190 friends, while the 90th percentile of users had 500
friends [19]. With Frientegrity’s measured per-object over-
head, fetching wall posts from all 500 friends would re-
quire approximately 1.8 s. In practice, we expect a social
networking site to use modern Web programming tech-
niques (e.g., asynchronous Javascript) so that news feed
items could be loaded in the background and updated in-
crementally while a user stays on a website. Even today,
social networking sites often take several seconds to fully
load.

7.4 Server Throughput with Many Clients
Social networks must scale to millions of active users.
Therefore, to reduce capital and operational costs, it is
important that a server be able to maximize throughput
while maintaining low latency. To characterize a loaded
server’s behavior, we evaluated its performance as we
increased the number of clients, all issuing requests to the
same object. In this experiment, we ran multiple client
machines, each with at most 4 clients. Each client issued
3000 requests sequentially, performing a 10 B write with
a 1% probability and a read otherwise.

Figure 7 plots server throughput as the number of clients
increases, as well as server latency as a function of load.
We measured server latency from the time it received a
request until the time that it started writing data back to its
network socket. The server reached a maximal through-
put of handling around 3500 requests per second, while
median latency remained below 0.5 ms.

7.5 Effect of Increasing f
Frientegrity supports collaborative verification of object
histories. The number of malicious clients that can be
tolerated, f , has a large impact on client performance. As
f increases, the client has to examine operations further
back in the history until it finds f + 1 different writers. To

0 10 20 30 40 50
of Clients

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
hr

ou
gh

pu
t(

re
qu

es
t/s

)

Server Latency
Throughput

0.0

0.1

0.2

0.3

0.4

0.5

R
ea

d
L

at
en

cy
(m

s)

Figure 7: Server performance under increased client load.
Each data point is the median of 5 runs.

0 10 20 30 40 50
f +1

10

100

1000

R
es

po
ns

e
L

at
en

cy
(m

s)

Power
Uniform

Figure 8: Performance implication of varying minimum set
of trusted writers for collaborative verification.

understand this effect, we measured the read latency of a
single object as f grows.

In this experiment, 50 writers first issued 5000 updates
to the same object. We evaluated two different workloads
for clients. In uniform, each writer had a uniform prob-
ability (2%) of performing the write; in power law, the
writers were selected from a power-law distribution with
α=3.5 (this particular α was the observed distribution of
chat activity among users of Microsoft messaging [32]).
A client then issued a read using increasing values of f .
Read latencies plotted in Figure 8 are the median of 100
such trials.

In the uniform distribution, the number of required ver-
ifications rises slowly. But as f + 1 exceeds the number
of writers, the client must verify the entire history. For
the power law distribution, however, as f increases, the
number of required verifications rises more rapidly, and at
f = 42, the client must verify all 5000 updates. Neverthe-
less, this experiment shows that Frientegrity can maintain
good performance in the face of a relatively large num-
ber of malicious users. Even with f at nearly 30, the
verification latency was only 100 ms.

7.6 Latency of ACL Modifications
In social networking applications, operations on ACLs
must perform well even when ACL sizes reach hundreds

13

660  21st USENIX Security Symposium	 USENIX Association

0 200 400 600 800 1000
ACL Size

0

5

10

15

20

25

30

35

40

45
R

es
po

ns
e

L
at

en
cy

(m
s)

Update FoF Key
Add User

Revoke User

Figure 9: Latency of various ACL operations as a function
of number of friends. Friend of Friend updates are mea-
sured as time to change a single user’s FoF key. Each data
point is the mean of 100 runs.

of users. When a user Alice updates her ACL, she first
fetches it and its corresponding ACL history and checks
that they are consistent. In response, Alice’s friend Bob
updates the key he shares with friends-of-friends (FoFs).
To do so, he fetches and checks Alice’s ACL in order
retrieve her updated key. He then proceeds to fetch, check,
and update his own ACL.

To evaluate the cost of these ACL operations, we mea-
sured Frientegrity’s performance as two users, Alice and
Bob, make changes to their ACLs. While Alice added
and removed users from her ACL, Bob updated the key
he shares with FoFs. We performed this experiment for
different ACL sizes and plotted the results in Figure 9.

As expected, updating the key shared with FoFs was
the most costly operation because it requires verifying
two ACLs instead of one. Furthermore, adding a new
user to an ACL took longer than removing one because
it requires a public key encryption. Finally, we observed
that although modifying an ACL entails a logarithmic
number of symmetric key operations, the cost of these
operations was dominated by constant number of public
key operations required to verify and update the ACL
history.

8. Related Work

Decentralized approaches: To address the security con-
cerns surrounding social networking, numerous works
have proposed decentralized designs, in which the social
networking service is provided by a collection of fed-
erated nodes. In Diaspora [17], perhaps the most well
known of these systems, users can choose to store their
data with a number of different providers called “pods.” In
other systems, including Safebook [14], eXO [36], Peer-
SoN [6], porkut [44], and Confidant [35], users store their
data on their own machines or on the machines of their
trusted friends, and these nodes are federated via a dis-
tributed hash table. Still others, such as PrPl [48] and

Vis-à-Vis [49], allow users’ data to migrate between users’
own machines and trusted third-party infrastructure. We
have argued, however, that decentralization is an insuffi-
cient approach. A user is left with an unenviable dilemma:
either sacrifice availability, reliability, scalability, and con-
venience by storing her data on her own machine, or en-
trust her data to one of several providers that she probably
does not know or trust any more than she would a central-
ized provider.

Cryptographic approaches: Many other works aim to
protect social network users’ privacy via cryptography.
Systems such as Persona [5], flyByNight [37], NOYB [25],
and Contrail [53] store users’ data with untrusted providers
but protect its contents with encryption. Others, such as
Hummingbird [9], Lockr [56], and systems from Backes et
al. [3], Domingo-Ferrer et al. [18] and Carminati et al. [8]
attempt to hide a user’s social relationships as well, ei-
ther from the provider or from other users. But, they do
not offer any defenses against the sort of traffic analysis
we describe in §2.3 other than decentralization. Unlike
Frientegrity, in many of these systems (e.g., [5, 9, 37]),
“un-friending” requires work that is linear in the number
of a user’s friends. The scheme of Sun et al. [54] is an ex-
ception, but it does not support FoFs. EASiER [28] aims
to achieve efficient revocation via broadcast encryption
techniques and a reencrypting proxy, but when deployed
in the DECENT [29] distributed social network, it appears
to perform poorly for reasons that are unclear. All of these
systems, however, focus primarily on protecting users’
privacy while largely neglecting the integrity of users’
data. They either explicitly assume that third parties are
“honest-but-curious” (e.g., [9, 37]), or they at most employ
signatures on individual messages. None deal with the
prospect of provider equivocation, however.

Defending against equivocation: Several systems
have addressed the threat of server equivocation in net-
work file systems [33, 34], key-value stores [7, 38, 50],
and group collaboration [21] by enforcing fork* consis-
tency and related properties. But to enforce fork* consis-
tency, they require clients to perform work that is linear in
either the number of users or the number of updates ever
submitted to the system. This overhead is impractical in
social networks with large numbers of users and in which
users typically are interested only in the latest updates.

FETHR [45] is a Twitter-like service that defends
against server equivocation by linking a user’s posts to-
gether with a hash chain as well as optionally entangling
multiple users’ histories. But besides not supporting ac-
cess control, it lacks a formal consistency model. Thus,
unless a client verifies a user’s entire history back to the
beginning, FETHR provides no correctness guarantees.

14

USENIX Association 	 21st USENIX Security Symposium  661

9. Conclusion and Future Work
In designing Frientegrity, we sought to provide a general
framework for social networking applications built around
an untrusted service provider. The system had to both
preserve data confidentiality and integrity, yet also remain
efficient, scalable, and usable. Towards these goals, we
present a novel method for detecting server equivocation
in which users collaborate to verify object histories, and
more efficient mechanisms for ensuring fork* consistency
based on history trees. Furthermore, we provide a novel
mechanism for efficient access control by combining per-
sistent authenticated dictionaries and key graphs.

In addition to introducing these new mechanisms, we
evaluate a Frientegrity prototype on synthetic workloads
inspired by the scale of real social networks. Even as
object histories stretch into the tens of thousands and ac-
cess control lists into the hundreds, Frientegrity provides
response times satisfactory for interactive use, while main-
taining strong security and integrity guarantees.

Like other social networking systems that store users’
encrypted data with an untrusted provider [5, 25, 37, 53],
Frientegrity faces the problem of how such third-party
infrastructure would be paid for. It has been suggested that
providers would not accept a business model that would
prevent them from mining the plaintext of users’ data for
marketing purposes. Whether this is so has not been well
studied. Although there has been some work on privacy-
preserving advertising systems[26, 57], the development
of business models that can support privacy-preserving
services hosted with third-party providers largely remains
future work.

Acknowledgments We thank Andrew Appel, Matvey
Arye, Wyatt Lloyd, and our anonymous reviewers for their
insights and helpful comments. This research was sup-
ported by funding from NSF CAREER Award #0953197,
an ONR Young Investigator Award, and a gift from
Google.

References
[1] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson,

D. S. Roselli, and R. Y. Wang. Serverless network file
systems. ACM TOCS, 14(1), 1996.

[2] C. R. Aragon and R. G. Seidel. Randomized search trees.
In Proc. FOCS, Oct. 1989.

[3] M. Backes, M. Maffei, and K. Pecina. A security API for
distributed social networks. In Proc. NDSS, Feb. 2011.

[4] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore
Art Thou R3579X? Anonymized social networks, hidden
patterns, and structural steganography. In Proc. WWW,
May 2007.

[5] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and
D. Starin. Persona: an online social network with user-
defined privacy. In Proc. SIGCOMM, Aug. 2009.

[6] S. Buchegger, D. Schiöberg, L. hung Vu, and A. Datta.
PeerSoN: P2P social networking early experiences and
insights. In Proc. SNS, Mar. 2009.

[7] C. Cachin, I. Keidar, and A. Shraer. Fail-aware untrusted
storage. In Proc. DSN, June 2009.

[8] B. Carminati and E. Ferrari. Privacy-aware collaborative
access control in web-based social networks. In Proc.
DBSec, July 2008.

[9] E. D. Cristofaro, C. Soriente, G. Tsudik, and A. Williams.
Hummingbird: Privacy at the time of twitter. Cryp-
tology ePrint Archive, Report 2011/640, 2011. http:
//eprint.iacr.org/.

[10] S. A. Crosby and D. S. Wallach. High throughput asyn-
chronous algorithms for message authentication. Technical
Report CS TR10-15, Rice University, Dec. 2010.

[11] S. A. Crosby and D. S. Wallach. Efficient data structures
for tamper-evident logging. In Proc. USENIX Security,
Aug. 2009.

[12] S. A. Crosby and D. S. Wallach. Super-efficient aggregat-
ing history-independent persistent authenticated dictionar-
ies. In Proc. ESORICS, Sept. 2009.

[13] S. A. Crosby and D. S. Wallach. Reference implemen-
tation of history trees and spliced signatures. https:
//github.com/scrosby/fastsig, Dec. 2010.

[14] L. A. Cutillo, R. Molva, T. Strufe, and T. Darmstadt.
Safebook: A privacy-preserving online social network
leveraging on real-life trust. IEEE Communications Maga-
zine, 47(12):94–101, Dec. 2009.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In Proc. SOSP, Oct. 2007.

[16] S. Deo. protobuf-socket-rpc: Java and python
protobuf rpc implementation using TCP/IP sockets
(version 2.0). http://code.google.com/p/
protobuf-socket-rpc/, May 2011.

[17] Diaspora. Diaspora project. http://
diasporaproject.org/. Retrieved April 23,
2012.

[18] J. Domingo-Ferrer, A. Viejo, F. Sebé, and ı́rsula González-
Nicolás. Privacy homomorphisms for social networks with
private relationships. Computer Networks, 52:3007–3016,
Oct. 2008.

[19] Facebook, Inc. Anatomy of facebook. http://www.
facebook.com/notes/facebook-data-team/
anatomy-of-facebook/10150388519243859,
Nov. 2011.

[20] Facebook, Inc. Fact sheet. http://newsroom.fb.
com/content/default.aspx?NewsAreaId=22.
Retrieved April 23, 2012.

[21] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W.
Felten. Sporc: Group collaboration using untrusted cloud
resources. In Proc. OSDI, Oct. 2010.

[22] Flickr. Flickr phantom photos. http://flickr.com/
help/forum/33657/, Feb. 2007.

[23] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In Proc. SOSP, Oct. 2003.

15

662  21st USENIX Security Symposium	 USENIX Association

[24] Google, Inc. Transparency report. https:
//www.google.com/transparencyreport/
governmentrequests/userdata/. Retrieved
April 23, 2012.

[25] S. Guha, K. Tang, and P. Francis. NOYB: Privacy in online
social networks. In Proc. WOSN, Aug. 2008.

[26] S. Guha, B. Cheng, and P. Francis. Privad: Practical privacy
in online advertising. In Proc. NSDI, Mar. 2011.

[27] M. P. Herlihy and J. M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM TOPLAS, 12
(3), 1990.

[28] S. Jahid, P. Mittal, and N. Borisov. EASiER: Encryption-
based access control in social networks with efficient revo-
cation. In Proc. ASIACCS, Mar. 2011.

[29] S. Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and A. Kapa-
dia. DECENT: A decentralized architecture for enforcing
privacy in online social networks. In Proc. SESOC, Mar.
2012.

[30] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
World Wide Web. In Proc. STOC, May 1997.

[31] L. Lamport. The part-time parliament. ACM TOCS, 16(2):
133–169, 1998.

[32] J. Leskovec and E. Horvitz. Planetary-scale views on a
large instant-messaging network. In Proc. WWW, Apr.
2008.

[33] J. Li and D. Mazières. Beyond one-third faulty replicas
in Byzantine fault tolerant systems. In Proc. NSDI, Apr.
2007.

[34] J. Li, M. N. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proc. OSDI, Dec.
2004.

[35] D. Liu, A. Shakimov, R. Cáceres, A. Varshavsky, and L. P.
Cox. Confidant: Protecting OSN data without locking it
up. In Proc. Middleware, Dec. 2011.

[36] A. Loupasakis, N. Ntarmos, and P. Triantafillou. eXO:
Decentralized autonomous scalable social networking. In
Proc. CIDR, Jan. 2011.

[37] M. M. Lucas and N. Borisov. flyByNight: mitigating the
privacy risks of social networking. In Proc. WPES, Oct.
2008.

[38] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud storage with
minimal trust. In Proc. OSDI, Oct. 2010.

[39] D. Mazières and D. Shasha. Building secure file systems
out of byzantine storage. In Proc. PODC, July 2002.

[40] J. P. Mello. Facebook scrambles to fix security hole expos-
ing private pictures. PC World, Dec. 2011.

[41] R. C. Merkle. A digital signature based on a conventional
encryption function. CRYPTO, pages 369–378, 1987.

[42] Mozilla Project. Network security services for Java
(JSS). https://developer.mozilla.org/En/
JSS. Retrieved April 23, 2012.

[43] A. Narayanan and V. Shmatikov. De-anonymizing social
networks. In Proc. IEEE S & P, May 2009.

[44] R. Narendula, T. G. Papaioannou, and K. Aberer. Privacy-
aware and highly-available OSN profiles. In Proc. WET-
ICE, June 2010.

[45] D. R. Sandler and D. S. Wallach. Birds of a FETHR: Open,
decentralized micropublishing. In Proc. IPTPS, Apr. 2009.

[46] R. Sanghvi. Facebook blog: New tools to control your
experience. https://blog.facebook.com/blog.
php?post=196629387130, Dec. 2009.

[47] E. Schonfeld. Watch out who you reply to on google buzz,
you might be exposing their email address. TechCrunch,
Feb. 2010.

[48] S.-W. Seong, J. Seo, M. Nasielski, D. Sengupta, S. Hangal,
S. K. Teh, R. Chu, B. Dodson, and M. S. Lam. PrPl: A
decentralized social networking infrastructure. In Proc.
MCS, June 2010.

[49] A. Shakimov, H. Lim, R. Caceres, L. P. Cox, K. Li, D. Liu,
and A. Varshavsky. Vis-à-Vis: Privacy-preserving online
social networking via virtual individual servers. In Proc.
COMSNETS, Jan. 2011.

[50] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky,
and D. Shaket. Venus: Verification for untrusted cloud
storage. In Proc. CCSW, Oct. 2010.

[51] S. Song. Why I left Sina Weibo. http://songshinan.
blog.caixin.cn/archives/22322, July 2011.

[52] M. Stonebraker. The case for shared nothing. IEEE
Database Engineering Bulletin, 9(1):4–9, 1986.

[53] P. Stuedi, I. Mohomed, M. Balakrishnan, Z. M. Mao, V. Ra-
masubramanian, D. Terry, and T. Wobber. Contrail: En-
abling decentralized social networks on smartphones. In
Proc. Middleware, Dec. 2011.

[54] J. Sun, X. Zhu, and Y. Fang. A privacy-preserving scheme
for online social networks with efficient revocation. In
Proc. INFOCOM, Mar. 2010.

[55] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers,
M. J. Spreitzer, and C. H. Hauser. Managing update con-
flicts in Bayou, a weakly connected replicated storage sys-
tem. In Proc. SOSP, Dec. 1995.

[56] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wol-
man. Lockr: Better privacy for social networks. In Proc.
CoNEXT, Dec. 2009.

[57] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum,
and S. Barocas. Adnostic: Privacy preserving targeted
advertising. In Proc. NDSS, Feb. 2010.

[58] D. Wheeler. SLOCCount. http://www.dwheeler.
com/sloccount/. Retrieved April 23, 2012.

[59] C. K. Wong, M. Gouda, and S. S. Lam. Secure group
communications using key graphs. IEEE/ACM TON, 8(1):
16–30, 1998.

[60] M. Zuckerberg. Facebook S-1: Letter from Mark
Zuckerberg. http://sec.gov/Archives/
edgar/data/1326801/000119312512034517/
d287954ds1.htm#toc287954_10, Feb. 2012.

16

USENIX Association 	 21st USENIX Security Symposium  663

Efficient and Scalable Socware Detection in Online Social
Networks

Md Sazzadur Rahman, Ting-Kai Huang, Harsha V. Madhyastha, Michalis Faloutsos
Department of Computer Science and Engineering

University of California, Riverside

Abstract—
Online social networks (OSNs) have become the new vec-

tor for cybercrime, and hackers are finding new ways to
propagate spam and malware on these platforms, which
we refer to as socware. As we show here, socware cannot
be identified with existing security mechanisms (e.g., URL
blacklists), because it exploits different weaknesses and of-
ten has different intentions.

In this paper, we present MyPageKeeper, a Facebook ap-
plication that we have developed to protect Facebook users
from socware. Here, we present results from the perspective
of over 12K users who have installed MyPageKeeper and
their roughly 2.4 million friends. Our work makes three
main contributions. First, to enable protection of users at
scale, we design an efficient socware detection method which
takes advantage of the social context of posts. We find that
our classifier is both accurate (97% of posts flagged by it
are indeed socware and it incorrectly flags only 0.005% of
benign posts) and efficient (it requires 46 ms on average to
classify a post). Second, we show that socware significantly
differs from traditional email spam or web-based malware.
For example, website blacklists identify only 3% of the posts
flagged by MyPageKeeper, while 26% of flagged posts point
to malicious apps and pages hosted on Facebook (which no
current antivirus or blacklist is designed to detect). Third,
we quantify the prevalence of socware by analyzing roughly
40 million posts over four months; 49% of our users were
exposed to at least one socware post in this period. Finally,
we identify a new type of parasitic behavior, which we refer
to as “Like-as-a-Service”, whose goal is to artificially boost
the number of “Likes” of a Facebook page.

1 Introduction
As online social networks (OSNs) are becoming the new
epicenter of the web, hackers are expanding their territory
to these services [8]. Anyone using Facebook or Twitter
is likely to be familiar with what we call here socware1:
fake, annoying, possibly damaging posts from friends
of the potential victim. The propagation of socware
takes the form of postings and communications between

1 We find the introduction of the term socware necessary because,
as we elaborate later in Section 2, the types of intent associated with
socware encompasses more than traditional phishing and malware.

friends on OSNs. Users are enticed into visiting suspi-
cious websites or installing apps with the lure of false re-
wards (e.g., free iPads in memory of Steve Jobs [30]), and
they unwittingly send the post to their friends, thus en-
abling a viral spreading. This is exactly where the power
of socware lies: posts come with the implicit endorse-
ment of the sending friend. Beyond this being a nuisance,
socware also enables cyber-crime, with several Facebook
scams resulting in loss of real money for users [11, 12].

Defenses against email spam are insufficient for identi-
fying socware since reputation-based filtering [29, 28, 51]
is insufficient to detect socware received from friends
and, as we show later, the keywords used in email spam
significantly differ from those used in socware. We also
find that URL blacklists designed to detect phishing and
malware on the web do not suffice, e.g., because a large
fraction of socware (26% in our dataset) points to suspi-
cious applications hosted on Facebook. Finally, though
Facebook has its own mechanisms for detecting and re-
moving malware [52], they seem to be less aggressive
either due to what they define as malware or due to com-
putational limitations.

In this paper, we present the design and implemen-
tation of a Facebook application, MyPageKeeper [24],
that we develop specifically for the purpose of protect-
ing Facebook users from socware. For any subscribing
user of MyPageKeeper, whenever socware appears in that
user’s wall or news feed, we seek to detect the socware
soon thereafter and alert the user (hopefully before she
views the post). Until October 2011, MyPageKeeper had
been installed by more than 12K Facebook users (since
its launch in June 2011). By monitoring the news feeds
of these users, we also observe posts on the walls of the
2.4 million friends of these users. In this paper, we eval-
uate MyPageKeeper using a dataset of over 40 million
posts that it inspected during the four month period from
June to October 2011.

The key contributions of our work can be grouped into
three main thrusts.

a. Designing an accurate, efficient, and scalable de-
tection method. In order to operate MyPageKeeper at

1

664  21st USENIX Security Symposium	 USENIX Association

scale, but at low cost, the distinguishing characteristic of
our approach is our strident focus on efficiency. Prior so-
lutions for detecting spam and malware on OSNs (which
we describe in detail later) rely on information obtained
either by crawling the URLs included in posts or by per-
forming DNS resolution on these URLs. In contrast, our
socware classifier relies solely on the social context asso-
ciated with each post (e.g., the number of walls and news
feeds in which posts with the same embedded URL are
observed, and the similarity of text descriptions across
these posts). Note that this approach means that we do
not even resolve shortened URLs (e.g., using services like
bit.ly) into the full URLs that they represent. This ap-
proach maximizes the rate at which we can classify posts,
thus reducing the cost of resources required to support a
given population of users.

We employ a Machine Learning classification module
using Support Vector Machines on a carefully selected
set of such features that are readily available from the
observed posts. 97% of posts flagged by our classifier are
indeed socware and it incorrectly flags only 0.005% of
benign posts. Furthermore, it requires an average of only
46 ms to classify a post.

b. Socware is a new kind of malware. We show that
socware is significantly different than traditional email
spam or web-based malware. First, URL blacklists can-
not detect socware effectively. These blacklists identify
only 3% of the malicious posts that MyPageKeeper flags.
The inability of website blacklists to identify socware
is partly due to the fact that a significant fraction of
socware is hosted on popular blogging domains such as
blogspot.com and on Facebook itself. Specifically,
26% of the flagged posts point to Facebook apps or pages.
Moreover, we also observe a low overlap between the
keywords associated with email based spam and those we
find in socware.

c. Quantifying socware: prevalence and intention.
We find that 49% of our users were exposed to at least
one socware post in four months. We also identify a new
type of parasitic behavior, which we refer to as “Like-as-
a-Service”. Its goal is to artificially boost the number of
“Likes” of a Facebook page. With the lure of games and
rewards, several Facebook apps push users to Like the
Facebook pages of say a store or a product, thus artifi-
cially inflating their reputation on Facebook. This further
confirms the difference between socware and other forms
of malware propagation.

2 Socware on Facebook
In this section, we provide relevant background about
Facebook, and we describe typical characteristics of
socware found on Facebook.

2.1 The Facebook terminology

Facebook is the largest online social network today with
over 900 million registered users, roughly half of whom
visit the site daily. Here, we discuss some standard Face-
book terminology relevant to our work.

• Post: A post represents the basic unit of information
shared on Facebook. Typical posts either contain only
text (status updates), a URL with an associated text de-
scription, or a photo/album shared by a user. In our
work, we focus on posts that contain URLs.

• Wall: A Facebook user’s wall is a page where friends of
the user can post messages to the user. Such messages
are called wall posts. Other than to the user herself,
posts on a user’s wall are visible to other users on Face-
book determined by the user’s privacy settings. Typi-
cally a user’s wall is made visible to the user’s friends,
and in some cases to friends of friends.

• News feed: A Facebook user’s news feed page is a sum-
mary of the social activity of the user’s friends on Face-
book. For example, a user’s news feed contains posts
that one of the user’s friends may have shared with all
of her friends. Facebook continually updates the news
feed of every user and the content of a user’s news feed
depends on when it is queried.

• Like: Like is a Facebook widget that is associated with
an object such as a post, a page, or an app. If a user
clicks the Like widget associated with an object, the
object will appear in the news feed of the user’s friends
and thus allow information about the object to spread
across Facebook. Moreover, the number of Likes (i.e.,
the number of users who have clicked the Like widget)
received by an object also represents the reputation or
popularity of the object.

• Application: Facebook allows third-party developers to
create their own applications that Facebook users can
add. Every time a user visits an application’s page on
Facebook, Facebook dynamically loads the content of
the application from a URL, called the canvas URL,
pointing to the application server provided by the ap-
plication’s developer. Since content of an application is
dynamically loaded every time a user visits the appli-
cation’s page on Facebook, the application developer
enjoys great control over content shown in the applica-
tion page. The Facebook platform uses OAuth 2.0 [2]
for user authentication, application authorization and
application authentication. Here, application authoriza-
tion ensures that the users grant precise data (e.g., email
address) and capabilities (e.g., ability to post on the
user’s wall) to the applications they choose to add, and
application authentication ensures that a user grants ac-
cess to her data to the correct application.

2

USENIX Association 	 21st USENIX Security Symposium  665

2.2 Socware
We start by defining the meaning of socware. We de-
scribe typical characteristics of socware and elaborate on
how socware distinguishes itself from traditional email
spam and web malware.

What is socware? Our intention is to use the term
socware to encompass all criminal and parasitic behav-
ior in an OSN, including anything that annoys, hurts, or
makes money off of the user. In the context of this paper,
we consider a Facebook post as malicious, if it satisfies
one of the following conditions: (1) the post spreads mal-
ware and compromises the device of the user, (2) the web
page pointed to by the post requires the user to give away
personal information, (3) the post promises false rewards
(e.g., free products), (4) the post is made on a user’s be-
half without the user’s knowledge (typically by having
previously lured the user into providing relevant permis-
sions to a rogue Facebook app), (5) the web page pointed
to by the post requires the user to carry out tasks (e.g., fill
out surveys) that help profit the owner of that website, or
(6) the post causes the user to artificially inflate the repu-
tation of the page (e.g., by forcing the user to ‘Like’ the
page). While the first two criteria are typical malware and
phishing, the latter four are distinctive of socware.

Disclaimer. As with email spam, there can be some
ambiguity in the definition of socware: a post consid-
ered as annoying by one user may be considered useful
by another user. In practice, our ultimate litmus test is
the opinion of MyPageKeeper’s users: if most of them
report a post as annoying, we will flag it as such.

How does socware work? Socware appears in a Face-
book user’s wall or news feed typically in the form of a
post which contains two parts. First, the post contains a
URL 2, usually obfuscated with a URL shortening ser-
vice, to a webpage that hosts either malicious or spam
content. Second, socware posts typically contain a catchy
text message (e.g. “two free Southwest tickets”) that en-
tice users to click on the URL included in the post. Op-
tionally, socware posts also contain a thumbnail screen-
shot of the landing page of the URL, also used to entice
the user to click on the link. For example, a purported
image of Osama’s corpse is included in a post that claims
to point to a video of his death.

The operation of most socware epidemics can be asso-
ciated with two distinct mechanisms.

a. Propagation mechanism. Once a user follows the
embedded URL to the target website, the post tries to
propagate itself through that user. For this, the user is
often asked to complete several steps in order to obtain

2We leave the identification of socware posts that do not contain an
URL for future work. The propagation of socware is harder in such
cases, since the user needs to perform a more laborious operation (e.g.,
enter an URL into the browser’s address bar) than simply clicking on
the embedded URL.

App
Name

Application Message Monthly
Active
Users

Free
Phone
Calls

I’m making a Free Call with the Free
Phone Call Facebook App! ... I’ll never
pay for a phone call again. Make your
free call at URL

435,392

The App Check if a friend has deleted you URL 35,216
The App Check if a friend has deleted you URL 25,778

Table 1: Three rogue Facebook applications identified by My-
PageKeeper.

Page Name Message to persuade ‘Like’ No. of
Likes

Clif Bar Hey there! Looking for a clif builder’s
coupon? Just like us by clicking the but-
ton above. thanks!

79919

FarmVille Bonus You can’t claim you you haven’t clicked
on the like button

94907

Courtesy Chevrolet Like our page to play and have a change
to win!

86287

Greggs The Bakers Like us to claim your voucher 288039
Mobilink Infinity Like us for big infinite fun 26105

Table 2: Top five pages identified by MyPageKeeper that per-
suade users to ‘Like’ them.

the fake reward (e.g., “Free Facebook T-shirt”). These
steps involve “Liking” or “sharing” the post, or posting
the socware on the user’s wall. Thus, the cycle contin-
ues with the friends of that user, who see the post in their
news feed. In contrast, users seldom forward email spam
to their friends.

b. Exploitation mechanism. The exploitation often
starts after the propagation phase. The hacker attempts
either to learn the user’s private information via a phish-
ing attack [9], to spread malware to user devices, or to
make money by “forcing” a particular user action or re-
sponse, such as completing a survey for which the hacker
gets paid [19].

Where is socware hosted? Socware can be broadly
classified into two categories based on the infrastructure
that hosts them.

a. Socware hosted outside Facebook: In this cate-
gory, URLs point to a domain hosted outside Facebook.
Since the URL points to a landing page outside the OSN,
hackers can directly launch the different kinds of attacks
mentioned above once a user visits the URL in a socware
post. Though several URL blacklists should be able to
flag such URLs, the process of updating these blacklists is
too slow to keep up with the viral propagation of socware
on OSNs [44].

b. Socware hosted on Facebook: A significant frac-
tion of socware is hosted on Facebook itself: the embed-
ded URL points to a Facebook page or application. Natu-
rally, current blacklists and reputation-based schemes fail
to flag such URLs. Such URLs typically point to the fol-
lowing types of Facebook objects:
• Malicious Facebook applications: Rogue applica-

3

666  21st USENIX Security Symposium	 USENIX Association

tions post catchy messages (e.g., “Check who deleted
you from your profile”) on the walls of users with a
link pointing to the installation page of the application.
Table 1 lists three such socware-spreading applications
in our data. Users are conned into installing the ap-
plication to their profile and granting several permis-
sions to it. The application then not only gets access
to that user’s personal information (such as email ad-
dress, home town, and high school) but also gains the
ability to post on the victim’s wall. As before, posts on
a user’s wall typically appear on the news feeds of the
user’s friends, and the propagation cycle repeats. Cre-
ating such applications has become easy with ready to
use toolkits starting at $25 [18].

• Malicious Facebook events: Sometimes hackers cre-
ate Facebook events that contain a malicious link. One
such event is the ‘Get a free Facebook T-Shirt (Spon-
sored by Reebok)’ scam. This event page states that
500,000 users will get a free T-shirt from Facebook. To
be one among those 500,000 users, a user must attend
the event, invite her friends to join, and enter her ship-
ping address.

• Malicious Facebook pages: Another approach taken
by hackers to spread socware is to create a Facebook
page and post spam links on the page [27]. We also
identified a trend in aggressive marketing by compa-
nies that force users to click “Like” on their Facebook
pages to spread their pages as well as increase the rep-
utation of the page. Table 2 lists the top five such Face-
book pages, along with the message on the page and
the number of Likes received by these pages.

3 MyPageKeeper Architecture
To identify socware and protect Facebook users from it,
we develop MyPageKeeper. MyPageKeeper is a Face-
book application that continually checks the walls and
news feeds of subscribed users, identifies socware posts,
and alerts the users. We present our goals in designing
MyPageKeeper, and then describe the system architec-
ture and implementation details.

3.1 Goals
We design MyPageKeeper with the following three pri-
mary goals in mind.

1. Accuracy. Our foremost goal is to ensure accurate
identification of socware. We are faced with the obvi-
ous trade-off between missing malware posts (false neg-
atives), and “crying wolf” too often (false positives). Al-
though one could argue that minimizing false negatives is
more important, users would abandon overly sensitive de-
tection methods, as recognized by the developers of Face-
book’s Immune System [52].

2. Scalability. Our end goal is to have MyPageKeeper
provide protection from socware for all users on Face-

book, not just for a select few. Therefore, the system must
be scalable to easily handle increased load imposed by a
growth in the number of subscribed users.

3. Efficiency. Finally, we seek to minimize our costs
in operating MyPageKeeper. The period between when
a post first becomes visible to a user and the time it is
checked by MyPageKeeper represents the window of vul-
nerability when the user is exposed to potential socware.
To minimize the resources necessary to keep this win-
dow of vulnerability short, MyPageKeeper’s techniques
for classification of posts must be efficient.

3.2 MyPageKeeper components
MyPageKeeper consists of six functional modules.

a. User authorization module. We obtain a user’s
authorization to check her wall and news feed through a
Facebook application, which we have developed. Once
a user installs the MyPageKeeper application, we obtain
the necessary credentials to access the posts of that user.
For alerting the user, we also request permission to access
the user’s email address and to post on the user’s wall
and news feed. Figure 1(a) shows how a Facebook user
authorizes an application.

b. Crawling module. MyPageKeeper periodically
collects the posts in every user’s wall and news feed. As
mentioned previously, we currently focus only on posts
that contain a URL. Apart from the URL, each post com-
prises several other pieces of information, such as a text
message associated with the post, the user who made the
post, number of comments and Likes on the post, and the
time when the post was created.

c. Feature extraction module. To classify a post, My-
PageKeeper evaluates every embedded URL in the post.
Our key novelty lies in considering only the social con-
text (e.g., the text message in the post, and the number
of Likes on it) for the classification of the URL and the
related post. Furthermore, we use the fact that we are ob-
serving more than one user, which can help us detect an
epidemic spread. We discuss these features in more detail
later in Section 3.3.

d. Classification module. The classification module
uses a Machine Learning classifier based on Support Vec-
tor Machines, but also utilizes several local and external
whitelists and blacklists that help speed up the process
and increase the overall accuracy. The classification mod-
ule receives a URL and the related social context features
extracted in the previous step. Since the classification is
our key contribution, we discuss this in more detail in
Section 3.3. If a URL is classified as socware, all posts
containing the URL are labeled as such.

e. Notification module. The notification module no-
tifies all users who have socware posts in their wall or
news feed. The user can currently specify the notification
mechanism, which can be a combination of emailing the

4

USENIX Association 	 21st USENIX Security Symposium  667

User

Facebook
Servers

Application
 Server

4. Generate and
share

access token

1. App add request

2. Return permission set
required by the app

3. Allow permission set

Crawler DB

Facebook DB

WL?Feature
Extractor

URL

benign, unknown

No SVM Classifier

benign, Unknown

Malicious

Notification

BL?
No

Yes Yes

Crawling Facebook posts Classifying Facebook posts

(a) (b)
Figure 1: (a) Application installation process on Facebook, and (b) architecture of MyPageKeeper.

user or posting a comment on the suspect posts. In the
future, we will consider allowing our system to remove
the malicious post automatically, but this can create lia-
bilities in the case of false positives.

f. User feedback module. Finally, to improve My-
PageKeeper’s ability to detect socware, we leverage our
user community. We allow users to report suspicious
posts through a convenient user-interface. In such a re-
port, the user can optionally describe the reason why she
considers the post as socware.

3.3 Identification of socware
The key novelty of MyPageKeeper lies in the classifica-
tion module (summarized in Figure 1(b)). As described
earlier, the input to the classification module is a URL
and the related social context features extracted from the
posts that contain the URL. Our classification algorithm
operates in two phases, with the expectation that URLs
and related posts that make it through either phase with-
out a match are likely benign and are treated as such.

Using whitelists and blacklists. To improve the effi-
ciency and accuracy of our classifier, we use lists of URLs
and domains in the following two steps. First, MyPage-
Keeper matches every URL against a whitelist of popular
reputable domains. We currently use a whitelist compris-
ing the top 70 domains listed by Quantcast, excluding do-
mains that host user-contributed content (e.g., OSNs and
blogging sites). Any URL that matches this whitelist is
deemed safe, and it is not processed further.

Second, all the URLs that remain are then matched
with several URL blacklists that list domains and URLs
that have been identified as responsible for spam, phish-
ing, or malware. Again, the need to minimize classi-
fication latency forces us to only use blacklists that we
can download and match against locally. Such blacklists
include those from Google’s Safe Browsing API [17],
Malware Patrol [23], PhishTank [26], APWG [1], Spam-
Cop [28], joewein [20], and Escrow Fraud [7]. Querying
blacklists that are hosted externally, such as SURBL [31],
URIBL [33] and WOT [34], will introduce significant la-
tency and increase MyPageKeeper’s latency in detecting
socware, thus inflating the window of vulnerability. Any
URL that matches any of the blacklists that we use is clas-
sified as socware.

Using machine learning with social context fea-
tures. All URLs that do not match the whitelist or any
of the blacklists are evaluated using a Support Vector
Machines (SVM) based classifier. SVM is widely and
successfully used for binary classification in security and
other disciplines [49, 46] [32]. We train our system with
a batch of manually labeled data, that we gathered over
several months prior to the launch of MyPageKeeper. For
every input URL and post, the classifier outputs a binary
decision to indicate whether it is malicious or not. Our
SVM classifier uses the following features.

Spam keyword score. Presence of spam keywords in a
post provides a strong indication that the post is spam.
Some examples of such spam keywords are ‘FREE’,
‘Hurry’, ‘Deal’, and ‘Shocked’. To compile a list of such
keywords that are distinctive to socware, our intuition
is to identify those keywords that 1) occur frequently in
socware posts, and 2) appear with a greater frequency in
socware as compared to their frequency in benign posts.

We compile such a list of keywords by comparing
a dataset of manually identified socware posts with
a dataset of posts that contain URLs that match our
whitelist (we discuss how to maintain this list of key-
words in Section 7). We transform posts in either dataset
to a bag of words with their frequency of occurrence.
We then compute the likelihood ratio p1/p2 for each
keyword where p1 = p(word|socwarepost) and p2 =
p(word|benignpost). The likelihood ratio of a key-
word indicates the bias of the keyword appearing more
in socware than in benign posts. In our current imple-
mentation of MyPageKeeper, we have found that the use
of the 6 keywords with the highest likelihood ratio val-
ues among the 100 most frequently occurring keywords
in socware is sufficient to accurately detect socware.

Thereafter, to classify a URL, MyPageKeeper searches
all posts that contain the URL for the presence of these
spam keywords and computes a spam keyword score as
the ratio of the number of occurrences of spam keywords
across these posts to the number of posts.

Message similarity. If a post is part of a spam cam-
paign, it usually contains a text message that is similar
to the text in other posts containing the same URL (e.g.,
because users propagate the post by simply sharing it).
On the other hand, when different users share the same

5

668  21st USENIX Security Symposium	 USENIX Association

popular URL, they are likely to include different text de-
scriptions in their posts. Therefore, greater similarity in
the text messages across all posts containing a URL por-
tends a higher probability that the URL leads to spam. To
capture this intuition, for each URL, we compute a mes-
sage similarity score that captures the variance in the text
messages across all posts that contain the URL. For each
post, MyPageKeeper sums the ASCII values of the char-
acters in the text message in the post, and then computes
the standard deviation of this sum across all the posts that
contain the URL. If the text descriptions in all posts are
similar, the standard deviation will be low.

News feed post and wall post count. The more suc-
cessful a spam campaign, the greater the number of walls
and news feeds in which posts corresponding to the cam-
paign will be seen. Therefore, for each URL, MyPage-
Keeper computes counts of the number of wall posts and
the number of news feed posts which contained the URL.

Like and comment count. Facebook users can ‘Like’
any post to indicate their interest or approval. Users can
also post comments to follow up on the post, again indi-
cating their interest. Users are unlikely to ‘Like’ posts
pointing to socware or comment on such posts, since
they add little value. Therefore, for every URL, My-
PageKeeper computes counts of the number of Likes and
number of comments seen across all posts that contain
the URL.

URL obfuscation. Hackers often try to spread mali-
cious links in an obfuscated form, e.g., by shortening it
with a URL shortening service such as bit.ly or goo.gl.
We store a binary feature with every URL that indicates
whether the URL has been shortened or not; we maintain
a list of URL shorteners.

Note that none of the above features by themselves are
conclusive evidence of socware, and other features could
potentially further enhance the classifier (e.g., we can ac-
count for spam keywords such as ‘free’ included in URLs
such as http://nfljerseyfree.com). However, as we show
later in our evaluation, the features that we currently con-
sider yield high classification accuracy in combination.

3.4 Implementing MyPageKeeper
We provide some details on MyPageKeeper’s implemen-
tation.

Facebook application. First, we implement the My-
PageKeeper Facebook application using FBML [14].
We implement our application server using Apache
(web server), Django (web framework), and Postgres
(database). Once a user installs the MyPageKeeper app in
her profile, Facebook generates a secret access token and
forwards the token to our application server, which we
then save in a database. This token is used by the crawler
to crawl the walls and news feeds of subscribed users us-
ing the Facebook open-graph API. If any user deactivates

Data Total # distinct URLs
MyPageKeeper users 12,456 -

Friends of MyPageKeeper users 2,370,272 -
News feed posts 38,764,575 29,522,732

Wall posts 1,760,737 1,532,055
User reports 679 333

Table 3: Summary of MyPageKeeper data.

MyPageKeeper from their profile, Facebook disables this
token and notifies our application server, whereupon we
stop crawling that user’s wall and news feed.

Crawler instances and frequency. We run a set of
crawlers in Amazon EC2 instances to periodically crawl
the walls and news feeds of MyPageKeeper’s users. The
set of users are partitioned across the crawlers. In our
current instantiation, we run one crawler process for ev-
ery 1,000 users. Thus, as more users subscribe to My-
PageKeeper, we can easily scale the task of crawling their
walls and news feeds by instantiating more EC2 instances
for the task. Our Python-based crawlers use the open-
graph API, incorporating users’ secret access tokens, to
crawl posts from Facebook. Once the data is received in
JSON format, the crawlers parse the data and save it in a
local Postgres database.

Currently, as a tradeoff between timeliness of detection
and resource costs on EC2, we instantiate MyPageKeeper
to crawl every user’s wall and news feed once every two
hours. Every couple of hours, all of our crawlers start up
and each crawler fetches new posts that were previously
not seen for the users assigned to it. Once all crawlers
complete execution, the data from their local databases is
migrated to a central database.

Checker instances. Checker modules are used to clas-
sify every post as socware or benign. Every two hours,
the central scheduler forks an appropriate number of
checker modules determined by the number of new URLs
crawled since the last round of checking. Thus, the iden-
tification of socware is also scalable since each checker
module runs on a subset of the pool of URLs. Each
checker evaluates the URLs it receives as input—using
a combination of whitelists, blacklists, and a classifier—
and saves the results in a database. We use the libsvm [41]
library for SVM based classification. Once all checker
modules complete execution, notifiers are invoked to no-
tify all users who have posts either on their wall or in
their news feed that contain URLs that have been flagged
as socware.

4 Evaluation
Next, we evaluate MyPageKeeper from three perspec-
tives. First, we evaluate the accuracy with which it clas-
sifies socware. Second, we determine the contribution of
MyPageKeeper’s social context based classifier in iden-
tifying socware compared to the URL blacklists that it
uses. Lastly, we compare MyPageKeeper’s efficiency

6

USENIX Association 	 21st USENIX Security Symposium  669

Feature F-Score
URL obfuscated? 0.300378

Spam keyword score 0.262220
of news feed posts 0.173836

Message similarity score 0.131733
of Likes 0.039895

of wall posts 0.019857
of comments 0.006367

Table 4: Feature scores used by MyPageKeeper’s classifier.
Alternative source # of posts
Flagged by blacklist 18,923
Flagged by on.fb.me 2,102

Content deleted by Facebook 3,918
Blacklisted app 1,290
Blacklisted IP 5,827

Domain is deleted 247
Points to app install 4,658

Spamming app 6,547
Manually verified 14,876

True positives 58,388 (97%)
Unknown 1,803 (3%)

Total 60,191

Table 5: Validation of socware flagged by MyPageKeeper clas-
sifier.

with alternative approaches that would either crawl every
URL or at least resolve short URLs in order to identify
socware.

Table 3 summarizes the dataset of Facebook posts on
which we conduct our evaluation. This data is obtained
during MyPageKeeper’s operation over a four month pe-
riod from 20th June to 19th October, 2011. MyPage-
Keeper had over 12K users during this period, who had
around 2.37M friends in union. Our data comprises 38.7
million and 1.7 million posts that contain URLs from
the news feeds and walls of these 12K users. We con-
sider only those posts that contain URLs since MyPage-
Keeper currently checks only such posts. Overall, these
40 million posts contained around 30 million unique
URLs. In addition, we received 679 reports of socware
from 533 distinct MyPageKeeper users during the four
month period, with 333 distinct URLs across these re-
ports. Though it is hard to make any general claims with
regard to representativeness of our data, we find that sev-
eral user metrics (e.g., the male-to-female ratio and the
distribution of users across age groups) closely match that
of the Facebook user base at-large.

4.1 Accuracy
As previously mentioned, MyPageKeeper first matches
every URL to be checked against a whitelist. If no match
is found, it checks the URL with a set of locally queriable
URL blacklists. Finally, MyPageKeeper applies its social
context based classifier learned using the SVM model.
In this process, we assume URL information provided
by whitelists and blacklists to be ground truth, i.e., clas-
sification provided by them need not be independently
validated. Therefore, we focus here on validating the

App name Description # of posts
Sendible Social Media Manage-

ment
6,687

iRazoo Search & win! 1,853
4Loot 4Loot lets you win all

sorts of Loot while
searching the web

1,891

Table 6: Top three spamming applications in our dataset.

socware flagged by MyPageKeeper’s classifier based on
social context features.

We trained MyPageKeeper’s classifier using a manu-
ally verified dataset of URLs that contain 2,500 positive
samples and 5,000 negative samples of socware posts; we
gathered these samples over several months while devel-
oping MyPageKeeper. Table 4 shows the importance of
the various features in the SVM classifier learned. Dur-
ing the course of MyPageKeeper’s operation over four
months, we applied the classifier to check 753,516 unique
URLs; these are URLs that do not match the whitelist or
any of the blacklists. Of these URLs, the classifier iden-
tified 4,972 URLs, seen across 60,191 posts, as instances
of socware.

It is important to note that when MyPageKeeper sees
a URL in multiple posts over time, the values of the fea-
tures associated with the URL may change every time
it appears, e.g., the message similarity score associated
with the URL can change. However, once MyPage-
Keeper classifies a URL as socware during any of its oc-
currences, it flags all previously seen posts that contain
the URL and notifies the corresponding users. Therefore,
in evaluating MyPageKeeper’s classifier, URL blacklists,
or MyPageKeeper as a whole, we consider here that a
technique classified a particular URL as socware if that
URL was flagged by that technique upon any of the
URL’s occurrences. Correspondingly, we consider a URL
to have not been classified as socware if it was not iden-
tified as such during any of its occurrences.

Checking the validity of socware identified by My-
PageKeeper’s classifier is not straightforward, since there
is no ground truth for what represents socware and what
does not. However, here we attempt to evaluate the pos-
itive samples of socware identified by MyPageKeeper’s
classifier using a combination of a host of complemen-
tary techniques (we later discuss in Section 7 the valida-
tion of posts that are deemed safe by MyPageKeeper). To
do so, we use an instrumented Firefox browser to crawl
the 4,972 URLs flagged by MyPageKeeper at the end of
the four month period of MyPageKeeper operation. For
every URL that we crawl, we record the landing URL,
the IP address and other whois information of the land-
ing domain, and contents of the landing page. To verify
the reputation of every URL, we then apply several tech-
niques in the order summarized in Table 5.
• Blacklisted URLs: First, we check if any of the URLs

or the corresponding landing URLs are found in any

7

670  21st USENIX Security Symposium	 USENIX Association

URL blacklists. Note that, though we use blacklists
in the operation of MyPageKeeper itself, we use only
those that can be stored and queried locally. There-
fore, here we use for validation other external black-
lists for which we have to issue remote queries. Fur-
ther, even for blacklists used in MyPageKeeper, they
may not identify some instances of socware when they
initially appear because blacklists have been found to
lag in keeping up with the viral propagation of spam
on OSNs [44]. Hence, we check if a URL identified as
socware by MyPageKeeper’s classifier appeared in any
of the blacklists used by MyPageKeeper at a later point
in time, even though it did not appear in any of those
blacklists initially when MyPageKeeper spotted posts
containing that URL.

• Flagged by fb.me URL shortener: Many URLs posted
on Facebook are shortened using Facebook’s URL
shortener fb.me. When Facebook determines any link
shortened using their service to be unsafe, the corre-
sponding shortened URL thereafter redirects to Face-
book’s home page—facebook.com/home.php—
instead of the actual landing page. Of the URLs flagged
by MyPageKeeper’s classifier, we check if those short-
ened using Facebook’s URL shortening service redirect
to Facebook’s home page.

• Content deleted from Facebook: If Facebook deter-
mines any URL hosted under the facebook.com do-
main to be unsafe (e.g., the page for a spamming Face-
book application), it thereafter redirects that URL to
facebook.com/4oh4.php. We use this as another
source of information to validate URLs flagged by My-
PageKeeper’s classifier.

• Blacklisted apps: If the URLs in posts made by a Face-
book app are flagged due to any of the above reasons,
we consider that app to be malicious and declare all
other URLs posted by it as unsafe, thus helping val-
idate some of the URLs declared as socware by My-
PageKeeper’s classifier.

• Blacklisted IPs: For every URL flagged by any of the
above techniques, we record the IP address when that
URL is crawled and blacklist that IP. Of the URLs
flagged by MyPageKeeper’s classifier, we then con-
sider those that lead to one of these blacklisted IP ad-
dresses as correctly classified.

• Domain deleted: Malicious domains are often deleted
once they are caught serving malicious content. There-
fore, we deem MyPageKeeper’s positive classification
of a URL to be correct if the domain for that URL no
longer exists when we attempt to crawl it.

• Obfuscation of app installation page: Posts made by
Facebook applications to attract users to install them
typically include an un-shortened URL pointing to a
Facebook page that contains information about the ap-

Source # (%) of URLs # (%) of posts Overlap with
classifier (#
of URLs)

Google SBA2 221 (6.8%) 378 (0.4%) 0
Phishtank 12 (0.4%) 435 (0.5%) 1
Malware Norm 69 (2.1%) 154 (0.2%) 0
Joewein 240 (7.4%) 652 (0.7%) 11
APWG 56 (1.7%) 569 (0.6%) 0
Spamcop 232 (7.1%) 921 (1.0%) 0
All blacklists 830 (25.6%) 3104 (3.4%) 12
MyPageKeeper
classifier

2405 (74.4%) 89389 (96.6%)

Table 7: Comparison of contribution made by blacklists and
classifier to MyPageKeeper’s identification of socware during
the four month period of operation.

plication. Once a user visits this page, she can read
the application’s description and then click on a link on
this page if she decides to install it. However, posts
from some surreptitious applications contained short-
ened URLs that directly take the user to a page where
they request the user to grant permissions (e.g., to post
on the user’s wall) and install the application. We have
found all instances of such applications to be spamming
applications. Therefore, if any of the URLs flagged by
MyPageKeeper’s classifier is a shortened URL that di-
rectly points to the installation page for a Facebook app,
we declare that classification correct.

• Spamming app: From our dataset, we manually identi-
fied several Facebook applications that try to spread on
Facebook by promising free money to users and make
posts that point to the application page. Once installed
by a user, such applications periodically post on the
user’s wall (without requesting the user’s authorization
for each post) in an attempt to further propagate by at-
tracting that user’s friends; Table 6 shows some such
applications that frequently appear in our dataset. Any
URLs classified as socware by MyPageKeeper’s classi-
fier that happen to be posted by one of these manually
identified spamming apps are deemed correct.

• Manual analysis: Finally, over the operation of My-
PageKeeper during the four months, we periodically
verified a subset of URLs flagged by the classifier.
These provide an additional source of validation.

In all, the union of the above techniques validates
that 58,388 out of 60,191 posts declared as socware by
the MyPageKeeper classifier are indeed so. Therefore,
97% of the socware identified by MyPageKeeper’s clas-
sifier are true positives. On the other hand, the 1,803
posts incorrectly classified as socware constitute less than
0.005% of the over 40 million posts in our dataset. Note
that, though all of the above techniques could be folded
into MyPageKeeper itself to help identify socware, we
do not do so because all of these techniques require us to
crawl a URL in order to evaluate it; we cannot afford the
latency of crawling.

8

USENIX Association 	 21st USENIX Security Symposium  671

 0

 10

 20

 30

 40

 50

M
PK

R
esolver

C
raw

ler

T
h

ro
u

g
h

p
u

t
(U

R
L

/s
ec

)

(a) Throughput

10
-2

10
-1

10
0

10
1

10
2

M
PK

R
esolver

C
raw

ler

L
at

en
cy

 (
se

c.
)

(b) Latency

Figure 2: Comparison of MyPageKeeper’s throughput and la-
tency in classifying URLs with a short URL resolver and a
crawler-based approach. The height of the box shows the me-
dian, with the whiskers representing 5th and 95th percentiles.

4.2 Comparison with blacklists
Though we see that the identification of socware by My-
PageKeeper’s classifier is accurate, the next logical ques-
tion is: what is the classifier’s contribution to MyPage-
Keeper in comparison with URL blacklists? Table 7 pro-
vides a breakdown of the URLs and posts classified as
socware by MyPageKeeper during the four month period
under consideration. There are two main takeaways from
this table. First, we see that the classifier finds 74.4% of
socware URLs and 96.6% of socware posts identified by
MyPageKeeper. Thus, the classifier accounts for a large
majority of socware identified by MyPageKeeper and is
thus critical to the system’s operation. Second, there is
very little overlap between the URLs flagged by black-
lists and those flagged by the classifier. The typically low
frequency of occurrence of URLs that match blacklists
is another reason that the classifier’s share of identified
socware posts is significantly greater than its correspond-
ing share of flagged URLs.

4.3 Efficiency
Beyond accuracy, it is critical that MyPageKeeper’s iden-
tification of socware be efficient, so as to minimize the
costs that we need to bear in order to keep the delay in
identifying socware and alerting users low. The match-
ing of a URL against a whitelist or a local set of blacklists
incurs minimal computational overhead. In addition, we
find that execution of the classifier also imposes minimal
delay per URL verified.

To demonstrate the efficiency of MyPageKeeper, we
compare the rate at which it classifies URLs with the clas-
sification throughput that two other alternative classes of
approaches would be able to sustain. Our first point of
comparison is an approach that relies only on locally que-
riable URL whitelists and blacklists but resolves all short-
ened URLs into the corresponding complete URL. Our
second alternative crawls URLs to evaluate them, e.g., us-
ing the content on the page or the IP address of the target
website. Figure 2(a) compares the throughput of classi-
fying URLs with the three approaches, using data from

40 %

50 %

60 %

70 %

80 %

90 %

100 %

10
0

10
1

10
2

10
3

%
 o

f
u
s
e
rs

of email notifications sent

Figure 3: 49% of MyPageKeeper’s 12,456 users were notified
of socware at least once in four months of MyPageKeeper’s op-
eration.

 0

 5

 10

 15

 20

 25

 30

 35

 40

10
1

10
2

10
3

10
4

M
e
a
n
 #

 o
f

n
o
ti

fi
c
a
ti

o
n
s

of friends

Figure 4: Correlation between vulnerability and social degree
of exposed users.

two weeks of MyPageKeeper’s execution. We see that
the throughput with MyPageKeeper is almost an order of
magnitude greater than the alternatives, with all three ap-
proaches using the same set of resources on EC2. As we
see in Figure 2(b), MyPageKeeper’s better performance
stems from its lower execution latency to check an URL;
the median classification latency with MyPageKeeper is
48 ms compared to a median of 426 ms when resolving
short URLs and 1.9 seconds when crawling URLs. Thus,
we are able to significantly reduce MyPageKeeper’s clas-
sification latency, compared to approaches that need to
resolve short URLs or crawl target web pages, by keep-
ing all of its computation local.

Furthermore, a crawler-based approach will be signif-
icantly more expensive than MyPageKeeper. Thomas
et al. [54] found that crawler-based classification of 15
million URLs per day using cloud infrastructure results
in an expense of $800/day. Therefore, we estimate that
it would cost approximately $1.5 million/year to handle
Facebook’s workload; 1 million URLs are shared every
20 minutes on Facebook [35]. Since MyPageKeeper’s
classification latency is 40 times less than a crawler-based
approach, we estimate that the expense incurred with My-
PageKeeper would be at least 40 times lower than a sys-
tem that classifies URLs by crawling them.

5 Analysis of Socware
Thus far we described how MyPageKeeper detects
socware efficiently at scale. In this section, we analyze
the socware that we have found during MyPageKeeper’s
operation to throw light on characteristics of socware on
Facebook.

9

672  21st USENIX Security Symposium	 USENIX Association

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0
6
/1

8

0
7
/0

2

0
7
/1

6

0
7
/3

0

0
8
/1

3

0
8
/2

7

0
9
/1

0

0
9
/2

4

1
0
/0

8

1
0
/2

2

#
 o

f
n
o
ti

fi
c
a
ti

o
n
s

Figure 5: No. of socware notifications per day. On 11th July,
19th Sep, and 3rd Oct, socware was observed in large scale.

0 %

20 %

40 %

60 %

80 %

100 %

10
0

10
1

10
2

10
3

%
 o

f
li

n
k
s

Active duration (days)

Figure 6: Active-time of socware links. 20% of socware links
were observed more than 10 days apart.

5.1 Prevalence of socware
49% of MyPageKeeper’s users were exposed to
socware within four months. First, we analyze the
prevalence of socware on Facebook. To do so, we de-
fine that a user was exposed to a particular socware post
if that post appeared in her wall or news feed. As shown
in Figure 3, 49% of MyPageKeeper’s users were exposed
to at least one socware post during the four month pe-
riod we consider here. Though this already indicates the
wide reach of socware on Facebook, we stress that 49%
is only a lower-bound due to a couple of reasons. First,
many of MyPageKeeper’s users subscribed to our appli-
cation at some time in the midst of the four month period
and therefore, we miss socware that they were potentially
exposed to prior to them subscribing to MyPageKeeper.
Second, Facebook itself detects and removes posts that
it considers as spam or pointing to malware [36, 38, 52].
All the socware detected by MyPageKeeper is after such
filtering by Facebook.

Given that some users are exposed to more socware
than others, we analyze if the social degree of a user has
any impact on the probability of a user being exposed to
socware. Figure 4 shows the number of socware notifi-
cations received by MyPageKeeper users as a function of
the number of friends they have on Facebook. We bin
users with the number of friends within 10 of each other
and plot the average number of notifications per bin; we
consider here only those users who were subscribed to
MyPageKeeper for at least three months. We see that the
probability of users being exposed to socware is largely
independent of their social degree. This indicates that
whether a user is more likely to be exposed to socware
is not simply a function of how many friends she has, but

Shortening service % of socware URLs
bit.ly 21.9%

tinyurl.com 18.8%
goo.gl 5.1%

t.co 3.16%
tiny.cc 1.6%
ow.ly 1.1%

on.fb.me 1.0%
is.gd 0.7%
j.mp 0.4%

0rz.com 0.3%
All shortened URLs 54%

Table 8: Top URL shortening services in our socware dataset.

Domain Name % of URLs % of posts
facebook.com 20.7% 26.3%
blogspot.com 6.3% 8.7%
miessass.info 1.9% 3.2%
shurulburul.tk 1.8% 1.2%
tomoday.info 0.8% 0.13%

Table 9: Top two-level domains in our socware dataset.

likely depends on the susceptibility of those friends to be-
coming victims of scams and helping propagate them.

We also find that socware on Facebook is prevalent
over time. Figure 5 shows the number of socware no-
tifications sent per day by MyPageKeeper to its users.
We see a consistently large number of notifications go-
ing out daily, with noticeable spikes on a few days. On
11th July 2011, a scam that conned users to complete
surveys with the pretext of fake free products went vi-
ral and posts pointing to the scam appeared 4,056 times
on the walls and news feeds of MyPageKeeper’s users.
Two other scams, that promised ‘Free Facebook shoes’
and conned users to fill out surveys, also caused MyPage-
Keeper to send out a large number of notifications on that
day. On 19th Sep. 2011, different variants of the ‘Face-
book Free T-Shirt’ scam [9] were spreading on Facebook
and was spotted 2,040 times by MyPageKeeper. On 3rd

Oct. 2011, a video scam was spreading on Facebook and
MyPageKeeper observed it in 1,739 posts.

We next analyze the prevalence and impact of socware
from the perspective of individual socware links. For
each link, we define its “active-time” as the difference
between the first and last times of its occurrence in our
dataset. Figure 6 shows that we did not see 60% of
socware links beyond one day. Subsequent posts con-
taining these links may have been filtered by Facebook
once it recognized their spammy or malicious nature, or
our dataset may miss those posts due to MyPageKeeper’s
limited view into Facebook’s 850 million users. Fur-
ther, we do not attempt any clustering of links into cam-
paigns here. However, even with these caveats, 20% of
socware links were seen in multiple posts separated by
at least 10 days, suggesting that a significant fraction
of socware eludes Facebook’s detection mechanisms and
lasts on Facebook for significant durations.

10

USENIX Association 	 21st USENIX Security Symposium  673

0 %
5 %

10 %
15 %
20 %
25 %
30 %
35 %
40 %
45 %

D
isabled

A
pp inst

D
eleted

LaaS
Event

A
pp prof

%
 o

f
U

R
L

s

Figure 7: Breakdown of socware links, when crawled
in Nov. 2011, that originally point to web pages in the
facebook.com domain.

5.2 Domain name characteristics
20% of socware links are hosted inside Facebook.
In the next section of our analysis, we focus on the
domain-level characteristics of socware links. First, Ta-
ble 8 shows the top ten URL shortening services used
in socware links observed by MyPageKeeper. In all,
shortened URLs account for 54% of socware links in our
dataset. Our design of MyPageKeeper’s classifier to rely
solely on social context, and to not resolve short URLs,
hence makes a significant difference (as previously seen
in the comparison of classification latency).

Further, we find it surprising that a large fraction
of socware links (46%) are not shortened, given that
shortening of URLs enables spammers to obfuscate
them. On further investigation, we find that many Face-
book scams such as ‘free iPhone’ and ‘free NFL jer-
sey’ use domain names that clearly state the message
of the scam, e.g., http://iphonefree5.com/ and http://
nfljerseyfree.com/. These URLs are more likely to elicit
higher click-through rates compared to shortened URLs.
On the other hand, most of the shortened URLs were used
by malicious or spam applications (e.g., ‘The App’, ‘Pro-
file Stalker’) that generate shortened URLs pointing to
their application’s installation page. We find that 89%
of shortened URLs in our dataset of socware links were
posted by Facebook applications.

Next, based on our crawl of the socware links in our
dataset, we inspect the top two-level domains found on
the landing pages pointed to by these links. First, as
shown in Table 9, we find that a large fraction of socware
(over 20% of URLs and 26% of posts) is hosted on Face-
book itself. Second, a sizeable fraction of socware uses
sites such as blogspot.com and wordpress.com
that enable the spammers to easily create a large number
of URLs without going through the hassle of registering
new domains. Further, all of these domains are of good
repute and are unlikely to be flagged by traditional web-
site blacklists.

5.3 Analysis of socware hosted in Facebook
Hackers use numerous channels in Facebook to
spread socware. Given the large fraction of socware

0 %

20 %

40 %

60 %

80 %

100 %

 0 20 40 60 80 100

%
 o

f
U

R
L

s

% of clicks originated from Facebook

Figure 8: For most socware links shortened with bit.ly or
goo.gl, a large majority of the clicks came from Facebook.

hosted on Facebook itself, we next analyze this subset
of socware. First, in early November 2011, we crawled
every socware link in our dataset that had pointed to a
landing page in the facebook.com domain at the time
when MyPageKeeper had initially classified that link as
socware. Figure 7 presents a breakdown of the results
of this crawl. If Facebook disables a URL, it redirects
us to facebook.com/home.php. Similarly, if crawl-
ing a URL points us to facebook.com/4oh4, it im-
plies that Facebook has deleted the content at that URL.
Therefore, as seen in Figure 7, a large fraction of socware
links that were originally pointing to Facebook have now
been deactivated. However, we also see that a significant
fraction of these links—over 40%—were still live. Fur-
ther, the figure shows that spammers use several different
channels, such as applications, events, and pages to prop-
agate their scams on Facebook. In the figure, ‘App inst’
and ‘App prof’ refer to the installation and profile pages
of Facebook applications, and ‘LaaS’ refers to campaigns
intended to increase the number of Likes on a Facebook
page (described in detail in Section 6).

In our dataset, we see 257 distinct socware links short-
ened with the bit.ly and goo.glURL shorteners that
point to landing pages in the facebook.com domain.
Using the APIs [5, 16] offered by these URL shorten-
ing services, we computed the number of clicks recorded
for these 257 links in two cases—1) where the Refer-
rer was Facebook, and 2) where the Referrer was any
other domain. Figure 8 shows that Facebook is the dom-
inant platform from which most of these links received
most of their clicks; 80% of links received over 70% of
their clicks from Facebook. This seems to indicate that
most socware hosted on Facebook is propagated solely
on Facebook and tailored for that platform.

5.4 Comparison of socware to email spam
Socware keywords exhibit little (10%) overlap with
spam email keywords. As we saw earlier in Section 4,
spam keyword score is a key feature in MyPageKeeper’s
classifier. Therefore, in the final section of our analysis,
we investigate the overlap in ‘spam keywords’ that we
observe in socware on Facebook with those seen in an-
other medium targeted by spammers, specifically email.

11

674  21st USENIX Security Symposium	 USENIX Association

Socware Likelihood Spam email Likelihood
word ratio word ratio
free 12.1 money 11.5
< 3 ∞ price 26.6

iphone ∞ free 0.08
awesome 31.3 account 9.6

win 24.3 stock 9.7
wow 90.8 address 5.2
hurry 36.8 bank 56.4
omg 332.3 pills ∞

amazing 4.9 viagra ∞
deal 1.9 watch 1.9

Table 10: Top keywords from socware posts and spam emails.

0 %

2 %

4 %

6 %

8 %

10 %

12 %

 0 1 2 3 4 5 6 7 8

%
 o

f
S

p
am

 K
ey

w
o
rd

s

Log odds ratio of spam keywords

Figure 9: Overlap of keywords between email and Facebook.

We investigate whether spammers use similar keywords
on Facebook as they use in email spam.

To perform this analysis, we collected over 17,000
spam emails from [50]. For Facebook spam, we use
92,493 socware posts collected by MyPageKeeper. We
transform posts in either dataset to a bag of words with
their frequency of occurrence. Similar to [54], we then
compute the log odds ratio for each keyword to deter-
mine its overlap in Facebook socware and spam email.
Here, the log odds ratio for a keyword is defined by
ratio = |log(p1q2/p2q1)| where pi is the likelihood of
that keyword appearing in set i and qi = 1− pi. A value
of 0 for the log odds ratio indicates that the keyword is
equally likely to appear in both datasets, whereas an infi-
nite ratio indicates that the keyword appears in only one
of the datasets. In Figure 9 (infinite values are omitted),
we see only a 10% overlap in spam keywords between
email and Facebook. This indicates that Facebook spam
significantly differs from traditional email spam.

Further, Table 10 shows the likelihood ratio (defined
earlier in Section 3.3) for the top keywords in either
dataset. The higher the likelihood ratio of a socware
keyword, the stronger the bias of the keyword appear-
ing more in Facebook socware than in email spam; an
infinite ratio implies the keyword exclusively appears in
Facebook socware. The word ‘omg’ is 332 times more
likely to be used in Facebook socware than in email spam.
On the other hand, words such as ‘pills’ and ‘viagra’ are
restricted solely to email spam.

6 Like-as-a-Service
Facebook has now become the premier online destination
on the Internet. Over 900 million users, half of whom
visit the site daily, spend over 4 hours on the site every

Like 10 Click 'Like' to
receive free iPad

Product x

www.facebook.com/pageX

a) User visits a product page
It lures user to click `'Like'

Like 11 Install the app
to play and win!

Product x

www.facebook.com/pageX

b) Like count increases by 1.
Now spammer lures user to

install the LaaS app

Click here to win

My wall

Click here to win
Click here to win

www.facebook.com/home

c) LaaS app gets permission
to spam user's wall anytime!

Figure 10: A representation of how a Like-as-a-service Face-
book application collects Likes for its client’s page and gains
access to the user’s wall for spamming. Dotted region of the
page is controlled by the spammer.

 0

 200

 400

 600

 800

0
7
/0

2

0
7
/1

6

0
7
/3

0

0
8
/1

3

0
8
/2

7

0
9
/1

0

0
9
/2

4

1
0
/0

8

1
0
/2

2

 0

 10

 20

 30

 40

#
 o

f
n
ew

s
fe

ed
 p

o
st

s

#
 o

f
w

al
l

p
o
st

snewsfeed
wallposts

Figure 11: Timeline of posts made by the Games LaaS Face-
book application seen on users’ walls and news feeds.

month [10]. To leverage user activity on Facebook, an
increasingly large number of businesses have Facebook
pages associated with their products. However, attracting
users to their page is a challenge for any business. One
way of doing so is to make users who visit a Facebook
page click the ‘Like’ button on the page. A large number
of Likes has two significant implications. First, the num-
ber of Likes associated with a page has begun to represent
the reputation associated with a page, e.g., a higher num-
ber of Likes improves the page’s rank in Bing [3]. Sec-
ond, a link to the product page appears in the news feed
of the friends of the user who clicked Like on the page,
thus enabling the link to the page to spread on Facebook.

Based on our view of Facebook socware through
the MyPageKeeper lens, we see an emerging Like-
as-a-Service 3 market to help businesses attract users
to their pages. We identify several Facebook apps
(e.g., ‘Games’ [15], ‘FanOffer’ [13], and ‘Latest Promo-
tions’ [21]) which are hired by the owners of Facebook
pages to help increase the number of Likes on their pages.
These applications, which offer Likes as a service, pre-
sumably get paid on a ‘Pay-per-Like’ model by the own-
ers of Facebook pages that make use of their services.

Figure 10 shows how a Like-as-a-Service (LaaS) ap-
plication typically works. First, a customer of the LaaS
application integrates the application into their Facebook
page. When users visit the page, the LaaS application
entices the user to click Like on page. Typically, the re-

3 Note that ‘Like-as-a-Service‘ differs from ‘Likejacking‘ [22],
where users are tricked into clicking the Like button without them re-
alizing they are doing so, e.g., by enticing the user to click on a Flash
video, within which the Like button is hidden.

12

USENIX Association 	 21st USENIX Security Symposium  675

Page Name Application Message No. of Likes
Raging Bid Just got a better score on Raging Bid’s Bouncing Balls contest and I am now in 12297th place. I am getting

closer to winning a Sony Bravia 3D HDTV. Who thinks they can beat my score? Click here to try: URL
168,815

www.WalkerToyota.com DAILY CONTEST UPDATE: I am currently in 7573rd place in Walker Toyota’s Tetris contest. There is still
plenty of time to try and win a 16GB iPad2. Who thinks they can get a better score than me? Click here to try:
URL

136,212

Chip Banks Chevrolet Buick DAILY CONTEST UPDATE: I am currently in 310th place in Chip Banks Chevrolet Buick’s Gem Swap II
contest. There is still plenty of time to try and win a 16GB iPad2. Who thinks they can get a better score than
me? Click here to try: URL

2,190

Casey Jamerson DAILY CONTEST UPDATE: I am currently in 6234th place in Casey Jamerson Music’s Gem Swap II contest.
There is still plenty of time to try and win a 16GB iPad2. Who thinks they can get a better score than me? Click
here to try: URL

47,496

Tara Gray DAILY CONTEST UPDATE: I am currently in 10213th place in Tara Gray’s Gem Swap II contest. There is still
plenty of time to try and win a Burma Ruby Ring. Who thinks they can get a better score than me? Click here to
try: URL

231,035

Table 11: Five example Facebook pages integrated with the Games LaaS application to spam users’ walls for propagation.

82 %
84 %
86 %
88 %
90 %
92 %
94 %
96 %
98 %

100 %

10
0

10
1

10
2

10
3

10
4

%
 o

f
U

R
L

s

of likes/comments

Likes (LaaS)
Comments (LaaS)

Likes (Benign)
Comments (Benign)

Figure 12: # of Likes and comments associated with URLs
posted by the Games Facebook app.

ward promised to the user in return for his Like is that the
user can play some games on the page or have a chance
of winning free products. However, once the user clicks
Like on the page to access the promised reward, the LaaS
application then demands that the user add the application
to his profile in order to proceed further. In the process
of getting the user to add the LaaS application, the appli-
cation requests the user to grant permission for it to post
on the user’s wall. Once the application obtains such per-
missions, it periodically spams the user’s wall with posts
that contain links to the Facebook page of the customer
who enrolled the LaaS application for its services. These
posts will appear in the news feeds of the unsuspecting
user’s friends, who in turn may visit the Facebook page
and go through the same cycle again. The LaaS appli-
cation thus enables the Facebook pages of its customers
to accumulate Likes and increase their reputation, even
though users are clicking Like on these pages with the
promise of false rewards rather than because they like the
products advertised on the page.

Here, we analyze the activity of one such LaaS
application—Games [15]. Figure 11 shows that posts
made by this application appear regularly in the walls
and news feeds of MyPageKeeper’s users. Even with our
small sample of roughly 12K users from Facebook’s total
population of over 850 million users, we see that 40 users
have posts made by Games on their walls, which implies
that these users have installed the application and granted
it permission to make posts on their wall at any time. We
also see that the number of users who installed Games

significantly rose around mid-September 2011. Further,
from the news feeds of MyPageKeeper users, we see that
Games posted links to as many as 700 Facebook pages
on a single day; each link points to the Facebook page of
a different customer of this LaaS application. Table 11
shows the posts made by Games for some of its cus-
tomers, the variation in text messages across these posts,
and the large number of Likes garnered by the Facebook
pages of these customers.

We next analyze the Likes and comments received by
721 URLs posted by the Games app. As shown in Fig-
ure 12, we see that over 95% of these URLs have less
than 100 Likes and less than 100 comments; this frac-
tion is significantly lesser on a dataset of randomly cho-
sen 721 URLs from benign posts. However, over 20%
of the URLs posted by the Games app do receive Likes
and comments, thus enabling them to propagate on Face-
book. Real users may be unknowingly helping to spread-
ing spam in these cases; such users have been previously
referred to as creepers [52].

7 Discussion
Client-based solution. An alternative to MyPage-
Keeper’s server-side detection of socware would be to
identify socware on client machines. In such an ap-
proach, a client-side tool can classify a post at the instant
when the user accesses the post. However, we choose
not to use such an approach for multiple reasons. First,
a server-side solution is more amenable to adoption; it
is easier to convince users to add an app to their Face-
book profile than to convince them to download and in-
stall an application or browser extension on their ma-
chines. Second, users can access Facebook from a range
of browsers and even from different device types (e.g.,
mobile phones). Developing and maintaining client-
side tools for all of these platforms is onerous. Finally,
and most importantly, many of the features used by our
socware classifier (e.g., message similarity score) funda-
mentally depend on aggregating information across users.
Therefore, a view of Facebook from the perspective of a

13

676  21st USENIX Security Symposium	 USENIX Association

single client may be insufficient to identify socware ac-
curately.

Estimating false negatives. While we evaluated the
accuracy of socware identified by MyPageKeeper by
cross-validating with other techniques, evaluating the ac-
curacy of MyPageKeeper’s classifier in cases where it de-
clares a URL safe is much harder. Not only do we lack
ground truth, but since the highly common case is that
a Facebook post is benign, manual verification of a ran-
domly chosen subset of the classifier’s negative outputs is
insufficient.

We therefore evaluate whether MyPageKeeper’s clas-
sifier misses any socware by using data from user-
reported samples of socware. As shown in Table 3,
533 distinct MyPageKeeper users have submitted 679
such reports and we have received 333 unique URLs
across these reports. Based on manual verification,
we find that 296 of these 333 URLs indeed point to
spam or malware. The remaining 37 URLs point to
sites like surveymonkey.com (fill out surveys) and
clixsense.com (get paid to view advertisements),
which though abused by spammers have legitimate uses
as well. We suspect that our users did come across
socware, but reported the URL of the landing page, rather
than the URL that they originally found in a socware post.

Of the 296 instances of true socware reported by users,
MyPageKeeper’s classifier flagged all but 17 of them, in-
dependently of users reporting them to us. This trans-
lates into a false negative rate of 5% for the classi-
fier. However, 16 of these 17 URLs had been found to
match against one of the URL blacklists used by MyPage-
Keeper. Thus, the false negative rate for the whole My-
PageKeeper system, which combines blacklists and the
classifier to detect socware, is 0.3%.

Arms race with spammers. Though our current tech-
niques seem to suffice to accurately identify socware
on Facebook, we speculate here on how spammers may
evolve socware, given the knowledge of how MyPage-
Keeper works. One option for spammers to evade My-
PageKeeper is to use different shortened URLs for a
single malicious landing URL. In such cases, MyPage-
Keeper would consider every posted shortened URL
seperately even though they are all part of the same cam-
paign. Thus, if any of these shortened URLs does not
appear on the walls/news feeds of several users, MyPage-
Keeper may fail to flag it. Another option for socware to
evade MyPageKeeper is for spammers to slow down its
rate of propagation; as we found in Section 4.2, MyPage-
Keeper sometimes misses socware which is observed
only a few times in our dataset. However, slowing down
a socware epidemic makes it likely that it will be flagged
by other techniques, such as URL blacklists. Moreover,
spammers may often be unable to control how fast a
socware epidemic spreads. In the case where an epidemic

spreads by luring users into installing a Facebook app, the
spammer can control how often the app posts spam on
the user’s wall. However, in cases where users are asked
to ‘Like’ or ‘Share’ a post to access a fake reward, the
socware is self-propagating and its viral spread cannot be
controlled by spammers.

Another option is for spammers to change the key-
words that they use in socware posts, thus affecting the
spam keyword score used by MyPageKeeper’s classifier.
Though spammers are constrained in their choice of key-
words by the need to attract users, some of the keywords
may evolve over time as popular colloquial expressions
(e.g., ‘OMG’) change. To evaluate MyPageKeeper’s abil-
ity to cope with such change, we identified the top key-
words (those with high likelihood ratio compared to be-
nign posts among frequently occurring keywords) dis-
tinctive to user-reported socware posts. We find that the
spam keywords that we use in MyPageKeeper’s classifier
(identified from manually identified samples of socware)
match those computed here. Though this captures data
only across four months, MyPageKeeper can similarly re-
compute the set of spam keywords over time.

8 Related Work
Motivated by the increasing presence of spam and mal-
ware on OSNs, there have been several recent related ef-
forts. Here, we contrast our work with these prior efforts.

Studies of spam on OSNs. Gao et al. [43] analyzed
posts on the walls of 3.5 million Facebook users and
showed that 10% of links posted on Facebook walls are
spam, with a large majority pointing to phishing sites.
They also presented techniques to identify compromised
accounts and spam campaigns. In a similar study on Twit-
ter, Grier et al. [44] showed that at least 8% of links
posted on Twitter are spam while 86% of the involved
accounts are compromised. In contrast to this study,
Thomas et al. [55] show that the majority of suspended
accounts in Twitter are created by spammers as opposed
to compromised users. All of these efforts however fo-
cus on post-mortem analysis of historical OSN data and
are not applicable to MyPageKeeper’s goal of identify-
ing socware soon after it appears on a user’s wall or news
feed.

Detecting spam accounts. Benevenuto et al. [39] and
Yang et al. [57] developed techniques to identify accounts
of spammers on Twitter. Others have proposed a honey-
pot based approach [53, 47] to detect spam accounts on
OSNs. Yardi et al. [58] analyzed behavioral patterns
among spam accounts in Twitter. Instead of focusing on
accounts created by spammers, MyPageKeeper enables
socware detection on the walls and news feeds of legiti-
mate Facebook users.

Real-time spam detection in OSNs. Thomas et
al. [54] developed Monarch, a real-time system that

14

USENIX Association 	 21st USENIX Security Symposium  677

crawls URLs submitted from services such as Twitter to
determine whether a URL directs to spam. Monarch re-
lies on the network and domain level properties of URLs
as well as the content of the web pages obtained when
URLs are crawled. Interestingly, Monarch’s classifica-
tion accuracy is shown to be independent of the social
context on Twitter. MyPageKeeper distinguishes itself
from Monarch in several ways—1) we study socware on
Facebook, which we see significantly differs in its char-
acteristics from traditional spam messages, 2) to make
MyPageKeeper efficient, our socware classifier operates
without crawling of links found in posts, and 3) we find
that the use of social context based features is crucial to
efficient detection of socware. In another study, Gao et
al. [42] perform online spam filtering on OSNs using in-
cremental clustering. Their technique however relies on
having the whole social graph as input, and so, is usable
only by the OSN provider. MyPageKeeper instead relies
only on the view of the OSN as seen by MyPageKeeper’s
users. Lee et al. [48] built Warningbird, a system to detect
suspicious URLs in Twitter; their system however relies
on following the HTTP redirection chains of URLs, thus
making their approach less efficient than MyPageKeeper.

Wang et al. [56] propose a unified spam detection
framework that works across all OSNs, but they do not
have an implementation of such a system in practice.
Stein et al. [52] describe Facebook’s Immune System
(FIS), a scalable real-time adversarial learning system
deployed in Facebook to protect users from malicious
activities. However, Stein et al. provide only a high-
level overview about threats to the Facebook graph and
do not provide any analysis of the system. Similarly,
other Facebook applications [6, 25, 4] that defend users
against spam and malware are proprietary with no details
available about how they work. Abu-Nimeh et al. [37]
analyze the URLs flagged by one of these applications,
Defenseio, but they do not discuss Defenseio’s classifica-
tion techniques and their analysis is restricted to that of
the hosting infrastructure (country and ASN) underlying
Facebook spam. To the best of our knowledge, we are
the first to provide classification of socware on Facebook
that relies solely on social context based features, thus
enabling MyPageKeeper to efficiently detect socware at
scale.

Social context based email spam. Jagatic et al. [45]
discuss how email phishing attacks can be launched by
using publicly available personal information (e.g., birth-
day) from social networks, and Brown et al. [40] analyzed
such email spam seen in practice. However, due to revi-
sions in Facebook’s privacy policy over the last couple of
years, only a user’s friends have access to such informa-
tion from the user’s profile, thus making such email spam
no longer possible. Further, MyPageKeeper focuses on
spam propagated on Facebook rather than via email.

9 Conclusions
Facebook is becoming the new epicenter of the web,
and we showed that hackers are adapting to this change
by designing new types of malware suited to this plat-
form, which we call socware. In this paper, we pre-
sented the design and implementation of MyPageKeeper,
a Facebook application that can accurately and efficiently
identify socware at scale. Using data from over 12K
Facebook users, we found that the reach of socware is
widespread and that a significant fraction of socware is
hosted on Facebook itself. We also showed that existing
defenses, such as URL blacklists, are ill-suited for identi-
fying socware, and that socware significantly differs from
email spam. Finally, we identified a new trend in ag-
gressive marketing of Facebook pages using “Like-as-
a-Service” applications that spam users to make money
based on a “Pay-per-Like” model.

References
[1] Anti-phishing working group. http://www.

antiphishing.org/.
[2] Application authentication flow using oauth

2.0. http://developers.facebook.com/docs/
authentication/.

[3] Bing gets friendlier with Facebook. http://www.
technologyreview.com/web/37585/.

[4] Bitdefender Safego. http://www.facebook.com/
bitdefender.safego.

[5] bit.ly API. http://code.google.com/p/bitly-api/wiki/
ApiDocumentation.

[6] Defensio Social Web Security. http:
//www.facebook.com/apps/application.php?id=
177000755670.

[7] Escrow-fraud. http://escrow-fraud.com/.
[8] Experts: Facebook crime is on the

rise. http://www.zdnet.com/blog/facebook/
experts-facebook-crime-is-on-the-rise/2632.

[9] Facebook birthday T-shirt scam steals secret mobile
email addresses. http://bit.ly/Kvax0t.

[10] Facebook is the web’s ultimate timesink. http://
mashable.com/2010/02/16/facebook-nielsen-stats/.

[11] Facebook Phishing Scam Costs Vic-
tims Thousands of Dollars. http:
//www.hyphenet.com/blog/2011/10/04/
facebook-phishing-scam-costs-victims-thousands-of-dollars/.

[12] Facebook scam involves money transfers
to the Philippines. http://profitscam.com/
facebook-scam-involves-money-transfers-to-the-philippines-post/.

[13] Fan Offer. https://www.facebook.com/apps/
application.php?id=107611949261673.

[14] FBML- Facebook Markup Language. https://
developers.facebook.com/docs/reference/fbml/.

15

678  21st USENIX Security Symposium	 USENIX Association

[15] Games. https://www.facebook.com/apps/
application.php?id=121297667915814.

[16] goo.gl API. http://code.google.com/apis/
urlshortener/v1/getting started.html.

[17] Google Safe Browsing API. http://code.google.
com/apis/safebrowsing/.

[18] Hackers selling $25 toolkit to create malicious
Facebook apps. http://zd.net/M2WNe1.

[19] How to spot a Facebook Survey Scam.
http://facecrooks.com/Safety-Center/Scam-Watch/
How-to-spot-a-Facebook-Survey-Scam.html.

[20] Joewein: Fighting spam and scams on the Internet.
http://www.joewein.net/.

[21] Latest Promotions. https://www.facebook.com/
apps/application.php?id=174789949246851.

[22] Likejacking takes off on Facebook.
http://www.readwriteweb.com/archives/
likejacking takes off on facebook.php.

[23] MalwarePatrol- Malware is everywhere! . http://
www.malware.com.br/.

[24] MyPageKeeper. https://www.facebook.com/apps/
application.php?id=167087893342260.

[25] Norton Safe Web. http://www.facebook.com/apps/
application.php?id=310877173418.

[26] Phishtank. http://www.phishtank.com/.
[27] Rihanna video scam. ”http://www.virteacon.com/

2011/11/sick-i-just-hate-rihanna-after-watching.
html”.

[28] Spamcop. http://www.spamcop.net/.
[29] Spamhaus. http://www.spamhaus.org/sbl/index.

lasso.
[30] Steve Jobs death scams are just the greedy exploit-

ing the gullible. http://bit.ly/M67Zme.
[31] SURBL. http://www.surbl.org/.
[32] SVM Tutorials. http://svms.org/tutorials/.
[33] URIBL. http://www.uribl.com/.
[34] Web-of-trust. http://www.mywot.com/.
[35] What 20 Minutes On Facebook Looks Like. http:

//tcrn.ch/KytqzB.
[36] Facebook becomes partner with Web

of Trust (WOT). https://www.
facebook.com/notes/facebook-security/
keeping-you-safe-from-scams-and-spam/
10150174826745766, May 2011.

[37] S. Abu-Nimeh, T. M. Chen, and O. Alzubi. Mali-
cious and spam posts in online social networks. In
IEEE Computer Society, 2011.

[38] F. becomes partner with WebSense. http://
www.thetechherald.com/article.php/201139/7675/
Facebook-implements-malicious-link-scanning-service,
Oct 2011.

[39] F. Benevenuto, G. Magno, T. Rodrigues, and
V. Almeida. Detecting spammers on Twitter. In
CEAS, 2010.

[40] G. Brown, T. Howe, M. Ihbe, A. Prakash, and
K. Borders. Social networks and context-aware
spam. In ACM CSCW, 2008.

[41] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on In-
telligent Systems and Technology, 2, 2011.

[42] H. Gao, Y. Chen, K. Lee, D. Palsetia, and A. Choud-
hary. Towards online spam filtering in social net-
works. 2012.

[43] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Y.
Zhao. Detecting and characterizing social spam
campaigns. In IMC, 2010.

[44] C. Grier, K. Thomas, V. Paxson, and M. Zhang.
@spam: The underground on 140 characters or less.
In CCS, 2010.

[45] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and
F. Menczer. Social phishing. Commun. ACM, 2007.

[46] A. Le, A. Markopoulou, and M. Faloutsos.
Phishdef: Url names say it all. In Infocom, 2010.

[47] K. Lee, J. Caverlee, and S. Webb. Uncovering social
spammers: social honeypots + machine learning. In
SIGIR, 2010.

[48] S. Lee and J. Kim. Warningbird: Detecting suspi-
cious urls in twitter stream. 2012.

[49] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker.
Beyond blacklists: learning to detect malicious web
sites from suspicious urls. In KDD, 2009.

[50] V. Metsis, I. Androutsopoulos, and G. Paliouras.
Spam filtering with naive bayes – which naive
bayes? In CEAS, 2006.

[51] Z. Qian, Z. M. Mao, Y. Xie, and F. Yu. On network-
level clusters for spam detection. In NDSS, 2010.

[52] T. Stein, E. Chen, and K. Mangla. Facebook im-
mune system. In SNS, 2011.

[53] G. Stringhini, C. Kruegel, and G. Vigna. Detecting
spammers on social networks. In ACSAC, 2010.

[54] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song.
Design and Evaluation of a Real-Time URL Spam
Filtering Service. In Proceedings of the IEEE Sym-
posium on Security and Privacy, 2011.

[55] K. Thomas, C. Grier, V. Paxson, and D. Song. Sus-
pended accounts in retrospect: An analysis of twit-
ter spam. In IMC, 2011.

[56] D. Wang, D. Irani, and C. Pu. A social-spam detec-
tion framework. In CEAS, 2011.

[57] C. Yang, R. Harkreader, and G. Gu. Die free or
live hard? empirical evaluation and new design for
fighting evolving twitter spammers. In RAID, 2011.

[58] S. Yardi, D. Romero, G. Schoenebeck, et al. De-
tecting spam in a twitter network. First Monday,
2009.

16

	Conference Organizers
	External Reviewers
	Table of Contents
	Message from the USENIX Security ’12 Program Chair
	PharmaLeaks: Understanding the Business of Online Pharmaceutical Affiliate Programs
	B@bel: Leveraging Email Delivery for Spam Mitigation
	Impact of Spam Exposure on User Engagement
	Security and Usability Challenges of Moving-Object CAPTCHAs: Decoding Codewords in Motion
	How Does Your Password Measure Up? The Effect of Strength Meters on Password Creation
	I Forgot Your Password: Randomness Attacks Against PHP Applications˜
	An Evaluation of the Google Chrome Extension Security Architecture
	Establishing Browser Security Guaranteesthrough Formal Shim Verification
	Neuroscience Meets Cryptography: Designing Crypto Primitives Secure Against Rubber Hose Attacks
	On the Feasibility of Side-Channel Attacks with Brain-Computer Interfaces
	Whispers in the Hyper-space: High-speed Covert Channel Attacks in the Cloud
	Policy-Sealed Data: A New Abstraction for Building Trusted Cloud Services
	STEALTHMEM: System-Level Protection Against Cache-Based Side Channel Attacks in the Cloud
	Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices
	TARDIS: Time and Remanence Decay in SRAM to Implement SecureProtocols on Embedded Devices without Clocks
	Gone in 360 Seconds: Hijacking with Hitag2
	Taking proof-based verified computation a few steps closer to practicality
	Optimally Robust Private Information Retrieval˜
	Billion-Gate Secure Computation with Malicious Adversaries
	Progressive authentication: deciding when to authenticate on mobile phones
	Origin-Bound Certificates: A Fresh Approach to Strong Client Authentication for the Web
	Data Node Encrypted File System:Efficient Secure Deletion for Flash Memory
	Throttling Tor Bandwidth Parasites
	Chimera: A Declarative Language for Streaming Network Traffic Analysis
	New Attacks on Timing-based Network Flow Watermarks
	On Breaking SAML: Be Whoever You Want to Be
	Clickjacking: Attacks and Defenses
	Privilege Separation in HTML5 Applications
	Fuzzing with Code Fragments
	kGuard: Lightweight Kernel Protection against Return-to-user Attacks
	Enhanced Operating System Security Through Efficient and Fine-grained Address Space Randomization
	From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware
	PUBCRAWL: Protecting Users and Businesses from CRAWLers
	Enemy of the State: A State-Aware Black-Box Web Vulnerability Scanner
	Aurasium: Practical Policy Enforcement for Android Applications
	AdSplit: Separating smartphone advertising from applications
	DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis
	STING: Finding Name Resolution Vulnerabilities in Programs
	Tracking Rootkit Footprints with a Practical Memory Analysis System
	TACHYON: Tandem Execution for Efficient Live Patch Testing
	Privacy-Preserving Social Plugins
	Social Networking with Frientegrity: Privacy and Integrity with an Untrusted Provider
	Efficient and Scalable Socware Detection in Online Social Networks
	Blank Page
	Blank Page

