
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Authenticated private information retrieval
Simone Colombo, EPFL; Kirill Nikitin, Cornell Tech; Henry Corrigan-Gibbs, MIT;

David J. Wu, UT Austin; Bryan Ford, EPFL
https://www.usenix.org/conference/usenixsecurity23/presentation/colombo

USENIX’23 Artifact Appendix:
Authenticated private information retrieval

Simone Colombo
EPFL

Kirill Nikitin
Cornell Tech

Henry Corrigan-Gibbs
MIT

David J. Wu
UT Austin

Bryan Ford
EPFL

1 Artifact Appendix

1.1 Abstract

The source code for our single- and multi-server authenticated-
PIR schemes and the Keyd public-key server is available
at https://github.com/dedis/apir-code under open-
source license. The same repository contains unauthenticated-
PIR schemes that we implemented as baselines for compar-
ison; as single-server PIR baseline we use the original im-
plementation of SimplePIR [HHCMV22]. Our implemen-
tation and the implementation of SimplePIR use C for the
performance-critical functions. We perform all the experi-
ments on machines equipped with two Intel Xeon E5-2680 v3
(Haswell) CPUs, each with 12 cores, 24 threads, and operating
at 2.5 GHz, and 256 GB of RAM.

1.2 Description & Requirements

1.2.1 Security, privacy, and ethical concerns

None.

1.2.2 How to access

The source code for all the authenticated-PIR
schemes, the classic-PIR schemes and Keyd under
which this artifact evaluation was tested is available
at https://github.com/dedis/apir-code/tree/
af3202e3776d4cb880256372dd51613ee34532ba.

1.2.3 Hardware dependencies

We perform all the experiments on machines equipped with
two Intel Xeon E5-2680 v3 (Haswell) CPUs, each with 12
cores, 24 threads, and operating at 2.5 GHz. Each machine
has 256 GB of RAM, and runs Ubuntu 20.04 and Go 1.17.5.
Machines are connected with 10 Gigabit Ethernet. In the ex-
periments for the multi-server schemes and Keyd (Sections
7.1, 7.2 and 7.4), the client and the servers run on separate
machines—the experiments use at most six machines. For
single-server schemes we use a single machine that runs both
client and server. However, it is possible to run the code,

together with the accompanying tests, benchmarks and exper-
iments, on any machine equipped the software dependencies
listed in the next section.

1.2.4 Software dependencies

Running run the code requires Go (tested with Go 1.17.5 and
1.19.5) and a C compiler (tested with GCC 9.4.0).

Reproducing the evaluation results requires GNU Make,
Screen, Python 31, Fabric, Tomli, Numpy and Matplotlib.

1.2.5 Benchmarks

None.

1.3 Set-up
1.3.1 Installation

Installation instructions are given in the Setup sections of
https://github.com/si-co/vpir-code/blob/main/README.md
and we report them here. To run the code in the repository
install Go (tested with Go 1.17.5) and a C compiler (tested
with GCC 9.4.0). To reproduce the evaluation results, install
GNU Make, Screen, Python 3, Fabric, Numpy and Matplotlib.

1.3.2 Basic Test

To run all basic tests, users should clone the repository, and
download the dump of the SKS PGP key directory using the
command

bash scripts/download_sks_parsed.sh

in the repository’s root directory.
To run the basic test, use the following command:

go test

in the repository’s root directory. This command takes about
six minutes to run and outputs the time taken by each test. If
all the tests pass, the output ends as follows:

PASS
ok github.com/si-co/apir -code

1The package python-is-python3 might be needed.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 217

https://github.com/dedis/apir-code
https://eprint.iacr.org/2022/949
https://github.com/dedis/apir-code/tree/af3202e3776d4cb880256372dd51613ee34532ba
https://github.com/dedis/apir-code/tree/af3202e3776d4cb880256372dd51613ee34532ba
https://go.dev/
https://www.gnu.org/software/make/
https://www.gnu.org/software/screen/
https://www.python.org/downloads/
https://www.fabfile.org/
https://github.com/hukkin/tomli
https://numpy.org/
https://matplotlib.org/
https://github.com/si-co/vpir-code/blob/main/README.md
https://go.dev/
https://www.gnu.org/software/make/
https://www.gnu.org/software/screen/
https://www.python.org/downloads/
https://www.fabfile.org/
https://numpy.org/
https://matplotlib.org/

1.4 Evaluation workflow

1.4.1 Major Claims

Our paper claims what follows.

Multi-server point queries (Section 7.1).
(C1): The maximum overhead for our multi-server

authenticated-PIR scheme for point queries, in compari-
son with classic unathenticated PIR is 2.9× for user
time and 1.8× for bandwidth. This is the outcome of
experiment (E1), whose results are presented in Fig. 3.

(C2): The impact of the number of servers on our multi-
server authenticated-PIR scheme for point queries is
almost negligible for user time and imposes a linear
increase for bandwidth. This is the result of experiment
(E2), whose results are reported in Fig. 4 in the body of
the paper.

(C3): The preprocessing cost for our multi-server authen-
ticated PIR scheme for point queries is linear in the
database size. This is the result of experiment (E3),
whose results are reported in Fig. 8 in Appendix C.

Multi-server complex queries (Section 7.2).
(C4): The user time and bandwidth overheads of the

authenticated-PIR schemes for complex queries against
classic unauthenticated-PIR schemes are less than 1.1×.
This is the outcome of experiment (E4), whose results
are presented in Fig. 5.

Single-server point queries (Section 7.3).
(C5): The authenticated-PIR schemes from the decisional

Diffie-Hellman assumption (DDH) and from the
learning-with-errors assumption (LWE) have integrity
error 2−128. The DDH construction has a smaller digest,
i.e., lower offline bandwidth, but has twice the online
bandwidth of the LWE construction. The LWE construc-
tion is also faster (3-79×). The scheme with integrity am-
plification (LWE+) has integrity error 2−64 but the same
classic-PIR privacy as SimplePIR [HHCMV22]. LWE+

is faster than LWE for the 1 KiB and 1 MiB databases,
but slower (1.4×) for the 1 GiB database. SimplePIR is
30-100× faster than LWE+. These results are the out-
come of experiment (E5), whose results are presented in
Fig. 6 in the body of the paper.

Application evaluation (Section 7.4).
(C6): For classic key look-ups we measure the wall-clock

time needed to retrieve a PGP public-key with authen-
ticated PIR, classic PIR without authentication, and by
direct download. We measure 1.11 seconds for authen-
ticated PIR, 1.10 seconds for unauthenticated PIR and
0.22 seconds for non-private direct look-up. This is the

result of experiment (E6), whose results are discussed in
Section 7.4 in the body of the paper.

(C7): To analyze the performance of Keyd in computing
private statistics over keys, we measure user-perceived
time and bandwidth of different predicate queries. For
all the predicates, the user-perceived time and bandiwdth
overheads of authenticated PIR are upper bounded by a
factor of 1.05×. This is the outcome of experiment (E7),
whose results are presented in Table 7 in the body of the
paper.

1.4.2 Experiments

The experiments use at most six server machines (to run the
client and servers) and an additional machine (that we call
local) to manage the experiments. The local machine can
be a commodity computer, since it is used only to run light
scripts and gather results. Clone the repository on all the
server machines and on the local machine.
(E1): [15 human-minutes + 2 compute-hour]: This experi-

ment measures the user-time and bandwidth overheads of
two-server authenticated-PIR schemes for point queries
in comparison with unauthenticated PIR. This experi-
ments uses three server machines: one client and two
servers.
Preparation: Edit simulations/multi/config.toml
on the local machine to indicate the IP address of the
client machine and the IP addresses and ports of the two
server machines. The default port numbers are safe to
use.
Execution: Run the following commands from the
repository’s root on the local machine:

cd simulations/multi
APIR_USER=<username >
APIR_PASSWORD=<password >
APIR_PATH=<path >
python simul.py -e point

where <username> and <password> are the username
and password for the servers, respectively, and <path>
is the path of the repository’s root on the servers.
Results: Run the following commands from the reposi-
tory’s root:

cd simulations/multi
python plot.py -e point

The command stores the figure in
simulations/multi/figures/point.eps.

(E2): [15 human-minutes + 18 compute-minutes]: This ex-
periment measures the impact of the number of servers
on our multi-server authenticated-PIR schemes for point
queries. This experiments uses six server machines: one
client and five servers.
Preparation: Edit simulations/multi/config.toml
on the local machine to indicate the IP address of the

218 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2022/949

client machine and the IP addresses and ports of the five
server machines. The default port numbers are safe.
Execution: Run the following commands from the
repository’s root on the local machine:

cd simulations/multi
APIR_USER=<username >
APIR_PASSWORD=<password >
APIR_PATH=<path >
python simul.py -e point_multi

where <username>, <password> and <path> are as in
experiment E1.
Results: Run the following commands from the reposi-
tory’s root:

cd simulations/multi
python plot.py -e point_multi

The command stores the figure in
simulations/multi/figures/multi.eps.

(E3): [5 human-minutes + 9 compute-minutes]: This experi-
ment measures the cost of preprocessing for our multi-
server authenticated-PIR scheme for point queries. This
experiment uses one server machine.
Preparation: Nothing.
Execution: Run the following commands from the
repository’s root on the server machine:

cd simulations
make preprocessing

Results: Run the following commands from the reposi-
tory’s root:

cd simulations
python plot.py -e preprocessing

The command stores the figure in
simulations/figures/preprocessing.eps.

(E4): [15 human-minutes + 36 compute-minutes]: This ex-
periment measures the user-time and bandwidth over-
heads of two-server authenticated-PIR schemes for com-
plex queries in comparison with unauthenticated PIR.
This experiments uses three server machines: one client
and two servers.
Preparation: As in experiment E1. The file
simulations/multi/config.toml on the local
machine must list only two servers.
Execution: Run the following commands from the
repository’s root on the local machine:

cd simulations/multi
APIR_USER=<username >
APIR_PASSWORD=<password >
APIR_PATH=<path >
python simul.py -e predicate

where <username>, <password> and <path> are as in
experiment E1.

Results: Run the following commands from the reposi-
tory’s root:

cd simulations/multi
python plot.py -e predicate

The command stores the figure in
simulations/multi/figures/complex_lines.eps.

(E5): [15 human-minutes + 21 compute-hour]: This experi-
ment measures the user-time and bandwidth overheads
of single-server authenticated-PIR schemes for point
queries in comparison with SimplePIR [HHCMV22].
This experiment uses one server machine.
Preparation: Nothing.
Execution: Run the following commands from the
repository’s root on the server machine:

cd simulations
make single

To evaluate SimplePIR, clone the following repository:
https://github.com/si-co/simplepir. The code
is the same as the original repository, but it runs the
evaluation on the same database sizes as authenticated
PIR and produces a compatible JSON file for the results.
Run the following command (45 compute-minutes) from
the repository’s root on the server machine:

cd pir
go test -timeout 0 -run=PirSingle

Copy the file simplePIR.json (in the pir directory) in
simulation/results.
Results: Run the following commands from the reposi-
tory’s root:

cd simulations
python plot.py -e single

The command stores the figure in
simulations/figures/single_bar.eps.

(E6): [20 human-minutes + 10 compute-minutes]: This ex-
periment measures the user-time needed download a
PGP public-key with authenticated PIR for point queries,
classic unauthenticated PIR for point queries and by di-
rect download. This experiment uses three machines:
one client and two servers.
Preparation: Download the dump of the SKS PGP key
directory using the command

bash scripts/download_sks_parsed.sh

in the repository’s root directory on the two
servers. Set the IP addresses of the two servers
in simulations/real/real_client_pir.sh and in
config.toml (in the repository’s root) on the client
machine.
Execution: Run the following commands from the
repository’s root on the first server:

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 219

https://eprint.iacr.org/2022/949
https://github.com/si-co/simplepir

cd simulations/real
bash real_server_pir.sh 0

Similarly, on the second server run:

cd simulations/real
bash real_server_pir.sh 1

A server is running properly when it logs:

gRPC server started at <ip>:<port >

Once both servers started, run the following command
on the client machine:

cd simulations/real
bash real_client_pir.sh

This command executes 30 look-ups with unauthenti-
cated PIR and 30 with authenticated PIR. At the end, the
client automatically shuts both servers down.
Results: Copy simulations/results/stats_*
from the three machines (two servers and
the client) on the local machine in the folder
/simulations/results. Run the following com-
mands:

cd simulations
python plot.py -e real

The command prints the results directly on the terminal.
(E7): [20 human-minutes + 5 compute-hours]: This experi-

ment measures the user-time needed to compute statistics
on the PGP public-keys with authenticated PIR for pred-
icate queries and unauthenticated PIR. This experiment
uses three machines: one client and two servers.
Preparation: As in Experiment E6, but
set the IP addresses of the two servers in
simulations/real/real_client_fss.sh.
Execution: Run the following commands from the
repository’s root on the first server:

cd simulations/real
bash real_server_fss.sh 0

Similarly, on the second server run:

cd simulations/real
bash real_server_fss.sh 1

For this experiment, it is not needed to wait for the
servers to properly start. Run the following command on
the client machine:

cd simulations/real
bash real_client_fss.sh

Results: Copy simulations/results/stats_*
from the three machines (two servers and
the client) on the local machine in the folder
/simulations/results. Run the following com-
mands:

cd simulations
python plot.py -e realcomplex

The command prints the results directly on the terminal.
Table 7 has a different formatting, but values are the
same as the one that the command prints on screen.

1.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

220 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

