
Formal Analysis of SPDM:
Security Protocol and Data Model version 1.2

Cas Cremers, Alexander Dax, and Aurora Naska,
CISPA Helmholtz Center for Information Security

https://www.usenix.org/conference/usenixsecurity23/presentation/cremers-spdm

This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

USENIX’23 Artifact Appendix:
Formal Analysis of SPDM:

Security Protocol and Data Model version 1.2

Cas Cremers
CISPA Helmholtz Center
for Information Security

Alexander Dax
CISPA Helmholtz Center
for Information Security

Aurora Naska
CISPA Helmholtz Center
for Information Security

A Artifact Appendix

A.1 Abstract

This document contains the description of the formal models
and proofs of the three modes of Security Protocol and Data
Model (SPDM) protocol version 1.2.1. We provide four mod-
els that capture the main device attestation mechanism, and
the three modes of key exchange with (i) preshared symmet-
ric keys, (ii) preshared public keys, and (iii) public key pair,
certificates over the public key, and a root of trust. During
our analysis we prove the main security guarantees of each
of the models, such as Responder Authentication, Measure-
ments Authentication, Handshake Secrecy, etc. Our proofs
and models are formalized using the Tamarin Prover’s input
language.

We provide the artifacts in a public Github repository for
inspection and reproduction with instructions on how to repli-
cate each of the proofs. In addition, the repository includes a
Python programm to obtain all our results automatically.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

All our files are public and can be inspected and reused by
accessing the following GitHub repository https://github
.com/FormalAnalysisOf/SPDM/tree/V1.

A.2.3 Hardware dependencies

The hardware dependencies are inherited from the Tamarin
Prover, although the manual of the latter does not mention
any hardware dependencies. To the best of our knowledge,
any modern notebook should be sufficient to run Tamarin.

A.2.4 Software dependencies

In the following we list all software dependencies:
1. Tamarin Prover1 which depends on haskell-stack,

graphviz, and maude. Note that Tamarin does not run
on Windows systems. To run Tamarin on Windows refer
to WSL2.

2. Python3 - install pip, and use it to install tabulate and
matplotlib.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Clone the repository using

$ git clone
https://github.com/FormalAnalysisOf/SPDM.git↪→

To install the Python dependencies, please install Python3,
pip, tabulate, and matplotlib. For instance, on an Ubuntu sys-
tem you can install them using

$ apt install python3
$ apt install pip3
$ pip3 install tabulate matplotlib

Afterwards install the development branch of Tamarin.

Installing Tamarin Some package managers let you install
Tamarin directly. We suggest compiling it from scratch (de-
velop branch) using the manual https://tamarin-prover.
github.io/manual/book/002_installation.html. for
instructions. The exact commit we used to obtain our proofs
in the develop branch is:

1https://tamarin-prover.github.io/manual/book/002_instal
lation.html

2https://learn.microsoft.com/en-us/windows/wsl/install

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 401

https://github.com/FormalAnalysisOf/SPDM/tree/V1
https://github.com/FormalAnalysisOf/SPDM/tree/V1
https://tamarin-prover.github.io/manual/book/002_installation.html
https://tamarin-prover.github.io/manual/book/002_installation.html
https://tamarin-prover.github.io/manual/book/002_installation.html
https://tamarin-prover.github.io/manual/book/002_installation.html
https://learn.microsoft.com/en-us/windows/wsl/install

7c980321158ebf7c7c03c53cee93248507584065

Our models can also be executed using the latest development
version of Tamarin, however, that might affect the execution’s
runtime.

A.3.2 Basic Test

Make sure that the tamarin-prover executable is in the $PATH.
To test if you correctly installed the Tamarin Prover, execute

$ tamarin-prover test

You should see a message containing
- a check for maude,
- a check for Grapviz, and
- a test for the unification structure (0 errors and 0 failures).
In the end you should see the following:

All tests successful.
The tamarin-prover should work as intended.

:-) happy proving (-:

A.4 Evaluation workflow

A.4.1 Major Claims

Our artifact contains formal models of the SPDM specifica-
tion and the means to execute them. The models include at
the end of the file the main security properties of our analysis,
and sanity checks expressed by the so-called lemmas, which
are a formal representation using the Tamarin Porver’s input
language. The user can automatically reproduce the proofs
for all lemmas by either using the python program or the
instruction sets in our artifact. We state the security properties
investigated in our analysis in the following:

(C1) Device attestation: For the part of SPDM that aims to
provide device attestation, we prove Responder Authen-
tication and Measurement Authentication. Definitions
of those properties can be found in Section 4 of our paper.
Our claims are proven with experiment (E1).

(C2) Certificate KEX: For the key exchange based on cer-
tificates and public key cryptography, we prove Re-
sponder Authentication, Mutual Authentication, and
Handshake Secrecy. Definitions of those properties can
be found in Section 4 of our paper. Our claims are proven
with experiment (E2).

(C3) Pre-Shared KEX: For the key exchange based on pre-
shared public keys, we prove Mutual Authentication
and Handshake Secrecy. Further, for a restricted model
(see section 4.5 in the paper), we also prove Forward
Secrecy. Definitions of those properties can be found
in Section 4 of our paper. Our claims are proven with
experiment (E3).

(C4) PSK Exchange: For the key exchange based on pre-
shared symmetric keys, we prove Mutual Authentica-
tion and Handshake Secrecy. Definitions of those prop-
erties can be found in Section 4 of our paper. Our claims
are proven with experiment (E4).

A summary of our proof results and runtime can be found in
Table 1 of our paper.

A.4.2 Experiments

In the following we list all the different models and explain
how to execute them individually. Afterwards we introduce
the python program to execute all models in experiments
(E1)-(E4) at once.

We ran our models initially on an Intel(R) Xeon(R) CPU
E5-4650L 2.60GHz machine with 756GB of RAM using 4
threads and the estimated runtime is based on this machine.

First navigate in the cloned repository’s model folder

$ cd SPDM/TamarinModels

and then make the oracle file executable

$ chmod +x oracle

(E1): [1 human-minute + ∼ 4 compute-minutes]:
Device attestation is modelled in the file: de-
vice_attestation.spthy. The lemma ResponderAuth
models Responder Authentication and the lemma
MeasurementAuth models Measurement Authentication.
The model file further contains several sanity lemma
and helper lemmas to prove the above property. With
the following instruction all of them will be executed.

Preparation: After cloning the repository and installing
the software dependencies, navigate into the Tamarin-
Models folder within the cloned repository.
Execution: Open the terminal in this folder and execute
the following command:

$ python3 tamarin_wrapper.py
device_attestation.spthy -p
"auth,Sanity" -c 4 -t 1800

↪→

↪→

Results: The results are printed into the terminal, and a
.csv file is also stored within the results folder.

(E2): [1 human-minute + ∼ 52 compute-minutes]:
The certificate based key exchange is modelled
in the file: key_exchange.spthy. The lemma
resp_authentication_at_finish models Responder
Authentication and the lemma mutual_authentication
models Mutual Authentication. Handshake Secrecy
is modelled via 2 lemma: secret_major_init_side and
secret_major_resp_side. The model file further contains
several sanity lemma and certain helper lemma to prove

402 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

the above property. With the following instruction all of
them will be executed.

Preparation: After cloning the repository and installing
the software dependencies, navigate into the Tamarin-
Models folder within the cloned repository.
Execution: Open the terminal in this folder and execute
the following command:

$ python3 tamarin_wrapper.py
key_exchange.spthy -p "Sanity"
-c 4 -t 1800

↪→

↪→

Results: The results are printed into the terminal, and a
.csv file is also stored within the results folder.

(E3): [1 human-minute + ∼ 29 compute-minutes]:
The preshared public key based key exchange
is modelled in two file: preshared_pk.spthy
and preshared_pk_copy.spthy. The lemma mu-
tual_authentication models Mutual Authentication
and is executed in preshared_pk.spthy. The other file
executes Handshake Secrecy is modelled via 2 lemma:
secret_major_init_side and secret_major_resp_side.
The model file further contains several sanity lemma and
certain helper lemma to prove the above property. With
the following instruction all of them will be executed.

Preparation: After cloning the repository and installing
the software dependencies, navigate into the Tamarin-
Models folder within the cloned repository.
Execution: Open the terminal in this folder and execute
the following commands:

$ python3 tamarin_wrapper.py
preshared_pk.spthy -p
"auth,Sanity" -c 4 -t 1800

↪→

↪→

$ python3 tamarin_wrapper.py
preshared_pk_copy.spthy -p "fs"
-c 4 -t 1800

↪→

↪→

Results: The results are printed into the terminal, and
.csv files are also stored within the results folder.

(E4): [1 human-minute + ∼ 3 compute-minutes]:
The preshared public key based key exchange is mod-
elled in two files: preshared_psk.spthy and refl.spthy.
The lemma mutual_authentication models Mutual
Authentication and is executed in preshared_psk.spthy.
The other file executes Handshake Secrecy is mod-
elled via 2 lemma: secret_major_init_side and
secret_major_resp_side. The model file further contains
several sanity lemma and certain helper lemma to prove
the above property. With the following instruction all of
them will be executed.

Preparation: After cloning the repository and installing

the software dependencies, navigate into the Tamarin-
Models folder within the cloned repository.
Execution: Open the terminal in this folder and execute
the following commands:

$ python3 tamarin_wrapper.py
attack_refl_preshared_psk.spthy
-c 4 -t 1800

↪→

↪→

$ python3 tamarin_wrapper.py
preshared_psk.spthy -p "Sanity"
-c 4 -t 1800

↪→

↪→

Results: The results are printed into the terminal, and
.csv files are also stored within the results folder.

Easier alternative
Instead of running all models independently, it is also possible
to run all of them at once. On our computing device this took
∼ 1,5h.
Preparation: After cloning the repository and installing the

software dependencies, navigate into the TamarinModels
folder within the cloned repository.

Execution: open the terminal in this folder and execute the
following command:

$ python3 tamarin_wrapper.py -f
case_studies.tamjson↪→

Results: While the results will be printed into the terminal,
.csv files are also stored within the results folder.

Timeouts
Depending on the computing device it can happen that sin-
gle lemmas do not terminate in the given timeout. You can
either change the timeout at the -t parameter or if one is
running all at once, change the "timeout" field within the
case_studies.tamjson file.

A.5 Notes on Reusability
We conducted a first in-depth formal analysis of the three
models of SPDM, and proved their main security properties.
Ideally, we would verify all security properties on the com-
plete model, however this seems beyond reach of the current
state-of-the-art symbolic analysis tools. However, we mod-
elled the protocol in a modular fashion s.t. models can be
reused and adapted as the specification and standard evolve.
We hope that our models can serve as a starting point for
a unified model and encourage future work on the SPDM
protocol.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 403

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

