
This artifact appendix is included in the Artifact Appendices to the 
Proceedings of the 32nd USENIX Security Symposium and appends to 
the paper of the same name that appears in the Proceedings of the 

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices 
to the Proceedings of the 32nd USENIX 

Security Symposium is sponsored 
by USENIX.

ARMore: Pushing Love Back Into Binaries
Luca Di Bartolomeo, Hossein Moghaddas, and Mathias Payer, EPFL

https://www.usenix.org/conference/usenixsecurity23/presentation/di-bartolomeo



USENIX’23 Artifact Appendix: ARMore: Pushing Love Back Into
Binaries

Luca Di Bartolomeo
EPFL

Hossein Moghaddas
EPFL

Mathias Payer
EPFL

A Artifact Appendix

A.1 Abstract

ARMore’s artifact contains the source code necessary to run
our static rewriter. This document describes how to set-up
our prototype, gives a brief overview of the resource require-
ments to replicate some of the experiments conducted in our
evaluation, along with instructions to run them.

A.2 Description & Requirements

This artifact is shipped as an aarch64 Docker container. The
provided script run.sh takes care of importing the container
and spawning a shell. All the relevant files for the experiment
are in the root home folder.

A.2.1 Security, privacy, and ethical concerns

This artifact does not contain any threat to the system’s in-
tegrity or privacy. However, we still recommend running it
inside a sandboxed environment (either a VM or a container).

A.2.2 How to access

ARMore’s artifact is available online at https://zenodo.
org/record/7707863. ARMore’s source code can be found
at https://github.com/hexhive/retrowrite. Evalua-
tors can visit commit 4a7193b to reproduce experiments
shown in the paper.

A.2.3 Hardware dependencies

The evaluation of ARMorerequires an aarch64 machine with
large amounts of RAM (around 64 GB for all the experiments).
Since we do not expect the evaluators to have access to such
hardware, we provide in this artifact a reduced version of our
experiments that should run even on an emulated aarch64
VM running on a x86 host with 8 GB of RAM. We provide
instruction to run the experiments on both aarch64 or x86.

Note: if the evaluators consider running the full suite of
experiments a necessity, we can provide remote ssh access to
the required hardware.

A.2.4 Software dependencies

Since the artifact is shipped as a Docker container, all de-
pendencies are already installed. However, in case evaluators
would like to run it outside Docker, those are the required
dependencies:

ARMore’s evaluation was run on Ubuntu 20.04.2. The
requried Ubuntu packages are python3-pip, tcl-dev,
build-essential, make. The required python libraries are
the following:

• archinfo

• pyelftools

• capstone (version >= 4.0.2)

the can be all installed by running from the home folder of
the Docker container:
pip3 install -r retrowrite/requirements.txt
Finally, a working installation of AFL++ is required.

Note: if the evaluators want to verify the fourth claim too,
please contact us and we can prepare a disk image with the
kernel patch already applied.

A.2.5 Benchmarks

ARMore’s evaluation in the paper used 3 different bench-
marks:

• SPEC CPU 2017: to measure the baseline overhead in-
troduced by ARMore, we use the entire SPEC bench-
mark. However, this benchmark requires large amount of
RAM (64 GB) and considerable compute time (around
12 hours). For this reason, in this artifact evaluation we
provide a reduced experiment using small benchmarks
taken from https://benchmarksgame-team.pages.
debian.net/benchmarksgame/.

• MAGMA: to measure the overhead introduced by
ARMore’s coverage instrumentation, we run the
MAGMA fuzzing benchmark. As before, this bench-
mark is quite expensive to build and run - we provide
another minified version of this experiment to be able to
run it in an emulated environment.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium    381

https://zenodo.org/record/7707863
https://zenodo.org/record/7707863
https://github.com/hexhive/retrowrite
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/


• SQLite test suite: we include the source code of the
testsuite in the artifact along with scripts to test and run
it.

A.3 Set-up

A.3.1 Installation

The artifact is shipped as an aarch64 docker image. Depending
on the available hardware, we provide two options:
arm64 host: This is the preferred way, as it will make

the experiments considerably faster. All the depen-
dencies are already setup inside the Docker container.
If not using the container, the following steps need
to be taken: The following ubuntu packages need
to be installed: build-essential, python3-pip,
tcl-dev, make. Afterwards, go inside the retrowrite
directory and run:
pip3 install -r requirements.txt
to install ARMore’s dependencies.

x86 host: To run it on an x86 host, install the support for
emulation of the arm64 architecture in docker images.
The simplest way to do this is to run the following:
docker run -privileged -rm
tonistiigi/binfmt -install arm64
as explained in https://docs.docker.com/build/
building/multi-platform/. To test if multi-
architecture support is running, you can try the
following:
docker run -rm arm64v8/alpine uname -a.
Afterwards, download the artifact and use the run.sh
script to import the image and spawn a shell inside the
container.

A.3.2 Basic Test

To test basic functionality of ARMore, run run.sh to spawn
a shell, go inside the home folder and run:
./retrowrite/retrowrite /bin/ls ls.s
./retrowrite/retrowrite -a ls.s rewritten_ls
./rewritten_ls
If the output is exactly the same as when running /bin/ls,
then ARMoreis set up correctly.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): ARMore’s baseline overhead is <1%. This is proven
by experiment (E1) which is a reduced version of the
one described in Section 5.2 of the paper.

(C2): ARMore’s rewriting is correct and preserves function-
ality. This is proven by experiment (E2), as described in
Section 5.1 of the paper.

(C3): ARMoreenables efficient fuzzing of aarch64 closed-
source binaries. This is proven by experiment (E3), a
reduced version of the one described in Section 5.4 of
the paper.

A.4.2 Experiments

(E1): [Baseline overhead] [10 human-minutes + 1 compute-
hour]: This experiment shows how rewriting bina-
ries without instrumentation adds negligible overhead
(<1%). We took some binaries from the benchmarks-
game 1 and use them to test the overhead introduced by
ARMore.
How to: Go inside the folder
/claim_one_low_overhead. The script run.sh
will compile the benchmarks and store the binaries in
the compiled folder. Afterwards, the script will rewrite
the binaries with ARMoreand store the result in the
rewritten folder. Finally, the benchmarks will be run
and the 2 different set of times will be printed.
Execution: Go inside the folder
/claim_one_low_overhead and run the script
run.sh.
Results: While this experiment is certainly not conclu-
sive compared to more heavy-weight benchmarks, the
times noted by Rewritten time should be around 1%
higher than the times noted by Original time.

(E2): [Correctness] [5 human-minutes + 2 compute-hours]:
This experiments verifies the correctness claims of
ARMore, namely that it exactly preserves the original
binaries’ behaviour. This is done by rewriting the SQLite
binaries and running their relevant testsuites.
How to: Go inside the folder
/claim_two_correctness. The script
test_sqlite.sh inside will build and rewrite
the binaries from SQLite, and then run the testsuite on
them.
Execution: Go inside the folder
/claim_two_correctness and run the script
test_sqlite.sh, and check its output.
Results: The fifth to last line of the script output
should report 0 errors out of 252692 tests, indi-
cating that all tests passed correctly.

(E3): [coverage instrumentation overhead] [30 human-
minutes + 2 compute-hours]: This experiment verifies
the claims in Section 5.4, that is fuzzing with ARMore’s
coverage instrumentation is comparable to fuzzing with
source-based instrumentation (afl-cc).
How to: Go inside the folder
/claim_three_fuzzing. The script inside will
build the binaries from the first experiment (E1) and
store the result in the compiled folder. Then, it will com-

1https://benchmarksgame-team.pages.debian.net/
benchmarksgame/

382    Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://docs.docker.com/build/building/multi-platform/
https://docs.docker.com/build/building/multi-platform/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/


pile them again with source instrumentation and store
the result in the folder source_instrumented. Finally,
the script will instrument the original binaries inside
the compiled folder, adding coverage instrumentation,
and store the result in the rewritten_instrumented
folder.
Execution: Go inside the folder
claim_three_fuzzing and run the script run.sh to
build the instrumented binaries. Then, run the script
fuzz.sh to fuzz each binary twice for 2 minutes: first,
the source-instrumented version compiled with afl-cc
will be fuzzed — secondly, the binary-instrumented
version rewritten with ARMorewill be fuzzed. The AFL
UI is disabled, and only the executions per second are
reported.
Results: As claimed in the paper, the average difference
in executions per second should be slower for ARMore-
compared to afl-cc by around 25%. We note that this
number is very variable, due to the non-deterministic
nature of fuzzing.

In all of the above blocks, please provide indications about
the expected outcome for each of the steps (given the sug-
gested hardware/software configuration above).

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium    383

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


