
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

The Impostor Among US(B): Off-Path Injection
Attacks on USB Communications

Robert Dumitru, The University of Adelaide and Defence Science
and Technology Group; Daniel Genkin, Georgia Tech; Andrew Wabnitz,

Defence Science and Technology Group; Yuval Yarom, The University of Adelaide
https://www.usenix.org/conference/usenixsecurity23/presentation/dumitru

USENIX’23 Artefact Appendix: The Impostor Among US(B): Off-Path
Injection Attacks on USB Communications

Robert Dumitru
The University of Adelaide &

Defence Science and Technology Group
robert.dumitru@adelaide.edu.au

Andrew Wabnitz
Defence Science and Technology Group

andrew.wabnitz1@defence.gov.au

Daniel Genkin
Georgia Institute of Technology

genkin@gatech.edu

Yuval Yarom
The University of Adelaide
yval@cs.adelaide.edu.au

A Artefact Appendix

A.1 Abstract

The artefact is an instance of a USB device capable of inject-
ing transmissions that a USB host will attribute to a neigh-
bouring connected device, as described in the paper. It is
configured to present itself as a USB mouse and can inject
keystrokes on behalf of an adjacently connected USB key-
board, while optionally also blocking genuine input from the
keyboard victim.

The artefact is in the form of a bitstream to be programmed
onto an FPGA training board (ported for a Basys 3). The RTL
source is also provided for modification and re-generation of
the bitstream for use on other boards. A 1.5 kΩ resistor and
basic cable splicing/rewiring is required.

With reference to the paper, the basis of this artefact is
described in Section 5.1, and the claims to be reproduced are
described in Section 7.1.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

There is no risk of destructive behaviour from evaluation of
this artefact.

A.2.2 How to access

Most recent source available at:
https://github.com/0xADE1A1DE/USB-Injection/

Stable tag:
https://github.com/0xADE1A1DE/USB-Injection/
releases/tag/PosSec23AE

A.2.3 Hardware dependencies

Target hardware: A Digilent Basys 3 FPGA development
board is required. This is a cheap (149 USD) and commonly
used FPGA board. If you are at a university with an
Elec Eng department, they are likely to have some of
these available. (Other FPGA boards can be used if they
have 3.3V IO, modification of constraints file and gener-
ation of a new bitstream from RTL source would be required).

Supplementary:
• A USB A to Micro B cable is needed to program the FPGA

board (this should come in the Basys 3 box)
• A secondary USB cable must be spliced (exposing internal

connector wires) while leaving the side of the type-A male
connector intact (part that plugs into computer USB ports)

• 1.5 kΩ resistor
• Wires / connectors / breadboard
For testing:
• Any PC with USB ports
• A LS (Low-Speed) keyboard (majority are LS)
• USB hub(s)

A.2.4 Software dependencies

Any version of Xilinx’s Vivado software, including free
versions, can be used to configure the injection platform. See
https://www.xilinx.com/support/download.html for
latest versions.

[Windows users] We highly recommend USB Device Tree
Viewer (https://www.uwe-sieber.de/usbtreeview_e.
html) by Uwe Sieber for viewing the complete hierarchy
of USB devices connected to your computer along with
their descriptor sets. This will help to confirm the device is
working.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 351

mailto:robert.dumitru@adelaide.edu.au
mailto:andrew.wabnitz1@defence.gov.au
mailto:genkin@gatech.edu
mailto:yval@cs.adelaide.edu.au
https://github.com/0xADE1A1DE/USB-Injection/
https://github.com/0xADE1A1DE/USB-Injection/releases/tag/PosSec23AE
https://github.com/0xADE1A1DE/USB-Injection/releases/tag/PosSec23AE
https://www.xilinx.com/support/download.html
https://www.uwe-sieber.de/usbtreeview_e.html
https://www.uwe-sieber.de/usbtreeview_e.html

Figure 1: Basys 3 Pmod pinout

A.3 Set-up
A.3.1 Installation

1. Connect Basys 3 board to a computer running Vivado and
program the target FPGA with the bitstream file from the
repository (OS is according to the host computer the injec-
tion platform will be plugged into – this can be the same
PC to which the Basys 3 is connected for programming):
[Windows]
LS Keystroke Injector > USB_Demo.bit
[Linux]
LS Keystroke Injector > USB_Demo_Linux.bit

2. Connect wires from a spliced USB cable to the Basys 3
board with the pin correspondence described in Table 1.
See Figure 1 and Figure 2.

USB pin USB wire colour Basys 3 JB Pmod pin

D+ Green JB1
D- White JB3
Gnd Black JB5
Vs Red Leave unconnected

Table 1: USB wire to FPGA pin correspondence

Figure 2: Pmod connector header pin numbering

3. Pull up the D- line to 3.3V across a 1.5kΩ resistor (as
in Figure 3). To do this, you can connect one side of the
resistor through JB6 (Vcc at 3.3V) on the same Basys 3
Pmod header, and connect the other side to the junction of
JB3 and D- from the spliced cable.

Figure 3: D- pullup resistor wiring

4. Continue to ’Basic Test’

A.3.2 Basic Test

With the Basys board programmed and connected to the
spliced cable as instructed, plug the USB connector from
the spliced cable into a PC (this can be the same PC to which
the Basys 3 is connected for programming its FPGA). This
should connect as a new mouse device. Confirm artefact func-
tional as follows:
[Windows] Can either use device manager or preferably the
USB Device Tree Viewer software previously mentioned in
Appendix A.2.4.
[Linux] the lsusb command can be used to display the entire
USB connection hierarchy.
Check the connection hierarchy with the device unconnected
vs plugged in to confirm it appears.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): The injector device can inject keystroke data on be-
half of an adjacently connected victim keyboard when
both the injector and victim are connected to the same
vulnerable single-TT standard hub. This is proven by
experiment (E1) described in Section 7.1 of the paper.

352 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

(C2): The injector device can effect a Denial-of-Service to
the adjacently connected victim keyboard when both
the injector and victim are connected to the same non-
vulnerable, single-TT standard hub. This is also proven
as an alternative outcome of experiment (E1) described
in Section 7.1 of the paper.

A.4.2 Experiments

(E1): Keystroke injection [10 human-minutes]:
How to: Connect both the injection platform and victim
keyboard to a common USB hub which is connected
to a host PC. This can be the same host machine that
the Basys board is connected (or any other machine).
Connect no other devices through the hub. The hub is the
device under test here, if it is vulnerable to injection the
injection platform will be able to inject keystroke data
on behalf of the connected victim keyboard [Results].
If the hub is not vulnerable, the injector should still be
able to effect a Denial-of-Service against the victim key-
board [Alternative Results].
Preparation: Ensure the injection platform and key-
board are both logically connected to the same USB 2.0
hub and are both operating at LS. This will require us-
ing USB Device Tree Viewer (Windows) or the lsusb
command (Linux).
The common hub must not be the computer root hub,
injection will not work against root hubs.
Ensure the USB 2.0/2.1 hub is single-TT.
Ensure the Reset switch (SW0) is off (down), this is
furthest right of the switches lining the bottom of the
board (Figure 1).
Configure board switches into State 3 as in Table 2.

State inj (SW1) DoS (SW2) Behaviour

0 0 0 NAKs being injected
1 0 1 No injection - victim works
2 1 0 NAKs being injected
3 1 1 Data being injected

Table 2: Injection platform switch configurations

[Linux] Open a document in a text editor.
[Windows] Same as above or do nothing.
Execution: Push the buttons on the Basys 3 board (5
buttons arranged in + shape on the bottom right side of
the board) as follows (orientation as shown in Figure 1):
[Windows] Left, Left + Right, release both, Up, release,
Centre, release, Down, release, Right
[Linux] Push and release any of Up, Centre, Down, or
Right.
Results: If the hub under test is vulnerable to injection,
you should see the following behaviour:
[Windows] The sequence of injected keystrokes opens a
command prompt.

[Linux] The following keys are typed on the text editor
document: c (Up), m (Centre), d (Down), and enter
(newline) (Right).
If possible try with various hubs. USB 2.0 hubs are likely
to be vulnerable, whereas USB 3.0 hubs are unlikely as
a very small portion have been found vulnerable.
Additional Evidence of Results: [Optional – if injec-
tion working and hub vulnerable]
Wireshark’s USBPcap function can be used to view in-
jected traffic.
Unplugging the victim keyboard and pressing the same
buttons on the still-connected injector will result in no
keystrokes being fed.
Install any software-based USB authorisation policies
and attempt injection with the victim keyboard allowed
while the injector is blocked – as in Section 8. Injection
will still work.
Alternative Results: Denial-of-Service against the key-
board victim should still be evident with hubs that are
not vulnerable to injection. With the injector connected,
open a text document and attempt to type keystrokes
through the victim keyboard. No keystrokes should pass
through. Change the injector switches to State 1 and the
victim should then be able to type keystrokes.

A.5 Notes on Reusability
We have made the source RTL available so the injector device
can be modified with generation of new bitstreams. Note, this
source is for the Windows-compatible injector. Compatibility
issue is just a bug from how different OS drivers process
descriptors which we have not yet resolved. Some possible
alterations for reuse are as follows:
Changing injected input. To change what data is injected,
modify what is written to PCIn in USBF_Demo.vhd. See HID
keyboard scan codes for data corresponding to keystrokes.
Changing injector device descriptors. To change any of
the descriptor fields (ID, device type, etc.), modify values in
USBF_Declares.vhd. Injection function is agnostic to the
injector platform device type.
Use injector as FS device to target gaming keyboards. Re-
peat experiment with files under FS Keystroke Injector
and pull up D+ instead of D-.
Use with different boards. The injector configuration should
work with various FPGA boards, all that is needed is 3.3V IO
and a different set of constraints (.xdc file).

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220912. Submission, reviewing and badging method-
ology followed for the evaluation of this artifact can
be found at https://secartifacts.github.io/usenix%
20sec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 353

https://secartifacts.github.io/usenix%20sec2023/
https://secartifacts.github.io/usenix%20sec2023/

	Artefact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

