é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Erebus: Access Control
for Augmented Reality Systems

Yoonsang Kim, Sanket Goutam, Amir Rahmati,
and Arie Kaufman, Stony Brook University

https://www.usenix.org/conference/usenixsecurity23/presentation/kim-yoonsang

This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the
32nd USENIX Security Symposium.

August 9-11, 2023 « Anaheim, CA, USA
978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX
Security Symposium is sponsored
by USENIX.

-+ . = ——

ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX’23 Artifact Appendix: Erebus: Access Control for Augmented
Reality Systems

Yoonsang Kim"* and Sanket Goutam”, Amir Rahmati, Arie Kaufman
Stony Brook University
{yoonsakim, sgoutam, amir, ari } @cs.stonybrook.edu

A Artifact Appendix
A.1 Abstract

The core components of Erebus can be separated into 3 sepa-
rate modules: (1) Policy Engine that generates Erebus policies
from Natural Language inputs. (2) Language Transpiler that
converts the intermediate Erebus language into the target plat-
form code (in this implementation C#). (3) Native library
implementation (in C#) that is used to build Android APKs
for testing.

For reproducibility, we separate our implementation into
these separate components and provide instructions on how
to reproduce our results. In this Artifact, we provide instruc-
tions to reproduce the policy engine and policy generation
of Erebus (components 1 and 2). We also open-source our
implementation of the Erebus framework itself, developed
using Unity and C#. However due to the complexity of setup
required, and the number of platform-specific dependencies
required to recompile the Android APK files, we skip these
components for reproducibility and provide all necessary in-
formation to be used as reference.

A.2 Description & Requirements

The two components of the Policy Engine framework, in-
cluded in this artifact, can be evaluated with the following
system requirements.

Run-time requirements Ubuntu 20.04, Python 3.8.10, Dot-
net 6.0

Hardware Minimum requirements: 2GB RAM

Expected output Policy code generated by each module
into their respective text files. Module-specific instructions
are provided in the README under each module.

A.2.1 Security, privacy, and ethical concerns

None

*These authors contributed equally to this work.

A.2.2 How to access

Stable Github Commit: https://github.com/
Ethos-lab/erebus-AR_access_control/tree/
artifact-final-release-v2

Github Repo: https://github.com/Ethos-1lab/
erebus-AR_access_control

A.2.3 Hardware dependencies

None

A.2.4 Software dependencies

All necessary software dependencies and install directions are
provided in the README file.

A.2.5 Benchmarks

Any necessary data sets used for the experiements are in-
cluded with the Repo. For the natural language policy gen-
erator module, we tweaked a publicly available NLP model
using a custom training data set. The custom data and the
final trained model are included in the repo. For evaluation,
there is no need to re-train the model.

A.3 Set-up

Detailed instructions are provided in the README.

A.3.1 Installation

Detailed instructions are provided in the README.

A.3.2 Basic Test

The steps to test each module is provided in the README
file under each subsection for the specific module.

USENIX Association

Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 41

https://github.com/Ethos-lab/erebus-AR_access_control/tree/artifact-final-release-v2
https://github.com/Ethos-lab/erebus-AR_access_control/tree/artifact-final-release-v2
https://github.com/Ethos-lab/erebus-AR_access_control/tree/artifact-final-release-v2
https://github.com/Ethos-lab/erebus-AR_access_control
https://github.com/Ethos-lab/erebus-AR_access_control

A.4 Evaluation workflow

For functional and reproducible evaluation, the README
file contains all the steps to evaluate the Policy Engine and
Policy Transpiler components of Erebus. In our framework,
these two components are sequentially chained together and
compiled into an Android APK. In this artifact, we provide
the steps to evaluate each of these components individually as
recreating the Android APK would require substantial setup
effort.
The Evaluation workflow can be summarized as below:

1. Download the Github Repo and make sure all the fold-
ers are available as per the documentation provided in
README.

2. Verify each component individually based on the instruc-
tions provided in README for each component.

3. The folders for erebus, prototype_apps, and survey con-
tain code and survey data used in our paper. But for the
purposes of this artifact, they do not need to be evaluated
for reproducibility (due to limitations of environment
setup).

4. The folders for policy_gen and policy_transpiler contain
the main contribution of our paper, which is the access
control framework. The README file contains all the
detailed instructions to verify these modules.

A.4.1 Major Claims

The main contribution of our paper is the design of an ac-

cess control framework for Augmented Reality systems. This

framework is designed based on a survey of existing systems,

and implemented for an Android system. The main claims of

our system (mainly the policy framework) include the follow-

ing:

(C1): We propose a novel access control framework using a
policy language design described in Section 5 and Table
3.

(C2): We also propose a mechanism to derive these poli-
cies using natural language input from developer’s app
descriptions, as shown in Figure 4 and Listing 3.

A.4.2 Experiments

Please refer to the README file for exact steps to test the

policy framework of Erebus. Detailed steps are provided for

each component, and sample policies that can be tested are
also provided in the README file.

(E1): Setup [30 human-minutes]: Set up the software pack-
ages and install all the dependencies.

(E2): Policy Engine [15 human-minutes]: Follow the instruc-
tions in README for Reproducing the Policy Engine
module. Test with additional sample policies provided,
if needed.

(E3): Policy Transpiler [15 human-minutes]: Follow the
instructions in README for Reproducing the Policy
Transpiler module. Ensure that the generate target code
matches the policy statement defined in (E2).

A.5 Notes on Reusability

Apart from the specific modules used for reproducibility, we
also release the overall implementation of our framework
in C# (refer erebus folder) that ties together each of these
modules. We advise readers to use this implementation as a
reference, along with the prototype_apps code released with
this artifact.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

42 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium

USENIX Association

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

