
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

AutoFR: Automated Filter Rule Generation
for Adblocking

Hieu Le, Salma Elmalaki, and Athina Markopoulou, University of California, Irvine;
Zubair Shafiq, University of California, Davis

https://www.usenix.org/conference/usenixsecurity23/presentation/le

USENIX’23 Artifact Appendix
AutoFR: Automated Filter Rule Generation for Adblocking

Hieu Le* Salma Elmalaki* Athina Markopoulou* Zubair Shafiq†

*University of California, Irvine †University of California, Davis

A Artifact Appendix

Adblocking relies on filter lists, which are manually curated
and maintained by a community of filter list authors. We in-
troduce AutoFR, a reinforcement learning (RL) framework
to fully automate the process of filter rule creation and eval-
uation for sites of interest. Examples of filter rules are in
Table 1. AutoFR is the first to balance the trade-off between
blocking ads vs. avoiding visual breakage. The user gives
AutoFR inputs (e.g., the website to generate rules for, and
breakage tolerance threshold w) to AutoFR. It will run our RL
algorithm based on multi-arm bandits and generate filter rules
that block ads while adhering to the given w threshold. This
appendix details how to access our artifact (implementation
of AutoFR and our dataset) and how to use and evaluate it.

A.1 Abstract

Our artifact includes the following. First, we open-source an
implementation of the AutoFR framework on GitHub. Second,
we provide our dataset of collected site snapshots on the Top–
5K sites, which can be utilized to reproduce the filter rules
we created or explore other algorithms to generate rules.

AutoFR’s implementation follows Algorithm 1 and is illus-
trated in Fig. 4. Notably, it uses site snapshots (Fig. 5 and Sec
4.1), which are graph representations of how a site is loaded.
We use them offline to run the reinforcement learning logic,
which removes the bottleneck of waiting for a site to load
during every visit. See Fig. 5 for more details.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

At its core, AutoFR visits websites automatically and cre-
ates filter rules that block ads with minimal visual breakage.
Thus, there may be security issues if the user gives AutoFR
a malicious site to visit. We advise testing AutoFR on sites
that the user trusts. In terms of privacy, if AutoFR is used
on a personal machine, websites may fingerprint or track the
utilization of AutoFR.

A.2.2 How to access

GitHub: The repository is listed at https:
//github.com/UCI-Networking-Group/AutoFR/tree/
artifact-review. It provides a detailed README.md on
how to use AutoFR. The rest of this appendix will refer to
https://github.com/UCI-Networking-Group/AutoFR/
tree/artifact-review.
Dataset: The dataset and its detailed description are avail-
able at https://athinagroup.eng.uci.edu/projects/
ats-on-the-web/autofr-dataset/. In summary, the
dataset contains 1042 zip files, one per-site. Each zip file
includes the raw collected data of outgoing HTTP requests,
AdGraphs, annotated site snapshots, the action space, fil-
ter rules, and more. This matches Table 2. This includes a

“Top5k_rules.csv” file that shows all the filter rules created
within each zip file. Users must sign a consent form (at the
bottom of the web page) before accessing the dataset. For
artifact reviewers, we provide the direct Google Drive link to
the dataset within a hotcrp comment.

A.2.3 Hardware dependencies

AutoFR was evaluated using Amazon EC2 instance
m5.2xlarge, which has 8 cores, 32 GiB of memory, 35 GiB
of storage, and up to 10 Gbps of network bandwidth. We
recommend something similar, going as low as 16 GiB of
memory with 20 GiB of storage. Our repository will provide
a Dockerfile for easy setup.
Limitations. Currently, we do not support the running of
AutoFR on M1 MacBooks (ongoing work to support it).

A.2.4 Software dependencies

AutoFR has been tested on a Debian 5.10 server (university)
and Ubuntu 18.04.6 LTS (AWS EC2). Implementing
the framework includes using several Python libraries,
browser extensions, and prior work. The majority of the
dependencies will be encapsulated in a Dockerfile. We list
the major ones below and refer to the README.md of
https://github.com/UCI-Networking-Group/AutoFR/
tree/artifact-review for details.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 487

https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review
https://athinagroup.eng.uci.edu/projects/ats-on-the-web/autofr-dataset/
https://athinagroup.eng.uci.edu/projects/ats-on-the-web/autofr-dataset/
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review

Core Dependencies (Must Haves):

• Python 3.6+, git, pip3, virtualenv (or conda), docker

• If necessary, install with:

1. sudo apt-get install git python3 python3-dev
python3-pip

2. pip3 install virtualenv

3. We defer the docker installation to https://docs.
docker.com/engine/install/debian/.

Dependencies (within Dockerfile):

• Python 3.6+: tldextract, networkx, adblockparser, pan-
das, numpy, selenium

• NodeJS: Ad Highlighter, Adblock Plus (browser exten-
sions)

• C++: AdGraph (instrumented chromium)

A.2.5 Benchmarks

None

A.3 Set-up
For easy copy and paste of commands, we recommend
using the https://github.com/UCI-Networking-Group/
AutoFR/tree/artifact-review#setup.

A.3.1 Installation

1. Git clone our AutoFR repository (see Sec. A.2.2). The
rest of the instructions assume you are in the project
directory using a terminal window.

2. For artifact reviewers: “git checkout artifact-review”

3. git submodule update --init --recursive

4. Create a python virtual environment and activate it. We
recommend using “virtualenv”.

(a) virtualenv --python=python3 [/save-
path/autofrenv]

(b) source [/save-path/autofrenv]/bin/activate

5. Install AutoFR:

(a) pip3 install -e .

(b) Make sure to have the period at the end of the
command.

(c) mkdir temp_graphs; mkdir -p data/output/

6. Build the docker container that AutoFR leverages:

(a) docker build -t flg-ad-highlighter-adgraph
--build-arg USER_ID=$(id -u) --build-arg
GROUP_ID=$(id -g) -f framework-with-ad-
highlighter/DockerAdgraphfile .

(b) Make sure to have the period at the end of the
command. This should run without any errors.

7. Done: You are now ready to run AutoFR.

A.3.2 Basic Test

Ensure you are in the project directory with a terminal window
and your virtualenv activated as instructed in Sec. A.3.1.

1. Test whether your AutoFR environment has the neces-
sary dependencies:

(a) python scripts/autofr_controlled.py

(b) The above command should print out a help mes-
sage on how to use the script without errors.

2. View the docker image that you created:

(a) docker image ls | grep flg-ad-highlighter-adgraph

(b) The above command should print out the docker
image called “flg-ad-highlighter-adgraph” with ad-
ditional information such as its size.

A.4 Evaluation workflow

Disclaimer. As noted in our paper, the web changes naturally.
AutoFR is only as good as its components. Thus, if a site does
not serve ads that Ad Highlighter can detect or use obfuscation
techniques, then AutoFR may not be able to generate rules
for the given site. See Sec. 5.3.4 and 4.3. There may be other
factors, such as w being too high to generate rules for, etc...
Over time, AutoFR will improve as we maintain it, but we
cannot guarantee that it will work on every website.

A.4.1 Major Claims

(C1): Create Filter Rules: Given inputs such as a website
and hyper-parameters like the w threshold (breakage
tolerance), AutoFR will generate filter rules that block
ads with breakage that is within the w threshold. This is
proven by the experiment (E1). Our results for the Top–
5K sites are reported in Sec. 5.1, Table 2, Fig. 6(a-b),
and Table 3 column 2. The w threshold ranges from 0–1;
higher values mean the user wants to avoid breakage at
the expense of not finding any filter rules that meet that
criterion. In our paper, we use w = 0.9. See Sec. 3 and
particularly 3.2.2 for details about our formulation.

(C2): Reproducibililty: Researchers can reproduce our re-
sults (i.e., generate the same rules) by utilizing our col-
lected site snapshots (provided in our dataset). This as-
sumes the inputs to AutoFR are identical, and the same
changeset/version of AutoFR is utilized (Sec. A.2.2).
This is proven by the experiment (E2). Site snapshots
are described in Sec. 4.1, Fig. 5, and Table 2. See further
discussion in Sec. A.5.

488 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://docs.docker.com/engine/install/debian/
https://docs.docker.com/engine/install/debian/
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review#setup
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review#setup

A.4.2 Experiments

(E1): Create Filter Rules: [10 human-minutes + compute-
minutes vary on server + storage varies on site] × per-
site. See (C1) for more information.
How to: Run AutoFR to generate rules for a few given
sites. Results will vary based on context, such as on the
site, location, and given inputs. Repeat the below for a
few sites. We recommend cricbuzz.com, yahoo.com, and
sohu.com.
Preparation: Follow the instructions in Sec. A.3.1.
Execution: 1. Follow the below:

2. python scripts/autofr_controlled.py --site_url
"https://cricbuzz.com" --chunk_threshold 6

3. The chunk size affects the number of docker in-
stances spawned to visit the given website. Based
on Sec. A.2.3, we recommend 6. If you have fewer
cores, then decrease the chunk_threshold.

Results: 1. Follow the below. Directories given are
relative to the project directory:

2. The terminal will display the rules that are out-
putted.

3. Go to directory “data/output/” to see the raw col-
lected data, such as the outgoing HTTP requests,
AdGraphs, and site snapshots.

4. Go to “temp_graphs” to see the outputted filter rules
and other information.

5. Full explanation of the output is ex-
plained in our README: https://
github.com/UCI-Networking-Group/
AutoFR/tree/artifact-review#
understanding-the-output.

Test the Rules In-the-Wild (optional): 1. Follow
the below if you want to try the rules in your
browser.

2. Install an adblocker, like Adblock Plus, into your
browser (instructions depend on your browser).

3. Turn the rules given by AutoFR into per-site
rules. For each rule, append the site it was created
for. For instance, if the rule is ||doubleclick.netˆ
for the site cricbuzz.com, then change it to
||doubleclick.netˆ$domain=cricbuzz.com.

4. Configure the extension by going to its set-
tings. Turn off all filter lists. Add in custom
rules from the previous step. See https://
help.adblockplus.org/hc/en-us/articles/
360062859913-Add-a-custom-filter.

5. Refresh the site to see if ads are blocked. Note if
there is any visual breakage.

6. Remember to undo the changes if you use the ad-
blocker personally.

(E2): Reproducibility: [5 human-minutes + 2 compute-
minutes + no storage] × per-site. See (C2) for more

information. This is completely offline.
How to: Run AutoFR with existing site snapshots to re-
produce the results. Repeat the below for a few sites. We
recommend cricbuzz.com, yahoo.com, and sohu.com.
Preparation: Download the “Top5K_rules.csv” file.
Open it and choose a zip file to download, described
in Sec. A.2.2. Here we assume you chose Aut-
oFRGEval_www.cricbuzz.com_ad3dce7b.zip. Unzip the
file. Then, follow the instructions in Sec. A.3.1.
Execution: 1. Follow the below:

2. python scripts/autofr_use_snapshots.py --site_url
"https://www.cricbuzz.com/" --snapshot_dir [zip
name]/[Snapshots directory]

3. A full example is provided at step 7: https:
//github.com/UCI-Networking-Group/
AutoFR/tree/artifact-review#
reuse-site-snapshots

4. The script uses identical hyper-parameters utilized
in our paper. Simply pass in the site URL (from the
CSV) and the snapshot directory. Make sure not to
change any of the directory structures or names.

5. We also provide a script that will auto-
matically check the reproducibility. See
the instructions in https://github.com/
UCI-Networking-Group/AutoFR/tree/
artifact-review#reuse-site-snapshots
confirm_reproducibility script part.

Results: 1. Follow the below:
2. The terminal will display the rules that are out-

putted.
3. Open up our “Top5K_rules.csv” (Sec. A.2.2) and

look for the corresponding row that matches the zip
file name. Then compare the filter rules generated
vs. the row information. They should match.

A.5 Notes on Reusability

By leveraging the site snapshots we collected in Sec. A.2.2,
users and researchers can explore other ways to generate filter
rules. This includes:

1. Be less conservative when dealing with site dynamics.
For any given site, there are dynamics upon different
visits to it. For instance, other images, text, and ads can
be served to the same user. We capture these dynamics in
our site snapshots by collecting multiple snapshots per-
site. Our algorithm randomly selects one site snapshot to
test a rule at a given time t step of our algorithm and puts
the rule to “sleep” (i.e., remove it from contention) if it
does not block any requests. Instead, one can modify the
algorithm so that it selects only site snapshots that will
cause the rule to block at least one request. We discuss
this in Sec. 5.2.2.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 489

https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review#understanding-the-output
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review#understanding-the-output
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review#understanding-the-output
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review#understanding-the-output
https://help.adblockplus.org/hc/en-us/articles/360062859913-Add-a-custom-filter
https://help.adblockplus.org/hc/en-us/articles/360062859913-Add-a-custom-filter
https://help.adblockplus.org/hc/en-us/articles/360062859913-Add-a-custom-filter
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review#reuse-site-snapshots
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review#reuse-site-snapshots
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review#reuse-site-snapshots
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review#reuse-site-snapshots
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review#reuse-site-snapshots
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review#reuse-site-snapshots
https://github.com/UCI-Networking-Group/AutoFR/tree/artifact-review#reuse-site-snapshots

2. Explore other RL algorithms. In our paper, we formulate
the problem of filter rule generation as a multi-arm ban-
dits problem. Future work can freely explore different
RL algorithms offline using site snapshots.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

490 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

