
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Greenhouse: Single-Service Rehosting of Linux-Based
Firmware Binaries in User-Space Emulation

Hui Jun Tay, Kyle Zeng, Jayakrishna Menon Vadayath, Arvind S Raj,
Audrey Dutcher, Tejesh Reddy, Wil Gibbs, Zion Leonahenahe Basque,

Fangzhou Dong, Zack Smith, Adam Doupé, Tiffany Bao, Yan Shoshitaishvili,
and Ruoyu Wang, Arizona State University

https://www.usenix.org/conference/usenixsecurity23/presentation/tay

USENIX’23 Artifact Appendix: Greenhouse - Single-Service Rehosting
of Linux-Based Firmware Binaries in User-Space Emulation

Hui Jun Tay, Kyle Zeng, Jayakrishna Menon Vadayath, Arvind S Raj, Audrey Dutcher, Tejesh Reddy,
Wil Gibbs, Zion Leonahenahe Basque, Fangzhou Dong, Zack Smith, Adam Doupé,

Tiffany Bao, Yan Shoshitaishvili, Ruoyu Wang

Arizona State University

A Artifact Appendix

A.1 Abstract

The primary artifact provided is a Docker image containing
an implementation of the Greenhouse prototype presented in
our paper, along with the complete dataset of 7,140 firmware
images referenced in our evaluation. Greenhouse is a Python3
framework that implements user-space single-service rehost-
ing, using various interventions detailed in our paper to enable
the emulation of a specific web-facing service for a given
firmware image. Unlike previous rehosting works, the re-
hosted firmware service is executed via user-space emulation
(qemu-user) instead of a full-system emulation environment.

We evaluated Greenhouse on a dataset of 7,140 firmware
images from nine different vendors to demonstrate its scal-
ability and generalizability. Greenhouse successfully re-
hosts 2,841 HTTP web-services, and an additional 685 web-
services to partial connectivity. Our experiment demonstrates
the usability of these images by finding 717 N-day vulnera-
bilities using the open-source framework Routersploit and 26
zero-day vulnerabilities through fuzzing with AFL++.

A.2 Description & Requirements

Greenhouse was evaluated using a kubernetes cluster contain-
ing 42 nodes and over 2,000 CPU cores in order to complete
our analysis on 7,140 firmware images. The Docker image
packaged in this artifact contains an entrypoint script that the
cluster pods use to run Greenhouse on each firmware target.
As this script is designed for automation with our kubernetes
cluster setup, we have also provided a run.sh wrapper script
for the purposes of manual evaluation. Our submitted artifacts
consist of the following items:

• greenhouse-ae.tar, a prepackaged Docker image contain-
ing our experiment setup for manual evaluation

• greenhouse-rehosted.csv, a file detailing the rehosting
success of each sample in our dataset

• gh2routersploit.csv, a file mapping the 717 N-days found
to their respective rehosted targets

• source code and instructions for building the Greenhouse
docker image, fuzzer component and minikube setup on
GitHub

Within the prepackaged Docker container are the following:

• a standalone version of Greenhouse for manual evalua-
tion + a run script /gh/run.sh

• a modified routersploit framework used to find the 717
N-days on our rehosted images + a run script /router-
sploit/run_routersploit.sh

• 2 crashing input files that demonstrate two of the 26
zero-day vulnerabilities discussed in our paper that have
since been publicly released by D-Link

A.2.1 Security, privacy, and ethical concerns

Greenhouse itself has a low risk of causing issues on the ma-
chine it is run on. However, many of its functions require
control of device mounts and network interfaces that necessi-
tate that the Docker image is run in privileged mode. While
Greenhouse itself does not perform any malicious activity, the
firmware it is emulating may execute commands that affect
the host machine. It is thus recommended to run Greenhouse
within the provided container to minimize the impact of such
behavior on the host machine.

A.2.2 How to access

A copy of our artifact is available on Zenodo
(https://doi.org/10.5281/zenodo.8217895). We also
open-sourced the code used to build our Greenhouse artifacts
on GitHub1.

1https://github.com/sefcom/greenhouse/tree/08f7caf45
6f31de4f9c25325302705f7881a5e39

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 343

A.2.3 Hardware dependencies

Greenhouse requires at least 1 CPU core and 8GB of RAM.
As the amount of storage needed varies based on the firmware
and scale of the job, we recommend having at least 50GB of
disk space available. Our full dataset of all 7,140 firmware
images requires at least 125GB of disk space. The total disk
space of our experiment, including all rehosted images and
log files, is approximately 655GB. To perform large-scale
evaluation of Greenhouse, a kubernetes cluster is necessary.
Running on a local minikube instance is possible, but is unsta-
ble compared to kubernetes and may have reduced rehosting
performance.

A.2.4 Software dependencies

Greenhouse was tested on a host machine using Ubuntu
20.04 and Python 3.7. Greenhouse is dependent on qemu-
user, docker, angr and binwalk, and makes use of another
rehosting tool, FirmAE, as a supplementary component. The
Docker image provided as part of the artifact contains a sta-
ble, working version of Greenhouse for evaluation and all
third-party software needed for it to run. The artifact Docker
image provided must be run in privileged mode for optimal
results. It is recommended that the host machine be running
Ubuntu 20.04 or later, and have Docker and docker-compose
installed.

A.2.5 Benchmarks

Greenhouse was run on a dataset of 7,140 firmware images
crawled from nine different vendors. This dataset is hosted
privately as part of our artifact submission. Please contact the
authors for access to the dataset if necessary.

A.3 Set-up

Install Docker and docker-compose on the host machine.

• Docker version 24.0.2, build cb74dfc

• docker-compose version 1.29.2, build 5becea4c

To manually validate the rehosted images, we recommend
installing curl and a web-browser such as Firefox.

Greenhouse and Docker use the network ip addresses in the
range 172.17.0.0 and 172.21.0.0 by default. We recommend
keeping these network ranges open. A significant number
of firmware web services were observed to make use of ad-
dresses in the range 192.168.0.0. Thus, we recommended
ensuring that ip addresses in this range are available during
the rehosting and testing process.

A.3.1 Installation

• Load the Docker image with ‘docker load -i greenhouse-
ae.tar’

• Check that the image greenhouse:usenix-eval-jul2023 is
present ‘docker image list -a’

• Start the container in privileged, interactive mode:

docker run --privileged -v /dev:/host/dev -it
greenhouse:usenix-eval-jul2023 bash

• Copy a firmware image file from the dataset into the
Docker container:

docker cp <externalpathtoimage> <container-
name>:/<imagepath>

• Inside the Docker container, run the setup script:

bash /gh/docker_init.sh

• The container and target are now ready.

A.3.2 Basic Test

The provided Docker image comes with a simple bash script
/gh/test.sh that can be run from within the Docker container.
One run, the script should exit with the message ‘All tests
pass!’ after about a minute of execution.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Greenhouse is able to perform user-space rehosting
of single-services with a success rate of 39.7%. This
is proven by experiments described in Section 7.2 of
our paper. The results of our evaluation are reported in
Table 2 of our paper, and reflected in the greenhouse-
rehosted.csv table provided as part of this artifact evalu-
ation. Note that due to the non-deterministic nature of re-
hosting firmware, the exact number of rehosted services
may fluctuate, but should average out to our experimen-
tal numbers over a sufficiently large dataset.

(C2): Firmware images rehosted by Greenhouse are of suf-
ficient fidelity to be used with dynamic analysis to find
real-world vulnerabilities. Greenhouse found 717 N-day
vulnerabilities on images it rehosted using routersploit,
and 26 zero-day vulnerabilities via fuzzing with AFL++.
This is described in Section 7.4 and 7.5 of our paper, with
results specified in Table 7 for the routersploit N-days
and Table 9 for the crashing inputs found2. A breakdown
of these numbers is reflected in the routersploit.csv table
provided.

2We do not provide all the crashing inputs mentioned in Table 9 as not
all have been made public. The 2 crashing inputs provided with the artifact
were publicized here: https://supportannouncement.us.dlink.com/
announcement/publication.aspx?name=SAP10313

344 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

A.4.2 Experiments

(E1): [Rehosting a single firmware] [30 human-minutes 2 to
8 compute-hours + 50GB disk]: This section describes
how to run Greenhouse to rehost a single firmware image
using the provided Docker image artifact. This experi-
ment validates C1.

Preparation: Make sure to setup the Docker container
provided and the target sample as discussed in the Instal-
lation section above.

Execution: To rehost a target firmware image with
Greenhouse, run

/gh/run.sh <brand> <image-path-in-container>

from inside the Docker container. The script performs
the rehosting from start to finish, printing logs to std-
out and /tmp/gh.logs. A step-by-step can be found in
the README file with the rest of our Zenodo artifact.
A larger scale, parallelised approach to running Green-
house can be done with a kubernetes cluster or minikube
setup. Instructions on how to do so can be found in the
MINIKUBE.md file on our GitHub.

Results: Greenhouse takes approximately 2 to 8 hours
to rehost an image. When it completes, the script will
print ‘GHREHOST COMPLETE’. The rehosted im-
age itself can be found inside the container under
/gh/results/<sha256hash>.

The file config.json describes the results of the rehost-
ing. A ‘SUCCESS’ result corresponds to the Interact
column of Table 2, which contributes to our total of
2,841 rehosted images. More detailed instructions on
how to manually run and evaluate an individual rehosted
image are in the README file.

Note that the Greenhouse rehosted services may super-
ficially deviate from the original, though functionality is
usually unaffected. As emulating firmware images tends
to come with a degree of non-determinism, results ob-
served may also vary on a sample-to-sample basis. This
should average out over larger sets for a given brand.

(E2): [Exploit replay with routersploit] [30 human-
minutes + 4 compute-hours + 50GB disk]: This section
describes how to use the rehosted image created in E1
with routersploit and crashing scripts to validate C2.

Preparation: Make sure that a rehosted image is avail-
able inside the container with a folder named debug (e.g.
/gh/results/<sha256hash>/debug.)

Execution: Routersploit can be run inside the Docker

artifact via a script given the path to a rehosted image
(e.g. /gh/results/<sha256hash>.)

/routersploit/run_routersploit.sh <path-to-rehosted-
image>

Results: The script takes approximately 4 hours to
run all 125 N-days that are built into the router-
sploit framework used for our evaluation. Results
should be automatically consolidated inside /router-
sploit/results/vulnerable.csv. ‘gh2routersploit.csv’ is a
breakdown mapping each routersploit N-day to the re-
hosted sample on which it found the vulnerability.

(E3): [Validating crashing PoCs] [10 human-minutes +
0.2 compute-hours + 50GB disk]: This section describes
how to use the two crashing inputs provided on their
corresponding Greenhouse rehosted services to validate
C2. Only two of the 26 vulnerabilities discovered are
provided as the rest have to yet to be made public at the
time of this report.

Preparation: Make sure that a rehosted image is avail-
able inside the container with a folder named debug (e.g.
/gh/results/<sha256hash>/debug.) The crashing input
files are available inside the folder /crashing_inputs.

Execution: Follow instructions in the README on
starting up a Greenhouse rehosted image manually using
docker-compose. Once the rehosted firmware is fully up,
emit the crashing input to its target using the built-in
netcat client:

cat <crashing-input-file> | nc -w2 <ip> <port>

Results: The two crashing inputs provided are for two
zero-days found for the DIR-601_REVA_1.02 and DIR-
825_REVB_2.03 firmware samples in Table 9 and Table
11 of our paper. Emitting them to the rehosted web ser-
vice should cause it to crash, with a segmentation fault
in the terminal output of the artifact container.

A.5 Notes on Reusability
Greenhouse can be extended to run on other types of web-
services. We provide two such extensions in the image for
UPNP and DNS services.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 345

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

