
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

SMACK: Semantically Meaningful
Adversarial Audio Attack

Zhiyuan Yu, Yuanhaur Chang, and Ning Zhang, Washington University in St. Louis;
Chaowei Xiao, Arizona State University

https://www.usenix.org/conference/usenixsecurity23/presentation/yu-zhiyuan-smack

USENIX’23 Artifact Appendix: SMACK: Semantically Meaningful
Adversarial Audio Attack

Zhiyuan Yu, Yuanhaur Chang, Ning Zhang
Washington University in St. Louis

Chaowei Xiao
Arizona State University

A Artifact Appendix

A.1 Abstract
SMACK is an adversarial audio attack that leverages manip-
ulation of the prosody attributes to craft adversarial speech
examples. Our artifact comprises the source code, the gener-
ative model for controlling speech prosody, along with the
automatic speech recognition (ASR) and speaker recognition
(SR) models for attack testing. To operate the attack frame-
work, the user needs to run the program in the command line,
providing attack types (i.e., against ASR or SR system) and
specifying attack targets (i.e, targeted transcription or speaker
label). The expected results are the adversarial audio samples.

Given the complexity of the speech generative model in-
volved in SMACK, a machine with a moderate CPU and a
GPU of at least 8GB VRAM is recommended. Please note
that run-time may vary depending on the user’s hardware. We
have compiled a list of required dependencies into a YML
configuration file.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact provided does not contain any harmful materials
that may compromise machine security or pose threats to
human health. The generative model was trained on public
speech corpus, and there is no privacy concern associated
with the use of artifacts. We have taken the utmost care to
ensure that the artifact meets all necessary safety standards
and guidelines.

A.2.2 How to access

We have made the code and models available on Zen-
odo. The stable URL link pointing to the repository is
https://github.com/WUSTL-CSPL/SMACK/commits/
895f19b35350c5aded3362508c4a770f5e36342f.

A.2.3 Hardware dependencies

The attack framework can run on a machine with a moderate
CPU, at least 16GB of available RAM, and a GPU with at least
8GB VRAM. The system was tested stable with AMD Ryzen

9 3900X 12-Core Processor accompanying RTX 3070Ti and
32GB memory. No other specific hardware is required, but
the variance in hardware can lead to differences in run-time.

A.2.4 Software dependencies

SMACK was implemented in Python, and the environment
was set up using Miniconda 4.12.0 on Ubuntu 22.0.4. The
used machine learning framework is Pytorch, and other
associated dependencies are encapsulated in a YAML file.
For the installation process please see Section A.3. Due
to the file size limit of GitHub, some of the files used for
testing need to be downloaded from the Google Drive link,
https://drive.google.com/file/d/12vUxRaIRDaD_
prg8F-vpb5oUvWMOPqsl/view?usp=sharing, containing
custom scripts and pre-trained models. Please refer to
README.md for detailed guidance.

A.2.5 Benchmarks

The data required by the experiments are the generative model
and speech audio used in adversarial optimization. For speech
recognition, we provide two ASR cloud services, iFlytek and
Google Speech-to-Text. For speaker recognition, we provide
two state-of-the-art models (GMM-UBM and ivector-PLDA)
as targets. The SR models are provided in the artifact, which
can be found in the ./FAKEBOB directory.

A.3 Set-up
A.3.1 Installation

Conda or Miniconda is recommended for setting up the en-
vironment. It can be installed via the official link https://
docs.conda.io/en/latest/miniconda.html and the pro-
cess can differ based on the user’s OS. The commands for
setting up the environment with the smack.yml file are:

$ cd <the_path_to_the_folder>
$ conda env create -f smack.yml
$ conda activate smack

For the setup of speaker recognition systems, we follow the
existing work FAKEBOB and use the Kaldi toolkit. Notably,
this process can be time-consuming and requires modification

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 209

https://github.com/WUSTL-CSPL/SMACK/commits/895f19b35350c5aded3362508c4a770f5e36342f
https://github.com/WUSTL-CSPL/SMACK/commits/895f19b35350c5aded3362508c4a770f5e36342f
https://drive.google.com/file/d/12vUxRaIRDaD_prg8F-vpb5oUvWMOPqsl/view?usp=sharing
https://drive.google.com/file/d/12vUxRaIRDaD_prg8F-vpb5oUvWMOPqsl/view?usp=sharing
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html

of the shell configuration file. Therefore, we wrote a dedicated
tutorial detailing all steps in the setup_SR.md file.

A.3.2 Basic Test

The SMACK attack framework consists of two main com-
ponents, the adapted genetic algorithm (AGA) and gradient
estimation scheme (ES), each can be individually tested. Due
to limited space, some printed outputs are omitted in this ap-
pendix and some of the commands are broken into multiple
lines to fit the template. The full basic test can be found in
the README.md document in the Basic Tests section, please
copy the commands from there.

The command for basic tests of the AGA is:

$ python3 genetic.py

You are expected to see printed outputs comprising the
unique ID of individuals in the population and their fitness
value breakdown, including fitness value, confidence score,
adversarial term value, and audio quality term value.

Similarly, the basic functionality of the gradient estimation
part can be tested with:

$ python3 gradient.py

Note that the above two tests are based on speaker recogni-
tion systems, so they examine the setup and functionality of
both attack algorithms and SR models. If the SR models are
not properly setup prior to tests, the basic tests would fail
automatically.

Besides, the normal functionality of the target models can
be tested by running corresponding scripts. For ASR, we can
use an adversarial example to test iflytekASR model:

$ python3 iflytek_ASR.py \
"SMACK_Examples/iflytekASR_THEY DID NOT HAVE \
A LIGHT.wav"

And you are expected to see the output as follows:

iflytek ASR Result after 1 connection retries:
THEY DID NOT HAVE A LIGHT

Similarly, the command and expected output for Google
speech-to-text model is:

$ python3 google_ASR.py \
"SMACK_Examples/success_gmmSV_librispeech_p1089.wav"

Google ASR Result after 0 retries:
MY VOICE IS THE PASSWORD

For SR models, the testing command with the provided
adversarial example is:

$ python3 speaker_sv.py \
"SMACK_Examples/success_gmmSV_librispeech_p1089.wav" \
gmmSV librispeech_p1089

And you are expected to see the output saying the tests
on GMM-UBM models passed, with additional information
on the decision, acceptance threshold, and score. The com-
plete commands and associated outputs can be found in the
"README.md" in the artifact.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): SMACK can be used to generate natural speech that
misleads the state-of-the-art automatic speech recogni-
tion models, including commercial products such as iFly-
Tek and Google speech-to-text. This is proven by the
experiment (E1) and (E2) described in Section 8.1 whose
results are reported in Table 1 and Table 2.

(C2): SMACK can be used to generate natural speech that
misleads the state-of-the-art speaker recognition mod-
els. The attack can also be achieved for the challenging
inter-gender attack scenario, where the speaker of the
adversarial example and targets are of different genders.
This is proven by the experiment (E3) and (E4) described
in Section 8.2 whose results are reported in Table 3.

A.4.2 Experiments

(E1): [iFlyTek ASR Attack] [10 human-minutes + 4 compute-
hour + 15GB disk]:
Preparation: The environment installation is detailed
in the previous section. Since the target models are com-
mercial products, the speech recognition query is limited
and comes with a cost. Please don’t hesitate to contact
us if you find the service no longer available. We will
replace a valid token for your use.
Execution: In the attack against ASR systems, we pro-
vide two real-world speech recognition services as the
target models, iFlytek and Google. In this experiment
against iFlyTek, please use the following command:
$ python3 attack.py \
--audio "./Original_TheyDenyTheyLied.wav" \
--model iflytekASR \
--content "They deny they lied" \
--target "They did not have a light"
Results: You are expected the see printed outputs sim-
ilar to the basic tests. All the intermediate audio files
generated throughout the attack process are stored
in the "./SampleDir" directory. An example termi-
nal output produced by this attack is recorded in the
"SMACK_Examples/iflytekASR_THEY DID NOT HAVE
A LIGHT.txt" file, and the resulted adversarial example is
provided as "SMACK_Examples/iflytekASR_THEY DID
NOT HAVE A LIGHT.wav". The example is named as
its transcription by the target model. To validate the ad-
versarial example, please use the same command in the
basic test:

210 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

$ python3 iflytek_ASR.py \
"SMACK_Examples/iflytekASR_THEY DID NOT \
HAVE A LIGHT.wav"

(E2): [Google ASR Attack] [10 human-minutes + 1 compute-
hour + 15GB disk]:
Preparation: The environment setup is detailed in the
previous section. The Google speech-to-text is a commer-
cial cloud service that requires user token. It is already
provided in the "google_token.json" file in the artifact
and no other setup is needed as long as the token is still
valid. Please contact us for a renewed token if it expires.
Execution: Similar to the attack against iFlyTek, please
use the following command to launch the attack against
Google ASR:
$ python3 attack.py \
--audio "./Original_SamiGotAngry.wav" \
--model googleASR \
--content "Sami got angry" \
--target "Send me that"
Results: The expected results are similar to the ex-
periment (E1). We also provide a sample adversar-
ial example "SMACK_Examples/googleASR_SEND ME
THAT.wav", along with its terminal prints recorded in the
"SMACK_Examples/googleASR_SEND ME THAT.txt"
file. To validate the adversarial example, please use the
command:
$ python3 google_ASR.py \
"SMACK_Examples/googleASR_SEND ME THAT.wav"

(E3): [GMM-based SR Attack] [10 human-minutes + 8
compute-hour + 15GB disk]:
Preparation: It requires the setup of both attack frame-
work and speaker verification encapsulated in the
Kaldi toolkit. The detailed guidance for installing
Kaldi and associated dependencies are included in the
"setup_speakerRecog.md" file in the artifact.
Execution: In this attack, we target a well-established
model GMM-UBM deployed with the Kaldi toolkit. The
command for running the attack is as follows:
$ python3 attack.py \
--audio "./Original_MyVoiceIsThePassword.wav" \
--model gmmSV
--content "My voice is the password" \
--target librispeech_p1089
By using this command, we conduct an inter-
gender attack, that is, the reference audio "./Origi-
nal_MyVoiceIsThePassword.wav" is uttered by a woman
while the target speaker librispeech_p1089 is a man.
Results: All the intermediate audio files generated
throughout the attack process are stored in the
"./SampleDir" directory. The adversarial examples
that successfully achieve the adversarial goal will be
stored in the "./SuccessDir" directory. The terminal
prints also reveal the process of that attack and
intermediate results (such as loss values). An adver-

sarial example generated by the attack is provided in
"SMACK_Examples/success_gmmSV_librispeech_p1089.wav,
and its success can be validated in the basic
test 4. The associated printed output through-
out the optimization process is also provided in
"SMACK_Examples/success_gmmSV_librispeech_p1089.txt.

(E4): [ivector-based SR Attack] [10 human-minutes + 8
compute-hour + 15GB disk]:
Preparation: The setup required by this experiment is
the same with experiment (E3).
Execution: In this attack, we target another well-
established model ivector-PLDA deployed with the
Kaldi toolkit. The command for running the attack is
as follows:
$ python3 attack.py \
--audio "./Original_MyVoiceIsThePassword.wav" \
--model ivectorCSI
--content "My voice is the password" \
--target librispeech_p1089
The launched attack specified by this command is also
an inter-gender attack.
Results: The expected results are similar to that
of the experiment (E3). We also provide two
adversarial examples generated by the attack in
"SMACK_Examples/success_ivectorCSI_librispeech_p1089.wav",
"SMACK_Examples/success_ivectorCSI_librispeech_p1089_1.wav",
and their success can be validated in the ba-
sic test. The associated printed output through-
out the optimization process is also provided in
"SMACK_Examples/success_ivectorCSI_librispeech_p1089.txt.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 211

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

