
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Ultimate SLH: Taking Speculative
Load Hardening to the Next Level

Zhiyuan Zhang, The University of Adelaide; Gilles Barthe, MPI-SP and
IMDEA Software Institute; Chitchanok Chuengsatiansup, The University

of Melbourne; Peter Schwabe, MPI-SP and Radboud University;
Yuval Yarom, The University of Adelaide

https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-slh

USENIX’23 Artifact Appendix: Ultimate SLH: Taking Speculative Load
Hardening to the Next Level

Zhiyuan Zhang , Gilles Barthe , Chitchanok Chuengsatiansup ,
Peter Schwabe , Yuval Yarom

The University of Adelaide, Adelaide, Australia
MPI-SP, Bochum, Germany

IMDEA Software Institute, Madrid, Spain
The University of Melbourne, Melbourne, Australia

Radboud University, Nijmegen, The Netherlands

A Artifact Appendix

A.1 Abstract
We provide the artifact of USLH in a GitHub repository. The
artifact includes the PoC of leaking secrets from resolving
branch conditions and variable-time instructions. The artifact
includes a real word example of how LLVM-SLH fails to
protect the OpenSSL library. Besides the demonstration of
vulnerabilities, the artifact also includes a fix to SLH and a
gadget searching tool implemented in LLVM.

A.2 Description & Requirements
A.2.1 Security, Privacy, and Ethical Concerns

Running artifact does not need a root privilege. All data fed to
the program are randomly generated. The provided code does
not access files other than those described in the README.
The artifact evaluation involves compiling the Clang and
OpenSSL source code. Please follow the instructions and
do not install these software; otherwise they may disturb the
system wide configuration of Clang and OpenSSL.

A.2.2 How to Access

The artifact and documentation are available on GitHub: ht
tps://github.com/0xADE1A1DE/USLH/tree/e23d4292
723b11fa56efb9c237b6db201be97bfa.

The source code for the USLH implementation of SLH is
available at https://doi.org/10.5281/zenodo.77046
37.

A.2.3 Hardware Dependencies

A machine with an Intel processor (8th Gen, 9th Gen, 10th
Gen) running Ubuntu (not virtual machine) is necessary. The
artifact has been tested on processor i7-10710U, running

Ubuntu 20.04. To build the customized compiler, your ma-
chine has to have at least 8GB RAM.

A.2.4 Software Dependencies

The artifacts requires a GCC compiler to compile Clang.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

You will need to download and compile LLVM, but you do
not need to install it. Instructions on building Clang is avail-
able at https://clang.llvm.org/get_started.html.
Note that building Clang with Release version is sufficient
for the artifact evaluation. You can find more instructions at
README under the folder USLH/LLVM_FIX.

You will need to download and compile OpenSSL-1.1.1q,
which is available at https://www.openssl.org/sour
ce/old/1.1.1/. Instructions on compiling OpenSSL with
customized compiler and flags are available at the README
in the folder USLH/PoC/openssl_leakage.

A.3.2 Basic Test

To evaluate the fix to LLVM-SLH, having a working cus-
tomized Clang is necessary. After compiling the Clang, you
should check if Clang is properly compiled by compiling a
program with clang under $path_to_folder/build/bin/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 449

https://github.com/0xADE1A1DE/USLH/tree/e23d4292723b11fa56efb9c237b6db201be97bfa
https://github.com/0xADE1A1DE/USLH/tree/e23d4292723b11fa56efb9c237b6db201be97bfa
https://github.com/0xADE1A1DE/USLH/tree/e23d4292723b11fa56efb9c237b6db201be97bfa
https://doi.org/10.5281/zenodo.7704637
https://doi.org/10.5281/zenodo.7704637
https://clang.llvm.org/get_started.html
https://www.openssl.org/source/old/1.1.1/
https://www.openssl.org/source/old/1.1.1/

A.4 Evaluation Workflow

A.4.1 Major Claims

(C1): Resolving branch conditions leaks secret if the secret
resides in branch operands (E1, E4).

(C2): USLH prevents leakages from resolving branches by
hardening branch conditions (E1, E4).

(C3): Variable-timing instructions leak secret by checking
the cache status of a secret-independent memory. Specif-
ically, when a sequence of floating point instructions is
fed with a slow value, the secret-independent memory
access may not be scheduled to execute (E2, E3).

(C4): USLH mitigates the vulnerability of variable-timing in-
structions by hardening the operands of variable-timing
instructions. (E3)

(C5): We provide a LLVM backend pass to find potential
gadgets (E5).

A.4.2 Experiments

(E1): [1/60 human-minutes, 1/3600 cpu-hour]: Leak secret
from resolving the branch condition and fix it. A detailed
instruction is available in README under the folder
USLH/PoC/condition.
Preparation: You need to have the USLH compiled to
mitigate the vulnerability. Please refer to README in
the folder USLH/LLVM_FIX for more instructions.
Execution: You need to modify the folder in com-
pile.bash to compile the program with and without fix
to LLVM-SLH. You then run the executable file with a
parameter, which is either 1 or 0.
Results: When executing leak, if the fed value is 1, the
program should return a measurement with cache miss
penalty. If the fed value is 0, the program should return a
measurement with cache hit in most cases. When execut-
ing fix, no matter what value fed is, the program should
always return a measurement with cache miss penalty.

(E2): [1 human-minutes 1/60 cpu-hour] Blocking reserva-
tion station under speculation. The code is available at
USLH/PoC/test_rs_limit. README contains detailed
instructions.
Preparation: None.
Execution: Run the command python3 test.py $max
$min to test how many pairs of sqrtsd, mulsd can block
the RS during the speculation. You need to change val
in run.bash to test fast value ot slow value.
Results: For slow value, with fewer pairs of floating-
point operations, the secret-independent memory will not
be accessed during the speculation. The actual number
of pairs is various from processors. On 11th and 12th
Gen Intel processors, you may not see the effect as they
have larger ROB and RS.

(E3): [1/60 human-minutes, 1/3600 cpu-hour] Leak secret
from variable-timing instructions. The code is avail-

able at USLH/PoC/variable_time. README contains
detailed instructions.
Preparation: You need to complete the last experiment
and adjust the number of floating-point instructions man-
ually. Note that you may want to reduce the number of
pairs in this experiment as the vulnerable function is
slightly different from the one in E2.
Execution: Execute the program with or without miti-
gation with attack.bash or mitigate.bash.
Results: The program processes a secret value bit-
by-bit. It returns the eight measurements of accessing
the secret-independent memory, the guessed secret and
whether the guess is correct or not.

(E4): [1/60 human-minutes, 1/3600 cpu-hour] Leak secret
from BN_mul_word in OpenSSL. The code is available
at USLH/PoC/openssl_leakage. README contains de-
tailed instructions.
Preparation: You need to install the OpenSSL with the
customized Clang. Please refer to the README file for
more instructions on how to compile OpenSSL with a
customized compiler and flags.
Execution: Execute the program with ./crun $val where
val is either 1 or 0.
Results: When val is 0, the measurement should be
cache hit; otherwise it should return a cache miss penalty.
By fixing the OpenSSL with USLH, no matter what val
is, it should always return cache miss penalty.

(E5): [Heavily dependent on processors and targets] Find
gadgets. The code is available at USLH/LLVM_FIX.
README contains detailed instructions.
Preparation: You need to have a compiled USLH.
Execution: Compile the program that you have interest
with command $path_to_binary/clang file -mllvm -x86-
mir-analyze
Results: If there is a gadget, the terminal prints Found
it –> function_name. Then you need to refer the source
code to review the code.

A.5 Notes on Reusability
USLH improves the LLVM-SLH by hardening more vulner-
able operands or instructions. You can use the customized
compiler to build safer programs. To play with different func-
tionalities of USLH, you can enable features with command
‘-mllvm -x86-slh-xxx‘. The LLVM backend pass performs
static analysis on machine IR. You can use it to find potential
leakages. To use it, you need to compile the program with
command -mllvm -x86-mir-analyze.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at

450 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 451

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical Concerns
	How to Access
	Hardware Dependencies
	Software Dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation Workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

