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Abstract
Post-Compromise Security (PCS) is a property of secure-
channel establishment schemes, which limits the security
breach of an adversary that has compromised one of the end-
point to a certain number of messages, after which the channel
heals. An attractive property, especially in view of Snowden’s
revelation of mass-surveillance, PCS was pioneered by the
Signal messaging protocol, and is present in OTR. In this pa-
per, we introduce a framework for quantifying and comparing
PCS security, with respect to a broad taxonomy of adver-
saries. The generality and flexibility of our approach allows
us to model the healing speed of a broad class of protocols,
including Signal, but also an identity-based messaging pro-
tocol named SAID, and even a composition of 5G handover
protocols.

1 Introduction

Secure-channel establishment is a cornerstone of modern com-
munication. It allows users to exchange messages whose con-
fidentiality and authenticity are guaranteed, even with respect
to potential Person-in-the-Middle attackers. Authenticated
Key-Exchange (AKE) protocols have, for decades now, en-
abled such channels to be established: for Internet browsing
(TLS protocol), for mobile networks (AKA protocol), for
secure remote access to another machine (SSH), and so on.

The revelations of Edward Snowden, who exposed the real-
ity of mass surveillance by security agencies such as the NSA
or GCHQ, were a boost to the widespread deployment of se-
cure channels. It is now confirmed that powerful adversaries
can, and do, fully corrupt the private information stored on a
targeted device, thus learning most (if not all) of its secrets.
Even then, secure channels open prior to the adversary’s in-
trusion can still preserve confidentiality and authenticity if
Perfect Forward Secrecy (PFS) is guaranteed. Unfortunately,
however, all sessions following the party’s compromise will
no longer guarantee either confidentiality or authenticity.

The lack of future security is particularly problematic for
secure channels that are meant to last for a long time, such as

those generated by asynchronous messaging applications. Say
that a civilian, Alice, has a journalist friend, Bob, with whom
she communicates via a secure messaging application. While
abroad, Alice receives sensitive documents from a whistle-
blower, whose request is that she sends them to Bob. She
messages Bob about them. But as she travels back home,
Alice’s phone might be compromised at border control. At
this point, she would like to have three guarantees: her past
communication with Bob is secure; no one can impersonate
her to bait Bob; and in a little while, she will be able to resume
talking to Bob without (for instance) destroying her phone.

The PFS of the channel guarantees the first of these require-
ments. For the second and third, Alice requires a property
pioneered by Marlinspike and Perrin in the context of the Sig-
nal protocol [21], called Post-Compromise Security (PCS) by
Cohn-Gordon et al. [15]. This attractive feature implies that
the secure channel established in Signal by Alice and Bob can
repair (or “heal") its security, even after a full compromise.

But of course, Alice wants to know: how fast will the
channel’s security return, and under what conditions? Cohn-
Gordon et al. [13] showed that in the original Signal protocol,
Alice can recover security after she and Bob have switched
speakers (i.e., exchanged sender/receiver roles) twice in the
conversation. So, if Bob was the current sender when Alice’s
phone was compromised, then Alice must first send (at least)
a message, and wait for Bob’s reply before they are safe again.
All messages sent between the moment of corruption and
Bob’s second reply are compromised by the attacker.

Even more problematic is the case in which the attacker
uses the data recovered from Alice to insert itself into the
communication, choosing whether it wants to just impersonate
Alice to Bob, impersonate Bob to Alice, or both, and set itself
up as a permanent Person-in-the-Middle between them. For
active attackers, Alice’s conversation with Bob never heals.

Hailed as a revolutionary design in secure-channel estab-
lishment, Signal was used as a basis for group messaging
schemes, such as ART [14] and MLS [5]; the protocol can
also be used directly if group messaging is implemented as
a composition of pairwise secure channel between all the
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participants. Other messaging protocols, such as OTR [9],
Matrix [1], Wire [20], also guarantee some measures of PCS.

To improve the healing speed of Signal, Blazy et al. [7]
used identity-based cryptography and introduced SAID, a
protocol which provides much better security against active
attacks. As SAID relies on a different paradigm than Signal,
it is hard to compare their respective security levels. Yet, at a
high level both protocols guarantee post-compromise security
– so are they perhaps equivalent?

In our example, the healing speed makes a huge difference
to Alice. She would moreover ideally like to know that heal-
ing depends entirely on her (rather than, say, on Bob returning
online). Finally, from a designer’s point of view it is crucial
to understand how different protocols handle different adver-
saries: would the attacker only require short-term (potentially
more vulnerable) values, or does it need long-term secrets?

Our contributions. We propose a metric allowing to assess
and compare the post-compromise security of apparently-
incomparable protocols, such as Signal and SAID. Our aim
is to quantify the healing speed and healing conditions of a
scheme with respect to various classes of attackers.

More precisely, our contribution is threefold: we formally
define a broad category of two-party protocols that enable
key-evolution (which we call SCEKE, for Secure-Channel
Establishment schemes with Key-Evolution); we then define
a framework, consisting of a post-compromise security (PCS)
metric and several classes of adversaries, varying in strength
and abilities; and we provide a comparison of three SCEKE
protocols, thus exemplifying our framework.

For this, we introduce a taxonomy of adversaries, in terms
of 3 characteristics: their access (is it a trusted party or not),
their power (active or passive), and their reach (which values
does it compromise?). A weak adversary may only be able to
compromise stage-specific values (which are always in mem-
ory). A very strong adversary might be a trusted party (like
Signal’s credential server), able to actively hijack sessions
and fully compromise all the data belonging to a party.

Our PCS adversaries attack SCEKE protocols, in which
channel keys are used for a short time (i.e., during a stage). We
index stages by pairs of positive integers (x,y), and consider
an evolution of stages that is either horizontal (from stage
(x,y) to (x+1,y)), or vertical (from stage (x,y) to (1,y+1)).
Stages with same y are said to be on the same chain.

PCS adversaries will target a specific channel (also called
message) key, having compromised an endpoint to that chan-
nel. Our metric measures the number of messages required,
per message-chain, for the security of the channel to heal after
this corruption. Thus, a protocol is (∞,1)-PCS resistant with
respect to some class of adversaries if the honest parties lose
channel security for all the stages obtained through horizon-
tal evolution, and at most 1 stage obtained through vertical
evolution, starting from the last stage (x∗,y∗) at which the
adversary compromised either endpoint. Optimal healing cor-

responds to (1,0)-PCS security, while the worst healing is
(∞,∞)-PCS security, i.e., the protocol’s security never heals.

To showcase the broad reach of our metric, we use it to
compare 3 schemes that would otherwise be hard to compare:
the PKI-based Signal asynchronous messaging protocol (ana-
lyzed by Cohn-Gordon et al. [13]), the identity-based SAID
asynchronous-messaging protocol [7], and the 5G handover
protocols in mobile networks [2,3]. For the latter protocol, we
are the first (to our knowledge) to model and analyze the post-
compromise security afforded by sequential compositions of
handovers. We also show how to easily tweak 5G handovers
to obtain much faster healing. Our results are summarized in
Fig. 4. Our framework can also be used to analyse the security
of many other PCS protocols.

Related work. Provable-security analyses of known proto-
cols, such as those of Signal [13] and SAID [7] are corner-
stones to our work, and enable us to show how our framework
compares with existing results. This is one of the reasons
those two protocols were chosen. However, in our work we
go beyond current results, both in terms of scope and of prov-
able results.

Although comparatively infrequent, taxonomies and met-
rics exist and are very useful in cryptography. An eminent
example is the taxonomy of privacy notions by Pfitzmann
and Hansen [22], which ranks and classifies subtly-different
terms referring to user privacy (e.g., anonymity, privacy, un-
linkability, undetectability, etc.). We choose to focus on the
property of channel security in the context of a particular type
of scheme; moreover, while we classify attacks by three types
of parameters, our taxonomy focuses on a precise quantifica-
tion of healing speed, which is out of scope for [22].

Our methodology better resembles taxonomy efforts such
as [17,19], whose purpose is to categorize security definitions
in information-flow, or electronic voting, respectively. Our
work, however, focuses on a very different type of protocol
than in these two fields; moreover, we use a provable-security,
rather than a formal-methods approach.

The mechanics of our model resemble those of Fischlin
and Günther [18], which extend prior work [6, 12] to com-
plex, multi-stage key-agreement. Our main security notion
(Post-Compromise Security), however, is atypical for [18];
moreover, we are the first to define the generic notion of
SCEKE protocols. A parallel line of work recently introduced
by Brzuska et al. [10] analyzes, in a compositional frame-
work (using state-separating proofs [11]), the security of the
multi-party asynchronous messaging protocol MLS. Unlike
that technique, ours is not composable1, but unlike [10] we
do take into account authentication, which is crucial in the
case of active adversaries.

Finally, we note that our main contribution in this work is
the taxonomy of attackers and quantification of PCS-security.

1This is, technically speaking, because we quantify PCS-security within
the winning conditions.
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This is why we carefully chose only three protocols (with
apparently incomparable degrees of PCS) to analyze: Signal,
SAID, and the 5G Handover protocols. We discuss how our
framework applies to other protocols below.

Other protocols. Although we choose to showcase our metric
by means of the three protocols cited above, our framework
can be applied to other PCS-providing protocols, such as
OTR, Matrix’ Olm protocol for 2-party rooms, and Wire. Sig-
nal ratchets are actually a combination of OTR and SCIMP
ratchets2. Notably, the former provides PCS security. How-
ever, note that OTR’s focus is privacy, not necessarily (PCS-
)security, and thus limits and encrypts any explicit long-term-
authentication steps. This gives it a relatively weak security
in our framework when we consider active adversaries, but
interestingly provides less advantages for insider attackers.
An interesting future research is how to optimally balance the
kind of privacy desired by OTR and its healing speed.

The Olm protocol used by Matrix resembles Signal (with
differences regarding the type of keys used, signed or un-
signed) and would provide similar metric results in our frame-
work – which is why we do not treat it. On the other hand,
Wire is more complicated to analyse. Although the core pro-
tocol relies on an independent implementation of Signal, its
use of cookies and access tokens for authentication and syn-
chronization complicates matters, particularly with respect to
powerful adversaries such as insiders. Moreover, the ability
to have multiple synchronized devices raises the questions of
modelling individual-device compromise and device revoca-
tion, for which we would need an extended framework, akin
to what is needed to capture MLS security (see below).

A limitation of our approach is that we only consider two-
party protocols: as such, even if our taxonomy of adversaries
is easily extendable to multi-party schemes, such as ART and
MLS [5, 14], our metric is not. A particular difficulty with
extending our framework to multiple parties is the dynamic
addition and removal of participants. In two-party schemes,
we have two types of evolution, which correspond –roughly–
to one, or the other participant’s messages. In that case, our
metric quantifies the response to the question: if Alice is com-
promised, after how many of her, and Bob’s messages will the
channel security heal? However, when we have a dynamically-
adaptable set of parties, we would need to account – not only
how many turn-switches there are between Alice and non-
Alice participants, but also over added and removed users. It
is not immediately apparent how best to achieve this, which
is why we leave the extension of our metric to multi-party
protocols as future work.

2 Our PCS metric for SCEKE protocols

Our framework applies to a generalization of two-party secure-
channel establishment, which features key-evolution. We call

2See https://signal.org/blog/advanced-ratcheting/.

such protocols Secure-Channel Establishment schemes with
Key-Evolution (SCEKE), and emphasize that, while post-
compromise security (PCS) is relevant to long-lived secure
channels, it can also be an attractive property for short-lived
channels whose keys evolve from (or depend on) each other.

2.1 Definition of SCEKE Protocols
SCEKE schemes allow two parties, Alice and Bob, to initially
establish a secure channel (by agreeing on some initial key-
material), and then preserve the security of that channel over
a long period of time by sequential evolutions of the key
material, meant to ensure two properties:
PFS: If a user or an instance is fully corrupted at a given

moment, all keys established prior to that corruption
remain secure;

PCS: Even if a user or instance is fully corrupted at some
moment, thus breaking channel security, that security
will return after a given, finite interval.

Our metric measures the interval required for security to
return, with respect to several classes of adversaries (Sec. 2.3).
We begin by formalizing the syntax for SCEKE protocols.

Participants. We consider schemes featuring participants of
two types: parties P making up a set P , and a super-user Ŝ
playing a special part in the protocol (like the registration
server used in Signal or the key-derivation center present in
identity-based infrastructures). Channel-establishment takes
place between two parties (rather than a party and Ŝ), which
compute keys and have them evolve.

A SCEKE scheme is initiated by means of a setup algo-
rithm, run by one or more parties, which yield a number of
private and public parameters: the super-user Ŝ is associated
with the tuple (Ŝ.sk, Ŝ.pk), while each party P retains identity-
bound credentials (ikP, ipkP). Each of these keys could be a
concatenation of credentials, or – if absent – could be void
(denoted by ⊥).

Setup precedes user registration, during which parties P
register with the super-user, and Ŝ builds a database with
entries indexed by unique party identifiers P. The contents
associated to each party ID are protocol-specific and is used
during secure-channel establishment; exploiting registration
leads to a particularly strong type of attack, performed by an
insider adversary.

Sessions, instances, and stages. After registration, parties
can run protocol sessions with each other. Following [6, 12]
formalizations, a protocol session occurs between two party-
instances. The i-th instance of P is denoted πi

P.
Each instance must run three types of steps during a proto-

col session: an initial, one-time initialisation step; a recurring
message-sending step, occurring every time the instance sends
an (encrypted) message to its partner; and a recurring receiv-
ing step, corresponding to an instance receiving (and retriev-
ing) a message from its partner. The sending and receiving

USENIX Association 32nd USENIX Security Symposium    5919

https://signal.org/blog/advanced-ratcheting/


NIKE, AKE

1,1 2,1 3,1 . . . Alice talking

1,2 2,2 3,2 . . . Bob talking

1,3 2,3 3,3 . . . Alice talking

...

Figure 1: Stage evolution in asynchronous messaging. The
protocol initiator begins at stage (1,1) and will continue to
send messages along the first horizontal chain. Bob’s first
reply comes at stage (1,2).

steps depend on a crucial notion, that of stage.
In SCEKE protocols, messages are encrypted and authen-

ticated before sending, using one or more message keys. A
stage corresponds to a (protocol-specific) number of messages
associated with the same message key. When that key evolves,
we have moved on to the next stage. The first stage is indexed
(1,1) and corresponds to message key mk1,1; generically,
stages are indexed (x,y) with x,y ≥ 1, with keys evolving
through either horizontal or vertical evolution, as follows.

Horizontal evolution: Stage (x,y) turns into (x + 1,y).
This evolution provides weaker security.

Vertical evolution: Stage (x,y) turns into (1,y+ 1) (we
“reset” the x value). This evolution provides stronger security.

As we capture generic key-evolution, depicted in Fig. 1, our
definition of stages is intentionally vague. We do, however,
require that honest parties always evolve “forwards”, that is,
always increasing either the x or the y value.

Formalization. More formally, instance πi
P of parties P ̸= Ŝ

keeps track of the following attributes:
pid: partner identifier for the session, denoted πi

P.pid.
sid: session identifier πi

P.sid: an evolving set of instance-
specific values.

stages: a list of tuples (s,v), of stages s = (x,y), with values
v ∈ {0,1} indicating whether a message was received
(v = 1) or not (v = 0). By abuse of notation we write
s ∈ πi

P if, and only if, (s,v) ∈ πi
P.stages.

Tr: transcript πi
P.T , indexed by stage s describing all data

sent or received for this stage. We denote πi
P.T [s].

rec: a list of subsets πi
P.rec, indexed by stage s and indicating

messages and metadata received, in order. A special
symbol ⊥ is used for sending stages.

var: a set πi
P.var of ephemeral values used to compute stage

keys, indexed by stage. If a value is used for more than
one stage, it will appear under every single stage that it
is required for.

Definition 1 (SCEKE Protocol) A Secure-Channel Estab-
lishment protocol with Key-Evolution (SCEKE) is a
tuple of five algorithms and two interactive proto-

cols: SCEKE = (aSetup,aKeyGen,ΠUReg,ΠStart,aSend,
aReceive,aRGen):
aSetup(1λ)→ (Ŝ.sk, Ŝ.pk,pparam) : outputs the pub-

lic/private long-term keys of super-user Ŝ and the public
system parameters pparam implicitly taken in input by
all other algorithms.

aKeyGen(1λ)→ (ik, ipk) : run by a party P to output pub-
lic/private long-term credentials (ik, ipk), used at regis-
tration (and perhaps further). Either key could be set to
a special symbol ⊥.

ΠUReg(P, Ŝ)→ ({sk,pk},b) : an interactive protocol run by
party P and super- user Ŝ. The latter outputs a bit b
(set to 1 for a successful registration), while the former
outputs public/private credentials (sk,pk) for Ŝ. The
super-user keeps track of a registration database.

ΠStart(P, role,pid, Ŝ)→ (πi
P,b) : run interactively between

P and super-user Ŝ, so as to create an instance of P meant
to be talking to an instance of pid, such that P has either
the role of initiator or responder. If successful, Ŝ outputs
b, while P outputs a handle πi

P on its i-th instance. Some
initial key material might be computed during this phase
(like a master secret).

aSend(πi
P,s,M,AD)→ (πi

P,C,AD∗)∪⊥ : on input a state
instance πi

P, a stage s, a message M, and associated
data AD, the algorithm outputs an updated state of the
instance πi

P, a ciphertext C, associated data AD∗ or a
symbol ⊥.

aReceive(πi
P,s,C,AD∗)→ (πi

P,M,AD)∪⊥ : on input an
instance πi

P, a stage s, a ciphertext C, and associated
data AD∗, it outputs an updated state of the same in-
stance πi

P, a message M and some (possibly transformed)
associated data AD, or symbol ⊥.

aRGen(1λ)→ (rchk,Rchpk) : outputs a public/private key-
pair used to refresh keys. We call these ratchet
keys, though they are more generic than the original
asymmetric-messaging concept. Either key could be a
special symbol ⊥.

Protocol correctness relies on matching conversation (intu-
itively, the partnering of instances running a session).

Definition 2 (Matching conversation) Let SCEKE be a
SCEKE protocol, and A, B two parties with instances πi

A and
π

j
B respectively. πi

A and π
j
B have matching conversation if and

only if πi
A.sid= π

j
B.sid and πi

A.pid= B and π
j
B.pid= A.

A note on out-of-order messages. A property not consid-
ered in our analysis is out-of-order (OOO) messaging (or
message-loss resilience [4]). Both Signal and SAID provide
this feature by design, allowing intermediate messages that
are lost to still be recovered in spite of the key having evolved
beyond that point. This implies storing several message or
chain keys in memory (until they can be used). There are
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two consequences to our including OOO messaging. First,
this implies that even when having matching conversation,
Alice and Bob might have non-identical session identifiers
(one might have “holes" in the messages that are received).
Second, message keys are now computed and stored beyond a
single stage. In our formalization, this changes the type of se-
curity that is achieved with respect to the values we present in
Sec. 3. However, note that capturing message-loss resilience
is conceptually compatible with our model.

Correctness. If πi
A and π

j
B have matching conversation, then

a SCEKE protocol SCEKE is correct if both conditions hold:
• for each s = (x,y), both instances have identical mkx,y;
• A uses aSend to output (πi

P,C,AD∗) from M and B in-
puts C for aReceive then πi

A and π
j
B are still matching.

2.2 Adversarial Model

Our adversary is a Probabilistic Poly-Time adversary A ,
which manipulates honest parties by using oracles. Depending
on A’s strength (see next section for taxonomy) the attackers
may query all, or just some of the oracles presented below.

For reasons that will become apparent when we present our
taxonomy, we divide the private keys that parties use during
SCEKE sessions into three categories:
Cross-session Keys: keys that (intentionally) repeat in at

least two sessions3. More formally, a key k is cross-
session if there exist distinct instances πi

P, π
j
P of regis-

tered party P, and (potentially) distinct stages s ∈ πi
P and

s′ ∈ π
j
P such that k ∈ πi

Pvar[s] and k ∈ π
j
Pvar[s

′]. By def-
inition, the identity and registration keys ikP and sk of
P are cross-session. We denote the set of cross-session
keys of party P as P.Xsid.

Cross-stage Keys: keys that (intentionally) repeat in at least
two stages of the same session, but not across sessions.
More formally, there exists an instance πi

P and distinct
stages s ∈ πi

P and s′ ∈ πi
P, such that k ∈ πi

Pvar[s] and
k ∈ πi

Pvar[s
′], but k ̸∈ P.Xsid. We denote the set of cross-

stage keys belonging to instance πi
P as πi

P.Xstage.
Stage-specific Keys: keys occurring in only one stage of one

protocol instance πi
P, i.e., k ∈ πi

P.var[s] for some stage s,
but k ̸∈ (P.Xsid

⋃
πi

P.Xstage). We denote by πi
P.1stage

the set of all stage-specific keys of instance πi
P.

Oracles. The adversary can register malicious users; compro-
mise users to reveal, respectively, cross-session, cross-stage,
and stage-specific private values; and manipulate communi-
cation by instantiating new sessions and sending/receiving
messages. The adversary’s goal will be distinguished from
random a target message-key that is freshly and honestly gen-
erated. Thus, each instance needs to also store the attribute
πi

P.b[s]: a challenge bit randomly chosen for each instance for

3We thus formally exclude collisions in randomness

stage s. If b = 1, the output is the real message key, else the
output is a random key.

We describe the PCS-game in Sec. 2.4, while a taxonomy
of adversarial types are introduced in Sec. 2.3. In the game,
the adversary may query (a subset of) the following oracles:
oUReg(P): runs aKeyGen on party P i.e., A can register

malicious P to an honest Ŝ.
oStart(P, role,pid,hon): runs ΠStart to create a new in-

stance of an existing honest party with the role role and
intended partner pid. The added value hon is a bit, which,
if set to 1, runs the protocol with the challenger posing
as Ŝ, whereas if hon = 0, the protocol is run with the
adversary posing as Ŝ.

oTestb(π
i
P,s): for honest parties, valid instances, valid stages,

and a computed message-key at stage s, returns that key
(if πi

P.b[s] = 1) or a random key of the same length
(πi

P.b[s] = 0). This oracle can only be queried once.
oSend(πi

P,s,AD): two modes for this oracle: honest or
maliciously-controlled. For AD = ⊥ (other values are
valid), πi

P generates new key pair using aRGen for stage
s then it runs aSend, and outputs the additional data.
Otherwise, the oracle simulates the sending algorithm
with adversarially-chosen AD.

oReceive(πi
P,s,AD): oracle in two modes. In honest mode,

AD is valid since output by oSend at stage s by πi
P’s part-

ner. For the adversarial mode, AD is always considered
correct (e.g., allowing communication hijacking).

oReveal.XSid(P): corrupts P, giving A access to P.Xsid.
oReveal.XStage(πi

P,s): for stage s, it leaks the set of keys
πi

P.Xstage
⋂

πi
Pvar[s] of cross-stage values.

oReveal.1Stage(πi
P,s): for stage s, it leaks the set

πi
P.1stage

⋂
πi

Pvar[s] of stage-specific values.
Like in [7], A does not have access to the real ciphertext,

which is a trivial distinguisher.

2.3 A taxonomy of adversaries
We classify adversaries in terms of: reach; power; and access,
as discussed below. Although the security games and winning
conditions are mostly equivalent, different adversaries will
learn a different subset of values upon compromising a party,
and will be allowed different sequences of oracle queries.

Reach. Our model features three types of corruption oracles:
oReveal.XSid,oReveal.XStage, and oReveal.1Stage, reveal-
ing, respectively, the party’s cross-session (long-term) keys,
cross-stage keys, and stage-specific keys. Of these, the latter
are assumed to be the least protected because as they are the
least impactful during key-evolution. We distinguish:
Local adversaries: are only allowed access to the

oReveal.1Stage oracle;
Medium adversaries: may query both oReveal.1Stage and

oReveal.XStage, but not oReveal.XSid;
Global adversaries: may query all three oracles.
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Power. We distinguish between attackers which extract in-
formation from honest participants via their reveal oracles,
and stronger adversaries, which extract data and then use it
to hijack honest sessions, or for other (evil) purposes. This
reasoning leads to a classification between:
Active adversaries: The attacker may use the malicious

modes of the oSend and oReceive oracles on the tar-
get instance πi

P, or on the instance it has matching con-
versation with. We define below one potential strategy
of such attackers, namely session hijacking, but active
adversaries are not restricted to only it. In short, (success-
fully) hijacking a session enables the adversary to insert
its own key material and increase the interval required
before healing (or make the channel unable to heal);

Passive adversaries: These attackers may not use the mali-
cious modes of the sending and receiving oracles on the
target instance, nor its partner.

We define the hijacking of a session run between πi
A and

its partner π
j
B at some stage sh = (xh,yh) (for which we as-

sume w.l.o.g. that A is the sender) the event that the following
conditions hold simultaneously:

1. A has queried oReceive(πj
B,sh,ADh);

2. ADh were never output by an oSend(πi
A,sh, ·) query;

3. there exists a value v ∈ ADh, but such that v ̸∈
πi

A.var[sh]∪πi
B.var[sh].

We call stage sh successfully hijacked if in addition the
oReceive query in 1. yielded an output different from ⊥.

Access. The last criterion in our taxonomy is access. Typically,
channel-security is defined with respect to a Person-in-the-
Middle attacker. However, some such protocols also feature a
centralized entity with more extensive access and thus greater
potential to wreak havoc – in our framework, the super-user
Ŝ. We divide attackers into two categories:
Insider adversaries: they are in fact the super-user. Through-

out the game, they receive from the challenger all the
private keys and database information amassed by Ŝ.

Outsider adversaries: these attackers do not receive any Ŝ
data. Since additionally A has no oracle-access to cor-
rupting Ŝ, the latter will remain honest.

Adversarial types. We consider adversaries whose types are
a composition of three characteristics, in the order (power,
reach, access). The weakest adversary is a passive local out-
sider. The strongest is an active global insider. All other char-
acteristics being equal, active attackers are stronger than pas-
sive ones; also, global attackers are stronger than medium
ones, which are in turn stronger than local ones; finally, insid-
ers are stronger than an outsiders.

Nevertheless, intermediate adversaries with more than two
varying characteristics are not as easy to compare. This is par-
ticularly the case for insider attacks, for which the information
obtained by the insider is highly protocol-specific. The same
holds for active local adversaries versus passive global ones.
In our case, moreover, comparing such adversaries asymptoti-
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1Stage ✓ ✓ ✓ ✓
XStage ✓ ✓ ✓ ✓
XSession ✓ ✓ ✓ ✓

Access Ŝ.sk ✓ ✓ ✓ ✓ ✓ ✓

oReceive H H H H H H ✓ ✓ ✓ ✓ ✓ ✓
oSend H H H H H H ✓ ✓ ✓ ✓ ✓ ✓
oUReg ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
oStart ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Figure 2: Available oracles depending on type, labelled
reach∥power∥access. For instance, LAO denotes Local Ac-
tive Outsider adversary. We omit oTest oracle since all adver-
saries may query it. H denotes an honest call to the oracle.

cally is not as interesting as quantifying, for each adversary,
the exact healing speed of the scheme. In Fig. 2, we recap the
adversary’s access to oracle depending on its type.

2.4 A metric for PCS
The adversary A plays against a challenger C in the following
security game ExpPCS

SCEKE(λ,A), which is depicted in Fig. 3:
• C runs aSetup and forwards all the public values to A .

C also simulates the registration of all the honest parties.
• A has access to algorithms aKeyGen and aRGen and,

depending on its type, may adaptively query a subset of
these oracles (see also Fig. 2):

– oUReg(P) (all attackers);
– oStart(P, role,pid,1) (outsider A) and

oStart(P, role,pid,0) for (insiders);
– oSend(πi

P,s,⊥) (passive A) and oSend(πi
P,s,AD)

(active A);
– oReceive(πi

P,s,⊥) (passive A) and
oReceive(πi

P,s,AD) (active A);
– oReveal.XSid(P) (global A);
– oReveal.XStage(πi

P,s) (medium A);
– oReveal.1Stage(πi

P,s) (local A).
• At some point, A outputs a party instance π⋆

P and a stage
s⋆ = (x⋆,y⋆). The challenger C runs oTestb(π

⋆
P,s

⋆) and
outputs the true π⋆

P.mks or a random key.
• The attacker may continue to use its oracles/algorithms,

until it outputs a final bit d.
We say that A wins ExpPCS

SCEKE(λ,A) if and only
if d = π⋆

P.b[s
⋆], and if the winning conditions below

hold. The advantage of the adversary is computed as:
|Pr[A wins ExpPCS

SCEKE(λ,A)]− 1
2 |.

Further winning conditions. Adversary A wins
ExpPCS

SCEKE(λ,A) if it guesses the real-or-random bit b
for the target message key, and must do so by a non-trivial
attack (e.g., not revealing the target message key). Attacks are
classified as trivial or non-trivial depending on adversary type.
We express them as a conjunction of predicates parametrized
by A’s type and resulting PCS security.
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ExpPCS
SCEKE(λ,A)

(Ŝ.sk, Ŝ.pk,pparam)← C aSetup(1λ)

(P = {P1, · · ·PnP })← C (λ,nP )

(iki, ipki)← C aKeyGen(1λ) ∀i ∈ {1, · · · ,nP}

Otype←
{

oUReg(·),oStart(·, ·, ·, ·),oReveal[A .reach](·, ·),oSend(·, ·, ·, ·),
oReceive(·, ·, ·, ·), ,R O1(·),R O2(·)

}
;

(π⋆
P,s

⋆)← AOtype(1λ)
K← oTestb⋆(π

⋆
P,s

⋆)
d← AOtype(λ,nP ,K)

A wins iff. d = b⋆ and (¬oUReg(P)∨¬oUReg(πi
P.pid)) =⊤

Figure 3: The PCS game ExpPCS
SCEKE(λ,A) between adversary

A and challenger C , parametrized by the security parameter λ

and number of honest parties nP . A can query a set of oracles
Otype, subject to type. We denote by oReveal[A .reach] the
precise reveal oracle allowed to A , subject to its reach (local,
medium, or global).

Definition 3 ((χ,ϒ)-PCS security) A SCEKE protocol is
(χ,ϒ)-PCS-secure against an adversary A , for χ,ϒ ∈ N and
A of one of the 12 types above if, and only if, assuming oTest
will be queried for instance πi

P, the last stage for which A
queried oReveal.XStage or oReveal.1Stage for either πi

P or
its matching instance is s∗ = (x∗,y∗) and the following condi-
tions hold:

• The adversary has a non-negligible advantage to win the
game ExpPCS

SCEKE(λ,A) when querying oTest for sTest =
(xTest,yTest) such that:

– If ϒ = 0, xTest < x∗+χ and yTest = y∗;
– If ϒ > 0, xTest is arbitrary and yTest < y∗+ϒ.

If, moreover, the adversary is allowed to query
oReveal.XSid, then A has a non-negligible chance to
win for all instances of party P which are not yet in-
stantiated, or have not yet reached stage s = (x,y) such
that:

– If ϒ = 0, then x≥ χ and y≥ 1;
– If ϒ > 0, then x > 1 and y≥ ϒ.

• The adversary has a neglibile advantage to win if oTest
is queried for sTest other than those specified in the first
bullet point.

We allow both χ and ϒ to take a special value ∞, which corre-
sponds to ”an arbitrary number of stages” obtained through
horizontal and respectively through vertical evolution.

3 Case Studies

We apply our metric to 3 use cases: the PKI-based messaging
protocol Signal, the Identity-Based messaging protocol SAID,
and the suite of mobile 5G Handover protocols. Although
seemingly very different, they all can be modelled as SCEKE
schemes, which shows the generality of our framework.

Outsider Reach Signal SAID 5G-SCEKE 5G-SCEKE+

Passive
Global (∞,2) (∞,2) (∞,∞) (1,0)

Medium (∞,2) (∞,2) (∞,∞) (1,0)
Local (∞,1) (1,0) (∞,1) (1,0)

Active
Global (∞,∞) (∞,∞) (∞,∞) (∞,∞)

Medium (∞,∞) (∞,∞) (∞,∞) (∞,∞)
Local (∞,1) (1,0) (∞,1) (1,0)

Insider Reach Signal SAID 5G-SCEKE 5G-SCEKE+

Passive
Global (∞,2) (∞,2) (∞,∞) (∞,∞)

Medium (∞,2) (∞,2) (∞,∞) (∞,∞)
Local (∞,1) (∞,1) (∞,∞) (∞,∞)

Active
Global (∞,∞) (∞,∞) (∞,∞) (∞,∞)

Medium (∞,∞) (∞,∞) (∞,∞) (∞,∞)
Local (∞,∞) (∞,∞) (∞,∞) (∞,∞)

Access

Access

Figure 4: Results for our metric on PCS-security for Signal,
SAID, 5G handover and its variant denoted Ext-5G-SCEKE.

3.1 Signal as a SCEKE protocol

Signal is a natural instantiation of SCEKE protocols. Like
most asynchronous-messaging schemes, Signal conversations
are turn-based, between speakers who need not be online
simultaneously. Each message corresponds to one stage, i.e.,
each message-key is used only once. New keys are generated
in two different ways: when the person who was speaking
sends a new message, we have a horizontal evolution; when
the speaker changes, we have a vertical evolution.

Signal also features a natural super-user: a centralized cre-
dential server storing user public keys. Our SCEKE framework
includes security with respect to such powerful insiders, an
aspect often overlooked by prior work [13].

We first compare our model with the one by Cohn-Gordon
et al. [13]; then we model Signal as a SCEKE protocol. Our
extended version [8] provides detailed description. Then we
quantify PCS-security with respect to all the adversaries in
Sec. 2.3. The security proofs are given in Appendix A.

Comparing security models. Our framework can be seen,
in many ways, as a generalization of Cohn-Gordon et al.’s
Signal-specific security model [13]. They described a real-or-
random key-indistinguishability experiment akin to ours, for
which the Person-in-the-Middle adversary A can test stages
freely in order to distinguish their message-keys from random.
A wins assuming that it guesses correctly and that a given
freshness predicate holds.

We begin by stating that the adversary described by [13]
is a passive outsider: they rule out adversarial interventions
within the target session, and do not consider security with
respect to the super-user. Finally, the oracles they consider
are slightly different from ours, as we describe below.

From Fig. 5, we can infer that:
oReveal.1Stage =⇒ RevSessKey∧RevRand∧RevStateMiddle

oReveal.XStage =⇒ RevRand∧RevStateInit
oReveal.XSid =⇒ RevLongTermKey∧RevRand

Thus the adversaries captured in [13] can adopt more fine-
grained strategies than ours. For instance, in our model, if the
adversary wants a particular cross-stage key, it essentially will
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ms ephk ck mk rk rchk ik prek
oReveal.1Stage ✓ ✓ ✓ ✓

oReveal.XStage ✓ ✓ ✓ ✓ ✓ ✓
oReveal.XSid ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RevSessKey ✓
RevLongTermKey ✓
RevMedTermKey ✓

RevRand ✓ ✓
RevStateInit ✓

RevStateMiddle ✓

Figure 5: Revealed keys per oracle queries: ✓s indicate re-
vealed keys. The 3 upper rows list oracles in our model,
while the bottom ones are oracles from [13]. Notice that for
Signal, we split oracle RevState into RevStateInit (which
can be used only at the beginning of a stage-chain) and
RevStateMiddle (for queries inside a chain i.e., x > 1).

receive all such keys. As a consequence, we lose the ability
to rank, say, cross-stage keys in terms of how dangerous they
are to healing. Yet, (instantiations of) the predicates described
above are in fact also found amongst the winning conditions
of [13], signifying that the same

Yet, in reality (as described in the proofs), the winning
predicates of [13] imply that the adversary does not essen-
tially benefit from the additional freedom given by those
fine-grained queries. Thus, while our two frameworks are
syntactically incomparable, they are akin in spirit. In addition,
our model allows us to account for additional adversary types,
including active adversaries and insiders.

Description. Let P be a set of honest users (with unique
identities). Our super-user Ŝ is a centralized PKI server.
SETUP. During the global setup of the protocol, the super-user
Ŝ chooses a DH-based signature algorithm, hash functions and
KDFs, and a secure-channel establishment protocol required
at registration (such as TLS)4. Then, Ŝ generates keys required
for its authentication in the secure-channel establishment,
notably (Ŝ.sk, Ŝ.pk). We also assume that each user in P has
keys allowing it to register over a secure channel to Ŝ, but
make no assumptions as to their structure; we merely require
that they provide secure authentication. All the algorithms
and Ŝ.pk are part of the public system parameters.
KEY GENERATION. During key-generation, each party gen-
erates signature identity keys (ikP, ipkP) for the signature
scheme chosen at setup.
USER REGISTRATION. Over an AKE-secure channel be-
tween Ŝ and each user P, the latter registers a key-bundle
consisting of: a long-term identity key ipkP, a medium-term
key prepkP signed with ikP, and optional ephemeral public
keys ephpkP. Both ipkP and prepkP are used across multi-
ple sessions, whereas each ephemeral public key ephpkP is

4In other words, we assume that whenever they upload keys to the server,
parties do so over a mutually-authenticated secure channel (with standard
AKE security).

X3DH

ms KDFr

DH(rchk0,1,prepkB)

ck1,1 KDFm ck2,1

mk1,1

KDFm ck3,1

mk2,1

. . . chain y = 1

DH(rchk0,1,Rchpk0,2)

KDFr

rk1

tmp

ck1,2 KDFm ck2,2

mk1,2

KDFm ck3,2

mk2,2

. . . chain y = 2

Figure 6: Signal’s key schedule, in which vertical evolutions
are boxed in grey. Horizontal evolutions are along chains
represented horizontally.

only used in one session and then removed from the server.
Subsequent calls to this algorithm allow users to update key
material they have previously submitted. We stress that the
server is never given the user’s private keys.

INSTANCE INITIALISATION. Alice (the initiator) begins a
session with Bob by querying the semi-trusted server, over
an authenticated channel, for Bob’s credentials, which allows
Alice to establish the master secret ms.

The master secret will yield an intermediate root key rk1
and the first chain key ck1,1; the latter will be input to a key-
derivation function (KDF) in order to output a new key ck2,1

and the first message key mk1,1, which will be used to authen-
ticate and encrypt Alice’s first message to Bob, corresponding
to stage (1,1) of the session.

SENDING AND RECEIVING. For the remainder of the session,
Alice and Bob exchange encrypted messages. On stages with
odd y, Alice is the sender and Bob is the receiver, while on
stages with even y, it is the other way around. In each stage,
corresponding to a single encrypted message, the included
metadata allows that message’s receiver to make his keys
evolve, either horizontally (it receives and decrypts a new
message) or vertically (the receiver decides to start talking).

Fig. 6 gives this key-derivation process.
The associated metadata at stage (x,y) consists of the iden-

tities of the two speakers, a ratchet public key Rchpky (usable
for vertical evolution), and the index x of the message. Excep-
tionally, for messages sent at stages (·,1), the metadata must
also include the public key EpkA corresponding to Alice’s pri-
vate key ekA used during session initialisation. This metadata
is sent as Associated Authenticated Data (AAD) within each
AEAD-encrypted ciphertext5. Thus, this data passes in clear,
but is authenticated as part of the ciphertext.

The PCS-security of Signal. We begin the analysis by split-
ting the key material used in Signal into stage-specific, cross-
stage, and cross-session keys.

The keys used in Signal for a single stage only are: the mes-
sage6 keys mkx,y, the chain keys ckx,y, and also a particular
key used only at stage (1,1), namely ephk.

On the other hand, private ratchet keys rchkx,y and the keys

5AEAD stands for Authenticated Encryption with Associated Data.
6We explicitly do not consider the fact that in Signal keys can actually be

precomputed in the case of out-of-order arrivals, since this is not the most
frequent way in which the protocol is used.

5924    32nd USENIX Security Symposium USENIX Association



Keys Signal SAID 5G-SCEKE or
5G-SCEKE+

Cross-Session ik,prek ik,ID.sk,
IBS.sk

K

Cross-Stage rk,rchk,
tmp

ms,
rk,rchk

KAMF = rk

Single-Stage ephk,
ms,mk, ck

mk,ck, r rchk =v , KAS =

mk, KgNB = ck

Table 1: Taxonomy on keys used in Signal, SAID and our 5G
handover procedures model.

used at the roots of each chain(denoted rky for odd y and
tmpy for even y) are stored throughout the existence of the
chain, until the next vertical evolution. In other words, they are
cross-stage keys. The key material is summarized in Table 1.

Theorem 1 Consider the Signal protocol modelled as a
SCEKE scheme, as presented above. The following results
hold in the random oracle model (by replacing the KDFs with
random oracles), under the Gap Diffie-Hellman assumption,
and assuming the AKE security of the channels established
between honest users and an honest Ŝ:

• Signal is (∞,1)-PCS secure against: local outsiders (pas-
sive and active), local passive insiders;

• Signal is (∞,2)-PCS secure against: medium passive
adversaries (outsiders and insiders), and global passive
attackers (outsiders and insiders);

• For all other adversaries, Signal is (∞,∞)-PCS secure.

Note that the results are also systematized in Fig. 4. The
proofs of this theorem consist of two types of statements: first,
we need to show an attack for the stages that are vulnerable to
the attacker, then we need to prove that beyond those stages,
security holds. The second parts of the proofs can be found in
Appendix A.1, but we briefly indicate the attacks providing
the first part of the proofs below.
LOCAL PASSIVE OUTSIDER Here the security loss is a re-
sult of the symmetric ratchets: once ckx,y is compromised,
A learns all the chain and message keys derived symmetri-
cally from it. The ratchet key rchky is not amongst the data
revealed through oReveal.1Stage. When it is used in input at
stage (1,y+1), A can no longer compute keys derived from
this key.
MEDIUM PASSIVE OUTSIDER As opposed to the previ-
ous case, the attacker can now query oReveal.XStage and
learn ratchet keys rchk, and root keys. Knowledge of
the ratchet key rchky allows A to compute DH0,y+1 =
DH(Rchpky,Rchpky+1) at the beginning of chain y+1 and
derive all the keys in chain y+1 (hence implying (∞,2)-PCS
security). Fortunately, this stops at stage (1,y+2), since A
cannot use rchky to compute DH0,y+2, thus giving the PCS
bound.
GLOBAL PASSIVE OUTSIDER The adversary’s access to
oReveal.XSid provides user identity keys and pre-keys. How-

ever, these values cannot help a passive adversary beyond
learning the master secret ms (via oReveal.1Stage). This es-
sentially reduces a global passive outside to a medium passive
adversary.
LOCAL ACTIVE OUTSIDERS In this weakest form of active
outsider attacks, the attacker can still actively use the informa-
tion captured through corruption, in addition to learning it by
compromising either endpoint. Unfortunately, this is not help-
ful, since in order to go beyond the (∞,1) bound provided in
the local passive outsider case, A would require knowing the
chain’s current root key. Although this is a Denial of Service
(DoS) attack, it will not affect PCS security.
OTHER ACTIVE OUTSIDERS The attacker has access to
oReveal.XStage, and so to the root key it was missing in
the previous cases. As a result, the attacker can use its active
capacity to learn the message and chain keys of some stage
(1,y) and then use them to inject its own ratcheting informa-
tion, towards the receiver at chain y. Then, by using the root
key (via oReveal.XStage) it keeps up with all future ratch-
ets. This compromises all the future keys in these sessions,
yielding an (∞,∞)-PCS security.
INSIDER PASSIVE ATTACKS The knowledge of the super-
user’s private key Ŝ.sk will not help the adversary beyond
an outsider adversary’s capacity. This is the situation that
corresponds to an honest-but-curious server – for which Cohn-
Gordon et al. considered (and proved) the security we also
explained for the outsider case. This explains why we have the
same bounds for the insider and outsider passive adversaries.
INSIDER ACTIVE ATTACKS At the opposite end of the scale
are active insider attacks, which basically capture a fully ma-
licious centralized server. At user registration, the malicious
super-user behaves as normal. However, at session setup,
when Alice wants to talk to Bob, Ŝ forwards a key-bundle
of its own making, to which it has the corresponding private
keys. The attacker then does the same when Bob asks for
Alice’s credentials (forwarding keys from the same bundles),
thus ensuring that it can run a Person-in-the-Middle attack
between the two users. This type of attack requires no reveal
queries on any of the user key material – hence, Signal pro-
vides (∞,∞)-PCS security (no healing at all) for all insider
active attackers.

Signal with acknowledgements. More recent implementa-
tions of Signal have slightly evolved from the core protocol
we described in this paper, and have added an acknowledge-
ment, which essentially reduces message-chain length to 1. In
addition, root and ratchet keys become stage-local keys, thus
augmenting security against local adversaries to (∞,2).

Signal with two-factor authentication. A way to reduce the
impact of insider attacks is to have users verify the identity
keys of other users prior to instantiating sessions with them – a
type of two-factor authentication. However, such verifications
are not without dangers, as described in recent literature [16].
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3.2 SAID as a SCEKE protocol
Introduced in 2019, SAID’s main aim is to strengthen authenti-
cation in messaging protocols [7]. The protocol is proposed in
the identity-based (IB) setting, requires a Key-Derivation Cen-
ter to replace Signal’s credential server, and makes substantial
modifications to key-evolution. We briefly review SAID here,
and include more details in our extended version [8]

Protocol description. Our description below follows that
of [7], but expands upon the user-registration part. We notably
consider additional keypairs for the KDC and protocol partici-
pants – which will allow them to establish the secure channel
they require at registration. Although these keys do not feature
in SAID, Blazy et al. [7] do suppose that a mutually-secure
channel exists during that process.
SETUP. SAID relies on an identity-based signa-
ture scheme IBSig = (aIBS.Setup,aIBS.Extract,
aIBS.Sign,aIBS.Vfy) and a type-3 pairing e. At system
setup the KDC generates global public and private pa-
rameters. It must notably generate global setup values
(IBS.msk, IBS.mpk) for the IB signature scheme and param-

eters ID.msk
$←− Zp (private) and ID.mpk = gID.msk

2 ∈ G2
(public) for embedding identities into private identity keys.
Ŝ generates a key-pair that enables authentication in the
AKE protocol of its choice (e.g., TLS 1.3), denoting them
(Ŝ.sk, Ŝ.pk), then appends ID.msk and IBS.msk to Ŝ.sk.
KEY GENERATION. This step proceeds as in [7], but we addi-
tionally have parties register some non-IB keypairs (ik, ipk),
usable during registration.
REGISTRATION. Users P register over a secure channel
established with the KDC (P uses its (ik, ipk) tuple and
KDC, (Ŝ.sk, Ŝ.pk)). Over this channel, P sends her identity
P (e.g., a phone number, email address, etc.), to the KDC.
The KDC returns the user’s secret signing key IBS.skP ←
aIBS.Extract(IBS.ppar, IBS.msk,P) and secret identifica-
tion key ID.skP = H2(P)ID.msk. Thus, the KDC knows all the
users’ private keys.
INSTANCE INITIALISATION. In SAID, instance-initialisation
requires no user-KDC interaction (thus we deem Ŝ’s contri-
bution void). Initiator Alice will choose randomness r and
compute msAB = e(H(B), ID.mpk)r: in other words, Alice
embeds the Bob’s identity into the master secret. Alice also
generates a random tag: tag1,1, and uses it and the master
secret to derive the root key rk1 and the first chain key ck1,1.
The use of fresh tags is specific to SAID and ensures that keys
are unlikely to repeat. A KDF is used to derive the chain key
ck2,1 and first message key mk1,1 from msAB and ck1,1.

Unlike Signal, SAID uses the master secret msAB at every
stage; thus Bob has to regularly prove knowledge of his pri-
vate identity-key, and Alice, of the secret r signed with her IB
signing key. In [7] all parties store values ikP and master se-
crets msP∗ of started sessions, and ms∗P of responded sessions
in a trusted execution environment – which we abstract.

IBS

msAB KDFr ck1,1 KDFm ck2,1

mk1,1

tag1,1||msAB

KDFm ck3,1

mk2,1

tag2,1||msAB

. . . chain y = 1

msAB||∆1 KDFr

rk1

ck1,2 KDFm ck2,2

mk1,2

tag1,2||msAB

KDFm ck3,2

mk2,2

tag2,2||msAB

. . . chain y = 2

Figure 7: The key schedule of SAID.

SENDING AND RECEIVING. Stages and keys evolve in SAID
similarly to Signal:

• Symmetric ratcheting: To go from stage (x,y) to (x+
1,y), the current speaker generates a new tag tagx+1,y to
be input with chain key ckx+1,y, in order to output ckx+2,y

and mkx+1,y. The two precise substeps are detailed in [8]
• Asymmetric ratcheting: When speakers change, the

key material is freshened up with Diffie-Hellman ran-
domness: on input the master secret, a value ∆y−1 =
DH(Rchpk0,y−1,Rchpk0,y), and the root key rky, a KDF
outputs rky+1 and ck1,y+1. The chain key, master secret,
and a fresh tag tag1,y+1 are used to obtain the chain’s
first message key mk1,y+1.

The receiver gets the public key material allowing it to
ratchet correctly as authenticated metadata. For the first
message chain, Alice sends the following AAD: the pub-
lic value h = gr

2 corresponding to the secret r that the
initiator used to compute the master secret; the stage’s
horizontal index x; a fresh public ratchet key Rchpk1 =

grchk
1

1 ; the tag of the current message; the user identi-
ties; and a signature over everything except the tag: σ←
aIBS.Sign(IBS.ppar, IBS.skA,{meta1,h}).

For all the messages in chain y = 2, we have the same
metadata as before, but we no longer need to send h. Starting
from y = 3, we need to add the number Ny−2 of messages sent
in the previous sending chain (i.e., chain y−2). We depict the
key-schedule of SAID in Fig. 7.

Comparing security models. Our framework follows closely
the model by Blazy et al. [7], which describes a real-or-
random key-indistinguishability experiment for identity-based
secure messaging. Their adversaries are either passive or ac-
tive outsiders in our taxonomy. The model of [7] has several
features identical to ours: a global setup, malicious-user regis-
tration procedures, sending, and receiving oracles. Since new-
session instantiation is not interactive for SAID, our model
boils down to Blazy et al.’s on this account.

However, [7] gives different leakage possibilities to its ad-
versaries than we do, through three specific oracles (presented
in the lower half of Fig. 8). The first is corruption, which
yields our cross-session keys, but also all the master secret
values of all ongoing sessions. A can also reveal a subset of
cross- and single-stage keys (specified by name); by contrast,
our framework only splits access by key-type (e.g., querying
oReveal.XStage yields all cross-stage keys together).
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r mk ck tag ms rk rchk ik ID.sk IBS.sk
oReveal.1Stage ✓ ✓ ✓ ✓
oReveal.XStage ✓ ✓ ✓
oReveal.XSid ✓ ✓ ✓

oCorrupt ✓ ✓ ✓ ✓
oReveal ✓ ✓ ✓ ✓ ✓

oHSM BB BB BB BB

Figure 8: Comparison of leakage oracles for SAID.

Finally, [7] allows A black-box access to a long-term value:
we denote this in Fig. 8 by a “BB” annotation. We describe
in detail our classification of keys as stage-local, cross-stage,
and cross-session in Table 1 and in the following paragraph.

Although oReveal provides A more fine-grained access to
the local and cross-stage keys (as it can reveal them individu-
ally), the SAID protocol proofs make no use of this particular
granularity: in other words, security relies on the fact that the
adversary is never given access to the master secret (obtained
in [7] by a oCorrupt query) simultaneously with the chain or
root key allowing A to compute a target message key.

The PCS-security of SAID. As shown in Table 1, we classify
the private-key material of SAID as follows:

• Stage-specific keys: These include, per stage: the chain
and message keys at that stage, its tag, and the random-
ness r used only once, at the beginning of the protocol;

• Cross-stage keys: Apart from the root and ratchet keys,
cross-stage keys now include the master secret, which is
input at every stage of the protocol;

• Cross-session keys: These include: initial private key ik,
identity-based signature IBS.sk and identity keys ID.sk.

We state the following theorem, for which we provide the
constructive proofs (PCS security) in Appendix A.2 and con-
crete attacks (PCS metric) below.

Theorem 2 Consider the SAID protocol modelled as a
SCEKE scheme. The following results hold in the random
oracle model (by replacing the KDFs and hash functions with
random oracles), under the Bilinear Computational Diffie-
Hellman assumption, and assuming the EUF-CMA security
of the IB-signature scheme IBSig and the AKE security of the
channels established between honest users and an honest Ŝ
at registration:

• SAID is (1,0)-PCS secure against local outsiders (pas-
sive and active);

• SAID is (∞,1)-PCS secure against local passive insid-
ers;

• SAID is (∞,2)-PCS secure against: medium passive ad-
versaries (outsiders and insiders), and global passive
attackers (outsiders and insiders);

• For other adversary types, SAID is (∞,∞)-PCS secure.

LOCAL OUTSIDERS For both passive and active outsiders,
the SAID PCS bound is (1,0)-PCS-secure, which is actually
optimal in our framework. The main reason this holds is that

the master secret (a cross-stage value) is required for each
evolution; hence, an attacker can only at most learn the current
message key, but no other.
LOCAL PASSIVE INSIDER Note that, according to our game,
insiders might know a long-term secret for a user, but they
will not use them. With its revelation oracle, A is able to learn
the master secret; however, since A cannot learn root, nor
ratcheting keys, it cannot ratchet past a single message-chain.
OTHER PASSIVE ADVERSARIES For global and medium pas-
sive insider and outsider adversaries the PCS security limi-
tations are given by the fact that A can learn a ratchet key
rchkx,y and the master secret, but, on the other hand, it is a pas-
sive attacker and can thus not use that ratchet key for longer
than two chains. Moreover, even passive knowledge of Ŝ.sk
is not helpful. So, SAID is (∞,2)-PCS secure.
OTHER ACTIVE OUTSIDERS Knowledge of the master secret
is fundamental in SAID. Given this information, an active
attacker can hijack the session by including fresh asymmetric
ratcheting elements once the corruption has been done. Hence,
as in Signal, the protocol never heals ((∞,∞)-PCS security).
ACTIVE INSIDERS We recall that the master secret keys used
by the KDC at setup will now be part of the adversary’s knowl-
edge, as well as the database of entries containing identities
and private keys. This allows the adversary to learn the private
keys, both for signatures and their identity keys. This enables
the the active, malicious KDC to impersonate Alice towards
Bob and Bob towards Alice, thus endangering all their future
keys ((∞,∞)-PCS security).

3.3 5G AKE Procedures as A SCEKE Protocol

We showcase the flexibility of our SCEKE framework by mod-
elling a suite of secure-channel establishment protocols in 5th
Generation Mobile Networks (5G) as a single SCEKE scheme.
The latter will include the well-known Authentication and
Key Agreement (AKA) protocol executed during Registra-
tion procedure (Reg), and a series of procedures called han-
dovers [2,3]. Unlike the two-party SAID and Signal protocols,
the suite of 5G protocols we target are run between many enti-
ties – we are, nevertheless, able to model them as a two-party
SCEKE, with horizontal and vertical key-evolutions.

We briefly describe the 5G context and handovers (a longer
description is in [8]). Then we model these procedures as a
SCEKE scheme and analyze their PCS security.

The 5G handover protocols. In 5G networks, mobile users
(User Equipment (UE)) can subscribe to – and receive service
from – an operator, whose back-end infrastructure is called
the core network. The subscribers and the core will share a
number of long-term cryptographic secrets denoted succinctly
as K. At any point, a user can be given mobile service through
a radio “base-station” denoted Next Generation NodeB (gNB),
which communicates in parallel with the UE’s core network.
We assume existence of mutually-authenticated gNB-to-gNB
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Figure 9: General model of 5G handover procedures.

and gNB-to-core secure channels, and focus on the security
of UE-to-gNB and UE-to-Core channels.

Actual mobile/application messages, called access-stratum
messages, transit between the UEs and a gNB. During initial
Registration phase (Reg), these two entities establish initial
key material (via AKA protocol). Access-stratum messages
are secured with an access-stratum key (KAS), which is de-
rived from an intermediate key called kgNB (Signal’s chain
keys). The latter can be computed through a re-use of the reg-
istration procedure, or they can be obtained through evolution
via handovers, as we explain next.

Handovers are required when the user connects to a new
gNB (e.g., because it physically moves out of reach). At this
point, a handover is initiated, permitting the evolution of
kgNB, from the source node (s-gNB) shared by the UE and
its old gNB, to a tgNB, shared by the UE and its new serving
node. There are two handover procedures in 5G: XN handover
procedure (XN) denoted here XN, and N2 handover procedure
(N2) denoted N2.

The handover procedures. In most cases of handovers, the
XN protocol is run. The s-gNB unilaterally evolves its key
kgNB into a new key kgNB, which s-gNB securely sends to the
target target node (t-gNB). The UE will make its key kgNB
evolve by receiving metadata from (the core and) the s-gNB
over their secure channel (we call this horizontal evolution).

In N2, the core network computes the new kgNB for t-gNB
by refreshing a larger part of the key-schedule: a vertical
evolution. The highest-level key in the 5G key-schedule that
can be refreshed by N2 is denoted kAMF . The kgNB keys are
lower than kAMF .

The 5G-SCEKE protocol. We consider a SCEKE protocol
that is the composition of the AKA/Reg protocol, which
provides some initial key material to the user and network,
and multiple, sequential runs of various handover procedures
which make that key material evolve. The resulting protocol is
denoted 5G-SCEKE. Each stage corresponds to the protocol
establishing, then using, a new kgNB.

Our framework only supports two-party protocols. We thus
compress the set of all gNB nodes and the core network into
a single entity, representing the responder, Bob7. The initia-
tor is Alice (the UE). The super-user is a key-escrow entity,
associating initial key-material to sessions (abstracting AKA).

Fig. 9 presents the key evolution in 5G-SCEKE, as a

7This works in our framework because we require that the endpoints to
the target session to be honest – if corrupted. However, note that in some
cases in the real world, parts of “Bob" might be malicious.
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Figure 10: Generic key management for 5G-SCEKE. The
values in grey are modifications only for 5G-SCEKE+.

SCEKE protocol. Following the registration phase, Alice can
horizontally evolve keys by using the XN procedure. When
Bob wishes to respond, it runs the procedure N2 to evolve the
stage vertically. Thus, in the 5G-SCEKE protocol the roles
are asymmetric: only Alice evolves stage-keys horizontally,
and only Bob evolves them vertically.

5G-SCEKE instantiates the initial steps of SCEKE with.
SETUP. The super-user chooses system parameters and
generates Ŝ.sk, Ŝ.pk for secure-channel establishment;
KEY GENERATION. We assume that parties create some
artificial keys ik, ipk (non-existent in the true 5G context,
but needed here to abstract the complexity of AKA);
USER REGISTRATION. During user registration, each party
P establishes a mutually-authenticated secure channel with Ŝ
and sends a registration request. Then Ŝ generates one secret
KPQ for each Q in its database, but does not send them to
P. It updates its database with entry indexed P, with tuples
(Q,KPQ) for each existing user Q.
INSTANCE INITIALISATION. Our session instances span the
entire duration of 5G-SCEKE. When Alice initiates a session
with Bob, she requests the key KA,B from Ŝ over a new secure
channel, then uses KA,B as a master secret and derives, via
a KDF, a root key (in practice, KAMF ). A KDF computation
later, the endpoints obtain the first chain key ck1,1 (namely
KgNB) and a new root key rk2. The latter yields a new chain
key ck2,1 and a message key mk1,1 (notably KAS).

Any of Alice’s messages, carrying her identity as metadata,
will be sufficient for Bob to initialise a session with her.
SENDING AND RECEIVING. Messages are sent securely in
stages, encrypted with the message keys which evolve.

• Horizontal evolution: When the initiator wants to send
a new message (s goes from (x,y) to (x+1,y)), the chain
key ckx+1,y is fed into a KDF to get ckx+2,y and mkx+1,y.

• Vertical evolution: When the responder sends a mes-
sage (s goes from (x,y) to (1,y+ 1)), a new kAMF is
generated from rk2 and fed into a KDF in order to derive
ck1,y+1.

Note that the way to model 5G-SCEKE as a SCEKE pro-
tocol is not unique, and as such, different results could be
obtained for different variations of the protocol. Indeed, this
is an advantage of our framework, as it allows us to compare
those different approaches towards modelling 5G handovers.

The PCS-security of 5G-SCEKE. We divide key material
input into the key-schedule of 5G-SCEKE viewed as SCEKE:
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• Stage-specific keys: These include chain keys, associ-
ated to K,

gNB and message keys, corresponding to KAS.
• Cross-stage keys: The root key, corresponding to KAMF ,

computed at the beginning of each chain and stored for
next vertical evolution.

• Cross-session keys: The pre-computed key K shared
between each two parties. Each registration procedure
corresponds to new instances of all the aforesaid keys,
where K is used again.

As we describe in the extended version [8] (and from
Fig. 4), the 5G-SCEKE protocol only provides healing with
respect to local outsiders as it lacks any kind of unpredictable
freshness. This idea lies at the core of the following improve-
ment that we propose to 5G-SCEKE.

5G-SCEKE+: Our Improved-PCS 5G-SCEKE. We propose
a simple, yet effective, modification of 5G-SCEKE to enhance
the latter’s PCS-security, and denote the resulting protocol
by 5G-SCEKE+. Notably, we will add freshness into each
horizontal evolution, thus limiting the attacker’s power. These
added values can be viewed boxed in yellow in Fig. 10.

Concretely, we change XN into XN+, a scheme in which
s-gNB does not compute the kgNB key for t-gNB. Instead,
the latter contributes a locally-generated private value called
rchk to kgNB (see the yellow boxes on Fig. 10). Then, t-gNB
sends rchk over its secure channel to the core, which in turn
forwards it to UE, encrypted with kSEAF (i.e., the key on top
of the kAMF in the key-hierarchy in 5G [2, 3]). Now, the UE
can also compute the new kgNB. As the sending of rchk can be
done on existing XN messages, our modification is minimal.

The key-material in 5G-SCEKE+ is the same as for 5G-
SCEKE except that we add the single-stage keys rchkx,y.

The analysis of 5G-SCEKE+. The following theorem holds
for the 5G-SCEKE+ protocol.

Theorem 3 Consider the 5G-SCEKE+ protocol as presented
above. The following results hold in the random oracle model
(by replacing the KDFs with random oracles)

• 5G-SCEKE+ is (1,0)-PCS secure against local active
outsiders and passive outsiders;

• For all other adversary types, 5G-SCEKE+ is (∞,∞)-
PCS secure.

Formal proofs are given in the extended version [8].

Interpreting our 5G-SCEKE+ results. Unlike Signal and
SAID for which the rules of evolution are fixed and im-
mutable, 5G handovers can be used in many different con-
figurations, and the way users move within the 2D-grid of
signal-providing “towers” (i.e., gNBs) impacts their healing
interval. Recall that two protocols are used for evolution: XN
(or XN+) – providing horizontal evolution, or N2 – providing
vertical evolution. For instance, suppose a gNB which we
denote as “Tower1” is configured to only use XN, while some
“Tower2” uses only N2. Finally, some “Tower3” can be con-
figured to use the two according to some algorithm: e.g., first

time XN, and then N2. If Alice comes across Tower1, then
Tower3, then Tower2, she will horizontally evolve twice, then
vertically once, while if she goes via Tower1, then Tower2,
then Tower3, she will evolve: first horizontally, then vertically,
then horizontally again.

The takeaway in this case is two-fold: first, while our re-
sults are generic, they can translate to different compromise
windows for different configurations and topologies; second,
configuring gNBs to use the N2 protocol often and the XN
protocol seldomly is the best way of improving the actual
healing provided via 5G handovers.

4 Discussion and Conclusion

This paper presents a framework for comparing the post-
compromise security achieved by secure-channel establish-
ment protocols featuring key-evolution. Our taxonomy of
adversaries includes known adversaries in the literature, but
also imagines other type of attacks. The goal of our secu-
rity definition is not only to prove that key-evolution provides
healing, but also to quantify how fast protocols heal. We show-
case our framework by applying it to the Signal, SAID, and
a composition of AKA and 5G handover protocols. Finally,
we also propose a small modification to the latter protocol,
which radically improves its healing speed.

Our results (see Fig. 4) indicate that optimal security (i.e.,
(1,0)-PCS security) is achieved by SAID against local pas-
sive outsiders, as well as our improvement of 5G handovers,
namely 5G-SCEKE+, against all passive outsiders. An in-
teresting takeaway is the benefit, in 5G-SCEKE+, of using
fresh, stage-specific, shared private randomness in the key-
derivation process, the unpredictability of which allows us to
gain stronger security than SAID for medium and global pas-
sive adversaries. However, this security comes at the expense
of using shared randomness, which requires secondary secure
channels.

We also indicate the benefits of the persistent authentica-
tion used in SAID to combat active session-hijacking attacks.
Although the use of identifying information into the key com-
putation can be privacy-intrusive (especially if signatures are
used), it is able to provide eventual (and even speedy) healing
against powerful attackers, otherwise capable of rendering a
secure channel unhealable.

Through their reliance on both long-term keys and fresh
asymmetric ratchets, Signal and SAID obtain better security
against passive insiders than 5G-SCEKE+.

Finally, note that although active insider security is difficult
to attain, it is a worthwhile goal. A takeaway of our work is
that it is difficult, but essential to design protocols in which
users are able to bypass the ability of superusers to create
unobservable PitM attacks (for instance, one could consider
two-factor authentication of the communication partner).

Our results, while insightful and strong, come with some
disadvantages. We only model two-party protocols, and thus
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cannot analyze multi-user messaging like ART or MLS; yet
as we discuss in the introduction, our framework can be ap-
plied beyond the protocols we consider, such as OTR and
Wire. Moreover our approach when modelling 5G handover
protocols could be applied to ratcheted key-exchange or even
TLS 1.3 session resumption. We leave the quantification and
comparison of such – and other – protocols as future work.
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A Security proofs for Signal and SAID

We consider the different cases corresponding to the be-
haviour of the adversary.

Conventions. We assume that all KDFs are modelled as ran-
dom oracles. Each key k has |k| values. Note that the key
space might be of same size for all keys (e.g., |k|, the order of
the group for all k). The security statements are parametrized
by the maximal number of stages nS, the maximal number
of message nx−max in a given chain, the maximal number of
chain ny−max, run by any given instance, the number of parties
generated by the adversary nP and the number of sessions nπ

created by any given party. Finally, we consider all calls to
KDF as queries to random oracles.

The proofs are organized through game hops where the first
game is the original security game (see Figure 3 of Sec. 2.4).

A.1 Games for Signal

G0 : This game corresponds to the original security game
(Fig. 3 of Sec. 2.4). The advantage of A is Adv0.

G1 : In this game C guesses P, Q, the session index of the
target session, and the target stage s⋆ = (x⋆,y⋆) for which A
has queried oTest.

If A queries another parties, session or tested stage then C
aborts the game and returns a random bit. Therefore we have
the following: Adv0 ≤ nP

2 ·nπ ·nx−max ·ny−max ·Adv1

The next games are dedicated to ensure that no DH values
collide. Moreover, we assume the uniqueness of the identity
key for each party.

G2 : This game is the same as G1 except that the challenger

aborts if two values ephk collide.
We have: Adv1 ≤

(
nπ

2

)
·2−|ephk|+Adv2

At this point, the uniqueness of the master secret ms is guar-
anteed. Indeed, ms is computed using ik and also ephk thus
by uniqueness of the former and the latter, we have unique-
ness of the shared secret ms. Moreover, the sessions are also
unique by uniqueness of the ephemeral keys.

G3 : We modify the previous game to avoid collisions of
honestly-generated ratchet keys rchk.

We have: Adv2 ≤
(nπ·ny−max

2

)
·2−|rchk|+Adv3

G4 : We ensure that there is no collision for honestly-
generated prek. The upper-bound of total number of pre-keys
is the number of sessions nπ: Adv3 ≤

(
nπ

2

)
·2−|prek|+Adv4

G5 : The challenger needs to guess the index i of the pre-
key of Q used in the tested session. Since there are nπ possible
values, we have: Adv4 ≤ nπ ·Adv5

For clarity, we keep the notation prekQ instead of preki
Q

(signed pre-key of index i).
At this point, we will use the uniqueness and secrecy of

prepk
rchk

0,1
P

Q in order to prove indistinguishability from random
of rk1. Note that the value ms (the second input of the KDF)
can be learned by any reach’s adversary. 8

G6 : In this game the challenger accepts collision of ikP

and prekP. We need to add this condition since the next game
will use a GDH challenge where the DH pair might collide
with probability 1/q, thus: Adv5 ≤ 1

q +Adv6
Those previous games are shared between all possible ad-

versaries of our model. We now partition our analysis given
types of adversary.

Local Passive Outsider. In this case, the adversary can only
reveal single stage keys (via the oReveal.1Stage oracle) in a
passive way, and it has no information on the server-stored
keys. Recall that Signal protocol is (∞,1)-PCS secure.
G7 : We modify G6 such that the challenger aborts as soon

as A queries the random oracle (representing the KDF) on
( • ∥(prepkQ)

rchk
0,1
P ) where the first part of the input is analo-

gous to ms. Since our analysis is done in the random oracle
model, the only way for A to compute the output is to give the
exact input. If so, we show that when this event occur, we can
construct an adversary B winning a GDH challenge. Recall
that the GDH experiment has input (ga,gb) to return gab with
a DDH oracle access with input (gx,gy,gz) and output 1 if
gxy = gz.

B simulates G6 for A and plays against its GDH challenger.

Instead of sending ga and gb to A , it sends rchk0,1
P and prekQ

8ms is single stage so local, medium or global adversary can reveal it.
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respectively. Notice that A cannot query the oReveal.1Stage

oracle on prekQ nor rchk0,1
P since those keys are cross-stage

keys (so B does not have to know the private parts of those
keys). However, since B has replaced long-term and medium-
term keys of two parties (where those keys could be used in
other sessions), it must ensure a valid simulation for those
(non-tested) stages. In either cases, B randomly chooses the
value rk1 but answers consistently with calls to the random
oracle by maintaining a list. This list maps the session key
with the public keys associated. Whenever A calls the random
oracle, B checks if the public parts are in the list and returns
the corresponding value if they are in the list, and draws a
random element and adds it to the list otherwise. The special
case is when A sends CDH(prepkQ,Rchpk

0,1
P ) to the random

oracle. In that case, the DDH oracle returns 1 when B queried
it thus finding a solution to the GDH experiment. Finally, by
noting εGDH the advantage of B solving the GDH problem,
we have: Adv6 ≤ Adv7 + εGDH

G8 : This game ensures the indistinguishability of the
rk/tmp outputs by the random oracle, up to and including
y⋆. For this, we apply the modifications of G6 and G7 for a

number of times equal to the maximum number of chains
ny−max: Adv7 ≤ ny−max ·

[(
nπ

2

)
·2−|prek|+ εGDH

]
+Adv8

Note that the same argument cannot be applied to other
outputs of the random oracle (such as the chain key ck.,y

⋆
)

since those values could be revealed by the adversary (which
is handled in the next game).

G9 : In this game, we ensure that the value ck0,y⋆ is unique.
If there are two equal values in a session, or in two different
(honest) sessions, then the challenger aborts and returns a
random bit.

Recall that the random oracle model implies that a call to
the KDF duplicates the output if the same inputs are used, or
if true randomness repeats (with negligible probability), thus
we have: Adv8 ≤ nx−max ·

(nx−max·ny−max
2

)
·2−|ck|+Adv9

At this point, the chain key ck0,y⋆ is indistinguishable from
random to A (which is due to the indistinguishability of
rk/tmp values from random of G8 ).

Depending on the adversary’s reach, here local, some re-
veal can be queried such as the chain key ck or mk. Here,
the argument we used is related to the winning conditions
(i.e., freshness of the tested stage). Indeed, for a local passive
outsider adversary, the winning conditions are parametrized
by a (∞,1) bound meaning that no oReveal.1Stage can be
queried for a stage of index x > 0 and y = y⋆−ϒ+ 1 = y⋆.
Informally, we exclude reveal queries for stages of the same
chain of the tested stage; this is a direct consequence of the
symmetric ratcheting of Signal where the knowledge of one
chain key implies knowledge of all the chain. Notice that our
metric is also a lower bound since any strictly lower (χ,ϒ)
value implies ϒ = 0 meaning that A could reveal the chain
key on a stage with y = y⋆. This yields a trivial attack on the

session keys because of the symmetric ratcheting property.
We conclude this proof by stating that: G9≤ 2−|ck|+2−|mk|

Indeed, there are two possibilities for the adversary to re-
cover mkx⋆,y⋆ , either guessing directly this value (with negli-
gible probability 2−|mk|) or give as input to the random oracle
the value ckx⋆−1,y⋆ (with negligible probability 2−|ck|).

We have shown an upper bound of our metric meaning that
we ensure the security for at least a given number of stages.
However, the security could be faster, i.e., find a smaller met-
ric with unchanged security. We need to show that our metric
is tight meaning that we need an extra argument to show that
no security can be guaranteed with smaller metric.

In this case, a local passive outsider adversary, Signal is
(∞,1)-PCS secure if we exhibit an attack which compromises
at least (∞,1) stages within the adversary’s type. The attack
in this case is simple, A can reveal ck1,y, for a given y on any
peer, via the oReveal.1Stage oracle. This leads to compromis-
ing the full chain y because of the symmetric ratchet deriving
the keys (both ck and mk). The adversary has then compro-
mised (∞,1) stages but no more because the next chain is
initialised with cross-stage keys (i.e., rchk).

Medium Passive Outsider. In this case, the adversary can
reveal single and cross stages keys (via the oReveal.XStage
oracle) in a passive way, and it has no information on the
server-stored keys. Recall that (cf Fig. 4), the Signal protocol
is (∞,2)-PCS secure.
G7 : The challenger aborts if A gives as second input

CDH(prepkQ,Rchpk
0,1
P ) to the random oracle (the first in-

put is a value corresponding to ms). The keys prepkQ and
Rchpk0,1

P are now in the adversary’s reach possibility, via
query to oReveal.XStage oracle. Yet, the winning conditions
of this type of adversary exclude such query for a stage of
chain (minimum) index y = y⋆− 1 for y > 0. So if A tests
a stage of index y = 1 or y = 2 then the winning conditions
ruled out any call to oReveal.XStage for such chain. As in
the local case, we show that under the GDH assumption, it
holds that: Adv6 ≤ Adv7 + εGDH

The reduction is the same as in the local case (where the
reveal calls in the latter were excluded by the adversary’s
reach and by the winning conditions for the medium case).
In this game, the advantage of A is the same as the local
case, however the argument is different. For the local case,
the adversary has no access to cross-stage keys while in this
case, the adversary can query the oReveal.XStage. Yet, the
winning conditions for the medium case exclude such queries.

The rest of the proof is done the same way as for the lo-
cal case, where in G8 the indistinguishability of rk/tmp is
ensured by the winning conditions (same reason as in the
previous game).

We conclude the proof by showing an attack that com-
promised two chains since Signal is (∞,2)-PCS secure for a
medium passive outsider adversary. The adversary can reveal

5932    32nd USENIX Security Symposium USENIX Association



rchk0,2 and rk1 to get all the needed information to derive
the keys of chain 2. It can also derive the tmp value used
to initialise the next chain. So A has all the inputs to com-
pletely derive chain 3 (the other input to initialise the chain is
CDH(rchk0,3, rchk0,2) which is computable by A).

Global Passive Outsider. This case is actually the same as for
medium case. Indeed, the argument for game hops of medium
adversary implies the winning conditions for indistinguisha-
bility of keys in G6 and G7 . The attack exhibiting our metric

can also be the same, while the global case could compro-
mised the first two chains (while the medium adversary can
only compromised chains starting from the second one). We
can conclude that, for global passive outsider adversary, Sig-
nal is (∞,2)-PCS secure.

Local Active Outsider. For an active adversary, we need to
ensure that the keys stored on the server are generated, and
signed, by the corresponding party (and not A). Indeed, during
the registration step, a party P sends its identity key and pre-
keys signed with the identity key. For an active adversary,
some keys might be maliciously generated and sent to the
server. In the case of LAO, the adversary cannot request long-
term keys from its set of oracles (only ephemeral keys). Thus,
we prove that the adversary needs to forge a signature.

G7 : Recall that in G5 , the challenger aborts if the chosen

pre-key is different from the one used in the tested session.
So the reduction to the EUF-CMA game of the signature
scheme is straightforward since the challenger already knows
the index of the forged signature.

For the reduction, the adversary has access to a signing
oracle which updates a list of keys and signatures at each
call (for avoiding trivial forgery where the signature has been
already queried). We denote by qs the number of queries to
this oracle. We assume here that there is an adversary A able
to produce a valid signature on prepk (for a given index i)
and we construct B , which uses A , to break the EUF-CMA
signature scheme. B uses its own oracle to forward query to
A , thus: Adv6 ≤ Adv7 + εEUF−CMA

From now, the following games are the same as in the local
passive outsider.

Medium/Global Active Outsider. For those two adversaries,
Signal is (∞,∞)-PCS secure meaning that no healing is possi-
ble. So we just exhibit an attack resulting in the impossibility
of PCS property. The attack is simple, the adversary injects its
own initial ratchet key rchk0,1

⋆ and reveal ms (which is in the
reach’s capability of medium and global adversaries) during
the initialisation phase. Thus A hijack the communication,
where Bob is convinced to communicate with Alice, but Alice
has no access to the communication (since the chain keys are
different). In this case, Bob will continue the communication
as long as A is following the protocol (it does not need to
deviate from the protocol anymore).

Passive Insider. Each of those three types of adversaries
(local, medium and global) corresponds to passive outsider
adversaries. Indeed, the difference between outsider and in-
sider is that the latter poses as the super user Ŝ. In the case
of Signal, this corresponds to the semi-trusted server which
receives the public bundle keys upon registration. Because of
the passive access type, the adversary cannot interfere with
those keys so there is no difference with outsider adversary
(the public keys stored by the server are also accessible by
outsider adversary). For Signal, there is no difference between
passive insider and passive outsider given the reach capability
(local, medium, global). For this reason, the metric is the same
for local, medium or global between outsider and insider, in
the passive access type.

Active Insider. The case of active insider is the strongest type
of adversary. Indeed, A can interfere with the protocol (e.g.,
stop, modify messages) while compromising the server. This
critical case (either local, medium or global) cannot include
healing as the adversary can manipulate the keys from the start
of the communication. An active insider adversary can simply
remove honestly-generated keys sent to the server and replace
them by its own malicious key material. In this case, the
adversary plays a PiTM (Personn in The Middle) forwarding
messages through Alice to Bob (and vice-versa) by its own.
The communication between Alice and Bob cannot heal thus
leading to a (∞,∞)-PCS security for active insider adversary.

A.2 Games for SAID

G0 : This game corresponds to the original security game
(Fig. 3 of Sec. 2.4). The advantage of A is Adv0.

G1 : In this game C guesses P, Q, the session index of the
target session, and the target stage s⋆ = (x⋆,y⋆) for which A
has queried oTest.

If A queries another parties, session or tested stage then C
aborts the game and returns a random bit. Therefore we have
the following: Adv0 ≤ nP

2 ·nπ ·nx−max ·ny−max ·Adv1

We assume the uniqueness of the identity key, and identity-
based related keys (identification and signature ones) for each
party. The latter condition is ensured by the KDC maintaining
a list of keys and removing possible duplicates.

Local Passive Outsider. We prove that SAID has the best
healing, i.e., (1,0)-PCS security meaning that only the com-
promised stage is accessible to the adversary. Recall that a
local adversary can query the oReveal.1Stage oracle to reveal
single-stage keys, which for SAID correspond to ck and mk.
First we show that the master secret ms is indistinguishable
from random, then we show that a tested stage is fresh (with
an indistinguishable session key from a random value) even
after an immediate compromised stage.

G2 : This game aborts if the adversary calls the random
oracle with input msPQ. The adversary has only one value
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to guess, value r while other values are already determined
(the identity of Q, and the master public key of Ŝ). Guessing
r corresponds to a large failure event so: Adv1 ≤ 1

q +Adv2
From this game, we assume that the master secret is unique

between each pair of communicating partners.
G3 : We show that ck1,y is indistinguishable from random.

In this game, the challenger aborts if the adversary query the
random oracle with input (•∥∆⋆∥rk⋆) where • corresponds to
ms. We show by reduction to GDH that if A can query the
random oracle with ∆⋆ = DH(Rchpk0,y⋆ ,Rchpk0,y⋆+1) with
non-negligible probability then we can construct B breaking
the GDH problem. We apply the same technique as in Signal
(cf. G7 ), that is B sends Rchpk0,y⋆ := ga and Rchpk0,y⋆+1 :=
gb to A . If A does not send the query corresponding to ∆ =
∆⋆ then B simulates completely the game for A while the
special case is when A sends CDH(Rchpk0,y⋆ ,Rchpk0,y⋆+1)
to the random oracle. In this case, when B queries its DDH
oracle (returning 1) it finds a solution to the GDH experiment.
Finally, we have: Adv2 ≤ Adv3 + εGDH
G4 : This game is the same as the previous except that the

challenger aborts if A queries the random oracle with rk for
up to and including y⋆. We use hybrid argument where the
first game is G4 and each iteration are the next rk until rk⋆.
Between each game, the root keys are indistinguishable since
the new root key is the output of the random oracle and A can
only query oReveal.1Stage. Since the adversary’s probability
to guess the root key is 2−|rk| for ny−max number of chains,
we have: Adv3 ≤ Adv4 +

1
2−|rk |−1

G5 : This game aborts if the adversary queries the random
oracle with (ck⋆,msPQ, tag

⋆). This game proceeds as the pre-
vious one with a subcase to handle. Indeed, key ck is in the
adversary’s reach (single-stage for a local adversary). Thus A
could reveal this keys by querying oracle oReveal.1Stage.
However, as defined in 2.4, the adversary wins with non-
negligible probability for a query on stage s⋆ which is the
tested stage. Yet, the adversary has negligible probability to
win if the tested stage is after the reveal query. Indeed, SAID
is (1,0)-PCS secure meaning that A could reveal a key on
stage x⋆−1 but distinguishes the session key with negligible
probability.

Suppose that A does not query oReveal.1Stage on the
tested stage (which is part of our metric definition). We show
by reduction that A can distinguish the session key if it can
break the BCDH assumption meaning that it can compute
msPQ. We construct B simulating the game for A . Adversary
B receives A = ga

1,B = gb
2,C = gc

2 as input. It sets H(R) := A
(with H simulated as random oracle and R the responder role
the tested session) and ID.mpk := B. For each other party
X ̸= R, B generates a random value α and sets H(X) := gα

1 .
When A starts the session between P and Q then B runs the
actual protocol except that it sets h :=C. In this case, we have
msPQ = e(A,B)c which is the solution of the BCDH problem
instance. Observe that B simulates perfectly the game, except

when A sends msPQ to the random oracle. Thus we have:
Adv4 ≤ Adv5 + εBCDH

Finally, if A never sends msPQ to the random oracle then
the session key is indistinguishable from random. In this case,
A wins the game with probability 1/2: Adv5 =

1
2

Local Active Outsider. This case is the same as the passive
adversary except that we need to ensure that the adversary can-
not replace ms with its own key material. Here, the adversary
has two possible ways to inject its own key material. First, A
could interfere during the registration phase between P and
Ŝ. However, we assume that those two parties establish a se-
cure channel thus the security relies on the AKE assumption.
Second, A could forge its own value h to compute the master
secret but in this case, we rely on the EUF-CMA security of
the IB-signature scheme IBSig. Note that the active adversary
case cannot interfere later on because the other keys are not
single-stage (thus having the same security as the local case).

Medium/Global Passive Outsider. This case gathers both
medium and global adversaries. Indeed, a global adversary
has additional access to the keys used during registration
(ik) and identity-based key used for instance initialisation.
However, in the passive this yields to no other consequence
than the medium case.

SAID is (∞,2)-PCS secure meaning that the adversary can
compromised two full chains of communication. We apply
the same game hops as the local case, but the index of stages
are different. Indeed, our security definition ensures that the
call to oReveal cannot happen with stage y = y⋆−1 or y = y⋆.
Thus from y = y⋆, the adversary has the same advantage of
the local case.

Local Passive Insider. In this case, A can reveal msPQ but
not inject its own value during the protocol. We show that
such adversary can compromise at most the first chain which
corresponds to (∞,1)-PCS security. This is due to the fact
that a new chain is initialised with ratchet keys which are out
of reach’s adversary.

G2 This game aborts if the adversary queries the random
oracle with input (•∥∆⋆∥◦) where • corresponds to ms and ◦
corresponds to rk⋆. We apply the same argument as the local
passive outsider adversary in G3 . Thus we also use GDH
reduction to show that A . The rest of the proof correpsonds
to the local passive outsider since at this point the adversary
has the same advantage in both cases.

Medium/Global Passive Insider. In this case, SAID is (∞,2)-
PCS secure. This comes directly from the fact that now the
adversary has access to the secret keys used during session
initialisation but cannot interfere in other way with the proto-
col. Our security definition implies that the adversary cannot
compromise a stage of index y = y⋆− 1 or y = y⋆. We ap-
ply then the same proof as the previous case (local passive
insider).
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