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Abstract
Pointer Authentication (PA) was introduced by ARMv8.3

to safeguard the integrity of pointers. While the ARM specifi-
cation allows vendors to implement and customize PA, Apple
has tailored it on their hardware to protect iPhones and Macs
with M-series chips. Since its debut, Apple PA has been con-
sidered effective in defeating pointer corruption. However, its
details have not been publicly disclosed.

To shed light on Apple PA customization, this paper con-
ducts an in-depth reverse engineering study focused on Apple
PA’s hardware implementation and usage on the M1 chip. We
develop a reverse engineering framework and propose novel
techniques to uncover and confirm our new findings.

Our study uncovers that Apple PA has implemented several
hardware-based diversifiers to counter pointer forgery attacks
across various domains, which is previously unknown to re-
searchers outside of Apple. We further discover that the XNU
kernel (the kernel used by iOS and macOS) incorporates nine
types of modifiers for signing and authenticating pointers and
customized key management based on Apple PA hardware.
Based on our in-depth understanding of Apple PA, we per-
form a security analysis of PA-based control-flow integrity
and data-flow integrity in the XNU kernel, identifying four
attack surfaces. Apple has fixed these issues in a security
update and assigned us a new CVE.

1 Introduction
Pointer Authentication (PA) is a security feature introduced

by ARMv8.3 in 2016 to protect the integrity of pointers. It
signs pointers with secret keys and authenticates the signature
before dereferencing to detect pointer corruptions. ARM spec-
ification provides instructions for signature generation/authen-
tication. It also specifies dedicated key registers [9], ensuring
that secret keys are stored in the registers to prevent key leaks
via memory. With PA protection, attackers can no longer forge
legal pointers without knowledge of the secret keys.

Corresponding author.

However, ARM PA specification provides only five key
registers, supporting five different key types. The same key
register is used by signature generation/authentication instruc-
tions across different domains, such as different exception
levels (ELs). This design flaw allows an attacker to forge a
pointer signature in a domain (e.g., EL0 or user mode) and
inject it into another domain (e.g., EL1 or kernel mode) to
bypass authentication, leading to cross-domain attacks. As
a result, how to implement and use PA securely still faces
significant challenges. Apple is the first one implementing
PA hardware and using it in commercial devices. Specifically,
Apple introduced PA on the A12 chip in 2018. Since then,
Apple increasingly relies on PA to protect iOS and macOS.
Notably, all iPhones shipping after 2018 and all Macs with
M-series chips are protected by PA [4].

The popularity of Apple PA-enabled devices has attracted
the attention of security researchers from various teams, in-
cluding Google Project Zero, Pangu, and Keen team. These
researchers have analyzed the Apple PA usage and reported
several security problems [16, 20, 22, 23, 41, 44]. However,
these studies only analyzed partial PA usage, which is not
comprehensive. Moreover, to the best of our knowledge, the
PA hardware implementation has never been studied so far.

To address this research gap, we conduct an in-depth re-
verse engineering study to understand the PA hardware im-
plementation and usage on Apple M1. We reveal the under-
lying hardware logic of Apple’s PA system registers, key
management, and defenses against cross-domain attacks. Ad-
ditionally, we systematically analyze all PA instructions and
examine the utilization of PA keys in the XNU kernel, which
serves as the kernel for iOS and macOS [5].

To study Apple PA, we first need to know how PA is con-
trolled. In the ARM specification, PA is controlled through
system registers. Existing studies [14] show Apple added
plenty of system registers on top of ARM specification. How-
ever, Apple has not publicly disclosed these registers, making
it unclear if they are used for PA and what their function-
alities are. Second, obtaining the actual values of PA keys
is crucial for understanding Apple’s PA mitigations against
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cross-domain attacks. However, Apple’s hardware-based pro-
tection prevents researchers, including Google Project Zero
members, from accessing the actual PA key values. Conse-
quently, acquiring the real PA key values is difficult. Third,
analyzing the PA usage in XNU kernel requires debugging the
system boot and changing kernel status at runtime. However,
the official kernel debugger LLDB [33] is unable to debug the
boot stage and change the status of the active kernel [19, 36].

To address these challenges, we propose hypervisor-based
techniques for identifying PA system registers, reading/writ-
ing actual PA key values, and debugging the XNU kernel
dynamically. We have developed a hypervisor-based PA re-
verse engineering framework specifically designed for Apple
silicon by customizing a hypervisor named m1n1 [12]. The
framework allows running macOS and Linux on top of m1n1
on an Apple M1 device, enabling PA hardware probing and
software tracing to support the reverse engineering process.

Our findings. Using this reverse engineering framework,
we reveal that Apple M1 introduced per-VM, per-key-type,
per-boot diversifiers, and extra keys to defend against cross-
VM, cross-key, cross-boot, and cross-EL attacks (generalized
as cross-domain attacks). We also find that Apple introduced
nine types of modifiers for signing and authenticating pointers
and customized key management based on Apple PA hard-
ware. Furthermore, we have conducted a security analysis of
PA-based control-flow integrity (CFI) and data-flow integrity
(DFI) implementation in XNU kernel. Through this analy-
sis, we have identified four attack surfaces and validated 88
potential misuse cases. We have responsibly disclosed these
attack surfaces to Apple. Apple has fixed these issues in a
security update, assigned us CVE-2023-32424, and publicly
acknowledged us on the security advisory.

In sum, this paper makes the following contributions.
• We develop a hypervisor-based PA reverse engineering

framework and propose multiple new techniques.
• We reveal how Apple customizes PA hardware to mitigate

cross-domain attacks.
• We reveal how PA is used in XNU kernel. We conduct a

security analysis of PA usage to identify misuse cases.
• We plan to open-source our framework to facilitate further

research on Apple silicon and improve PA security.

2 Background
2.1 Pointer Authentication
2.1.1 ARM PA Specification

ARM PA defines control registers, PA keys, and PA in-
structions for pointer signing and authentication. The control
register SCTLR_EL1 includes four bits that enable or disable
PA [8]. ARM PA provides five types of PA key registers:
APIA, APDA, APIB, APDB, and APGA. Each key register consists
of two 64-bit system registers, representing the lower and
higher 64 bits of the key. Access to key registers is restricted
to privileged instructions such as msr (write) and mrs (read)

instructions. For signature (a.k.a., pointer authentication code
or PAC) computation, ARM recommends using the QARMA
algorithm [15]. Additionally, ARM specifies pac/aut instruc-
tions for pointer signing and authentication.

Signing instructions take three inputs for computing PAC:
the key, a pointer, and a modifier. ARM PA provides different
signing instructions to specify PA keys and modifiers. For
example, pacia instruction generates a PAC using APIA key
and a user-define modifier, while pacizb instruction uses APIB
key and zero as the modifier.

Authentication instructions authenticate signed pointers
and convert them to canonical pointers upon successful au-
thentication. For instance, autia instruction will authenticate
a pointer signed by pacia instruction. If the authentication
fails, the aut instruction will insert an error code to the upper
bits or trigger an exception when FPAC [10] is implemented.

2.1.2 PA-based XNU Kernel Protection
XNU kernel uses PA to protect pointers and sensitive data.

Besides using inline pac/aut instructions directly, XNU has
also utilized wrapper functions of these instructions for sign-
ing and authentication. We term these inline PA assembly
and these wrapper functions as sign/auth interfaces. These
sign/auth interfaces are instrumented manually in XNU ker-
nel code [2] or automatically by the compiler. However, there
is no systematic study on how Apple uses the sign/auth in-
terfaces to protect XNU kernel and analyze its security. Fur-
thermore, since PA only supports five types of key registers,
effective key management is crucial in PA to mitigate cross-
domain attacks. However, the key management techniques
employed by the XNU kernel remain undisclosed.

2.1.3 Existing Apple PA Analysis
Regarding PA hardware, researchers from Project Zero

team [44] have discovered that Apple customizes the PA on
iPhone XS by observing the outcomes of pac instructions.
For convenience, we refer to the customized PA as "Apple
PA" when discussing it further. Subsequent studies [14] have
revealed that Apple PA is also present in the M1 chip and
can be enabled through an Apple-specific system register.
However, as far as our knowledge extends, no study has sys-
tematically disclosed the complete ISA definition of Apple’s
customization on PA or its security characteristics.

In terms of the PA-based XNU kernel protection, extensive
analysis has been conducted by researchers [16, 22, 41, 44].
However, due to the lack of systematic examination of the PA
hardware implementation on Apple Silicon, researchers have
not comprehensively analyzed the effectiveness of PA-based
protection mechanisms in the XNU kernel.

2.2 Virtualization Host Extension
The ARMv8.1 specification introduces Virtualization Host

Extension (VHE) [6, 26] to allow OSes to run on EL2
(exception-level 2 or hypervisor mode). One important chal-
lenge for VHE is to redirect system register access of OSes

2834    32nd USENIX Security Symposium USENIX Association



SPSR_EL12
(3,5,4,0,0)

SPSR_EL2
(3,4,4,0,0)

SPSR_EL1
(3,0,4,0,0)

EL1Reg_SPSR

EL2Reg_SPSR

Encoding

mrs
SPSR_EL12

mrs
SPSR_EL2

mrs
SPSR_EL1

Instruction Register

EL1
EL2
mrs

SPSR_EL1 EL1
EL2

Figure 1: An example of system register redirection supported
by ARM (Different line colors denote relationship between
encoding and register for different instructions).
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Figure 2: m1n1-based environments.

from EL1 to EL2 without software changes. VHE implements
system register redirection to address the challenge by remap-
ping the access instruction encoding to the actual registers.
Specifically, an instruction uses access instruction encoding
to specify a system register when accessing it. The encoding is
in the form of (op0,op1,CRn,CRm,op2). For example, in Fig-
ure 1, the register mnemonic SPSR_EL1 specifies the encoding
(op0:3,op1:0,CRn:4,CRm:0,op2:0). For the same encoding
SPSR_EL1, VHE redirects access from the host kernel (EL2)
to the SPSR register on the host machine to achieve system
register redirection. With VHE, different encodings can also
map to the same register. Besides, VHE introduces an extra
set of encodings with the suffix _EL12 for the host kernel to
access system registers in virtual machines.

We use the term alias registers to represent the encodings
that map to the same register. Besides, we generally use the
term register to refer to encoding for easy understanding. We
distinguish register and encoding when necessary.

2.3 m1n1
m1n1 [12] is an open-source lightweight hypervisor for

Apple silicon developed by AsahiLinux [11]. It offers access
to privileged hardware features of the M1 platform, includ-
ing privileged registers and instructions. This makes m1n1
suitable for testing and reverse-engineering hardware func-
tionalities. Additionally, m1n1 supports running macOS vir-
tual machines, enabling the observation and interaction with
the macOS kernel. While m1n1 provides a range of capa-
bilities, it is not designed for PA analysis. We customized it
by adding exception handling, PA key reading/writing func-
tionality, and other experimental code. These customizations
enhance m1n1’s functionality and enable researchers to ana-
lyze the PA mechanisms on the Apple M1 platform.

3 m1n1-based PA Reverse Engineering Frame-
work

3.1 Goals
Apple has deployed a customized version of PA on their

M1 processor, which differs significantly from the ARM PA.
Our objective is to analyze Apple’s hardware-level customiza-
tion and conduct a comprehensive analysis of the PA-based
protection in the XNU kernel. To accomplish this, we need
to first identify the PA-related registers, and then dissect the
behavior of PA instructions, and finally analyze how all PA
instructions are utilized in the XNU kernel. To achieve these
goals, we have identified four required capabilities.

3.2 Required Capabilities
RC 1. Identifying undisclosed Apple-specific system regis-
ters for PA. Previous works [11] show that Apple added many
new system registers on top of ARM specification. We term
these registers as AppleReg. Compared with ARM PA spec-
ification, Apple M1 introduces many PA-related AppleRegs.
These AppleRegs are critical for understanding how PA works
on M1. However, there is no official documentation about
AppleRegs. Besides, most of the AppleReg-related code re-
mains closed-source. It is a necessary capability to identify
all PA-related AppleReg.
RC 2. Reading/writing actual PA key values. Apple intro-
duces hardware customization to protect the actual key values.
When Apple PA is enabled, the key registers cannot be read by
mrs x1, key_el1 instruction. Moreover, the key value set by
msr key_el1, x1 is not the actual value used in PAC computa-
tion. Researchers [44] found that PA key value is different by
observing the result of pac instruction. However, they cannot
obtain the actual key value due to Apple’s hardware protec-
tion, preventing them from conducting a deeper analysis. It is
necessary to bypass the hardware protection and be able to
read and write the actual PA key values.
RC 3. Revealing the undisclosed behaviors of PA instruc-
tions. The behaviors of PA instructions are very different
between Apple PA and ARM PA. As a result, we deduce that
the hardware implementation of Apple PA is significantly dif-
ferent from ARM PA. Consequently, we need the capability
to systematically and comprehensively dissect the behavior
of PA instructions on M1.
RC4. Debugging system boot and modifying system state
dynamically. Currently, most pac instructions are executed
during boot-up. Meanwhile, we found that the operators of
these pac instructions are propagated through the complex
data flow, making it impossible to extract these operators us-
ing static analysis to achieve PA software analysis. To extract
the operators of these pac instructions, we need to be able
to debug the system at the booting stage (which LLDB can-
not [19,36]). Moreover, for attack surface validation, we need
to suspend the system execution and change system states to
observe subsequent behaviors.

USENIX Association 32nd USENIX Security Symposium    2835



3.3 Framework Overview
We design and implement a m1n1-based reverse engineer-

ing framework on an Apple M1 device to achieve the above-
required capabilities. More specifically, we customized the
system of an M1 device by running the m1n1 in EL2, as
shown in Figure 2. On top of m1n1 in EL2, we further run
three EL1 runtime environments. First, we run m1n1 in EL1
(m1n1 + m1n1) so that we can customize exception handling
in both EL1 and EL2, allowing us to access arbitrary system
registers without crashing the system. Second, we run Linux
in EL1 (m1n1 + Linux) to provide a full-fledged running OS
on M1. More importantly, we can modify the Linux kernel
to develop our experiments conveniently. Third, we also run
an unmodified macOS in EL1 (m1n1 + macOS) to trace and
debug PA customization and usage. Based on the above three
runtime environments, we propose four techniques (§3.4-§3.7)
to achieve the RC1-4.

3.4 PA-related Apple-specific System Register
Identification

In the XNU kernel binary, AppleReg is initialized with reg-
isters specified by ARM during kernel boots. Our key obser-
vation is that the XNU kernel test functions include numerous
assertions for AppleReg. Besides, the system registers used to
control the same hardware feature are often utilized within the
same basic block or function. With these insights, we propose
a technique combining static and dynamic analysis to achieve
RC1. Specifically, our technique consists of four steps.
• First, we need to obtain an initial set. While the definitions

of the AppleRegs are removed in the open-sourced XNU
kernel code, we can still extract the mnemonic and config-
urations of AppleReg from the kernel binary. For instance,
in the test function arm64_ropjop_test, the mnemonic of
PA-related AppleReg can be found in string messages(e.g.,
apsts and apctl). We identify the PA-related AppleRegs
based on these messages and gather an initial set of PA-
related AppleRegs.

• Our next step is identifying their alias registers for building
a complete system register set. System register redirection
allows the XNU kernel to access registers belonging to the
VM or the host OS using _EL1 encoding (§2.2). Since the
string message and test functions we used to create the ini-
tial set are accessible in either VM or host OS. Only the
_EL1 encoding can be used on both EL1 and EL2. Most
of the AppleRegs in the initial set are _EL1 encoding. To
identify alias registers (e.g., _EL12 encoding), we set a sys-
tem register in the m1n1+m1n1 environment to a flag value
using _EL1 encoding on EL1. We then read all register
encodings on EL2. The _EL12 encoding that contains the
same flag value is the alias of that system register. The _EL2
encodings are identified using the same method.

• Based on the alias registers identified in the previous step,
we can then locate the code in binary that uses these alias
registers and mark the AppleRegs in the same basic block

APIAKeyLo_EL2
(???)

IA Key

APIAKeyLo_EL1
(3,0,2,1,0)

Apple PA mode on

EL1

EL2
EL1

EL2

Apple PA mode off

IA Key

IA Key

IA Key

Same value preserveRead/write key value

pacia

APIAKeyLo_EL2
(3,6,15,13,0)

APIAKeyLo_EL1
(3,0,2,1,0)

pacia

Figure 3: Controlling EL2 PA keys.

as potential PA-related. If new PA-related AppleRegs are
found, we repeat the second step and try to identify more
PA-related AppleRegs.

• Finally, by collecting all AppleRegs in the XNU kernel bi-
nary and observing whether setting the encoding affects the
behavior of PA instructions, we can verify that our findings
contain all possible PA-related AppleRegs.

3.5 Reading/Writing Actual PA Key Values
On the M1 chip, PA registers are present in both EL1 and

EL2. However, when attempting to read or write (using msr or
mrs instructions) PA key registers with the _EL1 encoding on
M1 after enabling Apple PA, an exception is raised. Moreover,
reading the values stored in PA key registers is critical for
understanding how Apple customized its PA implementation.
To achieve RC2, we propose two methods to enable the read
and write operations on PA key registers, bypassing Apple’s
hardware protection on PA key registers.

3.5.1 Reading/Writing EL1 Actual Key Values
Although we can not access the PA key register directly, we

find that the alias registers of EL1 PA key registers are read-
able/writable from EL2. Hence, we can first identify _EL12
encodings of EL1 PA key registers using the technique in §3.4.
With the _EL12 encoding, we can read/write the EL1 PA key
register from EL2, which bypasses the hardware protection.

3.5.2 Reading/Writing EL2 Actual Key Values
The macOS on M1 uses _EL1 encoding to access PA key

registers, such as using APIAKeyLo_EL1 encoding (3,0,2,1,0)
for accessing APIA key. However, when running in EL2, the
VHE (discussed in §2.2) usually redirects the _EL1 encoding
accesses to the corresponding EL2 registers. As a result, we
must first find the PA key register redirection targets and then
design a technique to read/write corresponding targets.
PA key register redirection. We design experiments on
m1n1+Linux environment to find the redirection targets of
_EL1 encoding when running in EL2 with Apple PA enabled.
Our results show that the PA-related AppleReg (identified as
APCTL_EL1) controls the redirection. As shown in Figure 3,
when Apple PA is off, the PA instruction pacia on EL2 uses
APIA key in EL1. In contrast, it uses the APIA key in EL2 when
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Apple PA is on. As a result, to control real PA key values, we
need to design a technique to read/write PA key in EL2.
Enabling EL2 key register read/write. Reading/writing EL2
PA key registers faces several challenges. First, M1 hardware
prevents reading/writing the EL2 PA key registers when Apple
mode is on. Second, we cannot use the encoding from a higher
exception level to read/write EL2 key registers, as M1 does
not implement EL3 exception level [13].

To overcome the above challenges, our key observation is
PA key register values don’t change when enabling Apple PA.
In other words, if we manage to write a value to EL2 PA key
register before enabling Apple mode, its value will be pre-
served and used after Apple mode is enabled. Using the same
example in Figure 3, when Apple PA is off, we use the en-
coding of APIAKeyLo_EL2 to read/write the EL2 APIA key. Its
value is preserved and used by the pacia instruction when Ap-
ple PA is enabled. Note that the encoding of APIAKeyLo_EL2
is unknown because the redirection of APIAKeyLo_EL1 to the
EL2 APIA key is only available when Apple PA is enabled,
and we can not read the EL2 APIA key via APIAKeyLo_EL1
encoding due to the hardware protection, the method used
to identify _EL2 encoding in §3.4 can not be used to iden-
tify APIAKeyLo_EL2. To get its encoding, we first get an over-
approximate encoding set by collecting all AppleRegs that
become non-readable after enabling the Apple PA. Then we
identify the _EL2 encoding of PA key registers by setting these
AppleRegs and observing the results of pac instructions. With
the identified _EL2 encoding, we can use it to read/write the
EL2 key registers before enabling Apple PA.

Summary. We can read the actual key values of EL1 (using
§3.5.1). However, it is not possible to read the actual key
values of EL2 using the same method due to the absence of
EL3 on the M1 chip. To address this issue, we propose reading
and writing the EL2 PA key value before enabling Apple PA
(§3.5.2). Although reading EL2 key values is infeasible after
enabling Apple PA, writing PA keys in advance is sufficient
for us to investigate the behavior of PA instructions on EL2.

3.6 PA Instruction Behavior Profiling
Based on identified PA-related AppleRegs (§3.4) and the

ability to read/write PA keys (§3.5), we propose a method
that can effectively analyze the interplay between PA system
registers (including PA control registers and PA key registers)
and PA instructions. Here, we use the controlled variables
method [17] in our experiments. More specifically, we change
one bit of the PA control registers at a time, set PA key regis-
ters using fixed values, and observe the PA key value changes
and PA instruction output to understand the controllability of
PA control registers. We can deduce the interplay between PA
system registers and PA instruction behavior. We perform the
following steps to profile PA instructions.

First, we extract the typical PA system register values
from m1n1+macOS environment. Next, we change one bit
and set the value to the actual register. We then read the

PA key on EL1 and EL2 using techniques in §3.5. Fi-
nally, we need to compare the results of cross-EL (user
mode EL0 vs. kernel mode EL1), cross-key (different
PA keys: APIA/APDA/APIB/APDB/APGA), cross-VM (virtual
machine (EL1, HCR_EL2.TGE=0) and the host OS (EL2,
HCR_EL2.TGE=1)), cross-boot (different reboot rounds). It is
worth noting that the single-variable principle should be fol-
lowed each time the control and key registers are set. By
establishing the connection between the register (PA-related
control register and key register) settings and the results of
the instructions (key access instructions and pac instructions),
we can reveal the hardware implementation of Apple PA.

To address the potential explosion, we mark specific bits in
PA control registers as valid control bits. Leveraging known
information of certain bits, such as the Apple PA enable
bit [14] and the four control bits specified by the ARM spec-
ification [8], the rest are marked as unknown bits. Different
combinations of valid control bits indicate different states.
We identify new valid control bits by observing the impact
of setting unknown bits in different states on PA instruction
behavior. This probing process continues until no further valid
control bits are discovered. We identify a total of nine valid
control bits, of which eight are utilized in the XNU kernel.
Thus, during the profiling of PA instruction behavior, we only
need to consider the influence of these nine valid control bits.

3.7 Hypervisor-based Kernel Dynamic Analy-
sis

To achieve RC4, we develop a kernel dynamic analysis
system based on m1n1+macOS. Currently, the only kernel
debugging framework for ARM-based XNU kernel on M1 is
LLDB [33] provided by Apple. However, it does not meet our
requirements because the LLDB can only be used after kernel
initialization [36]. Moreover, the LLDB for Apple Silicon
does not support active kernel debugging (i.e., breakpoints,
single-step debugging) [19].

We replace instructions of macOS (EL1) with traps (hvc
instruction) and handle the traps in m1n1 (EL2). As a result,
the m1n1 running in the hypervisor mode allows us to boot
the macOS and trace the boot-up. Moreover, after macOS
booted, our framework can suspend its execution and modify
CPU registers and memory at any time.

4 Revealing PA Hardware Implementation on
M1

In this section, we first give an overview of our findings
on Apple PA customization. We then discuss how Apple PA
mitigates cross-domain attacks in detail. The findings on PA
registers and PAC algorithm are based on techniques in §3, we
leave the experimental details out for brevity. For the cross-
domain mitigations, we give detailed experiment settings.
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4.1 Finding Overview
Our new findings are summarized in Figure 4, including ¨

Apple’s customization on PA control registers, controllabil-
ity, and PAC algorithm; ≠-∞ Hardware-based cross-domain
attack mitigations.
1) New registers. We found that Apple M1 introduces two
new PA control registers. EXTRAKEY_EL1 is used for differen-
tiating the PAC computation between user and kernel space,
while VMDIV_EL2 is for diversifying between the host and vir-
tual machines. In addition, we identify the _EL2 encodings of
PA key registers and find that the redirection of _EL1 to the
EL2 key register is only available when Apple PA is enabled.
2) Controllability. Apple uses APCTL_EL1 as the main PA
control register. APCTL_EL1 has five bits for controlling Apple
PA. AsahiLinux found that bit[0] is the switch used to enable
Apple PA. Besides these existing findings, we identify the
controllability of bits[1-4] of APCTL_EL1.

Based on the technique in §3.6, we find that the bit[2]
of APCTL_EL1 is used to enable PA in user space, and bit[3]
is used for kernel space. We also find that the two bits can
be used together with original ARM per-key-type switches
(EnIA/IB/DA/DB bits of SCTLR_EL1). Specifically, PA in an EL
using a key is enabled if any corresponding bit in APCTL_EL1
and in SCTLR_EL1 is set. In addition, we find that the bit[1]
and bit[4] control the EXTRAKEY_EL1 (discuss in §4.2.5).
3) PAC algorithm. For the PAC algorithm, we run pac in-
structions on QEMU (uses QARMA [15, 38]) and Apple M1.
The results show that Apple implements a customized algo-
rithm that is different from QARMA. Moreover, we swap the
values between the inputs of pac instruction and observe the
PAC. The result shows that PAC algorithm on M1 takes the
XOR result of lower 64 bits of the key and modifier as input.
4) Cross-domain attack mitigation. One main contribution
of our paper is that we revealed how Apple customizes the PA
hardware to mitigate cross-domain attacks (defined in §4.2.1).

Our experiments reveal that Apple PA uses an VMDIV_EL2 reg-
ister to diversify the PAC computation between the host OS
and VMs (≠ in Figure 4); Apple PA conducts a per-key-type
key transformation to differentiate the PAC computation using
different keys (Æ); Apple PA introduces a per-boot diversi-
fier to diversify the PAC computation between different CPU
boots (Ø); Apple PA uses a EXTRAKEY_EL1 register to differ-
entiate the PAC computation between user mode and kernel
mode (∞). Details are presented in the following section.

4.2 Cross-domain Attack Mitigation
We first give a formal definition of cross-domain attack and

then present our experiments and findings on Apple M1 for
each type of cross-domain attack.

4.2.1 Definition of Cross-domain Attack
ARM pointer authentication is vulnerable to pointer sub-

stitution attacks by design. To substitute kernel pointers, one
common way is to sign a pointer in user space and use it to
replace the signed kernel pointer. This attack replaces point-
ers of different exception levels (user vs kernel) and thus is
termed as cross-EL attack. Similarly, the attacker can replace
pointers between the host and virtual machine, leading to
cross-VM attack. Moreover, the attacker can replace point-
ers signed by different keys, leading to cross-key attack. In
addition, the attacker can replace pointers across different
system boots, leading to cross-boot attack. In this paper, we
generalize these four types of pointer substitution attacks as
cross-domain attack.

We define domains formally in the following.
Definition 1 - Domains. D = {v 2V M,k 2 Key,b 2 Boot,e 2
EL | (v,k,b,e)} denotes the set of all domains. Each element
d 2 D denotes a unique domain instance and is a quadruple.
Items in the quadruple are from four different sets, where:
• V M = {0,1,2 . . .}. V M denotes the set of the Host instance

and all VM instances. For ease of representation, we use
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Figure 5: Cross-domain attacks. (Inputs (ptr,mod,keyval)
used for PAC computation are the same in all domains.)

0 to denote the Host instance and other numbers to denote
VM instances.

• Key = {IA, IB,DA,DA,GA}. Key denotes the set of differ-
ent PA keys that can be used for PAC computation.

• Boot = {1,2,3 . . .}. Boot denotes the set of numbers of
boot rounds.

• EL = {0,1}. EL denotes the set of exception levels of the
machine. We use 0 to denote user and 1 for kernel.
The result of PAC computation should be bound to the

affiliated domain to enforce the least privilege principle. We
have the definition of the domain PAC computation.

Definition 2 - Domain PAC computation. In a domain d,

PACd = HMACd(ptr,mod,keyval),

ptr denotes the pointer to be signed, mod denotes the modifier
for PAC computation, and keyval is the key value used in the
HMAC algorithm.

Definition 3 - Cross-Domain attacks. Let da be the domain
of the attacker, and dv be the domain of the victim. The cross-
domain attack happens when an attacker can use a signed
pointer in da to substitute a signed pointer in dv. Correspond-
ing to four types of domains, there are four types of cross-
domain attacks against ARM PA.

Definition 3.1 - Cross-VM attacks. da = (va,k,b,e) 2
D,dv = (vv,k,b,e) 2 D,va 6= vv,9inputa = inputv =
(ptr,mod,keyval), such that PACda = PACdv .

An attacker can launch cross-VM attacks from a differ-
ent virtual machine or the host OS va from the victim vv by
signing the same pointers with the victim. Cross-VM attacks
require the same configuration of PA hardware (registers, in-
structions) to be used in different va and vv to compute the
PAC. Although the attacker and the victim are in different
virtual machines or host OS. However, ARM PA does not sup-
port VHE (§2.2), and all virtual machines and host OS share
the same PA hardware implementation. The requirements of
the cross-VM attacks can be easily satisfied.

Cross-VM attacks can be divided into three types according
to the values of va and vv. The first one is a VM-Host attack,
where the attacker tries to compromise the PAC in the host OS
from a virtual machine (va > 0,vv = 0). The second is VM-

VM attacks, where the attacker tries to attack another virtual
machine from a virtual machine (va > 0,vv > 0). The third one
is Host-VM attacks, where the attacker tries to compromise
the PAC in a virtual machine from the host OS (va = 0,vv > 0).
As shown by ¨ in Figure 5, when the inputs of the PAC com-
putation are equal, PAC(0,IA,1,1), PAC(1,IA,1,1) and PAC(2,IA,1,1)
are equal, then the above three types of attacks are feasible.

Definition 3.2 - Cross-Key attacks. da = (v,ka,b,e) 2
D,dv = (v,kv,b,e) 2 D,ka 6= kv,9inputa = inputv =
(ptr,mod,keyval), such that PACda = PACdv .

An attacker can launch cross-key attacks by using a dif-
ferent key ka with the victim key kv to sign the same pointer.
Cross-key attacks require that ka and kv should hold the same
key value. The requirement can be easily achieved when a
process uses a constant initializer to initialize all the keys.
As shown by ≠ in Figure 5, when the inputs of the PAC
computation are equal, if the PAC(0,IA,1,1) using APIA key is
equal to PAC(0,IB,1,1) using APIB key, the attacker can forge
PAC(0,IA,1,1) to substitute PAC(0,IB,1,1) to bypass the PA pro-
tection to achieve further attack such as control flow hijack.

Definition 3.3 - Cross-Boot attacks. da = (v,k,ba,e) 2
D,dv = (v,k,bv,e) 2 D,ba < bv,9inputa = inputv =
(ptr,mod,keyval), such that PACda = PACdv .

In the cross-boot attack, the attacker at boot round ba at-
tempts to infer the PAC of the same pointer in the later boot
round bv. Cross-boot attacks require that the PA keys should
hold the same key value between different CPU boot rounds.
These requirements can be easily achieved when all keys are
initialized with fixed constants after each CPU boots.

As shown by Æ in Figure 5, when the inputs of PAC compu-
tation are equal, if the PAC(0,IA,1,1) calculated in boot round 1
is equal to PAC(0,IA,2,1) calculated in boot round 2, the attacker
can forge PAC(0,IA,1,1) to substitute PAC(0,IA,2,1) to bypass the
PA protection. Moreover, the attacker can reuse PAC(0,IA,1,1)
to substitute the PAC of any other boot rounds, leading to a
continuous PA protection bypass.

Definition 3.4 - Cross-EL attacks. da = (v,k,b,ea) 2
D,dv = (v,k,b,ev) 2 D,ea = 0,ev = 1,9inputa = inputv =
(ptr,mod,keyval), such that PACda = PACdv .

Cross-EL attacks require that the used PA keys hold the
same values across the user mode and the kernel mode. The
requirement can be achieved when the OS does not recon-
figure PA keys during switching between the user mode and
kernel mode. As shown by Ø in Figure 5, when inputs of the
PAC computation are equal, if the PAC(0,IA,1,0) calculated in
the user mode is equal to the PAC(0,IA,1,1) of the kernel mode,
the attacker can forge PAC(0,IA,1,0) to substitute PAC(0,IA,1,1)
to bypass the PA protection of kernel mode to achieve further
attack such as kernel control flow hijack.

4.2.2 Cross-VM Mitigation

Confirming M1 has cross-VM mitigation. We run the ma-
cOS in EL2 as the host OS and run multiple virtual ma-
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GA to 0 at EL1 with different 
VMDIV. It shows apparent 
symmetry in the dashed box, and 
only XOR matches this symmetry.

(b) Only 8 combinations of per-key-type
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why Apple PA mitigates the cross-key 
attack. With per-key-type salts, the 
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Figure 6: Key transformation results and the possible combi-
nations of per-key-type salts (raw data in Appendix Table 6).

chines (VM) on top of it. We set the same value to PA
keys via Key_EL1 encodings in host OS and VMs. Then we
sign the same pointer with the same key and modifier on
host OS and VMs. As shown in Figure 5, the PAC compu-
tations are different between different VMs and host OS (
PAC(1,IA,1,1) 6= PAC(0,IA,1,1) 6= PAC(2,IA,1,1)). Since XNU ker-
nel does not reconfigure the PA key during VM-Host switch,
and all host OS and VMs use the same fixed value to initialize
PA keys, we know that M1 has cross-VM mitigation.
Revealing how M1 achieves cross-VM mitigation. Based on
the profiling method (§3.6), we find that when the Apple PA is
enabled, setting PA key using msr KeyHi_EL1, operator in-
struction introduces a key transformation in VM. Meanwhile,
the key transformation is also deployed on host OS.

In experiments, we first set VMDIV_EL2 to different values, as
shown in Figure 6. We then use the msr Key_EL1, operator
instruction in VM to set the same value for the PA key. The
experimental results show that the key transformation of VM
uses VMDIV_EL2 as its random source. The key transformation
is also deployed for the host OS, but with a different random
source, leading to different key transformations for the VM
and host OS.

Finding 1. Writing high 64 bits of a PA key triggers a
key transformation process on the whole 128-bit key.
On VMs, the key transformation uses a per-VM diver-
sifier VMDIV_EL2 to defend VM-VM attacks. On host
OS, the key transformation uses a different diversifier
rather than VMDIV_EL2 to defend VM-Host attacks.

Conclusion. In the XNU kernel, VMDIV_EL2 (≠ in Figure 4) is
set to a per-VM value and the random sources of key transfor-
mation are different between EL1 (VM) and EL2 (host OS).
For different VMs and host OS, even if the same value is set

to PA key using the msr key_EL1, operator instruction, the
actual key values for PAC computation are different.

Limitation discussion. As we mentioned in Definition 3.1,
there are three types of cross-VM attacks: VM-Host, VM-
VM, and Host-VM attacks. The former two can be defeated
by current M1 PA hardware. However, the Host-VM attack
can be successful on M1. As a result, if the host OS can leak
the value of the PA key used by the VM, then the attacker can
infer the PAC computed in the VM at the host OS.

To protect VMs, we suggest introducing a switch that only
the VM can control whether the host OS can access the actual
key value of the VM. Also, the VM should avoid using fixed
value as the input of key transformation.

4.2.3 Cross-Key Mitigation

Confirming M1 has cross-Key mitigation. After Apple PA
initialization, we set the same value for different PA keys via
_EL1 encodings. We then sign the same pointer with the same
modifier using different keys. The results are not the same,
confirming that M1 has cross-key mitigation.
Revealing how M1 achieves cross-key mitigation. Our key
finding is that a per-key-type salt is introduced in the key
transformation process. To find out how the salt is used in key
transformation, we keep the value of the key the same, altering
only the value of VMDIV_EL2 and observing the correspond-
ing actual key value for the five different keys. As shown in
Figure 6, The results show that six different hard-coded con-
stants are introduced in the key transformation for different
key types. We use the term per-key-type salt to represent these
constants. In addition, the XOR result of per-key-type salt and
VMDIV_EL2 is one of the inputs for the key transformation on
EL1. There are eight possible combinations for the lowest
three bits of per-key-type salts.

Finding 2. The key transformation introduces a per-
key-type salt to defend cross-key attacks. The XOR
result of per-key-type salt and the diversifier is one of
the inputs for key transformation.

Conclusion. Due to the presence of per-key-type salt (Æ in
Figure 4), the result of key transformation is different for
different key types. So when Apple PA is enabled, even if
setting different PA key registers to the same value, the actual
key value used for PAC computation is different, achieving
cross-key mitigation.

4.2.4 Cross-Boot Mitigation

Confirming M1 has cross-boot mitigation. The XNU kernel
uses the msr Key_EL1, operator instruction to set the PA key
to a fixed value during initialization. After each reboot, we
sign the same pointer using the same modifier and PA key.
The results differ after each reboot, indicating that M1 has
cross-boot mitigation.
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Revealing how M1 achieves cross-boot mitigation. We use
the msr KeyLo/Hi_EL1, operator instruction on the host OS
(running in EL2) to set the PA key registers. Combined with
the reboot operation and observing the results of pac instruc-
tions, the results show that the host OS deploys key transfor-
mation, which uses a per-boot diversifier as one of its inputs.

Finding 3. The key transformation on EL2 uses a
per-boot diversifier as one of its inputs, mitigating
cross-boot attacks.

Conclusion. Since the host OS uses a per-boot diversifier for
key transformation(Ø in Figure 4), even if the XNU kernel
uses hardcoded values to set the PA key registers, the actual
key value is different between system boots. This design
effectively mitigates the cross-boot attack.

4.2.5 Cross-EL Mitigation

Confirming M1 has cross-EL mitigation. On macOS, we
use the same key and modifier to sign the same pointer in
both user mode and kernel mode. The results are different,
showing that M1 has cross-EL mitigation.
Revealing how M1 achieves cross-EL mitigation. Apple PA
introduces a new 128-bit register (EXTRAKEY_EL1) to differen-
tiate PAC between user and kernel modes. In the experiments,
we first set up the EXTRAKEY_EL1 and APCTL_EL1. Specifically,
we set the ARMKeys and EXTRAKEY_EL1 directly without trig-
gering key transformation and observe the results of pac in-
structions. The results show that EXTRAKEY_EL1 is used to
XOR with ARMKeys and the XOR result is the actual PA key
value used for PAC computation. Moreover, the bit[4] and
bit[1] of APCTL_EL1 are used to enable the EXTRAKEY_EL1 on
user mode or kernel mode.

Finding 4. Apple PA differentiates the PAC computa-
tion between user space and kernel space by XORing
ARMKeys with EXTRAKEY_EL1 on user space. The XOR
result will be the actual key value for PAC computa-
tion.

Conclusion. The XNU kernel only enables EXTRAKEY_EL1 (∞
in Figure 4) in the user mode. The results of PAC computation
in the user mode and kernel mode are different even when the
inputs of pac instruction are the same. This design mitigates
the cross-EL attack.

5 Analyzing PA Usage in XNU Kernel

macOS on M1 heavily relies on PA to enforce control-
flow integrity (CFI) and data-flow integrity (DFI). The typical
usage of PA includes the sign/auth interface usage and key
management. Therefore, we conduct an analysis of both of
them, as presented in the following sections.

Table 1: Results of signing interface analysis. (DB key is not
used in XNU kernel.)

Key
Usage Modifier Target

IA (762376)

Hash(function_type) (38564) Function pointer
Hash(function_name) +

storage address(384)
Recovery Handler/ Corecrypto

related

Storage address (27568)

ppl_handler(89)
Copy/destroy_helper_block

(626)
Block_invoke function(115)

Ptrs in seg: __auth_ptr (25452)
Block function pointer (1286)

Hash(root_class,
function_type, function_name)

+ Storage address (694596)
Vtable entry(694596)

Zero (1264) __chkstk_darwin* func (156)/
BluetoothFamily function (9)/
kext_weak_symbol_referenced/
Parameter func ptr (1098)

DA (31225)

Hash(data_field_type) + Stor-
age addr (2645)

Proc0 (1)
__NSConcreteGlobalBlock(115)

_Block_descriptor (115)
sysctl_oid_list (2414)

Hash(data_pointer_name)+
Storage addr (464) Data pointer

Hash(root_class) + Storage
addr (28116) V-table pointer

IB(110852) SP Return address
DB - -

GA Storage Address Thread state/ Exception state/
Data Blob

5.1 Sign/Auth Interfaces Analysis
The PA sign/auth results are mainly decided by three fac-

tors: the target pointer, the modifier, and the key. To realize
the analysis, we first need to analyze the values of the targets
and the modifiers under complex data propagation. Particu-
larly, we use the hypervisor-based dynamic analysis (§3.7) to
record operators with complex data propagation of sign/auth
interfaces. Second, we need to reveal the high-level policies
behind the undisclosed constants used in modifiers. We denote
these constants as modifier constants (MCs). To resolve this
problem, we follow the single variable principle to find out
which kind of static information decides the MCs among all
possible ones. Specifically, the possible types of static infor-
mation for function pointers can be function names, member
field names, function types (including the number, sequence,
and types of parameters and return values [32]), and the root
class (for vfunc pointers) can be used to generate MCs. The
static information for data pointers can be the data type and
member field names. Based on these two methods, we analyze
three factors for all sign/auth interfaces in the XNU kernel.

For the pointer target, we find that Apple protects function
pointers, vtable pointers, and vtable entries based on PA. How-
ever, for other sensitive data, Apple uses highly customized
policies to decide the protection targets, which gives rise to
potential attack chances. For example, there have been real
attacks [1,20] that bypass PA protection based on unprotected
sensitive data pointers.
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Table 2: Scope of each key. G: global; P: per-process; V: per-
VM; EX: EXTRAKEY; VK: VMKEY.

Key IA DA IB DB GA EX VK

Scope G G P P G P V

Table 3: Scope of each PAC instruction. U: user space; K:
kernel space; e: arm64e; ne: non-arm64e G: global; P: per-
process; -: unavailable.

pacia pacda pacib pacdb pacga
U(e) P P P P P

U(ne) - - P - P
K G G P P G

Finding 5. XNU kernel uses nine types of signing
modifiers and six policies for generating MCs in the
latest XNU kernel.

For the signing modifier, we find that Apple uses nine types
of signing modifiers and six policies for generating MCs in
the XNU kernel (only five types of signing modifiers and two
types of MCs are mentioned in official documentation [3,28]).
However, we find that many signing targets still share the
same signing modifier. Real attacks [16, 23, 24] demonstrate
that this problem may lead to practical substitution attacks.

For the key usage, we find that Apple uses IB key to sign
return addresses and uses IA key for all other function pointers.
Apple uses DA key to sign data pointers and leaves DB key
for user-space programs. Apple uses GA key to sign interrupt
context and other sensitive data blobs.

5.2 Key Management
For the key management in the XNU kernel, the only avail-

able information is that the IB key value is per-process as
disclosed by Apple [28]. Previous researchers were unable to
properly analyze key management because of Apple’s undis-
closed customization on PA hardware. Therefore, after reveal-
ing Apple’s PA hardware implementation, we analyze the key
management in XNU kernel.

We list the configuration of APIA/DA/IB/DB/GA, EXTRAKEY,
and VMKEY in Table 2. Moreover, XNU kernel disables
EnIA/DA/DB bits of SCTLR_EL1 for non-arm64e [4] processes.
Combining the operations above, we summarize our findings
of PAC instruction scope in Table 3.
1) Fine-grained key management. XNU kernel only enables
EXTRAKEY on user space. Meanwhile, the kernel sets EXTRAKEY
to per-process values and APIA/DA/GA to static values. Based
on the findings of EXTRAKEY (§4.2.5), the actual key values for
pacia/da/ga instructions are per-process in user space and
global in kernel space.
2) Process-dependent controllability. All pac instructions
are still available in kernel space without enabling bits in
SCTLR_EL1 because bit[3] (kernel PAC switch) of APCTL_EL1

is always enabled in XNU kernel. Therefore, the kernel
can choose whether to enable PAC computation of user
mode by setting per-key-type switches in SCTLR_EL1. For ex-
ample, XNU kernel disables EnIA/DA/DB bits of SCTLR_EL1
for non-arm64e processes, so these processes can not use
pacia/pacda/pacdb instructions to generate PAC in user
mode.

6 Security Analysis
6.1 Threat Model

We assume that the attacker has arbitrary kernel memory
read/write capability by exploiting known CVEs. We also as-
sume that the attacker can interrupt the XNU kernel at anytime.
The attacker aims to corrupt the protected function/data point-
ers to break the PA-based protection to launch control-flow or
data-flow hijack attacks. This threat model is practical as the
design goal of PA is to protect pointers under arbitrary mem-
ory read/write. Besides, we also assume the existing defense
mechanisms on Apple M1 are all enabled, including secure
boot, stack protection, DEP, KASLR, and Apple-specific pro-
tection [45]. We assume that MMU cannot be disabled and
the attacker can only access memory using virtual addresses.
We do not consider side-channel attacks, such as PACMAN
attack [37], and hardware attacks, such as Rowhammer [27].

6.2 Attack Surface Analysis
We identify four attack surfaces (AS∂-π). We further im-

plement our analysis tool based on IDAPython and CodeQL to
analyze all of them. More specifically, we implement an intra-
procedural data-flow analysis (identifying AS∂, AS∑, and
AS∏) as well as other binary analysis based on IDAPython.
For identifying the data propagation from non-sensitive data
propagation to sensitive data pointer in AS∂, we implement
an inter-procedural data-flow analysis based on CodeQL.

6.2.1 Incomplete Sensitive Data Identification (AS∂)
For PA-based CFI/DFI, sensitive data includes all data that

can affect control and sensitive data flow. If PA-based CFI/DFI
implementation does not protect all sensitive data, there will
be unprotected sensitive data in memory. This implementation
flaw can lead to an attacker bypassing the PA-based CFI/DFI
by modifying the unprotected sensitive data in memory.
Analysis method. As shown in Listing 1, if sensitive data is
loaded from memory (Line 2, 7, and 11) and signed later (Line
5 and 8) or influences the control flow (Line 12) without au-
thentication, it means that the sensitive data is unprotected. We
implement an intra-procedural data-flow analysis to identify
these unprotected sensitive data. Besides, it is worth noting
that Apple marks the data pointer as sensitive by annotating
it using Apple’s customized language extension. However,
due to the complex data-flow propagation, some unprotected
non-sensitive data in memory will propagate to sensitive data
pointers. An attacker can modify the sensitive data pointers
indirectly to bypass the PA-based kernel DFI. We implement
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an inter-procedural data-flow analysis to identify such data
propagation.

6.2.2 Incomplete Interrupt Context Protection (AS∑)
When the interrupt is enabled and an exception is triggered,

the contents of registers, namely the interrupt context, will be
spilled in memory. The interrupt context may contain unpro-
tected sensitive data such as function pointers. An attacker
can bypass PA-based CFI/DFI by modifying sensitive data
spilled into memory due to interrupts.
Analysis method. XNU kernel uses sign_thread_state
to sign the exception state. More specifically, the
sign_thread_state function signs the {pc, cpsr, lr, x16,
x17} of interrupt context. These five registers are interrupt-
safe registers, while the others are interrupt-unsafe registers.
Sensitive data should not be stored in interrupt-unsafe regis-
ters when the interrupt is enabled. Similarly, to identify AS∑,
we identify which sensitive data are stored in interrupt-unsafe
registers by binary analysis. In addition, because some sen-
sitive data has to be passed into the interrupt-unsafe register,
M1 prevents these data from being spilled into memory by
disabling the interrupt. We also identify if sensitive data is
propagated into interrupt-unsafe registers before the interrupt.

6.2.3 Signing Gadget (AS∏)
A signing gadget is a code gadget that calls the signing

interface. For an attacker with a signing gadget, the PA pro-
tection can be bypassed directly with the help of the signing
gadget when the attacker can control the inputs of the signing
gadget, or the attacker can use the signing gadget to get the
signed target for conducting substitution attack and eventually
bypass the PA protection. We classify the signing gadget by
the signing target into function-level and instruction-level. An
attacker with a function-level signing gadget can substitute
a signed sensitive data structure to conduct further attacks,
while an attacker with an instruction-level signing gadget can
forge signed pointers to conduct pointer substitution attacks.
Analysis method. The exploitability of the signing gadget
depends on whether multiple signing targets share the same
signing interface. When sharing, attackers can leverage the
signing gadget to sign multiple targets, enabling substitution
attacks. To assess the exploitability of the signing gadget, we
analyze the signing interfaces sharing in the XNU kernel. For
the function-level signing gadget, we first collect all call sites
of the function-level signing gadget based on binary static
analysis and perform analysis on these call sites to determine
if the function-level signing gadget is shared by multiple sign-
ing targets. For the instruction-level signing gadget, we collect
all pac instructions and classify them based on the signing
modifier value (as in §5.1).

6.2.4 Key Leakage (ASπ)
If the PA key value used to compute the PAC is stored

directly in memory without being encrypted, an attacker can
leak the key value to complete further attacks. For example,

1 ; pattern 1 - X8 is loaded from memory
2 ldrsw x8, [x9,#0xC]!
3 add x8, x8, x9
4 ...
5 pacia x8, x9
6 ; pattern 2 - X8 is loaded from memory
7 ldr x8, [sp,#0x30]
8 pacda x8, x11
9 ; pattern 3 - X6 is loaded from memory

10 ; xnu-8019
11 ldr x6, [x2]
12 and x17, x6, #0xff
13 ldrsh x17, [x16,x17,lsl#1]
14 add x17, x16, x17
15 br x17
16 ;xnu-7195 - sensitive data is stored in

interrupt-unsafe register,!
17 ...
18 br x20

Listing 1: Sensitive data are loaded without authentication.

when a process-dependent PA-based CFI/DFI is implemented,
an attacker can leak the PA key values of other processes and
forge signed pointers based on the leaked PA key value to
bypass the PA-based CFI/DFI.
Analysis method. For key leakage, we first reverse engineer
the hardware implementation of Apple-specific PA key regis-
ters (§4) and then analyze the key management implementa-
tion in the XNU kernel (§5.2). Combining these findings, we
perform a security analysis for unencrypted per-process PA
keys stored in memory. Since these keys are not encrypted,
an attacker can make multiple processes’ per-process PA key
values equal by leaking the key and modifying it. Our secu-
rity analysis of key management is to analyze the security
problems that may result when the per-process PA keys of
different processes have equal values.

6.2.5 Analysis Results
We summarize our findings in Table 4. For AS∂, we iden-

tify 153 cases (xnu-8019) that can be used to bypass PA-based
kernel CFI/DFI (29 for CFI, 124 for DFI). Meanwhile, we
find that 52 out of 81 sensitive data pointers propagated from
non-sensitive data (5 cases are propagated directly from non-
sensitive data).

For AS∑, as shown in line 18 of Listing 1, we find 18
cases of br instruction using interrupt-unsafe register x20 in
xnu-7195. These cases are fixed in xnu-8019 (changing to
x17). We also find hundreds of cases in xnu-8019, most of
the cases are omitted from the earlier XNU kernel version.
Besides, we identify 17 cases that sensitive data is propagated
into interrupt-unsafe registers before disabling the interrupt.

For AS∏, since it is the most commonly exploited attack
surface to bypass PA protection in recent years [16, 23, 24],
Apple has improved its defense against this attack surface
several times by removing the unnecessary signing interface,
using PA to protect the data pointer and disabling the interrupt.
However, we find that the mitigation of this attack surface
is incomplete, and the inputs of sign_thread_state function
could be spilled to memory, resulting that an attacker can
modify the contents {pc, cpsr, lr, x16, x17} of a kernel
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Table 4: Identified, validated, and fixed cases.

AS
Result Identified Validated Fixed

Cases

∂ 153 83 6
∑ 17+18* 2 2+18*

∏ 1 1 1
π 2 2 -

* 18 cases are identified in XNU-7195, and all of them are fixed in
XNU-8019.

exception state to achieve arbitrary kernel function call.
For ASπ, we find that XNU kernel assigns APIB and

EXTRAKEY key values for each process (jop_pid field for
EXTRAKEY, rop_pid field for APIB/APDB) and that the key values
are stored in memory without encryption. For APIB, it is used
to sign the kernel return address while using pacibsp (signs
LR with SP as the modifier). However, the pacibsp instruction
could be vulnerable to substitution attacks because different
return addresses may be signed with the same SP [30]. For
EXTRAKEY, based on findings in §5.2, if two processes share the
same EXTRAKEY value, the result of pacia, pacda, and pacga
on user mode with the same inputs will be the same. An at-
tacker can replace the jop_pid to forge a pointer to hijack the
user-space control/data flow of other processes.

6.3 Result Validation
Validation method. We validate our above findings on the
XNU kernel (xnu-8019) by simulating the attacker’s arbi-
trary kernel memory read/write at arbitrary moment capability
based on our dynamic analysis framework (§3.7).

More specifically, we specify the arbitrary moment by set-
ting breakpoints. After trapping into EL2, the HCR_EL2.TGE
will initially be zero [6]. At this moment, using the s1e1w in-
struction [7] can check if a virtual memory location is writable
for access from EL1 based on the stage-1 page table. At the
same time, we can also determine whether the interrupt in
EL1 is enabled based on the value of SPSR_EL2. If the virtual
memory location is writable, we can modify the contents of
the memory as the attacker and return to the virtual machine.
The macOS kernel log can be read through the serial port to
confirm the validation result. Reasons for validation failure in-
clude: memory location is read-only, the interrupt is disabled,
and difficult to trigger (complex call paths).

Validation results. As shown in Table 4, we validate that 83
cases of AS∂ and 2 cases of AS∑ are exploitable (xnu-8019).
For AS∏, the validation results show that Apple’s previous
fix is still vulnerable to modification of sign_thread_state’s
spilled inputs. We modify a kernel exception state’s spilled PC
and achieve an arbitrary kernel function call. Similar signing
gadgets have been exploited to bypass PA protection [16, 23]
in the XNU kernel. These actual attacks cross-validate the
exploitability of this case. For ASπ, we validate two attacks
against APIB and EXTRAKEY keys. The results show that an at-

tacker can bypass PA protection by leaking process-dependent
keys and modifying them to make them equal between differ-
ent processes. Similar techniques were exploited in the real
attack [20], which cross-validates our findings.
Case study. As pattern 3 shown in Listing 1, sensitive data
is loaded into x6 without authentication at line 11 and used
as an index to load data into x17 at line 13. The content of
x17 will then be used as an offset value for an indirect call
at line 15. We validate that the memory address used at line
11 is writable. An attacker can craft the sensitive data loaded
from memory at lines 11 and 13 to achieve an arbitrary kernel
function call.

Although Apple prevents the sign_thread_state calls for
the user thread state from being reused to sign the kernel
exception state by utilizing PA to protect the user thread state
pointer and disabling the interrupt. However, we find that the
inputs (x0: thread state pointer, x1: pc, x2: cpsr, x3: lr, x4: x16,
x5: x17) of sign_thread_state function could still be spilled
into memory. As a result, the attacker can modify x0 to a
kernel exception state and x1 to a kernel function, and finally
implement an arbitrary kernel function call.

6.4 Apple’s Response
We report all our findings to Apple teams and have a nine-

month ongoing communication with them. Based on our com-
munication, we divide our findings into two categories.
1) Fixed. For AS∂, we identified 6 cases in xnu-8019 that
have been fixed in the latest XNU kernel. For AS∑, Apple has
addressed this issue in a security update and acknowledged
our contribution in the security advisory. For AS∏, Apple
has fixed the identified vulnerability in the latest releases and
assigned us CVE-2023-32424.
2) Potential enhancements. Apple considers these findings
as potential enhancements. In response to our findings in
AS∂ and ASπ, Apple security team considers these cases
as no-need-to-fix as there are no suitable vulnerabilities to
trigger these cases. They consider these cases as potential
enhancement points in their future releases.

6.5 Mitigation Discussion
Apple has been improving XNU kernel to mitigate PA

attacks. However, as indicated by our security analysis, it is
still practical to launch PA attacks. In the following, we first
compare PA adoption evolution across all XNU versions on
M1 and then give mitigation suggestions.
6.5.1 Evolution of PA Protection

We summarize the evolution of PA protection in Table 5.
1) Increasing protection targets (for AS∂). Apple protects
more sensitive data gradually using PA. However, it is worth
noting that the number of sensitive data pointers changes from
version to version, which means there are still unprotected
sensitive pointers in the XNU kernel [20].
2) Improving interrupt protection (for AS∑). Apple tries
to avoid storing sensitive data in the interrupt-unsafe register
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Table 5: Comparison of PA across XNU kernel versions.

Changes of PA Protection* xnu-
7195

xnu-
8019

xnu-
8020

xnu-
8792

AS∂

Data blob % " " "

Null pointer % " " "

Corecrypto-related
function pointer

% " " "

Sensitive data field 86 81 87 82

AS∑ Interrupt disabling
before signing

% " " "

AS∏
Number of pro-
tected thread state
types

3 2 2 2

Recovery handler
protection

" " " %

* AS π is the same across XNU versions.

when the interrupt is enabled (e.g., the 18 cases we identi-
fied were fixed in the xnu-8019). Meanwhile, Apple attempts
to disable interrupts before signing sensitive data. However,
these fixes cannot completely mitigate this attack surface.
3) Shrinking signing interfaces (for AS∏). While protect-
ing more sensitive data, Apple is also removing unnecessary
signing interfaces. The variety of signing interfaces leads to
more signing gadgets and increases the attack surface.

6.5.2 Mitigation Suggestions
1) Comprehensive sensitive data identification and binary
validation (for AS∂). For unprotected sensitive data, we sug-
gest that the XNU kernel compiler adopt a comprehensive
static analysis to identify and protect all sensitive data. Be-
sides, the compiled binary should also be validated to prove
that the compilation does not introduce any security problem
(e.g., sensitive data being spilled into the stack).
2) Interrupt context protection (for AS∑). To mitigate secu-
rity issues caused by interrupts, we suggest signing the entire
interrupt context or improving the compiler to avoid sensitive
data being propagated into interrupt-unsafe registers when
the interrupt is enabled.
3) Per-process key encryption (for ASπ). To im-
prove process-dependent key management without hardware
changes, we suggest encrypting the keys based on immutable
process-specific information so that an attacker can not re-
place the keys of different processes at will.

7 Related Work
Reverse engineering on Apple M1. There have been hard-
ware reverse engineering works on Apple M1 in recent years.
The [37,40] reverse-engineer the micro-architectural CPU fea-
tures such as data memory-dependent prefetcher (DMP) on
the M1. For the features accessed through MMIO, AsahiLinux
Team [11] and Stan Skowronek [39] reverse-engineered the

features, such as DART(Apple-specific IOMMU). For the
CPU features accessed by system registers, Sven Peter [35]
has reverse-engineered some features such as SPRR and GXF,
but no method is available for analyzing PA hardware.
PA analysis on Apple Silicon. Google Project Zero [44]
analyzes the PA hardware on A12. However, they can not
reverse engineer Apple’s specific customization to PA. Other
works [16, 22–24, 41, 44] related to PA analysis on Apple
Silicon mainly focus on PA software. However, since the
Apple PA hardware has not been analyzed, resulting in their
analysis of PA software is incomplete. In our work, we do a
comprehensive analysis of PA software after analyzing Ap-
ple PA hardware implementation, including signing interface
analysis, key management analysis.
PA-related researches. PA is utilized to enforce CFI in Linux
kernel [18, 42, 43] and user-space programs [31]. Moreover,
[25] implements a PA-based CPI (Code Pointer Integrity). Re-
searchers [30] also try to improve the security of PA against
reuse attacks by software approach. Besides utilizing PA to
protect the integrity of pointers, researchers try to utilize PA to
implement other hardware and software collaborative mecha-
nisms. For example, [21, 29] implements sanitizers to catch
memory safety bugs based on PA. Moreover, [34] combines
PA and MTE (Memory Tagging Extension) to implement
hardware-based isolation in Linux Kernel.

8 Conclusion
This paper conducts an in-depth reverse engineering study

of PA implementation and usage on Apple M1. We develop
a m1n1-based reverse engineering framework and propose
multiple new techniques to analyze PA hardware implementa-
tion and usage. Our study reveals that Apple M1 introduces
per-VM, per-key-type, per-boot diversifiers, and extra keys
to defend against cross-domain attacks. We find that XNU
kernel uses nine types of modifiers for pointer signing and
authentication and key management based on customized PA
hardware. We further conduct a security analysis of PA-based
CFI/DFI in the XNU kernel to identify attack surfaces and
report these security issues to Apple responsibly. Apple has
fixed these issues in a security update, assigned us a new CVE,
and publicly acknowledged us on the security advisory.
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A Experiment Details
Table 6: Key transformation result. The result of each cell is got by setting VMKEY to a particular value, and then set each key
register to 0. Finally, through bypassing hardware-based read protection, we can read the real key value of each key register,
which has been transformed when Apple PA is enabled.

VMKEY Transformation Result of

IB IA DB DA EX GA
0b000 0x7d7b0db350f67ff6

0xf60db0dcb07eb1b1
0xfb0b271a781b4e27
0xf625c898230bb934

0xe2ee9eaaa4ec5479
0x3cd6dc8228c5488d

0x3e2b1b189fbc10b4
0xe97d268ae2681267

0xb455818159de0818
0x5809bcf5f3e87070

0x92584a68198c0286
0xd8b34f463af4b03c

0b001 0xfb0b271a781b4e27
0xf625c898230bb934

0x7d7b0db350f67ff6
0xf60db0dcb07eb1b1

0x3e2b1b189fbc10b4
0xe97d268ae2681267

0xe2ee9eaaa4ec5479
0x3cd6dc8228c5488d

0x92584a68198c0286
0xd8b34f463af4b03c

0xb455818159de0818
0x5809bcf5f3e87070

0b010 0xe2ee9eaaa4ec5479
0x3cd6dc8228c5488d

0x3e2b1b189fbc10b4
0xe97d268ae2681267

0x7d7b0db350f67ff6
0xf60db0dcb07eb1b1

0xfb0b271a781b4e27
0xf625c898230bb934

0x70e4228e70a3f8ff
0x9cc19db7de935d05

0x5eaaa2f0e48ef187
0x982cdffcf13dfb43

0b011 0x3e2b1b189fbc10b4
0xe97d268ae2681267

0xe2ee9eaaa4ec5479
0x3cd6dc8228c5488d

0xfb0b271a781b4e27
0xf625c898230bb934

0x7d7b0db350f67ff6
0xf60db0dcb07eb1b1

0x5eaaa2f0e48ef187
0x982cdffcf13dfb43

0x70e4228e70a3f8ff
0x9cc19db7de935d05

0b100 0xb455818159de0818
0x5809bcf5f3e87070

0x92584a68198c0286
0xd8b34f463af4b03c

0x70e4228e70a3f8ff
0x9cc19db7de935d05

0x5eaaa2f0e48ef187
0x982cdffcf13dfb43

0x7d7b0db350f67ff6
0xf60db0dcb07eb1b1

0xfb0b271a781b4e27
0xf625c898230bb934

0b101 0x92584a68198c0286
0xd8b34f463af4b03c

0xb455818159de0818
0x5809bcf5f3e87070

0x5eaaa2f0e48ef187
0x982cdffcf13dfb43

0x70e4228e70a3f8ff
0x9cc19db7de935d05

0xfb0b271a781b4e27
0xf625c898230bb934

0x7d7b0db350f67ff6
0xf60db0dcb07eb1b1

0b110 0x70e4228e70a3f8ff
0x9cc19db7de935d05

0x5eaaa2f0e48ef187
0x982cdffcf13dfb43

0xb455818159de0818
0x5809bcf5f3e87070

0x92584a68198c0286
0xd8b34f463af4b03c

0xe2ee9eaaa4ec5479
0x3cd6dc8228c5488d

0x3e2b1b189fbc10b4
0xe97d268ae2681267

0b111 0x5eaaa2f0e48ef187
0x982cdffcf13dfb43

0x70e4228e70a3f8ff
0x9cc19db7de935d05

0x92584a68198c0286
0xd8b34f463af4b03c

0xb455818159de0818
0x5809bcf5f3e87070

0x3e2b1b189fbc10b4
0xe97d268ae2681267

0xe2ee9eaaa4ec5479
0x3cd6dc8228c5488d

VMKEY
Transformation Result of

IB IA DB DA EX GA
0b000 0x7d7b0db350f67ff6

0xf60db0dcb07eb1b1

0xfb0b271a781b4e27

0xf625c898230bb934

0xe2ee9eaaa4ec5479

0x3cd6dc8228c5488d

0x3e2b1b189fbc10b4

0xe97d268ae2681267

0xb455818159de0818

0x5809bcf5f3e87070

0x92584a68198c0286

0xd8b34f463af4b03c

0b001 0xfb0b271a781b4e27

0xf625c898230bb934

0x7d7b0db350f67ff6

0xf60db0dcb07eb1b1

0x3e2b1b189fbc10b4

0xe97d268ae2681267

0xe2ee9eaaa4ec5479

0x3cd6dc8228c5488d

0x92584a68198c0286

0xd8b34f463af4b03c

0xb455818159de0818

0x5809bcf5f3e87070

0b010 0xe2ee9eaaa4ec5479

0x3cd6dc8228c5488d

0x3e2b1b189fbc10b4

0xe97d268ae2681267

0x7d7b0db350f67ff6

0xf60db0dcb07eb1b1

0xfb0b271a781b4e27

0xf625c898230bb934

0x70e4228e70a3f8ff

0x9cc19db7de935d05

0x5eaaa2f0e48ef187

0x982cdffcf13dfb43

0b011 0x3e2b1b189fbc10b4

0xe97d268ae2681267

0xe2ee9eaaa4ec5479

0x3cd6dc8228c5488d

0xfb0b271a781b4e27

0xf625c898230bb934

0x7d7b0db350f67ff6

0xf60db0dcb07eb1b1

0x5eaaa2f0e48ef187

0x982cdffcf13dfb43

0x70e4228e70a3f8ff

0x9cc19db7de935d05

0b100 0xb455818159de0818

0x5809bcf5f3e87070

0x92584a68198c0286

0xd8b34f463af4b03c

0x70e4228e70a3f8ff

0x9cc19db7de935d05

0x5eaaa2f0e48ef187

0x982cdffcf13dfb43

0x7d7b0db350f67ff6

0xf60db0dcb07eb1b1

0xfb0b271a781b4e27

0xf625c898230bb934

0b101 0x92584a68198c0286

0xd8b34f463af4b03c

0xb455818159de0818

0x5809bcf5f3e87070

0x5eaaa2f0e48ef187

0x982cdffcf13dfb43

0x70e4228e70a3f8ff

0x9cc19db7de935d05

0xfb0b271a781b4e27

0xf625c898230bb934

0x7d7b0db350f67ff6

0xf60db0dcb07eb1b1

0b110 0x70e4228e70a3f8ff

0x9cc19db7de935d05

0x5eaaa2f0e48ef187

0x982cdffcf13dfb43

0xb455818159de0818

0x5809bcf5f3e87070

0x92584a68198c0286

0xd8b34f463af4b03c

0xe2ee9eaaa4ec5479

0x3cd6dc8228c5488d

0x3e2b1b189fbc10b4

0xe97d268ae2681267

0b111 0x5eaaa2f0e48ef187

0x982cdffcf13dfb43

0x70e4228e70a3f8ff

0x9cc19db7de935d05

0x92584a68198c0286

0xd8b34f463af4b03c

0xb455818159de0818

0x5809bcf5f3e87070

0x3e2b1b189fbc10b4

0xe97d268ae2681267

0xe2ee9eaaa4ec5479

0x3cd6dc8228c5488d

B Comparison between ARM PA and Apple PA
Table 7: Comparison between ARM PA and Apple PA. We list what we find on M1 for the hardware implementation of Apple
PA and summarize these findings in a Summary.

Hardware ARM PA Apple Customization (Our Findings) Summary

Control Register SCTLR_EL1

SCTLR_EL1
APCTL_EL1.bit[2][3] (Enable/Disable PAC computation at
user/kernel)
APCTL_EL1.bit[1][4] (Enable/Disable EXTRAKEY_EL1 at
kernel/user)
APCTL_EL1.bit[0] (One-shot switch for enabling Apple PA)

Apple PA introduces a new control register to enable the Apple
PA mode and differentiate PAC computation at user/kernel

Key Register ARMKey_EL1

ARMKey_EL1/EL12/EL2
EXTRAKEY_EL1/EL12/EL2 (XOR with the ARMKey before
PAC computation)
VMDIV_EL2 (XOR with the hard-coded per-key-type salt be-
fore key transformation)

1) Apple PA introduces two new 128-bit key register to diver-
sify the PAC computation
2) Apple PA add system register redirection support to key
registers including ARMkey and EXTRAKEY

Key Access msr write

KeyLo_EL1 (write, 3 cycles)
KeyHi_EL1 (key transformation, 34 cycles):
• EL1: Trans(per-key-type salt � VMKEYLO, VMKEYHI,
operator of msr keyhi_el1, lowest 64 bits of key
register)
•EL2: Replace VMKEY with per-boot diversifier

Apple PA introduces key transformation and hardware-based
read protection on Key Access instructions

mrs read Trigger an exception

PAC/AUT addPAC/Auth Check
SCTLR_EL1

Check SCTLR_EL1, APCTL_EL1, CurrentEL
EXTRAKEY_EL1 � ARMKey (if needed) Apple PA adds checks and XOR operations in pac/aut instruc-

tion
computePAC QARMA Apple customized algorithm ( (KeyLo � modifier) as one of

the inputs)

Key Access

PAC/AUT

Hardware ARM PA Apple PA Summary

Control Register SCTLR_EL1

SCTLR_EL1
APCTL_EL1.bit[2][3] (Enable/Disable PAC computation at
user/kernel)
APCTL_EL1.bit[1][4] (Enable/Disable EXTRAKEY_EL1 at
kernel/user)
APCTL_EL1.bit[0] (One-shot switch for enabling Apple PA)

Apple PA introduces a new control register to enable the Apple
PA mode and differentiate PAC computation at user/kernel

Key Register ARMKey_EL1

ARMKey_EL1/EL12/EL2
EXTRAKEY_EL1/EL12/EL2 (XOR with the ARMKey before
PAC computation)
VMKEY_EL2 (XOR with the hard-coded per-key salt before key
transformation)

1) Apple PA introduces two new 128-bit key register to diver-
sify the PAC computation
2) Apple PA add system register redirection support to key
registers including ARMkey and EXTRAKEY

Key Access msr write

KeyLo_EL1 (write, 3 cycles)
KeyHi_EL1 (key transformation, 34 cycles):
•EL1: Trans(per-key salt VMKEYLO, VMKEYHI, operator
of msr keyhi_el1, lowest 64 bits of key register)
•EL2: Replace VMKEY with per-boot diversifier

Apple PA introduces key transformation and hardware-based
read protection on Key Access instructions

mrs read Trigger an exception

PAC/AUT addPAC/Auth Check
SCTLR_EL1

Check SCTLR_EL1, APCTL_EL1, CurrentEL
EXTRAKEY_EL1 � ARMKey (if needed) Apple PA adds checks and XOR operations in pac/aut instruc-

tion
computePAC QARMA Apple customized algorithm ( (KeyLo modifier) as one of

the inputs)

Hardware ARM PA Apple PA Summary

Control Register SCTLR_EL1

SCTLR_EL1
APCTL_EL1.bit[2][3] (Enable/Disable PAC computation at
user/kernel)
APCTL_EL1.bit[1][4] (Enable/Disable EXTRAKEY_EL1 at
kernel/user)
APCTL_EL1.bit[0] (One-shot switch for enabling Apple PA)

Apple PA introduces a new control register to enable the Apple
PA mode and differentiate PAC computation at user/kernel

Key Register ARMKey_EL1

ARMKey_EL1/EL12/EL2
EXTRAKEY_EL1/EL12/EL2 (XOR with the ARMKey before
PAC computation)
VMKEY_EL2 (XOR with the hard-coded per-key salt before key
transformation)

1) Apple PA introduces two new 128-bit key register to diver-
sify the PAC computation
2) Apple PA add system register redirection support to key
registers including ARMkey and EXTRAKEY

Key Access msr write

KeyLo_EL1 (write, 3 cycles)
KeyHi_EL1 (key transformation, 34 cycles):
•EL1: Trans(per-key salt VMKEYLO, VMKEYHI, operator
of msr keyhi_el1, lowest 64 bits of key register)
•EL2: Replace VMKEY with per-boot diversifier

Apple PA introduces key transformation and hardware-based
read protection on Key Access instructions

mrs read Trigger an exception

PAC/AUT addPAC/Auth Check
SCTLR_EL1

Check SCTLR_EL1, APCTL_EL1, CurrentEL
EXTRAKEY_EL1 ARMKey (if needed) Apple PA adds checks and XOR operations in pac/aut instruc-

tion
computePAC QARMA Apple customized algorithm ( (KeyLo modifier) as one of

the inputs)
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