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Abstract Platform A“%’l
A smart home involves a variety of entities, such as loT de- | .. Tum ohspoce &
. . . . . . eater i SIS
vices, automation applications, humans, voice assistants, and —  Tempenue T2
. -y . . . latiorm 1Ses -
companion apps. These entities interact in the same physical ®. | l]. Y e
environment, which can yield undesirable and even hazardous < - I the mode
| X o A Open window When temperature hen 1mntgoor At e Turn on
results, calledoT interaction threats Existing work on in- cxceeds S0F isopened 5 Awly  camer
teraction threats is limited to considering automation apps,(a) Cross-App Interaction (CAl) (b) Cross Manual-control and Au-
ignoring other IoT control channels, such as voice commands,reat tomation Interaction (CMAV) threat

companion apps, and physical operations. Second, it becomegigure 1:Examples of interaction threats. (a) The interaction of the
increasingly common that a smart home utilizes multiple IoT two apps may cause the window to be opened. (b) If the user sets
platformS, each of which has a partia| view of device states Vacation mode using a companion app, the automation cannot turn
and may issue con icting commands. Third, compared to de- on the camera when a break-in happens; such an interaction threat
tecting interaction threats, their handling is much less studied.Nvolves manual control and cannot be detected by prior work.

Prior work uses generic handllng pOlICIeS, Wh_'Ch are Fm“kely Table 1:Comparing prior work witH oTMEDIATOR (our work), regarding

to tall homes. We presentoT MEDIATOR, which provides whether the three limitations are addressdYes;7: No..

accurate threat detection and threat-tailored handling in multi-

) . : Detect Cross Support Threat-Tailored

platform multi-control-channel homes. Our evaluation in two Manual-control and | Multi-Platform | 0
real-world homes demonstrates thal M EDIATOR signi - SomrE ] A”toma"og'merac“on- Hor;‘es" .
cantly outperforms prior state-of-the-art work. [oTSan [50] 7 7 7
SafeChain [34] 7 7 7
I0TIE [23] 7 71 7
; iRuler [54] 7 7 7
1 |ntrOdUCt|0n HomeGuard [26] 7 7 7
loTCom [15] 7 7 7
Rapid development of 10T has led to the ourishing deploy- IoT(ESafed[?OJ] 7 7 7
. loTGuard [22 7 7 7
ment of smart homes. A smart home is a complex system — reoiator 3 3 3

inVOIVing a variety of entities, such as loT devices, automa- Some work [22, 23] recognizes this limitation but do not address it (Section 3.1).
tion applications, humans, voice assistants, and companion
apps. These entities interact in the same physical environmentchannel) ijgnoring other 10T control channels. Actually,
which can cause undesirable and even hazardous interactioin addition to the automation channel, an 10T device can be
results, callednteraction threatsFor example, as shown in  controlled through variousianual controkchannels, such as
Figure 1(a), an app, which turns on a space heater at 6pmgompanion apps, voice commands, and physical operations.
can trigger the execution of another app, which opens theFor example, as illustrated in Figure 1(b), a user setsthde
window when the temperature exceeds a threshold; this givesto Vacation using a companion app, which disables the au-
burglars a chance to break in. This problem draws great attentomation that turns on security cameras when the front door
tion [21, 23, 26, 29, 30, 34,50, 54]. However, as illustrated in is opened and the home is iAway mode. Unlike automa-
Table 1, existing work has three major limitations. tion apps, manual controls are less predictable. We call the
First, prior work is limited to studying Cross-App Interac- interaction between a manual control and automation apps
tion (CAl) threats [26], which are caused by the interaction of Cross Manual-control and Automation Interacti(@MAI),
automation apps (i.e., interaction threats via the automationwhich has not been studied yet.
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Second, it becomes increasingly common that a smart homedevices are connected to three platforms (SmartThings, open-

utilizesmultiple automation platforms [1,4,24], while exist-

HAB, Philips Hue) and 14 automation apps installed. The

ing 10T interaction threat detection systems typically assume evaluation demonstrates tHaT MEDIATOR can effectively
one single platform. At rst glance, it seems a trivial deploy- detect all the types of interaction threats and generate threat-
ment issue, since the user can deploy a threat detector at eactailored handling. We make the following contributions:

platform to adapt to a multi-platform home. However, on
one hand, it is not uncommon that some loT devices are con-
nected to one platform, while others to another. As a result,
eachplatform has a partial view of the devices and hence
it is dif cult for the multiple detectors thascatterin these
platforms to predict whether/when/how one device interacts
with another. On the other hand, one device may be controlled
through multiple platforms (e.g., both Google Home [9] and
Amazon Alexa [8]), which may issue con icting control over

Detecting Cross Manual-control and Automation In-
teraction (CMAI) Threats. We identify a new family of
interaction threats due to the interactions between manual
controls (via companion apps, voice commands or phys-
ical operations) and automation apps. While prior work
on interaction threats is limited to considering the automa-
tion channel, our work extends the scope to various control
channels and provides a comprehensive categorization.

devices. These issues are an elephant in the room: they cause
signi cant challenges in detecting interaction threats, while
existing work does not discuss them.

Third, despite the much work on detecting interaction
threats, theirhandling is much less studied. Static ap-
proaches [21, 23, 26, 29, 34, 50, 54] need users to discard,
rewrite or recon gure automation apps that may cause inter-
action threats, even though many reported threats are actually
false positives. A few works [22, 30] assume that generic pre-
de ned policies can t different homes, which is impractical
given the diversity of homes, scenarios and user preferences.
A security expert can de ne custom policies for a home [46],
but this approach does not scale well for many homes and
incurs extra costs. Threat-tailored handling that factors in the
context and consequences of a threat instance is much desire@ Threat Model
but not available.

We presentoTMEDIATOR, which addresses all the three _Interac_tion threats can be created or exploited by attackers
limitations. It provides accurate detection of interaction N Multiple ways. (1) Given those widely installed apps, an
threats in multi-platform multi-control-channel homes and attacker can develop and promote apps that cause interac-
generates threat-tailored handling. Inspired by [25], we lever-ion threats with the popular apps. The apps can individually
age a hub-based architecture, where a local mediator mediate8aSS the malicious-app checking but cause threats together.
the original communication between IoT devices and their (2) By snif ng encrypted WiFi traf ¢ of a home [24, 63], an
platforms. By unifying the device identi ers across multi- attacker can infer information about devices and apps in a
ple platforms, the mediator acquires a global view of device victim home and use it to inject and predict interaction th_reats.
events and commands. On top of this, a two-phase detecFor example, a robot vacuum c_Ieaner that starts working at
tion method is devised: it rst identi es interaction threat 10am triggers another app, which sets the homentme
candidates via static analysis, and then detects real threat§?0de when motion is detected [30]. An attacker can infer
based on dynamic information. An automation app can be when the interaction arises and break in a home, without trig-
modeled as one or more automation rules, each in the formd€fing an alarm since it is théiome mode. (3) Consider the
of Hrigger, condition, action. By considering the impact example _in Figure 1(a): via the inter_action threat, an attacker
of an automation rule on the trigger, condition and action of €&n manipulate a well secured device (e.g., the window) by
another rule or a manual control, we systematically categorize ©OMPromising a vulnerable device (e.g., turning on the space
interaction threats, including the new CMAI threats. When heater). Prior work [22, 26,29, 30, 34, 54] assumes a similar
a threat is detected, according to the threat type and othefthréat model.

dynamic information, threat-tailored handling is generated. e clarify that not all interactions are hazardous, but when
We evaluatel oTMEDIATOR in two real-world smart & New interaction arises, the user should be aware of it to

homes. The rstis a one-resident apartment installed with avoid confusions and undesired interaction results. Our work
' Jeports interactions to users and provides handling options.

Supporting Multi-Platform Homes. A multi-platform
home raises intriguing challenges in detecting and handling
interaction threats. We leverage a hub-based architécture
to mediate IoT messages between IoT devices and servers
and translate device IDs across platforms, which makes
cross-platform interaction detection and handling viable.

Threat-Tailored Handling. Given diverse homes and user
preferences, a one-size- ts-all solution using generic poli-
cies does not work wellOTMEDIATOR is the rst that
generates threat-tailored handling, which comprises user-
friendly options tailored to the threat instance.

21 automation apps and 22 loT devices, which are connecte
to four platforms: _SmartThln_gs, Alexa, IFTTT and Philips LWe clarify that the architecture was rst proposed by a work that protects
Hue. The second is a two-resident two- oor house, where 22 user privacy [25]; we employ it for a very different purpose (Section 3.2).
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heterogeneity and closed-source nature of most platforms,
neither can a generablizable technigue be found from exist-
ing work (e.g., code instrumentation [22,30] and API-based

App Source Code [l
Instrumentation

.
Interaction webhooking [30] are not applicable to most proprietary plat-
.“' S Thi Platf Threat i
IoT Devices martThings Platform Detector forms), nor does it hold that each platform supports at least
(a) Cannot capture manual controls one technique for third-party accessing (see Figure 2(b)).

To bypasghe limitation, a few works [22, 23] rewrite apps
from different platforms and migrate them to a single plat-
form, so that a single-platform approach can be applied. This
suffers from the following issues. (1) It needs signi cant ef-

7 u“ Imen forts to rewrite apps and mitigate apps from one platform to
o™ pibreat another. (2) Different platforms have different strengths (e.g.,
in app expressiveness, device connections, security and stor-
age), and the user may want to utilize the multiple platform to
bene t from the strengths. Therefore, we need to nd a viable
SRR VA corrective command path to deal with multiple platforms.

Phnimeraion Threat-tailored handling is needed.Handling approaches
Interaction proposed by existing works are in two categories: (1) re-
IoT Devices  SmartThimgs Platform &ggfggr con guring, re-w.rit'ing.or disgarding a.utomation apps, and
(2) enforcing policies in runtime. Static approaches [21, 26,
34,50, 54] usually propose the rst category since they can-
Figure 2:Limitations of prior systems. not intervene in the system runtime behaviors. The process
] ) is time-consuming and error-prone. Plus, due to false posi-
3 Design Overview tives, users may be asked to modify apps that do not cause
interaction threats. Dynamic approaches [22, 30] can employ
3.1 Challenges the second category. However, it is unclear how to de ne
generic policies that t all the diverse homes, user needs, and
scenarios. As an example, Celik et al. [22] use generic inter-
action handling policies and context-aware security policies.
Some generic policies are used to prevent interaction threats,
which is overly restrictive and disrupts desired automation.
Monitoring manual controls in real time is required for On the other hand, context-aware security policies, etige
detecting CMAI threats. Manual device control via com- door must be locked when a user is not present at home or
panion apps or voice commands generates cyberspace condieeping, de ne speci ¢ scenarios where devices must or
mands and results in new events. Manual physical operamustn't be in certain states. Nevertheless, it is dif cult, if not
tions do not generate cyberspace commands but cause neympossible, for experts to provide policies that t all homes,
events as well after changing device states. Neither statiCor for end users to de ne a complete set of such policies to pre-
approaches [21, 26, 34,50, 54] nor the instrumentation-based;ent all threats while ensuring good usability. Worse, existing
dynamic approaches [22,30] can capture manual controls. Astechniques, such as code instrumentation [22, 30], have other
shown in Figure 2(a), automation app instrumentation cannot |imjtations. As shown in Figure 2(c), the detector cary
monitor manual control behaviors since the commands do nOtintervene while instrumented automation apps are executed,

go through the automation apps. Therefore, to detect CMAI 5o cannot actively send post-execution corrective commands.
threats, the detector must be able to monitor manual controls

as well as automation apps.

Threat detection across multiple platforms needs a global

view. Most existing works [21,26,30,34,50,54] only consider We design a syster0OTMEDIATOR to detect and handle

a single-platform system (e.g., SmartThings or IFTTT) and interaction threats in multi-platform systems, overcoming the
cannot accurately detect threats in multi-platform homes. To aforementioned challenge$OTMEDIATOR can run on a
detect (and handle) interaction threats among automation appdocal device, such as a desktop, Raspberry Pi, WiFi router,
running on different platforms, a solution must have a global etc. Figure 3 shows its architecture, which has three modules:
view (and control) over the different platforms. To achieve Messenger, Threat Detection and Threat Handling.

a global view, one can employ a generablizable accessing TheMessengemodule is built to acquire a global view and
method for multiple platforms, or adopt an accessing method control over the multiple platforms. It has two components
supported by each individual platform. However, due to the device gatewagnddevice virtualizationwhich connect with

(']
IoT Devices

Alexa Platform
(b) Cannot generalize to other platforms

(c) Cannot send corrective commands

As illustrated in Table 1, existing approaches cannot detect
or handle interaction threats well in multi-platform multi-

control-channel homes. We discuss the challenges in design
ing cross-platform interaction detection and handling.

3.2 I0TMEDIATOR Overview
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IoTMediator ! Interaction Threat Detection !
" " 1 Potential Real |
Threat Detection Threat Handling ' Candidate ) Interaction !
Dynamic N Option i Screening !
Verification ld  Generation 1 1
Device Device ! !
Gateway Virtualization ‘““/'l"“\“““““'“?/
Candidate Solution Device Automation Real-Time
Screening Enforcement Model A Event and Events and
odels Pps Cmd. Logs Cmd.
Automation Apps % Figure 5:Cross-platform interaction detection framework.
(L2 Mobile Control
ﬂ 'O' Voice Control e G 0 @ . ) ] ) ) ) )
e IoT Control Layer vice types) to identify interaction threat candidates, which
ToT Devices IoT Platforms are monitored in the runtime bydynamic veri cationcom-

ponent to detect real interaction threats. When a real inter-
action is detected, theption generatiorcomponent in the
Threat Handling module automatically generates handling
options, according to the details of the detected threat in-
stance. Once a handling option is selected as the solution by
the user, thesolution enforcemertomponent enforces the
solution to handling the current and future occurrences of the
) interaction threat. We present the details of interaction threat
Figure 4:Device identi er uni cation across platforms. detection and handling in Section 4 and Section 5, respec-
tively. We are open-sourcing the codeloff MEDIATOR at
the smart devices and platforms, respectively. As shown in https://github.com/HaotianChi/loTMediator.
Figure 3, Messenger segregates and mediates the original
connections between loT devices and platforms. Therefore,4
Messenger is capable of (1) intercepting all events from loT

devices and forwarding them to |oT platforms; (2) intercept- Figure 5 shows the work ow of interaction threat detection,

ing all cyberspace commands coming from automation apps,, hich consists of two major phases: candidate screening and
companion apps and voice commands and forwarding themdynamic veri cation

to IoT devices; and (3) generating commands and sending
them to loT devices. . .
Comparison with PFirewallThe mediation architecture 4.1 ~Candidate Screening

was rst proposed in PFirewall [25]. Our work differs from  tpe candidate screening phase identi espaitentialinterac-
PFirewall in the following aspects. (Different purposes.  tions hetween each pair of automation apps (i.e., CAl), or be-
PFirewall, as well as Peekaboo [38], protects 10T user privacy, yyeen each manual control and automation app (i.e., CMAI).
while our work studies interaction threats. @pe-way vs.  Therefore, the candidate screening needs to take as inputs all
two-way mediationPFirewall mediates outgoing data ows  the trigger-condition-action rules de ned by automation apps
(i.e., loT events) only, whiléoTMEDIATOR mediates data  gnq all the device controls (i.e., commands) supported by the
ows in both directions (i.e., IoT events and commands). (3) gevices. This paper employs the existing rule extraction tech-
Cross-platform checkingFirewall does not conduct cross- pigues as a building block (see more details in Section 7). The
platform checking, Wh|ldoTM EDIATOR does. For example,  yevice gatewagan easily obtain the supported commands
when two platforms issue lock-related commands to a home, s each connected device from its device information during
|IOTMEDIATOR needs to gure out whether the two com-  the join phase. With these inputs, this paper focuses on the
mands refer to the same lock or not. To facilitate this capacity, jnteraction analysis based on automation rules and device
as shown in Figure 4, our Messenger assigns a uniqué D control commands.
to each physical device, and maintains a mapping between
the unique ID and an instance li&r platform that connects . .
the device. The mappings are then used to translate betweerﬁ"'l'1 |dentifying CAl Candidates
unique IDs and device instance IDs. Consider two automation ruleR = hT;;C; Al (i = 1;2),
ModulesThreat Detectiormnd Threat Handlingare built whereT;, C;, Aj denote the trigger, condition and action, re-
on top of Messenger. They are capable of viewing and con-spectively.R; andRy, if miscon gured, may cause interaction
trolling all the events/commands mediated by Messenger. Inthreats (e.g., con icts, chained execution). Figure 6 shows ex-
the Threat Detection module candidate screeningompo- amples of CAIl. Note that the contribution of this paper is not
nent utilizes static information (e.g., automation apps, de-to discover new CAl patterns, but to present a novel approach

Figure 3:Architecture of bTMEDIATOR.

Detecting Interaction Threats
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(a) Potential Race Condition

User arrives — Door.unlock
11:00pm — Door.lock

(b) Potential Race Condition

Sunset ——— »  Switch.on

v

Switchon ——» Door.unlock

6:00pm ——  » Heater.on

v
Temp.high —— Window.open

(c) Chained Execution

(d) Chained Execution

Figure 6:Examples of CAI.

Table 2: summary of different interaction threat patterns and the pre-

requisites for candidate screening. Notations: ," concatenates multiple

constraintsR; = hTj;Ci; Aii (i = 1;2; 3) denote three automation rules, where

T;, Ci, Ay denote the trigger, condition and action, respectiveljenotes a

manual controlT; = T, denotes that two triggers are the saig;) C,

andA¢y; C) denotes thaty,’s effect satis es and dissatis 5, respec-

tively; c) Cgandc; Czdenotes that's effect satis es and dissatis es

Cs, respectivelyA) 7! Ty denotes thal,'s effect triggersT,; c 7! Ts Figure 7:CAl patterns. In rule®Ry = hTin; Cm; Ami;m2f 1;2g, T,
denotes thaMC's effect triggersTs; A1 = : Az denotes that two actions have Cm andAn, are the trigger, condition and action, respectively.
conict; c= : Az denotes that a manual command and a rule action have

con ict; C1* C, denotes that both conditions could be satis ed.

Interaction Pattern Prerequisite

CAl - Condition Enabling A) C

CAI - Condition Disabling A, C

CAl - Race Condition Ti=T A= A

CAI - PotentialRaceCondition (RC) A= A

CAI - Chained Execution AT T, (a) Chained Execution (b) Potential Race Condition

CAI - Action Revert
CAl - Condition Bypass
CAI - In nite Loop

A1 7! Tz, A2: . A1
T1i=ThA=AC6C
AT T, AT T

CMAI - Chained Execution c7' T3
CMAI - PotentialRaceCondition (RC) c=:As
CMAI - Condition Enabling c) C3
CMAI - Condition Disabling c; G

(c) Condition Disabling (d) Condition Enabling

to detecting and handling CAl threats in multi-platform sys- Figure 8:Examples of CMAI.

tems. For the ease of presentation, we collect the CAl threat ) . ) )
patterns from state-of-the-art works [26, 50, 54], as shown in Automation Interactions (CMAI) and categorize them into
Table 2 and Figure 7. four patterns. Table 2 shows the prerequisite for candidate

We adopt the SMT-based approach in [26] for candidate _scree_ning and Figure 8 illustrates some CMAI examples. To
screening. We list in Table 2 the prerequisite that a pair of 'd€ntify all potential CMAI, we collect a set of all supported

rules, Ry andR,, must satisfy to be considered as a candi- controls by thg devices (i.e., actuators) in'a home, d.enotes
date of a certain CAl pattern. When the candidate screen-asc' .By CheCk'“,g whether e'ach contop C mterqcts with

ing component identi es a CAI candidati;: R, Pi where the trigger, condition and action of every automation app, and
two automation rule®; = ( Ti;Ci; A1) andRy = ( To:Cy: Ay) satis es the prerequisite of one of the four CMAI patterns (see
cause a potential threat pattd®nit reports the candidate to ~ 12P1€ 2I) ,all th::e C'\é'AI candidates are identi ed. Suppose a
the dynamic veri cation component, which veri es if the can- Manual contro and ir'] aUtomat'oré,:;‘EG satls es a C'_V'A'
didate actually causesal interaction in runtime. Note that pﬁtterrP. We recor this CMAI candidate as "’_‘tu“E,R& '_3' :
prerequisites of some CAI patterns, including race condition, All CMAI candidates are reported to tilynamic veri cation
potential race condition, condition bypass, in nite loop, are component. Note that manual contro!s are due to user actions
commutative, while the others are not and, in this case, the@"d ¢an only be captured at the runtime.

order ofR; andRy in hRy; Ry; Pi matters.

4.2 Dynamic Veri cation

4.1.2 Identifying CMAI Candidates , . , .
Candidate screening, through static analysis, has the advan-

Manual control, like automation actions, can interact with tage of quickly identifying potential interaction cases but
the trigger, condition, or action of automation apps. We cannot precisely determine if a candidate actually occurs in
term this family of interactions as Cross Manual-Control and a real environment. Figure 6(d) shows a chained execution
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Table 3:Notations used in Section 4.2.2 (Detecting Real Interactions), Table 4, and Appendix B.

Symbol Description

() A wildcard function argument that may be a rule’s trigger, condition, action, or a manual control.

E() A function that takes as input a rule’s trigger or condition, and returns the corresponding evestéch-on event) that can activate the input trigger
(e.g.,when switch is turned Qror satisfy the input condition (e.gf,the switch is currently on

) A function that takes as input a rule’s trigger, condition or action, and returns the corresponding device statefsjt@ gs,on which is subscribed to by the
input trigger (e.g.when switch is turned gnsatis es the input condition (e.gf,switch is currently ol or set by the input action (e.gurn on switcf.

C() A function that takes as input a rule’s action or a manual control, and returns the commartdife-gn-switch command) that is generated by the input
rule action or manual control (e.gurn on switch.

obs An assertion that an event or command is observed.

matchS()  An assertion that the current device state (et switch is ohmatches the anticipated st&$€) (e.g.,switch is on).

raienso The assertionmatchS( ), holds true during a speci ed time period.

candidate. Turning on the space heater at 6pm does not leadevert.| OTMEDIATOR checks the constraints below. If all the

to opening the windownlessthe heater increases the tem- constraints are evaluated true, an instance of the interaction
perature sensor’s reading above the threshold (note the temcandidate is veri ed and vice versa. Action revert is a special
perature sensor may have a distance from the heater). Falsease of chained execution, i.&;, when triggered byry,
alarms due to static analysis motivate us to further use dy-performs a contradictory action agaifgt The contradiction

namic veri cation to verify the candidates. of actions is con rmed in the candidate screening phase. Thus,
IOTMEDIATOR takes the same steps to dynamically verify if
4.2.1 Recognizing Manual Control and Automation R; andR» cause a chained execution or action revert.

To monitor manual controls and automation, the dynamic  obsE(Ty); matchS(C1); obsC(A1):  /* Ry is executed */
veri cation component listens to the incoming events and  matchS(: T,); /* The trigger ofR, was false */
commands in real time and accesses the historical eventand opsg(T,); /* The action ofR; activates the trigger d?» =
command logs maintained bpTMEDIATOR. Physical op- matchS(C,) /* The condition ofR, is true =
erations (e.g., turning on an outlet by pressing the button on

it) do not generate a cyberspace command but resultin a new |n addition to action-trigger chaining via cyberspace in-
event (e.g., the outlet reports an event). This pattern can teractions (Figure G(C) shows an examp|e7 where the ac-
be utilized to recognize physical operations. Manual con-tjon Switch.ongenerates an event that triggers the execu-
trols (through mobile/web companion apps, voice commands)tion of another automation rule), physical interactions also
and automation apps always generate cyberspace commandgause action-trigger chaining (Figure 6(d) shows an example).
Upon the reception of a command, we need to determine itsyyhjle detecting physical interactions is not our contribution,
source. Note that the execution of an automation app issue§ oTMEDIATOR provides full- edged capabilities for the pur-
certain command(s). We build a mapping for tracing from pose, including real-time event/command monitoring, historic
a command back to the automation app(s) that can generatyents/commands logging, and controlling devices. Specif-
this command. Then, we further check the precedent logs tojcally, we employ static physical interaction relations [29]
see which speci ¢ automation app has been activated and isin the candidate screening phase and verify real ones in the
sued the command. The source of the command is labeled aglynamic veri cation phaseloTMEDIATOR can be extended

automation:AppNameif an automation app is the source;  to incorporate techniques in loTSafe [30] and loTSeer [51]

otherwise, it is labeled asnobile/web/voice control . to handle special cases due to sophisticated physical effects,
such as continuous effect, joint effect, etc.
4.2.2 Detecting Real Interactions CAl - Potential Race Condition. The execution order of two

Given an interaction candidateR;: Ry: Pi or hc; Rs: Pi, the rulesR; andRy, which are vulnerable to potential race con-

dynamic veri cation component continuously monitors the dition, is non-deterministic since they have different triggers.

events and commands to see if an instance of the interac) Nerefore, we need to detect both casesRilip executed

tion candidate occurs. For each CAI/CMAI type, we de ne P€foreRe, and (2)R; beforeR;. We present how to verify the
a sequence of assertions thal MEDIATOR veri es in the former case below and the latter is similar.

runtime. See Table 3 for the notations. The veri cation is
terminated if one assertion is not true. A CAI/CMAI candi-
date is veri ed to be a real threat instance if its corresponding obsE(A;)! * The device state remains unchanged */
assertions are veri ed to be true. We discuss the dynamic obsE(T,); matchS(C,) /* until R, executes with con ict actions */

veri cation processes of several interaction patterns below

and those of the other patterns in Appendix B. CMAI - Chained Execution. To verify that a manual control
CAI - Chained Execution/Action Revert. Suppose two rules  c triggers the chained execution of an automation Riethe
R; andR; are a candidate of chained execution or action following constraints are evaluated.

obsE(Ty); matchS(C;); obsC(A;); /* Ry is executed */
matchS(A;)
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obsC(c); /* A manual controlcis observed */
matchS(: Tz); /* The trigger ofR; was false */
obsE(T3); /* The manual controt activates the trigger d®s */

matchS(Cz) /* The condition ofRs is true */

If a candidate is veri ed to yield a real interaction instance,
it is handled by the threat handling module (Section 5).

5 Handling Interaction Threats

Different from existing app-instrumentation approaches that
block or approve commands, our handling not only provides
options tailored to a threat context and their explanations, but
also generates corrective commands as needed.

5.1 Syntax of Handling Option and Solution

To handle an identi ed interaction thredQTMEDIATOR gen-
erates multiplédvandling optiong Optjjj = 1;2; g forusers
to select from (see Section 5.2). The selected handling op
tion is termed as thsolution(i.e.,SIn2f Optjjj = 1,2; Q).

A handling optionOpt; for an interaction threat consists of
one or moreoption rules each of which is is denoted as
OR= hV;I;GIT;V;Ai. V denotes the set of all device or
environment state values (e.mgtion sensor is activéime

is 8am andthe switch is ohin a smart homel denotes all
types of events and commands (e.g., evembtion-active
event: time-8am or commandurn-on-switch. Note that

5.2 Handling Option Generation

Comparison with Prior Approaches. Given the diversity

of smart homes and users, an interaction could be a user-
favored feature [34] or a security/safety threat, which depends
on three factors: (a) the interaction pattern; (b) the involved
automation apps and/or manual control; and (c) user inten-
tions/preferences. For each interactiotb] MEDIATOR ex-
tracts its corresponding factors (a) and (b) when detecting it,
but cannot obtain factor (c), as it is dif cult to gure out a
user’s intentions/preferences. Some existing works [26,50,54]
ask users to rewrite/recon gure/remove apps or specify secu-
rity policies to handle interaction threats, which allow users
to express their intentions/preferences (factor (c)); however,
it require non-trivial expertise in I0T and is error-prone [27].
Other works [22] de ne generic policies to handle all inter-
actions of the same patterns in the same manner (factor (a)),
reducing user efforts but ignoring the actually involved apps
and/or manual control (factor (b)), and of course ignoring
user intentions (factor (c)); as a result, they are often too
restrictive, which may violate user intentions and cause in-
correct interventions. In this papéQTMEDIATOR adopts a
threat-tailored strategy to handle interactions.

- Generating Options.Given an identi ed interaction,oT-

MEDIATOR considers handling choices that a user may make,
including allowing, prohibiting, and/or remedying the inter-
action.|OTMEDIATOR then generates handling options rep-
resenting these choices. The Handling Options in Table 4
show howl OTMEDIATOR generates handling options for an
identi ed interaction based on its interaction pattern (factor
(a)) and the involved automation app(s) and/or manual control
(factor (b)). ( Explanation Templates are described below

the state values, event types and command types are deviceind we present concrete examples in Section 5.3.)

sensitive. For example, thmotion-activeevents from two
motion sensors (labeled with different device IDs) are re-
garded as two different event®is a set of meta operators
f) ;)t= 19 !;gt that denotenforce enforce after tpass
the transmissiopdiscard the transmissiquliscard the trans-
mission within t and begin to pass afterrespectively.V
denotes a set of state valués V, all of which must be true
for ORto take action#\. The option rule actioA is a set of op-
erationsA= faja2 () 3y V[ (! :9'g" 1)[ 0g,
which include enforcing (without or with a delay device
statesf) ;)b V), passing or blocking events/commands

(f ;9 !;gt I') or doing nothing ).

We use a shorthardR= hT;V; Ai to denote an option rule
sinceV, | andO are shared by all option rules in the same

User Decisionsl OTMEDIATOR presents useful informa-
tion to help users make informed decisions (factor (c)), in-
cluding text descriptions of the identi ed interaction, the in-
volved automation apps and/or manual control, and the rec-
ommended handling options. A prior work [26] presented
how to generate text descriptions of interaction threats and
involved automation rules: populating pre-de ned text tem-
plates with concrete information of interaction threats and
automation rules. We extend the approach to additionally
generate textual explanations for handling options by populat-
ing text templates, as shown in the Explanation Templates
of Table 4. By reading the text, a user can pick a preferred
handling optionlOTMEDIATOR also allows users to save the
solution to handle future occurrences of that interaction.

home deployment. Thus, an option rule can be interpreted asg 3 Examples

when an instance of interaction threldt is detected, if all
state values speci ed by are true,|0OTMEDIATOR will take
actions inA. For simplicity of presentation, the setéandA
are referred to using a single elementinda;, respectively,
if they only have one element (i.&/,= fvigandA= fa;g).

We use examples of one interaction pattgrotential race
condition to show the followings: the rationale of the gen-
erated handling options, the advantage of our threat-speci c
handling compared to existing works, and the required user
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Table 4:Handling options and explanation templates for some of the interaction threat patterns (see Table 11 for the otherlaftMEB)ITOR generates
multiple handling options and an explanation for each option, which are provided to users for making informed decisions: understand whether an interaction is a
threat or feature, and allow/prohibit/remedy the interaction by choosing a solution from the handling options.

Interaction Pattern (P) Handling Options & Explanation Templates
Option 1: hiRy; Ry; Pi; 0,1 C(Ag)i + hiRy; Ry; Pi; 0,1 C(Ay)i
Explanation Template: The execution order does not matter, so let the two rules execute without intervention.
Option 2: hiRy; Ry; Pi; 0! C(Ag)i + hiRy; Ry; Pi; 05 [! C(Al);)[: C(A)]i
Explanation Template: The execution order matters and the nal device state should be decidegd thus, if actionA; is executed
rst, execute it agairt seconds aftef; is executedt(is 30 by default but con gurable).
CAI - Potential RC Option 3: hiRy; Ry; Pi; ;1 C(A)i + hiRy; Ry;Pis 0,1 C(As)iE C(AL)]i
Explanation Template: The execution order matters and the nal device state should be decided thus, if actionA; is executed
rst, execute it agairt seconds aftef, is executedt(is 30 by default but con gurable).
Option 4: hiRy; Ry Pi; @ ' C(A)i + hiRy;Ry;Pi 8 ' C(A)i
Explanation Template: A; andA, should not be issued too closely; instead, the time interval between the two actions
should be at least secondst( is 30 by default but con gurable).
Option 1: hiRy; Ry; Pi; 0,9 C(Ay)i
Explanation Template: Action A, should not be executed.
Option 2: hiRy; Ry; Pi; 0! C(Ap)i
CAl - Chained Execution Explanation Template: Action A, should be executed.
Option 3: hiRy;Ry;Piscond V! C(A)i
Explanation Template: Allow A; to be executed under a certain conditamnd (condis con gurable and can be specic
device states and/or time period).
Option 1: hit;Rs; Pi; 0;9 C(Ag)i
Explanation Template: Action Az should not be executed.
Option 2: hit;Rs; Pi;0;!  C(Ag)i
CMAI - Chained Execution Explanation Template: Action Az should be executed.
Option 3: hit;Rs; Piscond V! C(Ag)i
Explanation Template: Allow Ag to be executed under a certain conditemnd (condis con gurable and can be specic
device states and/or time period).
Option 1: hit;Rs; Pi;0;9 C(Ag)i
Explanation Template: Manual controk should always execute to override rule actfgn but the rule action should not
be executed to override the manual control.
Option 2: hit;Rs; Pi;0;!  C(Ag)i
Explanation Template: Manual controk and rule actiorAz can override each other.
Option 3: hie;Rs;Pi; @ ' C(Ag)i
Explanation Template: Manual controk should always execute to override rule actfgn but the rule action should not
be executed to override the manual control withift is 30 by default but con gurable).
Option 1: hit;R3; Pi;0;) S(Ag)i
Explanation Template: Action Az should be executed.
Option 2: hit; Rs; Pi; 0; 0i
Explanation Template: Action Az should not be executed.

CMAI - Potential RC

CMAI - Condition Disabling

effort for making decisions. (See Section 6.3 for more ex- trates an example where a reported potential race condition
amples and comparisons betwdeT MEDIATOR and prior case is problematic. The rst rule for convenienagocks
work with regard to handling other interaction threats. Note door when the user approaches hoared the second for
thatloTMEDIATOR has the limitation of increasing the user safetylocks the door at 11pmiThe two rules may or may not
effort, which is discussed in Section 7.) cause a real threat depending on the actual situations: (i) if the
user arrives before 11pm, everything works ne, but (ii) if the
user arrives after 11pm, the second rule runs before the rst
one; consequently, the door may be left unlocked overnight.
Static approaches such as those in [26, 50, 54] handle this
threat by presenting identi ed interaction threats as well as
both rules to users and asking them to rewrite/recon gure/re-
move automation rules. However, it harms the usability and
functionality by simply modifying rules since both rules have
their own functionalities. Some works [22, 30, 58] propose
that users could specify security policies based on a set of
expert-de ned security policies; however, none of the policies
listed in [22, 30, 58] can properly resolve the above Potential
Race Condition. For example, the generic polityo events
cannot respectively trigger two apps to perform con ict ac-
tions prevents the second rule from securing the home in
situation (i) and disables the rst rule to provide convenience
in situation (ii), showing poor performance due to the lack of
exibility in considering user intentions.

Example 1 of Potential Race Condition.It is non-
deterministic whether potential race conditiortase is de-
sirable or not. Consider the two rules in Figure 6(a): the rst
rule for convenienceurns on the ceiling lamp when motion is
detected in living roonand the second for energy savitigns
off all lights when user leaves horriehe two rules t the pat-
tern of potential race condition, i.e., the second rule overrides
the command of the rst rule when the user walks through the
living room and then leaves home; however, the interaction
actually does not cause a problem. Prior work [22] proposes
a generic policy two events cannot respectively trigger two
apps to perform con ict actiondor handling potential race
condition (Section 3.1). As a result, when the two rules are
triggered in a row, the second rule will be disabled by the
generic policy and thus lights are not turned off as expected.
Even for the very simple interaction case, the generic policy
fails to handle it properly. In contrast, witloTMEDIATOR,

a user who nds execution order and timing do not need to

be intervened in can choo€iption 1as the solution. As shown in Table 4,0TMEDIATOR provides a compre-

Example 2 of Potential Race ConditionFigure 6(b) illus- hensive set of options for users to handle a potential race
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Table 5:10T devices and their connections to platforrdsD : device ID.
Acronyms: SmartThings (ST), Philips Hue (PH).

Testbed Ty
d-ID Device Type Connected Platforms
SmartThings hub SmartThings
Philips Hue bridge Philips Hue
@ Presence sensor (smartphonk) SmartThings
PH motion sensor SmartThings, Alexa, IFTTT
@ PH motion sensor Philips Hue
Philips Hue bulb PH, SmartThings, Alexa, IFTTT|
LIFX bulb SmartThings, Alexa, IFTTT
(a) Testbed T (@) Wemo smart plug SmartThings, Alexa, IFTTT
® ST multipurpose sensor SmartThings, Alexa, IFTTT
[@) Kwikset door lock SmartThings, Alexa
@ ST power outlet SmartThings
(16 SmartThings motion sensor SmartThings, Alexa, IFTTT
(@) Alexa Echo Dot Alexa
ST WiFi plug SmartThings, Alexa, IFTTT
Testbed T,
d-ID Device Type Connected Platforms
SmartThings hub SmartThings
Philips Hue bridge Philips Hue
@-® Philips Hue bulb PH, SmartThings, openHAB
(b) 1st oor of Testbed 3 (c) 2nd oor of Testbed § @ ThirdReality switch SmartThings
. ®1® PH motion sensor SmartThings, openHAB
Figure 9:Floor plans and device placement. Devices denoted by ST power outlet SmartThings
the ID numbers are listed in Table 5. For the sake of brevity, loT a9 ST multipurpose sensor SmartThings, openHAB
. . ST WiFi plug SmartThings
hubs/bridges are not illustrated. Ao Essential camera SmartThings
Presence sensor (smartphonk) SmartThings

condition. A user can choose to allow or prohibit the interac-

tion, or x it by taklng into consideration the execution order and automation apps are listed in and Table 5 and Table 6,
and/or timing of the involved automation rules. In Example respectively. In total, 44 devices and 35 automation apps are
2,|I0TMEDIATOR presents the text descriptions of the rules jnstalled on ve different platforms (Alexa, IFTTT, Smart-
and the interaction, and the explanation of options to the userThings, openHAB, and Philips Hue). The apps are chosen
When perceiving that the nal door S'tate should be deC|ded from of cial app stores [7] and open-source datasets [2], or
by the second rule, the user seleistion 2as the solution,  developed by the authors based on the examples from related
which is interpreted asthe execution order matters and the  jiterature [21,22,26,29]. In each testbédT MEDIATOR runs

nal device state should be decided by the second rule; thus,gn 3 Raspberry Pi 4 Model B. All the 10T devices, hubs and

if the action locks the door is exeCUte.d Ist, executg it again Raspberry Pis are provisioned by the researchers, except that
30 seconds after unlocks the door is executethis way,  the home wireless routers are offered by the testbed residents.
the interaction threat can be handled properly. We obtained an IRB approval for the research.

6 Evaluation 6.2 Interaction Threat Detection

In Section 6.1, we describe the deployment details of two real- To evaluate the performance of interaction detection, we rst
world smart home testbeds used for evaluatiofM EDIA- run the candidate screening component in both testbeds and
TOR. We present the performancelafTMeDIATOR interms W€ nd 12 app groups (i.e., candidates) that haegential

of interaction threat detection and handling in Section 6.2 and interaction threats for further testing. We compare the perfor-

Section 6.3, respectively. Latency introduced bf MEDIA- mance ofl OTMEDIATOR with existing approaches through
TORis discussed in Section 6.4. both microbench and one-week experiments.
6.1 Smart Home Testbeds 6.2.1  Microbench

In this setting, we manually operate devices and trigger apps
in each test group to check if oubTMEDIATOR and prior
systems [22, 26, 30, 54Fan detect the interactions accurately.
We manually enumerate all possible combinations of initial
device states in each group and then operate the devices to
trigger the apps. The total number of combinations of initial

There are no publicly available datasets of entire-home con g-
urations that include devices, platforms, automation rules and
logs (events, app commands and manual control). Similar to
previous loT security research [22, 25,26, 30,63], we build our
own smart home testbeds, denoted asfd T, to evaluate
IOTMEDIATOR. T is an apartment with one residentangd T

is a two- oor house with two residents. The oor plansand de- ~ 2ye have the code of HomeGuard [26] and implemented the approaches
vice placements are shown in Figure 9. The details of devicesin [22, 30, 54] for conducting the evaluation.
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Table 6:Automation apps in the two testbed®lD: app ID.

Testbed| RID | App Description and Device Binding Platform
1 When motion® is detected in living room, if luminangg) is below 15 lux, turn on oor lami@ and ceiling lami®. SmartThings
2 When front dooi@3 is opened, turn on ceiling lan@®. SmartThings
3 When motion® is detected in kitchen, turn on the outlets for microw@geand heate?. IFTTT
4 When motion® is detected in kitchen, if temperatu@® is above 72 F, turn off the heater outlé. SmartThings
5 When the use@ arrives home, unlock the front do@s. SmartThings
6 When 11pm, turn off the kitchen ligh@®). Philips Hue
T 7 When 11pm, lock the front do@@ and turn off outlet§i)@). SmartThings
L 8 When the powefid is higher than 1800W, turn off the heater outiet SmartThings
9 When motion®) is detected in bedroom, if the time is between 9am and 11pm, turn on theglight SmartThings
10 When motion® is detected in bedroom, turn on the ligt Alexa
11 When 6pm, if the home is not isavingmode, turn on the heat@p). Alexa
12 When temperatur@9 exceeds 75F, if the home is irsavingmode, turn on the window opener swit@. IFTTT
13 When oven outleg9 turns on, set the location modearty mode. SmartThings
14 When the location mode changespiarty mode, unlock the dogf), and turn on lightsp®®@(9 and microwave outlef). SmartThings
1 When motion is detected, if luminanc@ is below 15 fux, turn on ceiling lam@ and oor lamp®. SmartThings
2 When motion@g is detected in bedroom, turn on ceiling la@p SmartThings
T 3 When illuminance® falls below 10 lux in living room, if any usefg( is at home, turn on ceiling ligh®@®. SmartThings
2 4 When illuminance® exceeds 30 lux in living room, if motio@® is inactive, turn off ceiling lightsd@®. openHAB
5 When the door conta®) is open, if the home is iawaymode, turn on camei@. SmartThings
6 When motio is detected in bedroom, if the home isiamemode, turn off camer. openHAB

Table 7: Microbench experiment for the comparison of interaction detection between the state-of-the-art approaches (with global view) Best ours.

Group: a candidate of a certain interaction pattern; it consists of a pair of automation rules, or a manual control and an automéatipnthéenumber of all
combinations of initial device states in an test group. Note that static approaches report a test group as problematic as long as one of the combinations causes a
real interaction threafNy: the number of initial device state combinations that cause a real interaction, based on our observations on the geticeistagh

N/A denotes that a work does not consider and therefore cannot detect a speci ¢ interaction patteneans that the value cannot be computed due to

divided by zero . For instance, HomeGuard [26] never identi es the test group 11 & 12Ads Chained Executiorsince the conditions of Rules 11 & 12 have

no overlap; thus, the calculation of precision (i.e., the ratio of correctly reported cases to all reported cases) encounters divided by zero .

Testbed Test Interaction N N Precision, Recall

Group Pattern all ot HomeGuard [26] | iRuler [54] loTGuard [22] loTSafe [30] Ours
5&7 CAl Potential RC 24 6 0.25, 1.00 N/A 1.00, 1.00 N/A 1.00, 1.00
11&12 CAl Chained Execution 128 2 ,0.00 N/A N/A 0.50, 0.50 1.00, 1.00
13&14 CAl Chained Execution 256 63 0.25,1.00 0.25,1.00 1.00, 1.00 0.25, 1.00 1.00, 1.00
T1 3&4 CAIl Race Condition 16 4 0.25, 1.00 0.25, 1.00 1.00, 1.00 N/A 1.00, 1.00
3&8 CAIl Action Revert 16 2 0.13, 1.00 0.13, 1.00 N/A N/A 1.00, 1.00
1&2 CAIl Condition Disabling 16 1 0.06, 1.00 0.06, 1.00 N/A N/A 1.00, 1.00
9&10 CAl Condition Bypass 8 1 N/A 0.13, 1.00 N/A N/A 1.00, 1.00
sethomemode &5 | CMAI Condition Disabling 8 2 N/A N/A N/A N/A 1.00, 1.00
sethomemode & 6 | CMAI Condition Enabling 8 2 N/A N/A N/A N/A 1.00, 1.00

T2 1&2 CAIl Condition Disabling 16 0 0.00, 0.00, N/A N/A ,

3&4 CAIl In nite Loop 192 6 0.03, 1.00 0.03, 1.00 1.00, 1.00 N/A 1.00, 1.00

device states is denoted Idg;. We observe that several com- interaction when the involved devices are in certain state com-
binations of the test groups indeed cawusal interactions,  binations, a small portion of all possible ones. Thus, static
while others do not. We record the observation results asapproaches [26, 54] usually have a low detection precision
ground truths The number of combinations per test group (i.e., high false detection ratgsince they do not take the
that cause real interactions is denoted\gs After that, we real-time device state into considerations and simply report
repeat the above enumeration process; instead of manual olpotential interactions (i.e., candidates). On the contrary, dy-
servation, we rumOTMEDIATOR and prior systems alongside  namic approaches [22, 30] have a high detection precision
to detect interactions under each enumeration in every tes{mostly equal to 1.00) because they only report real interac-
group. For each test group, the testing results of each worktion cases that have been observed in runtime. However, for
on all combinations is compared against the ground truthseach of the prior systems [22,26,30,54], there are multiple test
to calculate two detection performance metripsecision groups (marked wititN/A in Table 7) that cannot be detected,
(i.e., the ratio of correctly reported cases to all reported cases)since they do not consider some of the interaction patterns in
andrecall (i.e., the ratio of correctly reported cases to all their designs.
problematic cases). Moreover, none of the prior systems can detect any CMAI
Note that onlyloOTMEDIATOR has a global view on multi-  since they cannot capture manual controls. To sum up, the
ple platforms. To exclude the impact of the global view issue three prior systems [22, 26, 54] have low precision for all the
and only compare the interaction detection capacity, we lettest groups. loTGuard has precision of 1 for only 5 out of
prior systems in comparison have a global view on multiple 12 test groups. The four prior systems [22, 26, 30, 54] have
platforms (by manually migrating all apps to a single plat- a Recall of 1 for no more than 6 out of the 12 test groups.
form). The results are summarized in Table 7. By comparing On the other hand OTMEDIATOR can detect all interaction
Nai andNgt, we know that a candidate only causes a real patterns since it can monitor control behaviors from multiple
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control channels. This shows th@@TMEDIATOR has an 6.3 Interaction Threat Handling
advantage of detecting all interaction patterns, since it can

monitor control behaviors from multiple control channels and W& comparelOTMEDIATOR with two related work loT-
it considers all the interaction patterns in design. Guard [22] and loT Safe [30] regarding handling of interaction

threats. loTGuard [22] enforces both generic interaction han-

Atestgroup 11 & 12n testbedTs interesting and we dis- dling policies (G) and context-aware security policies (C).

cuss it below. Although the static approach HomeGuard [26] loTSafe [30] only provides context-aware security policies
can detect chained execution in general, it fails to identify the y P Yy P

ieracion etveen s 11 and 12, Fues 1 and 12 nawl0), OUTOTSDNTOR Sl 0 e e
exclusive conditions if the home is not in (energsgving : 9

. - . " comparison, loTGuard and IoTSafe are assumed to have a
mode and if the home is irsavingmode , respectively, so : . :
. . . . global view and control over multiple platforms although their
they are considered impossible to run in a row. However, designs do not have these features. Based on the recorded
when the heater (turned on by rule 11) is heating the room 9 '

(observed by rule 12), the home mode may be changed fromground truth in Section 6.2.1, we manually trigger apps and

other modes tsaving;node Which makes the condition of reproduce the interaction in each test group for three times.
rule 12 true. Therefore, HomeGuard misses the detection ofilno_er\éelgrrdeplzo_l(_jsug;{;onénvg;uMnEngTngt)hﬁ) tr?;zlgriﬁgoﬁ‘:hes
chained execution between rule 11 and 12. On the other hand ' ’

loTSafe [30] achieves 0.50 precision and 0.50 recall, becauseteracuon' When running loTGuard and loTSafe, we choose

loTSafe applies one-time testing result (i.e., the heater the appropriate policies from their pre-de ned policies. As to
can/cannot heat the room and increase thé témpel@ttcre IOTMEDIATOR, it generates handling options for each threat
above 75F) to predictwhether rule 11 always triggers rule instance and has the use_r phoose qne as the SOIL.mon'

12 in the future run. However, the heating process may be Table 9 shows the policies/solutions for handling all test
affected by other factors such as heater interruption or seasorffoupPs and the_testlng reSl_JIts. Atestgroupis co,nS|dered han-
difference, making the runtime has an opposite result to the91€d Properly if the handling matches the user’s preference
one-time testing ondOTMEDIATOR detects the interactions and is con rmed to cause no safety risks by the researchers.

accurately since it fully utilizes the real-time information. We nd that only one test group 11 & 12 in testbgd d’an. .
be handled properly by the context-aware security policies

from loTSafe and only one test group 3 & 4 in testbecdc@n

be handled properly by the generic policies provided by loT-
Guard. This shows that it is very dif cult, if not impossible,

for security experts to pre-de ne policies that can handle all
the interaction threats because the automation apps and user
demands could be very diverse and complex in different smart
homes. On the contrary, ol0TMEDIATOR generates threat-
tailored solutions according to the interaction patterns and the
involved apps (and manual controls) in each test group, and
hence it can handle interaction threats much more effectively.

6.2.2 One-Week Testing

While the microbench experiment highlights the coverage
of various initial device state combinations, this experiment
examines real-world scenarios. Speci cally, we run both
testbeds T and T, in a realistic setting: the residents are
asked to behave normally. We collect one week of the de-
vice event and command logs in both testbeds for evaluating
the detection performance of oLWTMEDIATOR and two
dynamic approaches loTGuard [22] and loTSafe [30]. Sim-
ilar to the microbench experiment, we give loTGuard and g 4 Latency

loTSafe a global view to detect interaction threats. Table 8

shows the results. loTGuard and loTSafe achieve the samd OTMEDIATOR introduces an extra latentyto the system.
performance in most test groups except 11 & 12 and 13 & 14.The latencyL consists of the computation latenky for inter-

In the dynamic testing, the heatgtheats the room and makes action detection and handling, and the additional transmission
the temperature sensgrmeasurement exceeds the threshold. delay. The additional transmission delay includes the event
With this knowledge for detection, loTSafe can always detect transmission delal, from |OTMEDIATOR to the platform

the real interaction in 11 & 12, if any (i.e., recall is 1.00). (including decryption and encryption at the hub) and the com-
Rule 11 only triggers rule 12 once in its 7 executions. 10T- mand transmission delay in the reverse direction. Thus,
Safe has a 1.00 precision (compared to 0.25 in the microbenchapproximately equals to the sum of computation latdncy
experiment) in the group 13 & 14 because rules 13 and 14 and a round-trip transmission deldyL,, i.e.,L= L1+ 2 Ly.

are always triggered in a chain in the one-week running. loT- We obtainL, by measuring the average computation time it
Safe reports many false alarms (i.e., precision is 0.14) since ittakes forlOTMEDIATOR to process an incoming event or
uses testing result rather than dynamic runtime information to command, and obtailn, by measuring the elapsed tirfrem
detect interactions. In contrasgTMEDIATOR detects inter-  the momentOTMEDIATOR receives an evertd the moment
actions in all test groups effectively and accurately, consistentthe platform receives the event. Three platforms are evaluated
with the results in the microbench experiment. in the above way: SmartThings, Alexa and openHAB. Note
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Table 8:0ne-week experiment in realistic settings for the comparison of interaction detection between dynamic approaches (with global viewNand ours.
andNy: the number of times the rst and second apps in a test group totally exédgtehe number of times a test group causes real interactions. Similar to
Table 7,N/A means that an approach cannot detect the interaction pattern andeans that the value cannot be computed due to divided by zero .

Test

Interaction

Precision, Recall

Testbed Group Pattern Ny N2 Nt loTGuard [22] loTSafe [30] QOurs
5&7 CAl Potential RC 6 7 6 1.00, 1.00 N/A 1.00, 1.00
11&12 CAl Chained Execution 7 1 1 N/A 0.14,1.00 1.00, 1.00
13&14 CAIl Chained Execution 2 2 2 1.00, 1.00 1.00, 1.00 1.00, 1.00
T1 3&4 CAl Race Condition 785 | 214 | 214 1.00, 1.00 N/A 1.00, 1.00
3&8 CAl Action Revert 14 8 7 N/A N/A 1.00, 1.00
1&2 CAIl Condition Disabling 31 12 5 N/A N/A 1.00, 1.00
9&10 CAl Condition Bypass 79 461 | 382 N/A N/A 1.00, 1.00
sethomemode & 5 | CMAI Condition Disabling 8 8 2 N/A N/A 1.00, 1.00
sethomemode & 6 | CMAI Condition Enabling 8 398 8 N/A N/A 1.00, 1.00
P 1&2 CAIl Condition Disabling 33 16 0 N/A N/A s
3&4 CAIl In nite Loop 25 19 12 1.00, 1.00 N/A 1.00, 1.00
Table 9:Evaluation results of interaction handling.
Test Handled Properly?
Testbed G Solutions Provided By Each Work loTGuard loTSafe
roup 122] 130] Ours
loTGuard [22]: (G) two or more events cannot trigger two con icting actions; (C) N/A.
loTSafe [30]: (C) N/A. 7 7 3
5&7 Ours: The execution order matters and the nal device state should be decided by rule 7. Thus, if actiop lock
front door@) and turn off outletgi)? is executed rst, execute it again 30 seconds after unlock front dopr
is executed. (This example is discussed in Section 5.3).
loTGuard [22]: (G) a rule action cannot be taken if it triggers another rule; (C) N/A.
11&12 loTSafe [30]: All windows(9 should be closed when the ugpiis away. 7 3 3
Ours: Action turn on the window opener swit@@ should not be taken.
loTGuard [22]: (G) a rule action cannot be taken if it triggers another rule; (C) N/A.
13814 loTSafe [30]: (C) N/A. 7 7 3
Ours: Action unlock the doo@4), and turn on lights2@®®(9 and microwave outlel) to be taken under
T the condition: the use@® is present .
1 loTGuard [22]: (G) the same event cannot trigger two con icting actions; (C) N/A.
3&4 loTSafe [30]: (C) N/A. 7 7 3
Ours: When con icting, action turn off heater? should be taken and turn on heat@® be blocked.
loTGuard [22]: (G) a rule action cannot be taken if it triggers another rule; (C) N/A.
388 loTSafe [30]: N/A. 7 7 3
Ours: Allow action turn off the heater outléD) to be taken to override turn on the outlet for heafgy
under the condition: motiok® is inactive .
loTGuard [22]: (G) N/A; (C) N/A.
1&2 ToTSafe [30]: (C) N/A. 7t 7t 3
Ours: Action turn on oor lamp@® and ceiling lamgg) should be taken.
loTGuard [22]: (G) the same event cannot trigger repeated actions; (C) N/A.
9&10 ToTSafe [30]: (C) N/A. - 2 3
Ours: Take action turn on the Tigl® when the time is between 9am and 11pm.
sethome loTGuard [22]: (G) N/A; (C) N/A.
mode & 5 |_1oTSafe [30] (CYN/A, 7 7 3
Ours: Action turning on camer@? should be taken.
sethome | _1oTGuard [22]: (G) N/A; (C) N/A.
mode & 6 |_lo15afe [30]: N/A. 7 7 3
Ours: Action turn off camergg should be taken.
loTGuard [22]: (G) N/A; (C) N/A.
T 1&2 loTSafe [30]: (C) N/A. 7 7 3
Ours: Do nothing since no real interaction occurs.
loTGuard [22]: (G) a rule action cannot be taken if it triggers another rule; (C) N/A.
3&4 loTSafe [30]: (C) N/A. 3 7 3
Ours: When the two rules form a loop, only action turning off ceiling ligi®@® should be taken.

L Interactions cannot be handled properly since it cannot be detected correctly in the rst place.

Table 10:Average latency introduced bpTMEDIATOR (in seconds). L, during the experiments in Sections 6.2 and 6.3
2 . RCH

Platform Computation One-Way Transmission Total
LatencyL. LatencyL. LatencyL . .
b = 4 As shown in Table 10,0TMEDIATOR introduces a total
Sm’;’gﬁmgs o PN o= latency of 0.722, 0.632 and 0.524 second on Alexa, Smart-
openHAB 0.236 0.144 0.524 Things and openHAB, respectively. Note that users experi-

ence little interruption in actual usage because (1) most rules
(e.g., Rules with RIDs 3-8 and 11-15 in the testbgdand

that the other two platforms IFTTT and Philips Hue do not 4-9 and 11-12 in the testbeg)Tare not time-critical; and (2)
provide a convenient way for the researchers to obtain thethe sub-second extra latency is small compared to the original
exact time when they receive an event. We benchrhadnd operation time, which ranges from 1-3 seconds in our tests.
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7 Limitations and Discussion control-channel systems. Fernandes et al. [31] and Mi et
. ) ) al. [47] unveil the security vulnerabilities on |oT platforms,

Scalability and Extension. This work focuses on smart. SmartThings and IFTTT, respectively. Much work investi-

homes. Large spaces, such as a campus, can be divided mtaates loT application security [18, 20, 36, 45, 48, 55]. For

several smaller subspaces, such as buildings/rooms. This Wayexample, Westworld [45] presents the rst dynamic symbolic
interaction threats in subspaces can be detected in a Scalablsxecutor for 10T apps to nd their bugs. Solutions have been
way. The challenges are how to properly divide a large spacep,,hsed to enhance loT authentication [40, 41, 56, 59], pri-
and how to detect threats across subspac_e_s. We leave th'§acy [25,44,57], voice commands [62], access control [28,39],
as_future work. To further increase scalability, the COMPU- ware [52], anomaly detection [19, 32], etc. Researchers
tation can be of oaded from a local hub to one or multiple ;ji;e security policies [46] to ensure that devices are in safe
servers. Moreover, this work considers the most common g-ias vyuan et al [61] report the design aws in the loT
interaction patterns, where an automation rule interacts with 4. ice access delegation mechanisms across multiple 10T
another rule (or manual control). Actually, the interactipn clouds. CGuard [35] highlights an 10T device usually can be
effect of two rules can be modeled as a virtual rule, which o616 through different communication channels, such
interacts with another rule. Existing techniques [15] can be o 7ighee/zwWave and Bluetooth, and detects inconsistencies
applied to studying such special cases of interaction threats. yorveen the policies imposed to different communication
User efforts. To usel OTMEDIATOR, a user needs to change channels. Fu et al. [33] exploits vulnerable timeout mecha-
the way of adding new devices and migrate the existing de-nisms of 10T protocol stacks to launch loT phantom-delay
vices tol OTMEDIATOR. Speci cally, the user rstconnects  attacks. Recent work [24] presents new interaction-based
a device td OTMEDIATOR, which then creates a virtual de-  attacks that exploit different delays on different platforms.
vice for the device and connects it with the user-speci ed loT

platform(s). Another effort is that the user needs to choose attention. Many works are done to categorize [15, 26, 54],

a handling solution from the recommended options for each understand [16, 17, 29], detect [14, 15, 21, 22, 26, 27, 34, 37,

Qetectgd mtergc'tlon. A concern IS that Users are error-p'rone43, 49,50, 54, 60], simulate [27] and handle [42] interaction
in making decisions, as they do in con guring automation

) . . . threats. For instance, HomeGuard [26] is the rst that sys-
apps. However, unlike con guring automation apps without tematically categorizes and formally describes Cross-A
a global view, users dfoTMEDIATOR are better informed y 9 y P

; . : . Interaction threats. However, they only consider interaction

when choosing a solution: they are prompted with the interac- L
tion context and the effect of each handling option threats in single-platform homes. A few works [22, 23] recog-

_ . _ ' nize challenges in multi-platform homes, but they both con-
Hybrid threat handling. Our future work is to study how  vert IFTTT rules into equivalent SmartThings apps, and use
to combine our runtime threat-tailored handling with static- smartThings to run all the rules; essentially, they still detect
analysis-time handling and generic policies. For example, We interaction threats in a single-platform home. Our work is the
consider allowing users to resolve the obviously problematic st that conducts cross-platform interaction threat detection.
threat candidates (such as the example shown in Figure 6(c)Moreover, existing works only detect interactions between au-
allin once with a setup wizard-like Ul before the dynamic  tomation apps. Our work is thest that detects interactions
veri cation phase, which could reduce user burden at runtime. hetween automation apps and various manual controls. Our

Moreover, in urgent scenarios, generic safety policies are enyork is also therst that provides threat-tailored handling.
forced as soon as possible to get rid of the user response time,

and threat-tailored solutions are applied for further handling.

Attack surface. Like many loT security solutions [22,25,30, 9 Conclusion
39,53] (such as PFirewall [25], Peekaboo [38], loTGuard [22]
and loTSafe [30])] oTMEDIATOR adds a mediation module, We presentetioTMEDIATOR, the rst system that detects loT
which could become a potential attack target and a singleinteraction threats in multi-platform homes. A new family
point of failure. Many existing techniques, such as rewalls of interaction threats has been identi ed and studied, which
and IDS, can be used to enhance the mediator. Nofe concerns the interaction between manual controls and automa-
MEDIATOR does not introduce new protocols; it uses the tion.|OTMEDIATOR uses two-way mediation and device ID
same protocols used by IoT hubs to connect IoT devices andtranslation to conduct cross-platform interaction checking. It
those provisioned by platforms to connect virtual devices.  is also the rst system that provides threat-tailored handling.
It generates handling options according to threat instance in-
8 Related Work formation and interprets the threat context and consequence
to users for decision-making. We evaluated MEDIATOR
Smart Home Security. Smart home security has been exten- with 44 |oT devices, ve loT platforms, and 35 automation
sively studied, but not much research has studied the uniqueapps in two smart-home testbeds, showing todtMEDIA-
threats and challenges raised by multi-platform and multi- TOR signi cantly outperforms prior work.

Interaction Threats. Interaction threats draw much research
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Implementation Details of Messenger

The device virtualization module handles interactions be-B  Dynamic Veri cation of Other Patterns

tween virtual devices and platforms, including adding/remov-

ing devices to/from platforms, pushing device events to plat- In this appendix, we present the dynamic veri cation process
forms, responding to the platform’s pulling for device states, of interaction patterns that are not discussed in the main text.
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CAI - Condition Disabling. IOTMEDIATOR listens for the
rst event E(Ty). If observedE(T;) will trigger Ry when

it arrives the platform running;. To determine ifRy will
pass its condition checkingpTMEDIATOR checks ifR;’s
conditionC; satis es by querying the local database since

alternately, doubles the steps of chained execution. Suppose
in nite loop starts fromRy, the process is shown below. Note
thatlOTMEDIATOR also veri es the case where in nite loop
starts fromRy, which is symmetric to the former case.

it synchronizes with the remote database maintained by the ©0bsE(Ti);matchS(Ci);0bsC(A1);  /* Ry executes */

platform runningR;. If true, IOTMEDIATOR continues wait-
ing for the commandC(A;) issued byR;. WhenC(A;) is
observed] oTMEDIATOR checks ifRy’s conditionC, was
true before forwarding the command. After forwarding the
command)oTMEDIATOR will observe a new evert(: Cy)
which makesC; turns from true to false, as indicated by
A1) GC;inthe candidate screening. ThusTMEDIATOR
keeps monitoring i€, remains false until observing an event
E(T,) that triggersR,. If so, a condition disabling instance
betweerR; andR; is identi ed in the runtime and this CAI
candidate is veri ed to be a real interaction threat.

obsE(Ty); matchS(Cy); /* Ry will execute */
obsC(A1);matchS(Cy); /* C, was true befor®; executes */

obsE(: Cy)! match: Cz) /* C; becomes and remains false */

obsE(Tz): /* Until Ry is triggered */

CAI - Condition Enabling. The veri cation of a condition
enabling candidate is highly similar to that of condition dis-
abling, except that it checksk; enabledR,’s condition rather
than disables, as presented below.

obsE(T1);matchS(Cy); /* Ry will execute */
obsC(A;); matchS(: Cp); /* C, was false befor®,; executes */

obsE(Cy)! matchS(Ce) [* C; becomes and remains true */

obsE(T): /* UntilRy is triggered */

CAl - Race Condition. When observing the evelbi(T;)
which triggers both ruleR; andR,, IOTMEDIATOR checks
if both conditionsC; andC; are true. If so, both rules will

proceed to take contradictory actions upon their platforms

receive the trigger event, i.e., the candidBieandR, are
veri ed to cause a real threat.

obsE(T1); /* Both rules will be triggered */
matchS(Cy); matchS(C;)  /* Both rule conditions are true */

CAI - Condition Bypass. To verify a condition bypass candi-
date in the real timd,0TMEDIATOR only needs to verify that
when both rulef}; andR; are triggered by the same event,
the condition of one rule is evaluated totpee while that of
another ruldalse , i.e., the exclusive or of the evaluations
of both conditions yieldsrue . The symbolic representation
of the dynamic veri cation process is shown below.

obsE(Ty); /*Both rules will be triggered */
match§(C;) matchS(C,) = true /*One condition holds*/

CAI - In nite Loop. The dynamic veri cation of in nite
loop, i.e., whether two ruleR; andR; triggers each other

matchS(: T2); /* The trigger ofR, was false */

obsE(T,); matchS(Cy);0bsC(Az); /*Ry triggersRy*/
matchS(: T1); /* The trigger ofR; was false */

obsE(Ty); matchS(C;) /*Ry will be triggered in turn byRy*/

CMAI - Potential Race Condition. Manual control typically

has a higher priority than automation since it allows a user to
set devices to the desirable state (including overriding an au-
tomation result). Consider the example shown in Figure 8(b):
a user wants to use a manual command to stop the alarm after
the automation app sounds the alarm upon the detection of a
kitchen smoke. However, the user is annoyed if the automa-
tion app triggers and sounds the alarm again and again within
a short period after the user stops the alarm. Thus, we only
consider it as an interaction threat when an automatiorRapp
runs afterc and consequently overrides the manual control.

obs C(c) /* Observe a manual contral*/

! match(c) /* The state changed byremains unchanged */

obsE(T3); matchS(C3) /* Until Rz executes */

CMAI - Condition Enabling. To verify a candidate, the
dynamic veri cation component checks if a manual control
changes an automation ruRg’s conditionCs from false to
true and then i€z remains true until the rulBs is triggered.

If so, the candidate is veri ed to cause a real interaction threat
and vice versa.

obs C(c); /* Observe a manual contral*/
matchS(: C3); /* The condition ofR; was false */
obsE(C3) /* cyields an event which makd'’s condition true */

hS(C. iti i
1 MAehSC) e condition ofRs remains true */

obsE(T3) /*Until Ry is triggered */

CMAI - Condition Disabling. Similar to the condition en-
abling case, the dynamic veri cation component inspects if
change<C3 from true to false and then @3 remains false un-
til the ruleRs is triggered. If so, the candidate if veri ed and
otherwisel OTMEDIATOR continues to verify this candidate
in the next observation of the manual control

obs C(c); /* Observe a manual contral*/
matchS(Cz); /* The condition ofR; was true */
obsE(: C3) /* cyields an event which maké’s condition false */

[ match: Ca) /* The condition ofR3 remains false */

obsE(T3) /* Until Rsis triggered */
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Table 11:Handling options and explanation templates for interaction threat patterns that are not listed in Table 4 in the main text.

Interaction Pattern (P) Handling Options & Explanation Templates
Option 1: hiRy; Ry; Pi; S(C1)nS(Cy);! C(AL)i + hiRy; Ry Pi; (C)nS(Cyr);T C(AR)i + hiRy; Ry, Pi; S(Cy) | (C2);9 C(Ay)i
Explanation Template: Execute actio; when either or both of the two rules are triggered.
Option 2: hiRy; Ry; Pi; S(C1)NS(C2); 9 C(A1)i + htRy; Ro; Pi; S(C2)nS(C1); 9 C(Ag)i + hiRy; Ry; Pi; S(C1)\ §(C7);9 C(AR)i
Explanation Template: Execute actio; when the conditions of both rules are true.
Option 3: hiRy; Ry; Pi; S(C1)nS(Cy);! C(A1)i + hiRy; Ro; Pi; S(C2)nS(C1); 9 C(Ay)i + hiRy; Ry; Pi; S(Ci)\ S(C2);9 C(Ay)i
Explanation Template: Let the rst rule work and disable the second.
Option 1: hiRy;Ry; Pi;0;9 C(A)i
Explanation Template: Action A, should not be executed.
Option 2: htRy; Ry; Pi ; 0; 0i
Explanation Template: Action A, should be executed.
Option 1: hiRy;Ry; Pi;0;) S(Ap)i
Explanation Template: Action A, should be executed.
Option 2: hiRy; Ry; Pi; 0; 0i
Explanation Template: Action A, should not be executed.
Option 1: hiRy;Ry; Pi;6;9 C(A)i
Explanation Template: When the two rules con ict, actioA, should be executed a should be blocked.
Option 2: hiRy; Ry; Pi;0;9 C(Ap)i
Explanation Template: When the two rules con ict, actioA; should be executed am$ should be blocked.
Option 1: hiRy;Ry; Pi;0;9 C(Ay)i
Explanation Template: Action A, should not be executed to override.
Option 2: hiRy;Ry; Pi;0;!  C(Ay)i
CAl - Action Revert Explanation Template: Action A, should be executed to override.
Option 3: hiRy;Ry; Pi;cond V! C(Ay)i
Explanation Template: Allow action A, to be executed to overrid® under a certain conditiooond (condis con gurable
and can be speci c device states and/or time period).
Option 1: hiRy;Ry; Pi;0;) S(Aq)i
Explanation Template: When the two rules form a loop, only actida should be executed.
Option 2: hiRy; Ry; Pi;0;) S(Ap)i
Explanation Template: When the two rules form a loop, only actida should be executed.
Option 1: hit;Rs; Pi; 0;9 C(Ag)i
Explanation Template: Action Az should not be executed.
Option 2: hit; Rs; Pi ; 0; 0
Explanation Template: Action Az should be executed.

CAI - Condition Bypass

CAI - Condition Enabling

CAI - Condition Disabling

CAI - Race Condition

CAI - In nite Loop

CMAI - Condition Enabling

Table 12:Microbench experiment for the performance comparison of interaction detection between prior appmaghetsa] view) and oursN/A denotes
that a work does not consider a speci c interaction pattern or its instances are all caused by cross-platform interaction (and, hence, the work cannot detect them
without a global view). means that the value cannot be computed due to divided by zero .

Testbed Test Interaction Na N Precision, Recall

Group Pattern @ d HomeGuard [26] | iRuler [54] loTGuard [22] loTSafe [30] Ours
5&7 CAl Potential RC 24 6 0.25,1.00 N/A 1.00, 1.00 N/A 1.00, 1.00
11&12 CA\l - Chained Execution 128 2 N/A N/A N/A N/A 1.00, 1.00
13&14 CAl Chained Execution 256 | 63 0.25, 1.00 N/A 1.00, 1.00 0.25, 1.00 1.00, 1.00
T1 3&4 CAl - Race Condition 16 4 N/A N/A 1.00, 1.00 N/A 1.00, 1.00
3&8 CAl - Action Revert 16 2 N/A N/A N/A N/A 1.00, 1.00
1&2 CAl Condition Disabling 16 1 0.06, 1.00 N/A N/A N/A 1.00, 1.00
9&10 CAl - Condition Bypass 8 1 N/A N/A N/A N/A 1.00, 1.00
sethomemode & 5 | CMAI - Condition Disabling 8 2 N/A N/A N/A N/A 1.00, 1.00
sethomemode & 6 | CMAI - Condition Enabling 8 2 N/A N/A N/A N/A 1.00, 1.00

T 1&2 CAl Condition Disabling 16 0 0.00, 0.00, N/A N/A ,

3&4 CAI - In nite Loop 192 6 N/A N/A N/A N/A 1.00, 1.00

Table 13:0ne-week experiment for the performance comparison of interaction detection between prior dynamic approaghkal(view) and ours.

Test Interaction Precision, Recall
Testhed Group Pattern N N Not ToTGuard [22] | ToTSafe [30] Ours

5&7 CAl Potential RC 6 7 6 1.00, 1.00 N/A 1.00, 1.00
11&12 CAIl Chained Execution 7 1 1 N/A N/A 1.00, 1.00
13&14 CAl Chained Execution 2 2 2 1.00, 1.00 1.00, 1.00 1.00, 1.00
T1 3&4 CAl Race Condition 785 | 214 | 214 1.00, 1.00 N/A 1.00, 1.00
3&8 CAIl Action Revert 14 8 7 N/A N/A 1.00, 1.00
1&2 CAl Condition Disabling 31 12 5 N/A N/A 1.00, 1.00
9&10 CAl Condition Bypass 79 461 | 382 N/A N/A 1.00, 1.00
sethomemode &5 | CMAI Condition Disabling 8 8 2 N/A N/A 1.00, 1.00
sethomemode & 6 | CMAI Condition Enabling 8 398 8 N/A N/A 1.00, 1.00

T2 1&2 CAl Condition Disabling 33 16 0 N/A N/A ,
3&4 CAl In nite Loop 25 19 12 N/A N/A 1.00, 1.00

C Detection Results without Global View of microbenchandone-weelexperiments in this setting are

shown in Table 12 and 13, respectively, illustrating that prior
The results in Table 7 and 8 are obtained by assuming thatsystems have poor performance in interaction detection for
prior systems also have a global view over the multiple plat- the multi-platform smart homes. The results highlight one
forms. As prior systems actually do not present a way of of the main contributions of our work on cross-platform loT
obtaining a global view over the multiple platforms, we ex- interaction threat detection.
amine their performance without a global view. The results
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