
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Reversing, Breaking, and Fixing the
French Legislative Election E-Voting Protocol

Alexandre Debant and Lucca Hirschi, Université de Lorraine, Inria, CNRS, France
https://www.usenix.org/conference/usenixsecurity23/presentation/debant

Reversing, Breaking, and Fixing the
French Legislative Election E-Voting Protocol

Alexandre Debant
Université de Lorraine, Inria, CNRS, France

Lucca Hirschi
Université de Lorraine, Inria, CNRS, France

Abstract
We conduct a security analysis of the e-voting protocol used

for the largest political election using e-voting in the world,
the 2022 French legislative election for the citizens over-
seas. Due to a lack of system and threat model specifications,
we built and contributed such specifications by studying the
French legal framework and by reverse-engineering the code
base accessible to the voters. Our analysis reveals that this
protocol is affected by two design-level and implementation-
level vulnerabilities. We show how those allow a standard
voting server attacker and even more so a channel attacker
to defeat the election integrity and ballot privacy due to 5
attack variants. We propose and discuss 5 fixes to prevent
those attacks. Our specifications, the attacks, and the fixes
were acknowledged by the relevant stakeholders during our
responsible disclosure. They implemented our fixes to prevent
our attacks for future elections. Beyond this protocol, we draw
general lessons, recommendations, and open questions from
this instructive experience where an e-voting protocol meets
the real-world constraints of a large-scale, political election.

1 Introduction

Verifiability is a central goal in e-voting: it allows voters and
auditors to verify the election result. Many e-voting protocols
achieve (individual) verifiability for the voters thanks to a
receipt bound to their ballots (e.g., [5, 8, 13, 22]). Receipts
allow to track the presence of ballots in the final bulletin
board and election result and prevent a compromised or
malicious voting server to drop or tamper with their cast
ballots. In this paper, we ask the question how the French
Legislative E-Voting Protocol (FLEP) does so by conducting
a comprehensive security analysis.

This work was partly supported by the following grants: ANR Chair IA
ASAP (ANR-20-CHIA-0024) and ANR France 2030 project SVP (ANR-22-
PECY-0006).

The FLEP was the e-voting protocol used to organize
the French legislative election for French residents overseas
in June 2022 with 1.6 million eligible voters. This was the
largest election (in terms of expressed votes) worldwide using
e-voting. In total, to elect 11 deputies, more than 524k ballot
have been cast and tallied1. The voters massively preferred
using the FLEP (76%) over traditional paper-based voting
(22.7%) or postal voting (0.3%) [1].

As expected, the FLEP has high security ambitions. Some
of those ambitions are related to lawful requirements and
recommendations from all relevant regulatory bodies. To
meet those requirements, notably that it remains secure
under strong threats such as internal threats, the FLEP has
undergone audits and the organizers have put in place an
external third-party providing verification services operated
by independent French researchers. Voters were encouraged
to visit this web-service to verify the presence of their
ballot (and receipt) in the ballot-box. For the researchers to
independently develop such a tool, the vendor made public
a rather incomplete specification partially describing the
verifiability mechanisms used in this protocol.

In this paper, we answer the following question: Does the
FLEP meet its goals? We reverse-engineered the FLEP and
found flaws in the protocol and its implementation that could
have been exploited to stealthily defeat ballot privacy of target
voters and verifiability under a voting server attacker (com-
promised voting server) or under an even weaker channel
attacker, that is: honest voting client and compromised plain-
text channel client-server (an example of concrete scenario is
a compromise of the voting server certificate). That is a strictly
weaker attacker model than the standard compromised server
threat model (which can be the result of internal threats).

Contributions. We contribute the following.
Reverse. We reverse engineered the obfuscated JavaScript

program running in the FLEP voting clients. Doing this, fully

1This number includes the first and the second round of the election. To
give a comparison, the second largest such election is the 2015 Australian
state election with 280k expressed votes using iVote, that is 6% of the ex-
pressed votes, to elect 93 deputies.

USENIX Association 32nd USENIX Security Symposium 6737

passively in order to not alter the election, on a first version
used during a large-scale test election and a second version
during the main election, we were able to cross-reference
information in order to fill the several critical gaps in the par-
tial specification of the FLEP. We obtained this way a full
specification of the voting client and the verifiability checks.
We also studied the French lawful requirements and relevant
recommendations to define a precise threat model specifica-
tion that we argue is in line with the French legal framework
and is also supported by the literature.

New Vulnerabilities. Analyzing this, we found two vulner-
abilities that can be exploited by a channel attacker and even
more so by a voting server attacker, which are both included
in our threat model: (V1) A channel attacker can break the
bound between voters’ ballots and their receipts due to an
implementation flaw in the voting client. (V2) We found that
the sub-election identifier (associated to a consulate) is not
correctly cryptographically bound to the ballot, but is to the
receipt. Combined with (V1), this allows a channel attacker to
modify the sub-election identifier of a ballot.

Attacks. We show how a channel attacker could have ex-
ploited those vulnerabilities to stealthily carry out the fol-
lowing attacks (that is without leaving any evidence of the
attacks): (A1) By providing crafted receipts to voters, a chan-
nel attacker can selectively drop voters’ ballots to defeat in-
dividual verifiability and modify the result of the election.
(A2) Choose the ballot that will be cast in place of the gen-
uinely sent ballot while still providing a good looking and
valid receipt. This attack is a variant of A1 and is more ef-
fective at modifying the election result. (A3) Defeat ballot
privacy of target voters. We show how a channel attacker can
learn how target voter(s) voted by moving around ballots
from sub-election (i.e., consulate) to another and observing
the per-consulate result. We stress that this can be done while
evading all possible detection and only assuming a channel at-
tacker; in particular decryption trustees can all be trustworthy.
(We also discuss 2 other attack variants.)

We do not claim that such attacks happened. We solely
claim that a malicious or compromised channel or voting
server had the technical ability to perform such attacks with-
out leaving any evidence. We responsibly disclosed those
attacks to all impacted and involved actors: the operator Eu-
rope and Foreign Affairs French Ministry (EFA Ministry), its
institutional security advisor Agence nationale de la sécurité
des systèmes d’information (ANSSI)2, and the vendor Voxaly
Docaposte. All of those 3 stakeholders have acknowledged
and confirmed our attacks. We later disclosed our findings to
the 3rd-party services supervisors. Note that a comprehensive
risk analysis is out of the scope of this paper.

Fixes. We propose and discuss 5 countermeasures to those

2The ANSSI is the French National Agency for the Security of Information
Systems whose missions include cyber defense of state information systems
and to provide advice and support to government and operators of critical
national infrastructure.

attacks. The EFA Ministry, ANSSI, and the vendor (Voxaly
Docaposte) have confirmed to us that they have used some
of our countermeasures to fix the FLEP. Already for the
new elections that were organized in June 2023 (because the
election was contested in some constituencies), FLEP has
been partially fixed thanks to our work, as witnessed by the
new specification [17]. We not not claim the absence of other
attacks but only that the attacks we found were fixed.

Lessons. Designing a secure e-voting system is notoriously
difficult. Flaws are regularly discovered on real-world pro-
tocols; e.g., on those used in Estonia [25], Switzerland [20],
Russia [19]. In the case of the FLEP, the protocol is derived
from the state-of-the-art academic protocol Belenios that is
proven secure [13] (for the threat model we consider here)
and is affected by none of those attacks. What went wrong?

To answer, we draw more general conclusions and lessons
from this instructive experience where an academic protocol
meets the real-world, challenging constraints of a large-scale
and political election. Some of those translate to new open
research questions. Those lessons are of a broader interest. In
particular, we highlight the pitfalls in which the deployment
of the FLEP fell, that are of general interest as they could have
impacted the deployment of other state-of-the art protocols.

Outline. In Section 2, we present the architecture, the security
goals, and the threat model for the FLEP. In Section 3, we
explain how we reverse-engineered the FLEP to build a
system and threat model specification and describe the latter.
In Section 4, we present the vulnerabilities and attacks we
found and discuss our fixes. In Section 5, we draw more
general lessons from this work, that go beyond the FLEP and
conclude in Section 6.

A full version of this paper, containing more details and
justifications, is available at [15].

2 Context

We first describe the context of the FLEP, its security goals,
and threat model.

2.1 Architecture
The specification [16] published by the vendor is largely
incomplete but provides useful information about the
architecture and how the FLEP is deployed in practice.

Geographical Organization. French citizens overseas are
gathered in 11 electoral regions (e.g., north America, north
Africa, etc.), which are constituencies. Each of the constituen-
cies is itself split into several consular sub-regions which are
consulates and typically represent a country or a city. Each
constituency elects one deputy using the FLEP with a unique
election identifier electionId cryptographically bound to each
ballot. Each of those elections are organized in two rounds
with their own identifier roundId ∈ {1,2}. Additionally, the

6738 32nd USENIX Security Symposium USENIX Association

North America
electionId = elec1

Atlanta: ballotBoxId= u1,1

Boston: ballotBoxId= u1,2

Montreal: ballotBoxId= u1,3

· · ·

North Africa
electionId = elec2

Alger: ballotBoxId= u2,1

Dakar: ballotBoxId= u2,2

Tunis: ballotBoxId= u2,3

· · ·

Figure 1: Organization of the French legislative elections
(partial view). Each constituency (e.g., North Africa) runs its
own election to elect one deputy. The eligible voters of each
constituency are grouped into consulates (e.g., Alger) with
their own ballot-box. Per-consulate results are also published.

French law requires that the results are also published at
the level of consulates. Therefore, to each consulate in a
consistency is associated a ballot-box with a unique identifier
ballotBoxId. Figure 1 sums-up the organization.

Protocol Roles. Similarly to state-of-the art protocols such
as Helios [5] or Belenios [13], the FLEP relies on different
roles detailed next.

• Voter: they are the agents who will cast a vote. The
FLEP assumes that voters own an email address and a
cellphone number to receive login/password and confir-
mation codes before and during the election.

• Voting device: it is the device used by the voter to create
and cast their vote. In the FLEP, the voting device is a
JavaScript program provided by the voting server and
executed in the voter’s browser.

• Voting server: it is a server operated by the EFA Min-
istry whose purpose is to authenticate voters and collect
all the ballots.

• Decryption authorities: they are the authorities who
can decrypt the ballots. More precisely in the FLEP,
they are 8 couples holder/deputy, and each of these 16
authorities own a share of a decryption key based on
4-threshold encryption scheme, that is only a group of
at least 4 authorities can collude to decrypt.3 The 16 de-
cryption authorities generate a unique public encryption
key pkE for all constituencies and their corresponding
private keys skE1, . . . ,skE16.

• 3rd-party: it is an external server operated by indepen-
dent researchers and engineers from a French lab (LO-
RIA) and research institutes (CNRS, INRIA), commis-
sioned by the EFA Ministry. It provides to the voters
some verification web-services [10] whose purpose is to
ensure the integrity of the election. This independently
developed and open-source program is available at [12].

3We will come back in Section 5 on this threshold and how the legal
requirements for decryption could be better reflected in the cryptography.

2.2 Security Goals and Threat Model
To conduct a security analysis of the FLEP, one first needs
precise security objectives and threat models. While the par-
tial specification [16] fails to do so, there fortunately exist
lawful requirements that the FLEP should comply with, no-
tably the Code électoral [18] (i.e., the French law governing
elections) and the recommendations enacted by the Commis-
sion nationale de l’informatique et des libertés (CNIL) [26]4,
which are a list of requirements that such a system is expected
to meet (even if there is no legal obligation).

We have studied this legal framework [18, 26] and derived
security goals the FLEP should achieve and under which
threat model. Our list of objectives is not exhaustive but we
focus here on those that are relevant for our work. We refer
the reader to [15, Appendix A] for detailed explanations about
our study of this framework and how we derived the security
goals and threat models that we summarize next.
Ballot Privacy. The Code électoral [18, R176-3-9] and the
CNIL requirements [26, SO 1-04,1-07] agree on the fact that
the FLEP must ensure the confidentiality of the votes.
Verifiability. Second, the FLEP must ensure the integrity of
the election outcome and notably individual verifiability [18,
R176-3-9], [26, SO 2-07,3-02], that is each voter should be
able to verify that their ballot has been added into the ballot-
box; i.e., it was not dropped or tampered with.

For instance, the requirement [18, R176-3-9] requires that
"the voter is provided with a digital receipt allowing them to
verify online that their vote has been taken into account". As
we shall see, the FLEP uses some hashed values over the cast
ballot and some meta-data as well as a signature as digital
receipt. The voter can verify online this receipt at the voting
server or the 3rd-party server, the latter independent 3rd-party
verification option must exist to comply with [26, SO 3-02].
Threat Model. We shall define a threat model that we argue
is in line with the legal framework of the FLEP.

As detailed in [15, Appendix A], we derive from the CNIL
recommendations [26, Security level 3, SO 3-02] that the
FLEP must guarantee the integrity of the election even under a
compromised voting server, which also motivates the require-
ment to rely on an independent, 3rd-party verification service.
Most of the attacks we shall present actually make weaker
assumptions, i.e., assume an even weaker attacker. Indeed,
instead of considering a (possibly) corrupted voting server,
we shall assume a corrupted communication plaintext channel
between the voters and the server, we call such an attacker
a channel attacker. More precisely, the channel attacker can
intercept and inject (plaintext) messages in-between voters
under attack and the voting server but has not necessarily
access to the voting server internals, such as its databases, the
signing sheet, the authentication material, the log files, etc.

4The CNIL (National Commission on Informatics and Liberty in English)
is an independent French administrative regulatory body whose mission is to
ensure that data privacy law is applied.

USENIX Association 32nd USENIX Security Symposium 6739

Security Goal Voter Voting
Device

Com.
Channel

Voting
Server

Dec.
Auth.

3rd-
party

Our attacks on the FLEP falsify the properties under the threat model:
Verifiability ✓ ✓ ✗ ✓ ✓ ✓
Ballot privacy ✓ ✓ ✗ ✓ ✓ ✓

State-of-the-art protocols such as Belenios are secure under:
Verifiability ✓ ✓ ✗ ✗ ✗ ✓
Ballot privacy ✓ ✓ ✗ ✗ ✓ ✓

✓= assumed trustworthy, ✗= can be untrustworthy

Table 1: Comparison of the threat models under which FLEP
is breached and the strictly stronger threat model under which
state-of-the-art protocols such as Belenios are secure [13].

Remark 1 (Examples of channel attackers). A channel
attacker can obviously be realized by compromising the
voting server. Indeed, even if the converse is wrong in general,
a voting server attacker is also a channel attacker.

More interestingly, it can be realized by compromising
parts of the network server infrastructure. Specific opera-
tional countermeasures are usually deployed to protect the
critically important server(s) on which the election runs.
However, the server(s) are connected to the Internet through
a more complex and shared network infrastructure which
may appear as an Achilles heel. The TLS certificates shared
across the infrastructure might be less protected and shared
across more devices such as TLS middle-boxes that could
be deployed to monitor the plaintext traffic to mitigate e.g.,
DDoS attacks. This, unfortunately standard, solution would
undermine the security of the communication channels
voters-voting server by increasing the attack surface and the
risk of man-in-the-middle attacks yielding a channel attacker.

Finally, a channel attacker could also be the result of
a compromise of the network infrastructure on the voter
side. For similar reasons, a voter’s company may monitor
the plaintext Internet traffic to protect its employees and
its assets. Unfortunately, this would, again, introduce a
man-in-the-middle in the communication channels between
the voter and the server. Voters have not been made aware
of this threat in the context of this election.

Therefore, a channel attacker is an interesting threat model
in itself as it is strictly weaker than the server attacker and
can be realistic in some scenarios.

Table 1 summarizes the assumed trustworthiness of all
roles for the different properties (the less trustworthy parties
there are, better is the protocol). It also compares this with
the threat model under which the Belenios protocol (and
other state-of-the-art protocols such as Helios [5]) were
proven secure. (An honest public bulletin board is usually
assumed, which can be achieved by an honest 3rd-party for
comparison.) It shows that our attacks break the FLEP under
an (even weaker) attacker than the standard one for which

Belenios was proven secure [13], despite FLEP being derived
from Belenios (according to [16]).

Remark 2. Assuming the voting client as a trustworthy com-
ponent can be considered too strong an assumption, even more
so due to the latter being a JavaScript program served by the
voting server and executed in the voter’s browser. Some e-
voting systems such as the IVXV [21], Helios [5], or the Swiss
Post protocol [29], aim at ensuring the well-known cast-as-
intended property, that is ensuring individual verifiability un-
der a compromised voting device that could try to modify the
intended vote. The FLEP protocol has obviously not been de-
signed to protect the voters against such a threat. Therefore, to
conduct a fair security analysis, we decided to assume the vot-
ing client as a trustworthy component. We discuss in Section 5
and [15, Appendix D.5] how this assumption can be made
realistic in practice with the notion of "universal integrity
checks" where anyone can check the JavaScript integrity to
detect malicious voting servers serving malicious code.

3 Reverse the Protocol

[16] only provides a partial specification, that is so incomplete
that the attacks we shall present could not be even described5.
Indeed, this document focuses on the expected format of
some verifiability-related messages (such as the receipts) but
omits to specify how exactly they are computed, exchanged,
and which checks are performed upon reception. Moreover,
a bigger picture of the protocol is completely missing.

By reversing the JavaScript voting client code, studying and
cross-referencing different sources, we built a complete de-
scription of the FLEP voting client and all its interactions with
the server as well as some important server-side components
(handling of errors, verifiability checks). All the impacted and
involved actors (Voxaly Docaposte, ANSSI, EFA Ministry)
have acknowledged our system specification is correct.

Note that even though a specification of the 3rd-party
tool was missing too, we have been able to determine the
checks it performed based on an informal description of the
service [10], open discussions with the researchers, and an
inspection of the source code.

3.1 Reverse Methodology

We describe next how we overcame the lack of complete
specification by reversing the obfuscated voting client.

Obtaining data. During the election, we collected all the web
browser’s interactions with the voting server throughout the

5Based on our discussions with the stakeholders, Voxaly Docaposte pub-
lished in February 2023 a new version of the specification [17] which includes
a more detailed protocol specification with some countermeasures to our
attacks we discuss in Section 4.

6740 32nd USENIX Security Symposium USENIX Association

different steps of the protocol thanks to a few eligible voters6.
These are gathered into HTTP Archive format (HAR) files
that can be easily generated by major browsers. We collected
for one typical voter’s journey 15 JavaScript files, 4 HTML
files, 4 plain data exchanges, etc.
Reverse engineering and data cross-referencing. We first
recollected the overall flow of messages by analyzing all the
POST and GET requests in a typical voter’s journey. (We
give detailed descriptions thereof in [15, Appendix C.1].)
We cross-referenced this with the description of the voter’s
journey published on the government website to help voters
with the voting process. We obtained this way a clear big
picture of the overall flow of messages of the FLEP.

Some of the fields of the GET and POST requests can be
related to the partial specification [16] but many are omitted
or not fully described. Moreover, even for those fields that
were specified, we needed a better understanding about how
they are computed and how they are checked. For this, we
had to investigate the JavaScript programs that produce and
check those fields. Excluding all-purpose library files (such as
jquery-3.1.1.msin.js or Captcha-related files), there are
4 JavaScript files that are specific to the FLEP implementing
its core logic (election.bundle.js, loria.bundle.js,
app.bundle.js, and verifiabilite.bundle.js) totaling
15574 LoC when de-minimized with js-beautify7.

Those files are obfuscated: they were processed using ob-
fuscation techniques such as function and variables renaming,
or control flow modifications in order to make reverse engi-
neering more complex, as is standard with web-development.
In our case, some variable names were not obfuscated, in
particular request fields were not. This way, we were able to
locate part of the JavaScript code manipulating those fields.
However, the control flow is so obfuscated that it makes it
very hard to keep track where those fields are flowing. See
for example Listing 2 from line 1 to 11 (line 12-17 turned out
to contain the core logic manipulating the receipt).

Fortunately, we obtained a previous version of these
JavaScript files used during the first large-scale, in-the-wild
test campaign of the system conducted in September 2021 [2].
Interestingly enough, the code and the protocol for this test
phase was a bit different and most importantly for us, the
code was less obfuscated. In particular, the control flow
was less obfuscated. We thus decided to reconcile the two
code bases and cross-reference some of the most interesting
function implementations. We improved our understanding
of the overall logic of the code by investigating the test phase
code base and then by cross-checking with the production
code base. An example of such a side-by-side comparison
is depicted in Figure 2.
Reverse engineering checks and errors. For obvious rea-

6The voters who sent us the collected data, who are computer scientist
colleagues, were informed about our research and about the content of those
logs. They gave us their informed consent.

7https://www.npmjs.com/package/js-beautify

sons, we have forbidden ourselves to carry out active attacks
against voting servers. Therefore, we limited ourselves to pas-
sive sniffing of the exchanged messages. This makes it hard to
understand what happens when something goes wrong (since
this never happened for the sessions for which we collected
data. Some checks are carried out in the voting client and we

1 navclientApp.controller("PageVoteController", ["
$scope", "$http", "$location", "$timeout", "
breadCrumbService",

2 function(e, t, i, n, a) { // HashClient core logic
3 e.vote = function() {
4 if (data.param.signatureEnabled && !e.aVote) {
5 e.aVote = !0, e.erreurHashVerification = !1;
6 var i = forge.md.sha256.create();
7 i.update(e.bulletinCrypte + data.election.

ordre + data.param.electeurEtOrdre);
8 var n = i.digest().toHex(),
9 a = function(e) {

10 // [7 lines omitted]
11 }(n),
12 o = data.election.ordre + "&" + n + a;
13 sessionStorage.setItem("HashClient", o);

Listing 1: Test Phase, scripts.js

1 function(e, t, n) {
2 // [1729 lines omitted , indentations were removed]
3 function ot(e) {
4 // [73 lines omitted]
5 function v() {
6 return (v = Pe()(Re.a.mark((function t() {
7 var n, r, a, l, u, c, s;
8 return Re.a.wrap((function(t) {
9 for (;;) switch (t.prev = t.next) {

10 case 0:
11 // [9 lines omitted]
12 case 3: // HashClient core logic
13 return (n = new jsSHA("SHA -256", "TEXT")

).update(o.bulletinCrypte + f.idTour
+ d.ordre + f.electeurEtOrdre),

14 r = n.getHash("HEX"),
15 (a = new jsSHA("SHA -256", "TEXT")).

update(o.bulletinCrypte + o.
voteSignature),

16 l = a.getHash("HEX"),
17 u = f.idTour + "&" + d.ordre + "&" + r +

y(r),
18 sessionStorage.setItem("HashClient", u),

Listing 2: Production phase app.bundle.js

Figure 2: Snippets of code from test phase and production
phase relevant to the computation of the HashClient stored
in the web browser session storage (i.e., persistent storage).
Comments were added by us. The control flow of the test
phase (Listing 1) is much simpler and easier to reverse (When
is this piece of code triggered? What happens next?), as op-
posed to the production phase code (Listing 2). Conversely,
the production phase is the version that matters and some
message contents have changed. Therefore, we had to cross-
reference both code bases.

USENIX Association 32nd USENIX Security Symposium 6741

https://www.npmjs.com/package/js-beautify

Name Expected value

Ballot b := ({v}pkE ,π)
Hash value h := hash(b∥roundId∥electionId∥ballotBoxId)

Ballot reference H := roundId∥electionId∥h
Activation hash hcode := hash(b,codeactiv)

Ballot fingerprint hb := hash(b)
Seal cSU := infoSU∥signskS(hash(infoSU))∥pkS

infoSU := roundId∥electionId∥electionName
∥ballotBoxId∥hbs5

Table 2: Main cryptographic values involved in the FLEP.

were able to reverse them. But the others are carried out in
the server side. For those, our logs were not helpful at first
sight. Fortunately, some error messages are built-in in HTML
pages in hidden div environment. By locating the JavaScript
logic, we were able to partially understand the conditions un-
der which those errors are displayed upon reception of some
messages from the voting server.

The following description of the system may miss actions
executed by an honest voting server, but as we shall see, it
is precise enough to claim that our attacks are valid indepen-
dently of those unspecified components. Indeed, our attacks
rely on sending data to the server that are indistinguishable
from its point of view from data honest voters would produce.

3.2 Reversed Specification
We now present the result of our reverse: a full description
of the FLEP. We shall specify all the actions executed by
the voter, the voting client, and the voting server at each step.
Unlike [16], we also explicit how messages are exchanged
and computed. Those steps are summarized in Figure 3.

Step 1: The voter browses to the election website URL and
connects to the voting server and receives an HTML document
displaying the login page. The voter authenticates themselves
using a login and password they received before the election
through two different channels, the login by email and the
password by SMS. In addition to the authentication data, the
voting client also sends to the voting server client_info (some
meta-data about the voting client) and btest which is a dummy
ballot encrypted with a dummy election public key that serves
as sanity check that the voting client will be able to correctly
compute the real ballot at step 4.

Step 2: The voting client receives an HTML document
displaying the different candidates V the voter can choose.
This document also contains some hidden identifiers such
as the election identifier electionId or the ballotBoxId and a
per-session unique identifier tokenId. The voter chooses one
candidate v ∈ V for whom they want to vote.

Step 3: The voter clicks to confirm their choice.
Step 4: The voting client sends a request to the voting

server to generate an activation code, acting as a second au-
thentication factor. The voting server generates such an acti-

Voting client Server
identification.htm

login,psswd,client_info,btest
generic_vote.htm with:
electionId,tokenId

Starts the 4 voting steps

Request codeactiv

Picks codeactiv ∈ {0, . . . ,9}6

and sends it to Voter by email

Computes ballot b for candidate v
- c = {v}pkE

- π = ZKP (bound to tokenId,
v is a valid option)

- b = (c,π), h := as in Table 2
- Hc = roundId∥electionId∥h
- hcode = hash(b,codeactiv)

b, hcode, codeactiv

- Checks codeactiv
- Computes Hs1 (see text)

ok/ko, Hs1

Checks Hc =? Hs1

b, hcode, hb, btest′ , . . .

Checks zkp and that
this voter never voted

generic_vote.htm with Hs2 , Hs3

Displays Hs2 and
Checks Hc =? Hs3

Request receipt.pdf
receipt.pdf

login,psswd

v

codeactiv

receipt.pdf :
Hs4 , cSU, hbs4

Figure 3: Description of the 2022 French Legislative Election
Protocol. Arrows on the left correspond to interactions with
the human voter. Cryptographic messages are specified in
Table 2. Actions in red will be relevant for the vulnerabilities
presented in Section 4. Actions in blue, and only those, are
elements obtained during discussions with the stakeholders.
A more detailed diagram is given in [15, Appendix C].

vation code codeactiv (made of 6 random digits) and sends it
to the voter using a side-channel (i.e., by email). The voter re-
ceives this code and enters it in the voting client and clicks on
the "Vote" button. The voting client then computes some cryp-
tographic material explained next and summarized in Table 2.
• First, the ballot b := (c,π) that is made of the encrypted

vote v (c := {v}pkE) with the election public key (pkE) along

6742 32nd USENIX Security Symposium USENIX Association

with a Zero-Knowledge Proof (ZKP) (π) proving that v is a
legitimate choice of candidate, i.e., v ∈ V . This proofs is also
bound to tokenId and electionId received at Step 2.

• The voting client also computes the hash value:
h := hash(b∥roundId∥electionId∥ballotBoxId)

where ∥ is a delimiter, roundId is the round of the election (1
or 2), electionId is the election identifier , and ballotBoxId is
a per-ballot-box (hence per-consulate) unique identifier.

• The ballot reference (omitting correction codes):
H := roundId∥electionId∥h

is computed and exchanged at different steps of the pro-
tocol, we specifically note Hc to refer to the ballot refer-
ence that is computed by the voting client and stored in the
SessionStorage of the voting client browser8.
• The activation hash value hcode := hash(b,codeactiv).

This value was not described at all in the specification [16]
and was supposed to act as a proof of knowledge of the activa-
tion code codeactiv, bound to the ballot.9 That said, the precise
role of hcode is unimportant for the rest of the presentation.

The values b, hcode, and codeactiv are then sent to the vot-
ing server. The voting server then verifies the validity of the
activation code codeactiv, recomputes the ballot reference H,
denoted by Hs1 ; indeed Hc is not sent to the voting server.
The response to the above request is (ko,_) if the activation
code was invalid and (ok,Hs1) otherwise. Upon reception
of the response, the voting client verifies that the response
equals (ok,Hc). Therefore, Hs1 must be equal to Hc. This
test provides the voting client evidence that it executes the
protocol in the same context as the one of the voting server.

Finally, if those tests succeed, then the voting client com-
putes the ballot fingerprint: hb := hash(b). The ballot b is
again sent to the voting server, along with hb and hcode.

At this point, the voting server verifies that the voter never
voted before (revoting is forbidden in the FLEP) and that
the ballot ZKP π are valid. If so, the voting server stores
the ballot b in the ballot-box ballotBoxId associated to the
voter (one per consulate). It also adds the voter to the signing
sheet containing all the voters who voted so far. Finally, it
computes and stores a seal cSU associated to this ballot, that
is a signature over the ballot and some metadata that will be
part of the receipt provided to the voter in the final step (we
specify the seal cSU below).

Step 5: Finally, the voting client receives from the voting
server an HTML document that displays the ballot reference
H and that asks the voter to click a link to download the PDF
receipt. Voters are also encouraged to click a link to verify
that their ballot is indeed included in the ballot-box.

8The SessionStorage is a storage local to the browser and associated to
the current tab. It allows to store session-specific data that persist page reloads
and page redirections. See, for example, the documentation for Firefox [3].

9We note that this is completely inefficient since the activation code
codeactiv is actually sent in clear text along hcode (with the ballot b). Ac-
cording to the vendor, this was a mistake and will be fixed. Once fixed, hcode
provides such a proof, even though codeactiv can be quite easily brute-forced
given hcode and b.

Two occurrences of the ballot reference H are present in
this HTML document, which is generated and sent by the
voting server. We thus denote those two occurrences with
respectively Hs2 and Hs3 . The first occurrence Hs2 appears in
a HTML tag < pclass= ”recepisse−code” > and cor-
responds to the value being displayed to the voter. The second
occurrence Hs3 appears in a JavaScript script embedded in the
page that tests that Hs3 equals the ballot reference stored in the
voting client SessionStorage, i.e., Hc. Therefore, Hs3 = Hc

or an error message is displayed.
PDF receipt: The very last step occurs when the voter

clicks the link to download the PDF receipt from the previous
page, which replaces the previous page (which cannot be
loaded any more). The downloaded PDF receipt contains the
ballot reference H, the seal cSU, and the ballot fingerprint
hb. Despite those values being (partially) specified in [16],
the values displayed in the PDF receipt are never checked by
the voting client and could differ from the expected, specified
values. Therefore, we note Hs4 the ballot reference and hbs4

the ballot fingerprint that are displayed in the PDF receipt.
The seal cSU should be computed by the voting server

(already at step 4) as follows: cSU := infoSU∥σ∥pkS where
infoSU is defined as:

roundId∥electionId∥electionName∥ballotBoxId∥hbs5

and electionName is the name of the election, hbs5 is sup-
posed to be the ballot fingerprint, and σ is a digital signa-
ture with the server’s signature private key skS (associated
to the signing verification key pkS) computed as follows:
σ = signskS(hash(infoSU)).

Decryption authorities: At the end of the election, a tally
ceremony involving a threshold of the decryption trustees oc-
curs. They collaborate to decrypt an homomorphic aggregate
for each ballot-box, produce ZKPs of correct decryptions, and
announce the election results.

3rd-party role: The 3rd-party contributes to both the indi-
vidual and universal verifiability. To this aim, the EFA Min-
istry sends it the results of the tally (i.e., the ballot-boxes,
ZKPs, and results). First, for checking universal verifiabil-
ity, the 3rd-party checks the validity of the ZKPs of correct
decryption. At the constituency level, it checks that those
proofs are valid w.r.t. official results publicly published onto
the EFA Ministry website. Moreover, it checks that all the
ballots included in the ballot-boxes are well-formed, i.e., that
their ZKPs are all valid. For allowing individual verifiability
checks, the 3rd-party proposes a web service to the voters who
can check that the seal of their receipts contains a legitimate
signature of the voting server. Moreover, once the election
is over and the 3rd-party has received the ballot-boxes, the
3rd-party also verifies that the seal corresponds to a legitimate
ballot10. After the protest period, i.e., ten days following the

10In 2022, voters had to use this service once the election was over, and
not before, to obtain this guarantee. In 2023, based on our recommendation
(see [15, Appendix E.3.1]), the 3rd-party decided to log all the seals received
during the voting phase to do this check as soon as it becomes doable.

USENIX Association 32nd USENIX Security Symposium 6743

results announcement, the 3rd-party publishes a report [10]
containing a summary of all their verifications.

4 Vulnerabilities, Attacks, and Fixes

We present the two vulnerabilities we found (Section 4.1). We
then show how these vulnerabilities can be exploited to break
verifiability and the integrity of the election (Section 4.2) and
the confidentiality of target voters’ votes (Section 4.3). We
also propose fixes to those attacks, some of them are or will
be deployed by the FLEP stakeholders. We summarize all
the attacks we found in Table 3. We also provide the fixes
chosen by ANSSI, EFA Ministry, and Voxaly Docaposte and
already implemented or to be implemented in the mid-term.

4.1 Vulnerabilities

When reversing the specification, we uncovered 2 critical vul-
nerabilities that could be exploited by a channel attacker (i.e.,
an attacker controlling the plaintext communication channel)
and even more so by a voting server attacker (i.e., compro-
mised voting server). As we shall see, they impact the integrity
of the election and the confidentiality of the votes.

We stress that our reversed specification detailed in
Section 3 was necessary to identify those vulnerabilities that
could not even be described within the limited framework
of [16].

V1: Lack of binding of receipts with their ballots. In the
FLEP, the integrity of the election is guaranteed by the use
of receipts: voters can send their receipt (the ballot reference
H or/and the seal cSU) to a server (the voting server or the
3rd-party) to verify that their ballots have been added in the
ballot-box. Moreover, the 3rd-party ensures, by verifying the
decryption ZKPs, that the result of the election corresponds
to the content of the ballot-boxes. Thanks to these two checks,
an attacker should not be able to tamper with the cast ballots
and with the election result.

A subtlety we noticed in the JavaScript code of the FLEP
voting client is that the ballot references that are displayed to
the voter by the voting client (Hs2 and Hs4) for later checks
are not necessarily the same as the one it computed for the
ballot produced by the voting client (Hc). This is the reason
why we named those references differently, even though they
refer to values that are expected to be equal to the legitimate
value Hc computed by the voting client thanks to various
consistency checks (shown in red in Figure 3).

Unfortunately, these checks are flawed in that, among the
4 references received from the voting server, Hs1 , Hs2 , Hs3 ,
and Hs4 , they only ensure that:

Hs1 = Hc and Hs3 = Hc.
There is no guarantee about the values of Hs2 and Hs4 , which
are the only references visible by the voters, respectively in
the last web page and in the PDF receipt (both are depicted

in [15, Appendix C.2]). A channel attacker can take advantage
of this implementation flaw to falsify the verifiability of the
FLEP and thus modify the result of the election as explained
in Section 4.2. We stress that the human voters themselves
are unable to recompute the genuine, honest value of H (that
is Hc) without an expert and technical knowledge. Indeed,
for instance, they never learn the value of their ballot b.

V2: Malleability of ballot-box identifiers. As presented in
Section 2.1, the FLEP is deployed in a complex environment
with multiple elections and ballot-boxes. In the partial spec-
ification of the system [16], Voxaly Docaposte seems to be
aware of this complexity: "The election identifier [electionId]
[...] will be added in the [ZK] proofs associated to the bal-
lot. This allows to detect if a ballot has been moved from a
ballot-box to another".

Unfortunately, we found out that this statement is incorrect.
Indeed, the election identifier electionId does not identify a
ballot-box (associated to a consulate) but only an election
(associated to a constituency). The ballots are thus crypto-
graphically bound to an election but not to a ballot-box whose
identifier is not included in the ZKP context of the ballot.

Interestingly, the ballot reference H does cryptographically
bind the ballot to the ballot-box identifier ballotBoxId.
However, as we shall see, this ballot reference can be
recomputed by an attacker for a different ballotBoxId. As we
shall see in Section 4.3, a channel attacker can use this and
the previous vulnerability (V1) to move around ballots across
different ballot-boxes and attack ballot privacy.

4.2 Attacking and Fixing Verifiability
We now present how the first vulnerability can be exploited
to break verifiability and thus the integrity of the election. We
also propose and discuss fixes.

4.2.1 Attacking Verifiability

The first vulnerability can be exploited to falsify the indi-
vidual verifiability of the system under a channel attacker.
An attacker who controls the communication channels can
stealthily (1) drop ballots, and (2) replace them by ballots of
his choice as explained in the two attack descriptions below.

Attack [Replace]: This scenario assumes a channel attacker
and requires at least two voters who vote in the same con-
sulate: Bob, who will suffer from the attack, and, Alice, an
arbitrary voter. In the following, we re-use all the notations
introduced in Section 3.2 and Figure 3. We assume that all the
variables are indexed by 1 for Alice’s vote, and 2 for Bob’s.
The attack proceeds as follows:

Step a: Alice casts her vote as expected. In this first
step, the attacker executes honestly, i.e., Hsi

1 = Hc
1 for all

i ∈ {1, . . . ,4} and σ1 is honestly computed. Hence, all the
checks that Alice can do to be sure that her ballot b1 has been
included in the ballot-box succeed.

6744 32nd USENIX Security Symposium USENIX Association

Name Attack on Threat model Impact Fix that are or will be deployed

Replace Indi. Verif. Channel att. Replace any cast ballot Fix 1: display Hc
Drop Indi. Verif. Channel att. Drop any cast ballot

SwapH Ballot priv. Voting server att., some voters collude Learn any target voter’s vote Fix 3: add ballotBoxId to the ZKPSwapb Ballot priv. Channel att., some voters collude Learn any target voter’s vote
SwapID Ballot priv. Voting server att., some voters collude Learn any target voter’s vote Fix 3 + Fix 4 or 5: display ballotBoxId

Table 3: Summary of the attacks found. The last column presents the fixes that have been chosen by the stakeholders to be
implemented in the FLEP in the mid-term. We show in bold font the fixes we have confirmation they are already implemented.

Step b: Bob follows the protocol but the channel attacker
intercepts all messages after the creation of the ballot b2 and
computes by itself the responses that are normally sent by the
voting server to the voting client as follows: Hs1

2 = Hs3
2 = Hc

2
but Hs2

2 =Hs4
2 =Hc

1 and σ2 =σ1. That is the attacker provides
a receipt that refers to Alice’s ballot. We do not assume that
the attacker knows the signing private key skS to compute σ2
since the attacker can simply replay the values obtained at
Step a. The value Hc

2 can be computed by the attacker since it
is only made of public data (e.g. electionId and ballotBoxId)
or data sent by Bob, such as b2.

Step c: Because a ballot is not cryptographically bound to a
voter, the attacker can forge a ballot batt = ({v′}pkE ,zkp

′) for
v′ ∈V of his choice and replace each occurrence of b2 by batt
in Bob’s messages towards the voting server. More precisely,
the attacker sends batt, hash(batt,codeactiv) and hash(batt)
instead of b2, hcode, and hash(b2). The voting server then reg-
isters the adversarially-chosen ballot batt in the name of Bob.

Even if, at Step b, Bob receives inconsistent data (e.g.,
Hs2

2 ̸= Hc
2), these are not detected by the checks performed

by the voting client and those differences are invisible to
Bob himself. (This seems similar to the clash attacks of [23]
but our attack does not rely on a compromised voting client
to make it compute a clashing ballot.) Moreover, Bob can
use the web services (provided by the voting server or the
3rd-party) to be convinced that "his" ballot has been added
to the ballot-box. Indeed, Bob got Alice’s receipt which
corresponds to a ballot added in the ballot-box at Step a.
Finally, let us explain how the attacker can make sure Bob
does not detect the replacement of his ballot in the very
unlikely situation where his original ballot was the only vote
for a particular choice v ∈ V in this ballot-box (since the tally
will reveal v got no vote). It suffices for the attacker to make
sure each of the options v ∈ V gets at least one vote: either
by assuming the existence (e.g., large consulates) or knowing
other voters casting such ballots (e.g., accomplices), or by
performing the above attack on |V | voters to make them cast
all options. As a result, all the checks Bob was suggested,
instructed, or able to do succeed despite his ballot b2 has
been dropped and replaced by the attacker ballot batt.

Therefore, at the end of this scenario, nobody can detect the
removal and replacement of Bob’s ballot and yet, the election

result will not include Bob’s ballot b2 and include the attacker
ballot batt instead. Alice and Bob are convinced that their
ballots have been counted and the voting or the 3rd-party
server will always receive consistent data. Bob is cheated by
the fact that the receipt he obtained actually points to Alice’s
ballot, which does exist in the ballot-box. Note that a channel
attacker can repeat this to attack an arbitrary number of voters
acting as Bob, always using the same Alice’s data. (Moreover,
we describe in [15, Appendix B.1] a weaker variant [Drop] of
this attack that only drops Bob’s ballot instead of replacing it.)

Impact: An attacker who compromises the communication
channel (or the voting server) can significantly modify the
outcome of the election by dropping and replacing ballots,
hence falsifying the individual verifiability property.

Remark 3. Interestingly, [Replace] is no longer possible if
FLEP used the ballot format of Belenios, since this includes
voters’ signatures. Therefore, the removal of signatures from
Belenios to FLEP –as a means to comply with CNIL recom-
mendations (ballots should be anonymous)– without compen-
sating this loss with another security mechanism introduced
a weakness in the protocol.

4.2.2 Fixing Verifiability

We propose 2 fixes to prevent such attacks. The first one is
easy to implement but makes the voter’s journey and verifi-
cation tasks more complex, while the second would actually
simplify them but is more complex to implement.

Fix 1: A first approach to fix the verifiability attacks is to
display Hc instead of Hs2 on the last web page of the user
interface (step 5). If this was done, a conscientious voter
would be able to compare this reference to the one printed in
their receipt to enforce the consistency Hs1 = Hs2 = Hs3 =
Hs4 = Hc. Finally, the voter can then use the 3rd-party web
service to check the presence of their ballot in the ballot-box
with confidence. This solution would fix Vulnerability 1 as
well as the two verifiability attacks [Replace] and [Drop].
However, it complicates further the voter’s tasks, which are
already quite complex (see Section 5).

Fix 2: A second, better fix is to make the voting client gen-
erate the PDF receipt. To do so, the voting server would still

USENIX Association 32nd USENIX Security Symposium 6745

need to send the signature σ for the voting client to compute
the seal cSU. The voting client must verify the validity of
this signature (with respect to pkS) and its content before
generating the PDF receipt by itself. We prefer this solution
as it does not require extra voters’ checks. Moreover, it allows
to check the signature of the seal cSU before displaying the
PDF receipt, allowing to detect potential forgery or voting
server misbehavior as early as possible and making the voting
server accountable for potential misbehavior detected later.
The main drawback is that it requires to import an external
library to generate PDFs or to use a static PDF file that is
then dynamically filled with missing cryptographic data.

Remark 4. The stakeholders chose to implement Fix 1 for
elections in June 2023. Fix 2 seems to be their ultimate solu-
tion for a future version of the system.

Remark 5 (On Fix 1). The version 2 of the specification [17]
(from February 2023) shows that the Fix 1 was not imple-
mented as is. We regret that the chosen implementation does
not fully prevent the vulnerability V1. Indeed, Hc is now dis-
played on the last web page of the user interface (step 5) and
the voting client now checks that Hc = Hs3 . Very surpinsgly,
the vendors also decided to display Hs3 on the same page and
even to instruct the voters to visually "check that the receipt
Hc [computed by the voting client] corresponds to the receipt
actually inserted in the ballot-box Hs3". Asking the voters
to visually check Hc = Hs3 is useless given that this test is
performed by the voting client. More importantly, this gives
a false sense of security as it gives the impression no further
checks are needed. The voters must actually check that the
displayed receipt (Hc) corresponds to the one printed on the
PDF receipt (Hs4) and then use it to perform the usual indi-
vidual verifiability check, preferably at the 3rd-party website.

In conclusion, the implemented fix allows a very cautious
voter to detect our attacks (by comparing Hc and Hs4). How-
ever, it also gives non-necessary additional tasks to the voters
and fails to instruct them to perform the only useful check.

4.3 Attacking and Fixing Ballot Privacy
The vulnerabilities (V1) and (V2) can be jointly exploited to
break ballot privacy for target voters: i.e., voters the attacker
decides to target and attack when they cast their ballot.
We shall see that a channel attacker can learn how a target
voter voted provided that there are at least 2 ballot-boxes
in the target voter’s constituency (this is the case for all the
French constituencies). We present the attack core ideas in
a simplified setting before presenting the actual attacks.
Attacks overview. Let us assume a channel attacker willing
to learn the vote of Alice, who is registered in ballot-box u1
(u1 is a ballot-box identifiers ballotBoxId). The key ingredi-
ent for this attack is inter-ballot-box move: the attacker can
cast Alice’s ballot in u2 ̸= u1 without anyone noticing. One
approach, detailed in [MoveH] below, to achieve this is for

the attacker to:
(i) move Alice’s ballot bA to u2 and, thanks to (V1), give

her a forged receipt corresponding to bA as if it was cast in u1.
(ii) to preserve the number of ballots in each ballot-box,

the ballot bB of a voter eligible in u1, say Bob, can be moved
to u1 using the same technique.

Finally, because of (V1) Alice’s and Bob’s receipts pass
individual checks, and because of (V2), the ballot-boxes u1
and u2 will be tallied without raising any error, despite the
move of bA to u2.

Now, let us assume the attacker knows a ballot-box u2
with a few eligible voters. Intuitively, the attack is as follows:
the attacker exploits the inter-ballot-box ballot move attack to
cast in the ballot-box u2 the Alice’s ballot bA. Exploiting the
attack [Replace] the attacker replaces all other ballots cast in
u2 by ballots b1, . . . ,bn whose values are known. Because the
ballot-boxes are individually tallied, the attacker will learn
the result for u2 from which the Alice’s vote encrypted in bA
can be deduced (since the votes encrypted in b1, . . . ,bn are
assumed to be known). We present below concrete attacks
exploiting these ideas and explain how the attacker can
completely evade detection. We then present fixes.

4.3.1 Attacking Ballot Privacy

As informally described above, our ballot privacy attacks rely
on two ingredients: inter-ballot-box move, that is how to
stealthily move a ballot from a ballot-box to another, and
how to exploit the latter to introduce the privacy leak through
tallying. We first present three inter-ballot-box ballot move
techniques and then explain how any one of those can be
exploited to mount ballot privacy attacks.

For each of those three inter-ballot-box move techniques,
we assume that the election (constituency) identifier elec con-
tains at least two ballot-boxes (consulates) identifiers u1 and
u2. Alice is eligible to vote in consulate u1 and is the target
voter whose vote will be moved from u1 to u2. To preserve the
right number of ballots in each ballot-box, an arbitrary ballot
(say Bob’s) cast in u2 is moved to u1 (and possibly replaced).

[MoveH] Inter-ballot-box ballot move exploiting (V1,V2)
for a voting server attacker. This first technique assumes a
voting server attacker, i.e., the voting server is compromised.
The attack scenario is as follows:

Step a: Alice votes and sends a ballot bA.
Step b: The voting server attacker receives bA but stores it

in the ballot-box u2, while Alice was eligible in u1.
Step c: In addition, the voting server attacker computes

malicious receipts that will be valid for bA, even though it was
placed in the wrong u2:

Hs2 = Hs4 = m∥hash(bA∥m∥u2)
Hs1 = Hs3 = Hc = m∥hash(bA∥m∥u1)
cSU= m′∥u1∥hash(bA)∥signskS(hash(m

′∥u2∥hash(bA)))

where m′ = roundId∥electionId∥electionName and m =
roundId∥electionId are election meta-data. Note that Hc, Hs1 ,

6746 32nd USENIX Security Symposium USENIX Association

and Hs3 are computed as expected but Hs2 and Hs4 are mod-
ified such that the receipt is valid for bA cast in u2. This is
crucial to make all 3rd-party checks succeed and avoid detec-
tion (we come back to this in Section 4.3.2).

Step d: Steps a, b, and c are applied to move a ballot bB of
an arbitrary voter Bob eligible in u2 from u2 to u1.

[Moveb] Inter-ballot-box ballot move exploiting (V1,V2)
for a channel attacker. In this scenario, we assume that the
attacker only controls the (plaintext) communication channel.

The attack scenario is as follows:
Step a: Alice votes and sends a ballot bA.
Step b: The channel attacker intercepts the ballot bA and

replaces it by a new ballot batt they choose. In addition,
exploiting (V1) (attack [Replace]), the attacker modifies
the messages sent by the voting server to make Alice get a
valid receipt for batt , while she intended to cast bA instead, i.e.,

Hs2
1 = Hs4

1 = m∥hash(batt∥m∥u1)
Hs1

1 = Hs3
1 = Hc

1 = m∥hash(bA∥m∥u1)
cSU1 = m′∥u1∥hash(batt)∥signskS(hash(m

′∥u1∥hash(batt)))

Note that Hc, Hs1 , Hs3 are computed as expected but Hs2

and Hs4 are modified such that they will be valid against
a ballot-box u1 containing batt instead of bA. In particular,
cSU1 is exactly the seal returned by the voting server when it
received batt ; the attacker does not need to forge a signature.

Step c: Similarly, the attacker intercepts bB a ballot sent by
Bob, an eligible voter in u2, and replaces it with Alice’s ballot
bA exploiting (V1) (attack [Replace]). Again the attacker
modifies the references H2 and the seal cSU2 sent to Bob
replacing bB by bA.

[MoveID] Inter-ballot-box ballot move without exploiting
(V1) for a voting server attacker. We assume a server at-
tacker that does not exploit (V1). Because ballotBoxId is sent
by the voting server to the voting client, the server can send
u2 instead of u1 to make the Alice’s voting client compute
a ballot for u2 by itself. The displayed data and the individ-
ual checks do not allow Alice to detect that the ballot was
computed for the wrong ballotBoxId. Again, to preserve the
number of ballots in each ballot-box, we assume that the vot-
ing server sends u1 instead of u2 to Bob, an arbitrary eligible
voter in u2 so that Bob computes and casts a ballot for u1.

[SwapX] Exploiting inter-ballot-box ballot move to attack
ballot privacy. We now explain how any of the three move
techniques can be exploited to violate ballot privacy with
three attack variants: [SwapH], [Swapb], and [SwapID]. In the
following, we specify the attack [SwapX] for X ∈ {H,b, ID}.

We already described in the attacks overview paragraph
(section 4.3) the main idea of gathering Alice’s ballot with
ballots whose votes are known to the attacker in a single
ballot-box u2 so that when tallied, it reveals Alice’s vote. In
order to make this completely stealthily, the attacker needs to
take some precautions.

First, the attacker needs to preserve a perfect correspon-
dence between the number of ballots in each ballot-box and

the number of voters eligible in this ballot-box who did cast
a ballot. Indeed, any voter who casts a vote is registered in
a semi-private signing sheet. We explain in [15, Appendix B,
Remark 9] that it is unlikely that voters check the signing
sheet due to various practical constraints. Even if they did, the
attack [MoveX] takes care of preserving the number of ballots
in each ballot-box, and thus prevents any potential detection.

Second, the attacker must also make sure that the moves
and replacements he may operate will not make a voting
option that was intended to be expressed in ballot-box u1 or
u2 completely disappear, as already explained in Section 4.2.
This is addressed with Step b and Step c below. Note that we
assume that at least |V | voters eligible in u2 (resp. in u1) are
willing to cast a ballot, which is a reasonable assumption (see
Section 4.3.2).

The attack [SwapX] is as follows. For the target Alice eli-
gible in u1, the attacker first selects a ballot-box u2, ideally
with a low number of voters and does the following:

Step a: The attacker uses [MoveX] to move Alice’s ballot
bA from u1 to u2 and some arbitrary Bob’s ballot bB from u2
to u1 (with a replacement of bB by batt if X = B).

Step b: For any other voter willing to cast a ballot b in u2,
the attacker exploits [Replace] to replace b by an attacker-
chosen ballot b′. The attacker can choose b′ such that: (i) each
voting option v ∈ V gets at least one vote in u2 and (ii) the
overall vote distribution is close to the expected one (to not
raise any suspicion).

Step c (optional): If the expected vote distribution in u1
makes it likely that a voting option v ∈ V might get no vote,
then [Replace] must also be used against |V | voters eligible in
u1 to remedy this problem. This would not have been required
for most ballot-boxes in the 2022 election (see Remark 6).

Finally, the tally of u2 leaks Alice’s intended vote.

Remark 6. As presented above, the attack [SwapID] relies
on (V1) at Step b and Step c. This is actually not necessary
with the following additional assumptions about other voters
(where V = {v1, . . . ,vk}):

1. There are E ≥ k+1 eligible voters in u2.
2. The attacker knows k voters, V1, . . . ,Vk, that are different

from Alice and such that Vi is willing to vote for vi (in
u1 or u2). Those voters are either colluding with the
attacker or are honest but the attacker has a good guess
about how they will vote.

3. There exist k other voters, Vk+1, . . . ,V2k, different from
Alice such that Vk+i is willing to vote for vi in u1 for
all i ∈ {1, . . .k}. In contrary to V1, . . . ,Vk, we do not
assume that the attacker knows Vk+1, . . . ,V2k, we solely
assume that they exist. In practice, the attacker can just
be convinced they exist based on statistical data (e.g.,
previous election results). For example, almost all of the
ballot-boxes from the 2022 election got at least one vote
for each of the candidates.

4. The attacker knows E − 1 voters V ′
1, . . . ,V

′
E−1 eligible

in any consulate (of the same election as Alice’s) and

USENIX Association 32nd USENIX Security Symposium 6747

how they are willing to vote. Those voters are either
colluding with the attacker or are honest but the attacker
has a good guess about how they will vote.11

Those assumptions are reasonable in practice due to the exis-
tence, for each constituency, of both a ballot-box u2 with very
few eligible voters (dozens) and a ballot-box u1 with a large
number of voters (thousands).

How to achieve Step b and Step c of [SwapID] without
relying on (V1) is slightly technical and detailed in [15, C.2].
[SwapID] thus breaks ballot privacy for target voters,
assuming a server attacker and requires dedicated fixes as
it does not rely on (V1).

4.3.2 Impact and Stealthiness

The impact of our privacy attacks is maximal when all
plaintext votes of the ballots in the resulting ballot-box u2 are
known to the attacker, except for the one of the target voter
(e.g., Alice).12 In this case, the result of the tally of u2 directly
reveals Alice’s vote to the attacker. The larger is u2, the more
replacements are needed. We now discuss how suitable u2
can be chosen using data of the election for which FLEP was
used [4] and then discuss coercion and stealthiness.

Many suitable u2. In the 2022 French legislative election,
many consulates received a small number of votes, hence
suitable choices for u2. For example MSQ-MINSK during the
second round (6 electronic votes among 129 eligible voters) or
PBM-PARAMARIBO during the second round (5 electronic
votes among 145 eligible voters). These two consulates be-
long to constituencies having consulates with a large number
of voters with potential targets, hence suitable choices for u1,
such as SYD-SYDNEY which received 4049 electronic bal-
lots during the second round, or MEX-MEXICO with 1959.
There were even extreme cases with some consulates which
received a unique ballot as discussed in [15, Appendix B.2].
Obviously, our attacks can be exploited against different
targets voters (Alice) using different target ballot-boxes (u2).

New coercion power. Moreover, the attacker can also
target several voters instead of just Alice and gather all their
ballots into u2. This attack would give a power of coercion,
in a remote way13, against those voters: the tally of u2 will
reveal the vote distribution among them and thus make the
coercer able to detect that some decided to not comply with
the attacker’s instructions and how many (the attacker does

11Strictly speaking, if those voters are not colluding and are eligible in a
consulate u different from u1 and u2, then a similar assumption as 3. should
be made about u, that is it is expected that all voting options will be voted
for, excluding those V ′

i .
12Note that, even if some unknown ballots remain in u2, some privacy leak

still exists. Some quantitative analyses of similar privacy leaks have been
conducted [24] and have revealed that it could be harmful.

13Note that the FLEP was not intended to guarantee coercion-resistance,
which is usually understood as a resistance to over-the-shoulder coercion
where the attacker is physically with the voter under coercion. However, one
could have reasonably expected that it was resistant to this weak form of
remote coercion, in which the coercer has never access to the voters’ devices.

not learn their identity though). Similarly, the attacker can
exploit this to learn the vote distribution of a population of
voters of special interest, e.g., industrial actors. Those votes
would normally be mixed with many other votes in their
respective ballot-boxes, thus protecting their privacy.

Why are our privacy attacks completely stealthily? We
review all checks that are performed by the different actors
and explain in details why they fail to detect our privacy
attacks in [15, Appendix B.2]. We summarize this study here.

From the (honest) voting server point of view, we note that
data received and processed by the voting server are genuine-
and honest-looking, the voting server does not know how
voters intended to vote. From the voting client point of view,
the received malicious ballot receipts pass all consistency
checks and no error can be detected. No cheating can be
detected from the ballot-boxes tallied result either since
each ballot-box contains (at least) one ballot for each voting
option. Therefore, even if a voter’s ballot has been moved
in another ballot-box or replaced, then they will always see in
the result at least one vote which corresponds to their intent,
it could have come from their ballot.14

We now discuss public information and independent
verification services proposed to the voters. The 3rd-party
checks that the tally of the ballot-box has been correctly
computed and fails to detect any cheating because of (V2).
The voters’ individual verifiability checks also fail to detect
our attacks, even when carried out with the 3rd-party service.
Indeed, to answer these queries, the latter recomputes all the
references H and hashed values hb of the ballots provided by
the authorities, which are then looked up. It is important to
note that, because the 3rd-party was aiming to guarantee veri-
fiability, this look-up is performed taking all the ballots of the
given constituency identifier elec into account. Therefore,
even malicious receipts will be found and deemed valid.

Finally, the human voters themselves are unable to detect
that the ballot reference they were shown (Hs2

1 = Hs4
1) are not

computed with the right ballotBoxId (and the genuine, honest
ballot b). Indeed, to be able to detect this, the voters would
need to recompute H and thus to know what is hashed in H
(e.g., b) but voters are never shown b.

Impact: A channel or a voting server attacker has the
technical ability to learn some target voters’ vote without
breaking any encryption. This attack would leave no evidence
we could then exploit to know if the attack happened.

4.3.3 Fixing Ballot Privacy

We propose three solutions to prevent our attacks.

14The only assumption we make here is that honest voters do not collude
to infer what should be the expected, honest result. Note that, the attacker
can remain stealthily even under such extreme circumstances: he could rely
on malicious and colluding voters in the same ballot-box to lie and cheat
against the honest voters.

6748 32nd USENIX Security Symposium USENIX Association

Fix 3: A first fix is to add the ballot-box (consulate) identifier
ballotBoxId (i.e., u) in the context of the ZKP. This simple
modification cryptographically prevents any swap of ballots
between different ballot-boxes once it has been computed.
Fix 4: Even if Fix 3 was implemented, [swapID] is still possi-
ble. Therefore, we recommend coupling Fix 3 with displaying
in the voting client the ballotBoxId used for computing the
ballot (or the readable name of the corresponding consulate).
This way, the voter could notice the cheating prior to casting.
Fix 5: Fix 3 is already implemented and the (public) 3rd-
party verification service has already been changed accord-
ingly [11]: it now verifies the consistency between the
ballotBoxId in the ZKP (and the cSU) and the ballot-box
in which it is stored. Therefore, as an alternative to Fix 4, the
3rd-party could additionally display to the voter the consulate
in which their ballot has been cast and counted.15 This solu-
tion is easy to implement but only prevents privacy attacks
against voters who use the 3rd-party verification service. This
is of broader interest: 3rd-party, i.e., an external auditor, can
be useful not only to ensure verifiability, but also vote privacy.

Remark 7. Fix 3 and 5 have already been implemented by
Voxaly Docaposte and 3rd-party thanks to our findings and
were used for elections in 2023.

Fixing the vulnerability (V1) with Fix 1 or Fix 2 would
already prevent all but the [swapID] attack. The latter
requires Fix 4 or the combination of Fix 3 and either Fix 4
or Fix 5. Moreover, we believe the second vulnerability we
found (V2) should be addressed independently with Fix 3 as
it introduces a weakness, even though not exploitable on its
own. Therefore Fix 3 and 4 is the best option.

5 Lessons Learned

Our reverse and security analysis of the FLEP revealed seri-
ous vulnerabilities and attacks in the protocol and its deploy-
ment. This is quite impactful on its own given the importance
(nation-wide legislative election) and scale (largest political
election using e-voting) of this election. Our analysis of the
FLEP is also relevant for its illustration of how things can go
bad with the excessively challenging real-world deployment
at scale of e-voting solutions. Some of them are due to pit-
falls that we point out for improving future deployments of
e-voting in general. Others are due to limitations and prob-
lems with state-of-the art academic e-voting solutions from
which we derive practically relevant open research questions
of general interest. We summarize those lessons that go be-
yond the specific case of the FLEP and we refer the curious
reader to [15, Appendix E] for more in-depth discussions.
Voting client as critical component. Great care has been put
in securing the FLEP voting server against internal and ex-
ternal threats, which is a common practice. E-voting requires

15Note that ballotBoxId is also in plaintext in cSU so it could be directly
checked but it seems unrealistic to ask human voters to do so.

to adopt a radically different mindset in that regard as it relies
on verifiability so that no one has to trust the voting server,
its administrators, the code it runs, etc. (sometimes called
software independence [27]). The most important component
of the protocol that should be the main target of audits and
analyses is actually the voting client and the verification
services (e.g., 3rd-party).16 If the voting client is securely
designed and implemented, the protocol should guarantee the
election integrity independently of the voting server security.
This is well illustrated by our work and our attacks: the partial
specification and 3rd-party verification services are totally
voided by the voting client being flawed. An implementation
weakness in the voting client can completely defeat veri-
fiability and privacy as we have shown. Recommendation:
Consider the voting client and the verification services
as the main targets of analyses and internal audits. We
advocate for making them amenable to public scrutiny with
a comprehensive public specification and open-sourced code.

The FLEP, as well as many e-voting systems assume an
honest voting device (e.g., [8, 13, 22]). On the surface, this
seems unrealistic since the latter is distributed by a possi-
bly compromised server or channel. Instead, it could be dis-
tributed through an app marketplace to benefit from code
integrity (assuming the marketplace is trustworthy). Other-
wise, when downloaded and run in the browser, it is inherently
vulnerable to integrity flaws. This is resolved in the literature
with the notion of "auditability" (e.g., [6])17: external auditors
(who can be any voter or external actors) can pretend to be
voters to compare the code they receive with the legitimate
version and thus implement some form of "universal integrity
checks". We stress that such checks are by no means an audit
of the code (that is rather the role of the commissioned au-
ditors) but rather a mere comparison of two code bases – or
the hashes thereof. If there are enough auditors well hidden
among the voters, the voting server takes high risk of being
caught when tampering with the voting client. In the context
of the FLEP, such external audits were never specified and
were made complex to carry over18. This can be addressed
by using Single-page Application (SPA)19 to distribute the
voting client, as is the case for Belenios. Only the SPA needs
to be compared to the legitimate version and can be con-
sidered as a static file, which can then be considered to be
honest (assuming the legitimate version has been well audited
by commissioned auditors, once-for-all). Recommendation:
Distribute the voting client with a standalone app or an SPA
and clearly specify external auditors’ tasks, notably universal
integrity checks.

Finally, the vulnerability (V1), which is essentially a ver-

16This does not dispense to make effort to secure the voting server.
17Note that mechanisms such as the Belanoh challenge [7] do not ensure

the voting client integrity.
18The JavaScript code is served post-authentication, the voting client logic

is spread all over HTML and JavaScript files, interleaved with user- and
session-specific data (not easily comparable)

19https://developer.mozilla.org/fr/docs/Glossary/SPA

USENIX Association 32nd USENIX Security Symposium 6749

https://developer.mozilla.org/fr/docs/Glossary/SPA

ifiability weakness, is key to our privacy attacks. Such a
verifiability-privacy relation has been documented before with
a theoretical attack [14], our work illustrates further this rela-
tion with practical attacks. Lesson: Privacy can be attacked in
practice due to a lack of verifiability.

Operational constraints as scientific bottleneck. For deploy-
ing a protocol in the real world and especially for political elec-
tions, many aspects that are very often omitted in the academia
have to be taken into account such as the legal requirements
and recommendations, compliance to a competitive public
call for tenders, etc. This partly explains why, despite being
derived from the proven secure Belenios [13], the FLEP ended
up flawed with weaknesses that were inexistent in Belenios.

Missing features. First, the FLEP had to accommodate the
multi-ballot-box setting. This setting seems to be a recurring
pattern. Importantly, it is the source of quite impactful privacy
attacks: [Swapb,SwapH ,SwapID] for the FLEP and another
privacy attack [9] for the Swiss Post 2022 protocol, which
also relies on multiple ballot-boxes but exploits a different
weakness. Another lacking feature in Belenios was the down-
loadable receipt, a desired feature of the EFA Ministry from
their interpretation of the CNIL recommendations. As a re-
sult, the PDF receipt has been introduced in the FLEP but
was not properly checked. Research question: Make state-of-
the-art solutions more generic so that they can accommodate
such real-world use cases and practical constraints. Moreover,
formal security properties and proofs do not consider such
features and could thus miss practical attacks.

Distribution of authentication. The FLEP suffers from a
lack of trust distribution for the voter authentication process:
a single entity, the voting server, is in charge of this authenti-
cation as it stores and checks the two authentication factors.
A compromised voting server can thus impersonate voters
and do ballot stuffing. A simple theoretical solution to fix
this weakness is to distribute the generation and the verifica-
tion of the authentication factors. Unfortunately, deploying
such an infrastructure is difficult. For example, if the indepen-
dent 3rd-party entity had to participate to user authentication,
then it would have to offer an API for authentication veri-
fication. Research question: As far as we know, there is no
practical academic solution to this problem that matches real-
world constraints of deployments. We envision the spread
of eID cards or the development of standards like openID
connect [28] could be built upon for this.

Secret Key Generation distribution. We show in [15, E.3]
that some lawful requirements governing when a quorum is
met to e.g., decrypt a ballot-box are not cryptographically en-
forced in the FLEP. (The lawful requirements combine condi-
tions such as: a holder and a substitute for a given role cannot
be simultaneously in the same quorum, a quorum should have
at least 4 roles represented, etc.) As a consequence, fewer
people than what is legally prescribed by the law can collude
and decrypt a ballot-box. State-of-the-art academic solutions
cannot be used off-the-shelf to address this. Open Questions:

Is it possible to cryptographically enforce such operational
constraints to prevent any human misbehavior? Are there
solutions that are generic enough to be suitable for practi-
cally relevant constraints seen in real-world use cases? We
formalize such questions in [15, Appendix E.2.1].

Clear security objectives and threat model. Neither the
FLEP nor legal requirements and recommendations clearly
define the expected security objectives and threat models. It
is meaningless to assess the security of a system without a
clear threat model definition, that is why we first had to do
it ourselves. It is also of little interest for the public to know
that the FLEP has undergone audits without having access to
the scope and the objectives of this audit. Recommendation:
Election organizers, or even better the responsible for the pub-
lic call for tenders (EFA Ministry), should clarify and specify
their expectations regarding the security objectives and threat
model. This will certainly help academic researchers to
identify and address practically relevant problems, incentivize
more secure solutions in calls for tenders, and allow more
relevant audits and security analyses. Ideally, objectives and
threat models could be prescribed by law, as it is the case in
Switzerland (see [15, Remark 14]), where even mathematical
cryptographic and symbolic proofs are required. We also
recommend requiring such proofs.

Simpler and precise voting journey instructions. In
the FLEP, the voters receive different confusing and
quite overwhelming information about the verification
process. In total, they are shown 4 quite intimidating
cryptographic data and are offered 4 different verification
tasks, see [15, Appendix E.3.1]. Recommendation: Complex
protocol and notably voter’s journey and verification tasks
are detrimental to the overall protocol security. For the FLEP,
we explain in [15, Appendix E.3.1], how the protocol can
be conservatively simplified with only one cryptographic
datum shown to the voters and a unique verification task,
which would certainly have avoided the vulnerability (V1).
In general, we recommend prioritizing any simplification
impacting the voters’ journey and clearly specifying what
is expected from the voters and assume no more from them.

Transparency and openness. The FLEP was lacking a clear
(and open) specification, which partially explains why its
flaws remained unnoticed until we saw them, while the elec-
tion was running. (We present in [15, Appendix D] additional
weaknesses that are well-known in the literature, e.g., ballot
replay attacks, and that nonetheless also affect the FLEP.) Rec-
ommendation: Because designing and deploying e-voting so-
lutions is a notoriously difficult task, we recommend promot-
ing transparency and public scrutiny from different communi-
ties (academic researchers, hackers, etc.) to detect and prevent
vulnerabilities as early as possible. This could be incentivized
with public intrusion test and bug bounty programs, as done in
Switzerland where open access is even a legal requirement.

6750 32nd USENIX Security Symposium USENIX Association

6 Conclusion

The FLEP protocol is an instructive example of a real world
deployment of a variant of an academic protocol (Belenios)
that introduces design-level and implementation-level
weaknesses. The latter opened up the 1.6 million eligible
voters overseas of the 2022 French legislative election to
integrity and privacy attacks under a voting server attacker
or a weaker channel attacker. To avoid such failures in the
future, we proposed fixes, which have been (almost fully)
implemented, and have made various recommendations we
learned from this experience. We had insightful discussions
with the different stakeholders and we strongly believe more
of such communication between academia and e-voting
practitioners is for the better.

However, we must remain cautious as, in the absence of
formal security proofs, it is still possible that other critical
attacks might affect the 2023 version of the FLEP protocol.
Narrowing down to the weaknesses we know of, we recall
that better solutions should be proposed for authenticating
the voters, getting rid of the strong assumption of a trustwor-
thy voting client, etc. Indeed, in its current state, the FLEP
protocol still allows a compromised voting server to stuff the
ballot-box by impersonating voters who do not vote. Such
an attacker can also modify the voters’ intended vote having
a corrupted voting device, e.g., because of a malicious web
browser extension. Moreover, unlike the flaws we discovered,
we consider that there is currently no off-the-shelf solution to
prevent such attacks. This might be considered as a warning
that the state of the art in e-voting is not ready for such critical
elections and an incentive to continue the research towards
practical solutions to those problems.

Responsible Disclosure and Acknowledgments

We conducted this security analysis during the 2022 election
period through a passive analysis only; we never attacked
voting servers. Therefore, we could not alter the integrity or
the security of the election. All the vulnerabilities reported in
this document have been reported to the relevant stakeholders
right after the election and at least 3 months before publica-
tion. We thank those stakeholders, i.e., EFA Ministry, ANSSI,
Voxaly Docaposte, and the researchers running the 3rd-party
services (Stéphane Glondu, Pierrick Gaudry, and Véronique
Cortier) for their help and discussions after we sent them our
findings.

In particular, we would like to thank again the role of
ANSSI in the responsible disclosure process, which has al-
ways be a key player in promoting transparency and openness.
This is greatly appreciated given the context of this work.

Finally, we would like to thank our colleagues Myrto Arap-
inis, Hugo Labrande, and Emmanuel Thomé for their help to
collect data about the FLEP.

Conflicts of interest statement

The researchers running the 3rd-party services (Stéphane
Glondu, Pierrick Gaudry, and Véronique Cortier) are col-
leagues of us. However, they were under embargo when we
did our own research and were forbidden to communicate
with us on that matter. Our research was carried out in a
completely independent way.

References

[1] Results of the first round of the French Legislative
elections 2022:
https://www.diplomatie.gouv.fr/fr/services-
aux-francais/voter-a-l-etranger/resultats-
des-elections/article/elections-
legislatives-resultats-du-1er-tour-pour-
les-francais-de-l-etranger.

[2] Large scale test of the FLEP:
https://amsterdam.consulfrance.org/
Elections-legislatives-2022-vote-par-
internet-second-test-grandeur-nature.

[3] Firefox sessionStorage documentation:
https://developer.mozilla.org/fr/docs/Web/
API/Window/sessionStorage.

[4] Results of the second round of the French Legislative
elections 2022:
https://www.diplomatie.gouv.fr/fr/services-
aux-francais/voter-a-l-etranger/resultats-
des-elections/article/elections-
legislatives-resultats-du-2eme-tour-pour-
les-francais-de-l-etranger.

[5] Ben Adida. Helios: Web-based open-audit voting.
In 17th conference on Security Symposium (SS’08).
USENIX Association, 2008.

[6] Susan Bell, Josh Benaloh, Michael D Byrne, Dana De-
Beauvoir, Bryce Eakin, Philip Kortum, Neal McBurnett,
Olivier Pereira, Philip B Stark, Dan S Wallach, et al.
STAR-Vote: A secure, transparent, auditable, and reli-
able voting system. In Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections (EVT/-
WOTE’13), 2013.

[7] Josh Daniel Cohen Benaloh. Verifiable secret-ballot
elections. Yale University, 1987.

[8] Michael R Clarkson, Stephen Chong, and Andrew C
Myers. Civitas: Toward a secure voting system. In IEEE
Symposium on Security and Privacy (SP’08), pages 354–
368. IEEE, 2008.

USENIX Association 32nd USENIX Security Symposium 6751

https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-1er-tour-pour-les-francais-de-l-etranger
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-1er-tour-pour-les-francais-de-l-etranger
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-1er-tour-pour-les-francais-de-l-etranger
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-1er-tour-pour-les-francais-de-l-etranger
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-1er-tour-pour-les-francais-de-l-etranger
https://amsterdam.consulfrance.org/Elections-legislatives-2022-vote-par-internet-second-test-grandeur-nature
https://amsterdam.consulfrance.org/Elections-legislatives-2022-vote-par-internet-second-test-grandeur-nature
https://amsterdam.consulfrance.org/Elections-legislatives-2022-vote-par-internet-second-test-grandeur-nature
https://developer.mozilla.org/fr/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/fr/docs/Web/API/Window/sessionStorage
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-2eme-tour-pour-les-francais-de-l-etranger
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-2eme-tour-pour-les-francais-de-l-etranger
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-2eme-tour-pour-les-francais-de-l-etranger
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-2eme-tour-pour-les-francais-de-l-etranger
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-2eme-tour-pour-les-francais-de-l-etranger

[9] Véronique Cortier, Alexandre Debant, and Pierrick
Gaudry. A privacy attack on the Swiss Post e-voting sys-
tem. Research report, Université de Lorraine, CNRS, In-
ria, LORIA, November 2021. https://hal.inria.fr/
hal-03446801/file/rwc.pdf.

[10] Véronique Cortier, Pierrick Gaudry, and
Stéphane Glondu. Informal description of
the Vvfe web services. In 2022: https:
//verifiabilite-legislatives2022.fr/. In 2023:
https://verifiabilite-legislatives2023.fr/.

[11] Véronique Cortier, Pierrick Gaudry, and Stéphane
Glondu. wip branch (commit 5251b2f2) of the Vvfe
tool. https://gitlab.inria.fr/vvfe/vvfe.

[12] Véronique Cortier, Pierrick Gaudry, and Stéphane
Glondu. Vvfe: Vérifiabilité du vote des français de
l’étranger. https://gitlab.inria.fr/vvfe/vvfe.

[13] Véronique Cortier, Pierrick Gaudry, and Stephane
Glondu. Belenios: a simple private and verifiable
electronic voting system. In Foundations of Security,
Protocols, and Equational Reasoning, pages 214–238.
Springer, 2019.

[14] Véronique Cortier and Joseph Lallemand. Voting: You
can’t have privacy without individual verifiability. In
ACM SIGSAC conference on computer and communica-
tions security (CCS’18), pages 53–66, 2018.

[15] Alexandre Debant and Lucca Hirschi. Reversing, break-
ing, and fixing the french legislative election e-voting
protocol. Cryptology ePrint Archive, Paper 2022/1653,
2022. https://eprint.iacr.org/2022/1653.

[16] Voxaly Docaposte. Partial specification
of the flep, 2022. Available at the link
https://w8t9w2j6.stackpathcdn.com/
wp-content/uploads/
VOXALY_LEG2022_Verifiabilite_Specifications.pdf
obtained from https://www.voxaly.com/vote-par-
internet-pour-les-francais-de-letranger-
dans-le-cadre-des-elections-legislatives-
2022.

[17] Voxaly Docaposte. Partial specification of
the flep, 2023. Available at the link https:
//www.voxaly.com/wp-content/uploads/VOXALY-
LEG2023-Transparence-et-Verifiabilite-
Specifications-publiques-v2-04.pdf ob-
tained from https://www.voxaly.com/vote-par-
internet-pour-les-francais-de-letranger-
dans-le-cadre-des-elections-legislatives-
partielles-2023.

[18] Code électoral. French law governing political
elections. https://www.legifrance.gouv.fr/
codes/section_lc/LEGITEXT000006070239/
LEGISCTA000006115482.

[19] Pierrick Gaudry and Alexander Golovnev. Breaking
the encryption scheme of the moscow internet voting
system. In Financial Cryptography and Data Security
(FC’20), pages 32–49. Springer, 2020.

[20] Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and
Vanessa Teague. How not to prove your election out-
come. In IEEE Symposium on Security and Privacy
(SP’20), pages 644–660. IEEE, 2020.

[21] Sven Heiberg, Tarvi Martens, Priit Vinkel, and Jan
Willemson. Improving the verifiability of the estonian
internet voting scheme. In Electronic Voting (E-Vote-
ID’16), pages 92–107. Springer, 2017.

[22] Ari Juels, Dario Catalano, and Markus Jakobsson.
Coercion-resistant electronic elections. In ACM Work-
shop on Privacy in the Electronic Society, pages 61–70,
2005.

[23] Ralf Kusters, Tomasz Truderung, and Andreas Vogt.
Clash attacks on the verifiability of e-voting systems.
In IEEE Symposium on Security and Privacy (SP’12).
IEEE, 2012.

[24] David Mestel, Johannes Müller, and Pascal Reisert. How
efficient are replay attacks against vote privacy? a for-
mal quantitative analysis. In IEEE 35th Computer Secu-
rity Foundations Symposium (CSF’22), pages 179–194.
IEEE, 2022.

[25] Johannes Mueller. Breaking and fixing vote privacy of
the estonian e-voting protocol ivxv. In Workshop on
Advances in Secure Electronic Voting, 2022.

[26] Journal Officiel. Délibération n° 2019-053 du
25 avril 2019, 2019. Available at the link
https://www.legifrance.gouv.fr/jorf/id/
JORFTEXT000038661239.

[27] Ronald L Rivest. On the notion of "software indepen-
dence" in voting systems. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and En-
gineering Sciences, 366(1881), 2008.

[28] Natsuhiko Sakimura, John Bradley, Mike Jones,
Breno De Medeiros, and Chuck Mortimore. Openid
connect core 1.0. The OpenID Foundation, 2014.
https://openid.net/specs/openid-connect-
core-1_0.html.

[29] Swiss Post. e-voting system. https:
//gitlab.com/swisspost-evoting/e-voting/
e-voting-documentation.

6752 32nd USENIX Security Symposium USENIX Association

https://hal.inria.fr/hal-03446801/file/rwc.pdf
https://hal.inria.fr/hal-03446801/file/rwc.pdf
https://verifiabilite-legislatives2022.fr/
https://verifiabilite-legislatives2022.fr/
https://verifiabilite-legislatives2023.fr/
https://gitlab.inria.fr/vvfe/vvfe
https://gitlab.inria.fr/vvfe/vvfe
https://eprint.iacr.org/2022/1653
https://w8t9w2j6.stackpathcdn.com/wp-content/uploads/VOXALY_LEG2022_Verifiabilite_Specifications.pdf
https://w8t9w2j6.stackpathcdn.com/wp-content/uploads/VOXALY_LEG2022_Verifiabilite_Specifications.pdf
https://w8t9w2j6.stackpathcdn.com/wp-content/uploads/VOXALY_LEG2022_Verifiabilite_Specifications.pdf
https://www.voxaly.com/vote-par-internet-pour-les-francais-de-letranger-dans-le-cadre-des-elections-legislatives-2022
https://www.voxaly.com/vote-par-internet-pour-les-francais-de-letranger-dans-le-cadre-des-elections-legislatives-2022
https://www.voxaly.com/vote-par-internet-pour-les-francais-de-letranger-dans-le-cadre-des-elections-legislatives-2022
https://www.voxaly.com/vote-par-internet-pour-les-francais-de-letranger-dans-le-cadre-des-elections-legislatives-2022
https://www.voxaly.com/wp-content/uploads/VOXALY-LEG2023-Transparence-et-Verifiabilite-Specifications-publiques-v2-04.pdf
https://www.voxaly.com/wp-content/uploads/VOXALY-LEG2023-Transparence-et-Verifiabilite-Specifications-publiques-v2-04.pdf
https://www.voxaly.com/wp-content/uploads/VOXALY-LEG2023-Transparence-et-Verifiabilite-Specifications-publiques-v2-04.pdf
https://www.voxaly.com/wp-content/uploads/VOXALY-LEG2023-Transparence-et-Verifiabilite-Specifications-publiques-v2-04.pdf
https://www.voxaly.com/vote-par-internet-pour-les-francais-de-letranger-dans-le-cadre-des-elections-legislatives-partielles-2023
https://www.voxaly.com/vote-par-internet-pour-les-francais-de-letranger-dans-le-cadre-des-elections-legislatives-partielles-2023
https://www.voxaly.com/vote-par-internet-pour-les-francais-de-letranger-dans-le-cadre-des-elections-legislatives-partielles-2023
https://www.voxaly.com/vote-par-internet-pour-les-francais-de-letranger-dans-le-cadre-des-elections-legislatives-partielles-2023
https://www.legifrance.gouv.fr/codes/section_lc/LEGITEXT000006070239/LEGISCTA000006115482
https://www.legifrance.gouv.fr/codes/section_lc/LEGITEXT000006070239/LEGISCTA000006115482
https://www.legifrance.gouv.fr/codes/section_lc/LEGITEXT000006070239/LEGISCTA000006115482
https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000038661239
https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000038661239
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation

	Introduction
	Context
	Architecture
	Security Goals and Threat Model

	Reverse the Protocol
	Reverse Methodology
	Reversed Specification

	Vulnerabilities, Attacks, and Fixes
	Vulnerabilities
	Attacking and Fixing Verifiability
	Attacking Verifiability
	Fixing Verifiability

	Attacking and Fixing Ballot Privacy
	Attacking Ballot Privacy
	Impact and Stealthiness
	Fixing Ballot Privacy

	Lessons Learned
	Conclusion

