
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

zkSaaS: Zero-Knowledge SNARKs as a Service
Sanjam Garg, University of California, Berkeley, and NTT Research; Aarushi Goel,
NTT Research; Abhishek Jain, Johns Hopkins University; Guru-Vamsi Policharla

and Sruthi Sekar, University of California, Berkeley
https://www.usenix.org/conference/usenixsecurity23/presentation/garg

zkSaaS: Zero-Knowledge SNARKs as a Service

Sanjam Garg
UC Berkeley and NTT Research

Aarushi Goel
NTT Research

Abhishek Jain
Johns Hopkins University

Guru-Vamsi Policharla
UC Berkeley

Sruthi Sekar
UC Berkeley

Abstract
A decade of active research has led to practical con-

structions of zero-knowledge succinct non-interactive ar-
guments of knowledge (zk-SNARKs) that are now being
used in a wide variety of applications. Despite this as-
tonishing progress, overheads in proof generation time
remain significant.

In this work, we envision a world where consumers
with low computational resources can outsource the task
of proof generation to a group of untrusted servers in
a privacy-preserving manner. The main requirement is
that these servers should be able to collectively gener-
ate proofs at a faster speed (than the consumer). To-
wards this goal, we introduce a framework called zk-
SNARKs-as-a-service (zkSaaS) for faster computation
of zk-SNARKs. Our framework allows for distributing
proof computation across multiple servers such that each
server is expected to run for a shorter duration than a sin-
gle prover. Moreover, the privacy of the prover’s witness
is ensured against any minority of colluding servers.

We design custom protocols in this framework that
can be used to obtain faster runtimes for widely used zk-
SNARKs, such as Groth16 [EUROCRYPT 2016], Mar-
lin [EUROCRYPT 2020] and Plonk [EPRINT 2019].
We implement proof of concept zkSaaS for the Groth16
and Plonk provers. In comparison to generating these
proofs on commodity hardware, we can not only gen-
erate proofs for a larger number of constraints (with-
out memory exhaustion), but can also get ≈ 22× speed-
up when run with 128 parties for 225 constraints with
Groth16 and 221 gates with Plonk.

1 Introduction

zk-SNARKs are zero-knowledge succinct non-
interactive arguments of knowledge [10], that al-
low a prover to non-interactively convince a verifier
of the knowledge of a witness attesting to the va-
lidity of an NP relation, without revealing any

information about the witness. zk-SNARKs have
been a topic of extensive research in recent years
[18, 19, 78, 68, 20, 57, 56, 21, 48, 27, 37, 81]. Their
flexibility and expressiveness make them applicable to
a wide variety of scenarios such as private transactions
[7, 63], roll-ups [84], private smart contracts [52, 22],
access control in compliance with KYC regulations
[65, 66], social networks with private reputation moni-
toring [25], proving existence of bugs in zero-knowledge
[47], static program analysis [35], zero-knowledge mid-
dleboxes for enforcing network policies on encrypted
traffic [50], verifiable inference of machine learning
[80, 59, 58, 76] and verifiable database queries [82].

Despite recent advances [11, 51, 14, 13, 48, 27, 37,
29], generation of zk-SNARKs remains thousands of
times [75, 61] slower than checking the relation directly
for typical applications, with large memory usage — ef-
fectively gate keeping users without access to large ma-
chines. A natural way out for such users is to outsource
proof generation to more powerful servers. While one
could use a cloud server such as AWS, GCP or Azure to
generate proofs, this approach requires sharing the wit-
ness in the clear with the cloud server. As such, this
solution offers no privacy against insider threats such
as rogue administrators [31] who may compromise data
privacy for financial gains. Even if the cloud service
provider were trusted, the witness might consist of sensi-
tive data such as patient medical records that legally can-
not be placed off-premises due to data protection laws.

To address the privacy problem, recently, Ozdemir et
al. [61] introduced the idea of collaborative zk-SNARKs
for distributed generation of zk-SNARKs. Collaborative
zk-SNARKs are essentially secure multiparty computa-
tion (MPC) protocols that allow a group of parties hold-
ing shares of the witness to collectively generate a sin-
gle succinct proof. The key security guarantee is that
the witness remains hidden as long as only a subset of
the parties collude. Ozdemir et al. design collaborative
zk-SNARK analogs of Groth16 [48], Marlin [27] and

USENIX Association 32nd USENIX Security Symposium 4427

Plonk [37]. In their protocols, all parties run in parallel
and each of them performs as much work as the (single)
prover of the underlying zk-SNARK. This results in ap-
proximately the same runtime as the single prover.1

We posit that requiring each of the parties running in
parallel to do as much work as the zk-SNARK prover is
an overkill. Indeed, a previous work of Wu et al. [77]
leveraged parallelism to distribute proof computation
across different machines in a compute cluster to achieve
faster proof generation times. Their approach, however,
requires leaking the witness to the cluster, resulting in a
loss of privacy.

In this work, we explore the possibility of combining
the best features of collaborative zk-SNARKs [61] and
the work of Wu et al. [77]. We ask:

Is it possible to outsource zk-SNARK proof generation to
a group of parties in a privacy-preserving manner for

faster proof generation?

Our Contributions. Our contributions are as follows:

1. We present a general framework for zk-SNARKs-as-a-
service (zkSaaS), where a client delegates proof com-
putation to a group of untrusted servers in a privacy
preserving manner. Each of these servers is expected
to run for a shorter duration than a single local prover.

2. We instantiate this framework with custom protocols
to obtain faster runtimes than local provers for widely
used zk-SNARKs, such as Groth16 [48], Marlin [27]
and Plonk [37].

3. Finally, we implement prototypes of zkSaaS for the
Groth16 [48] and Plonk [37] proof systems. Con-
cretely, we show that when creating a proof for 225

constraints in the case of Groth16 (and 221 constraints
with Plonk), the zkSaaS protocol with 128 servers is
≈ 22× faster than a local prover. We also show that de-
ploying more servers helps us get a further speed-up.
For instance, when creating a Groth16 proof for 219

constraints, we see an improvement from ≈ 1.9× to
≈ 22× when the number of servers is increased from 8
to 128. This is in contrast to collabortive zk-SNARKs
[61] which do not obtain any speedup.

4. We also estimate the financial cost of using zkSaaS to
compute a Groth16 proof for an instance of size 219

to be under $0.23 with 128 parties using a 64 Mbps
link between servers.

1This is interesting since they manage to avoid additional security
parameter overhead that is usually incurred when securely computing
a function.

1.1 Overview of Our Approach
Similar to [61], our initial idea is to identify common
building blocks within widely used zk-SNARKs and de-
sign custom secure multiparty computation (MPC) pro-
tocols to compute them efficiently. We then stitch them
together to obtain zkSaaS, an efficient MPC protocol for
the corresponding zkSNARK prover.

An Important Observation. One of the key observa-
tions made in [61] is that it is possible to directly secret
share points on the elliptic curve and fields and apply
MPC techniques on these shares, which avoids the large
overheads incurred when using generic MPC techniques
with very few rounds of communication.2 We go one
step ahead and observe that these building blocks can be
rewritten in a way that allows us to leverage significant
SIMD structure that appears within their computation.

To leverage this SIMD structure, we make use of a
tool called packed secret sharing (PSS) [36].3 This is
a more efficient sibling of Shamir’s polynomial-based
secret sharing scheme [69], that allows secret-sharing a
vector of values amongst a set of parties. In particular,
at the cost of a slight reduction in the corruption thresh-
old, using PSS we can “hide” ℓ =O(n)4 secrets (where n
is the total number of servers) in a polynomial and each
of the n servers receives an evaluation at a single point
in this polynomial. Such sharings allow parties to ef-
ficiently perform SIMD computations on secret shared
data, while reducing the workload on each of them. We
use this in the design of each of our sub-protocols.

Multi-Scalar Multiplications (MSM). One of the main
building blocks in the zkSNARKs we consider is MSM,
which are operations of the form Πi∈[m]g

αt
i , where gi’s

are points on an elliptic curve. This is by far the most ex-
pensive component.5 We design a bespoke MPC proto-
col where the total work (as well as the asymptotic space
requirement) of each server is a factor of ℓ less than that
of a single prover.

Next we discuss the remaining components i.e., Prod-
uct Check, Fast Fourier Transform (FFT) and polynomial
computations, which exclusively involve field operations
that are much cheaper than elliptic curve operations.

Product-Check. Product-Check requiring computa-
tions of the form ∏ j∈[i] x j, for all i ∈ [m], which are re-
ferred to as partial products. Similar to MSM, we design
a special-purpose MPC protocol for partial products, that

2This is mainly due to generic MPC techniques making non-black-
box use of the elliptic curve.

3This is also the main building block used in the design of all of
general-purpose MPC protocols that support some division of work
(See Section 1.3 for more details.)

4In the implementation we set this to be n/4.
5In Figure 1 we show the fraction of time spent computing MSMs

for Groth16.

4428 32nd USENIX Security Symposium USENIX Association

allows us to divide the work of each server by a factor of
ℓ less than that of a single prover.

Fast Fourier Transform. The standard description of
the FFT algorithm on a polynomial with m coefficients
can be divided into logm steps, with O(m) field multi-
plications at each step. For the first logm/ℓ steps, we are
able to divide the work of each server by a factor of ℓ.
For the remaining logℓ steps, however, we require one of
the parties to do O(m) field operations and have O(m)
memory, while the work and memory requirement of the
remaining parties gets divided by ℓ.

Polynomial Multiplication and Division. Finally, we
show how to combine standard packed secret sharing
based subprotocols for addition and multiplication along
with our custom MPC for FFT to enable secure dis-
tributed polynomial computations.

Composing different subprotocols based on packed se-
cret sharing is not straightforward, and requires care.
We show how to combine the above subprotocols to ob-
tain zkSaaS for faster generation of zk-SNARKs such as
Groth16, Marlin and Plonk.

Communication over a Star Topology Network. Our
distributed sub-protocols for all of the functions de-
scribed above, do not require servers to communicate
with all other servers. Aside from receiving shares of the
extended witness from the client, we require the servers
to only communicate with the one large server, through-
out the rest of the computation. As a result, we only
need communication channels between the client and
each server and between the large server and every other
server.

Instantiating zkSaaS. As discussed above, the dis-
tributed FFT protocol requires one party which has mem-
ory proportional to the size of the relation but the com-
putational resources demanded from all other parties is
reduced by a factor of ℓ. Therefore, a zkSaaS deploy-
ment requires one large server. While not ideal, we argue
that this is still reasonable for two reasons — (1) even if
the private view of this large server is leaked, it does not
compromise a client’s secrets unlike when a client sim-
ply rents a large server to generate the proof. (2) it is very
easy and quite cheap to rent a large server from a cloud
service provider.

Finally, we remark that proof generation in the zk-
SNARKs that we consider proceeds in two steps: first,
the prover uses its (short) witness to evaluate the rela-
tion circuit and obtain a corresponding extended witness,
which is then used to generate the proof (See Section 3
for a detailed discussion). Similar to collaborative zk-
SNARKs [61], in this work, we focus on designing se-
cure distributed protocols for proof generation and as-
sume that the client computes and shares the extended

witness with the servers. We view faster generation of
the extended witness as an important orthogonal ques-
tion but such protocols would need to essentially be re-
designed for every application.

Security. We now discuss the key aspects of our security
model and the guarantees provided by zkSaaS.

We assume that a majority of the servers are honest.
Specifically, let n be the total number of servers and ℓ be
the total number of secrets that we can pack in a single
packed secret sharing. We require that at most t < n

2 − ℓ
of the servers can be corrupted. Further, we assume that
the corruptions are semi-honest.

Our zkSaaS framework retains the soundness property
of the underlying zk-SNARK and provides the following
completeness and zero-knowledge guarantees:

— Completeness: For any true statement, an execu-
tion of zkSaaS involving an honest client and honest
servers outputs an accepting proof.6

— t-Zero Knowledge: In any execution of zkSaaS, the
view of the t corrupt servers can be efficiently sim-
ulated without the client’s witness. This, in partic-
ular, implies that the corrupt servers learn nothing
about the client’s witness.

We conclude with a few remarks on security against
malicious servers. We first note that proofs output by
zkSaaS remain sound even when all servers are mali-
cious. Next, we conjecture that our protocols can be aug-
mented to achieve t-zero knowledge against malicious
servers by using highly efficient compilers from the re-
cent MPC literature [40, 39, 6, 44, 45]. In essence, these
compilers show that semi-honest MPC protocols that are
“secure against malicious corruptions up to linear at-
tacks” can be compiled into maliciously secure protocols
with a small constant (typically, at most two) overhead.
We conjecture that our semi-honest zkSaaS protocols al-
ready satisfy the properties required for these efficient
compilers; a formal treatment of the same, however, is
outside the scope of this work.

1.2 Example Applications of zkSaaS
We now discuss some real-world applications where we
envision our zkSaas-framework to be useful.

Private Transactions and Smart Contracts. A simple
spend transaction on a private chain such as ZCash[7]
already involves ≈ 130,000 R1CS constraints7 which
takes roughly 10 seconds on a high-end laptop in single
threaded mode. This would take even longer on weaker

6The completeness property, in fact, holds even if the servers are
semi-honest (since such servers follow protocol instructions.)

7https://github.com/zcash/librustzcash

USENIX Association 32nd USENIX Security Symposium 4429

https://github.com/zcash/librustzcash

devices such as smart phones making the process quite
tedious for users.

Private smart contracts are immutable programs run-
ning on blockchains, which provide confidentiality of the
computation carried out on blockchains [52, 22]. Al-
though these chains can be designed more carefully to
reduce the overhead for simple transactions, they aim
to support general computation on the smart contracts
which can blow up to a very large number of constraints
as there may be very complicated logic that gets executed
involving cryptographic functions such as signature veri-
fication. With zkSaaS, users can potentially pay a tiny
transaction fee in exchange for a seamless experience
akin to current centralized payment methods.

Statements involving Ethereum Wallets. Ethereum
uses EdDSA signatures for authentication of transac-
tions over the ed25519 elliptic curve which is not proof
friendly. As a result, one needs to emulate non-native
256-bit field arithmetic which is quite expensive. The
verification circuit of an EdDSA signature costs over 2.5
million R1CS constraints8 and the proving key itself is
1.6 GB in size. Common tasks such as proof of member-
ship viz. ”I own an Ethereum wallet out of these set of
1024 wallets” become impractical on mobile devices as
the statements are simply too large and lead to memory
exhaustion.

Combating Disinformation. It was shown that zero-
knowledge proofs can be used to prove that images ap-
pearing in news articles underwent an approved set of
transformations from the time of creation [60]. This is
particularly helpful in allowing reporters to hide sensi-
tive content while at the same time proving authenticity
of the image. While fast generation of zk-SNARKs is
possible for images, doing the same for compute-heavy
video files is currently far from practical and our zkSaaS-
framework could aid in carrying out such a computation.

Verifiable Private ML Inference. A user can commit
to a machine learning model and provide a proof of infer-
ence on this machine learning model, which can be used
to verify accuracy of a machine learning model or to en-
sure that a certain entity who claims to use AI for a task
is actually producing predictions using a machine learn-
ing model. Since circuits for inference can be quite large
as the models grow in size, they quickly become imprac-
tical to prove even on consumer grade laptops. Again,
the data used to train this model could be patient health
records for example which cannot be placed on servers
that do not comply with HIPAA9. Hence, a solution is
to use zkSaaS to compute proofs of inferences where no
server sees sensitive information.

8https://github.com/Electron-Labs/ed25519-circom
9https://www.hipaajournal.com/

1.3 Related Work

Some prior works [53, 30] have considered building
MPC-as-a-service, which involves deploying MPC in a
volunteer-operated network (like blockchains). How-
ever, such protocols are built for generic functionalities
and do not offer efficient solutions for our specific goal.
In a different line of work (unrelated to our goal), MPC
has been used to securely sample the common parame-
ters used in zk-SNARKs [8, 23, 55].

A different line of work has considered the problem
of speeding-up the zk-SNARK prover time, but they ei-
ther do not hide the witness [77, 67], or lead to [24]
linear verification time with a security guarantee that is
weaker than both our framework and the collaborative
zk-SNARK framework [61]. Some prior works have
also studied other distributed models of proof systems,
including ones where the statement is shared amongst
multiple verifiers [1, 16, 17], or where there are two (or
more) non-colluding provers [4, 12].

Our goal in some sense is very similar to the de-
sign of MPC protocols, where the total computation and
communication is independent of the number of parties,
which has been the focus of a significant line of re-
search [34, 33, 39, 43, 6, 44, 46]. However for arith-
metic circuits, most of these require round complexity
linear in the multiplicative depth of the circuit, which is
not ideal in our setting since the prover algorithms in zk-
SNARKs typically don’t have a constant multiplicative
depth. Moreover, representing cryptographic operations
such as group exponentiations as an arithmetic circuit
and computing them inside an MPC is extremely inef-
ficient. Therefore, naı̈vely using these protocols in com-
puting a zk-SNARK will result in inefficient solutions.

More recently, in a concurrent and independent work,
Chiesa et al. [28] also considered the problem of pri-
vate delegation of zk-SNARKs for faster proof genera-
tion. However, their model is quite different from ours.
In particular, they assume that the client remains online
throughout the computation and actively participates in
the zk-SNARK computation along with the servers. For
this, they design an MPC protocol (that is run between
the servers and the clients) for zk-SNARK computation
leveraging the fact that one of the parties (i.e., the client)
is always honest and the witness need not be hidden from
them. Their goal is to essentially “reduce” the work done
by the client. In contrast, in our setting, after sharing the
extended witness, the client does not need to do any work
and can delegate the entire zk-SNARK computation to
the servers.

4430 32nd USENIX Security Symposium USENIX Association

https://github.com/Electron-Labs/ed25519-circom
https://www.hipaajournal.com/

1.4 Future Directions

A promising direction for future work would be to elim-
inate the need of a single large server in zkSaaS. In
our current solution, this large server is only needed for
our distributed protocol for FTT. Potential approaches
for avoiding this could be – (1) Designing a more effi-
cient subprotocol for for distributed computation of FFT
or (2) designing zkSaaS for zk-SNARKs that do not use
FFT operations e.g. Orion [79], Brakedown [42], Hyper-
plonk [26]. Another interesting problem would be to en-
able faster generation of the extended witness in a similar
framework. Finally, as discussed in Section 1.1, it would
be interesting to formally demonstrate how the protocols
developed in this work can be augmented to achieve se-
curity against malicious servers.

Paper Organization. We start by establishing some no-
tations in Section 2. We then formally define zkSaaS-
in Section 3, and give an overview of the popular zk-
SNARKs of interest (Groth, Marlin and Plonk) in Sec-
tion 4. A detailed technical exposition of each of our
distributed sub-protocols (FFT, MSM and sum of partial
products) appears in Section 5, and we show how to build
a zkSaaS for a specific class of zk-SNARKs in Section 6.
Finally, we discuss the concrete efficiency of our scheme
in Section 7.

2 Preliminaries

For any n ∈ N, we use [n] to denote the set {1,⋯,n}
and for i, j ∈ N with i < j, we use [i, j] to denote the
set {i, i + 1, . . . , j}. We denote a vector of ℓ elements
from a field F, (x1,⋯,xℓ), by x. For any two vectors
x and y, the component-wise multiplication is denoted
by x⊙y ∶= (x1 ⋅ y1,⋯,xℓ ⋅ yℓ). We always use capital let-
ters (e.g. X) to denote elements from a group G, and
correspondingly X denotes a vector of ℓ group elements
(X1,⋯,Xℓ). We use a multiplicative notation for our
group operations throughout the paper.

Linear Secret Sharing Schemes. In this work we make
use of polynomial based, regular threshold secret shar-
ing scheme as well as a packed secret sharing scheme.
For regular threshold secret sharing, we use [x], ⟨x⟩ to
denote shares of a value x, w.r.t. to a degree t and n−1
polynomial respectively. For packed secret sharing, we
use JxK, ⟪x⟫ to denote shares of a vector x w.r.t. to a
degree D and n− 1 polynomial respectively, where we
assume that the length of x is ℓ ∈ O(n) and D = t + ℓ.
We use [x]i,⟨x⟩i,JxKi,⟪x⟫i to denotes shares held by a
party Pi and [x]S,⟨x⟩S,JxKS,⟪x⟫S to denote the shares
held by a subset S of the parties. Finally, we use func-
tions [x] ← share(F,x,t) and JxK ← pshare(F,x,D) to

compute shares and open(F,JxK,D) and open(F,[x],t)
to reconstruct shares.

3 zkSaaS Framework

As discussed earlier, zkSaaS is a collaborative zk-
SNARK [61] framework, where a client delegates the
task of computing a zk-SNARK to n-servers. To realize
our goal of enabling fast computation of zk-SNARKs,
the resultant zkSaaS protocol must ensure that – (1) the
work done by the clients is minimized and (2) the work
required to compute the zk-SNARK gets divided across
all servers.

RICS Format. Let us briefly recall the structure
of existing zk-SNARKs. Different zk-SNARKs work
with different representations of the relation R - e.g.,
quadratic arithmetic programs [62, 67], low-depth cir-
cuits [15, 32, 41, 71, 72, 73, 74, 78, 83], binary arith-
metic circuits [37], etc. The most popular representation
amongst state-of-the-art proof systems [9, 27, 48, 49] is
known as the rank-1 constraint systems (R1CS) that gen-
eralizes arithmetic circuits.

Proof systems working with this representation pro-
ceed in two steps: (1) First, extend the given (short)
statement-witness pair (φ ,w) into a satisfying assign-
ment z for the RICS relation. The length of this satis-
fying assignment is proportional to the size of the re-
lation. (2) second, give an argument of knowledge for
this satisfying assignment for the RICS relation. Step 1
is inexpensive and only requires non-cryptographic field
operations, while Step 2 requires more expensive crypto-
graphic operations and is typically the bottleneck.

Our Framework. zkSaaS is essentially a secure
multiparty computation (MPC) protocol for computing
zk-SNARKs, between a client and n-servers.

Client. Since Step 1 of the proof generation is in-
expensive, we assume that client performs this step and
“securely” shares the resulting satisfying assignment z
with the servers at the start of the protocol. To compute
this satisfying assignment, the client essentially needs
to represent the original relation R as an arithmetic
circuit CR and compute all the values induced on the
intermediate wires in circuit CR when evaluated on
inputs (φ ,w). These intermediate values form the
satisfying assignment z for the corresponding RICS
relation. Looking ahead, in our construction, the client
(pack) secret shares [36] the vector z with the servers.

Computing and sharing this satisfying assignment re-
quires O(∣R∣ logN) ≈ O(∣R∣) field operations and very
little space. Indeed, observe that the client can do this
computation in a streaming fashion, where it computes a

USENIX Association 32nd USENIX Security Symposium 4431

Definition 1 (zkSaaS). Let λ be the security parameter, n be the number of parties, R ∈Rλ be an NP-relation
and ΣR = (Setup,Prove,Ver,Sim) be a zk-SNARK for R such that: the prover computation time is Tprover =
Tfield+Tcrypto, where Tfield and Tcrypto are the times taken by the prover for the field operations and cryptographic
operations, respectively; the prover space complexity is Sprover. Let (Preprocessing,Πonline) be a tuple defined as
follows:

— Preprocessing(crs,1n)→ pre1, . . . ,pren ∶ This is a PPT algorithm that takes the crs output by Setup and the
number of servers n as input and outputs correlated randomness prei for each server Pi (for i ∈ [n]).

— Πonline(crs,φ ,w,pre1, . . . ,pren)→ π ∶ This is an MPC protocol between a client C and n servers P1, . . . ,Pn.
The client has the statement φ and private input w. It sends messages to each of the n servers in a single
round. Given these messages, φ and their respective correlated randomness pre1, . . . ,pren, the servers then
engage in an interactive protocol amongst each other to compute a proof π .

We say that Π = (Preprocessing,Πonline) is a zkSaaS for ΣR, if the following properties are satisfied.

1. Completeness: For all (φ ,w) ∈ R, the following holds:

Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎣

crs← Setup(1λ)

pre1, . . . ,pren← Preprocessing(crs,1n)

π ←Πonline(crs,φ ,w,pre1, . . . ,pren)

RRRRRRRRRRR

Ver(crs,φ ,π) = 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ negl(λ)

2. t-zero-knowledge: Let crs ← Setup(1λ), pre1, . . . ,pren ← Preprocessing(crs,1n). For all semi-honest PPT
adversaries A controlling at most a t-sized subset Corr ⊂ [n] of the servers, there exists an efficient Simulator
SimzkSaaS, such that the following holds for all φ ,w (where b← R(φ ,w) ∈ {0,1}):

{viewAΠonline
[φ ,w]} ≈c {SimzkSaaS(crs,φ ,b,{prei}i∈Corr)}

here viewAΠonline
[φ ,w] denotes the view of A in an execution of Πonline(crs,φ ,w,pre1, . . . ,pren), and we use ≈c

to denote computational indistinguishability between the two distributions.

3. Efficiency: Π = (Preprocessing,Πonline) satisfy the following efficiency requirements:

Preprocessing: The computation complexity of the Preprocessing algorithm is o(Tfield). For each i ∈ [n], size
of the correlated randomness ∣prei∣ ∈O(Sprover/n).

Client: Computation complexity of the client o(Tfield) field operations.

Special Server P1: The first server has a computation complexity of o(Tfield) field operations andO(Tcrypto/n)
cryptographic operations. It’s space and communication complexities are O(Sprover) and o(Tfield), resp.

Other Servers P2, . . . ,Pn: All other servers have computation complexity of o(Tfield/n) field and O(Tcrypto/n)
cryptgraphic operations. Their space and communication complexities areO(Sprover/n) and o(Tfield/n), resp.

fraction of the circuit at a time and secret shares the re-
sulting wire values before proceeding with evaluating the
next part of the circuit, thereby minimizing the required
space. However, if the client is unwilling, this compu-
tation can also be done via an MPC protocol, where the
client only needs to share the original statement-witness
pair (φ ,w)with the servers, who then run a generic MPC
to compute CR and obtain shares of z.

In this work, we focus on designing an efficient
protocol for Step 2, which is the main bottleneck in the
computation of existing zk-SNARKs.

Servers. Given shares of the extended witness, Step 2
is executed via an MPC protocol between the servers.
We want the total computation and space complexity
of this protocol to be asymptotically identical to that of
computing the zk-SNARK by a monolithic entity.

Let the space complexity of the underlying zk-
SNARK be Sprover and the computation complexity be
Tfield field operations and Tcrypto cryptographic oper-
ations. Then, our zkSaaS-framework guarantees the
following efficiencies: first, in terms of space complex-
ity, one of the servers requires a O(Sprover) space, while
all others require a O(Sprover/n) space; second, in terms

4432 32nd USENIX Security Symposium USENIX Association

of computation, the cryptographic operations are almost
equally divided amongst all the n servers, i.e., all the
servers perform O(Tcrypto/n) cryptographic operations,
and the remaining field operations are divided amongst
the servers such that the server with more memory per-
forms o(Tfield)10 field operations, while the remaining
(n − 1) low-memory servers each perform O(Tfield/n)
field operations.

Pre-Processing. Finally, we assume that the servers get
access to some correlated-randomness at the start of this
MPC protocol. This relation-independent correlated-
randomness can be generated as part of a pre-processing
step with o(Tfield) computation complexity (requiring
only non-cryptographic operations). This can be either
be generated by the client or by the servers themselves
using a generic MPC protocol. Since the computation in
this pre-processing phase is independent of the relation,
it can be pre-computed by the servers during downtime.

Communication and Round Complexity. Finally,
we remark that in order to minimize the overhead from
communication, we want to limit the total communi-
cation to O(Tfield) and restrict the number of rounds
of interaction between the servers to a constant value.
zkSaaS-framework is formalized in Definition 1.

4 Overview of Groth, Marlin and Plonk

In this section, we review the design of the prover al-
gorithms in three widely used zk-SNARK construction:
Groth16 [48], Marlin [27] and Plonk [37]. We start by
discussing the key components (that are often the main
bottleneck) used in the generation of Groth16-, Marlin-
and Plonk-proofs.

Fast Fourier Transform, Polynomial Multiplication
and Division. One of the key components used to opti-
mize prover computation is the Fast Fourier Transform
(FFT), which helps evaluate a given polynomial at m
points inO(m logm) time. The prover computations also
typically require additional FFT-based computations: (1)
Inverse FFT (iFFT) is used to convert m evaluations of a
polynomial to the coefficient representation of the poly-
nomial in time O(m logm); (2) Polynomial Multiplica-
tion, which given the coefficient representation, can just
be computed using one call each to FFT and iFFT along
with m field multiplications and takes O(m logm) time;
(3) Polynomial Division, which can actually be run by
making two calls to polynomial multiplication –takes
O(m logm) time, where m is the degree of the dividend.

Multi-scalar Multiplications (MSMs). Multi-scalar

10We note that here we are hiding a logarithmic factor in the n

multiplications are of the form ∏ j∈[m](X j)
y j , where

y1, . . . ,ym ∈ F, and X1, . . . ,Xm ∈G.

Polynomial Commitments. In interactive oracle proofs
(IOP)-based zkSNARKs, like Marlin and Plonk, in each
round, the prover sends polynomial oracles to the veri-
fier, which are essentially encodings of the witness, that
the verifier can query. To convert these polynomial-
IOPs to SNARKs, the prover commits to these poly-
nomial oracles using the KZG polynomial commitment
scheme [54]. These commitments allow a prover to com-
mit to a univariate polynomial p(X) ∈ F[X] and get a
com, such that the prover can later open to an evaluation
of p(X) at any point z, while giving a proof π of correct
evaluation. In KZG commitment, to commit to a polyno-
mial of degree d, MSM function is evaluated on d field
and group elements, and to generate an opening proof
the prover needs to perform one polynomial division fol-
lowed by an MSM operation.

Sumcheck Protocol. Marlin relies heavily on what is
known as a sumcheck protocol for univariate polyno-
mials. For a polynomial oracle p(X) ∈ F[X] sent by
the prover, this involves giving a proof of the fact that
evaluations of p(X) on the set S ∶= {1,ω, . . . ,ωm−1},
sums to some value σ ∈ F, where ω is the m-th prim-
itive root of unity in the field F. It was shown in [9]
that ∑x∈S p(x) = σ , if and only if p(X) can be written
as q(X) ⋅X +σ/∣S∣, for some q(X) ∈ F[X]. Thus, the
prover in the polynomial-IOP first evaluates the polyno-
mial q(X) by dividing the polynomial p(X)−σ/∣S∣ by X
and sends q(X) as an oracle. Hence, for running each
sumcheck, the prover in Marlin invokes polynomial di-
vision before committing to this polynomial using the
polynomial commitment.

Partial Products. In Plonk, the prover needs to com-
pute (for reference, see round 2 of [37, Section 8.3]) par-
tial products of the form ∏i∈[j] p(ω i−1) for all j ∈ ∣S∣,
where p(X) ∈ F[X] is some polynomial (which in turn is
some encoding of the witness), and S ∶= {1,ω, . . . ,ωm−1},
where ω is the m-th primitive root of unity in the field
F. The prover uses this in computing the polynomial
z(X) obtained by additional polynomial multiplication
and addition operations and sends it as an oracle in the
polynomial-IOP protocol. In the final Plonk protocol z is
committed using the polynomial commitment.

4.1 Groth16, Marlin, and Plonk Provers
We now briefly describe how each of the three zk-
SNARKs that we consider can be computed via some
combination of the above functions. We defer the de-
tails on how Groth and Plonk can be computed us-
ing our zkSaaS framework to the full version [38].
Groth [48]. Groth16 is the smallest, non-interactive

USENIX Association 32nd USENIX Security Symposium 4433

zk-SNARK, where the prover only sends 3 group ele-
ments to the verifier. This construction makes use of
a structured CRS consisting of group elements propor-
tional to the number of constraints. To generate the
proof, the prover needs to compute a polyomial multi-
plication, polynomial division and a constant number of
MSMs with the group elements in the CRS.

Marlin [27]. Marlin is a six round protocol, where
overall, the prover generates the KZG polynomial com-
mitments of 21 polynomials, and requires the following
operations, each called for a small constant number of
times: three sequential calls to the sumcheck protocol
with each call additionally needing a call to polynomial
division, all involving polynomials with a degree bound
of the size of the relation, and polynomial additions. As
a final step, this interactive protocol is converted to a
SNARK using the Fiat-Shamir transformation.

Plonk [37]. Plonk on the other hand is a five round pro-
tocol, where overall the prover generates the KZG poly-
nomial commitments of 9 polynomials, and requires the
following operations, each called a small constant num-
ber of times, to generate these polynomials: polynomial
multiplication and division involving polynomials with
a degree bound of the size of the relation, partial prod-
ucts, and polynomial additions. This interactive protocol
is also converted to a SNARK in the RO model.

5 Distributed Sub-Protocols for the
zkSaaS Framework

For each of the sub-functions (FFT, MSM, Sum of Par-
tial Products) discussed in section 4, we build custom
MPC protocols. Looking ahead, we show how to com-
pose these protocols, to design a zkSaaS for a specific
subclass of zk-SNARKs. The full description of these
protocols is deferred to the full version of our paper [38].

5.1 Distributed Fast Fourier Transform
The fast Fourier transform (FFT) algorithm is a recur-
sive divide and conquer algorithm that helps evaluate a
polynomial at multiple points efficiently. In particular, to
evaluate a polynomial p(x) ∈ F[X] of degree m−1 at the
points S = {ω i ∶ i ∈ [m]}, where ω is the m-th primitive
root of unity in the field F, FFT does the following: At
level i = logm, each of the m polynomials will be eval-
uated at a single point, which is the identity element in
1 ∈ F. Subsequently, given the evaluations at level i (for
any i ∈ [log(m),1]), the FFT algorithm gives us evalu-
ations at the level i− 1 in the following way: For each
j ∈ [2i−1], and each k ∈ [m/2i], xi−1,k

j ∶= xi,k
2 j−1 +ω

k2i−1
⋅

xi,k
2 j and xi−1,(m/2i

)+k
j ∶= xi,k

2 j−1 +ω
((m/2i

)+k)2i−1
⋅ xi,k

2 j . At

the end (i = 0), the algorithm outputs all the m evalua-
tions of p at S. We represent the recursion by the follow-
ing function defined for each i = logm, . . . ,1:

F i
FFT({x

i,k
j } j∈[2i

],k∈[m/2i
]
) ∶= {xi−1,k

j } j∈[2i−1
],k∈[m/2i−1

]
,
(1)

Here, the input to F logm
FFT are the values x j = xlogm,1

j

for each j ∈ [m], representing the evaluations11 of each
of the m polynomials of level i = logm at the single
point 1. Note that F1

FFT outputs the required evalua-
tions {p(1), p(ω), . . . , p(ωm−1)}. Using this notation,
the FFT algorithm can be written as FFFT(x1, . . . ,xm) =

F1
FFT(F

2
FFT(. . .F

logm
FFT (x1, . . . ,xm))).

An Alternate View of the FFT algorithm. Our goal
is to compute FFFT via a secure MPC protocol. Notice
that FFT is a logarithmic step algorithm, while we want
a constant round MPC protocol for computing it. To-
wards designing such a protocol, we begin by making
some key observations about FFT, and abstracting the
main idea behind our final MPC protocol. For ease of
exposition, consider an example where the input size is
m = 32. We want to convert the linear function evalu-
ation on each pair of values (at each recursive level i),
into a linear function evaluation on a pair of vectors (of
say ℓ = 4 values) and be able to recurse on these vectors.
Looking ahead, this will help us to pack share these vec-
tors together and locally compute on them.

1. FFT Step I: Since logm = log32 = 5, the inputs to
the FFT algorithm will be x5,1

1 , . . . ,x5,1
32 . The next

level i = 4 of the recursion is computed as: x4,1
j =

x5,1
2 j−1 +ω

16 ⋅ x5,1
2 j and x4,2

j = x5,1
2 j−1 +ω

32 ⋅ x5,1
2 j , for each

j ∈ [16]. We now look at the same step as being com-
puted on a vector instead of individual values. Sup-
pose we group ℓ = 4 elements to get the following 8
vectors at level i = 5: x5,1

1 = (x
5,1
1 ,x5,1

3 ,x5,1
5 ,x5,1

7), x5,1
2 =

(x5,1
2 ,x5,1

4 ,x5,1
6 ,x5,1

8), . . . ,x
5,1
8 = (x

5,2
26 ,x

5,2
28 ,x

5,2
30 ,x

5,2
32).

Observation I. The key observation here is that, each
pair of vectors x5,1

2 j and x5,1
2 j−1 are used to compute two

vector evaluations x4,1
j (which uses ω

16) and x4,2
j at

the level i = 4 (which uses ω
32), for each j ∈ [4]. In

other words:

∀ j ∈ [4], x4,1
j =x5,1

2 j +ω
16
⋅x5,1

2 j−1 & x4,2
j =x5,1

2 j +ω
32
⋅x5,1

2 j−1.

2. FFT Step II: We want to continue to compute on
pairs of vectors linearly to obtain the next recur-
sive step i = 3. However, note that now x4,1

2 j−1 and

11 For p(X)=∑i∈[m] ci−1xi−1, the xi’s are just a rearrangement of the
ci’s, obtained by recursively reordering the ci’s as: put the even indexed
terms at each level on the left and the odd indexed terms on the right.
Continue the recursion for logm steps.

4434 32nd USENIX Security Symposium USENIX Association

x4,1
2 j do not contain the values that are linearly com-

bined in the next recursive step of FFT. For instance
we have vectors x4,1

1 = (x
4,1
1 ,x4,1

2 ,x4,1
3 ,x4,1

4) and x4,1
2 =

(x4,1
5 ,x4,1

6 ,x4,1
7 ,x4,1

8), while the values that we want to
combine are x4,1

1 with x4,1
2 , and x4,1

3 with x4,1
4 .

Observation II. The key observation that we make
to resolve this issue is that, if at level i = 5, we had
started with vectors: x5,1

1 = (x
5,1
1 ,x5,1

5 ,x5,1
9 ,x5,1

13), x5,1
2 =

(x5,1
2 ,x5,1

6 ,x5,1
10 ,x

5,1
14), etc., then Step 1 would have led

to the vectors (at i = 4): x4,1
1 = (x

4,1
1 ,x4,1

3 ,x4,1
5 ,x4,1

7),
x4,1

2 = (x
4,1
2 ,x4,1

4 ,x4,1
6 ,x4,1

8), etc. These vectors x4,1
1 and

x4,1
2 can now be combined using a linear combination,

the same way as we did in step 1, to get x3,1
1 and x3,2

1
(and similarly others) of level i = 3. But, this reorder-
ing will only help us for this level and we run into the
same issue when computing the next level i = 2.

Our Main Idea: The key point from observations I and
II above is that in order to continue doing the FFT com-
putations for each recursive level as a linear combination
of vectors, instead of individual values, we must take the
initial vectors at level i= 5 to be such that the values x5,k

j ’s
in the same vector have the j’s as far away as possible–
this ensures that we push our problem down to as far a
recursive layer as possible. However, even with the best
ordering that we start with, we would reach a recursive
level beyond which we cannot hope to compute on the
vectors through a linear combination. Our MPC protocol
combines the above key idea of packing the inputs into
vectors such that local computations can be performed
on them for as long as possible, along with additional
techniques to overcome the challenge in computing the
remaining recursive layers.

MPC for FFT. For m inputs, we start with a packed
sharing of ℓ-sized vectors at level i = logm: xlogm,1

j =

(xlogm,1
j ,xlogm,1

m
ℓ + j , . . . ,xlogm,1

m(ℓ−1)
ℓ + j

), for each j ∈ [m/ℓ]. As

discussed in our main idea, this allows us to locally com-
pute on the shares at each recursive layer (as in Steps 1
and 2) until level i = logℓ+1, beyond which we cannot
do a local computation.

Beyond i = logℓ: One approach that comes to mind is
to rearrange the elements packed together (using some
interaction) in such a way that a similar local computa-
tion can be done. However, one can observe that doing
such a rearrangement actually leads to another problem–
each pair of vectors are combined now using a vector
of the ω

i’s (instead of a single one), which leads to an
“interactive” multiplication protocol at each level. This
approach does give a feasible solution, but requires the
parties to communicate at each of the remaining logℓ lev-
els. Furthermore, the total communication in each round

is O(m) which will become a bottleneck when dealing
with a large constraint size.

We minimize the number of communication rounds
and give a more efficient solution than the above by
making use of our all powerful server and just two
rounds of communication. On a high level, this uses
the fact that FFT (and each of its recursive layer)
is a linear function, i.e.: F i

FFT((x1 + r1), . . . ,(xm +

rm)) = F i
FFT(x1, . . . ,xm) + F i

FFT(r1, . . . ,rm). Suppose
that the parties get packed shares of random values
(r1, . . . ,rm) and packed shares of (s1, . . . ,sm) generated
as: (s1, . . . ,sm) = F1

FFT(F
2
FFT(. . .F

logℓ
FFT (r1, . . . ,rm))).

Then, the packed shares of the level i = logℓ are
masked using the packed shares of (r1, . . . ,rm) locally,
and sent to the powerful party P1. Now, P1 reconstructs,
computes the remaining recursive levels of FFT until
i = 1, and sends the packed shares of the output to all
parties. By virtue of linearity, the parties can obtain
packed shares of the FFT output by locally subtracting
the packed shares of (s1, . . . ,sm). This securely reduces
the communication rounds to two12.

Complexity of our distributed FFT. Our protocol
runs in two rounds, where in the first round each party
communicates O(m/ℓ) field elements and in the sec-
ond round, party P1 communicates O(m/ℓ) field el-
ements to each of the remaining parties. P1 does
O((logℓ+ logn)m+m(logm− logℓ)/ℓ) field operations
and has a space complexity ofO(m). The remaining par-
ties perform O(m(logm− logℓ)/ℓ) field operations and
require O(m/ℓ) space.

5.2 Distributed Partial Products
In this section, we discuss our ideas for securely
computing functions of the form Fpart(x1, . . . ,xm) =

(∏ j∈[i] x j)i∈[m], in a distributed way. When computing
on a single machine, this function requires computing the
x
[1,i] ∶= x1⋯xi values for each i ∈ [m] in a sequential order.

Simply implementing this approach inside an MPC pro-
tocol will require O(m) rounds. Moreover, since each
step only requires multiplying two values at a time (i.e.,
x
[1,i−1] and xi), it is unclear how to leverage packed shar-

ing to get a division of work amongst the parties.
Our goal is to design a computation mechanism that is

more amenable to parallelism and where we can mean-
ingfully use an approach based on packed secret sharing.

The key idea to achieve this comes from rewrit-
ing Fpart in the following way: Fpart(xi, . . . ,x j) =

(xi,x[i,i+1], . . . ,x[i, j]) = (Fpart(x (i−1)m
ℓ +1

, . . . ,x im
ℓ
) ⋅

12A curious reader might wonder why the linearity doesn’t help us
use the powerful server to compute all the recursive levels. For input
size m (which is as large as the constraint size), this solution leads to
a O(m logm) compute time for both the pre-processing step and the
server time, as opposed to our demand ofO(m) compute time for both.

USENIX Association 32nd USENIX Security Symposium 4435

x
[1, (i−1)m

ℓ]
)i∈[ℓ]. Observe that the Fpart(x (i−1)m

ℓ +1
, . . .,

x im
ℓ
)’s depend on disjoint subsets of the input xi’s. Thus,

they can all be computed in parallel. In fact, since
each of these Fpart(x (i−1)m

ℓ +1
, . . . ,x im

ℓ
) are computed

identically, albeit on a different set of inputs, this is
exactly the kind of SIMD computation for which packed
secret sharing is most helpful.

MPC for Fpart. We start with a packed secret
sharing of vectors x1, . . . ,xm/ℓ, where x j is an ℓ-
sized vector consisting of the jth inputs i.e., x j =

(x j,x m
ℓ + j, . . . ,x m(ℓ−1)

ℓ + j
), for each j ∈ [m/ℓ]. We now

compute Fpart(Jx1K, . . . ,Jxm/ℓK) to obtain packed shares
of (y j = (x

[
(i−1)m

ℓ +1, (i−1)m
ℓ + j]

)i∈[ℓ]) j∈[m/ℓ] using known

techniques with O(m) total computation and communi-
cation.

A careful reader might have observed that while the
above idea allows us to compute {y j} j∈[m/ℓ] simulta-
neously, doing this naı̈vely will still require O(m/ℓ)
rounds. To avoid this, we observe that a slightly mod-
ified version of Bar-Ilan and Beaver’s [5] constant-round
MPC for unbounded multiplication can be used to com-
pute this in a constant number of rounds.13 We defer
more details about this protocol and the modification to
the technical sections.

Finally, to compute Fpart(x1, . . . ,xm), given the packed
secret sharings of {y j} j∈[m/ℓ] from the previous step,
we note that while computing these packed shares of
{y j} j∈[m/ℓ], the parties also inevitably end up com-
puting a packed secret sharing of the vector z =
(x
[1,m/ℓ],x[m

ℓ +1, 2m
ℓ]
, . . . ,x

[
m(ℓ−1)

ℓ ,m]
).

Given {Jy jK} j∈[m/ℓ] and JzK, our final step computes the
shares of desired output:
(1) Convert a packed sharing of z into regular thresh-
old shares of the individual elements in z, i.e.,
[x
[1,m/ℓ]], . . . ,[x

[
m(ℓ−1)

ℓ ,m]
].

(2) Use the above modified version of Bar-Ilan and
Beaver’s protocol on these shares to compute shares
[x
[1,m/ℓ]],[x[1,2m/ℓ]] . . . ,[x[1,m]].

(3) Finally, for each j ∈ [m/ℓ], compute an inner
product between Jy jK and packed shares of vector
(1,x

[1,m/ℓ],x[1,2m/ℓ], . . . ,x
[1,m(ℓ−1)

ℓ]
).

Complexity of our distributed Partial Products Proto-
col. Our protocol runs in constant rounds, where each of
the small servers communicate O(m/ℓ) field elements.
They perform O(m/ℓ) field operations and require a
space complexity of O(m/ℓ). While the big server, P1
has a space complexity of O(m) and performs O(m)

13We note that this protocol crucially relies on the fact that none of
the values being multiplied are zero. Which is indeed the case (w.h.p.)
for our use-case in Plonk.

field operations and communicatesO(m) field elements.
This is because of the sub-protocol that we adapt from
Bar-Ilan and Beaver’s [5] constant-round MPC for un-
bounded multiplication. Since our distributed FFT pro-
tocol already assumes that one of the servers has more
memory and computational resources, this is the version
we use in our implementation of Plonk. However, in the
full version [38], we present an alternate protocol for dis-
tributed computation of partial products, where the total
work gets equally divided amongst all parties. In particu-
lar, each server in that protocol requiresO(m/ℓ) field op-
erations, a space complexity of O(m/ℓ), and each server
communicates O(m/ℓ+n) field elements.

5.3 Distributed Multi-Scalar Multiplica-
tions

Polynomial-based secret sharing schemes typically only
support arithmetic operations over a finite field. Several
zk-SNARKs perform many elliptic curve group opera-
tions, such as multiplying group elements or group ex-
ponentiations. Representing these group operations as
an arithmetic circuit over a finite field and computing it
inside an MPC protocol is not feasible.

Prior works [70, 61] have explored generalizations of
polynomial-based secret sharing schemes for group op-
erations. Let G be a group of order p, with generator g,
such that each element A ∈ G can be represented as ga,
where a ∈ Zp. The main idea in these works is to first
compute secret shares (say s1, . . . ,sn) of the field element
a, and then compute the shares of A as gs1 , . . . ,gsn . This
allows us to perform arithmetic field operations in the ex-
ponent which can be used for group exponentiation and
for multiplying group elements.
(1) Addition in the exponent. Given packed secret shares
of another vector B = (B1, . . . ,Bℓ) ∈Gℓ, each party Pi can
locally multiply their shares JAKi ⋅ JBKi, to get a valid
packed secret sharing of C = (A1 ⋅B1, . . . ,Aℓ ⋅Bℓ).
(2) Multiplication in the exponent. Given packed se-
cret shares of another vector of field elements b =
(b1, . . . ,bℓ) ∈ Zℓ

p, each party Pi can locally com-

pute JAKJbKi
i to get a packed secret sharing of C =

(Ab1
1 , . . . ,Abℓ

ℓ). However, in this case, since the shares of
a and b get multiplied in the exponent, the degree of the
resulting sharing will be twice that of the original shar-
ings. To reduce the degree, we can use the standard ideas
for degree reduction, albeit in the exponent.

MPC for MSM. Given the above observations, our
idea for computing multi-scalar multiplications of
the form FMSM(A1,b1 . . . ,Am,bm) = ∏i∈[m]A

bi
i is to

first observe that this decomposes as is quite intu-
itive. Observe, this computation can be decomposed as:

4436 32nd USENIX Security Symposium USENIX Association

∏i∈[ℓ] (FMSM(Ai,bi,Aℓ+i,bℓ+i, . . . ,A(m
ℓ −1)ℓ+i,b(m

ℓ −1)ℓ+i)).
This is essentially equivalent to computing ℓ instances
of FMSM in parallel and then multiplying the ℓ outputs.
We compute this using PSS as follows: (1) Assuming
that the parties have packed secret shares of vectors
A j = (A(j−1)ℓ+i)i∈[ℓ] and b j = (b(j−1)ℓ+i)i∈[ℓ] for each
j ∈ [m/ℓ], the parties compute FMSM function on these
packed shares to get packed shares of a vector C. (2)
Convert JCK to regular threshold shares [C1], . . . ,[Cℓ]

of the individual elements in C. (3) Finally, the parties
locally multiply these shares to get a sharing of the
desired output.

Complexity of distributed MSM. Our protocol runs in
constant rounds, where each party communicates O(1)
group elements. All parties perform O(m/ℓ) group ex-
ponentiations and have a space complexity of O(m/ℓ).

6 zkSaaS for Admissible zk-SNARKs

In this section, we formally define a notion of admissible
zk-SNARKs and show that our techniques from Section
5 can be used to obtain a zkSaaS for them.

Admissible zk-SNARKs. We start by formaliz-
ing a class of zk-SNARKs that are amenable to our
zkSaaS framework, and refer to them as admissible
zk-SNARKs. Informally speaking, we say that a zk-
SNARK with computation complexity Tfield + Tcrypto is
admissible if the prover algorithm is composed of some
combination of a subset or all of the following six types
of operations on the satisfying assingment z for the RICS
relation R — (1) multi-scalar multiplications (MSMs),
(2) Fast Fourier Transforms (FFT), (3) sum of partial-
products, (4) multiplication/Hadamard product, (5) addi-
tions and (6) permutations.

To formally capture this, our initial idea is to say that
the prover algorithm in admissible zk-SNARKs can be
represented as a polynomial-sized circuit consisting of
special gates with “multi-ary” inputs and outputs, where
each of these special gates correspond to one of the above
six operations. However, this is alone is not sufficient.
To capture the efficiency requirements of a zkSaaS (as
discussed in Section 3), we need to further restrict the
number of times a particular gate with a certain ari-ty
can appear in this circuit.

Indeed, consider for instance a circuit, where two-
input multiplication gates appear O(Tfield) times in the
circuit. Since the only distributed protocol that we
can use for evaluating such gates is πmult (c.f. Figure
??), which requires a total communication and compu-
tation of O(n), the total communication and computa-
tion incurred in evaluating O(Tfield) such gates would be

O(n.Tfield). This clearly violates the efficiency require-
ment of zkSaaS. Therefore, we must limit the number of
such gates with low-ary inputs that appear in this circuit
to ensure that the cost of computing them does not sur-
pass the asymptotic bound that we have on the total com-
putation complexity of zkSaaS. More concretely, in or-
der to use our packed secret sharing based sub-protocols,
we must limit the number of gates with o(n) inputs.
Hence, we define the notion of admissibility w.r.t. the
number of parties n. This is formalized in Definition 2.

We now present our main composition theorem and
show that the three zk-SNARKs that we discussed in
Section 4.1 are admissible.

Theorem 1. Let λ be the security parameter, R ∈ Rλ

be an NP-relation and Σ = (Setup,Prove,Ver,Sim)
be an n-admissible zk-SNARK for relation R.
Then, there exists a secure n-server zkSaaS Π

for Σ, which securely computes Prove in the
fdouble−prand, fprand, fpack−mult, frand, fpsstoss, fmult, fsstopss,
fFFT, fMSM, fpermute, fpart−product, fpoly−mult, fpoly−divide-
hybrid model.

We give the formal proof of this theorem along with
a formal description of all the ideal functionalities in the
full version [38] of our paper.

Instantiation. We note that, as discussed in Section 4.1,
the provers of Groth16 [48], Marlin [27] and Plonk [37]
only call the functionalities listed in defintion 2. Further-
more, the number of gates with o(n)-inputs in each of
these is at most a constant number. Hence, using Theo-
rem 1 we can directly get a zkSaaS for Groth16, Marlin
and Plonk. Note here that Marlin and Plonk are described
as interactive protocols, but as mentioned in Section 4.1
they can be converted to non-interactive protocols in the
random oracle model, by using the Fiat-Shamir transfor-
mation. Specifically, this would require the prover to
make random oracle queries on parts of the transcript–
in our zkSaaS this translates to each party reconstruct-
ing shares of the transcript, to make these random ora-
cle queries locally. The protocol clearly remains zero-
knowledge.

7 Implementation and Evaluation

To evaluate the concrete performance of our techniques,
we implemented a proof-of-concept zkSaaS framework
supporting Groth16 [48] and Plonk [37] in Rust. We
use the arkworks [3] library for finite field, pairing-
friendly curves and, FFT implementations and the mpc-
net crate from the collaborative-snarks implementation
[2] to facilitate communication between parties. Our
code is available on Github.14 All of our experiments are

14https://github.com/guruvamsi-policharla/zksaas

USENIX Association 32nd USENIX Security Symposium 4437

https://github.com/guruvamsi-policharla/zksaas

Definition 2 (n-Admissible zk-SNARKs). Let λ be the security parameter, R ∈ Rλ be an NP-relation and
Σ = (Setup,Prove,Ver,Sim) be a zk-SNARK for R. We say that Σ is n admissible if n < Tfield, n < Tcrypto and the
Prove algorithm can be represented as a circuit C comprising of gates implementing the following functionalities:

Multi-Scalar Multiplication: FMSM(y1, . . . ,ym,X1, . . . ,Xm) =∏ j∈[m](X j)
y j .

Fast Fourier Transform: FFFT(x1, . . . ,xm) = F1
FFT(F

2
FFT(. . .F

logm
FFT (x1, . . . ,xm))), where each F i

FFT is the recursive
function described in equation 1.
Sum of Partial Products: Fpart−prod(x1, . . . ,xm) =∑ j∈[m]∏i∈[j] xi.
Multiplication/Hadamard Product: Fprod(x1, . . . ,xm,y1, . . . ,ym) = (x1 ⋅y1), . . . ,(xm ⋅ym).
Addition: Fsum(x1, . . . ,xm,y1, . . . ,ym) = (x1+y1), . . . ,(xm+ym).
Permutation: Fperm(x1, . . . ,xm) ∶= (xperm(1), . . . ,xperm(m)), where perm is a permutation function on [m].

Furthermore, the total number of MSM gates with m ∈ o(n) inputs is limited to O(Tcrypto/n) and all
other types of gates m ∈ o(n) inputs are limited to O(Tcrypto/n).

run on the Google Cloud Platform (GCP) using two types
of machines – all servers with low memory requirements
are custom N1 instances with 1 vCPU and 2GB of mem-
ory, while the powerful server is a custom N1 instance
with 96 vCPUs and 128 GB of RAM.

We compare the performance of our zkSaaS protocol
against a prover running locally on an N1 instance with
1 vCPUs and 4 GB of RAM, emulating a mid tier con-
sumer laptop and hence refer to this as the consumer ma-
chine. Our VM configuration choices aim to reflect real-
istic deployment scenarios for zkSaaS, where one pow-
erful instance is hired to aid many weak — volunteer-run
nodes, often on outdated and older hardware. Through-
out the analysis when the zkSaaS protocol is run with n
parties, the corruption threshold is set to be t = n/4− 1
and the number of secrets packed together to be ℓ = n/4.
All numbers reported are the average of five trials.

We view our implementation as a proof-of-concept to
estimate running times and network delays and do not
implement multi-threading on the powerful server. In
a production-level implementation, we expect the pow-
erful server to use multi-threading in the FFT protocol
which includes packing/opening shares and communi-
cating with parties. The data we present takes this into
account by dividing the time taken during computation
by the number of threads on the server and the time spent
during communication by min(n,# of threads). Finally,
we implement a variant of our distributed partial prod-
ucts protocol which avoids all-to-all communication but
the king party does linear work. This does not affect
our speedup as we assume the king is multi-threaded and
simplifies the communication to a star like structure.

Pre-processing. Our goal is to analyze the online work
carried out by the servers. In both the single prover base-
line and the zkSaaS protocol, we do not benchmark the
time taken to prepare the witness, since we assume this

is given to the zkSaaS servers by the clients. We do not
evaluate pre-processing as it can be carried out during pe-
riods of low demand when spare compute and bandwidth
are available. Prior work [61] also omits this analysis.

Evaluation. We now evaluate the performance of our
zkSaaS framework against a prover running locally on a
consumer machine for Groth16 and Plonk. In particular,
we aim to answer three main questions: (1) How does
the performance of zkSaaS compare to a Groth16/Plonk
prover running on a single consumer machine? We are
interested in two main metrics — (a) the largest number
of constraints that can be supported without memory ex-
haustion and (b) the time required to generate the proof.
(2) Does the performance of zkSaaS improve as we in-
crease the number of servers? (3) How does the perfor-
mance of zkSaaS vary with network bandwidth?

Varying Constraints. For our first experiment, we
run benchmarks on a high speed network (4Gbps). We
compare the running time of zkSaaS with 128 parties
against a local execution of Groth16/Plonk prover on a
single consumer machine, by varying the number of con-
straints. We summarize our results in Figure 1.

The performance of our zkSaaS for larger constraints
is approximately 22× better better than the consumer ma-
chine. Here, we incur a loss from the theoretically ex-
pected savings of 32× due to a few factors:

— Pippenger’s algorithm [64] provides a way to com-
pute a multi-scalar multiplication Π

N
i=1gαi

i using
O(N/ logN) group operations as opposed to O(N)
in the naive strategy. However, Pippenger’s algo-
rithm is not conducive to our packed secret sharing
MPC techniques as it lacks sufficient SIMD struc-
ture. With an optimal division of work, each weak
server would carry out O(N/(ℓ ⋅ logN)) group oper-
ations. While we do not attain an optimal division of

4438 32nd USENIX Security Symposium USENIX Association

28 29 210211212213214215216217218219220221222223224225
Constraints

20
22
24
26
28
210
212
214
216
218
220

Ti
m

e
(m

s)
Groth16(128)
Local
MSM
R1CS to QAP

29 210 211 212 213 214 215 216 217 218 219 220 221
Gates

20
22
24
26
28
210
212
214
216
218
220

Ti
m

e
(m

s)

Plonk(128)
Local
Group Operations
Field Operations

Figure 1: Comparison between proof generation time for
a local prover (Groth16 and Plonk resp.) run on the con-
sumer machine against that of the zkSaaS protocol with
128 servers on a 4 Gigabit link. The bar graph indi-
cates the fraction of time spent computing Field Opera-
tions (Tfield) vs Group Operations (Tcrypto). Missing data
points on the local curve indicates memory exhaustion.

work, we come very close with a per server complex-
ity of O(N/ℓ ⋅ logN/ℓ). In fact, since the constants
inside the big O notation are the same, we can the-
oretically predict the percentage loss in performance
under infinite bandwidth conditions by simply divid-
ing the two asymptotics. As can be seen in Figure 2,
a 4Gbps connection closely emulates infinite band-
width and our implementation indeed comes very
close to the theoretical prediction.

— In our distributed FFT/partial product protocol, dur-
ing degree reduction, the King unpacks and repacks
shares adding additional overhead. Our FFT imple-
mentation is also not as carefully optimized as the
arkworks implementation which is used by the
consumer machine.

Also, observe in Figure 1, that the fraction of time
spent computing the field operations (refered to as R1CS
to QAP mapping in the case of Groth16) increases with

23 24 25 26 27
Parties (n)

2
0

2
1

2
2

2
3

2
4

2
5

S
pe

ed
up

Groth16-64.0Mbps
Groth16-256.0Mbps
Groth16-4Gbps
Single Prover Baseline
Perfect Division

23 24 25 26 27
Parties (n)

2
0

2
1

2
2

2
3

2
4

2
5

S
pe

ed
up

Plonk-64.0Mbps
Plonk-256.0Mbps
Plonk-4Gbps
Single Prover Baseline
Perfect Division

Figure 2: Proving time versus number of parties, normal-
ized by a single-prover time for 219 constraints (gates)
denoted by the dotted black line.

the number of constraints. This is because the FFT op-
eration is asymptotically more expensive (O(m logm))
than the MSM (O(m/ logm)).

Varying Parties and Network Speeds. For our next ex-
periment, we show how zkSaaS scales as the number of
parties increase, at varying network speeds. The dotted
black line denotes the time taken by a local prover. We
simulate slower connections by scaling up the time spent
on communication by the network slowdown factor,
comparing this to an implementation of Groth16/Plonk
on a single consumer machine and present our findings
in Figure 2. Even at lower network speeds (64 Mbps),
we observe that the performance degradation is ≈ 2×.

Discussion on Financial Costs. We now estimate the
costs of providing zk-SNARKs as a service. The power-
ful VM costs has a spot pricing of $0.79/hr15 and cross
continent egress traffic pricing is $0.08/GB16. Being very
conservative, our estimates show that with 128 parties,
generating a Groth16 proof for an R1CS instance of size

15https://cloud.google.com/compute/

vm-instance-pricing
16https://cloud.google.com/compute/network-pricing

USENIX Association 32nd USENIX Security Symposium 4439

https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/network-pricing

219 takes under 1 minute on a 4-Gbps link and under 5
minutes on a 64 Mbps link, with the total outgoing com-
munication from the server < 1.85GB. Hence, creating
this proof would cost < 18 cents with a 4 Gbps link and
< 23 cents on a 64 Mbps link.

Acknowledgements. Sanjam Garg, Guru-Vamsi
Policharla and Sruthi Sekar are supported in part
by DARPA under Agreement No. HR00112020026,
AFOSR Award FA9550-19-1-0200, NSF CNS Award
1936826, and research grants by the Sloan Foundation,
and Visa Inc. Guru-Vamsi Policharla is also supported
by the UC Berkeley Center for Long-Term Cybersecu-
rity. Abhishek Jain is supported in part by NSF CNS-
1814919, NSF CAREER 1942789, Johns Hopkins Uni-
versity Catalyst award, AFOSR Award FA9550-19-1-
0200, and research gifts from Ethereum, Stellar, Cisco.

References

[1] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Os-
trovsky, and Antigoni Polychroniadou. Prio+: Pri-
vacy preserving aggregate statistics via boolean
shares. Cryptology ePrint Archive, Report
2021/576, 2021. https://eprint.iacr.org/

2021/576.

[2] alex ozdemir. collaborative-zksnark.
https://github.com/alex-ozdemir/

collaborative-zksnark, 2022.

[3] arkworks contributors. arkworks zksnark ecosys-
tem. https://arkworks.rs, 2022.

[4] László Babai, Lance Fortnow, and Carsten Lund.
Non-deterministic exponential time has two-prover
interactive protocols. In 31st FOCS, pages 16–25.
IEEE Computer Society Press, October 1990.

[5] Judit Bar-Ilan and Donald Beaver. Non-
cryptographic fault-tolerant computing in constant
number of rounds of interaction. In Piotr Rudnicki,
editor, Proceedings of the Eighth Annual ACM
Symposium on Principles of Distributed Comput-
ing, Edmonton, Alberta, Canada, August 14-16,
1989, pages 201–209. ACM, 1989.

[6] Gabrielle Beck, Aarushi Goel, Abhishek Jain, and
Gabriel Kaptchuk. Order-C secure multiparty com-
putation for highly repetitive circuits. In Anne
Canteaut and François-Xavier Standaert, editors,
EUROCRYPT 2021, Part II, volume 12697 of
LNCS, pages 663–693. Springer, Heidelberg, Oc-
tober 2021.

[7] Eli Ben-Sasson, Alessandro Chiesa, Christina Gar-
man, Matthew Green, Ian Miers, Eran Tromer, and

Madars Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In 2014 IEEE Sym-
posium on Security and Privacy, pages 459–474.
IEEE Computer Society Press, May 2014.

[8] Eli Ben-Sasson, Alessandro Chiesa, Matthew
Green, Eran Tromer, and Madars Virza. Secure
sampling of public parameters for succinct zero
knowledge proofs. In 2015 IEEE Symposium on
Security and Privacy, pages 287–304, 2015.

[9] Eli Ben-Sasson, Alessandro Chiesa, Michael Ri-
abzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct ar-
guments for R1CS. In Yuval Ishai and Vincent Ri-
jmen, editors, EUROCRYPT 2019, Part I, volume
11476 of LNCS, pages 103–128. Springer, Heidel-
berg, May 2019.

[10] Nir Bitansky, Ran Canetti, Alessandro Chiesa,
Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,
and Eran Tromer. The hunting of the SNARK. J.
Cryptol., 30(4):989–1066, 2017.

[11] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and
Eran Tromer. Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In
Dan Boneh, Tim Roughgarden, and Joan Feigen-
baum, editors, 45th ACM STOC, pages 111–120.
ACM Press, June 2013.

[12] Nir Bitansky and Alessandro Chiesa. Succinct ar-
guments from multi-prover interactive proofs and
their efficiency benefits. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume
7417 of LNCS, pages 255–272. Springer, Heidel-
berg, August 2012.

[13] Alexander R. Block, Justin Holmgren, Alon Rosen,
Ron D. Rothblum, and Pratik Soni. Public-coin
zero-knowledge arguments with (almost) minimal
time and space overheads. In Rafael Pass and
Krzysztof Pietrzak, editors, TCC 2020, Part II,
volume 12551 of LNCS, pages 168–197. Springer,
Heidelberg, November 2020.

[14] Alexander R. Block, Justin Holmgren, Alon Rosen,
Ron D. Rothblum, and Pratik Soni. Time- and
space-efficient arguments from groups of unknown
order. In Tal Malkin and Chris Peikert, edi-
tors, CRYPTO 2021, Part IV, volume 12828 of
LNCS, pages 123–152, Virtual Event, August 2021.
Springer, Heidelberg.

[15] Andrew J. Blumberg, Justin Thaler, Victor Vu,
and Michael Walfish. Verifiable computation us-
ing multiple provers. Cryptology ePrint Archive,

4440 32nd USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2021/576
https://eprint.iacr.org/2021/576
https://github.com/alex-ozdemir/collaborative-zksnark
https://github.com/alex-ozdemir/collaborative-zksnark
https://arkworks.rs

Report 2014/846, 2014. https://eprint.iacr.
org/2014/846.

[16] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs,
Niv Gilboa, and Yuval Ishai. Zero-knowledge
proofs on secret-shared data via fully linear PCPs.
In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of
LNCS, pages 67–97. Springer, Heidelberg, August
2019.

[17] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs,
Niv Gilboa, and Yuval Ishai. Lightweight tech-
niques for private heavy hitters. In 2021 IEEE Sym-
posium on Security and Privacy, pages 762–776.
IEEE Computer Society Press, May 2021.

[18] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi,
Jens Groth, Mohammad Hajiabadi, and Sune K.
Jakobsen. Linear-time zero-knowledge proofs for
arithmetic circuit satisfiability. In Tsuyoshi Tak-
agi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part III, volume 10626 of LNCS, pages 336–365.
Springer, Heidelberg, December 2017.

[19] Jonathan Bootle, Andrea Cerulli, Jens Groth,
Sune K. Jakobsen, and Mary Maller. Arya: Nearly
linear-time zero-knowledge proofs for correct pro-
gram execution. In Thomas Peyrin and Steven Gal-
braith, editors, ASIACRYPT 2018, Part I, volume
11272 of LNCS, pages 595–626. Springer, Heidel-
berg, December 2018.

[20] Jonathan Bootle, Alessandro Chiesa, and Jens
Groth. Linear-time arguments with sublinear ver-
ification from tensor codes. In Rafael Pass and
Krzysztof Pietrzak, editors, TCC 2020, Part II, vol-
ume 12551 of LNCS, pages 19–46. Springer, Hei-
delberg, November 2020.

[21] Jonathan Bootle, Alessandro Chiesa, and Siqi Liu.
Zero-knowledge IOPs with linear-time prover and
polylogarithmic-time verifier. In Orr Dunkel-
man and Stefan Dziembowski, editors, EURO-
CRYPT 2022, Part II, volume 13276 of LNCS,
pages 275–304. Springer, Heidelberg, May / June
2022.

[22] Sean Bowe, Alessandro Chiesa, Matthew Green,
Ian Miers, Pratyush Mishra, and Howard Wu.
ZEXE: Enabling decentralized private computa-
tion. In 2020 IEEE Symposium on Security and
Privacy, pages 947–964. IEEE Computer Society
Press, May 2020.

[23] Sean Bowe, Ariel Gabizon, and Matthew D. Green.
A multi-party protocol for constructing the public

parameters of the pinocchio zk-snark. In Aviv Zo-
har, Ittay Eyal, Vanessa Teague, Jeremy Clark, An-
drea Bracciali, Federico Pintore, and Massimiliano
Sala, editors, Financial Cryptography and Data Se-
curity - FC 2018 International Workshops, BIT-
COIN, VOTING, and WTSC, Nieuwpoort, Curaçao,
March 2, 2018, Revised Selected Papers, volume
10958 of Lecture Notes in Computer Science, pages
64–77. Springer, 2018.

[24] Benedikt Bünz, Jonathan Bootle, Dan Boneh, An-
drew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transac-
tions and more. In 2018 IEEE Symposium on Secu-
rity and Privacy, pages 315–334. IEEE Computer
Society Press, May 2018.

[25] Vitalik Buterin. Some ways to use zk-snarks for
privacy.

[26] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhen-
fei Zhang. HyperPlonk: Plonk with linear-time
prover and high-degree custom gates. Cryptology
ePrint Archive, Report 2022/1355, 2022. https:

//eprint.iacr.org/2022/1355.

[27] Alessandro Chiesa, Yuncong Hu, Mary Maller,
Pratyush Mishra, Noah Vesely, and Nicholas P.
Ward. Marlin: Preprocessing zkSNARKs with uni-
versal and updatable SRS. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part I,
volume 12105 of LNCS, pages 738–768. Springer,
Heidelberg, May 2020.

[28] Alessandro Chiesa, Ryan Lehmkuhl, Pratyush
Mishra, and Yinuo Zhang. Eos: Efficient private
delegation of zksnark provers. In USENIX Security
Symposium. USENIX Association, 2023.

[29] Alessandro Chiesa, Dev Ojha, and Nicholas
Spooner. Fractal: Post-quantum and transparent
recursive proofs from holography. In Anne Can-
teaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 769–793.
Springer, Heidelberg, May 2020.

[30] Arka Rai Choudhuri, Aarushi Goel, Matthew
Green, Abhishek Jain, and Gabriel Kaptchuk. Fluid
MPC: Secure multiparty computation with dy-
namic participants. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part II, volume 12826 of
LNCS, pages 94–123, Virtual Event, August 2021.
Springer, Heidelberg.

[31] William R Claycomb and Alex Nicoll. Insider
threats to cloud computing: Directions for new re-
search challenges. In 2012 IEEE 36th annual com-

USENIX Association 32nd USENIX Security Symposium 4441

https://eprint.iacr.org/2014/846
https://eprint.iacr.org/2014/846
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355

puter software and applications conference, pages
387–394. IEEE, 2012.

[32] Graham Cormode, Michael Mitzenmacher, and
Justin Thaler. Practical verified computation with
streaming interactive proofs. In Shafi Goldwasser,
editor, ITCS 2012, pages 90–112. ACM, January
2012.

[33] Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard.
Perfectly secure multiparty computation and the
computational overhead of cryptography. In Henri
Gilbert, editor, EUROCRYPT 2010, volume 6110
of LNCS, pages 445–465. Springer, Heidelberg,
May / June 2010.

[34] Ivan Damgård, Yuval Ishai, Mikkel Krøigaard, Jes-
per Buus Nielsen, and Adam Smith. Scalable multi-
party computation with nearly optimal work and re-
silience. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 241–261. Springer,
Heidelberg, August 2008.

[35] Zhiyong Fang, David Darais, Joseph P. Near, and
Yupeng Zhang. Zero knowledge static program
analysis. In Giovanni Vigna and Elaine Shi, editors,
ACM CCS 2021, pages 2951–2967. ACM Press,
November 2021.

[36] Matthew K. Franklin and Moti Yung. Communi-
cation complexity of secure computation (extended
abstract). In 24th ACM STOC, pages 699–710.
ACM Press, May 1992.

[37] Ariel Gabizon, Zachary J. Williamson, and Oana
Ciobotaru. PLONK: Permutations over lagrange-
bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive, Report
2019/953, 2019. https://eprint.iacr.org/

2019/953.

[38] Sanjam Garg, Aarushi Goel, Abhishek Jain, Guru-
Vamsi Policharla, and Sruthi Sekar. zkSaaS: Zero-
knowledge snarks as a service. Cryptology ePrint
Archive, Paper 2023/905, 2023.

[39] Daniel Genkin, Yuval Ishai, and Antigoni Poly-
chroniadou. Efficient multi-party computation:
From passive to active security via secure SIMD
circuits. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume
9216 of LNCS, pages 721–741. Springer, Heidel-
berg, August 2015.

[40] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran,
Amit Sahai, and Eran Tromer. Circuits resilient
to additive attacks with applications to secure com-
putation. In David B. Shmoys, editor, 46th ACM

STOC, pages 495–504. ACM Press, May / June
2014.

[41] Shafi Goldwasser, Yael Tauman Kalai, and Guy N.
Rothblum. Delegating computation: interactive
proofs for muggles. In Richard E. Ladner and Cyn-
thia Dwork, editors, 40th ACM STOC, pages 113–
122. ACM Press, May 2008.

[42] Alexander Golovnev, Jonathan Lee, Srinath Setty,
Justin Thaler, and Riad S. Wahby. Brakedown:
Linear-time and post-quantum SNARKs for R1CS.
Cryptology ePrint Archive, Report 2021/1043,
2021. https://eprint.iacr.org/2021/1043.

[43] S. Dov Gordon, Daniel Starin, and Arkady
Yerukhimovich. The more the merrier: Reduc-
ing the cost of large scale MPC. In Anne Can-
teaut and François-Xavier Standaert, editors, EU-
ROCRYPT 2021, Part II, volume 12697 of LNCS,
pages 694–723. Springer, Heidelberg, October
2021.

[44] Vipul Goyal, Antigoni Polychroniadou, and Yi-
fan Song. Unconditional communication-efficient
MPC via hall’s marriage theorem. In Tal Malkin
and Chris Peikert, editors, CRYPTO 2021, Part II,
volume 12826 of LNCS, pages 275–304, Virtual
Event, August 2021. Springer, Heidelberg.

[45] Vipul Goyal, Antigoni Polychroniadou, and Yi-
fan Song. Sharing transformation and dishon-
est majority MPC with packed secret sharing. In
Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part IV, volume 13510 of LNCS,
pages 3–32. Springer, Heidelberg, August 2022.

[46] Vipul Goyal, Antigoni Polychroniadou, and Yifan
Song. Sharing transformation and dishonest major-
ity MPC with packed secret sharing. Cryptology
ePrint Archive, Report 2022/831, 2022. https:

//eprint.iacr.org/2022/831.

[47] Matthew Green, Mathias Hall-Andersen, Eric Hen-
nenfent, Gabriel Kaptchuk, Benjamin Perez, and
Gijs Van Laer. Efficient proofs of software ex-
ploitability for real-world processors. Proc. Priv.
Enhancing Technol., 2023(1):627–640, 2023.

[48] Jens Groth. On the size of pairing-based non-
interactive arguments. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 305–326.
Springer, Heidelberg, May 2016.

[49] Jens Groth and Mary Maller. Snarky signatures:
Minimal signatures of knowledge from simulation-
extractable SNARKs. In Jonathan Katz and Hovav

4442 32nd USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2022/831
https://eprint.iacr.org/2022/831

Shacham, editors, CRYPTO 2017, Part II, volume
10402 of LNCS, pages 581–612. Springer, Heidel-
berg, August 2017.

[50] Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bon-
neau, and Michael Walfish. Zero-knowledge mid-
dleboxes. In USENIX Security Symposium, pages
4255–4272. USENIX Association, 2022.

[51] Justin Holmgren and Ron Rothblum. Delegating
computations with (almost) minimal time and space
overhead. In Mikkel Thorup, editor, 59th FOCS,
pages 124–135. IEEE Computer Society Press, Oc-
tober 2018.

[52] Harry A. Kalodner, Steven Goldfeder, Xiaoqi
Chen, S. Matthew Weinberg, and Edward W. Fel-
ten. Arbitrum: Scalable, private smart contracts.
In William Enck and Adrienne Porter Felt, ed-
itors, USENIX Security 2018, pages 1353–1370.
USENIX Association, August 2018.

[53] Sanket Kanjalkar, Ye Zhang, Shreyas Gandlur,
and Andrew Miller. Publicly auditable mpc-as-
a-service with succinct verification and universal
setup. In IEEE European Symposium on Secu-
rity and Privacy Workshops, EuroS&P 2021, Vi-
enna, Austria, September 6-10, 2021, pages 386–
411. IEEE, 2021.

[54] Aniket Kate, Gregory M. Zaverucha, and Ian Gold-
berg. Constant-size commitments to polynomials
and their applications. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages
177–194. Springer, Heidelberg, December 2010.

[55] Markulf Kohlweiss, Mary Maller, Janno Siim, and
Mikhail Volkhov. Snarky ceremonies. Cryptology
ePrint Archive, Report 2021/219, 2021. https:

//eprint.iacr.org/2021/219.

[56] Abhiram Kothapalli, Elisaweta Masserova, and
Bryan Parno. A direct construction for asymptoti-
cally optimal zksnarks. IACR Cryptol. ePrint Arch.,
page 1318, 2020.

[57] Jonathan Lee. Dory: Efficient, transparent argu-
ments for generalised inner products and polyno-
mial commitments. In Kobbi Nissim and Brent Wa-
ters, editors, TCC 2021, Part II, volume 13043 of
LNCS, pages 1–34. Springer, Heidelberg, Novem-
ber 2021.

[58] Seunghwa Lee, Hankyung Ko, Jihye Kim, and
Hyunok Oh. vCNN: Verifiable convolutional neu-
ral network. Cryptology ePrint Archive, Report
2020/584, 2020. https://eprint.iacr.org/

2020/584.

[59] Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkCNN:
Zero knowledge proofs for convolutional neural
network predictions and accuracy. In Giovanni Vi-
gna and Elaine Shi, editors, ACM CCS 2021, pages
2968–2985. ACM Press, November 2021.

[60] Assa Naveh and Eran Tromer. Photoproof: Cryp-
tographic image authentication for any set of per-
missible transformations. In IEEE Symposium on
Security and Privacy, SP 2016, San Jose, CA, USA,
May 22-26, 2016, pages 255–271. IEEE Computer
Society, 2016.

[61] Alex Ozdemir and Dan Boneh. Experimenting
with collaborative zk-SNARKs: Zero-Knowledge
proofs for distributed secrets. In 31st USENIX
Security Symposium (USENIX Security 22), pages
4291–4308, Boston, MA, August 2022. USENIX
Association.

[62] Bryan Parno, Jon Howell, Craig Gentry, and Mar-
iana Raykova. Pinocchio: Nearly practical verifi-
able computation. In 2013 IEEE Symposium on Se-
curity and Privacy, SP 2013, Berkeley, CA, USA,
May 19-22, 2013, pages 238–252. IEEE Computer
Society, 2013.

[63] Alexey Pertsev, Roman Semenov, and Roman
Storm. Tornado cash privacy solution version 1.4.
2019.

[64] Nicholas Pippenger. On the evaluation of powers
and monomials. SIAM J. Comput., 9(2):230–250,
1980.

[65] Deevashwer Rathee, Guru Vamsi Policharla,
Tiancheng Xie, Ryan Cottone, and Dawn Song.
Zebra: Anonymous credentials with practical on-
chain verification and applications to kyc in defi.
Cryptology ePrint Archive, Paper 2022/1286, 2022.

[66] Michael Rosenberg, Jacob White, Christina Gar-
man, and Ian Miers. zk-creds: Flexible anony-
mous credentials from zkSNARKs and existing
identity infrastructure. Cryptology ePrint Archive,
Report 2022/878, 2022. https://eprint.iacr.
org/2022/878.

[67] Berry Schoenmakers, Meilof Veeningen, and Niels
de Vreede. Trinocchio: Privacy-preserving out-
sourcing by distributed verifiable computation. In
Mark Manulis, Ahmad-Reza Sadeghi, and Steve
Schneider, editors, ACNS 16, volume 9696 of
LNCS, pages 346–366. Springer, Heidelberg, June
2016.

USENIX Association 32nd USENIX Security Symposium 4443

https://eprint.iacr.org/2021/219
https://eprint.iacr.org/2021/219
https://eprint.iacr.org/2020/584
https://eprint.iacr.org/2020/584
https://eprint.iacr.org/2022/878
https://eprint.iacr.org/2022/878

[68] Srinath Setty. Spartan: Efficient and general-
purpose zkSNARKs without trusted setup. In
Daniele Micciancio and Thomas Ristenpart, edi-
tors, CRYPTO 2020, Part III, volume 12172 of
LNCS, pages 704–737. Springer, Heidelberg, Au-
gust 2020.

[69] Adi Shamir. How to share a secret. Communica-
tions of the Association for Computing Machinery,
22(11):612–613, November 1979.

[70] Nigel P. Smart and Younes Talibi Alaoui. Dis-
tributing any elliptic curve based protocol. In Mar-
tin Albrecht, editor, Cryptography and Coding -
17th IMA International Conference, IMACC 2019,
Oxford, UK, December 16-18, 2019, Proceedings,
volume 11929 of Lecture Notes in Computer Sci-
ence, pages 342–366. Springer, 2019.

[71] Justin Thaler. Time-optimal interactive proofs for
circuit evaluation. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 71–89. Springer, Heidelberg,
August 2013.

[72] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg,
and Michael Walfish. A hybrid architecture for
interactive verifiable computation. In 2013 IEEE
Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013, pages 223–
237. IEEE Computer Society, 2013.

[73] Riad S. Wahby, Max Howald, Siddharth Garg,
Abhi Shelat, and Michael Walfish. Verifiable asics.
In IEEE Symposium on Security and Privacy, SP
2016, San Jose, CA, USA, May 22-26, 2016, pages
759–778. IEEE Computer Society, 2016.

[74] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin
Thaler, and Michael Walfish. Doubly-efficient zk-
snarks without trusted setup. In 2018 IEEE Sym-
posium on Security and Privacy, SP 2018, Pro-
ceedings, 21-23 May 2018, San Francisco, Califor-
nia, USA, pages 926–943. IEEE Computer Society,
2018.

[75] Michael Walfish and Andrew J Blumberg. Verify-
ing computations without reexecuting them. Com-
munications of the ACM, 58(2):74–84, 2015.

[76] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan
Katz, and Xiao Wang. Mystique: Efficient conver-
sions for zero-knowledge proofs with applications
to machine learning. In Michael Bailey and Rachel
Greenstadt, editors, USENIX Security 2021, pages
501–518. USENIX Association, August 2021.

[77] Howard Wu, Wenting Zheng, Alessandro Chiesa,
Raluca Ada Popa, and Ion Stoica. DIZK: A dis-
tributed zero knowledge proof system. In William
Enck and Adrienne Porter Felt, editors, USENIX
Security 2018, pages 675–692. USENIX Associa-
tion, August 2018.

[78] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang,
Charalampos Papamanthou, and Dawn Song. Li-
bra: Succinct zero-knowledge proofs with opti-
mal prover computation. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 733–764.
Springer, Heidelberg, August 2019.

[79] Tiancheng Xie, Yupeng Zhang, and Dawn Song.
Orion: Zero knowledge proof with linear prover
time. In Yevgeniy Dodis and Thomas Shrimpton,
editors, CRYPTO 2022, Part IV, volume 13510 of
LNCS, pages 299–328. Springer, Heidelberg, Au-
gust 2022.

[80] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and
Dawn Song. Zero knowledge proofs for decision
tree predictions and accuracy. In Jay Ligatti, Xin-
ming Ou, Jonathan Katz, and Giovanni Vigna, ed-
itors, ACM CCS 2020, pages 2039–2053. ACM
Press, November 2020.

[81] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo
Zhang, Dawn Song, Xiang Xie, and Yupeng Zhang.
Doubly efficient interactive proofs for general arith-
metic circuits with linear prover time. In Giovanni
Vigna and Elaine Shi, editors, ACM CCS 2021,
pages 159–177. ACM Press, November 2021.

[82] Yupeng Zhang, Daniel Genkin, Jonathan Katz,
Dimitrios Papadopoulos, and Charalampos Papa-
manthou. vSQL: Verifying arbitrary SQL queries
over dynamic outsourced databases. In 2017 IEEE
Symposium on Security and Privacy, pages 863–
880. IEEE Computer Society Press, May 2017.

[83] Yupeng Zhang, Daniel Genkin, Jonathan Katz,
Dimitrios Papadopoulos, and Charalampos Papa-
manthou. vram: Faster verifiable RAM with
program-independent preprocessing. In 2018 IEEE
Symposium on Security and Privacy, SP 2018, Pro-
ceedings, 21-23 May 2018, San Francisco, Califor-
nia, USA, pages 908–925. IEEE Computer Society,
2018.

[84] ZkRollups. An incomplete guide to rollups.
https://vitalik.ca/general/2021/01/ 05/rollup.html,
2021.

4444 32nd USENIX Security Symposium USENIX Association

	Introduction
	Overview of Our Approach
	Example Applications of zkSaaS
	Related Work
	Future Directions

	Preliminaries
	zkSaaS Framework
	Overview of Groth, Marlin and Plonk
	Groth16, Marlin, and Plonk Provers

	Distributed Sub-Protocols for the zkSaaS Framework
	Distributed Fast Fourier Transform
	Distributed Partial Products
	Distributed Multi-Scalar Multiplications

	zkSaaS for Admissible zk-SNARKs
	Implementation and Evaluation

