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Abstract
Infrared (IR) remote control is a widely used technology

at home due to its simplicity and low cost. Most considered
it to be “secure” because of the line-of-sight usage within
the home. In this paper, we revisit the security of IR remote
control schemes and examine their security assumptions under
the settings of internet-connected smart homes. We focus on
two specific questions: (1) whether IR signals could be sniffed
by an IoT device; and (2) what information could be leaked
out through the sniffed IR control signals.

To answer these questions, we design a sniff module using
a commercial-off-the-shelf IR receiver on a Raspberry Pi and
show that the Infrared (IR) signal emanating from the remote
control of a Smart TV can be captured by one of the nearby
IoT devices, for example, a smart air-conditioner, even the
signal is not aimed at the air-conditioner. The IR signal range
and receiving angle are larger than most have thought. We
also developed algorithms to extract semantic information
from the sniffed IR control signals, and evaluated with real-
world applications. The results showed that lots of sensitive
information could be leaked out through the sniffed IR control
signals, including account name and password, PIN code, and
even payment information.

1 Introduction

Infrared (IR) has been widely used at home to control con-
sumer electronics since a long time ago, due to the cheap and
simple implementations that are broadly available. IR remote
control was introduced by a Canadian cable company View-
star in 1980 [10], and has been shipped together with every
TV since then. In addition to TV, the affordable IR technol-
ogy has also been added to other household electronic appli-
ances, like air-conditioners, vacuums, lighting, etc. By 1990,
90 percent of U.S. households were using remote controls
to manage their media. In 2010, a research “Global Remote
Control Trends Study” showed that a majority of households
in France, Australia, and the United Kingdom possess four or
more devices in the living room that need remote controls.

Despite the active research in improving IR technologies,
we found the security aspect has been under-studied. In fact,
the IR communication was not considered as an attractive tar-
get due to a few reasons. Firstly, the infrared light will propa-
gate in a straight line and the signal strength will be weakened
after even a single reflection. As a result, it is usually used
for Line of Sight (LOS) communication with a limited range
of 10 meters. We may all have common experiences that TV
does not respond to our commands if we are not pointing the
IR controller directly at the TV or if we are far away from
it. As such, an attacker who wants to sniff the IR signals has
to be positioned physically close to the victim, in the same
room. Secondly, the information carried by IR is usually not
sensitive, e.g., the key presses on a TV controller like ‘UP”
and “DOWN”. To the extent that that the IR remote control
signals are not encrypted and all commands are sent in clear
format.

However, we argue that the security model of IR should
be revisited due to the recent development of smart home
devices and apps. Firstly, nowadays many home devices have
been turned to the Internet of Things (IoT). Many of the
IoT devices are by nature IR receivers and they can also be
remotely controlled through the Internet. IoT devices also
have a bad reputation of security, and they could be easily
compromised, as suggested by many cyber-attacks [12,16,36]
and studies [7, 29, 65] on IoT. As such, to steal information
from the IR channel, the attacker can remotely control an IoT
device in the same room as the victim. Secondly, a lot of home
devices are now keeping users’ accounts for personalized
services. For example, a smart TV could run many TV apps
like Netflix, which all require a user to enter his/her account
information. Entering with an IR remote controller is still a
primary approach. Therefore, IR has a much higher chance
now to carry sensitive information.

In this work, we perform the first study to understand the
security implications of IR communication through the lens of
IoT and smart TV. We aim to answer two important questions:
(1) Is it possible for an IoT device to sniff smart TV IR remote
control signals, even when it is not on the path between TV
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and controller? (2) If the IR signals can be sniffed, what can
an attacker learn from the signal?

To answer the first question, we developed an attack pro-
totype named HOMESPY. Without sacrificing the validity
for evaluation, we built an IR sniffer using a Raspberry Pi
3 integrating an IR sensor VS1838b, which is comparable
to the Commercial-Of-The-Shelf (COTS) IR receiver widely
used by IoT devices. Surprisingly, we found such a low-cost
IR receiver is able to sense IR signals that are transmitted
off the path or even reflected by walls. Yet, the COTS IR re-
ceiver has more limited sensitivity and only digital signals 0/1
are outputted, which led to unsatisfactory recovery accuracy.
To address this issue, we develop a novel recovery method
leveraging the redundant information embedded in the IR
protocols like NEC [41] and Sony SIRC [54], to correct the
recovery errors. By design, remote control protocols have
built-in the feature to repeat the command to improve recep-
tion quality of the targeted consumer devices at home. These
repeated IR signals in our study helped improve the sensitivity
by as much as 5.8%. After that, we develop another module
to decode the command (e.g., “UP” and “DOWN”) from the
0/1 time-series. In particular, we construct a large-scale IR
code database, covering 75,901 IR codes of 1,303 devices.
Given a 0/1 time-series, the corresponding device and the
command can be quickly identified. We also found that there
exists a one-to-many mapping for some IR signals, causing
ambiguous command interpretation. We address this issue by
context-aware time-series analysis and majority voting.

To answer the second question about the information leak-
age from IR communication, we focus on the case when a user
attempts to input his/her personal information through the re-
mote controller to smart TV. As surveyed in Section 2.1, the
majority of TV apps supports information entry with remote
controller, and some even allow in-app purchases for digital
or physical goods. In fact, we found user’s email, passwords,
PIN codes, and payment information can all be embedded in
IR communication. Yet, it is not trivial to recover the seman-
tics (e.g., password) from the IR commands like “UP” and
“DOWN”. Our key insight is that on-screen virtual keyboard
has to be brought up, whose layout has limited variations, so
the mapping between IR commands and characters selected
by a user can be determined a priori. We also develop a novel
semantic extraction method to find the key sequence that is re-
lated to virtual keyboard input and recover the user’s sensitive
information.

To evaluate the effectiveness of HOMESPY, we deploy the
IR sniffer in rooms with different layouts, and examine the
inference accuracy of different types of user information (e.g.,
emails, passwords, and PIN). Here we highlight some results.
Firstly, we examined in total 18 positions of 4 room layouts
to mount the sniffer and found the most of the positions can
correctly receive the IR key signals (ranging from 74.4%
to 96.7% by room layouts). Secondly, on the data collected
from 5 experiment volunteers, we found the candidate strings

outputted by HOMESPY has on average 77% top-5 accuracy
for login credential, suggesting the attack is practical.
Contributions. We summarize the contributions below:

• New study about IR security. To the best of our knowl-
edge, we present the first study about sniffing IR signals
in a smart home environment. We show that the rise of
IoT devices with IR receiving capabilities and TV apps
leads to new security threats.

• New attack methods for IR information extraction.
We build HOMESPY, which consists of new methods
for IR signal sniffing, command decoding, and semantic
extraction, addressing multiple technical challenges.

• Attack evaluation. We evaluate HOMESPY in realistic
settings with multiple room layouts, experiment partici-
pants, and different types of sensitive information. The
result shows HOMESPY is effective.

In the end, our work refreshes the existing view on the
security of the “simple and safe” IR remote control scheme,
reminds the general public about the potential risk of data
leakage through IR remote channels of Smart TV and also
urges IoT system vendors to come up with mitigation mea-
sures. We have also created a video demo 1 to demonstrate
HOMESPY is practical in real-world settings.

2 Background

In this section, we first introduce the basics of infrared and
how it is used in consumer products. Then, we overview the
functionalities provided by smart TV, the main attack target
of this study, and its login methods. Finally, we summarize
the security and privacy implications of infrared.

2.1 Infrared in Consumer Electronics

Consumer IR and Protocols. Infrared (IR) is a type of elec-
tromagnetic radiation whose wave length ranges from 700nm
to 1mm. Consumer IR (CIR) deals with the control of var-
ious devices and typically uses wavelength from 870nm to
950nm [47]. Comparing to other transmission media like ra-
dio, IR technology has advantages including easy and cheap
to implement, free of license, and hard to interfere with. Re-
garding its disadvantages, IR is low in bandwidth and trans-
mission rates, easy to be shielded, and cannot penetrate walls.
Hence, IR is usually used for Line of Sight (LOS), short-
range communication, carrying small-sized command inputs
for consumer products.

Though the consumer IR protocols have not been stan-
dardized, the manufacturers of consumer appliances often use
the same protocol on a large number of similar devices. The

1https://sites.google.com/view/homespydemo
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most commonly used CIR protocols are NEC, Sony SIRC and
Philips RC-5 [47]. In Appendix A, we describe two examples
about how IR signals are encoded.
Home devices with IR. IR is known for its wide use in con-
trolling TV. In recent years, it has also been adopted in a broad
range of devices in the smart home. We compile a sample
list of these devices based on their characteristics of internet
connectivity, control technology and power supply in Table
1. In fact, many of these devices are also ideal targets for
the attacker to sniff IR signals. For example, entertainment
systems like streaming media device, smart Hi-Fi/soundbar,
smart DVD/BlueRay player are often connected to or placed
next to the smart TV, hence they could receive IR transmitted
to the smart TV as well. The other types of systems under
lighting, air quality, and home office could also be placed in
the same room with the TV. Moreover, many of these devices
are connected to Internet, like smart fan, smart air-purifier,
smart vacuum cleaning robot and the smart air-conditioner.
Take air-conditioner as an example, the top 5 vendors (Daikin,
Hitachi, LG, Carrier and Midea) [23] all support Wi-Fi and
IR remote control.

2.2 Smart TV

Smart TV provides internet connectivity and computing ca-
pability on top of normal TV functionalities [5]. To support
third-party video content and enable other functionalities like
gaming, a lot of TV manufacturers have developed TV OS
and make TV a universal entertainment platform [53]. Many
TV OSes have emerged. In 2020, the front-runner Samsung’s
Tizen has a market share of 11% worldwide, followed by LG’s
WebOS, Sony PlayStation, Roku TV OS, Amazon’s Fire OS,
Google’s Android TV, Microsoft Xbox, Google’s Chromecast,
Apple’s tvOS, etc. [58].

The common functions of smart TV can be categorized
into 4 cases:

1. Free-to-air TV broadcasting. A user could watch a
TV program by inputting the channel number (usually
2 to 3 digits number), or pressing the standard remote
control key for channel up and channel down. Smart TV
could process analog or digital TV signals. For digital
TV signals, electronic program guide (EPG) data are
also encoded, providing information like the schedule
for current and upcoming broadcast programming. The
channel numbers and EPG are usually released to the
public (e.g., in Hong Kong [22]).

2. Running smart TV apps. A smart TV usually comes
with a TV app store and allows users to install their
favourite apps like Netflix, YouTube and Amazon Prime
Video [56]. A user could navigate the store with the re-
mote controller, login, watch streaming video, and make
purchase.

3. Configurations. A smart TV can be configured under
different video and audio settings, internet connection,
account management.

4. Supporting various input sources. Smart TV can be
configured to show the content delivered from other de-
vices in the entertainment system. Usually, there is an
“input” or “source” key in the remote controller to toggle
between HDMI sources.

Previous works in the security and privacy of smart TV
focused on the cyber and physical vulnerabilities at TVbox [3],
broadband and broadcast systems [43], data handling of smart
TV apps [42], and the tracking ecosystem [40,60]. Our study
presents a new side-channel attack against smart TV, which
has not been studied.
Input methods of smart TV. There are different types of
remote control unit for Smart TV. A full function smart TV re-
mote control includes numeric keys, input source, D-pad [19],
channel up/down, volume up/down, typically over 50 keys.
Such a remote control will send a unique IR signal for each
key pressed. With the numeric keys included in the remote
control some Smart TV will also support the T9 text input
method [11] with predictive text. There is also a simplified
design of Smart TV remote control with much fewer keys and
navigate using D-pad only. The function of press any key has
to be mapped with the specific user interfaces. Oftentimes, a
user needs to enter strings into the smart TV interface, like ac-
count name and credential. There are mainly 3 input methods:
entry using virtual keyboard through remote controller, entry
with a paired mobile app, and entry with a desktop PC/mobile
browser by visiting the URL shown on TV screen. Table 2
shows 12 commonly used TV apps and their supported login
method on smart TV. Virtual keyboard is supported by 8 out
12 apps, more than mobile app (7 out of 12 apps) and web
browser (4 out of 12 apps). Although this is not an exhaustive
list, it indicates that virtual keyboard still remains a popular
input method on smart TV.

2.3 Security and Privacy Implications of IR

The leakage of the IR communication pattern can lead to
severe privacy issues, and we highlight a few of them below.
Inferring users’ interests and activities. What TV channels
have been watched by a user can be considered as sensitive
information. Previous research showed that such information
can reveal a person’s political orientation [63], and be lever-
aged to deliver targeted political ads that can influence his/her
votes [20]. In fact, violation of viewers’ privacy could face
legal consequences: for instance, the US Video Privacy Pro-
tection Act (1988) was enacted to prevent the media providers
from obtaining the fine-grained viewers’ interests; US Fed-
eral Trade Commission (FTC) fined Vizio, a smart TV manu-
facturer, for collecting viewers’ demographics and viewing
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Systems Exemplar Devices Supported Control Technology CI CP T

Entertainment Audio systems(Bose Smart Soundbar 300) IR remote/Mobile App/Voice Assistant ✓ ✓ ✓

Entertainment Audio systems(Yamaha RX-V6A) IR remote/Mobile App ✓ ✓ ✓

Entertainment Disc Players (LG BP350 Bluray and DVD player) IR remote/Mobile App ✓ ✓ ✓

Entertainment Video streaming devices (Roku express, Roku Premiere) IR remote/Mobile App ✓ ✓ ✓

Entertainment Video streaming devices (Apple TV 4K) IR/Bluetooth remote/Mobile App/Voice Assistant ✓ ✓ ✓

Entertainment Game Consoles (Sony, XBox) Bluetooth ✓ ✓

Lighting Smart Bulb (Philips Hue) Bluetooth remote/Mobile App ✓ ✓

Air Quality Air-conditioner (Daikin ZENA) IR remote/Mobile App ✓ ✓ ✓

Air Quality Air-Purifier (Dyson Pure Cool) IR remote/Mobile App ✓ ✓ ✓

Air Quality Vacuum Cleaner Robot (iRobot Roomba 600) IR remote/Mobile App ✓ ✓ ✓

Home Office Video conferencing solution (Huawei TE30) IR remote ✓ ✓ ✓

Table 1: List of IoT devices in living room. CI means Connected to Internet. CP means Connected to Power. T means Target as
IR sniffer.

histories for advertising without consent. We envision the
decoded IR keys can be exploited to breach viewers’ privacy.
For instance, by capturing the channel number (usually 3-4
digits) or the sequence of channel-up/channel-down in the IR
keys from the TV remoter, and matching it to the regional
free-to-air channel list or pay-TV electronic program guide
(EPG), we can infer which channel is being watched.

Though the focus of this study is on smart TV, HOMESPY
can be adjusted to other devices that are commanded through
IR, enabling an attacker to infer what devices are installed in
a home and how they are used by the victim. For example,
(1) the attacker could know when the light or air-conditioner
is turned on/off to infer the victim’s daily routine; (2) the
attacker could know the existence of a device like a robot
vacuum cleaner with known vulnerabilities [50] and launch
follow-up attacks.

Inferring users’ account information. The traditional TV
remote only supports basic functionalities like changing chan-
nels and TV configurations. But nowadays, smart TV and
streaming devices support more complex functionalities like
allowing a user to sign in to the TV/video service provider.
By doing so, a user could access his/her personalized content
seamlessly (e.g., sign in to YouTube account and see the rec-
ommended videos based on his/her viewing history), or enjoy
a cross-screen viewing experience. For instance, as shown
in Figure 10 of Appendix C, Android TV requires the user
to sign in with a Google ID to download Google Play Store
apps and sign in to a video app like YouTube. The input of
account name and password is typically done by selecting
characters on the on-screen virtual keyboard with the remoter.
Sometimes, after stealing the TV or app account, the damage
to the victim can be escalated to impact the security of the
entire victim’s home. For instance, the LG smart TV uses an
LG smart world account which is also shared by other smart
home devices in LG Smart ThinQ, like washer, dishwasher,
and humidifier. Turning on/off these devices remotely are
possible under the LG smart world account. Though a user
could also sign in to his/her account with a paired mobile app
or browser, we expect a significant number of users would

App Virtual Mobile Web
Name Keyboard App Service

Netflix ✓ ✓

YouTube ✓ ✓

Spotify ✓ ✓

Apple TV ✓ ✓

Canal+ ✓ ✓

Line TV ✓

DAZN ✓

Tencent Video/WeTV ✓

BeIN Connect ✓

Amazon Prime ✓

HBO GO ✓ ✓

Disney+ ✓

Table 2: Input methods of different TV Apps. Virtual key-
board requires remote controller.

choose to sign in with the remoter because no mobile app
needs to be installed ahead.

Besides the login information, users’ payment information
could also be at risk. Some smart TV apps accept the in-app
purchase of new subscriptions of content, pay-per-view movie
rental [64], or even commercial products [59]. Take Roku Pay
as an example, a user can enter his/her credit card informa-
tion with a remote controller and link it to the Roku account.
Though extra information might be required to authorize each
transaction, e.g., payment PIN (4-digit or 5-digit number) for
Roku Pay and account password for YouTube [64], they are
all inputted through the controller, hence also under the threat
of sniffing.

3 Adversary Model and Attack Flow

The goal of our research is to assess the possibility of sniffing
IR remote control signals and the information leakage associ-
ated with them. We make a few assumptions about the attack
as described below.

1. Availability of an IoT with IR receiver. We first assume
that the adversary is able to control a device that could
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Figure 1: Living room with IR sniffer.

receive IR signals and send captured data to the Internet.
This condition can be satisfied by either exploiting a vul-
nerable IoT device or leveraging a malicious IoT device
in the victim’s home. We expect this condition is not
difficult to satisfy in the real-world settings: (1) a large
number of IoT devices come with remote controllers to
receive IR signals [67] and as shown in Table 1; (2) the
existence of vulnerable IoT devices is prevalent, as sug-
gested by attacks like Mirai botnet [7] and measurement
studies [29]. Different attacks could be launched with
compromised IoT devices with different security impacts
as we discussed in Section 7. In this paper we explore
and report a new realistic attacking vector using IR sig-
nals. (3) IoT devices could be fully controlled by the
attacker before being installed by the victims, through
supply-chain attack (e.g., compromising IoT hardware
and libraries [24]). Similar assumptions have been as-
sumed in a prior study about Bluetooth peripherals [62].

2. The attack device needs to be powered on. This con-
dition is also easy to satisfy. For example, some IoT de-
vices are always-on after activation, like WebCam, smart
speaker, etc. The attacker could also choose devices that
are more likely to be powered on (e.g., air-conditioner
during summer).

3. Placement of the attack device. Since IR is designed for
short-range communication, we have assumed the attack
device is placed close to the victim device that is receiv-
ing IR keys, e.g., in the same room. This condition can
be satisfied reasonably: for example, as shown in Fig.1.
A common living room could have a TV, a DVD/Blue-
Ray player or an internet streaming device, or a smart
soundbar, etc. on one side and an air-conditioner could be
hanged on another wall. Once the attacker compromises
one such device, HOMESPY can be launched. Though
IR signal is supposed to be hard to sniff by an off-path
device, our study showed that with wall reflection, sniff-
ing is not as difficult as originally expected. There is no

Malicious
IOT device

Benign 
IOT device Smart TV User with 

Infrared remote

Infrared signal

Remote 
Attacker

Infrared signal sniffed

Compromise IOT device

Launch attack

Decoder +
Semantic 
Extractor

Extract sensitive information 

Remove the collected signal data

Compromised

Sniffed signal sent to attacker via 
Internet

IR signal

Key:

Action

Figure 2: Attack Flow of HOMESPY.

Line-of-Sight assumption on the placement of the attack
device as we have shown in Section 5.1.

The attack flow of HOMESPY is illustrated in Fig.2, and
below we describe each attack phase.

• Gain control of an IR device. A remote attacker gains
controls of a vulnerable or malicious IoT device with the
IR receiver module. Noticeably, we show that the COTS
IR receiver that is common on IoT devices is sufficient
for our attack.

• Sniffing IR signals. The IR receiver module will try to
capture any IR signals in the sniffing range. Due to the
small data size of IR signals, they can be sent back to
the remote attacker through the internet connection and
analyzed remotely.

• IR command decoding and information extraction
The IR sniffing attack does not assume prior knowledge
of the specific smart TV model or its remote control
protocol of a victim. The received IR signals will be
decoded first through raw IR signal timing sequences
which represent the length of time which the IR LED
is on or off. Since we focus on the attack against smart
TV, we will match the signals to known patterns of TV
models from pre-built open IR databases [25, 49]. The
matched timing sequence will be used to extract the
commands from users, and further infer sensitive infor-
mation like credentials, TV programs viewing history
and users’ activities at home through reconstructing the
IR commands remotely. One may argue the scarcity of
users entering user name and password on smart TV. In
Table 2, most of the smart TV apps are using a virtual
keyboard to input user name and password. It may be
rare for one person to enter a user name and password
for the same app all the time. However over a period
of time, the login session would be time-out by the app
server and users would need to re-enter the credentials
and be sniffed by the attacker. Collectively speaking,
the attacker could also build a large database sniffing
hundreds of thousands of victims’ homes.
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4 Design of HOMESPY

Based on the attack workflow described previously, we de-
velop three components for HOMESPY, our attack prototype
that can break the confidentiality of the real-world IR commu-
nications. HOMESPY consists of 3 components: (1) IR sniffer
which eavesdrops IR signals in the same room of victim’s TV.
(2) A server-side IR key decoder that infers the corresponding
commands of the signal sequence. A key sequence with times-
tamps will be derived (including keys such as “OK”, “UP”,
and “DOWN”), together with the inferred device types and
brands; (3) A server-side semantic extractor that recovers sen-
sitive information like the watched TV program and victim’s
credentials from the key sequence. We have also uploaded the
database and source codes on the demo site 2.
Challenges. Though the high-level idea of HOMESPY is sim-
ple, there are a few technical challenges we need to address
to achieve satisfying inference accuracy. (1) As IR is usu-
ally leveraged for Line of Sight (LOS) communication, the
captured IR signals are weak when the IR sniffer is not posi-
tioned between TV and the remoter. (2) Since the consumer
IR protocols are not standardized for the most part, there is
no universal guidance about the mapping between IR sig-
nals and commands, which leads to a large search space for
command inference. Moreover, as we discovered during the
study, there exists one-to-many mappings between IR signals
and commands. (3) When inferring the account information
entered through the remote controller, a virtual keyboard is
often utilized. However, the layouts could be different for
different TV models and even TV apps. Below we describe
each component under HOMESPY, and how each challenge
is addressed.

4.1 IR Sniffer

There are two types of devices that can capture IR signals: one
type is photo-diode or phototransistor which converts changes
of infrared signals into variations of electrical current, and
the other type is called IR receiver module which outputs 0-1
digital signals directly based on the received IR signals after
demodulation (see Figure 11 of Appendix C). We choose the
latter one, i.e., IR receiver module, for the attack, because it
is simple, cheap, reliable, and has been widely used in the
majority of Commercial-Of-The-Shelf (COTS) IR remote
control devices, including TVs, set-top boxes, as well as IoT
devices. In our prototype of HOMESPY, we used Raspberry
Pi to process the data from the IR receiver module instead of
hacking and modifying an existing IoT device and turn it into
IR sniffer. Considering the receiving sensitivity is decided
by the IR receiver module, we have not made any special
assumptions in the attacking model or gained any privilege
over sniffing through existing devices.

The main drawback of using COTS IR receiver modules

2https://sites.google.com/view/homespydemo

is that their sniffing sensitivity is limited, degrading the infer-
ence accuracy on the attack device. We address this issue with
a novel information recovery algorithm that exploits the fea-
tures at the link layer, tailored to different protocols (like NEC
and Sony SIRC). Our key insight is that those protocols have
a mechanism of sending redundant information to improve
communication reliability, as described in Appendix A. For
example, in NEC protocol, both address and data bytes will
be transmitted twice, and for Sony SIRC, the same command
codes will be re-transmitted every 25ms or 45ms until the
user releases the key. Hence, this redundant information can
be exploited to improve the success rate of IR sniffing.

Here we describe the algorithm to recover information from
the Sony SIRC protocol. The high-level idea is to first split
the received data sequences into groups based on the gap
timing between them. This group gap timing threshold can
be learned from the interval between two keypresses on the
remote controller, and which is around 200ms or more. Within
each group, multiple repeated sequences can be separated by
a smaller timing gap (around 25ms or 45ms, depending on
specific devices) which can also be learned from the sniffed
sequences. Slices within each group actually are a sequence
of the same command, but may lose some pulses in the case
of weak signals. One key insight is that: information (pulses)
lost in one slice may be presented in another slice. So it is
possible to reassemble a complete key sequence by aligning
and overlapping those lossy data slices together. The pseudo-
code is listed in Algorithm 1 of Appendix B. The recovered
timing sequences will be input to the IR command decoder.

4.2 IR Command Decoder
With the timing sequences captured by IR sniffing module
described in Section 4.1, the next step is to decode the com-
mands (buttons) from the raw timings. There are numerous IR
protocols in the market. Each protocol or protocol family (i.e.
NEC, Sony and etc.) has its own encoding/decoding mecha-
nism. To decode IR commands from different protocols, we
build a customized IR code database by collecting IR code in
different formats from the Internet and generate raw timing
sequences by ourselves. The database consists of <Timing,
Command> key-value mappings. With such a general-purpose
IR code database, we can decode the commands from raw
timing sequences directly. Below we firstly describe how we
build the IR code database and then introduce how to look up
the key for each input raw timing and construct key sequence.
Building IR Timings Database. Although we did not find a
public database providing a one-stop service or API to search
any IR command by IR raw timings. we noticed that there
are multiple public websites containing mappings of different
IR protocols, so we crawled and merged them to cover a
wide range of brands and devices. Specifically, we collect
IR codes from two sources: IRDB [25] and Remote Central
Forums [49].
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Next we generate IR raw timings from these codebases. For
IRDB [25] (noted DBirdb), the IR remote control codes are
represented in a very space-efficient way with <protocol,
device, sub-device, function>. We employ two IR raw
timings generators, MakeHex [38] and irgen [26], to gener-
ate raw timings of IRDB [25]. Different from IRDB, the
Device Infrared Hex Code Database (DBrc f ) of Remote Cen-
tral forum [49] are represented in a format named Pronto-
Hex [48], which consists of 4-digit hexadecimal numbers and
uses a pair of numbers to represent an on/off sequence for
the IR emitter. All properties of IR raw timings are embed-
ded in the hex sequence under its own semantics. To con-
vert the ProntoHex codes into raw timings, we develop a
ProntoHex2Timing transformer leveraging an open-source
program named IrScrutinizer [27]. After the previous pre-
processing steps, we combine DBirdb and DBrc f . We show the
pseudo-code of the aforementioned process in Algorithm 2.
Note that though we focus on recovering the IR command
or key from timing, other information about the device like
device type, device category, and brand are also helpful for
the semantic extractor described in Section 4.3. Thus, each
record of our IR timing database consists of <Timing, (Key,
Device_Type, Device_Category, Brand)>. Finally, we
build a IR timings database with 75,901 IR codes of 1,303
devices.
IR Command Decoding. With the IR timings database,
we can look up the key for each raw timing and construct
keys sequence. For efficiency, we firstly build a hash ta-
ble of <Timing, Command> pairs based on our IR timings
database. Then we query each timing in the hash table to de-
rive the output (Key, Device_Type, Device_Category,
Brand). With this, the IR command decoder can differentiate
Smart TV IR signal in the presence of multiple IR signals,
both from other devices using a different protocol and devices
with different device types of the same protocol. In the worst
case, if two devices share the same IR protocol and were used
at the same time, it will generate collisions that the decoder
could not handle. But we believe that the chance of this would
be extremely rare. The pseudo-code of IR command decoder
is listed in Algorithm 2 of Appendix B.

4.3 Semantic Extractor
After the previous steps, we are able to obtain the sequence
of keys issued from the remote controller. However, these
commands often do not directly reveal the secret that the
attacker is interested in. For example, when the victim inputs
his/her credential using the direction keys (e.g., “UP” and
“DOWN”) and the confirmation key (e.g., “OK”), the selected
characters are not disclosed from the key sequence. Here we
set a higher bar for the attacker and assumed the victim was
using the D-pad instead of pressing ”1" from the full function
remote control of Smart TV. As such, we build this module to
extract the semantics from the key sequence, focusing on the
case when the virtual keyboard is brought up on TV.

?123

=/< 123

?123

?123

ABC

“ABC”

ANY Alphabet or 
SHIFT

SHIFT

SHIFT+SHIFT=SHIFT LOCK

SHIFT

Figure 3: Layouts of android TV standard virtual keyboard.

This module takes three sub-tasks: (1) From the sequence,
we identify the range of key presses that are potentially re-
lated to the virtual keyboard inputs; (2) We identify a set of
candidate strings based on the known keyboard layouts and
input constraints; (3) We filter out the candidates that are less
likely to contain sensitive information.

Based on our observation on TV virtual keyboards (e.g.,
illustrated in Figure 7), when the UI is brought up, the cursor
is placed always at a fixed position (e.g., upper-left) and the
layout is constant. Hence, it becomes feasible to infer the
input without “seeing” the keyboard. In Section 6, we discuss
the defenses based on keyboard randomization.

Noticeably, there have been previous studies in the secu-
rity of virtual keyboards. For instance, Diao et al. described
a key injection attack against Android Input Method Editor
(IME) [17]. Chen et al. [14] and Tian et al. [57] described
the threat that an untrusted mobile IME could collect user’s
sensitive input without consent, and proposed defenses based
on sandbox and TrustZone. These works all focus on the mo-
bile virtual keyboard, while we study the TV virtual keyboard.
Below we describe each sub-task.

Identifying the range of keyboard inputs. Since the ad-
versary is not aware when the virtual keyboard is brought
up, the inferred commands could be related to browsing TV
content, browsing the TV menu, or entering credentials. To
differentiate these cases, we develop a method based on the
frequencies of certain commands and the gaps between com-
mands. Our key insight is that when using a virtual keyboard,
a user would constantly press keys during a short time period,
but the frequency is much lower when browsing the content.
Moreover, the confirmation key like “OK” is pressed more of-
ten when selecting the characters on the virtual keyboard. For
instance, a YouTube user usually presses the navigation keys
many times before pressing the confirmation key to select the
video to watch, but selecting just one character in the virtual
keyboard requires pressing the confirmation key. Finally, the
“BACK” key is usually used when browsing the TV menu to
return to the previous level, and is rarely entered when using
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the virtual keyboard, so we can use its existence in the key
sequence to learn if the user is browsing the TV menu.

In Figure 12 of Appendix C, we show a sub-sequence re-
lated to virtual keyboard input in a captured key sequence.
Our method counts the occurrences of “OK” (termed NOK)
and “BACK” (termed NBACK) in a time window (termed TW ),
and classify the sub-sequence in TW as virtual keyboard in-
put, if NOK is larger than a threshold T HOK and NBACK is 0.
Noticeably, we do encounter false positives (i.e., keys irrele-
vant to virtual keyboard) in this sub-task, and we prune them
in the follow-up fine-grained analysis.

Regarding the values of T HOK and TW , we decided their
values based on empirical analysis and previous studies. (1)
According to the study about the leaked user credentials in
the wild, 97% users worldwide choose no more than 15 char-
acters for their passwords [46]. Hence, we set T HOK to be
larger than 15. In addition to the characters, a user sometimes
presses keys like “SHIFT” and “switching keyboard page”
(see Figure 3). Hence, T HOK should have room for these ex-
tra keys to ensure all credential characters can be captured. (2)
To determine TW , we performed a user study that involves 5
users. The detailed analysis about T HOK and TW is described
in Section 5.
Mapping commands to the keyboard. Next, we map the
captured key sequence in TW to the character sequence on
a virtual keyboard. Though there exist many TV models and
apps, it turns out the number of different keyboard layouts is
rather limited. In Figure 3, we show the 5 common layouts.
In this work, we focus on attacking the QWERTY keyboard
and number Pad used by Android TV (shown in Figure 3).
In Section 6, we discuss the extension of HOMESPY to other
keyboard layouts.

In particular, we build a database to map the position of
the cursor on the keyboard to a character. We exploit the
observation that the keyboard mapping is deterministic: for
instance, the QWERTY keyboard always starts with “q” at
the top left, and ends with “NEXT” at the bottom right. Also,
the transition between keyboard pages (e.g., uppercase page,
the lowercase page, and the symbol page) is done by pressing
certain keys (the RED lines in Figure 3 show the rules of
transition). With the above insights, we develop the two-step
mapping method for a layout:

• We assign each keyboard character with a coordinate
(x,y,z), while x and y refer to its horizontal and verti-
cal positions, and z refers to the keyboard page index.
When the virtual keyboard is brought up, the cursor is
always at (0,0,0), which maps to the letter “q”. When
the navigation keys are pressed, the new x and y will be
computed. For example, when the cursor moves to the
right and then down, the coordinate becomes (1,1,0). If
the movement and confirmation trigger a page transition,
z is changed accordingly. When “OK” is pressed, the
character associated with (x,y,z) will be fetched from

the layout database and concatenated to the output string.

• Since we apply a coarse-grained method in the prior
sub-task, many sub-sequences are discovered but not
all of them are related to virtual keyboard inputs. To
prune the irrelevant sub-sequences, we enumerate each
“OK” within each sub-sequence and check its follow-up
keys. If the cursor is moved to “Enter” and followed
by an “OK”, we consider the sub-sequence as a virtual
keyboard candidate.

Filtering out the irrelevant candidates. For the remaining
candidates, false positives still exist. We further filter them
based on the syntax of different types of sensitive information
that can be inputted with the remote controller. If a candidate
string does not match any rule below, it will be discarded.

• A phone number string only contains digits, and its
length is between 8 and 12.

• A PIN code string contains only digits and its length is
between 3 and 8.

• An email string contains “.” and “@”, and the length of
the suffix of “@” is usually larger than 3 (“com” is often
appended to “@.”).

• For password string, since it is entered after entering the
email, we choose the next string following the identified
email string.

Here, we show the pseudo-code of semantic extraction
for users’ account information in Algorithm 3 of Appendix
B. The pseudo-code that extracts users’ viewed channels is
skipped due to its simplicity. We set the normal keyboard’s
page number as 0, the caps-lock keyboard’s page number as
1, and the number keyboard’s page number as 2 by default.
Noticeably, multiple candidates might still be returned, but
due to that their quantity is often small (e.g., at most 10 can-
didates during our evaluation), we did not apply additional
filters. The attacker could apply app-specific rules (e.g., based
on the password rule of the Netflix app) to select the best
candidate.

5 Evaluation

In this section, we evaluate the effectiveness of HOMESPY in
a controlled environment. The evaluation results are separated
by each module of HOMESPY.
Demo. The video demo of our HOMESPY attack can be found
here 3.

5.1 Evaluation of IR Sniffer
IR sniffer. We evaluated the IR sniffer using a Raspberry Pi
3 with an IR sensor VS1838B as shown in Figure 4(a). The

3https://sites.google.com/view/homespydemo
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Figure 4: IR sniffer and its setup for evaluation.

Manufafcturer Typical IR emitter model d_max (m) I_e E_e_min
Vishay TSHA4400 12.65 40 0.25

EverLight IR26-61C/L510 12.65 40 0.25
KingBright WP7113SF6C-P22 20.00 100 0.25

Table 3: The maximum transmission distance of IR emitter
for remote control (assuming operating at minimum of 50-
100mA) and average receiver sensitivity.

IR sensor has the sensing distance of 20 meters and reception
angle +/-45 degree. For attackers, it is a pretty conservative
choice since VS1838B is cheaper (less than US$0.1 from
some online sellers) and has shorter sensing distance when
compared with other IR receiver modules (like Vishay TSOP
98240 which has a sensing distance of 24 meters). Still, we
demonstrate it suffices the attack requirement.

To receive IR signal, the sniffer has to be placed within the
transmission distance. Below we conduct theoretical analysis
about the distance range. The transmission distance can be
derived from the following equation:

dmax =

√
Ie

Eemin

(1)

Where Ie is Radiant Intensity in mW/sr, Eemin is the receiver
sensitivity in mW/m2, and dmax is the farthest transmission dis-
tance in meters. Table 3 shows the three common IR emitter
from different manufacturers for remote control applications.
Assuming Eemin of the IR receiver module is 0.25mW/m2,
dmax would be ranged from 12.65m to 20m. And as shown in
our experiment result in Table 4 (sample p17), the IR trans-
mission distance after one reflection is at least 7.5m.
Environment setup. To understand how the efficacy of sniff-
ing is impacted by real-world factors like distance and angle
to TV, we placed the sniffer at different positions in a room
with a TV. There are four living rooms of different sizes and
layouts tested, as shown in Figure 5. For example, Layout
A is 230cm x 200cm and the human tester is sitting on the
sofa 1.8 meters away from the TV. The red marker on the
figure shows the feasible location to install a wall-mounted air-
conditioner or to put a tower air-conditioner. Here we assume

the right-hand side of each layout floor plan is the window
or the corridor and not feasible for installation. For tower
air-conditioner, it would normally be put on the perimeter of
the living room instead of in the middle of the room which
could block the sights of users from the TV. With the above
constraints, we derived the 9 feasible locations (p1 to p9) in
layout A, 12 positions in layout B, 13 positions in layout C,
and 18 positions in layout D. We put the sofa 3 meters from
the TV in layout D because of the recommended distance
viewing a 70-inches 4K TV is 3 meters. The IR sniffer has
been attached to the end of a stick 2 meters high to simulate
the height of a wall-mounted air-conditioner IR receiver as
shown in Figure 4(b). We use Sony Smart TV KD-49X8000H
and a Sony IR remote control to test HOMESPY. The TV has
installed YouTube Apps to evaluate the efficacy of account
inference. During each test, the tester clicks 10 consecutive
keys to command the TV.

To evaluate the transmission distance in our setup, we con-
sider a large living room in the US which is around 36.5m2 [2]
or around 6.1m x 6.1m. According to Figure 1, IR signal could
be reflected by the TV wall and sniffed by the IoT device on
the opposite side of the living room, the dmax required in a
large living room would be 12.27m. From [2], the average
living room size in US, UK, Australia, India and Spain are
31m2, 17m2, 24m2, 30m2 and 24m2. The best viewing dis-
tance of any 4K resolution TV is around 1.6 times the size
of the screen. For the larger model of 85-inches 4K TV, the
recommended distance will be 143 inches or 3.63m. So even
a user has a large living room of 36.5m2, it is not likely they
will stay 6.1m away from their 4K TV. So the dmax would be
shorter, which makes the sniffing attack practical.
Test result. The number of the key signals are correctly ex-
tracted by our IR sniffer is measured. The result is shown in
Table 4. In particular, for layout A, 98.9% of the keys (includ-
ing the repeat keys) can be correctly sniffed, even when most
of the positions are not on the path of IR communication. It
is also worth noticing that the larger the room, the smaller
chances that an air-conditioner can act as an IR sniffer. How-
ever, even in the case of layout D (Figure 5(d)), the IR sniffer
can still recover 75% of key presses, and 25% of the keys are
missing. By design the IR protocol will send repeat keys and
the extraction accuracy has been improved by 2.2% for layout
A, 5.8% for layout B, 5.4% for layout C and 0.6% for layout
D respectively.

5.2 Evaluation of IR Command Decoder
To evaluate the accuracy of the IR decoder, we focus on the 6
most frequently used keys: UP, DOWN, RIGHT, LEFT (also
called D-Pad [19]), OK (sometimes called Select or Enter),
and BACK of an IR remote controller, and we pass the sniffed
timings sequence of these keys to our IR decoder for keys
sequence recovery. Note that in real-world settings, more
command keys like numeric digits, the POWER ON/OFF
key, or VOLUME UP / DOWN keys, can also be sniffed and
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Figure 5: The layouts of the testing environment.

that would only provide more accurate information to the
attacker (e.g. the number pressed or the intent of the user).
Therefore we focus our evaluation on the more challenging
but commonly used remote control keys of the D-Pad.

We have have successfully ingested 75,901 IR codes of
1,303 devices into our database. For the IR timings database
constructed for evaluation purposes, since the key names may
vary across different remote controllers, we unified these
names into standard names (like UP, DOWN).

Among the 1303 devices, only 26 devices have overlapped
D-pad4 , OK or BACK keys, which means that for 98% of all
devices have their unique mappings. Further analysis shows
that 22 out of these 26 devices actually have the same set of
key mappings but get labeled differently. For the remaining 4
devices, we found that their IR codes have mixed meanings,
e.g., the code of LEFT in device Radix DTR-9000-Twin is
the same as key DOWN in device SkyMaster 242. For such
cases, the decoder will output all possible sequences.

5.3 Evaluation of Semantic Extractor

Setup of user study. To evaluate the efficacy of the semantic
extractor, we performed a user study to collect the data about
human input patterns with the TV. The user data is collected
from 5 volunteers, who are university students and faculty

4The keys of D-pad include: UP, DOWN, RIGHT, LEFT, OK, and BACK.

IR Key sniffed A B C D

p1 10 6 10 10
p2 10 10 10 10
p3 10 10 10 10
p4 10 10 10 10
p5 10 10 10 10
p6 9 7 10 10
p7 10 10 8 10
p8 10 7 0 10
p9 10 10 0 10

p10 - 10 10 0
p11 - 9 10 0
p12 - 10 10 0
p13 - - 10 0
p14 - - - 5
p15 - - - 10
p16 - - - 10
p17 - - - 10
p18 - - - 10

Extraction
Accuracy 98.9% 90.8% 83.1% 75.0%

Missed 1.1% 9.2% 16.9% 25.0%

Table 4: The number of correctly sniffed IR keys in layout A,
B, C and D, and the accuracy of IR sniffer (the ratio between
sniffed keys and pressed keys).

members aged 20-50. We have got the IRB approval and the
protocol and consent form is put in the appendix of this paper.

Each participant is asked to complete the following tasks:
• Task 1: entering 10 email-based login credentials (i.e.,

email addresses and passwords) and 2 phone-number-
based login credentials (i.e., phone numbers and pass-
words), using a virtual QWERTY keyboard as shown in
Figure 7-i;

• Task 2: entering 50 PIN code with 4-digits, using the
number pad layout as shown in Figure 7-v;

• Task 3: navigating on the YouTube app for 10 minutes,
with an IR remote controller.

The credentials such as emails and passwords are selected
from an open dataset of leaked user login credentials [30, 31].
For phone number and PIN code, we randomly generated the
numbers with 8 digits and 4 digits respectively. To ensure con-
sistency across our data collection processes, all participants
use the same remote controller and android streaming box
(BOSSv2 TV) connected to the tested TV for experiments.
The participants were also instructed to use only the D-Pad,
OK and BACK keys on the remote control in all the tasks.

Overall, we collected around 10,000 keypresses on the
remote control. We classify the keypresses about entering
login credentials and PIN code as positive and navigation as
negative. For task 1, one account (with an email or phone
number and a password) is considered as 1 positive sample.
For task 2, one PIN code is a positive sample. For task 3, each
10-mins sequence of keys is regarded as a negative sample. In
the end, we collect a total number of 315 samples including
60 positive samples from task 1, and 250 positive samples

4562    32nd USENIX Security Symposium USENIX Association



Figure 6: Distribution of Candidate String Sizes.

from task 2, and 5 negative samples from task 3. The scale of
our experiment is comparative to prior works that try to infer
the typed information from victim users (e.g., 800 samples
of 8 users in [33]) or other side-channel attack study using
voice profiles of 6 users in [39].
Overall results. For task 1 and task 2, among 310 positive
samples that we collect, HOMESPY is able to identify the
sequence of the keyboard input from all of them. No false neg-
atives of the characters have been discovered in any sequence,
but we found that 53% out of the 310 samples have at least
one false positive string (considering all strings outputted by
semantic extractor), and the main reason is that HOMESPY
could recover more than one candidate string. Table 6 shows
an example candidate list of recovered strings and Figure 6
shows the distribution of candidate string sizes. The average
size of the candidate list is 2.95 characters. A login credential
(username and password, or phone number and password) or
a PIN is correctly inferred if it appears in the candidate list
whose size is less than 5.

As shown in Table 5, the overall success rate of our seman-
tic extraction is 47% if only one candidate is allowed (Top1).
The accuracy increases to 70% for Top3 and 77% for Top5.
Given that it is common for a website and app to allow multi-
ple login attempts (usually 5 times), the inference accuracy is
satisfactory.

For task 3, if the semantic extractor mistakenly produces a
string about login credential or PIN code, the result is consid-
ered a false positive. Because the activation and deactivation
of virtual keyboard follow a fixed sequence of commands
(e.g., after OK), it is unlikely to produce false positives. In
fact, none of the user’s navigation activities are classified as
secret (0 false positives). There is one string that looks similar
as PIN code (“6.76”), and it is filtered out because the PIN
code only has digits.
Threshold values. As described in Section 4.3, we use two
thresholds to capture the range of virtual keyboard inputting,
namely TW (time window) and T HOK (the minimum number
of “OK” being pressed). Below we describe how their values
are decided.

User # Top1 Top3 Top5

U1 17% 50% 58%
U2 75% 75% 75%
U3 58% 83% 100%
U4 33% 58% 67%
U5 50% 83% 83%

Mean 47% 70% 77%

Table 5: Accuracy of semantic extraction on the collected
samples.

Table 6: Example of Recovered Strings

Account Password

Target1 TD052288@gmail.com emerson10
Candidate1 qtd052288@GMAIL.COM emerson10
Candidate2 td052288@GMAIL.COM emerson10

Target2 XIAOLIN123@gmail.com 143ARIAN
Candidate1 qxiaolin123@GMAIL.COM 143ARIAN
Candidate2 xiaolin123@GMAIL.COM 143ARIAN

For TW , based on the data collected from the volunteers, on
average, it takes 114.15 seconds to input both the email/phone
number and the password. For T HOK , based on the collected
data, the average number of “OK” keys inputted is 34.95 to
input a credential.

In the end, to accommodate the variance of users’ input
behaviors, we set TW and T HOK to 300 (seconds) and 150,
respectively. We set such high values in case of missing any
events/behaviors. The experiment result shows HOMESPY
could cover 100% of the activities about keyboard input.

6 Discussion and Limitations
Securing IR communications. The current IR transmission
mechanism does not include any security measures like en-
cryption, as it assumes line-of-sight usage and only insensitive
information is transferred. However, these assumptions are
challenged based on the new use cases of IR, and our attack
method HOMESPY. To enforce security measures on IR com-
munication, Kim et al. [28] mentioned that encryption should
be adopted to protect the commands from eavesdropping in
such scenarios. As we know, the core of encryption is to
establish a shared secret. However, in their scheme, a key
(the shared secret) is generated on the remote controller and
directly transmitted through the IR channel. By our assump-
tion, this scheme is insecure as HOMESPY can capture the
transmitted key as well.

Considering the trade-off between usability and security,
we argue that fundamentally any security mechanisms are
difficult to deploy on IR, especially in the scenario of remote
control of smart TVs. For other protocols like Bluetooth [44],
before secure communication is established, namely enforc-
ing encryption schemes, the two communication parties need
to exchange some messages, to negotiate a share secret (e.g.,
using Diffie–Hellman key exchange schemes). However, for
the connection between a smart TV and a remote controller,
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the communication is only one way: only the remote con-
troller can give instructions to the smart TV. If we wish to
build a two-way communication, any messages from the TV
to the remote controller must be delivered through a user
(or using extra hardware). If the message delivered through
users is short, there is no guarantee for its security with brute-
forcing attacks. Otherwise, if the message delivered by users
is too long, it would cause inconvenience to users.
Interference to IR communications. Indoor IR communi-
cations may be subject to interference of other light sources,
including fluorescent lamps, TV displays and sunlight. The
impact of which has been mitigated by IR receiver control
circuits that provide feedback of the received signal to the
automatic gain control (AGC) circuitry and the solution is
available in the market from different vendors. The AGC
helps ensure high S/N ratio and make our attack practical
under interference. We could study the impact from other
ambient light sources in the future. For direct interference
closer to carrier frequency of IR (e.g. 38kHz), there was re-
ported interference from fluorescent lamps operating on high
frequency electronic ballasts. The problem has been resolved
by choosing the operating frequency of electronic ballasts
over 40kHz [1].
Other means of in-home control. IR has been the oldest
and most deployed wireless control technology in the home.
Although other technologies such as Bluetooth and RF are
used for in-home appliance control, IR remains the major
and cost-effective wireless control technology in the home.
RF remote control can be used without a line of sight and
supports bi-directional communications. There are also Blue-
tooth remote controls using Bluetooth Low Energy (BLE) in
the market, especially for higher-end TV models. Though RF
and BLE provide better security by design (e.g., with pairing
and traffic encryption) and enable communication, not in the
line of sight, they are vulnerable to sniffing and MITM attacks
due to unavoidable bugs in the implementation [9, 34]. RF
and BLE can transfer more information with a smart TV for
additional functions like voice search or channel logo display.
In some sense, RF and BLE are overkill for controlling home
appliances remotely.
Many smart home devices also support remote controller
apps on smartphones, we see that IR would continue to play
a major role in remote control for years to come given its low
cost and simplicity. Smart home devices and smartphones can
be connected through an IP network or Bluetooth directly.
Using a smartphone to control smart home devices incurs no
additional hardware cost but it is not a common behaviour
among general users based on the following observations.
First of all, consumer demands a standalone controller unit
that can be used any time with or without a smartphone. Hence
remote controller unit is usually provided with the smart home
device. Secondly, if one wants to turn on a smart TV after
setup, he or she would need to unlock the smartphone, find
the remote control app, launch the remote control app, and

then click an on-screen button. Compare this to one click on
the IR remote control unit, the worse usability undermines the
adoption of using a smartphone to replace the remote control.
Perhaps a better alternative is to use smart speakers and voice
commands to turn on a smart TV. However, voice commands
could only support a finite set of simple commands. In cases
where users need to enter user credentials on a smart TV, a
remote control unit would still be preferred (not to mention
that one would not likely shout out his PIN or password). As
a result, HOMESPY continues to pose a valid threat to smart
homes.

Figure 7: 5 common on-screen keyboard layouts.

Different layouts of virtual keyboards. In this work, we
focus on the QWERTY virtual keyboard used by Android TV
and the Number pad. Based on our survey, there are 5 common
types shown in Figure 7. Lui et al. identified three common
smart TV onscreen keyboards layout in TV apps [35], namely
QWERTY (used by Samsung TV, LG TV, Google’s Android
TV, Xbox), Alphabetic square (used by Roku), and Alphabetic
two-row (used by Apple TV). We found that the Amazon Fire
TV uses a slightly different layout from the Alphabetic square
and we call it an Alphabetic rectangle. Finally, there is a sim-
plified Number Pad layout for number-only entry. We plan to
extend HOMESPY to other layouts in the next step. In partic-
ular, based on the observation that the frequencies of hitting
UP/DOWN/LEFT/RIGHT on the QWERTY keyboard, Al-
phabetic two-row keyboard, and Number pad are different
to select a character, they can be distinguished readily. How-
ever, since the alphabetic square and rectangle keyboard have
similar layouts, finer-grained analysis is needed. We can also
distinguish the use of virtual keyboard from T9 input method.
When multiple numeric keys are pressed, text input could be
inferred using the sequence of numeric keys sniffed and the
T9 predictive text algorithm. The privacy attack on T9 and the
predictive text learning system has been studied by Wilkinson
et al. [61].
Activation and filter of virtual keyboard input. We as-
sume the activation of virtual keyboard follows a command
sequence that is known to the adversary, e.g., after the “OK”
key. We found this assumption hold for the common cases
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like entering a PIN code or password to confirm the purchase,
and inputting login credential. However, the sequence can be
changed when the user needs to select some menu options
between the “OK” key and keyboard activation, which could
confuse the semantics extractor. To address this issue, the
semantics extractor could consider every key after “OK” to be
the candidate start of the virtual keyboard (i.e., “q”). And we
use ENTER button to separate the username and password.
We could also evaluate other algorithms to filter keyboard
input instead of using a fixed threshold as future work.
Randomization of keyboard layout. Layout randomization
has been proposed to make keyboard logging more difficult,
but it also brings in extra overhead for normal user to input
information. Pak et al. [45] proposed a randomized QWERTY
keyboard, which however increased around 30% of input time.
Another approach is to randomly insert “white space” in each
row [51]. Yet, keyboard randomization has not been widely
deployed in any of the major smart TV platforms, and we ex-
pect the semantic extractor of HOMESPY will not be impacted
in the near future.

7 Related Work
Our work demonstrated the commands embedded within IR
signals can be inferred and leak sensitive information in the
smart home. In this section, we review previous studies related
to smart home and IR.
Security and privacy issues in smart home. Home-based
IoT devices have become the major target for cyber-attackers
in the recent decade, due to numerous vulnerabilities they
embed and their close interaction with users’ daily lives. Alr-
wai et al. surveyed the existing literature in IoT security and
privacy and categorized the attack surface by device, mobile
apps, cloud endpoint, and communications [6]. The issues we
identified relate to communications.

Researchers have explored various approaches to infer pri-
vate information from the communications among different
entities in a smart home [4, 8, 13, 15, 18, 21, 52, 55]. For in-
stance, Dong et al. [18] presented a neural network-based
approach to identify the types of active devices in smart home
by analyzing the network traffic. Acar et al. [4] identified the
types of IoT devices, their states, and ongoing user activities,
by passively sniffing wireless network traffic like Wi-Fi, Zig-
Bee, and BLE, in a smart home. Srinivasan et al. [55] showed
that in-home private activities such as cooking, showering, toi-
leting, and sleeping can be observed by eavesdropping on the
wireless transmissions of sensors in a home, even when the
transmission is encrypted. Schwittmann et al. [52] leveraged
ambient light sensors on a mobile phone to infer the video
watched on the TV screen. Those works rely on side-channels
from light, Ethernet, or wireless communication, to infer sen-
sitive information, while we look into IR, whose security
implications in smart home have not been well understood.

Regarding the issues unique to smart TV, Section 2.2 has
described the related works.

IR-related security issues. A few previous works have shown
IR can be used as a covert channel to send sensitive informa-
tion out from air-gapped machines. Maiti et al. [37] exploited
the new multimedia visualization methods of smart light to
infer the content watched by a victim, and used IR as a covert
channel to send the inferred content out. Zhou et al. [67] lever-
aged a malicious IR hardware module (MIRM) embedded in
a USB keyboard to collude with malware in the victim’s PC.
Receiving the sensitive information stolen by the malware,
MIRM can transmit it to a nearby IoT device supporting IR.
The IoT device will relay the information to the remote at-
tacker. Besides covert channel, IR has also been leveraged to
break the integrity of the computing systems.

For instance, Zhou et al. [66] demonstrated that the out of
face recognition systems can be misled when part of a hu-
man’s face is illuminated by IR, which cannot be perceived
by a human observer. Our work explores different directions
from the above works, as we focus on the privacy of IR itself,
rather than leveraging IR as a medium to attack the confiden-
tiality or integrity of other systems.

Ling et al. [32] built a new transceiver to bridge the IR
communication channel with the Internet, and studied the
possible vulnerabilities of that transceiver at the protocol level.
Our work is different and focused on a new attack vector at the
IR communication channel itself. A related study by Kim et
al. [28] runs some sensitivity tests of IR signals from different
angles, distances, and even through a curtain. However, our
work has significant improvements because our attacks are
more practical by being able to handle IR signal reflections
and steal real world private information.

8 Conclusion
Our research re-examines the general belief that clicking an
IR remote control is a homely and safe thing to do. We have
developed a HOMESPY attack and evaluate its performance
using test data of received signal and our offline IR code
database. Our studies show that IR signals at home can be
easily sniffed by an IoT device sitting in the same room, and
attackers can uniquely reproduce the key pressed by the vic-
tim and derive sensitive information via semantic extraction
techniques. In the era of IoT, many smart devices are con-
nected to the Internet and support IR for compatibility with
universal IR controllers. This means the invisible IR vulnera-
bility presented in this paper will continue to cause significant
threats to smart home security.
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Appendices

A IR Signal and Encoding

Figure 8: The upper figure shows the NEC protocol at carrier
frequency of 38kHz while the lower one shows the modula-
tion.

Figure 9: The upper figure shows the Sony SIRC protocol
at carrier frequency of 40kHz while the lower one shows the
corresponding modulation.

To control a consumer device from a remote controller,
the IR light is typically generated by an IR LED. The carrier
frequency is different for different CIR protocol: e.g., NEC
uses 38 kHz, Sony uses 40 kHz and RC-5 uses 36 kHz. As
shown in Fig.8 and Fig.9, we illustrate the NEC and Sony
SIRC modulation and protocol respectively, showing their
designs are quite different.

In particular, the NEC code uses pulse distance modulation.
Logical 0 is a 562.5µs pulse burst followed by a 562.5µs
space, with a total transmit time of 1.125ms. Logical 1 is a
562.5µs pulse burst followed by a 1.6875ms space, with a
total transmit time of 2.25ms. The code always starts with
a burst of 9ms, followed by a pause of 4.5ms, before any

data word. 8 address bits are used to identify the device to be
controlled, and then 8 bits are used as the command data. Both
the address bytes and the data bytes are transmitted twice,
first as a normal byte and then followed by an inverted byte.

For the case of Sony SIRC, there are 3 versions and the one
shown in Fig.9 is a 12-bit SIRC protocol. The SIRC protocol
uses pulse width encoding of the bits. A logical "1" is a 1.2ms
long burst of the 40kHz carrier, while the burst width for a
logical "0" is 0.6ms long. The start burst is always 2.4ms wide,
followed by a standard space of 0.6ms. Apart from signaling
the start of an SIRC message this start burst is also used to
adjust the gain of the IR receiver. Then the 7-bit Command is
transmitted, followed by the 5-bit Device address. Commands
are repeated every 45ms (measured from start to start) for as
long as the key on the remote control is held down.

B Pseudo-codes of HOMESPY

Algorithm 1: Information Recovery Algorithm for
Sony SIRC Protocol.

input :RawSequence, GroupGapThreshold, RepeatGapThreshold
output :RecoveredSequence

1 groupList= []; newGroup = []; newSlice = [];
2 for i=0 . . . RawSequence.length do
3 input = RawSequence[i]
4 if input is SPACE AND input.Value > GroupGapThreshold

then
5 groupList.append(newGroup)
6 newGroup = []
7 newGlice = []
8 else if input is SPACE AND input.Value > RepeatGapThreshold

then
9 newGroup.append(newSlice)

10 newSlice = []
11 else
12 newSlice.append(input)
13 end
14 RecoveredSequence = []
15 for group in groupList do
16 temp_slice = []
17 for slice in group do
18 t = findStartSymbolPosition(slice)
19 if temp_slice == [] then
20 temp_slice = align(slice, t)
21

22 else
23 temp_slice = combine(temp_slice, align(slice, t))
24 end
25 RecoveredSequence.append(temp_slice)
26 end
27 return RecoveredSequence
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Algorithm 3: Keyboard Information Extraction
input :Sequence, Keyboard([page_number, y_position, x_postion])
output :Extracted private information candidates

1 candidates = []
// Establish the Keyboard position mapping

2 for p = 1. . . Keyboard.page_number do
3 for y = 1. . . Keyboard[p].y_number do
4 for x = 1. . . Keyboard[p,y].x_number do
5 mapping[p-1,y-1,x-1] = Keyboard[p,y,x]
6 end
7 end
8 end

// Check each potential sequence and generate
candidates

9 for i = 0 . . . Sequence.length do
10 position← [0,0,0]
11 data = Sequence[i:]
12 message = ′′

13 for c in data do
14 if c == ’BACK’ then
15 break
16 else if c in [’UP’,’DOWN’,’LEFT’,’RIGHT’] then
17 position = Change_position(position, c)
18 else if c == ’OK’ then
19 if mapping[position] == ’ENTER’ then
20 candidates.append(message)
21 message = ′′

22 position← [0,0,0]
23 else if mapping[position] == ’SHIFT’ then
24 if position.page == 1 then
25 position.page = 0
26 else if position.page = 0 then
27 position.page = 1
28 else if mapping[position] == ’NUMBER’ then
29 if position.page == 2 then
30 position.page = 0
31 else if position.page = 0 then
32 position.page = 2
33 else
34 message += mapping[position]
35 end
36 candidates = Filter(candidates)
37 return candidates
38 end

(a) YouTube App on Smart TV (b) Login screen of Google Account

Figure 10: YouTube app and login.

Algorithm 2: IR Command Decoder
Input :DBirdb, DBrcf, timingsSequence
Output :DBtimings, keysSequence
//Building IR Timings Database

1 Function DB_build(DBirdb, Dbrcf):
2 DBtimings = {};
3 for codeirdb in DBirdb do

//codeirdb = <protocol, device_type,
device_category, key>

4 if code.protocol ∈MakeHex.protocols then
5 timing = MakeHex(codeirdb);
6 else if code.protocol ∈ irgen.protocols then
7 timing = irgen(codeirdb);
8 else
9 continue;

//command = (Key, Device_Type,
Device_Category, Brand)

10 timing = hash(timing);
11 command = (codeirdb. f unction, codeirdb.device,

codeirdb.sub_device, codeirdb.brand);
12 record = <timing, command>;
13 DBtimings[record.timing] = record;
14 end
15 return DBtimings
16 Function DB_query(DBtimings, timing):
17 timing = hash(timing);
18 command = DBtimings[timing];
19 return commmand

//Decode input timings sequence
20 Function decoder(DBtimings, timingsSequence):
21 timings = split(timingsSequence);
22 keysSequence = [];
23 for timing in timings do
24 command = DB_query(DBtimings, timing);
25 keysSequence.append(command);
26 end
27 return keysSequence

C Supporting Figures

Figure 11: The signals captured by the COTS IR receiver
module when “OK” key of the Sony TV remote is pressed.

Figure 12: Key sequence about virtual keyboard inputs.
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