
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Erebus: Access Control
for Augmented Reality Systems

Yoonsang Kim, Sanket Goutam, Amir Rahmati,
and Arie Kaufman, Stony Brook University

https://www.usenix.org/conference/usenixsecurity23/presentation/kim-yoonsang

Erebus: Access Control for Augmented Reality Systems

Yoonsang Kim* and Sanket Goutam*, Amir Rahmati, Arie Kaufman
Stony Brook University

{yoonsakim, sgoutam, amir, ari}@cs.stonybrook.edu

Abstract
Augmented Reality (AR) is widely considered the next evo-
lution in personal devices, enabling seamless integration of
the digital world into our reality. Such integration, however,
often requires unfettered access to sensor data, causing signifi-
cant overprivilege for applications that run on these platforms.
Through analysis of 17 AR systems and 45 popular AR appli-
cations, we explore existing mechanisms for access control in
AR platforms, identify key trends in how AR applications use
sensor data, and pinpoint unique threats users face in AR en-
vironments. Using these findings, we design and implement
Erebus, an access control framework for AR platforms that en-
ables fine-grained control over data used by AR applications.
Erebus achieves the principle of least privileged through the
creation of a domain-specific language (DSL) for permission
control in AR platforms, allowing applications to specify data
needed for their functionality. Using this DSL, Erebus further
enables users to customize app permissions to apply under spe-
cific user conditions. We implement Erebus on Google’s AR-
Core SDK and port five existing AR applications to demon-
strate the capability of Erebus to secure various classes of apps.
Performance results using these applications and various mi-
crobenchmarks show that Erebus achieves its security goals
while being practical, introducing negligible performance over-
head to the AR system.

1 Introduction
The last decade has seen a growing trend in the application
of Augmented Reality (AR) and Mixed Reality (MR) systems.
These systems allow applications to create immersive experi-
ences for user interaction, enriching and streamlining tasks for
their users. To achieve this, AR systems capture the user’s sur-
roundings using sensor input, such as video, depth, location,
and audio, and overlay virtual content on live camera feed
through devices such as smartphones or Head-Mounted Dis-
plays (HMDs). Such HMDs in the form of “glasses” are often
seen as the next logical evolution of personal devices, and ma-

*These authors contributed equally to this work.

jor companies including Google, Apple, Meta, and Amazon are
known to be actively developing them for mainstream use [25].

To achieve their functionality, AR devices rely on Percep-
tual sensing. Perceptual sensing is the ability of a hardware
device or a software application to leverage cameras and other
sensors to continuously observe their physical environment.
Mobile phones, IoT devices, and gaming devices (e.g., Mi-
crosoft Kinect, Nintendo Wii) are some of the hardware de-
vices that use perceptual sensing to support user inputs in the
form of gestures or voice commands. Lately, with the growing
popularity of augmented reality, many software applications,
such as Pokemon Go, Ikea Place app [32] have also become
prevalent. These applications fundamentally leverage contin-
uous video input to recognize the physical objects in the user’s
environment and overlay virtual information on top of it to
enhance their experience.

Consider the Ikea Place app, which requires the user to scan
their living room, choose an item of furniture, and place it vir-
tually anywhere using their smartphone — allowing users to
experiment with furniture even before buying them. In order to
achieve this functionality, the Ikea app requires continuous ac-
cess to the user’s video feed, effectively recording everything
in the user’s environment. The user intends to use the app only
to scope out the living room area, however the app may inadver-
tently record sensitive information, such as credit card numbers,
contents on computer displays, etc., present in its environment.
Another case could be that the user may unknowingly use the
application in a sensitive location, such as at work or in a locker
room, thereby compromising the privacy of their coworkers
or bystanders. In existing AR frameworks, neither the frame-
works themselves nor the application provides any control to
the user to restrict such over-collection of sensory information.

This form of over-privilege is further exacerbated by the
current design of the manifest permissions model in the under-
lying operating systems [2]. For example, every Android app
uses a AndroidManifest.xml file, which declares the per-
missions and the hardware or software features required by the
app to the Android OS. Android does allow users to selectively
grant permissions to the app, however, their choices remain

USENIX Association 32nd USENIX Security Symposium 929

persistent, regardless of whether apps are in the foreground or
background. Android 10 attempted to provide more granular
permissions control by introducing Tristate location permis-
sions [3], wherein users are provided with the additional
choice to restrict device location access only while the app is in
use. Unfortunately, a similar access control granularity is not
yet available for other sensory inputs. Additionally, this man-
ifest model is not a viable option for extending granular access
control to the complex use cases posed by AR applications.

To provide a holistic solution to these challenges, we
present Erebus, a language-based access control framework
for Augmented Reality systems that can coexist with the exist-
ing manifest model and extends granular permissions control
to the user in the form of a novel policy specification language.
We extend the primitives of user-driven access control [10, 50]
whereby permission granting is built into decisions made by
the user within the application context, rather than permissions
being set as an afterthought by the developer in the manifest.
Our goal is to allow the users to define the What, When, and
Where permissions of the sensory input for an untrusted app.
For example, in the case of the Ikea app, Erebus will allow
users to restrict the application to only provide plane detection
in the home environment at certain times.

We implement Erebus on Google’s ARCore SDK, a popular
software development kit that allows for augmented reality
applications, and evaluate it across five representative AR
applications: (1) an AR navigation app, (2) an AR remote
maintenance application, (3) a Face filter app, (4) an AR game,
and (5) an AR shopping app. We demonstrate that Erebus can
protect users against over-privileged applications while pro-
viding them with tools to seamlessly modify the information
shared with these applications. Our experiments show that
Erebus can provide fine-grained access control across AR
platform while incurring modest overhead.

In summary, this paper makes the following contributions:
• We perform a study of 17 AR devices Access Control sys-

tems (Section 2) and examined how 45 popular AR applica-
tions use sensor data to achieve their functionality (Section
3). We release our app and device surveys to motivate future
research.1

• Based on our findings, we design and implement Erebus,
an access control framework for AR systems that provides
users with fine-grained control over how AR applications
access sensor data (Section 5).

• We implement Erebus on Google ARCore SDK and provide
a comprehensive case study of five AR applications, repre-
senting the diversity of existing applications in the AR space
(Section 6). Our results show that Erebus is able to enforce
fine-grained access control across the five applications, while
incurring minimum overhead. We open-source Erebus’s
implementation to motivate future research and adoption.1

1https://github.com/Ethos-lab/erebus-AR_access_control

Oculus Quest 2

Snap Spectacles

Google Glass

HoloLens 2

Toshiba dynaEdge

Rokid Air Pro

Lenovo ThinkReality A3

Viture One

Figure 1: AR systems today are being developed either as a standalone unit
with all sensors and computation present onboard, or with a companion device
such as a smartphone to offload computational tasks.

2 Background

2.1 Augmented Reality Systems
AR devices and applications are increasingly becoming a part
of our digital lives. While mobile devices (through apps such
as Pokemon Go, Google Maps AR Live View, and Snapchat)
currently cover the most significant market segment of AR ap-
plications, they only offer rudimentary forms of AR that act as
an entry point for many users. More advanced consumer AR
systems involve head-mounted displays and AR smart glasses
that provide a hands-free immersive experience. These devices
are being marketed as the next major evolution in personal
technology that will augment, if not completely replace, smart-
phones as users’ preferred personal devices. A recent flurry of
activity in the form of patent applications and prototypes, from
companies such as Apple [4,7], Google [6], Meta [43], and oth-
ers [37, 60, 62] have showcased some of the emerging designs
in this space. Based on these trends, we identify two key design
philosophies that govern the emerging AR systems (Figure 1):
Standalone Unit. The first design form designates the AR
system as a self-contained unit, incorporating different sen-
sors, processing capability, and a virtual display on a single
device. Microsoft HoloLens [44] is an example of such a sys-
tem. While there are definite advantages in such all-in-one
solutions, design considerations such as weight and battery
capacity limit the processing capability of these devices.
Companion Device. The second design form envisions AR
systems as wearable companion devices connected to existing
smartphones or PCs. Such design enables AR devices to lever-
age the extensive computational power of modern smartphones
and computers, allowing wearable glasses to focus on provid-
ing the display and additional sensors. Lenovo’s ThinkReality
smart glasses [40] is an example of this type which tethers
to the user’s laptop or smartphone to create a customized, ex-
panded personal workspace. Extending on this companion
device ideology, the heavily anticipated Apple Glasses [7] is
rumored to augment the iPhone and the Apple ecosystem to
create immersive user experiences [4, 5]. These early patents
suggest a move toward building an inter-connected ecosystem

930 32nd USENIX Security Symposium USENIX Association

https://github.com/Ethos-lab/erebus-AR_access_control

of wearables, where the AR functionality is informed by mul-
tiple devices, the user’s smartphone acts as the central hub for
processing information, and the AR glasses as the display unit.

Wearable Unit / Mobile Phone / PC

Android / iOS / Windows

ARCore / ARKit Third party SDK

 UnReal Unity Android

Augmented Reality Applications

Development
Frameworks

AR SDK
libraries

Target platform

Allows developers
to leverage
high-level sensor
information.

Permission
enforcement for
sensor access
applied only on the
target platform.

Figure 2: AR application developers use different frameworks and libraries
that provide high-level functional APIs to access sensor information. These
frameworks, however, do not provide any permission enforcement and default
to the target platform access control.

2.2 Access Control in AR systems
To build immersive applications, developers use different
frameworks and software libraries that allow seamless integra-
tion with the device. Figure 2 presents a high-level view of the
computing stack used to develop AR applications. This com-
puting stack applies to all platforms, including Smart Glasses,
Smartphones, and Desktops. This cross-platform support is
aided by the availability of AR SDK libraries (such as ARCore
and ARKit), which provide high-level native APIs that inter-
face with device sensors. These APIs allow application de-
velopers to derive meaningful content without worrying about
interfacing with the sensor. However, considering these AR
systems mostly include audio-visual and gesture-monitoring
sensors, a lack of proper permission management allows the
applications to abuse sensor data usage policies. We surveyed
how the popular device manufacturers approach access con-
trol in their design; our results, presented in Table 1, highlights
access control methods observed in existing AR platforms:
• Developer Specified App Manifest: Most manufacturers

of AR headsets use an Android-based OS. Similar to other
Android apps, these apps declare the policy specification
using the app manifest file [2], which requires an explicit
declaration of all the sensors to be accessed by each app.
Listing 1 provides an example of such a manifest file. This
form of policy specification only supports a coarse-grained
gate-keeping mechanism, allowing either full access to the
sensor or none at all.

• Device Admin Policy Specification: Microsoft HoloLens,
which runs on Windows 10, provides developers and de-
vice administrators with hardware restrictions to control the
availability of a Camera, Microphone, and Bluetooth inter-
faces, among others. Developers use an app manifest similar
to Android to declare the app’s capabilities. However, the
policy enforcement is set by the device administrator us-

<uses-feature android:name="android.hardware.camera"
android:required="true" />

<uses-permission android:name="android.permission.record_audio"
android:required="true" />

<uses-feature android:name="android.hardware.location.GPS"
android:required="true" />

<uses-feature android:name="android.hardware.sensor.heartrate"
android:required="true" />

Listing 1: Developers declare sensor access permissions in AndroidMan-
ifest.xml file which only allows coarse-grained permission control. Users
can only choose between "Allow access", "Allow access while the app is in
use", and "Deny access".

let allTypes = Set([HKObjectType.workoutType(),
HKObjectType.quantityType(forIdentifier: .restingHeartRate)!,
HKObjectType.quantityType(forIdentifier: .bodyTemperature)!,
HKObjectType.quantityType(forIdentifier: .bloodPressure)!,
HKObjectType.quantityType(forIdentifier: .heartRate)!])

Listing 2: A fitness app using Apple Healthkit framework that needs access
to the heart rate sensor data needs to declare explicitly all data types it needs.
Users are prompted to Allow / Disallow individual data type permissions
through the Settings interface.

ing the Configuration Service Provider (CSP) module [14].
Administrators can update app access to a sensor by mod-
ifying the associated CSP tag. For example, in order to allow
Windows apps to access the Camera interface, the device
admin first needs to set the "LetAppsAccessCamera" CSP
tag which supports a threefold setting — (1) User in control,
(2) Force Allow, or (3) Force Deny. The admin can further
specify which specific apps should be denied access using
the tag "LetAppsAccessCamera_ForceDenyTheseApps".

Beyond these two methods, there is a third access control
method that while not used by current AR systems, is widely
used in other wearable devices:
• Authorization per Data-type Access: Listing 2 presents the

access control method currently being used in smartwatches,
using Apple Healthkit framework [13] as the example.
These frameworks are designed for wearable devices with
persistent access to users’ health data. The access control is
thus applied to each data type that an application can request,
ranging from heart-rate samples to the user’s exact location.
Developers must explicitly declare the data requirements in
the application code, and users are prompted each time an ap-
plication requests new permissions. While more fine-grained
than previous methods when dealing with processed med-
ical data generated by the wearable platform, this approach
fails to provide protection beyond binary access control
when dealing with direct sensor data such as exact location.
A singular drawback across all three access control meth-

ods discussed so far makes them unfit for AR devices: All
existing mechanisms assume a gate-keeping form of enforce-
ment where an app can retain unfettered permissions once the
user has granted them. This creates a particularly challenging
design problem where the concern over granting perpetual
access to audio-visual sensors and users’ location in an appli-
cation may inhibit many genuine use cases of smart glasses.

USENIX Association 32nd USENIX Security Symposium 931

Table 1: Survey of AR smart glasses from 17 different manufacturers showcase that these devices are designed to either default to the target platforms access
control method or provide none of their own.

AR Device Type Device Name Platform Access Control Mechanism

Standalone Wearable

Meta Quest 2 [43] Android App Manifest
Microsoft HoloLens 2 [44] Windows App Manifest, Policy CSP
Magic Leap 2 [16] Android App Manifest
Google Glass Enterprise [23] Android App Manifest
ThirdEye X2 MR Smart Glasses [22] Android App Manifest
Vuzix Blade AR [70] Android App Manifest
Snap Spectacles [67] Android App Manifest
Raptor AR Headset [19] Android, iOS No AC mechanism
Kopin Solos [36] Android, iOS No AC mechanism
Xiaomi Smart Glasses [68] Android No information available

With a Companion Device

Lenovo ThinkReality A3 [40] Android, Windows Depends on target platform
Epson Moverio [18] Android, Windows Depends on target platform
Toshiba dynaEdge [63] Windows No AC mechanism
Rokid Air Pro [52] Android, iOS App Manifest
NReal Light [46] Android No AC mechanism
Viture One [69] Android No information available
Dream Glass Flow [66] Android, iOS No information available

Table 2: Camera is the primary sensor required for all AR functionality. Some
apps also request access to Location and Microphone sensors, but their usage
is mostly supplemental to core AR functions.

Sensors Access Required # of apps (out of 42 2)
Camera 14

Camera, Location 7
Camera, Microphone 8

Camera, Location, Microphone 10

3 How Do AR Applications Use Sensor Data?

3.1 Survey of the Use of Sensor Data
To better comprehend the risks AR users face, we first need to
understand how current AR applications access and use sensor
data. To do this, we examined the top 45 applications across
Android and iOS app stores. Table 2 presents the result of our
survey: all AR applications primarily focus on extracting and
using visual semantics from the real-world, requesting Cam-
era permissions by default. We noticed some applications also
request access to Location and Microphone sensors, but their
usage is mostly supplemental to the app’s core functionalities.
Additionally, access to all sensor data except the Camera is
regulated via the OS, while the visual semantics is provided
by the AR libraries (ARCore or ARKit) alone.

To understand how these applications use sensor data, we
extracted the AR functionalities used by each of these appli-
cations. Prior work on the privacy of augmented reality sys-
tems [29, 33, 34, 38, 41, 50, 51] has largely demonstrated how
apps’ access to the Camera sensor can result in over-privilege.

2We excluded 3 iOS paid apps from this survey (out of 45) as Apple App
Store doesn’t disclose the app permissions without installation.

We confirm this with our findings in Table 3 that the core func-
tional requirement of AR applications can be satisfied with
only a handful of semantic information obtained from the AR
libraries. However, existing permission-granting mechanisms
require developers to request full access to the Camera sen-
sor irrespective of their requirements. This is not particularly
surprising given that enforcement mechanisms, as discussed
in Section 2.2, only offer a coarse-grained access control.

3.2 App Case Study
To demonstrate the level of over-privilege and associated risks
AR apps pose with existing policy frameworks, we dive deeper
with a case study of a popular application — IKEA Place.

An AR app such as IKEA Place [32], primarily allows users
to visualize furniture or home decor elements in their sur-
rounding space. In order to achieve this, the app first derives
certain context from the user’s surroundings by identifying flat
surfaces, dimensions of the space, and lighting present around
the room. Once obtained, it generates the virtual content (fur-
niture) scaled to the user’s surroundings and overlays it on the
raw camera feed. IKEA Place was developed using ARKit,
so all AR functions exist as user-level APIs that are packaged
within the app.

3.2.1 Limitations in Existing Permissions Model

The IKEA Place app requests access to Camera and Loca-
tion sensors. This information is communicated using user
prompts by the permissions manager as shown in Figure 3.

3AR libraries provide quite specific API classes that developers can lever-
age for building immersive applications. All of these functions leverage
motion and visual sensors only. https://developers.google.com/ar/develop/
fundamentals

932 32nd USENIX Security Symposium USENIX Association

https://developers.google.com/ar/develop/fundamentals
https://developers.google.com/ar/develop/fundamentals

Table 3: Survey of 45 AR apps show the mismatch in developer’s requirement of sensor data and requested sensor access on the device.

AR functional-
ity

of apps
(out of 45)

Sensor access
requested

Functional description 3

Raycasts 30 Camera Perform raycasting to determine the correct placement of a 3D object in the scene.
Anchors 38 Camera Use anchors to make virtual objects appear to stay in place in an AR scene.
Plane detection 25 Camera Detects horizontal or vertical flat surfaces.
Face tracking 3 Camera Allows detection of feature points that enable the app to automatically identify different

regions of the detected face.
Object detection 8 Camera Lets you build AR apps that can detect and augment 2D images in the user’s environment,

such as posters or product packaging.
Motion tracking 8 Camera, Lo-

cation
Visual information is combined with inertial measurements from the device IMU to es-
timate the pose (position and orientation) of the camera relative to the world over time.

Device
Sensors

3.Filtered output
User level

Plane Detection

Face Detection

Object Detection

ARCore
SDK

1. Check declared
permissions

1.Check if access
permissions defined

App Manifest

Location
Microphone
Camera

2. User grants access
 on first use

Functional AR
requirement

App usage
policy violation

Unrestricted
access

Android Permissions Manager

Figure 3: A reference model of application flow for an AR application.

Users can conditionally allow or block access to each sen-
sor for individual apps; in practice, users typically grant all
permissions giving continued access to apps.

Consider the data access paths shown in Figure 3 for an
application to access sensor information. The IKEA Place app
requires only a small subset of visual data, such as information
about the plane surfaces in the user’s surroundings. Further-
more, the app may have valid usage at specific locations only
(e.g., at the user’s Home and not at the Gym). However, current
standards force developers to request full access to Camera,
even though the only requirement is just Plane Detection.
Users (and, in practice, the system) remain completely oblivi-
ous to the usage of the Camera sensor otherwise. The app may
state only “Plane Detection" in its privacy policy but could
use Face Detection or record the raw camera stream internally.
All AR functionalities request access to the Camera, but some
pose far greater privacy concerns than others.

4 Reimagining App Permissions
In order to support the development of next-generation AR
systems, we need to envision a more appropriate access con-
trol model that regulates the risk from AR applications. We
focus on third-party AR apps developed using various cross-
platform frameworks that largely depend on AR libraries to
create immersive visual content. We are specifically interested

in limiting untrusted apps’ access to visual semantics using
the Camera sensor and introducing a least-privilege access
control model for developing AR applications.

4.1 Threat Model
We assume that the AR application, either erroneously or ma-
liciously, over-collects user-specific semantic information and
send it to remote servers. Our case study in Section 3.2 and the
data flow 1⃝, shown in Figure 3, shows how an app can access
AR functions that violate its functional requirement, allowing
access to semantic information that developers do not disclose
in the privacy policies. This implies that a malicious developer
could masquerade as a benign app, such as a furniture-viewing
app, request access to the user’s camera, and surveil users’
surrounding for sensitive information such as their credit card
instead. Ad brokers may also leverage this to collect user-
targeted data. It is not uncommon for mobile applications to
include syndicated advertisements in their platforms for mon-
etization. A malicious ad broker may trick an app developer
into sharing users’ raw camera feed for targeted advertising.

Although app markets often try to detect and remove such
blatantly malicious apps, they are not particularly effective
against such covert ways of collecting privacy-sensitive data.
Even with proactive vetting mechanisms, millions of users
will be affected by the time that such apps are identified and
removed [58], and users are still required to manually uninstall
them in many cases.

4.2 Least Privilege Sensor Access
In line with prior work on the security and privacy of AR sys-
tems [29, 33, 34, 41, 50, 51, 59], we assume an application is
untrustworthy and may intentionally deviate from ideal sce-
narios to steal user semantics that it should not have access to
(i.e., visual semantics not required for its functional use cases).
Our goal is to ensure the least-privilege sensor information
exposure to an app governed solely by its functional require-
ment. Informed by our study of existing AR platforms and
applications, we focus our threat model on minimizing two
distinct types of over-privilege present in AR systems today:
Function-level over-privilege. Typically most applications use
a small subset of functions from the AR library. Unfortunately,

USENIX Association 32nd USENIX Security Symposium 933

under current frameworks, they retain unfettered access to
all APIs at the user level regardless of whether they need that
functionality in their application. This unregulated access can
lead to unintentional or malicious sensitive user data leakage.
The different scenarios we covered in our threat model in Sec-
tion 4.1 leverage this form of over-privilege and gain control
of privacy-sensitive data that apps should not have access to.
Attribute-level over-privilege. Even if applications are limited
to the functions they specifically require, the context in which
this access is provided may lead to over-privileged access to
user information. An app that is specifically purposed for the
work environment may be inappropriate for the home and vice
versa. Similarly, most applications will be inappropriate to
run in private spaces such as restrooms or changing rooms.

4.3 Design Goals
We posit that AR systems need to be developed keeping pri-
vacy risks from untrusted applications in mind. We identify
the following design goals that any platform running these
applications should satisfy.
G1 Regulating direct access to sensors: Apps should be

restricted from accessing sensitive sensors, especially the
Camera, directly. Since AR applications mostly depend
on AR libraries to provide abstract semantic information
from visual data, unfettered access to raw camera feed
should be restricted.

G2 Minimizing function-level over privilege: Emerging
systems should provide a policy framework that supports
writing least privilege policies for AR apps. Apps should
not be allowed to access APIs that violate their functional
requirement. Developers should have the ability to specify
an app requirement at the granularity of semantic usage
(e.g., "Only detects faces") and the system should enforce
it as such.

G3 Minimizing attribute-level over privilege: Users of an
AR platform should be able to review the policies and
adjust the accesses based on their use cases and context.
Therefore, the policy engine should be expressive and
understandable to the end-user.

5 Erebus: Access Control Framework for AR
To address these design goals, we present Erebus — an access
control framework designed for the emerging AR systems.
The goal of Erebus is to provide a least-privilege access control
model that developers can use to declare effective and usable
policies for AR applications running on consumer devices. In
doing so, we reimagine how software libraries could be devel-
oped to co-exist with the app manifest and enforce granular pol-
icy enforcement at the OS level instead of the user-space level.

We achieve this by first proposing a novel policy specifica-
tion language for AR systems that allows developers to express
the functional intent of an application in a more expressive
form in comparison to existing methods. Based on this policy
language, we implement Erebus, using the ARCore SDK on

the Android platform to showcase how mobile OSs can imple-
ment this policy framework with existing AR libraries and al-
low transparency of an app AR function usage with the system.

5.1 Domain-Specific Language for AR Systems
A least-privilege access control model for AR systems should
provide a way to achieve data-minimization over the sensor
data — not only regulating full access to the sensors but also
restricting the types of rich semantic information apps can de-
rive. For example, a system that satisfies G1 has to ensure that
apps only receive the semantic data they require from the raw
sensor stream. This means that the underlying system should
have transparency into the the application’s exact functional
use case and enforce policies as such. Ideally, we could design
a system that learns the exact requirement of an AR app from
their source code and enforces policies accordingly, but under-
standing intent requires static and dynamic analysis techniques
[24, 47] which is not feasible to implement on a user device.

We take inspiration on how to express functional intent by
looking at rule specification in trigger-action platforms (TAPs).
Popular TAPs, such as IFTTT [31], allows users to create sim-
ple rules that convey the intent of trigger-action functionality
and have been widely adopted by users and developers alike.
At its core, TAPs provide a very simplistic model of block-
based programming [71] that lets even non-programmers
create efficient automation policies. We leverage this princi-
ple in our language design to express functional intent of AR
applications in the form of If-This-Then-That blocks, making
policy definition more comprehensible (achieving G3), while
also enforcing a data-minimization framework (achieving G1
and G2) over sensor information.

5.1.1 Programming Model – Filter Codes for AR

IFTTT rules contain user-created code snippets, known as
filter codes, where the set of required data is determined based
on code behavior [31]. We define our policy language in a sim-
ilar way. Consider an application that requests access to the
Camera only to detect a QR code and perform some basic func-
tionality using that, such as displaying a restaurant menu or
launching an animation within an AR game. Functionally the
only necessity for this application is a QR code image; thus,
providing it with additional visual semantics makes it over-
privileged. Furthermore, certain categories of AR applications
may have valid use cases only in specific locations or certain
time slots. The Ikea AR app, for instance, while appropriate
for use at home, may raise privacy concerns if used in a Gym
locker room. Existing access control frameworks, discussed
in Section 2.2, do not support this level of granularity.

At the core of Erebus lies this expressive policy engine that
defines such granular sensor data access rules. Table 4 pro-
vides a simplistic view of our policy grammar. We define user
policy as a set of functions that access the Camera sensor data
in some way. These functions can be any ARCore APIs or raw
system calls that operate on any visual semantic information.

934 32nd USENIX Security Symposium USENIX Association

Access to the data returned by each function is governed by
a set of rules or a singular action. Each rule is further defined
as a conditional logic over a set of attributes satisfying which
follows the action (Allow / Deny) that dictates whether the
app can access the functionality. In our implementation, we
restricted the set of attributes to {FaceID, Location, and Time}
to show examples of the expressiveness of user policies based
on these environmental attributes.

The core part of any rule is defined as a relation between
an attribute and its corresponding trusted_attribute. Our de-
sign follows the existing models of access control in software
systems that define conditional logic over attributes [15, 30].
We assume that the user has already defined a trusted value
corresponding to environmental variable in the system. This
basically implies that the system is aware of semantics such as
"Home", "Evening", "Office hours", etc, and has identities for
all users of the system with named tags (e.g., Device Owner,
John Smith, etc). We consider the user (as recognized with
their FaceID) as an environmental variable for policy specifi-
cation because Android device policy controller (DPC) allows
multiple people to share a single dedicated device [12], so it
is only natural for the policy framework to allow defining poli-
cies that are specific to the user. Erebus compares the current
user of the device with known users predefined in the system
allowing access only if explicitly specified in the user policy
— "Allow access to only John Smith". Furthermore, Erebus
also acts as a data-minimizer by filtering out the specific se-
mantic information requested by the app, as shown in Listing
3. Most existing AR applications are built with highly specific
visual semantic dependency. Edutainment apps use Cameras
to scan for QR codes, AR games derive environmental context
by detecting flat surfaces, apps such as Snapchat only need
semantic information about the user’s facial features, and so
on. We consider that an expressive policy framework should
allow for such granular specification of rules so that the app
receives only the necessary visual information.

5.1.2 Policies Based on Functional Use

We defined policy as a set of rules applied to a group of func-
tions. These functions are essentially sets of APIs (either in
ARCore or the system) that access the Camera sensor. We
focus primarily on the Camera sensor since, as discussed in
Section 3, AR applications unequivocally depend on visual
semantics for most use cases. The challenge is determining
what rules should be applied to which functions. The technical
definition of system APIs and ARCore APIs may significantly
differ between various platforms; however, their functionality
remains more or less the same. AR Foundation, for example,
is a development framework on Unity that uses the ARCore
SDK. All the AR functions provided by AR Foundation are
grouped based on their functionality and classified into dis-
tinct categories called Trackables [64]. In Erebus, we leverage
this predefined classification of APIs to build our policies.

The core functional groups of APIs available for AR devel-

Table 4: Policy specification grammar in Erebus. This allows apps to express
granular policies in the form of filter codes that restrict app access to ARCore
APIs based on environmental conditions and also allow writing rules for
visual object extraction from raw camera feed.

⟨policy⟩ |= ⟨function⟩∗ | ε

⟨function⟩ |= ⟨func_name⟩{⟨rules⟩+}
| ⟨action⟩

⟨rules⟩ |= ⟨attributes⟩+;

⟨trusted_attributes⟩+;

⟨condition⟩+{⟨action⟩}
⟨condition⟩ |= if⟨attributes⟩⟨relation⟩

⟨trusted_attributes⟩
⟨attributes⟩ |= CameraFrame | Location | Time

| User

⟨trusted_attributes⟩ |= ⟨object⟩ | saved_location

| allowed_time_slots

| usernames

⟨object⟩ |= Semantic object extracted

from visual data, like QR code,

Faces, Animal, etc.

⟨func_name⟩ |= ARCore or raw sensor APIs

exposed by Erebus

⟨action⟩ |= Allow | Deny

⟨relation⟩ |= ⟨cmpOp⟩ | .Contains()

⟨cmpOp⟩ |= > | < | >= | == | !=

opment include, but are not limited to, Plane Detection, Image
Detection, Object Detection, and Location Tracking. Our sur-
vey of 45 AR apps, as discussed in Table 3, also suggests that
apps mostly use these basic groups of functions together to cre-
ate an AR experience for the user. The functional description
of each app can be used to convey what kind of AR functions
it uses "Pokemon Go detects flat surfaces and places a virtual
Pokemon on top of it" suggests Plane detection, "Google Lens
identifies text, images, objects, and landmarks in your photos"
uses Image detection and Object detection. We leverage this
understanding of ARCore functions and extend the definition
of Trackables, as shown in Table 9, to group together sets of
APIs that can extract similar semantic information.

5.2 OS-level Enforcement
With an expressive policy specification language at hand, we
now focus on the system-level enforcement of access control
policies. Erebus consists of two main modules: Permission
Manager and AR Manager. Erebus AR Manager directly in-
terfaces with AR applications and acts as the gatekeeper for AR
functionalities, while the Permission Manager interfaces the
apps and the policy design. Erebus Permissions Manager mod-
ule is based on the existing PermissionManagerService
in Android which regulates the app accesses using the An-
droid manifest file [2]. We add additional capabilities to this

USENIX Association 32nd USENIX Security Symposium 935

Developer specified
App Policy in
Android

Erebus App Policy

Figure 4: Erebus structured grammar allows developers/users to explicitly
state the policy in a close to natural language form and the policy engine
translates that into an access control rule.

function GetObjectRawPixels()
{

let curLoc = GetCurrentLocation();
let trustedLoc = GetTrustedLocation("Home");
let curTime = GetCurrentTime();
let validHour = GetValidHour("Evening");
let curFace = GetCurrentFaceId();
let trustedFaces = GetTrustedFaceId("Owner");
let curCameraFrame = GetCurrentCameraFrame();
let objName = "QR codes";
if (curLoc.within(trustedLoc) &&

curTime.within(validHour) &&
curFace.matches(trustedFaces) &&
currentCameraFrame.includes(objName))

{
Allow;

}
}

Listing 3: Enforcement rule generated from the policy input in Figure 4
restricts visual input to only QR codes from raw camera and only if certain
environmental conditions are satisfied.

existing service to integrate our policy framework which is
summarized below. To setup permissions for each app, we en-
vision that developers will specify a default app usage policy
that is enforced by Erebus at the OS level. Upon first-install,
users would be prompted to review and finetune the developer-
specified policy to fit their requirements. Figure 5 presents an
overview of Erebus and how they interface with existing An-
droid modules. In the following subsections, we discuss how
we developed the different components of Erebus to enable
this form of policy enforcement.

5.2.1 Erebus Permission Manager

The decision-making part of any policy within Erebus frame-
work is governed by the data usage policy specified by the
developers. In Table 4 we defined rules as a set of attributes,
trusted attributes, and a relation defined over them whose sat-

isfiability governs the access decision. Permission Manager
in Erebus manages these attributes and their relations.

Similar to the Settings interface in Android, Erebus proposes
an interface for the user to specify these ’trusted_attribute’
values. Users can assign values for semantic tags such as
"Home" and "Work" locations, "Office Hours" time slot, or
associate different users of the system using their FaceIDs
such as "John Smith", "Son", "Daughter", "Dad", and "Mom"
for creating user-specific policies. We note that these sets of
’trusted_attributes’ are variables that need only be set once
and update rarely, as opposed to the set of ’attributes’ whose
values are fetched at run time for verification. Once the system
has the information for all these tags, it can enforce the access
control using the relation defined over them in the app policy.
The easy interpretability of using an IFTTT model and a well-
formed grammar for the policy definition language would also
allow users to review the app policies and update them as nec-
essary. Listing 3 and Figure 4 demonstrate how an effective
policy of sensor access can be derived from a close-to-natural
language policy text.

Different applications will require different sets of policies
which would largely depend on their functional use cases. We
enhanced the default PermissionsManager model of Android
to allow persistent storage of Erebus policies. Developers may
specify a certain policy for their app and users may review
it and even update the IFTTT rule for their use cases. Erebus
retains these policies on a per-app basis. We achieve this by us-
ing a JSON-formatted data store that stores the user-specified
trusted_attributes making it accessible system-wide for all
apps. This data store also stores the policies defined per app,
similar to how Android manages app permissions. We assume
the same system-level security to be applied to this data store
as any other component of a trusted base OS.

5.2.2 Erebus AR Manager

Once the policies have been defined for each application, Ere-
bus AR Manager is responsible for enforcing them and regulat-
ing access to sensor APIs. This module interfaces directly with
AR applications and acts as the single vantage point for apps to
use any AR functionality. It consists of two internal layers: an
AR Function Provisioning layer, and an Access Control layer.
AR Function Provisioning. With Erebus, we bundle up all AR-
Core APIs behind an AR Function Provider to redirect all AR
functionality through a single vantage point. We posit that AR
SDK libraries, once integrated within the OS, should regulate
all API accesses through a single entry point either as a module
or as a class object. This allows for effective access monitor-
ing and also prevents apps from using reflection to bypass any
runtime checks. Erebus enforces access rules on all API calls
made through this module, making this the primary gatekeeper
for every application AR use case. We classify all ARCore
functions into two categories: Abstract type and Raw type,
based on what level of sensor information they return to the
application. Erebus needs to apply the access control rules on

936 32nd USENIX Security Symposium USENIX Association

Erebus Function
Provisioning

3. Validate
Permissions

4. Access
sensor data

Erebus Access Control

Plane Detection

Face Detection

Object Detection

ARCore
SDK

Visual Information
Protection

1. Read App Policy and
Sensor Permissions

Erebus additions

Existing Android
features

AR SDK library

App Manifest

Location
Microphone
Camera

App Usage Policy

User level

Allow Face detection
if app is used at Home.

Permission
Manager

App Policies

OS level abstraction

5. Filtered
output

2. Sensor data
request

Device
Sensors

Erebus AR Manager

Figure 5: An overview of Erebus system design that shows all the components introduced alongside existing Android policy framework. Developers only need
to specify an additional App Usage Policy alongside the App Manifest to adopt Erebus framework.

these functions to minimize information leakage to the caller.
Abstract Type: The majority of ARCore functions fall

under this type — Functions that only return a fraction of infor-
mation about an object in the physical world. These APIs inter-
nally process the raw information into rich semantics through
abstraction, thus, facilitating developers to access only the
desired AR functionality. One example of these functions is
ARRaycast. It can return an estimated position of a flat horizon-
tal surface in the physical world. This function comes in handy
when a developer wishes to place a virtual object on top of a
physical flat surface such as a floor or a desk. The caller doesn’t
require any knowledge of the techniques used behind the func-
tion (Localization, feature extraction, feature matching, surface
detection, etc), so this API entirely abstracts the algorithmic
computations and returns only limited high-level information
requested. Therefore, for these kinds of ARCore functions, we
directly forward the result retrieved once it passes the permis-
sion checks implemented by the Erebus Permission Manager.

Raw Type: Another group of functions accesses device
sensors directly and exposes raw sensor data to the caller. An
example of this type is TryAcquireLatestCpuImage, which
returns an instance that contains the raw camera sensor data
from the device.

Letting an app gain full access to the user’s camera feed, un-
less required, poses serious privacy concerns. Erebus policies
alone cannot prevent this privacy leakage with a simple ‘Allow’
or ‘Deny’ gatekeeping. We also cannot restrict all AR apps
from using raw camera data and limit them to only ARCore
APIs (Abstract type functions). Certain applications will re-
quest access to the raw camera feed if they require an object de-
tection mechanism that is not provided by the ARCore library.

To resolve this challenge, we propose additional protection
means via the Visual Information Protection module. Its use is
dedicated to Raw type functions, and it helps Erebus limit the
degree of freedom the AR applications have with the Raw type
function (TryAcquireLatestCpuImage) while providing the

necessary information the applications requests.
Visual Information Protection. The Visual Information
Protection module is built on top of our design goal (G2) in
Section 4.3. It provides Erebus the ability to eliminate the
exposure of user’s visual information by obscuring any unau-
thorized data at the system level while maintaining the core
functionalities of Raw type functions.

The module achieves this goal in five steps: (i) Acquire raw
camera frame from the hardware sensor, (ii) Detect potential
security/privacy-sensitive objects, (iii) Perform instance-level
segmentation of objects, (iv) Object class association with
the counterparts in Erebus policy attributes, and finally (v)
Instance-level visual information obfuscation. In Step (i), the
module acquires the raw camera data via ARCore Camera
API, following which, in Steps (ii) and (iii), the camera feed is
passed onto our internal object detection model and the result
of the detection is segmented. In Step (iv), once the inference
from the model is complete, the Visual Information Protection
module parses the Erebus policy of the associated AR appli-
cation to obtain the list of user-authorized object classes and
couple them with the classes of the detected objects. Finally,
in Step (v), the module eliminates all the pixels of the cam-
era feed except the instances with the same label as the target
objects. For example, if the user has granted an AR applica-
tion access to “QR Codes", similar to Listing 3, the module
internally seeks to detect a QR code from the raw camera feed.
Once the detection model identifies a QR code, it whitelists the
segment of the detected QR code and passes only the relevant
portion of the raw camera data to the app.

f (x)=
f1(x) f2(x)··· fn(x)∫

∞

−∞
f1(y) f2(y)··· fn(y)dy

(1)

The Visual Information Protection module is the core layer
that determines whether a piece of visual information must be
protected or be exposed, to the application. An invalid expo-
sure of visual information may lead to serious privacy leakage.

USENIX Association 32nd USENIX Security Symposium 937

Table 5: Average latency comparison of camera sensor-based basic API and
location sensor-based API in Unprotected AR application and Erebus-applied
AR application. The numbers are described in milliseconds.

API Type Erebus (ms) Unprotected (ms)
Camera sensor-based API 0.35±0.12 0.18±0.04
Location sensor-based API 0.22±0.04 <0.01

For increased confidence in the decision-making process, we
apply a concept called Conflation [27]. The described mathe-
matical equation behind the algorithm is shown in Equation 1.
The method is used to consolidate two continuous probability
distributions. For discrete input distributions like in our case,
the definition of conflation is the normalized product of the
probability mass functions. For instance, if the two input prob-
abilities are 0.7 and 0.6, respectively, the conflation becomes
0.78. We heighten the confidence of the module’s decision-
making by “conflating” the confidence score of an object’s
each class across multiple frames. This is performed internally
within Step (iv) above. It must be noted that, in our scenario,
the risk of false positives is more critical to the framework
than marginally reduced true positives.

6 Evaluation
We implement Erebus on Google’s ARCore SDK and evaluate
it using a series of micro and macro benchmarks. Details on
our implementation can be found in Appendix A. We first
evaluate how adapting Erebus affects the performance of an
application in the form of additional incurred latency, along
with the effectiveness of applying conflation for object seg-
mentation. We then present our evaluation on 5 prototype
applications, representing the broad categories of the AR
app market today, developed using Erebus framework. These
applications represent a wide breadth of existing AR appli-
cations that we analyzed in our survey. Appendix B provides
performance analysis on our prototype applications and their
correlation with existing applications in the market.

6.1 Microbenchmarks
We categorize our benchmarks depending on the type of visual
data access each app uses. AR apps that access only high-level
visual semantics, directly available through ARCore APIs, are
evaluated first to demonstrate latency incurred with Erebus.
We then evaluate AR apps that require access to raw Camera
APIs to detect specific classes of objects. Since this group of
apps utilizes the Visual Information Protection module, we
evaluate each aspect of our design exhaustively to demonstrate
its effectiveness.

6.1.1 Latency Analysis on Basic AR Functions

The basic AR functions represent Abstract type functions
which require access to higher-level AR functions. Example of
these functions includes AR Raycast,AR GetPlane, and AR Im-
ageTrack (Markers) functions which fall under the categories
of Raycasts, Plane detection, and Image detection AR function-

Table 6: Latency breakdown of the component in a single frame and the con-
tribution to the latency. The top items represent the components of Erebus and
the bottom items represent the components of the logic of the AR application.

Component Type Component Latency (ms)
Object Detection 28.91
Non-Max Suppression 0.02

Erebus Object Tracking 0.25
Conflation 0.01
Whitelisting 0.08

Application Async GPU Readback
(Constant)

181.72

Application Logic 33.47

Overall Latency 244.46

alities in Table 3. We analyze the latency each AR function in-
duces within our prototype application under Erebus, and com-
pare it with the result of the environment without Erebus repre-
senting existing systems. We denote the latter environment as
“Unprotected.” We present our latency measurements in Table
5 which shows that Erebus incurs negligible overhead on the
performance of the AR application for basic AR functions.

6.1.2 Latency Analysis on AR Functions with Raw Cam-
era Access

Raw type functions intend to gain direct access to the raw cam-
era sensor data. An example of this function is AR GetRaw-
Pixels (or TryAcquireLatestCpuImage) that falls under the
category of Object detection AR functionality in Table 3. This
function involves several computationally expensive oper-
ations. We break down the function into granular-level and
analyze the latency of the components that constitute the func-
tion and investigate the performance of both the components
related to Erebus and the components for the application func-
tionalities. The latter, we denote them as “Application logic.”

Our result in Table 6 indicates that Erebus can process the
function call of a Raw type API in 29.27 ms (∼34.16 FPS).
Also, we observed that our prototype application, while main-
taining a constant delay time (181.72±6.39 ms) introduced
from the Async GPU Readback operation, is able to run with
an acceptable overhead of 62.74 ms (∼15.94 FPS). It must be
noted that the total latency of the application includes the over-
head of ‘both’ the application logic and the Erebus component.
Moreover, the Async GPU Readback is a non-blocking op-
eration that is executed in parallel in the background, allowing
the application to maintain the latency it produces, constantly.
Refer to Appendix B.2 to view our further analysis on improv-
ing the performance of the Unprotected components in the
application.

6.1.3 Analysis of False Positive Rate with Conflation

A critical requirement for any access control system is to
ensure the correct enforcement of its rules. However, object
detection and classification are imperfect processes that may
cause unwanted false positives in our system. The use of con-

938 32nd USENIX Security Symposium USENIX Association

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

itiv
e

Ra
te

Buffer size=1 (Baseline)
Buffer size=2
Buffer size=3
Buffer size=4

Threshold=0.50
Threshold=0.85

Buffer size=1 (Baseline)
Buffer size=2
Buffer size=3
Buffer size=4

Figure 6: ROC curve obtained by varying confidence threshold of Erebus. The
baseline curve refers to the FPR and TPR of Erebus when a single frame is used
to determine the confidence score that informs the information obfuscation. As
the number of frames used to calculate the confidence score increase, the false
positive rate significantly decreases for lower confidence thresholds. This pro-
cess allows Erebus to maintain a low FPR with minimum impact on its TPR.

flation (introduced in Section 5.2.2) enables us to make such
decisions based on the output of multiple frames instead of
one, limiting the false positive rate with minimum effect on the
true positive rate. In this section, we evaluate the effectiveness
of false positive removal of conflation. We denote the scenario
where conflation was not applied, as “Baseline”. The baseline
simply uses the confidence score of an object in a single frame,
to determine the rejection or the acceptance of information.
We vary the number of frames used for conflation and compare
the false positives with the Baseline on a public video object
detection dataset [74]. As shown in Figure 6, the difference in
false positive between the Baseline and the conflation applied
by Erebus, is at least 14%, at threshold 0.5 (yellow markers).
Moreover, we observed that the rate of false positives con-
verges as the threshold increases. The difference in false pos-
itive rate between the Baseline and Erebus with conflation, at
threshold 0.85, is only 1% (purple markers). This indicates that
Erebus can effectively reduce the number of false positives for
lower confidence thresholds using our conflation algorithm.

6.1.4 Analysis on Optimal Parameters for Conflation

We evaluated the benefits the conflation can provide to reduce
the false positive rate in multi-frame object detection. Now,
we present our findings on the effort to find a set of conflation
parameters that are optimal to keep the false positives low,
while maintaining the true positive rate to a reasonable level.

We investigate the ‘elbow’ of the ROC curve to pinpoint the
exact threshold value where the difference in a false positive
rate of the Baseline and its counterparts, starts to drastically
close down. The reduced difference means that the false pos-
itive rates are retained almost persistently to a level while the

Table 7: The rate of change in TPR and FPR at each threshold using the slope.
The data is equivalent to Figure 6. The difference between the baseline and Ere-
bus is maximized at threshold=0.50, and it is minimized as it increases toward
threshold=0.95. Smaller values represent bigger differences. B1,B2,B3,and
B4, respectively represent, baseline, conflation buffer size=2, 3, and 4.

Confidence Threshold B1,B2 B1,B3 B1,B4 B2,B4
0.50 0.83 1.04 1.23 2.75
0.60 1.19 1.48 1.75 3.54
0.70 1.82 2.23 2.67 5.13
0.80 3.42 4.43 5.34 10.53
0.85 8.24 9.00 10.53 14.08
0.90 32.39 30.26 36.66 41.68

true positive rate is dropping. We use the slope of a line to
derive this. We connect any two points within the same thresh-
old in the ROC Curve of Figure 6 and calculate the slope of
the line. A line that has a closer angle to a vertical line (90
degrees) means that the two points have little difference in the
false positive rate. Whereas, if an angle of a line is closer to a
horizontal line (0 degrees), it means that the difference is large.
Table 7 shows the slope of the lines which are comprised of
the data points from Figure 6.

We observe that the gap of false positive rate between the
Baseline and the varying buffer size of conflation reduces
drastically at threshold 0.85. This tendency varied per class
category, but the general observed tendency remained con-
sistent. In other words, setting the threshold parameter to, no
more than 0.85 can provide the most reasonable protection
(High protection with reasonable true positive rates). For more
explanation of the concept of conflation or to view our further
analysis on conflation, refer to Appendix B.3.

6.2 Porting AR Apps to use Erebus
We now demonstrate how developers can leverage Erebus to
build privacy-aware AR applications for consumers. In Figure
7 we apply Erebus’s policy to a furniture viewing app, dis-
cussed in Section 3.2. The application uses AR Core libraries
to detect flat surfaces, create virtual content and overlay it on
the camera’s live view. Erebus enforces restrictions on what
high-level information an app can access, with no impact on
the projection or the user experience. Furthermore, the expres-
siveness of Erebus’s policy grammar allows adaptation to a
wide variety of AR use cases. We ported 5 existing types of
AR applications to our framework, summarized in Table 8,
to demonstrate how Erebus enhances user privacy with simple
app usage policy descriptions.

Once a policy is defined for the application, Erebus enforces
access control on resources in two steps. First, it performs
a rule validation to ensure all the parameters declared in the
policy are defined. This implies that for every attribute used
in the rule, the system should be aware of the trusted_attribute
values. Erebus performs this validation to prevent malicious
developers from bypassing access control by defining mal-
formed or invalid rules; for example, "Allow Face detection if
True" becomes a malformed rule because it disobeys defining

USENIX Association 32nd USENIX Security Symposium 939

Plane Detection

Face Detection

Object Detection

ARCore
SDK

John

Home

Evening

App Usage Policy

Erebus

Raw Camera feed Application output

Figure 7: Erebus restricts the visual semantics that an app can access from
live view based on the specified app policy. The virtual object created by the
app is simply overlaid on the system’s camera live view; with no impact on
user’s experience compared to existing implementations.

a strict relationship on user-controlled attributes. Once Ere-
bus ensures that a valid rule has been provided, it checks for
the satisfiability of the rule. This step is similar to any IFTTT
programming model, where the action to be performed is
determined solely by operating on the conditions.
Remote Maintenance AR with Multi-Object Segmentation.
We highlight the usage of Erebus on more advanced usage of
AR systems – Remote Maintenance type applications. This
category of apps provides remote user assistance by sharing
the user’s live view with a remote technician allowing them
to place virtual markers to help with troubleshooting. Table 8
shows the privacy risks that such an application can pose for a
consumer, considering that functional use cases should be lim-
ited to sharing only the object of interest with a remote party.

0.5 0.7 0.9
Confidence threshold

0

10

20

30

40

50

60

70

80

90

100

Av
er

ag
e

lat
en

cy
 (m

s)

Buffer size=2
Buffer size=3
Buffer size=4

Figure 8: For multi-object segmentation use cases of Remote Maintenance
app, Erebus provides a near real-time performance even with the added com-
putational load from networking operations. The performance of the app
ranged from 17.48 FPS to 21.39 FPS, as we varied the conflation parameters.

Erebus addresses this privacy concern with the Visual Infor-
mation Protection module that allows for object segmentation
and obfuscation to restrict visual data access by the app, as
discussed in 5.2.2. Such an application can have requirements

to be able to detect several target objects from a single raw
camera frame, implying that the computational load and the
complexity of policy enforcement increases with the number
of objects to segment.

We developed an end-to-end prototype of a Remote Main-
tenance application that detects 8 distinct classes of objects
using on-device object segmentation, and shares the visual arti-
facts with a remote entity over the network. Figure 8 shows the
latency observed for accessing Camera APIs through Erebus,
by varying the conflation parameters for higher segmentation
accuracy. The latency of raw camera access by the application
largely improves (by almost 22%) as we increase the conflation
buffer size and confidence threshold for segmentation. This
observation is due to the fact that the conflation algorithm is di-
rectly influenced by the amount of input data. As the threshold
accuracy for object detection increases less number of seg-
mented objects are passed into the module for post-processing
with conflation, improving application performance while
maintaining high detection accuracy. To view our further anal-
ysis on the advanced usage of Erebus, refer to Appendix B.4.

6.3 Discussion
False Positives. Restricting an app’s access to visual input
through object segmentation and obfuscation raises concerns
about information leakage through False Positives. While Ere-
bus significantly reduces the information leakage caused by
AR applications and improves on False Positive rate using con-
flation, its performance is highly dependent on the accuracy
of the underlying object detector and classifier. As the object
detection and classification models improve, the performance
of Erebus will similarly improve over time.
User Interaction. In our design of the user interface, we chose
an IFTTT-style policy specification language because of its
ease of use and its adoption across domains such as web-
service automation and smart homes. However, similar to any
AC system, it is inherently challenging to verify whether user-
defined policies match their goals and expectations [20, 56].
In this paper, we focus on the system-design aspects of build-
ing such an enforcement mechanism and leave the usability
challenges to future work.
Adapting Erebus to Other Sensors. Erebus’s policy language
design is motivated by how mobile and wearable platforms
(iOS, Android, Apple HealthKit, Google WearOS) let apps
access sensor data. These platforms provide SDKs with high-
level APIs (Figure 2) that developers can leverage to fetch
semantic information from sensors. Erebus can be similarly
applied to any such underlying SDK with minimum modifica-
tions to support the changes. In this paper, we primarily focus
on the Camera sensor because AR apps (as shown in Table
2) primarily rely on visual semantics, through ARCore SDK,
and use other sensors to build environmental context. How-
ever, Erebus’s language can similarly provide fine-grained
access control for other sensors (e.g., location accuracy in
GPS, keyword detection in Microphone).

940 32nd USENIX Security Symposium USENIX Association

Table 8: Summary of ported AR applications to Erebus framework. Developers only need to provide the Erebus policy for their app that explicitly declares the
usage criteria for their app, which can be easily reviewed and updated by the user.

Application
Name

Description Privacy Risk Erebus Policy

Navigation
AR

Immersive navigation app similar to
Google Maps AR, that places virtual di-
rection markers on a user’s screen.

Perform surveillance using face detection
or object detection APIs.

"Allow app to detect planes and
access location."

Monsters AR Edutainment app that detects a QR code
image and places virtual objects on the
screen.

These apps have highly specific use cases
and do not need sensor access at all times
or for all types of object detection.

"Allow this app to detect ob-
jects only for QR codes and
only during the Evening."

Furniture AR A mock-up of the IKEA AR app uses
Plane detection functions to place virtual
objects in the user’s room.

App can scan for sensitive objects in the
user’s surroundings, like scanning for credit
cards, face IDs of family members, etc.

"Allow Plane detection only if
the user is at Home."

Face Filter A mock-up of the Snapchat AR app that
detects users’ facial features and applies
virtual masks or filters on their faces.

Unrestricted access to this highly sensitive
data raises serious privacy concerns in sensi-
tive locations, like the Gym or locker room.

"Allow this app to detect faces
only when at Home and during
permitted hours on weekends."

Remote
Maintenance

Mock-up of TeamViewer Assist AR that
allows technicians to assist with trou-
bleshooting by sharing a live view of the
user’s surrounding over the network.

App can record sensitive objects from the
live view, like Sticky Notes or personal doc-
uments, in addition to the required object
needed for troubleshooting.

"Only allow Cellphones to be
detected by the Camera."

7 Related Work

Our work touches on two veins of prior work: achieving a
least privilege access control model for AR applications and
effectively communicating sensor usage by AR applications
(and their associated risks) to users.

Several works have touched on least-privilege access con-
trol, mostly from a visual-semantic obfuscation viewpoint.
One of the early works in this area proposed a Recognizer
abstraction [33], which limits app access to raw camera stream
by filtering only the visual object that they are authorized to
access. Similar approaches [1, 35, 53, 57] also focus on least
privilege access to visual data by identifying and removing ob-
jects of interest from the app purview of the real world. Recog-
nizer, specifically, proposes an OS abstraction that processes
the sensor stream to "recognize" events and passes only the
high-level semantic information to the apps instead of the raw
stream. Darkly [34] takes a different approach and allows apps
to manipulate transformed images instead of raw data. Other
works have proposed a policy-driven approach to limiting app
access. PrivateEye and WaveOff [49] use privacy markers to
distinguish between public and private regions that the camera
can recognize to prohibit applications from accessing raw
camera feed in sensitive environments. Privacy passports [51]
take this approach even further and allow real-world objects to
declare their privacy policies using certain markers. All these
works effectively filter out objects using image recognition
techniques on raw camera feed; however, recent SDKs have
already adopted image extraction capabilities and provide
only high-level information to apps. Erebus is designed as a
general-purpose framework that adapts to current implemen-
tations. PrivacyManager [39] proposes similar design goals
as Erebus, but relies on domain administrators to provide app
policies for the user base. We consider this in our threat model

(Section 4.1) where proactive vetting mechanisms can often
be ineffective against malicious developers.

Another line of work has explored the detection of resource
accesses made by applications and notifying users of the risks
it may pose to their privacy. Sensor access gadgets [28] pro-
posed the idea of providing an explicit indication to users when
an application is accessing sensor data. ipShield [9] provides a
comprehensive list of inferences that can be drawn from a sen-
sor data access. Erebus uses similar primitives by leveraging
an understanding of AR functions and enforcing functional
policies based on what inferences they make out of sensor data.
LensCap [29] is a more recent work that uses a split-process
development framework to achieve visual privacy specifically
with cloud-based apps that share information with remote
servers. Erebus is also centered on similar goals but focuses
on ensuring privacy protection natively on the device itself.

8 Conclusion

The all-or-nothing access-control model in existing AR sys-
tems is insufficient to address the rich interactions of AR appli-
cations with sensory data. In this work, we presented Erebus,
an access control framework designed for AR platforms that
allow precise control over the sensor data shared with appli-
cations. To achieve this, Erebus uses a novel domain-specific
language that allows intuitive fine-grained rules to be set on
sensor data through developer-specified app usage policies,
further allowing users the flexibility to customize permissions.
We implement Erebus on Google’s ARCore SDK and port five
existing AR apps, representing the diversity of AR applica-
tions, to represent Erebus capability to secure various classes
of apps. Performance results on these ported applications show
that Erebus allows the AR applications to adhere to the prin-
ciple of least privilege while incurring minimum overhead.

USENIX Association 32nd USENIX Security Symposium 941

Acknowledgement
We thank Ping Hu, Saeed Boor Boor, anonymous review-
ers, and our shepherd for their valuable feedback. This work
was supported in part by NSF under grants IIS2107224,
OAC1919752, and ICER1940302, and by IBM-SUNY and
Meta awards. This work relates to the Department of Navy
award N00014-20-1-2858 issued by the Office of Naval Re-
search. The United States Government has a royalty-free
license throughout the world in all copyrightable material
contained herein. Any opinions, findings, or conclusions ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors.

References
[1] Paarijaat Aditya, Rijurekha Sen, Peter Druschel, Seong Joon Oh, Ro-

drigo Benenson, Mario Fritz, Bernt Schiele, Bobby Bhattacharjee, and
Tong Tong Wu. I-pic: A platform for privacy-compliant image capture.
In Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications and Services, 2016.

[2] Android. App Manifest Overview. https://developer.android.com/
guide/topics/manifest/manifest-intro#groovy, 2022. [Online; accessed
Mar 06,2022].

[3] Android Developers. Tristate Location Permissions. https:
//source.android.com/devices/tech/config/tristate-perms#tristate-
screen, 2022. [Online; accessed Mar 06,2022].

[4] Patently Apple. Apple invents an hmd to work with a camera ac-
cessory that will make the public aware that the user is recording
video. https://www.patentlyapple.com/patently-apple/2021/06/apple-
invents-an-hmd-to-work-with-a-camera-accessory-that-will-make-
the-public-aware-that-the-user-is-recording-video-more.html, 2022.
[Online; accessed September 26, 2022].

[5] Patently Apple. Apple patents a flexible light guide system that could
be integrated into flexible materials like a fabric apple watch band or
vr glove. https://www.patentlyapple.com/2022/09/apple-patents-a-
flexible-light-guide-system-that-could-be-integrated-into-flexible-
materials-like-a-fabric-apple-watch-band-o.html, 2022. [Online; ac-
cessed September 26, 2022].

[6] Patently Apple. A new google patent reveals future ar glasses will
work in sync with accessory devices to capture in-air gestures to control
uis+. https://www.patentlyapple.com/2022/05/a-new-google-patent-
reveals-future-ar-glasses-will-work-in-sync-with-accessory-devices-
to-capture-in.html, 2022. [Online; accessed September 26, 2022].

[7] AppleInsider. Apple glass. https://appleinsider.com/inside/Apple-glass,
2022. [Online; accessed September 26, 2022].

[8] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft.
Simple online and realtime tracking. In IEEE International Conference
on Image Processing (ICIP), 2016.

[9] Supriyo Chakraborty, Chenguang Shen, Kasturi Rangan Raghavan,
Yasser Shoukry, Matt Millar, and Mani Srivastava. ipshield: A frame-
work for enforcing context-aware privacy. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2014.

[10] Loris D’Antoni, Alan Dunn, Suman Jana, Tadayoshi Kohno, Benjamin
Livshits, David Molnar, Alexander Moshchuk, Eyal Ofek, Franziska
Roesner, Scott Saponas, et al. Operating system support for augmented
reality applications. In 14th Workshop on Hot Topics in Operating
Systems (HotOS XIV), 2013.

[11] Android developers. Create and monitor geofences. https:
//developer.android.com/training/location/geofencing, 2022. [Online;
accessed August 17, 2022].

[12] Android Developers. Manage multiple users. https://
developer.android.com/work/dpc/dedicated-devices/multiple-users,
2022. [Online; accessed August 14, 2022].

[13] Apple Developers. Healthkit. https://developer.apple.com/
documentation/healthkit, 2022. [Online; accessed October 3, 2022].

[14] Microsoft Developers. Camera policy csp. https://learn.microsoft.com/
en-us/windows/client-management/mdm/policy-csp-camera, 2023.
[Online; accessed January 30, 2023].

[15] Microsoft Azure Docs. What is conditional access? https:
//docs.microsoft.com/en-us/azure/active-directory/conditional-
access/overview, 2022. [Online; accessed August 14, 2022].

[16] Engadget. Magic leap 2 is the best ar headset yet, but will an enterprise
focus save the company? https://www.engadget.com/magic-leap-2-ar-
headset-tech-dive-143046676.html, 2022. [Online; accessed Novem-
ber 29, 2022].

[17] Enoxsoftware. opencvforunity. https://enoxsoftware.com/
opencvforunity/, 2022. [Online; accessed August 17, 2022].

[18] Epson. Moverio bt-40 smart glasses with usb type-c connectivity.
https://epson.com/For-Work/Wearables/Smart-Glasses/Moverio-BT-
40-Smart-Glasses-with-USB-Type-C-Connectivity-/p/V11H969020,
2023. [Online; accessed January 30, 2023].

[19] Everysight. Raptor ar headset. https://support.everysight.com/hc/en-us,
2023. [Online; accessed January 30, 2023].

[20] Adrienne Porter Felt, Kate Greenwood, and David Wagner. The effec-
tiveness of application permissions. In 2nd USENIX Conference on Web
Application Development (WebApps 11), 2011.

[21] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox:
Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430, 2021.

[22] ThirdEye Gen. Thirdeye gen developer portal. https:
//thirdeyegen.gitbook.io/developer-portal/, 2022. [Online; accessed
January 30, 2023].

[23] Google. Glass enterprise edition 2. https://developers.google.com/
glass-enterprise/guides/get-started, 2023. [Online; accessed January
30, 2023].

[24] Sigmund Albert Gorski, Benjamin Andow, Adwait Nadkarni, Sunil Man-
andhar, William Enck, Eric Bodden, and Alexandre Bartel. Acminer:
Extraction and analysis of authorization checks in android’s middleware.
In Proceedings of the Ninth ACM Conference on Data and Application
Security and Privacy, 2019.

[25] Tom’s Guide. Apple glasses: Everything we’ve heard so far. https:
//www.tomsguide.com/news/apple-glasses. (Accessed on 08/20/2022).

[26] Yuda Dian Harja and Riyanarto Sarno. Determine the best option for
nearest medical services using google maps api, haversine and topsis
algorithm. In International Conference on Information and Commu-
nications Technology (ICOIACT). IEEE, 2018.

[27] Theodore P Hill and Jack Miller. How to combine independent data sets
for the same quantity. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 2011.

[28] Jon Howell and Stuart Schechter. What you see is what they get: Protect-
ing users from unwanted use of microphones, camera, and other sensors.
In Proceedings of Web 2.0 Security and Privacy Workshop, 2010.

[29] Jinhan Hu, Andrei Iosifescu, and Robert LiKamWa. Lenscap: split-
process framework for fine-grained visual privacy control for aug-
mented reality apps. In Proceedings of the 19th Annual International
Conference on Mobile Systems, Applications and Services, 2021.

[30] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J
Lang, Margaret M Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert
Miller, Karen Scarfone, et al. Guide to attribute based access control
(ABAC) definition and considerations (draft). NIST Special Publication,
800(162), 2013.

942 32nd USENIX Security Symposium USENIX Association

https://developer.android.com/guide/topics/manifest/manifest-intro#groovy
https://developer.android.com/guide/topics/manifest/manifest-intro#groovy
https://source.android.com/devices/tech/config/tristate-perms#tristate-screen
https://source.android.com/devices/tech/config/tristate-perms#tristate-screen
https://source.android.com/devices/tech/config/tristate-perms#tristate-screen
https://www.patentlyapple.com/patently-apple/2021/06/apple-invents-an-hmd-to-work-with-a-camera-accessory-that-will-make-the-public-aware-that-the-user-is-recording-video-more.html
https://www.patentlyapple.com/patently-apple/2021/06/apple-invents-an-hmd-to-work-with-a-camera-accessory-that-will-make-the-public-aware-that-the-user-is-recording-video-more.html
https://www.patentlyapple.com/patently-apple/2021/06/apple-invents-an-hmd-to-work-with-a-camera-accessory-that-will-make-the-public-aware-that-the-user-is-recording-video-more.html
https://www.patentlyapple.com/2022/09/apple-patents-a-flexible-light-guide-system-that-could-be-integrated-into-flexible-materials-like-a-fabric-apple-watch-band-o.html
https://www.patentlyapple.com/2022/09/apple-patents-a-flexible-light-guide-system-that-could-be-integrated-into-flexible-materials-like-a-fabric-apple-watch-band-o.html
https://www.patentlyapple.com/2022/09/apple-patents-a-flexible-light-guide-system-that-could-be-integrated-into-flexible-materials-like-a-fabric-apple-watch-band-o.html
https://www.patentlyapple.com/2022/05/a-new-google-patent-reveals-future-ar-glasses-will-work-in-sync-with-accessory-devices-to-capture-in.html
https://www.patentlyapple.com/2022/05/a-new-google-patent-reveals-future-ar-glasses-will-work-in-sync-with-accessory-devices-to-capture-in.html
https://www.patentlyapple.com/2022/05/a-new-google-patent-reveals-future-ar-glasses-will-work-in-sync-with-accessory-devices-to-capture-in.html
https://appleinsider.com/inside/Apple-glass
https://developer.android.com/training/location/geofencing
https://developer.android.com/training/location/geofencing
https://developer.android.com/work/dpc/dedicated-devices/multiple-users
https://developer.android.com/work/dpc/dedicated-devices/multiple-users
https://developer.apple.com/documentation/healthkit
https://developer.apple.com/documentation/healthkit
https://learn.microsoft.com/en-us/windows/client-management/mdm/policy-csp-camera
https://learn.microsoft.com/en-us/windows/client-management/mdm/policy-csp-camera
https://docs.microsoft.com/en-us/azure/active-directory/conditional-access/overview
https://docs.microsoft.com/en-us/azure/active-directory/conditional-access/overview
https://docs.microsoft.com/en-us/azure/active-directory/conditional-access/overview
https://www.engadget.com/magic-leap-2-ar-headset-tech-dive-143046676.html
https://www.engadget.com/magic-leap-2-ar-headset-tech-dive-143046676.html
https://enoxsoftware.com/opencvforunity/
https://enoxsoftware.com/opencvforunity/
https://epson.com/For-Work/Wearables/Smart-Glasses/Moverio-BT-40-Smart-Glasses-with-USB-Type-C-Connectivity-/p/V11H969020
https://epson.com/For-Work/Wearables/Smart-Glasses/Moverio-BT-40-Smart-Glasses-with-USB-Type-C-Connectivity-/p/V11H969020
https://support.everysight.com/hc/en-us
https://thirdeyegen.gitbook.io/developer-portal/
https://thirdeyegen.gitbook.io/developer-portal/
https://developers.google.com/glass-enterprise/guides/get-started
https://developers.google.com/glass-enterprise/guides/get-started
https://www.tomsguide.com/news/apple-glasses
https://www.tomsguide.com/news/apple-glasses

[31] IFTTT. Building with filter code. https://help.ifttt.com/hc/en-us/
articles/360052451954-Building-with-filter-code, 2022. [Online; ac-
cessed August 14, 2022].

[32] Ikea. Ikea Place app launches on Android. https://about.ikea.com/
en/newsroom/2018/03/19/ikea-place-app-launches-on-android-
allowing-millions-of-people-to-reimagine-home-furnishings-using-
ar, 2018. [Online; accessed Mar 06,2022].

[33] Suman Jana, David Molnar, Alexander Moshchuk, Alan Dunn, Ben-
jamin Livshits, Helen J Wang, and Eyal Ofek. Enabling {Fine-Grained}
permissions for augmented reality applications with recognizers. In
22nd USENIX Security Symposium (USENIX Security), 2013.

[34] Suman Jana, Arvind Narayanan, and Vitaly Shmatikov. A scanner
darkly: Protecting user privacy from perceptual applications. In IEEE
Symposium on Security and Privacy, 2013.

[35] Marion Koelle, Swamy Ananthanarayan, Simon Czupalla, Wilko
Heuten, and Susanne Boll. Your smart glasses’ camera bothers me! ex-
ploring opt-in and opt-out gestures for privacy mediation. In Proceedings
of the 10th Nordic Conference on Human-Computer Interaction, 2018.

[36] Kopin. Introducing solos, high performance eyewear for cy-
clists. https://www.kopin.com/introducing-solos-high-performance-
eyewear-for-cyclists/, 2015. [Online; accessed January 30, 2023].

[37] Mira Labs. Mira prism pro. https://www.mirareality.com/, 2022. [On-
line; accessed October 3, 2022].

[38] Sarah M Lehman, Abrar S Alrumayh, Kunal Kolhe, Haibin Ling, and
Chiu C Tan. Hidden in plain sight: Exploring privacy risks of mobile
augmented reality applications. ACM Transactions on Privacy and
Security, 2022.

[39] Sarah M Lehman and Chiu C Tan. Privacymanager: An access control
framework for mobile augmented reality applications. In IEEE Con-
ference on Communications and Network Security (CNS). IEEE, 2017.

[40] Lenovo. Thinkreality a3 smart glasses. https://www.lenovo.com/us/
en/thinkrealitya3/, 2021. [Online; accessed January 30, 2023].

[41] Richard McPherson, Suman Jana, and Vitaly Shmatikov. No escape
from reality: Security and privacy of augmented reality browsers. In Pro-
ceedings of the 24th International Conference on World Wide Web, 2015.

[42] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and Christoph
Feichtenhofer. Trackformer: Multi-object tracking with transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.

[43] Meta. Meta quest 2. https://www.meta.com/quest/products/quest-2/,
2022. [Online; accessed October 3, 2022].

[44] Microsoft. Hololens 2. https://www.microsoft.com/en-IN/hololens/
hardware, 2023. [Online; accessed January 30, 2023].

[45] NatML. Natml for unity. https://github.com/natmlx/NatML. (Accessed
on 02/02/2023).

[46] NReal. Nreal air ar glasses. https://www.nreal.ai/light/, 2022. [Online;
accessed January 30, 2023].

[47] Lucky Onwuzurike, Enrico Mariconti, Panagiotis Andriotis, Emil-
iano De Cristofaro, Gordon Ross, and Gianluca Stringhini. Mamadroid:
Detecting android malware by building markov chains of behavioral
models (extended version). ACM Transactions on Privacy and Security
(TOPS), 2019.

[48] Hanyang Peng and Shiqi Yu. A systematic iou-related method: Beyond
simplified regression for better localization. IEEE Transactions on
Image Processing, 2021.

[49] Nisarg Raval, Animesh Srivastava, Ali Razeen, Kiron Lebeck, Ashwin
Machanavajjhala, and Lanodn P Cox. What you mark is what apps see.
In Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications and Services, 2016.

[50] Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan
Parno, Helen J Wang, and Crispin Cowan. User-driven access control:
Rethinking permission granting in modern operating systems. In IEEE
Symposium on Security and Privacy, 2012.

[51] Franziska Roesner, David Molnar, Alexander Moshchuk, Tadayoshi
Kohno, and Helen J Wang. World-driven access control for continuous
sensing. In Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security, 2014.

[52] Rokid. Rokid air pro. https://rokid.ai/rokid-air-pro/, 2023. [Online;
accessed January 30, 2023].

[53] Jeremy Schiff, Marci Meingast, Deirdre K Mulligan, Shankar Sastry,
and Ken Goldberg. Respectful cameras: Detecting visual markers in
real-time to address privacy concerns. In Protecting Privacy in Video
Surveillance. Springer, 2009.

[54] Kees Schollaart. Sortcs - a multiple object tracker. https://github.com/
keesschollaart81/SortCS. (Accessed on 02/02/2023).

[55] scottyboy805. dotnow interpreter. https://github.com/scottyboy805/
dotnow-interpreter. (Accessed on 05/19/2023).

[56] Bingyu Shen, Tianyi Shan, and Yuanyuan Zhou. Multiview: Finding
blind spots in access-deny issues diagnosis. In USENIX Security Sym-
posium, 2023.

[57] Jiayu Shu, Rui Zheng, and Pan Hui. Cardea: Context-aware vi-
sual privacy protection from pervasive cameras. arXiv preprint
arXiv:1610.00889, 2016.

[58] Anthony Spadafora. Malware hits millions of Android users — delete
these apps right now. https://www.tomsguide.com/news/malware-hits-
10-million-android-users-delete-these-apps-right-now, 2022. [Online;
accessed August 14, 2022].

[59] Animesh Srivastava, Puneet Jain, Soteris Demetriou, Landon P Cox,
and Kyu-Han Kim. Camforensics: Understanding visual privacy leaks
in the wild. In Proceedings of the 15th ACM Conference on Embedded
Network Sensor Systems, 2017.

[60] Snapchat Lense Studio. Snapchat lenses. https://ar.snap.com/lens-
studio, 2022. [Online; accessed Aug 17,2022].

[61] Peize Sun, Jinkun Cao, Yi Jiang, Rufeng Zhang, Enze Xie, Zehuan Yuan,
Changhu Wang, and Ping Luo. Transtrack: Multiple object tracking
with transformer. arXiv preprint arXiv:2012.15460, 2020.

[62] SparkAmpLab Editorial Team. Qualcomm reveals new ar smart glasses
blueprint. https://www.sparkamplab.com/post/ar-vr-topic-analysis-
qualcomm-reveals-new-ar-smart-glasses-blueprint, 2022. [Online;
accessed October 3, 2022].

[63] Toshiba. dynaedge ar smart glasses. https://us.dynabook.com/
smartglasses/products/index.html, 2022. [Online; accessed January
30, 2023].

[64] Unity. AR Foundation trackable managers. https://docs.unity3d.com/
Packages/com.unity.xr.arfoundation@4.0/manual/trackable-
managers.html, 2022. [Online; accessed August 17, 2022].

[65] Unity. Script compilation assembly defini-
tion files. https://docs.unity3d.com/Manual/
ScriptCompilationAssemblyDefinitionFiles.html, 2022. [Online; ac-
cessed August 17, 2022].

[66] Dream World Vision. Dream glass flow. https://
www.dreamworldvision.com/pages/dream-glass-flow-specs, 2022.
[Online; accessed January 30, 2023].

[67] VR-Compare. Snap spectacles. https://vr-compare.com/headset/
snapspectacles(2021), 2021. [Online; accessed January 30, 2023].

[68] VR-Compare. Xiaomi smart glasses. https://vr-compare.com/headset/
xiaomismartglasses, 2021. [Online; accessed January 30, 2023].

[69] VR-Compare. Viture one. https://vr-compare.com/headset/vitureone,
2022. [Online; accessed January 30, 2023].

USENIX Association 32nd USENIX Security Symposium 943

https://help.ifttt.com/hc/en-us/articles/360052451954-Building-with-filter-code
https://help.ifttt.com/hc/en-us/articles/360052451954-Building-with-filter-code
https://about.ikea.com/en/newsroom/2018/03/19/ikea-place-app-launches-on-android-allowing-millions-of-people-to-reimagine-home-furnishings-using-ar
https://about.ikea.com/en/newsroom/2018/03/19/ikea-place-app-launches-on-android-allowing-millions-of-people-to-reimagine-home-furnishings-using-ar
https://about.ikea.com/en/newsroom/2018/03/19/ikea-place-app-launches-on-android-allowing-millions-of-people-to-reimagine-home-furnishings-using-ar
https://about.ikea.com/en/newsroom/2018/03/19/ikea-place-app-launches-on-android-allowing-millions-of-people-to-reimagine-home-furnishings-using-ar
https://www.kopin.com/introducing-solos-high-performance-eyewear-for-cyclists/
https://www.kopin.com/introducing-solos-high-performance-eyewear-for-cyclists/
https://www.mirareality.com/
https://www.lenovo.com/us/en/thinkrealitya3/
https://www.lenovo.com/us/en/thinkrealitya3/
https://www.meta.com/quest/products/quest-2/
https://www.microsoft.com/en-IN/hololens/hardware
https://www.microsoft.com/en-IN/hololens/hardware
https://github.com/natmlx/NatML
https://www.nreal.ai/light/
https://rokid.ai/rokid-air-pro/
https://github.com/keesschollaart81/SortCS
https://github.com/keesschollaart81/SortCS
https://github.com/scottyboy805/dotnow-interpreter
https://github.com/scottyboy805/dotnow-interpreter
https://www.tomsguide.com/news/malware-hits-10-million-android-users-delete-these-apps-right-now
https://www.tomsguide.com/news/malware-hits-10-million-android-users-delete-these-apps-right-now
https://ar.snap.com/lens-studio
https://ar.snap.com/lens-studio
https://www.sparkamplab.com/post/ar-vr-topic-analysis-qualcomm-reveals-new-ar-smart-glasses-blueprint
https://www.sparkamplab.com/post/ar-vr-topic-analysis-qualcomm-reveals-new-ar-smart-glasses-blueprint
https://us.dynabook.com/smartglasses/products/index.html
https://us.dynabook.com/smartglasses/products/index.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.0/manual/trackable-managers.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.0/manual/trackable-managers.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.0/manual/trackable-managers.html
https://docs.unity3d.com/Manual/ScriptCompilationAssemblyDefinitionFiles.html
https://docs.unity3d.com/Manual/ScriptCompilationAssemblyDefinitionFiles.html
https://www.dreamworldvision.com/pages/dream-glass-flow-specs
https://www.dreamworldvision.com/pages/dream-glass-flow-specs
https://vr-compare.com/headset/snapspectacles(2021)
https://vr-compare.com/headset/snapspectacles(2021)
https://vr-compare.com/headset/xiaomismartglasses
https://vr-compare.com/headset/xiaomismartglasses
https://vr-compare.com/headset/vitureone

[70] Vuzix. Vuzix blade upgraded smart glasses. https://www.vuzix.com/
products/vuzix-blade-smart-glasses-upgraded, 2023. [Online; ac-
cessed January 30, 2023].

[71] David Weintrop. Block-based programming in computer science ed-
ucation. Communications of the ACM, 62(8), 2019.

[72] Edy Winarno, Wiwien Hadikurniawati, and Rendy Nusa Rosso. Lo-
cation based service for presence system using haversine method. In
ICITech, 2017.

[73] Jialian Wu, Jiale Cao, Liangchen Song, Yu Wang, Ming Yang, and Jun-
song Yuan. Track to detect and segment: An online multi-object tracker.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021.

[74] Linjie Yang, Yuchen Fan, and Ning Xu. Video instance segmentation.
In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, 2019.

[75] Yaoyao Zhong, Weihong Deng, Jiani Hu, Dongyue Zhao, Xian Li, and
Dongchao Wen. Sface: Sigmoid-constrained hypersphere loss for robust
face recognition. IEEE Transactions on Image Processing, 30, 2021.

[76] Xizhou Zhu, Jifeng Dai, Lu Yuan, and Yichen Wei. Towards high perfor-
mance video object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

A Implementation Details
A.1 Erebus Language
Our language framework constitutes two distinct components
that work in sequence: Policy Language module and the Pol-
icy Transpiler. The app policy provided by the developers
is passed on to the Policy Language module, which is im-
plemented in Python that uses spaCy’s entity recognition to
detect the domain-specific entities of our policy framework.
We used an existing open-source language model from spaCy
and trained it on a self-annotated dataset of sample policies
within Erebus’s context. This Python program then uses the
tags to generate a policy code using the grammar specified
in Table 4. The generated policy language is passed on to a
C# transpiler we built that converts it into the target C# code to
be run on the device. We use ANTLR4 as the parser generator
for our policy language and generate the target code.
A.2 Erebus Permission Manager
We referenced the Android Settings app to develop this mod-
ule, to act as the primary interface for a user to review and
edit app policies. This app remains independent of the AR app
and is developed using Unity (Unity 2020.3.25f1, Android,
OpenGLES3, Mono, .NET 4.0).
Attribute Management. We define three attributes to grant the
user the ability to manage the permission of Erebus: Time,Loca-
tion, and Face ID. The data type we define for each attribute is
as follows: TimeSlot (DateTime startTime, DateTime endTime) ,
GeoLocation (double latitude, double longitude) , and
FaceId (byte[] id, string userFaceTag) .

The TimeSlot defines the permitted/prohibited hours
(DateTime(HH:mm:ss)) and is used along with our custom-
defined C# Extension methods and Operator methods to im-
plement the Erebus policy. Our GeoLocation works similarly
to the concept of Geofencing in Android [11]. It is used to
verify if the user is within the pre-defined trusted geographical

location. We define a constant radius value (1 km) and com-
pute the Haversine distance [26, 72] of the two locations. We
store the list of FaceId by converting the pixel data into a byte
array along with a tag. We maintain the face tag to be unique.
Policy Management. We allow the users to define their Erebus
Policy in the Erebus Permission Manager app. Users imple-
ment their policy in natural language as described in Section
5.1. However, this policy must be translated into a format that
can be recognized by the Erebus Access control layer. We
translate the policy to a C# assembly bytes by sequentially
going through the three steps : (i) Convert the natural language
policy to Erebus language using the Entity recognition model.
(ii) Transpile the Erebus language to C# code using ANTLR4.
Finally, (iii) Runtime compiles the C# code to assembly bytes
using Roslyn C# Compiler.

We built the conversion module in step (i) under a separate
environment what we call Local processing server. We hypoth-
esize that Erebus maintains a secure network communication
channel with a trusted local server that is not exposed to the
public and only is utilized for the purpose of performing com-
putationally expensive operations such as Entity recognition
model inference.

In Step (ii), the app executes the module that includes the
conversion grammar, defined during the build-time of Erebus
Permission Manager, on the device. In Step (iii), our permis-
sion manager runtime-compiles on the device under Unity
Mono scripting backend. This is because the IL2CPP scripting
backend in Unity performs AOT (Ahead-Of-Time) compila-
tion, whereas Mono performs JIT (Just-In-Time) compilation.
In other words, any runtime code compilation or assembly load-
ing is prevented under the IL2CPP scripting backend configura-
tion. Furthermore, we use Roslyn C# Compiler to create Unity
Assembly reference assets [65] and compile code in the run-
time. It provides the ease of adding references to the built-in C#
libraries such as ‘System.Collections’ or ‘System.Reflection,’
for library dependencies and runtime compilation.
A.3 Erebus AR Manager
The Erebus AR Manager is a wrapper around the ARCore li-
braries that protects the user against potentially malicious AR
apps. The AR Manager is essentially a C# application that in-
terfaces with all the ARCore APIs but performs rule validation
on top of them. We used Unity (Unity 2020.3.25f1, Android,
OpenGLES3, Mono, .NET 4.0), AR Foundation, ARCore
XR (Provider) package, OpenCV, OpenCVForUnity [17],
NatML [45], and SortCS [54] for deep learning and image
processing operations. The components included in the app
are described below.
AR Function Provider. AR Function provider layer is a wrap-
per around AR Foundation API. It returns the result of the
requested AR API after performing the necessary permission
control, as discussed in Listing 4. Erebus only forwards the
final result from the API to the caller after all the permission
checks. So, when an app calls the Raycast functionality it is
redirected through Erebus’s function provider which internally

944 32nd USENIX Security Symposium USENIX Association

https://www.vuzix.com/products/vuzix-blade-smart-glasses-upgraded
https://www.vuzix.com/products/vuzix-blade-smart-glasses-upgraded

func Raycast(Vector2 screenTabPos, List hitRes, TrackableType trackableType)
{

//Perform permission check
var passedTest = accessController.ExecErebusPolicy("RayCast");
if (!passedTest)

return false;

//Invoke API only when permission granted
return erebus.Raycast(screenTabPos, hitRes, trackableType);

}

Listing 4: Pseudocode of Abstract type API, Raycast, of Erebus.

func GetObjectRawPixels()
{

//Perform permission check
var passedTest = accessController.ExecErebusPolicy("GetObjectRawPixels");
if (!passedTest)

return null;

//Invoke API & Apply visual-privacy protection
var rawCamPixels = erebus.GetRawCameraData();
var allowedRawCamPixels = ProtectVisualPrivacy(rawCamPixels);
return allowedRawCamPixels;

}

Listing 5: Pseudocode of Raw type API, GetObjectRawPixels, of Erebus

Table 9: Trackables are defined as the group of APIs that can extract specific
semantic data from sensors.

Trackables Sensor access APIs Description
Plane detec-
tion

Raycast, GetPlane, ARPlaneTrackables,
RegisterEventOnPlanesChange, Un-
RegisterEventOnPlanesChange

Identifies plane sur-
faces from the envi-
ronment only

Image detec-
tion

AddImageReference, RemoveIm-
ageReference, RegisterEventOn-
TrackedImagesChanged, UnRegis-
terEventOnTrackedImagesChanged

Scans environment
for specific images,
such as QR Codes,
Photographs (Image
markers)

Object detec-
tion

GetRawPixels Access raw camera
stream and runs object
detection to identify
any specific object

Location de-
tection

GetCurrentGPSLocation Access GPS sensor in-
formation

calls the ARCore APIs and returns the final result to the caller.
Visual Information Protection Module. It is crucial for the
VIP module to accurately identify objects in camera frames
in order to prevent any information from being accidentally
exposed while providing functionality with minimal latency.
Inspired by widely-adopted concept in video object detection
research [42, 61, 73, 76], our system aggregates information
from each frame to increase confidence in detection. We lever-
age a light-weight object detector [21], a lightweight object
tracker [8], and apply conflation [27] to the gain the extra con-
fidence on detection. Furthermore, we utilize Neural Networks
API (NNAPI) in Android via NatML in Unity to maximize
the performance of object detection and Compute Shader to
accelerate the whitelisting.

Aggregating Multiple Frames: Existing deep-learning-
based video object recognition models share feature vectors
across multiple frames within their models, leading to more
accurate output. However, they are computationally expensive
for a mobile device. We use ‘Conflation’ to increase detection
confidence using multiple frames. For every frame, we run
a tracking algorithm on the bounding boxes of the output to
associate the object instances over multiple frames. Then, we
conflate the confidence scores of the boxes to obtain an en-

hanced confidence score for each box. In our prototype, each
box contains 80 classes (MSCOCO).

Whitelisting: We use a whitelisting approach to protect
users’ visual information. As opposed to the Blacklisting ap-
proach, which conceals only the designated targets, Whitelist-
ing does not suffer from unexpected information exposure due
to undetected targets.
Permission Checking. We perform rule validation and rule
satisfiability checks for permission granting in Erebus. The
access control layer of Erebus performs a validation check
by confirming if the current AR app contains all the access
permission to the attributes it will use. The Satisfiability of the
rule checking occurs with every invocation of an Erebus AR
API. The policy is executed by loading the compiled assem-
bly bytes into the current scripting domain in the runtime and
invoking the code in the assembly using the C# Reflection.
Face Detection and Recognition. User face recognition
happens at the beginning of the AR app to identify the user
within the Erebus AR Manager. Our user face recognizer uses
the YuNet face detector [48] and SFace face recognizer [75],
and uses pre-trained models from OpenCV model zoo and
OpenCVForUnity examples.

B Additional Evaluations
Our five prototype AR apps evaluate Erebus in an environment
that is similar to the real-world scenario. The prototype apps
reflect the general category of existing apps in the market de-
scribed in Table 8, categorized into apps that use Abstract type
and Raw type APIs. We provide analysis on the total compu-
tation load of our prototype apps and compare the functional
resemblance of the existing AR apps in Table 10. We only sam-
ple the apps that are present in Android’s Google Play Store.
The app latency data were collected for over 2,000 frames
on an Android 13 Samsung Galaxy S22 phone by inserting
checkpoints at run-time and processed after runtime. The apps
were developed using Unity’s Mono Scripting backend.

B.1 Basic AR Functions
To analyze the functional latency of the prototype apps that use
Abstract-type API, we reference the functionalities of Google
Maps AR Navigation. For a balanced comparison, we design
two different apps with equivalent Unity environments, app
configuration, logic, and the final output. Except that one app
directly accesses the AR API via AR Foundation (ARCore),
while the other via Erebus. We discovered that the majority of
the latency of the Location API derives from the initialization
phase of the GPS sensor.

B.2 AR Functions with Raw Camera Access
To analyze the functional latency of the prototype apps that use
Raw-type API, we reference the functionalities of Snapchat
Lenses. Our face filter app is configured to detect a single class
object (‘person’) and utilizes the user-facing camera.

4The app total latency of Raw Type APIs increases due to the overhead
of the Async GPUReadback. Note that its overhead is discrete from the per-
formance of Erebus. Refer to Table 6 for additional analysis.

USENIX Association 32nd USENIX Security Symposium 945

Table 10: Analysis of the computation load of the five prototype applications and the functional resemblance to the applications in the market. Prototype ap-
plications well-represent existing AR applications and provide analogous functionalities with minimal overhead discrepancy. Due to the non-blocking nature
of Asynchronous GPU Readback operation, the application maintains a stable frame rate with added background computation task overhead.

Functional resemblance Prototype
App Name Market App Name App Total Latency (ms)

Erebus Unprotected
AR Plane detection, AR Raycast, GPS sensor Navigation AR Google Maps Live AR view, Pokemon Go, Thyng, Hori-

zon Explorer AR, Spyglass 8.51 8.38

AR Plane detection, AR Raycast Furniture AR Ikea Place, MeasureKit, Houzz, Aryzon AR, AR Sports
Basketball 8.81 7.92

AR Plane detection, Image detection Monsters AR Quiver, Google AR Translate, Smartify, Kings of Pool,
Roar 16.77 16.67

Face tracking, Object detection Face Filter Snapchat Lenses, Youcam Makeup, ModiFace, Leo AR,
GIPHY 62.74 (244.464) 38.46

AR Raycast, Object Detection Remote
Maintenance

Google Lens, Vuforia Chalk, Blippar, Microsoft Dy-
namic Remote Assist 365, TeamViewer Assist AR 71.24 (240.314) 28.06

Table 11: Component-level latency breakdown of the AR Face Filter app
using IL2CPP Scripting backend in Unity. The items are grouped by the com-
ponent type (Erebus, App logic).

Component type Component Latency (ms)
Object Detection 23.51
Non-Max Suppression 0.01

Erebus Object Tracking 0.15
Conflation 0.01
Whitelisting 0.08

Application Application Logic 15.18
Async GPU Readback (Con-
stant)

104.03

Total 142.97

Improving the Performance of Non-Erebus Components:
Erebus provides an entry point to the privacy-protected cam-
era pixels through a Unity Texture that is fetched back to the
CPU, for the developer’s convenience (A CPU-fetched texture
provides more degree of freedom to the developer). This is
done by invoking an Asynchronous GPU Readback call once
the Visual information protection module completed its task.
However, we observed that the GPU Readback operation con-
tributes 74.34% to the total latency of the application. Thus,
we eliminate this overhead by providing the app developer the
option to access the camera data texture directly from the GPU.
Direct access to a pre-upload GPU texture allows the users
to bypass the computationally-expensive Readback operation.

For our experiments, we also evaluated the performance
of Erebus under ARM64 build with Unity’s IL2CPP Script-
ing backend. We observed 41.52% latency reduction (Table
11), leading the total latency (excluding Readback time) of
the AR Face Filter app to 38.94 ms (25.68 FPS). The perfor-
mance of the app improved in both Erebus and the app logic.
However, unlike the Mono scripting backend, the app does not
natively support Runtime (JIT) compilation. We implement
a pre-defined class at the app implementation time in Unity.
This class acts as a mock-up access controller of Erebus Per-
mission Manager. Additional improvements to Erebus could
be made by referencing Dotnow-interpreter [55] to support
IL2CPP scripting backend.
B.3 Minimizing FP through Conflation
We analysed the effectiveness of conflation on a desktop en-
vironment (Intel® Xeon® Gold 6242 CPU@2.80GHz, 128GB
RAM, Nvidia Quadro GV100 GPU, Ubuntu 20.04.3 LTS 64
bit). Conflation does not induce extra computational overhead

as much as any deep-learning-based model. Due to the na-
ture of its simplicity, it is not able to drastically improve the
detection result. However, it is an effective way to associate
multiple frames of confidence scores, thus, gaining higher
confidence over the detection result, with almost no overhead.

We use a public video instance detection dataset, YouTube-
VIS [74], and extract 12 different classes that intersect with
the class of our pre-trained model. We follow the conven-
tional standard, PASCAL VOC 2007 (IoU threshold=0.5) for
the conflation parameter analysis. The parameters are two
independent variables that are essential for the conflation
algorithm: confidence threshold and buffer size.

The conflation buffer size indicates the number of frames the
conflation algorithm aggregates to derive the final confidence
value. e.g., if an identical object with a confidence score of 0.60
is identified in two consecutive frames, the conflation algorithm
merges the two confidence scores (N=2) and gives the output
of 0.6923. The same confidence score in three frames(N=3),
0.7714. If the buffer size is smaller than the appeared consecu-
tive frames, it overwrites the oldest previous confidence score
and recalculates the conflated confidence value.
B.4 Analysis on Advanced Raw Camera Usage
We developed a prototype of the TeamViewer Assist AR to
resemble the genre of collaborative AR apps used for tele-
maintenance. In our prototype, the live camera feed of the
user is streamed to a remote user using TCP in NETMQ with
an average latency of 34ms (round trip) for multiple 32-byte
packets. We configure the VIP module to whitelist 8 distinct
categories of objects: ‘Clock’, ‘Cup’, ‘Bottle’, ‘Remote’,
‘Cellphone’, ‘Fork’, ‘Knife’, and ‘Spoon’.

According to our experiment, the receiving user was able
to receive an average of 21, 19, and 19 camera images per
second in Erebus environment with a conflation buffer size of
2, 3, and 4, respectively. While an average of 29 images were
received in a second in an Unprotected (Non-Erebus) environ-
ment. Note that the result represents the number of images that
are ready to be ‘viewed’ by the receiving user, in a second. It
includes the latency introduced from the app logic: Network-
ing (∼17 ms; Single trip), Packet encoding (∼4.6 ms), and
Decoding time (∼2.3 ms), that is not part of Erebus. This indi-
cates that Erebus is able to achieve near real-time performance
even with the computationally intensive app logic.

946 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Augmented Reality Systems
	Access Control in AR systems

	How Do AR Applications Use Sensor Data?
	Survey of the Use of Sensor Data
	App Case Study
	Limitations in Existing Permissions Model

	Reimagining App Permissions
	Threat Model
	Least Privilege Sensor Access
	Design Goals

	Erebus: Access Control Framework for AR
	Domain-Specific Language for AR Systems
	Programming Model – Filter Codes for AR
	Policies Based on Functional Use

	OS-level Enforcement
	Erebus Permission Manager
	Erebus AR Manager

	Evaluation
	Microbenchmarks
	Latency Analysis on Basic AR Functions
	Latency Analysis on AR Functions with Raw Camera Access
	Analysis of False Positive Rate with Conflation
	Analysis on Optimal Parameters for Conflation

	Porting AR Apps to use Erebus
	Discussion

	Related Work
	Conclusion
	Implementation Details
	Erebus Language
	Erebus Permission Manager
	Erebus AR Manager

	Additional Evaluations
	Basic AR Functions
	AR Functions with Raw Camera Access
	Minimizing FP through Conflation
	Analysis on Advanced Raw Camera Usage

