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Abstract
This paper presents the first public in-depth security anal-
ysis of TETRA (Terrestrial Trunked Radio): a European
standard for trunked radio globally used by government
agencies, police, prisons, emergency services and military
operators. Additionally, it is widely deployed in industrial
environments such as factory campuses, harbor container
terminals and airports, as well as critical infrastructure
such as SCADA telecontrol of oil rigs, pipelines, transporta-
tion and electric and water utilities. Authentication and
encryption within TETRA are handled by secret, propri-
etary cryptographic primitives. This secrecy thwarts public
security assessments and independent academic scrutiny
of the protection that TETRA claims to provide.
The widespread adoption of TETRA, combined with the

often sensitive nature of the communications, raises le-
gitimate questions regarding its cryptographic resilience.
In this light, we have set out to achieve two main goals.
First, we demonstrate the feasibility of obtaining the un-
derlying secret cryptographic primitives through reverse
engineering. Second, we provide an initial assessment of
the robustness of said primitives in the context of the pro-
tocols in which they are used.
We present five serious security vulnerabilities pertain-

ing to TETRA, two of which are deemed critical. Further-
more, we present descriptions and implementations of the
primitives, enabling further academic scrutiny. Our find-
ings have been validated in practice using a common-off-
the-shelf radio on a TETRA network lab setup.
More than a year ago,we started to communicate our pre-

liminary findings through a coordinated disclosure process
with several key stakeholders. During this process we have
actively supported these stakeholders in the identification,
development and deployment of possible mitigations.

1 Introduction

Terrestrial Trunked Radio (TETRA) is a European standard
for trunked radio used globally by government agencies,

emergency services and critical infrastructure. Apart from
networks dedicated to military operators and emergency
services (such as C2000 in the Netherlands, ASTRID in
Belgium, BOSNET in Germany and RAKEL in Sweden),
TETRA is also widely used in industrial environments such
as factory campuses, harbor container terminals and air-
ports, as well as for SCADA telecontrol of oil rigs, pipelines,
transportation and electric and water utilities.
TETRA authentication and encryption are handled by

secret, proprietary cryptographic primitives. Authentica-
tion, key derivation and distribution is implemented in the
TETRA standard Authentication Algorithm set 1 (TAA1).
Four Key Stream Generator (KSG) functions (called TETRA
Encryption Algorithm 1 to 4, or, TEA1 to TEA41) generate
keystream for encryption of air interface traffic. TEA1 is
approved for general use worldwide; TEA2 is approved for
European use by emergency services; TEA3 is approved
for extra-European emergency services and, TEA4 is once
again intended for general use (but has hardly seen any
adoption). While the TETRA specification is largely pub-
lic [8, 12, 13], all the crucial cryptographic components re-
quired for assessment of the system remain secret, available
only to select parties under strict NDAs. This runs counter
to both the spirit of open technologies and Kerckhoffs’s
principle.
The potential consequences have previously been illus-

trated by the fate of A5/1 [2], A5/2 [14] and their GMR vari-
ants [5] in cellular and satellite communications, as well as
the Crypto AG / Hagelin sensitive communications equip-
ment [26], allowing backdoored or practically exploitable
ciphers to fester in public and critical infrastructure for
decades. The potential implications of security issues for
confidentiality and integrity of critical voice and data com-
munications, as well as telecontrol of critical infrastructure,
are significant.
In an attempt to prevent the secret cryptographic primi-

tives used in TETRA from becoming public, serious con-

1Not to be confused with Tiny Encryption Algorithm [35]
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straints have been imposed, both technically and regulatory.
However, with millions of TETRA devices being deployed
around the world, the primitives are bound to fall into the
hands of adversarial parties, through either reverse engi-
neering efforts or leaked/stolen documents.

Acquisition of TETRA cryptographic primitives We
distinguish three methods of acquiring the TETRA crypto-
graphic primitives. First, the official route through ETSI,
involving extensive eligibility criteria and non-disclosure
agreements. Second, theft of the official specification or
source code from any ETSI-approved party. Third, reverse
engineering of a firmware or hardware implementation.
The ETSI standards body is the official institution gov-

erning access to descriptions of TETRA cryptographic prim-
itives. They can be obtained under a ‘Non disclosure and
restricted usage license’, restricting copying of the specifi-
cation and requiring implementation of countermeasures
against reverse engineering in end products. Approval is
given to ‘bona fide’ manufacturers of TETRA radio equip-
ment, and a record is kept in a register [9,10]. For TEA2, ad-
ditional requirements apply, such as geographic restrictions
and a license requirement for parties involved in installing,
repairing and/or destroying TEA2 capable equipment [11].
Clearly, the restrictions imposed by ETSI prevent aca-

demic discussion. It is worth noting that the scientific com-
munity is likely considerably more impacted by the restric-
tions than a malicious actor with clandestine goals and
fewer inclinations towards legal compliance. While the pos-
sibility of theft (through hacking, coercion or otherwise) is
self-evident, estimating the feasibility of reverse engineer-
ing is less straightforward. Such an endeavor is nontrivial,
due to the aforementioned ETSI-mandated countermea-
sures against reverse engineering. We successfully recov-
ered the TAA1 suite of primitives and the TEA1, TEA2 and
TEA3 stream ciphers from a Motorola MTM5400 (a com-
mon off-the-shelf radio) and its associatedfirmware images,
using software exploitation techniques. With our research,
we demonstrate the feasibility of the reverse engineering
approach, while complying with the legal framework and
remaining at liberty to share our findings with the public.

Uncovered issues Having obtained the primitives
through reverse engineering, we find ourselves in the
unique position to study the security of TETRA in a more
in-depth fashion than any previously published work in
the scientific literature. We found several serious issues,
pertaining to air interface encryption, identity encryption
and the authentication. Ranging from trivial key recov-
ery through brute-force and meet-in-the-middle attacks to
keystream recovery by an active adversary, ourwork proves
the long-standing reputation of TETRA as a highly secure
system to be unjustified.

Surprisingly, one of the most severe issues (Section 5.1)
could have been identified without access to the cryp-
tographic primitives. We speculate the closed nature of
TETRA security has dissuaded the usual public research
from taking place.

1.1 Related work
The little prior work on TETRA security that exists con-
sists mostly of high-level comparative surveys [20,28], end-
to-end encryption and SIM card implementation propos-
als [22, 36], as well as generic threats to open or misconfig-
ured networks [27,30]. In addition, offensive electromag-
netic activities (EMA) such as jamming and radio localiza-
tion have received historical attention [6, 24, 29, 31]. At the
level of protocol security, some prior work has been done
limited to authentication protocol issues affecting network
availability [7] and malicious terminal cloning [23]. How-
ever, to the best of our knowledge, there is no comprehen-
sive prior work on TETRA security that takes evaluation of
the underlying security primitives into account, likely as
a result of their confidentiality up until this work. Finally,
while there are some open-source SDR-based TETRA de-
coder implementations2, none of these include the required
security primitives for the same reasons.

1.2 Our contribution
Our contribution is fourfold.
First, we are the first to make the cryptographic prim-

itives that underpin the security of TETRA available for
public scrutiny, after a period of over two decades of secrecy.
This enables cryptographers, security researchers, system
integrators, and users of TETRA to investigate and form
an informed opinion about the actual security guarantees
that TETRA offers, rather than those advertised.
Second, we are the first to provide a public in-depth anal-

ysis on the security of TETRA, wherein we identify several
weaknesses which demonstrate that the actual security
guarantees offered are considerably less than claimed.
Third, while numerous previous examples exist, we

demonstrate once again that attempting to keep crypto-
graphic primitives confidential, while simultaneously dis-
tributing them in millions of end-user devices around the
world, is a strategy that eventually collapses. This in itself
need not be fatal for the security of the system as long as the
secrecy is not relied upon for security. However, in the case
of TETRA, the TEA1 stream cipher is deliberately weak-
ened in a way so evident that anyone with knowledge of
the algorithm would be able to passively intercept TEA1
encrypted traffic with very little resources. This runs di-
rectly counter to the Kerckhoffs’s principle. The issue is

2See https://osmocom.org/projects/tetra and https://www.
rtl-sdr.com/tetra-kit-a-new-open-source-tetra-decoder/
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aggravated by the fact that the non-disclosure agreements
and the strict conditions under which the TEA1 specifica-
tion is provided causes system integrators and end users to
remain uninformed, while adversarial actors (state spon-
sored or otherwise) likely have access to the specification
and need not resort to reverse engineering.
Fourth, we release all resources and tools developed dur-

ing the research trajectory that we deem of potential public
interest3. Additionally, we have provided patches bringing
cryptography support to OsmocomTETRA, an open-source
tool for demodulating and interpreting TETRA traffic. Fur-
thermore,we release our suite of tools developed for theMo-
torola MTM5000 series of radios to the public as well. This
includes a disassembler plug-in for IDA Pro covering the
full TI C674x instruction set, disassembly support for the
architecture in the Capstone framework, and support for
the architecture in the RetDec decompiler. Lastly, we also
publicly release our tools for unpackingMotorola firmware
packages on an MTM5000 series radio, as well as utilities
for instrumenting, debugging,monitoring and packet injec-
tion. The goal of these releases is to turn the MTM5000 se-
ries into a development platform for researchers, hopefully
allowing security research into TETRA to gain momentum,
and eventually hold TETRA security to a standard on par
with ones that have evolved through public scrutiny.

2 Recovering cryptographic primitives

Although this paper’s main focus is on the security of
TETRA itself, we believe it is valuable to give an impression
of the reverse engineering process, in particular because
somemay argue that the secrecy of the cryptographic prim-
itives is a part of the security of TETRA as a whole.

2.1 Target device selection

As a preliminary step, in order to decide which TETRA de-
vice to acquire, we investigated firmware images for several
devices that can be found online on amateur radio forums.
As expected, none of them contain the primitives in unpro-
tected form. It is worth noting that some firmwares contain
a presumably encrypted, high-entropy data section, which
we expect to embed the TETRA cryptographic primitives.
In virtually all cases where such a high-entropy section is
absent, the device itself and its SoC are produced by the
same manufacturer, suggesting that the algorithm may be
implemented in hardware in the SoC. Since hardware re-
verse engineering is considerably more time and resource
intensive, we decided to avoid these devices.
Ultimately, we opted for the Motorola MTM54004. It
3See: https://github.com/MidnightBlueLabs/TETRA_burst
4See: https://www.motorolasolutions.com/en_xu/products/

tetra/devices/mtm5000_series.html#resources

is built around the Texas Instruments OMAP-L138 SoC5,
which houses an ARM core and a TI C6748 DSP6, offering
secure boot and a Trusted Execution Environment (TEE)
in which confidential code can be loaded and executed
without revealing the implementation. We found through
static analysis that the TEE is indeed used by Motorola
and that the high-entropy section contained within the
firmware is in fact provided to the TEE as a loadable pro-
tected module. Code related to TEE invocation referenced
error messages pertaining to TETRA cryptography, provid-
ing the final confirmation the TEE module indeed embeds
the TETRA cryptographic primitives, albeit in an encrypted
form. As such, we now have a clear path forward. We will
first gain code execution on the ARM core, thenmove later-
ally to obtain a similar foothold on the DSP. There, we will
either have to break the TEE implementation or exploit a
flaw in the TEE module code.

2.2 Initial foothold

Since the SoC supports secure boot, gaining arbitrary code
execution is not trivial. However, the device has an AT
modem command interface over a serial link, exposing a
reasonably large attack surface. Through static analysis we
identified a format string vulnerability (CVE-2022-26941),
which we successfully exploited to subsequently gain arbi-
trary code execution on the ARM core.
We then needed to extend our control over the device to

include DSP code execution. While the L138 hasMemory
Protection Units (MPUs) and I/O Protection Units (IOPUs)
that can be configured to prevent writes from one core to
the other’s designated memory areas, these units were left
unconfigured, not enforcing any restrictions (CVE-2022-
27813). Hence, gaining code execution on the DSP core was
as straightforward as overwriting parts of the DSP firmware
in RAM.
The C6748 DSP has a notion of a privilege level: code

runs in either user or supervisor mode. Orthogonal to privi-
lege level, there is the notion of a security level. Code runs
in either non-secure or securemode,where non-secure code
is prevented from accessing secure code and memory [18].
This two-dimensional privilege space allows for compart-
mentalization of confidential code and/or key material.
The DSP main firmware runs in non-secure supervisor

mode. In case an action is to be performed that requires
secure mode execution, a secure kernel API call is invoked.
This transfers control to the secure kernel (contained in
ROM and provided by TI), which runs in secure supervisor
mode. The secure kernel handles the request and then
passes back control to the non-secure code.
As stated, the TEE allows for run-time loading of mod-

5See: https://www.ti.com/product/OMAP-L138
6See: https://www.ti.com/product/TMS320C6748
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ules. This mechanism is performed through the SK_LOAD7
secure kernel API call. The provided module is then de-
crypted, signature checked, and copied to a secure portion
of the address space (i.e. inaccessible in non-secure mode).
Subsequently, code contained within a loaded module
can be invoked through the SK_ALGOINVOKE API call. The
sought-after TETRA cryptographic primitives are loaded
and invoked through this mechanism. With the previously
obtained ability to run arbitrary code in non-secure super-
visor mode, we can make direct invocations of SK_LOAD
and SK_ALGOINVOKE.
The limited public documentation covering the module

loading mechanism states that the module is encrypted
with AES-128, which gives us a foothold for analysis of the
SK_LOAD primitive.

2.3 Cache-timing side channel

Primitives Caches may introduce timing differences
in AES computations which results in a potentially ex-
ploitable side channel, as was shown in [1]. The documen-
tation teaches us that the C6748 offers fine-grained cache
control functionality: one can force the eviction of any
chosen memory range from cache with 64-byte granular-
ity [16,17]. It turns out that this primitive can be used in
non-secure supervisor mode, but also affects secure por-
tions of the address space. On top of that, the cache can
be ‘frozen’, i.e. a cache hit results in a speed advantage, but
a cache miss will not result in the cache being updated.
Both primitives combined offer a solid foundation for a
cache-timing side channel attack.
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Figure 1: Impact on average SK_LOAD running time while
evicting single lines of the protected ROM area from cache.
The inverse AES S-box location is highlighted in red.

The secure kernel and AES implementation reside in a
secure ROM page, and cannot be read in non-secure mode.
In order to carry out the key recovery attack described be-
low, we first need to locate the AES S-box in this secure
page.
To do so,we feed arbitrary data to SK_LOAD,which results

in an error but not without first decrypting the provided
module header using AES. We do so repeatedly while vary-
ing which block to evict from cache. For each block, we

7Some hints can be found on the module data format, such as on
github: https://github.com/alexeicolin/sysbios/blob/master/
packages/ti/sk/sk.h

measure the average time it takes to execute our request in
number of clock cycles. Figure 1 depicts the results. Clearly,
the large consecutive area that incurs running time penal-
ties when evicted is where the S-box is located.
Now that the location of the S-box is known, we can

use our cache primitives to partially evict the S-box, and
subsequently freeze the cache. It turns out that the start of
the S-box is located halfway a 64-byte eviction block. As
such, we can conveniently use this property to evict the
first 32 bytes of the S-box from cache.

Key recovery Before describing the attack in detail, we
briefly introduce some notation. 𝑟𝑘 denotes the first round
key used during the AES decryption. Likewise, 𝑐𝑡 denotes
the ciphertext under our control. Furthermore, 𝑟𝑘0 denotes
the first round key byte, i.e. 𝑟𝑘 = {𝑟𝑘0, 𝑟𝑘1,… , 𝑟𝑘15}. Finally,
⊕ denotes the bitwise XOR operator.
In the scenario outlined above, each S-box lookup that

falls within the first 32 entries induces a running time
penalty, whereas the other lookups do not. This property
can be used to learn information about 𝑟𝑘. The first step
of the AES decryption is AddRoundKey, which takes
𝑐𝑡0⊕𝑟𝑘0 and stores the result in its internal state. The
next step is InverseShiftRows, which changes the or-
der of the internal state bytes. Since we are measuring the
running time in aggregate over the entire AES decryption,
the order in which operations occur has no effect on our
measurements. Finally, we reach the InverseSubBytes
step, in which the S-box lookup is performed. Thus, we en-
counter a running time penalty in case 𝑐𝑡0⊕𝑟𝑘0 < 32. Of
course, since in total 176 S-box lookups are performed, we
must ensure that our lookup of interest ‘stands out’ from
the others. We achieve this by taking a statistical approach:
when targeting 𝑟𝑘0, we randomize all bytes of 𝑐𝑡 except
𝑐𝑡0 for each SK_LOAD invocation, and measure the average
running time for each choice of 𝑐𝑡0. This way, running time
penalties do occur during S-box lookups beyond the one of
our interest, but they do not occur consistently, as whether a
penalty is incurred ultimately depends on random data. As
such, the average running time for these lookups converges
to a baseline value.
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Figure 2: Running time per value for 𝑐𝑡0. Other bytes of 𝑐𝑡
are randomized for each run. Averaged over 8192 runs.

Bringing the above into practice: we feed random
ciphertexts to the SK_LOAD API function and compute
the average running time over 256 groups of ciphertexts,
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where each group is characterized by the value of 𝑐𝑡0.
We obtain the pattern shown in Figure 2. The running
times are all centered around a baseline value, except for
32 consecutive values for 𝑐𝑡0, in this case, 32 ≤ 𝑐𝑡0 < 64.
Hence, for our example, we obtain the following predicate:

𝑐𝑡0⊕𝑟𝑘0 < 32 iff 32 ≤ 𝑐𝑡0 < 64
Which is equivalent to:

(𝑐𝑡0⊕𝑟𝑘0) & 0×E0 = 0 iff 𝑐𝑡0 & 0×E0 = 32
This further simplifies to knowledge on the round key:

𝑟𝑘0 & 0×E0 = 32

Thus, we have successfully recovered the 3 most signif-
icant bits of 𝑟𝑘0. We can apply the same methodology to
the remainder of 𝑟𝑘 as well, allowing us to recover a total
of 48 bits of the 128-bit 𝑟𝑘.
We subsequently developed a more complex attack tar-

geting the S-box lookup in the second decryption round,
that allows for recovery of the full 𝑟𝑘. However, since we
have already illustrated the feasibility of a key recovery at-
tack, we omit this extended attack from this paper. Having
recovered 𝑟𝑘, we can easily recover the actual AES key [3].
The vulnerability was registered under CVE-2022-25332.

2.4 Exfiltrating cryptographic primitives
It turns out that distinct keys are used for decrypting the
module header and body. The latter key was recovered by
mounting the attack once more, this time targeting the
body decryption step. Finally, there is one last layer of ob-
fuscation, which is removed by applying a bitwise XOR
over each 16-byte block with the cumulative XOR of its
predecessors.
At this stage, we have access to the module’s protected

contents and we are able to study the cryptographic primi-
tives in the form of C674x assembly instructions and write
equivalent implementations in C. The process is greatly
aided by the fact that we can load the instructions into
an L138 development board and invoke each function to
generate known-good test vectors. Each MTM5000 series
firmware contains atmost a single stream cipher. We found
firmware images online containing TEA1, TEA2 and TEA3,
and hence we recovered all three ciphers. The TAA1 suite
was also recovered, since it is needed for TETRA authenti-
cation and is present in all MTM5x00 firmwares. The TEA4
algorithm was not recovered, since adoption is low and a
TEA4 capable firmware is not offered by Motorola.

3 Background on the TETRA standard

For convenience and readability, we provide a brief outline
of several aspects of the TETRA standard relevant for this

paper. Additional background relevant for each finding is
provided in Section 5. Particularly, the authentication hand-
shake and identity encryption are described in Section 5.4
and 5.3, respectively.
For the purpose of this paper,we assume aTrunkedMode

of Operation (TMO) network, and distinguish two entities.
First,Mobile Stations (MSes), which typically come in the
form of a portophone or car radio unit, and second, the
Switching and Management Infrastructure (SwMI), which
consists of base stations (towers) and the backend network.
Besides TMO, TETRA also supports Direct Mode of Oper-
ation (DMO), where MSes communicate directly without
the need for an SwMI. It typically serves as a fallback mode
when the SwMI is unavailable. However, in this paper, we
only concern ourselves with TMO.

3.1 Protocol layers

L3

L2

L1

MLE

LLC

MAC

PHY

MM (key mgmt) Other L3
components

routing

link layer control

crypto traffic/signalling

sync/modulation

Control plane User plane

Figure 3: SimplifiedoverviewofTETRAcomponents across
the OSI model.

In Figure 3, we present a simplified overview of the Con-
trol Plane of the TETRA protocol, which implements the
functional core of TETRA. (Voice) traffic and non-signaling
data are transferred to user applications (referred to as the
User plane) through various (out-of-scope) interfaces. Cryp-
tographic keys are managed in theMobility Management
(MM) component on OSI layer 3, and the keys are used by
the cryptographic primitives in the layer 2 lower MAC for
encryption/decryption of signaling, traffic and identities.

3.2 Security classes and keys

TETRA employs a set of cryptographic keys, for various
purposes. An overview of keys, and how they relate to the
TETRA primitives, is shown in Figure 4.
Three security classes are defined, each characterized

by a set of mandatory and optional features. An overview
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TA11 TA21
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DCK1 DCK2

RES1 RES2DCK
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DCK CCK CCK-id

SCCK

MF CCK

(b) CCK key sealing

selector

TB5

DCK MGCK SCK/CCK

network
information

ECK

(c) ECK derivation

TA61

SSI SCK/CCK

ESI

(d) Identity encryption

Figure 4: Relations between keys and primitives. 128-bit keys in purple, 80-bit keys in orange. Adapted from [12].

is given in Table 1. Class 1 networks support no encryp-
tion and optional authentication. Class 2 networks encrypt
signaling, voice and data using a single key: the Static Ci-
pher Key (SCK), whereas class 3 networks use individual
session keys: the Derived Cipher Key (DCK) yielded by the
authentication handshake (Section 5.4), and a shared Com-
mon Cipher Key (CCK). Group conversations are supported
through talk groups. Each talk group may optionally have
a Group Cipher Key (GCK) associated with it. The GCK is
not used directly. Rather, it is used as input to algorithm
TA71 ( [12] clause 4.2.2), together with the SCK (class 2) or
CCK (class 3) to generate theModified Group Cipher Key
(MGCK). In case the GCK for a group is not defined, the
SCK or CCK is used instead.Over The Air Re-keying (OTAR)
functionality, albeit largely out of scope, allows for new key
material to be provided through the network. Confiden-
tiality of key distribution is protected by means of sealing,
i.e. encryption of the key with added redundant data to en-
sure integrity. Figure 4b illustrates this for a CCK update;
transmitted as Sealed Common Cipher Key (SCCK) to the
MS and subsequently unsealed.

As mentioned before, the actual air interface encryp-
tion is performed in the lower MAC layer by one of four
KSGs, TEA1 through TEA4. The key is modified with pub-
lic network-specific information through function TB5,
yielding theEncryption CipherKey (ECK) (Figure 4c) before
being fed to the KSG.

Class Auth Encryption OTAR TEA Keys
1 Optional Unavailable Unavailable -
2 Optional Mandatory Optional SCK, MGCK
3 Mandatory Mandatory Mandatory DCK, CCK, MGCK

Table 1: Security classes in TETRA, see [12] clause 1.1

3.3 End-to-end encryption
End-to-end encryption is an optional feature in TETRA that
introduces an additional layer of encryption for voice and
data, offering a secure channel between sender and recip-
ient. Standardization is limited to design guidelines cov-
ering replay protection, IV synchronization and key/algo-
rithm selection [8]. Several proprietary and often mutually
incompatible solutions exist, with different form factors
(SIM card, hardware add-on module, software), algorithms
(at least AES and IDEA) and key management procedures.
Since end-to-end encryption is not fully standardized by
ETSI, and implementations are exceedingly hard to come
by for independent review, we cannot make thorough as-
sessments on security guarantees offered by such solutions.

4 Recovered cryptographic primitives

In this section we provide an overview of the recovered
TETRA cryptographic primitives. We discuss the general
structure and noteworthy design features.

4.1 The TAA1 suite of primitives
The TAA1 suite of algorithms is used for authentication,
key derivation and OTAR8. After recovery and analysis of
TAA1, we found that all primitives defined as TAxx in the
standard rely on a proprietary block cipher calledHURDLE,
discussed in Section 4.2. Furthermore, primitives labeled
TBx are non-cryptographic transformation functions.

4.2 The HURDLE block cipher
HURDLE is a balanced 16-round Feistel network with a
128-bit key and a 64-bit block size9. Each round key (96

8See: https://github.com/MidnightBlueLabs/TETRA_crypto/
blob/main/taa1.c

9See: https://github.com/MidnightBlueLabs/TETRA_crypto/
blob/main/hurdle.c
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bits are used per round) is derived from its predecessor,
through a simple linear function that wraps around in 16
rounds. This allows for on-the-fly round key generation
in both the encryption and decryption direction, enabling
efficient hardware implementations.
The round function consists of key-mixing, substitution,

and permutation steps utilizing a single 𝔽28 → 𝔽28 S-box
and a single 𝔽232 → 𝔽232 P-box. We managed to identify the
S-box generator as an index-swapped version of the classic
multiplicative inverse based Nyberg S-box [21].

4.3 Stream ciphers

As can be observed from the diagrams below, all three
stream ciphers have a similar LFSR-based design. They
consist of two registers: a key register, which is initialized
with the key,anda state register,which is initializedwith the
IV. Both registers perform byte-wise shifting. The key reg-
ister is fed only with data generated from the register itself,
and thus always produces the same key-dependent output
stream, independent of the IV. All three ciphers employ
two non-linear filter functions (denoted as Fxx), generating
one byte of output from two state bytes. One of these filter
outputs is mixed in the middle of the state register, and the
other with the state feedback. Furthermore, another state
byte is fed to a bit-reordering function (denoted as Rx), and
mixed in with the feedback as well. Finally, the leftmost
state byte is taken directly as a keystream byte. Note that
this happens only every 19 rounds, with an additional num-
ber of warm-up rounds for the first keystream byte. The
KSGs all share the same overall structure, which to the best
of our knowledge, is somewhat unconventional. S-boxes
and filter functions differ but have similar structures and
properties. We have not been able to find serious weak-
nesses in the KSGs, with the exception of the deliberately
weakened TEA1 cipher.

The TEA1 stream cipher

reduced eck

eck

0 1 2 3 SB1

0 1 2 3 4 5 6 7 8 9

Figure 5: TEA1 key register initialization

Figure 6 presents a schematic overview of the TEA1 key
stream generator10. Its design differs from the other KSGs
in its key register, which consists of only 32 instead of 80

10See: https://github.com/MidnightBlueLabs/TETRA_crypto/
blob/main/tea1.c

key

state

ks

0 1 2 3

0 1 2 3 4 5 6 7

SB1

F11F12 R1

Figure 6: The TEA1 key stream generator, using the re-
duced key from Figure 5

bits. The 80-bit key is fed through a compression function
(Figure 5), the output of which initializes the TEA1 key
register. This effectively reduces the TEA1 key entropy to
32 bits, and constitutes an obviously deliberate weakening
of the cipher. The matter is discussed in more detail in
Section 5.2.

The TEA2 stream cipher

key

state

ks

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7

SB2

F21 F22R2

Figure 7: The TEA2 key stream generator

The TEA2 cipher resembles the general pattern de-
scribed in the beginning of this section11, except for one
detail. It mixes state byte 5 into the state feedback byte.

The TEA3 stream cipher

key

state

ks

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7

SB3

F31 F32R3

Figure 8: The TEA3 key stream generator

11See: https://github.com/MidnightBlueLabs/TETRA_crypto/
blob/main/tea2.c
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PDU
type

Fill bits
presence

Encryp-
tion

Length SSI ...

PDU
type

...

...
FCS

(Optional)

MAC header LLC header Higher layer data Padding

Figure 9: Data format for downlink air interface messages. The shaded portions are encrypted.

The TEA3 S-box is peculiar in the sense that it maps
two distinct inputs to the same output12, which we further
discuss in Section 5.5. Interestingly,TEA3has an additional
property that is not shared with TEA1 and TEA2: the S-box
output is mixed with a key register byte before being fed
back. This effectively prevents key register state merges
due to the duplicate S-box entry.

5 Findings

In this section, we discuss the findings identified through-
out our research in detail. Section 5.1 explains that the IV
provided to the keystream generator ultimately depends
on broadcast, unencrypted and unauthenticated data ele-
ments. This can be abused to provoke keystream re-use re-
gardless of KSG (CVE-2022-24401, CVE-2022-24404). Sec-
tion 5.2 describes a real-time passive key recovery attack
against the TEA1 stream cipher, which has been deliber-
ately weakened by design (CVE-2022-24402). Section 5.3
describes a weakness in the identity encryption scheme,
allowing one to de-anonymize MSes (CVE-2022-24403).
Section 5.4 explains that, under certain circumstances, an
attacker impersonating the infrastructure can successfully
complete an authentication with an MS, establishing a ses-
sion key (DCK) of all zeroes (CVE-2022-24400). Lastly, we
mention a peculiarity regarding the TEA3 S-box in Section
5.5. Future research is required in order to assess whether
this has detrimental effects on the security guarantees pro-
vided by TEA3.

5.1 Keystream re-use

Background

Data format Figure 9 depicts the data format for down-
link messages over the air interface. TheMedium Access
Control (MAC) header is sent in cleartext and contains ba-
sic information such as the message’s destination Short
Subscriber Identity (SSI), a bit indicating whether the mes-
sage is encrypted, and the length of the message in bytes.
Bit-granular message lengths can be achieved by toggling

12See: https://github.com/MidnightBlueLabs/TETRA_crypto/
blob/main/tea3.c

the fill bits flag, indicating that the message is padded. The
Logical Link Control (LLC) header contains information
such as the link layer type (see below), presence of the
Frame Check Sequence (FCS), a CRC32-based checksum,
whether or not the message should be acknowledged, and
whether the message is/contains an acknowledgment of a
previous message. All these properties are encoded in the
LLC PDU type (see [13] clause 21.2). Depending on the
PDU type, additional information may be included in the
LLC header as well. Note that the LLC PDU type is distinct
from the MAC PDU type. If present and valid, the FCS is
stripped away before the message is passed to handler func-
tions pertaining to higher layers of the protocol. As such,
seen from the perspective of these higher layer handler
functions, presence or absence of the FCS is equivalent.
As briefly mentioned, there is a distinction between link
types. Two are supported, Basic Link (BL) and Advanced
Link (AL). The FCS is required under Advanced Link, but
is optional under Basic Link. All services of our interest use
the Basic Link, and as such, we will not concern ourselves
with the Advanced Link.

Encryption While often cryptography is implemented
at ‘higher’ protocol layers, in TETRA, the IV definition
is bound to MAC-level frame counters and as such, air
interface encryption needs to be performed at the MAC
layer.

KSGECK

IV: 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0

Direction Hyperframe Multiframe Frame Slot

Keystream: 1 0 1 1 1 0 0 1 1 1 0 1

Plaintext: 1 1 1 0 1 1 1 0 1 0 1 1

Ciphertext: 0 1 0 1 0 1 1 1 0 1 0 0

Figure 10: Encryption of signaling, voice and data.

The purpose of the IV is to provide distinct information
to the stream cipher each time it is invoked, in order to
produce a different keystream each time. As illustrated in
Figure 10, the IV is comprised of a direction bit, indicating

7470    32nd USENIX Security Symposium USENIX Association

https://github.com/MidnightBlueLabs/TETRA_crypto/blob/main/tea3.c
https://github.com/MidnightBlueLabs/TETRA_crypto/blob/main/tea3.c


a downlink or uplink message, a hyperframe, multiframe,
frame and slot number. The numbers are all incremented
sequentially (except the direction bit). Under normal cir-
cumstances, these numbers combined have a periodicity of
about 23 days13. Re-keying should thus occur at least once
during such a period, since keystream re-use may occur
beyond that point.

Air Interface integrity guarantees The TETRA speci-
fication mandates the use of a 16-bit CRC on air interface
frames. This checksum is computed over the ciphertext and
is purely meant to detect transmission errors. Besides this,
redundancy included with OTAR-sealed key material and
the previously discussed FCS, no cryptographic integrity
checks are present. Rather, integrity is established based
on whether the data ‘makes sense’ after decryption.

Vulnerability assessment

Binding the IV to the temporal dimension should ensure
each IV occurs only once, and thus, that each keystream is
unique. We refer to a combination of hyperframe, multi-
frame, frame, and timeslot number as a timestamp
Wemay assume that properly configured networks up-

date their key material within the aforementioned 23-day
window. This alone, however, is insufficient in preventing
keystream re-use, as it is also imperative that the synchro-
nization of the timestamp between MS and/or SwMI can-
not be affected by third parties. TETRA fails to enforce this.
The hyperframe number is provided to the MS through the
sysinfoPDU,whereas themultiframe, frame and slot num-
ber are provided via the sync PDU. Once adopted by the
MS, these numbers are maintained (i.e. incremented) inter-
nally by the MS. sysinfo and sync PDUs are neither en-
crypted nor authenticated, and need to be frequently broad-
cast by the SwMI in order to allow for proper network selec-
tion and operation by mobile stations. ETSI’s documenta-
tion covering the air interface [13] clause 23.6.2 and 23.6.3
states that the MS shall update its internal bookkeeping
upon reception of a sysinfo or sync PDU that conflicts
with expected frame counter values.
Due to the direction bit incorporated in the IV, keystream

recovered from the uplink cannot be used to decrypt down-
link messages and vice versa. A means of recovering
keystream in each direction is described below.

Recovering uplink keystream Suppose we would like
to decrypt encryptedmessage 𝑐 =KSG(𝑡,ECK)⊕𝑚, which
was previously sent at timestamp 𝑡. Assuming crypto-
graphic keys have not been updated, we may imperson-
ate the SwMI and trick the MS into re-using the IV that

13 [13] clause 4.5.1 describes 14.167ms per time slot, 4 slots per frame,
18 frames per multiframe, 60 multiframes per hyperframe. Hence, 215
hyperframes make for a periodicity of ∼23.21 days

was employed at time 𝑡. We do so by sending sync and
sysinfo frames with a timestamp set to slightly precede
𝑡. At this point, when the MS transmits a message 𝑐′ =
KSG(𝑡,ECK)⊕𝑚′ at the spoofed time 𝑡, this message is
encrypted with the same keystream as the target message
𝑚. As such, any knowledge on the contents of𝑚′ directly
translates to knowledge of 𝑚. Oftentimes, the length of
𝑚′, together with the way it fits within an observed com-
munication stream, will be very typical for certain types
of communication. As such, we can quite often establish
(parts of)𝑚′ with high confidence.

Recovering downlink keystream The perception of
time of the SwMI is beyond our control. As such, obtaining
downlink keystream is less straightforward than for the
uplink case. As we will demonstrate, downlink keystream
recovery is still possible by sending ciphertexts to the MS
and discerning information based on its behavior in re-
sponse.

mac-
resource

0 1 0 1 0 0 0 … 0 X X … X X
⊕
𝑘𝑠 0

PDU type:
BL-DATA w/FCS

Message
contents FCS

Figure 11: Message 𝑐 as used in keystream expansion. FCS
follows from message contents. Correctly guessing the last
keystream bit triggers acknowledgment by the MS.

Suppose that we possess known keystream 𝑘𝑠 at time
𝑡, and that we would like to expand that knowledge. We
refer to this concept as keystream expansion. To do so, we
construct a message𝑚, situated in the LLC layer (see Data
format), with the same bit length of 𝑘𝑠 plus one. We choose
BL-DATA with FCS as its PDU type, indicating presence of
the FCS checksum and requiring acknowledgment upon
correct reception. The contents of 𝑚 itself are irrelevant
and filled with zeroes. Finally, message 𝑚 is concluded
with the FCS checksum computed over its contents. We
construct 𝑘𝑠′ by appending a zero bit to 𝑘𝑠, i.e. 𝑘𝑠′ = 𝑘𝑠⧺0.
Furthermore, we construct encrypted message 𝑐 by taking
𝑐 =𝑚⊕𝑘𝑠′. A schematic view of 𝑐 is given in Figure 11.
By sending spoofed sync and sysinfo frames, we set the
timestamp of the MS such that it slightly precedes 𝑡, and
sendmessage 𝑐 at exactly time 𝑡. Depending onwhether the
FCS is correct, and by extension whether the newly added
zero bit in 𝑘𝑠′ is the correct keystream bit, the MS either
emits an acknowledgment, or silently discards themessage.
In either case, we learn a keystream bit. By continuously
repeating the procedure, we eventually learn the entire
downlink keystream at time 𝑡.
A prerequisite for the above procedure is a known
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mac-
resource

𝑚0..3
⊕

𝑘𝑠0..3@𝑡
, mac-

frag
𝑚4..7
⊕

𝑘𝑠0..3@𝑡+1
, mac-

frag
𝑚8..11
⊕

𝑘𝑠0..3@𝑡+2
, … , mac-

end
𝑚4𝑛..4𝑛+3

⊕
𝑘𝑠0..3@𝑡+𝑛

Figure 12: Single message𝑚 divided over 𝑛+1 four-bit fragments.𝑚𝑖..𝑗 denotes bits 𝑖 to 𝑗 of𝑚.

keystream 𝑘𝑠 long enough to cover𝑚, which must contain
at least a 4-bit PDU type, a 1-bit TL-SDU number (which
is replicated in the acknowledgment), and the 32-bit FCS.
Hence, we need 𝑘𝑠 to be at least 37 bits long. However, as
we discuss below, 𝑘𝑠 need not be a consecutive keystream
segment. Rather, we can leverage TETRA MAC-layer frag-
mentation support and divide it into multiple fragments,
where each fragment is encrypted with keystream belong-
ing to a different timestamp.
Suppose that we send an encrypted LLC PDU to the MS

of exactly 5 bits. The first four bits indicate the PDU type.
Depending on this value, the MS expects a certain mini-
mum PDU length, which in most cases exceeds 5 bits. All
messages forwhich this is the casewill be silently discarded.
Among the leftover PDU types is BL-DATA without FCS,
which expects a minimum length of 5 bits and requires
acknowledgment upon reception. This is the only valid
5-bit PDU type that causes the MS to issue a response. As
such, we iterate over all possible values of the first 4 bits,
where, on each iteration, we reset the MS’s timestamp to
𝑡 by means of spoofed sync and sysinfo frames, and de-
termine which of these values triggers a response14. In the
message causing the response to be issued, the first four
bits are now known to decrypt to the value corresponding
to the BL-DATA without FCS PDU type, and thus, we have
just recovered the first four bits of keystream at time 𝑡.
Next, we use this strategy to recover the first 4 keystream

bits for 10 consecutive frames. Once obtained, we divide
the previously discussed message 𝑚 over fragments of 4
bits each. The first fragment is encapsulated in a mac-
resource PDU, with the length field set to a special value
indicating start of fragmentation. Due to absence of the
actual message length, the MS expects it to cover the en-
tire slot. However, the length can be cut down to 4 bits by
setting the fill bits flag and padding the remainder of the
slot. Subsequent 4-bit fragments are encapsulated inmac-
frag PDUs, whereas the last fragment is contained in a
mac-end PDU. Figure 12 depicts a diagram of the concept.
At this point, upon reception of all the fragments, the MS
decrypts and reconstructs𝑚 from the fragments. In case
the FCS is determined to be correct, the MS will emit an ac-
knowledgment. As such, we can now apply the keystream
expansion technique described previously on any times-
tamp between 𝑡 and 𝑡+10 to fully recover its corresponding
keystream.

14The fifth bit (TL-SDU number) does not affect whether or not an
acknowledgment is sent

Group communication Traffic destined for a talk group
is not addressed to individual MSes by the SwMI. Rather,
the talk group has its own subscriber identity, similar to the
concept of multicast in IP networks. In addition to its own
individual subscriber identity, an MS subscribed to a talk
group also processes incoming data destined for a group
subscriber identity, and decrypts it using the associated
key. There is no principle argument pertaining to why the
downlink keystream recovery attack outlined above should
not work in the context of talk groups. However, the attack
relies on frames being acknowledged by the MS, which
normally never occurs in a group context.

Experimental results In order to validate the presented
attack in practice, two viable approaches exist. Either, we
have to implement a TETRA base station stack on a Soft-
ware Defined Radio (SDR), or, we leverage the stack on a
real-world TETRA base station and instrument it to exhibit
the required behavior. Since implementing a TETRA in-
frastructure stack is a tremendous engineering effort, we
opted for the latter approach.
As such, we procured a Motorola MBTS TETRA base

station. Unfortunately, it camewithout support for air inter-
face encryption. We found that the included firmware con-
tains all the necessary prerequisites, except for the actual
stream cipher,which is implemented as an empty stub func-
tion. We proceeded by injecting arbitrary read/write/exe-
cute primitives in the firmware image and replacing the
stub with the TEA1 stream cipher. Doing so is straightfor-
ward as the image is not cryptographically signed. Then,we
built a small framework on top of these read/write/execute
primitives allowing us to compile C code to an ELF exe-
cutable, and load it as a module into the MBTS at runtime.
Functionality for redirecting code flow from the firmware
to a replacement implementationwas also introduced. This
served as an excellent foundation for experimentation. No-
tably, the framework was used to insert key material in the
MBTS, which can normally only be done bymeans of a Mo-
torolaKey Variable Loader (KVL) device. TheMBTSwas set
to use security class 2, and the same key material was pro-
vided to our MTM5400. Finally, the MTM5400 successfully
registered with the network and operated as normal. Anal-
ysis of downlink frames with OsmocomTETRA confirmed
that the traffic is indeed encrypted.
By overriding the procedure in the firmware that feeds

data to the transmission hardware, we gained the ability to
inject arbitrary messages. By injecting spoofed sync and

7472    32nd USENIX Security Symposium USENIX Association



sysinfo frames,we found that theMTM5400 can indeedbe
persuaded to arbitrarily update its internal frame counters,
and by extension, to re-use keystream.
We proceeded by implementing the bootstrap and

keystream expansion attack described earlier in this sec-
tion in the form of a base station console command. As
such, the MBTS acts as a usual TETRA base station, with
normal progression of network time. Upon entering the
console command, however, the attack code starts tamper-
ing with network time, sends out spoofed messages, and
interprets acknowledgments sent by the MS (or absence
thereof) in order to infer keystream. We confirmed that the
attack works reliably in practice on the MTM5400, recover-
ing the entire downlink keystream belonging to any desired
timestamp. We found the MTM5400 also acknowledges
frames destined for a talk group. Consequently, we tailored
our attack to target group subscriber identities, and con-
firmed successful keystream recovery for group-encrypted
traffic as well. We are not aware of any deviations between
the MTM5400’s implementation and the TETRA standard
and therefore expect most if not all other MS models to be
equally susceptible to the attack.
In a real-world scenario, an attacker will likely opt for

an SDR implementation of the attack, rather than a repur-
posedTETRAbase station. Furthermore, the attackerneeds
to perform a ‘takeover’ of the legitimate SwMI signal, for
example, by overpowering it. The ability to overpower an
existing TETRA networkwas not demonstrated experimen-
tally. However, given the attacker’s ability to use high-gain
directional antennas in areas with low infrastructure recep-
tion, as well as evidence by prior research in this area [25],
this should be relatively straightforward.
By carefully aligning with the legitimate SwMI’s time

slots, an MS should not be able to distinguish the attacker’s
signal from that of a legitimate SwMI. In the hypotheti-
cal situation where a signal takeover is infeasible without
causing the MS to enforce a re-authentication, the authen-
tication handshake can simply be relayed to the legitimate
SwMI. In class 2 networks, this has no effect on the effi-
cacy of the attack. In class 3 networks, this would trigger
a change of the DCK, effectively preventing keystream re-
covery of unicast traffic. However, keystream pertaining to
group-encrypted traffic can still be recovered.

Mitigations

In order to counter the keystream re-use vulnerabilitywhile
maintaining compatibility with the existing infrastructure,
MS firmwares may be updated to perform basic sanity
checks over incoming frame counters, such as detecting re-
peated frame counter decrements. Depending on the strict-
ness of such checks, the attack may be impeded beyond
practical feasibility. In our communication with stakehold-
ers, we have been informed that firmware updates have

been developed that indeed implement such sanity checks.
However, it must be noted that not all models will receive
patches, and that until the last vulnerable MS in a network
is either updated or replaced, the network as a whole very
much remains vulnerable to this attack.
As highlighted in Section 3.3, end-to-end encryption is

proprietary and hard to obtain and analyze, and we there-
fore cannot vouch for its security. However, it is likely to
be an adequate mitigation strategy against the keystream
re-use issue. Alternatively, in case the network predomi-
nantly carries packet data, less opaque and more generic
solutions may also be opted for, such as VPN tunnels, or
serial shield encrypters15.

5.2 Weak TEA1 stream cipher

Background

According to the specification [12], all four air interface
encryption algorithms (TEA1, TEA2, TEA3, TEA4) use 80-
bit keys, DCK, SCK, CCK, or MGCK, modified with public
network-specific information by function TB5 to yield an
80-bit Encryption Cipher Key (ECK) for use on the air in-
terface (Figure 4c). The KSG IV is constructed from frame
numbers and an uplink/downlink bit (see Section 5.1).

Vulnerability assessment

Although TEA1 takes an 80-bit ECK, the cipher’s initial-
ization compresses it to fit a 32-bit key register. Besides the
IV, the generated keystream subsequently only depends on
this value, and as such we refer to it as the reduced ECK.
The compression function is shown schematically in

Figure 5. The attack outlined below can be carried out
passively, and allows for full decryption of real-time, future
and previously captured traffic, and allows for encryption
of forged messages.

Validating a correctly guessedkey While a brute-force
attack is easily implemented, one still needs a means of de-
termining whether or not a key guess is correct. The most
obvious method of doing so involves gathering keystream
by guessing (partial) cleartext message contents based on
its context, such as call setup signaling, which generally
precedes encrypted traffic streams. Since the reduced ECK
holds 32 bits of entropy,knowledge of 32 bits of keystream is
typically enough to uniquely determine the correct reduced
ECK. However, there is a more systematic approach. In or-
der to increase transmission reliability, certain signaling
messages are transmitted several times, such as messages
related to channel allocation. Analysis of live TETRA traf-
fic shows that such retransmissions are frequent and easily

15A device that provides transparent encryption over serial link
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identified by looking for fourmessages with the same desti-
nation, MAC header and length, transmitted at a constant
1-frame interval. Since the repeated messages are sent at
different timestamps, their corresponding keystreams are
different. However, assuming that the cleartext of these
messages are identical, they should yield the samemessage
after decryption. By computing keystreams for all repeti-
tions of the message, we can distinguishing correct from
incorrect key guesses by verifying whether the messages
are indeed identical after decryption.

Recovering full keys A reduced ECK may be leveraged
into obtaining the full 80-bit DCK, SCK, CCK or MGCK.
Due to the modification through TB5, each channel (i.e.
uplink/downlink frequency for a single cell) uses a different
ECK, and thus a reduced ECK allows for encryption and
decryption on a single channel only, whereas the full key is
valid across the entire network. Furthermore, in a class 3
network, recovery of a DCK allows us to unseal intercepted
CCK updates received from the SwMI, and to forge sealed
CCK updates for an MS.
The compression function compresses the 80-bit ECK

to 32 bits such that there are 248 candidate ECKs for each
reduced ECK. Due to reliance on linear operations, we
can efficiently generate these 248 pre-images. Furthermore,
TB5 is trivially invertible given the (public) network infor-
mation elements. As such, we can mount an attack with
a complexity of 248 if we have a means of efficiently dis-
tinguishing correct from incorrect key guesses. One such
means is to recover three different reduced ECKs from dif-
ferent cells or carrier frequencies. For each of them, the
network information passed to TB5 is different. The full
80-bit key is uniquely determined by iterating over each
pre-image of the first reduced ECK, applying the inverse
of TB5, and checking whether the resulting key yields the
other two reduced ECKs after applying TB5 again (with
different network information parameters) and the com-
pression function.

Experimental results We implemented a proof-of-
concept in OpenCL for both attacks presented in this sec-
tion. Running on an NVIDIA GTX 1080 GPU, the search
space is exhausted in approximately 52 seconds for the
reduced ECK recovery, and 7 minutes for the full key re-
covery.

Mitigations

The TEA1 weakness cannot be resolved while retaining
backwards compatibility. We would like to see ETSI lift
their restrictions on the use of TEA2,and recommendTEA1
endusers tomigrate to TEA2. Given the fate of TEA1 paired
with the fact that TEA1 and TEA4 share the same target

audience designation, we strongly advise caution when
considering migration to TEA4 prior to any public scrutiny.
Since migrating a network from one cipher to another

requires either replacement or firmware updating of all
devices, without option for a (secure) transition period,
migration will prove infeasible in many scenarios. As with
the keystream re-use issue, one could opt for end-to-end
encryption instead. For networks mainly carrying packet
data, a VPN tunnel or serial shield encrypters can also be
considered.

Research collision After successful extraction of the
TETRA cryptographic primitives, we were informed that re-
searchers from the Ruhr University Bochum had obtained
TEA1 and TEA2 from an anonymous source. They had
equally identified the issue in TEA1, but did not intend to
publish.

5.3 Weak identity encryption scheme

Background

In order to establish whichMS traffic is intended for, down-
link traffic includes a 24-bit destination Short Subscriber
Identity (SSI), analogous to the MSIN (part of the IMSI) in
GSM terminology. This might be an Individual Short Sub-
scriber Identity (ISSI), or a Group Short Subscriber Identity
(GSSI), for individual and group-addressed traffic, respec-
tively. Other identity types exist but are out of scope for this
paper.
For all encrypted TETRA traffic, the destination address

is protected by an identity encryption scheme based on
algorithmTA61 [12] (Figure 4d). The primitive takes the 80-
bit SCK (class 2 networks) or CCK (class 3), which we refer
to as 𝑘, and the 24-bit SSI and generates a 24-bit Encrypted
Subscriber Identity (ESI).
First, 𝑘 is transformed into a 64-bit intermediate secret 𝑐

using the HURDLE block cipher in a construction resem-
bling a one-way function. The 24-bit SSI is then encrypted
with 𝑐 using a minimalistic two-round encryption scheme,
of which a diagram is given in Figure 13. Subfunction trid
represents a permutation function.

Publication restrictions Due to a pending coordinated
disclosure process (see Section 8), we currently refrain from
publishing TA61 in full detail. We do, however, provide the
outline of a meet-in-the-middle attack, in order to enable
informed discussion on the security of the primitive. The
derivation of 𝑐 and the structure of trid are deliberately
left out.
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Figure 13: Transformation of identity SSI using 𝑐 as TA61
intermediate secret. The points 𝑝1 and 𝑝2 represent the
attack forward and backward phase products, respectively.

Vulnerability assessment

The HURDLE block cipher is used solely in transforming 𝑘
into 𝑐, and the SSI is involved in the encryption process only
after computation of 𝑐. Thus, TA61 does not fully benefit
from the security guarantees offered by HURDLE.
We present a meet-in-the-middle attack16 that recovers

𝑐 given three valid (SSI,ESI) pairs. Meet-in-the-middle at-
tacks are a well-understood [4,19,32] class of time-memory
tradeoff cryptographic attacks against schemes that per-
form multiple encryption steps in succession, where a dif-
ferent (sub)key is used for each step. As can be seen in
Figure 13, TA61 follows such a structure.
Our attack consists of a forward phase, taking an un-

encrypted SSI and computing 𝑝1 (Figure 13) for all 224
valuations of 𝑐0, 𝑐3, 𝑐6. For each of these, we perform a back-
ward phase (involving trid−1) computing 𝑝2 for all values
of 𝑐2 and 𝑐5, given the ESI. Byte 𝑐0 follows from the forward
guess.
For each (SSI,ESI) pair, we thus compute all possible

valuations for 𝑝1 and 𝑝2. As can be seen in the figure,
these relate to 𝑐1, 𝑐4, 𝑐7 as follows:

(𝑐1, 𝑐4, 𝑐7) = (𝑝12,𝑝11,𝑝10)⊕ (𝑝22,𝑝21,𝑝20)

Guessing five bytes of 𝑐 thus yields us the remaining three
bytes. Given two (SSI,ESI) pairs, we obtain 216 valuations
for (𝑐0, 𝑐2, 𝑐3, 𝑐5, 𝑐6) which yield identical, consistent values
for (𝑐1, 𝑐4, 𝑐7): candidates for the actual value of 𝑐. With a
third pair, we obtain a single candidate. As such, we can
recover 𝑐 using three (SSI,ESI) pairs, with a complexity of
240.
The forward step has a complexity of 224, while the back-

ward step complexity is only 216 due to the re-use of 𝑐0. This
16Not to be confused with aman-in-the-middle attack. A good introduc-

tion on the meet-in-the-middle attack was presented by Verdult in [33].

yields a total complexity of 240 with no significant memory
requirement.
Note that 𝑐 is re-used for identity encryption as long as 𝑘

does not change, and as such, finding 𝑐 allows us to encrypt
and decrypt all identifiers until the SCK or CCK is changed.

Experimental results Identifiers are unencrypted dur-
ing authentication and encrypted thereafter. As such, an
(SSI,ESI) identity pair becomes known when we passively
monitor an authentication and subsequently encounter
an encrypted identity not previously seen. Hence, obtain-
ing three identity pairs is straightforward and only takes
minutes on a reasonably sized network. The process can
also be sped up by actively interfering with signals, provok-
ing MSes to perform a cell reselection and subsequently
re-authenticate.
We implemented a proof-of-concept of the attack in

OpenCL. The program takes three identity pairs and finds
𝑐. Running on anNVIDIAGTX 1080 GPU, the search space
is exhausted in approximately 16 seconds.

Mitigations

Since identity encryption is an essential and mandatory
part of the TETRA standard, modifying TA61 would break
compatibility with current versions of the standard. One
alternative mitigation could involve preventing one from
obtaining any knowledge on (SSI,ESI) identity pairs. We
see no viable non-protocol-breaking way of realizing such
a mitigation. As such, modification of TA61 in a future
TETRA standards revision seems to be the only way for-
ward.
The design of TA61 suggests it was designed to support

both encryption and decryption of identities, and avoid
collisions. Using the unencrypted identity as (part of) the
input for HURDLE would improve the cryptographic ro-
bustness. However, the 64-bit output would somehow need
to be compressed down to 24 bits, for which we see no pos-
sibility without violating the stated requirements. Rather,
we propose an amendment: first,we increase the size of 𝑐 to
128 bits in order to have a stronger intermediate secret. Sec-
ond, we expand the procedure to involve 6 rounds instead
of the current 2. This way, a practical meet-in-the-middle
attack is no longer possible, as the added entropy of 𝑐 raises
the computational complexity of deriving 𝑐 from identity
pairs beyond feasibility.

5.4 Session key pinning vulnerability

Background

The TETRA standard defines message flows for authenti-
cation in ETSI 300 392-7 clause 4.1 [12]. An MSC of the
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Figure 14: MSC of TETRA mutual authentication. The MS
and SwMI share a secret key K. R1 and R2 are Boolean
values indicating the handshake validity. On completion,
SwMI and MS share session key DCK.

message flow for mutual authentication is given in Fig-
ure 14, while key derivations are depicted in Figure 4a.
Since we focus on air interface communications, the dis-
tinction between SwMI and authentication centre is omit-
ted for readability.
In order to authenticate the MS to the SwMI and vice

versa, MS and SwMI share a secret key K. Random RS is
generated by the SwMI, and both are fed to the TA11 and
TA21 primitives, yielding KS andKS’, respectively. These in-
termediate keys are combined with the challenges RAND1
and RAND2, generated by the SwMI and MS respectively,
using algorithms TA12 and TA22. These algorithms yield
the responses RES1 and RES2, proving knowledge of the
secret K. Additionally, TA12 and TA22 yield partial session
keys DCK1 and DCK2. The SwMI signals whether RES1
was accepted by setting bit R1, while the MS signals RES2’s
validity with bit R2. If both are accepted, the session is au-
thenticated and session key DCK is derived from DCK1
and DCK2 using primitive TB4.

Vulnerability assessment

We can deduce a definition for session key DCK from the
authentication mechanism as described above and visual-
ized in Figure 4a. We obtain:
DCK = TB4(

TA12(TA11(K,RS),RAND1),
TA22(TA21(K,RS),RAND2)

)
However, having obtained the implementation of the TAA1
primitives, we can simplify the equation even further. We

found that TB4 is simply a bitwise XOR operator, that TA12
and TA22 are identical, and that TA11 and TA21 are very
similar; the difference being that TA21 reverses the byte
order of RS prior to performing the same operation as TA11.
Hence, the following definition also captures DCK:
DCK = XOR(

TA12(TA11(K,RS),RAND1),
TA12(TA11(K,reverse(RS)),RAND2)

)
Suppose that we are impersonating the SwMI. We can thus
freely choose RS, including a palindrome, i.e. a value for
RS satisfying reverse(RS) = RS. Furthermore, suppose that
we can accurately predict the value of RAND2 sent by the
MS. Then, by choosing RAND1 = RAND2, the DCK will
equal the following:
DCK = XOR(

TA12(TA11(K,RS),RAND2),
TA12(TA11(K,RS),RAND2)

)
Clearly, due to the XOR cancellation property, this simpli-
fies to 0 and hence, we obtain an all-zero DCK. Also, under
the portrayed circumstances, RES1 = RES2. Since we re-
ceive RES1 from the MS before having to provide RES2, we
can send the correct response without knowing K.
Hence, the integrity of session key DCK depends entirely

on the unpredictability of RAND2. However, this crucial
dependency is not reflected in any of TETRA’s specifica-
tions and only becomes apparent when details of the cryp-
tographic primitives are revealed. Given the track record
of the security of random number generation [15, 34] on
embedded systems, it is likely that a significant share of
radios deployed worldwide are vulnerable. In fact, by in-
vestigating the PRNG present the MTM5400, we found
that it is among the set of vulnerable radios, as its random
number generator solely relies on the clock tick register
as its entropy source (CVE-2022-26943). Furthermore, the
emitted RAND2 reveals information about the device’s in-
ternal random pool, which can be used for a subsequent
prediction attempt.
Carrying out this attack yields an authenticated session

with an MS, using an all-zero DCK, without knowledge
of K. Note that this does not allow the attacker to decrypt
traffic between the MS and the legitimate SwMI.

Mitigations

It is worth noting that, if the authentication handshake
were designed slightly differently, a degree of predictability
of RAND2 need not have compromised the DCK. For in-
stance, instead of using XOR, TB4 could have been based
on an operator that does not have the cancellation property,
such as addition with carry. Fortunately, mitigations can
be applied that preserve compliance to the protocol. For
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Section CVE Severity Description
Section 5.1 CVE-2022-24401 Critical Keystream re-use
Section 5.1 CVE-2022-24404 High Malleability of messages
Section 5.2 CVE-2022-24402 Critical Weak cryptographic primitive TEA1
Section 5.3 CVE-2022-24403 High Weak identity encryption scheme
Section 5.4 CVE-2022-24400 Low Session key pinning vulnerability
Section 5.5 - Unclear TEA3 S-box is not a permutation

Table 2: Summary of findings presented in this paper.

example, by ensuring that RAND1 = RAND2 never holds,
e.g. by enforcing RAND2 to be generated anew if it does.

5.5 TEA3 S-box
Background

The TEA3 keystream generator is intended for public safety
organizations that operate outside the geographical bound-
aries to which the use of TEA2 is restricted, and therefore
is widely adopted in non-EU countries around the world
such as India, China and Mexico.

Vulnerability assessment

Similar to TEA1 andTEA2, a separate key register is used to
create a stream of key-derived bytes. The key register is up-
dated by means of an S-box (see Section 4.3). Remarkably,
and contrary to best practice, we found the TEA3 S-box
is not a permutation. Instead, both index 0×14 and 0×9E
map to the same value, 0×C2, while the value 0×D2 does
not occur. Additionally, the duplicate and missing entries
0×C2 and 0×D2 only differ by a single bit. After performing
preliminary cryptanalysis on the TEA1 and TEA2 S-boxes,
we found that when the first 0×C2 entry in the TEA3 S-box
is substituted by 0×D2 certain properties of the resulting
S-box (such as algebraic degree, nonlinearity, and linear
potential) more closely align with those of TEA1 and TEA2.
This suggests that the duplicate entry may be considered
an accidental bit-flip, with unclear implications. Whether
this was by design or through error is currently unknown.
To the best of our knowledge, the property contrasts with

all S-boxes found in scientifically scrutinized and as-of-yet
unbroken ciphers. As such, the TEA3 peculiarity is to be
taken seriously. We leave in-depth cryptanalysis of TEA3
as future work.

Mitigations

The TEA3 KSG is a part of the TETRA standard that cannot
be changed without breaking compatibility with previous
versions of the standard. As such, pending further reas-
surance on the security of TEA3, we believe use of the
algorithm should be discouraged.

6 Conclusions

During the research that forms the basis of this paper,we set
out to demonstrate the feasibility of recovering the secret
cryptographic primitives underpinning TETRA through
reverse engineering, and provide the first public in-depth
analysis of these primitives and TETRA as a whole. As
elaborated in the introduction (Section 1), the process of
recovering the primitives is far from trivial, but possible
nonetheless. The secrecy of TETRA’s cryptographic primi-
tives has resulted in a nowwidely adopted technology with
severe weaknesses. The results uncovered are cause for se-
rious concern. Table 2 contains an overview. In summary:

• Keystream re-use issues (Section 5.1) exist affecting
all ciphers, resulting in loss of confidentiality and in-
tegrity. While the issues could have been inferred from
publicly available materials, the proprietary and in-
accessible nature of TETRA equipment significantly
complicates practical attack validation and subse-
quent public disclosure.

• The TEA1 cipher (Section 5.2), used by commercial
and public safety organizations around the world, is
deliberately weakened to the extent that it offers little
to no protection, resulting in loss of confidentiality and
integrity. The secretive nature of the ciphers impedes
proper assessments of the level of security.

• Flawed identity encryption and authentication pro-
tocol design issues (Sections 5.3 and 5.4) exist that
could lead to de-anonymization of users, illegitimate
authentication and session establishment with confi-
dentiality implications. These attacks only become ap-
parent when one is in possession of the cryptographic
primitives.

• The S-box of the TEA3 cipher (Section 5.5), used by
public safety organizations around the world, was
found not to be a permutation, which is highly un-
usual. The precise implications are still unclear, but
preliminary analysis suggests that it is not the result
of a deliberate hardening effort. Again, this issue only
becomes apparent when one is in possession of the
TEA3 cipher.
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We believe that the security posture of TETRA is sig-
nificantly worse than what has been common perception
until now. Particularly worrisome is that this situation has
existed for multiple decades, with little to no means for
security analysts and asset owners to either address or even
become aware of such issues.

7 Future Work

Although several issues with high impact were uncovered,
we believe TETRA is far from exhausted as a research area.
For example, a security analysis of currently deployed

end-to-end encryption solutions would be a major contri-
bution, especially since a considerable share of TETRA
users will consider end-to-end encryption as a mitigation
pathway for the issues described in this paper.
Furthermore, the structure of the uncovered ciphers is

somewhatunconventional andadditional in-depth analysis
is needed. In particular TEA3 should be critically evaluated
so that the discussion on whether its users should migrate
can be put to rest. In addition, recovery and analysis of
the TEA4 cipher may be valuable since, like TEA1, it is
approved for worldwide commercial use, and thus may
also offer less cryptographic strength than advertised.
Finally, ETSI has announced future TETRA security en-

hancements17 including additional authentication and en-
cryption algorithms which ought to resist cryptanalysis
into the 2030s and beyond, indicating an envisioned multi-
decade future for TETRA. These algorithms will again be
considered confidential, perpetuating the use of secret cryp-
tography in sensitive contexts. As such, we believe height-
ened scrutiny of these future enhancements is warranted.

8 Ethics and Responsible Disclosure

In December, 2021, we have informed the Dutch NCSC of
our findings. Ever since, we have been in close collabora-
tion with ETSI, manufacturers and government agencies
in the context of a coordinated disclosure process. Due to
the high impact and often sensitive nature of the commu-
nications, the embargo period was initially set at a year
and later extended in agreement with key stakeholders in
order to allow for large-scale patch deployment operations,
mitigating some of the highlighted issues. While we al-
ways insisted on full publication of both the primitives and
the vulnerabilities we uncovered, in the interest of some
stakeholders, we have agreed to temporarily withhold pub-
lication of the TA61 identity encryption primitive. We will
publish the full TA61 primitive in December 2023.

17See: https://portal.etsi.org/webapp/WorkProgram/Report_
WorkItem.asp?WKI_ID=57516
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