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Abstract
Differential privacy (DP) is a mathematical privacy notion
increasingly deployed across government and industry. With
DP, privacy protections are probabilistic: they are bounded
by the privacy loss budget parameter, ε. Prior work in health
and computational science finds that people struggle to reason
about probabilistic risks. Yet, communicating the implications
of ε to people contributing their data is vital to avoiding pri-
vacy theater—presenting meaningless privacy protection as
meaningful—and empowering more informed data-sharing
decisions. Drawing on best practices in risk communication
and usability, we develop three methods to convey probabilis-
tic DP guarantees to end users: two that communicate odds
and one offering concrete examples of DP outputs.

We quantitatively evaluate these explanation methods in
a vignette survey study (n = 963) via three metrics: objec-
tive risk comprehension, subjective privacy understanding of
DP guarantees, and self-efficacy. We find that odds-based ex-
planation methods are more effective than (1) output-based
methods and (2) state-of-the-art approaches that gloss over
information about ε. Further, when offered information about
ε, respondents are more willing to share their data than when
presented with a state-of-the-art DP explanation; this willing-
ness to share is sensitive to ε values: as privacy protections
weaken, respondents are less likely to share data.

1 Introduction

Differential privacy (DP) [20] is a formal definition of privacy
that has been integrated into several high-profile data analysis
pipelines, including the 2020 U.S. Census data products [1]
and internal metric measurement tools at, e.g., Google [23],
Apple [4], Microsoft [18], and Uber [81].

∗The author conducted part of this work while visiting Columbia Univer-
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†The author conducted part of this work while visiting the Simons Institute
for the Theory of Computing at UC Berkeley.

‡The author contributed equally to advising this work.

As DP is increasingly applied to protecting people’s pri-
vacy, it is vital that organizations deploying DP effectively
communicate the privacy implications of implementation de-
tails that govern the strength of systems’ privacy protections.
Without such transparency, organizations risk engaging in
“privacy theater,” [19, 76, 77] which may result in people
falsely believing they are well-protected [14, 80].

While DP offers a precise framework for measuring worst-
case privacy loss, research has found that non-experts struggle
to form accurate assessments of the real-world privacy pro-
tections DP affords [14, 85]. One source of confusion is the
probabilistic (i.e., non-absolute) nature of DP’s privacy pro-
tection. In particular, DP bounds privacy loss as a function of
the unitless privacy loss budget parameter ε. Differentially-
private algorithms inject a calibrated amount of statistical
noise inversely proportional to ε into either the data or anal-
ysis outputs (depending on the DP model), meaning higher
values of ε correspond to weaker privacy protections.

Explaining probabilistic systems to end users (i.e., people
contributing their data) is a challenging task, as observed
by prior social science research on health risk communica-
tion [43, 75]. Explaining probabilistic privacy risk, such as
that created by DP, is a similarly—or perhaps an even more—
challenging problem, given that the probabilistic nature of the
system arises from the use of a complex, explicitly mathemati-
cal process, rather than variation in population-level behaviors.
Moreover, the privacy protections offered by differentially-
private mechanisms lack context, i.e., they are agnostic to
the social context of a dataset or analysis. Privacy scholars,
however, have theorized that people understand privacy con-
textually [61].

Despite the critical importance of ε, many deployed DP
systems only describe ε in technical documentation, while
information about the privacy protection accessible to the
general public glosses over the implications of the chosen ε

altogether [14, 19]. This is particularly problematic, as the
values of ε used in practice, and thus the real-world privacy
protections afforded by DP systems, vary wildly [11, 16].

Prior research on explaining DP has either sidestepped the
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complicated task of explaining ε to end users [14, 24, 45, 85]
or focused on addressing the impact of ε for very specific
deployments of DP [9,15,76], e.g., explaining the randomized
response mechanism [9]. As a result, we currently lack
explanations of DP that include ε and can be used with all
differentially-private mechanisms. Without access to such
explanations, organizations deploying DP systems must
either write new deployment-specific descriptions of DP that
are unlikely to be scientifically evaluated, or risk leaving their
users unable to make well-informed decisions.

We fill this gap by developing and evaluating explanation
methods for DP that directly address the implications of ε.
The result of our work is a framework for conveying ε to end
users that is highly portable, in that it can be adapted to many
deployment settings. Our explanation methods avoid relying
on describing mathematical details of the mechanism and fo-
cus on the concrete ramifications of the choices a user might
potentially face, e.g., if they are to share their data. This is a
conceptual departure from prior work on DP communication,
which focuses on the implications of using DP instead of
running the equivalent, non-private system [9, 76] or learn-
ing attributes using information that is available even if an
individual chooses not to share their data [24, 84, 85]. We
also evaluate our methods by testing an instantiation of our
explanation methods in a scenario with binary count queries.
In Section 3.3, we offer direction for how our methods can be
ported into other scenarios.

New Explanations for Differentially-Private Systems. We
draw on best practices in risk communication and usabil-
ity [22, 27, 28, 31, 39, 44, 49, 75] to develop explanation meth-
ods designed to allow people to quickly and easily reason
about probabilistic privacy guarantees under DP.

Specifically, we design three explanation methods for
ε. Our first explanation method (ODDS-TEXT) leverages
best practice methodology for risk communication to give a
textual description of the odds that an information leak might
occur if a person decides to share their data; this is a stylized
version of the “textbook” understanding of DP [21] which
compares the outputs of differentially-private mechanisms
applied to neighboring databases, each corresponding to a
situation where a person does or does not share their data.
Our second explanation method (ODDS-VIS) conveys the
same information using a frequency-framed visualization
approach which may help people with low numeracy skills
more accurately make probability judgments [27]. Our third
explanation method (SAMPLE REPORTS) draws on prior work
in usable security and privacy (S&P) on improving user com-
prehension of S&P technologies [31] to provide people with
several potential outputs of the DP mechanism in an effort to
make the implications of their data-sharing choice concrete.

We evaluate the efficacy of these explanation methods using
three metrics: (1) objective risk comprehension, (2) subjective
privacy understanding, and (3) self-efficacy (personal belief
in decision-making capacity [55]). We additionally study the

relationship between our explanation methods and (4) will-
ingness to share data.

In summary, we are interested in answering the following
research questions (RQs):

RQ1: Which practices in risk communication work best for
communicating the probabilistic privacy guarantees of-
fered by DP? Specifically, which practices are effective
at increasing people’s

(a) objective risk comprehension of DP guarantees,

(b) subjective privacy understanding of DP guarantees,

(c) self-efficacy around making data-sharing decisions?

RQ2: How do the explanation methods we develop influence
people’s data-sharing decisions?

We answer our RQs via a vignette survey study (n =
963) in which we embed our DP explanations into concrete
information-sharing scenarios and evaluate them using the
aforementioned criteria against each other and multiple con-
trol explanations.

Summary of Findings. We find that people have better objec-
tive risk comprehension (RQ1a) of DP protections when pre-
sented with odds-based explanations (ODDS-TEXT or ODDS-
VIS) than with SAMPLE REPORTS, which presents sample
outputs from the privacy mechanism.

Despite our findings about objective risk comprehension,
none of our explanations meaningfully improve people’s sub-
jective privacy understanding (RQ1b), i.e., people feeling as
though they understand the privacy protection.

Further, to assess self-efficacy (RQ1c), we ask respondents
if they feel as though they (1) have enough information to
make a data-sharing decision and (2) are confident making
said decision. The odds-based explanations we test increase
people’s sense that they have enough information to make
a data-sharing decision compared to a state-of-the-art [85]
explanation that does not feature information about ε, suggest-
ing that there is merit to not glossing over the probabilistic
nature of DP privacy protection. However, our SAMPLE RE-
PORTS method for explaining ε had the opposite effect: it
reduced feelings of having enough information to make data-
sharing decisions as compared to a very simple and clear
description of the scenario without any probabilistic privacy
protections, suggesting that this explanation actively confused
respondents.

Interestingly, we do not find evidence that any of our expla-
nations meaningfully impact people’s confidence in making
data-sharing decisions compared to a state-of-the-art expla-
nation. Instead, we find that their overall concern about the
ramifications of their data-sharing significantly relates to their
confidence.

Last, we study the influence of our explanations on
people’s willingness to share data (RQ2). Our findings
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indicate that people are much more likely to share their
data when presented with an explanation of DP that offers
information about ε (compared to one that does not),
regardless of which explanation method is used. Finally,
when offered information about ε, respondents’ data-sharing
decisions are sensitive to changes in ε, empirically validating
theoretical proposals that willingness-to-share depends on
the strength of the privacy mechanism [21].

2 Background

Differential Privacy. DP [20] is a mathematical privacy
definition which ensures, at a high level, that the results of an
analysis should be similar regardless of the inclusion of any
given individual’s information in that analysis. Differentially-
private mechanisms add carefully calibrated random noise
at some point in the data analysis process in order to obscure
details at the individual level while maintaining accuracy
at the aggregate level. If too much noise is added, it will
overwhelm the signal in the data, and the analysis results will
be useless. If too little noise is added, the privacy protection
offered to individuals may not be meaningful. The privacy
loss budget parameter, ε, controls this trade-off; a smaller
privacy loss budget provides a stronger privacy guarantee.
We state the formal definition of DP below:

Definition: [Dwork et al. [20]] A randomized algorithm
A : D → R is ε-differentially private if for every pair of
databases D,D′ ∈ D that differ in at most one entry and for
every subset S ⊆ R , Pr[A(D) ∈ S]≤ eε ·Pr[A(D′) ∈ S].

Implementations of DP typically adopt either the local or
central model.1 In the central model, a trusted curator stores
the collected data and adds noise as necessary when releasing
statistics, charts, or other aggregate insights about the data.
In the local model, noise is added to each individual’s data
before it is sent to the curator. While prior work has already
explored the task of explaining the privacy loss budget to end
users in the local model [9, 15, 76], our study addresses the
more challenging task of explaining the privacy loss budget
in the context of the central model.

One of the simplest mechanisms for achieving DP is the
Laplace Mechanism [20, 21]. In this mechanism, a data col-
lector releases results of a simple counting query by adding
noise sampled from a Laplace distribution centered at zero
with scale parameter 1

ε
. The resulting outcome is distributed

according to Lap(µ,b = 1
ε
), where µ is the true value of the

counting query before noise is added.2

Communicating DP to End Users. Prior work has begun to
study the task of communicating DP to the general popula-
tion [9, 14, 15, 24, 45, 76, 85, 86]. For the local model, Smart

1Although, other models also exist [17].
2Note that the standard presentation of the Laplace Mechanism focuses

on the distribution of the noise rather than the output. Our presentation is
mathematically equivalent and is consistent with our use of the Laplace
Mechanism in Section 3.2.2.

et al. [76] and Bullek et al. [9] have explained the strength of
privacy protections in terms of the probability of bits being
“flipped.” However, this style of explanation does not work
for the central model since noise is added at the aggregate
level instead of at the individual level. Metaphors provide a
different approach for explaining DP. For example, Karegar et
al. [45] use the metaphor of blurring images as an analogy for
adding statistical noise to collected data. Such metaphors can
help people understand that there exists a privacy-accuracy
trade-off, such that increasing the injected noise strengthens
the privacy guarantee but harms accuracy. However, these
metaphors do not explain the implications of particular set-
tings of ε, a challenge we address in our work.

Xiong et al. [86] studied how to communicate the implica-
tions of the privacy loss budget for both privacy and accuracy
of location data. The authors develop illustrations for the lo-
cal, central, and shuffle models (see [5]) that show how the
amount of added noise affects privacy and accuracy. They
use heatmaps to compare the accuracy of collected location
data before and after noise is added. They inject positive
rather than unbiased noise to avoid the problem of negative
counts that may confuse people who are unfamiliar with DP.
In our study, we instead choose to embrace the sometimes
unintuitive results produced by adding unbiased noise and
investigate end users’ perceptions of them.

Franzen et al. [24] borrowed from the literature on quanti-
tative risk communication to explain the protections offered
by DP. Although quantitative risk communication formats
can aid comprehension, individuals with low numeracy skills
struggle to understand these explanations. We include a mea-
sure of numeracy skill in our survey to determine whether
our explanations similarly disadvantage individuals with low
numeracy skills. An important difference between Franzen
et al. [24] and our work is the comparison probability (to the
probability of a negative outcome given that an individual
shares their data) we each present: Franzen et al. present the
probability of a negative outcome given no data collection
takes place, while we show the probability of a negative out-
come given the individual does not share their data, but all
other factors remain the same. Because people rarely have
the power to immediately stop an entire data collection pro-
cess, we suggest that it is important to explore this separate
decision context in an effort to closely align with real-world
decisions people make.

Supporting Decision-Making Around ε. Research on
communicating implications of ε has tended to focus on data
curators or analysts who are setting privacy loss budgets.
For example, there have been several interfaces for DP
(DPComp [37], Overlook [82], PSI (Ψ) [25], Bittner et
al. [6], DPP [41], ViP [59]) that portray accuracy and/or
risk implications of ε to support more informed privacy
loss budget setting. Although these tools are aimed at data
analysts and curators, they are also relevant to communicating
DP to non-experts because these analysts/curators typically
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are not assumed to have DP background or expertise. As such,
these tools must express relevant DP concepts well enough
to support decision-making about privacy loss budgets. At
the same time, we note that end users are usually not tasked
with setting or allocating privacy loss budget, but rather must
make individual data-sharing decisions.

Hsu et al. [40] propose an economic framework for people
considering sharing their data, e.g., as part of a scientific
study, to weigh monetary costs of sharing versus not sharing
their data. Wood et al. [84], in explanations of ε in a primer
on DP, similarly frame data-sharing decisions in terms
of worst-case monetary losses (e.g., in terms of increases
to insurance premiums) people could incur if they share
their data under DP. Heffetz and Ligett [38] describe ε to
economists in the context of calculating a mean salary value,
focusing primarily on accuracy outcomes. Finally, Lee and
Clifton [48] model disclosure risk by considering a potential
attacker who conducts a Bayesian update on their beliefs
of whose information is included in an analysis based on
seeing a release from a differentially-private mechanism.
Our odds-based explanation methods similarly model an
attacker’s updated beliefs given a DP output.

Probabilistic Risk Communication. Many studies have iden-
tified best practices for effective probabilistic risk communica-
tion, especially in the medical context [22,49]. Prior work has
found benefits of framing probabilities as frequencies [28,39].
One challenge in probabilistic risk communication is that peo-
ple often misinterpret probabilities expressed as ratios—for
example, people may mistakenly interpret an event with a
probability of 1 out of 10 as less likely than an event with a
probability of 10 out of 100, simply because the former ratio
is expressed with smaller numbers [3,88]. Thus, it is best prac-
tice to use a consistent denominator when presenting ratios
for comparison [49]. Frequency-framed visualizations, such
as icon arrays, can also complement numeric risk commu-
nication. Compared to purely numeric presentations of risk,
icon arrays may improve understanding particularly among
people with low-numeracy skills [27]. We incorporate these
findings into our explanations of DP by framing probabilities
as frequencies and employing icon arrays.

3 Explanation Methods for ε

We introduce three methods to explain ε to end users. These
methods work for two common data-sharing settings: one
where providing data is optional, so people must decide
whether to participate (or opt-out), and one where providing
data is mandatory, so people must decide whether to respond
truthfully (or respond untruthfully).

Drawing on best practices from the literature in health risk
communication [22,39,49], we develop two explanation meth-
ods (ODDS-TEXT and ODDS-VIS) that focus on explaining
the odds of a negative event occurring by contextualizing pri-
vacy guarantees in terms of outcomes that could occur based

on decisions users can make. We develop a third method
(SAMPLE REPORTS) that provides concrete examples of the
protected data, based on findings that indicate concrete exam-
ples help people comprehend S&P topics [31]. Examples of
each explanation method instantiated in our survey scenario
(see Section 3.2.1) are in Figure 1.

3.1 Description Approaches

ODDS-TEXT. In line with research [75] finding that people
reason more effectively about the odds of a risk when framed
as frequencies versus percentages, including in the context of
privacy decisions [44] and DP specifically [24], we present
all probabilities in the ODDS-TEXT explanation as frequen-
cies (Figure 1a). Specifically, probabilities are shown in the
form of “z out of 100 potential DP outputs” where z is a
natural number and “DP outputs” can be customized to spe-
cific scenarios (e.g., if the DP output is published in a report,
the explanation may instead say “potential reports”). Specifi-
cally, this explanation method comprises of two probabilities
corresponding to the chances that an adversary A believes,
based on prior knowledge combined with a DP output, that a
data sharer provided information corresponding to the actual
value dtrue if the data sharer participates vs. does not partic-
ipate OR responds truthfully vs. untruthfully. Data sharers
have immediate agency over these actions, and hence showing
probabilities aligning with these actions is directly relevant
to their data-sharing decision-making process. Specifically,
ODDS-TEXT explanations take the following form:

If you [do not participate/respond dfalse], x out of
100 potential [DP outputs] will lead A to believe
you responded dtrue.
If you [participate/respond dtrue], y out of 100 po-
tential [DP outputs] will lead A to believe you re-
sponded dtrue.

ODDS-VIS. Research has found that icon arrays—a
frequency-framed visualization approach (Figure 1b)—
sometimes help people with low-numeracy skills more ac-
curately estimate risk reduction [27]. Thus, we add an icon
array to the text-based description of the risk ratios in the
ODDS-TEXT condition. We use icon arrays to help people
concretely visualize that there are many potential DP outputs,
but A will only receive one. The shape of the icon can be
adapted to suit the scenario. We fill in icons top to bottom, as
this arrangement has been shown to be optimal for supporting
accurate probability judgments [87]. Icon colors follow from
the Tableau 10 color palette [78], which was designed keeping
in mind common forms of color-vision deficiencies.

SAMPLE REPORTS. Drawing on prior work in S&P show-
ing that concrete examples improve user comprehension of
privacy enhancing technologies and secure behavior [31], the
SAMPLE REPORTS method shows five potential DP outputs
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(a) ODDS-TEXT (b) ODDS-VIS (c) SAMPLE REPORTS

Figure 1: Examples of our explanation methods applied to the manager’s performance review scenario under the optional setting and ε = 0.5.

from an analysis if the data sharer were to participate/respond
truthfully (i.e., share dtrue) and five potential DP outputs if
they were to not participate/respond untruthfully (i.e., provide
no data or share dfalse) (Figure 1c). Presenting both sets of
potential outputs allows the data sharer to make comparisons
between how these values would differ based on their deci-
sion, and the extent to which their survey response sways the
DP output.

3.2 Contextualizing Explanations
In order to leverage the description approaches outlined above,
we require the following: (1) a concrete scenario in which
the data sharer should think about the explanation and (2)
the values for parameters described above (e.g., probabilities
for both odds-based methods). In this section, we introduce
a hypothetical data-sharing scenario and outline how to ap-
propriately compute values for explanations for the given
scenario. We use this hypothetical scenario in surveys with re-
spondents (more details in Section 4). As detailed below and
in Section 6, our methods and calculation techniques for each
method can be extended to numerous other DP applications.

3.2.1 Workplace Evaluation Scenario

Imagine that an employee (the data sharer) is asked to share an
evaluation of their manager (A), but fears their manager will
retaliate against them if they believe the employee reviewed
them negatively. Everyone reporting to the manager is asked
to share an evaluation, which specifically asks the following
YES/NO question: Do you feel adequately supported by your
manager? This scenario describes data collection and analy-
sis occurring under the central DP model: the company will
collect un-noised answers and create a report with the total
number of NO responses calculated using the Laplace Mecha-
nism with a particular ε. The report will not include names
of team members and how they responded, however. For our
demonstrative scenario, we focus on the Laplace Mechanism
because it is both canonical and commonly-used in real-world
deployments [2, 65, 72]. Note that our explanation methods
can be used to convey privacy strength of various other DP

ε = 0.1 ε = 0.5 ε = 2 ε = 4
x = 48
y = 52

x = 39
y = 61

x = 18
y = 82

x = 7
y = 93

Table 1: Values for odds-based explanation methods.

mechanisms (e.g., Gaussian) simply by plugging in other
noise distributions in the analysis that follows. We focus on bi-
nary count queries because they are an often-used SQL query
and have been studied extensively in the DP literature [42,58].

Since DP guarantees are often framed through a worst-case
lens, we further design the scenario to represent a worst-case
situation where the manager has prior knowledge on how
all the other teammates will respond. For concreteness, we
suppose that they will all respond YES, while the employee
wants to respond NO (dtrue), thus putting the employee at
risk of being singled out in summary statistics. The other
teammates’ responses can be modified to suit other contexts,
resulting in modifications to µ in the following analysis. We
also imagine that the manager’s prior belief that the employee
will respond NO is 50%. See Appendix A for how the analysis
specifically for ODDS-TEXT and ODDS-VIS can be updated to
accommodate non-uniform priors.

3.2.2 Calculating Values for Explaining ε

We describe how to calculate values for explanations in the
workplace data-sharing context described above. Values com-
puted for our explanation methods are the same regardless of
whether the employee is in the mandatory or optional data-
sharing setting.3

ODDS-TEXT and ODDS-VIS. We calculate values for the
ODDS-TEXT and ODDS-VIS explanations by modeling the
manager’s guessing process. We assume that the manager
correctly believes all other teammates will respond YES, con-
sistent with the scenario details described in Section 3.2.1.
Thus, the true count of NO responses is either 0 or 1, depend-

3These values are the same in our case because we consider count queries,
and hence the sensitivities do not change.
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ing on whether the employee participates/responds truthfully.
Values consistent with this scenario for multiple privacy loss
budgets are shown in Table 1.

We model the manager’s inference process as estimating
the employee’s most likely survey response, given the ob-
served DP output. Using distributional knowledge of the
DP mechanism, the manager compares posterior probabil-
ities of the employee’s response given the DP output to
determine a maximum likelihood estimate (MLE). Let the
output of the DP mechanism be r. The manager compares
Pr[E = r | E ∼ Lap(µ = 1,b = 1

ε
)] with Pr[E = r | E ∼

Lap(µ = 0,b = 1
ε
)], respectively corresponding to when the

employee: reports truthfully/participates and lies/do not par-
ticipate, and then guesses the action corresponding to a higher
posterior probability. We compute a threshold value rthreshold
where Pr[E = rthreshold | E ∼ Lap(µ = 1,b = 1

ε
)] = Pr[E =

rthreshold | E ∼ Lap(µ = 0,b = 1
ε
)] and report Pr[r < rthreshold]

(i.e., x
100 in Table 1) and Pr[r > rthreshold] (i.e., y

100 in Table 1).

SAMPLE REPORTS. In our scenario, the manager will re-
ceive a report with the total number of NO responses. To obtain
potential outputs for SAMPLE REPORTS under a given ε, we
make five random draws from each of Lap(µ = 1,b = 1

ε
),

corresponding to potential DP outputs when dtrue is shared,
and Lap(µ = 0,b = 1

ε
), corresponding to potential DP outputs

when there is no participation/dfalse is shared. We do not post-
process sampled values, meaning that they can be fractional
or negative. As such, we include a statement preceding these
values explaining: “The total number of NO responses may
be fractional or negative due to the privacy method.”

3.3 Realizing Portability

Our methods for explaining ε can be used across a range
of scenarios. For example, they can be applied to the Gaus-
sian Mechanism and therefore (ε, δ)-DP—a relaxation of
ε-DP [21]—using the same probability calculation as for the
Laplace Mechanism, except the Laplace CDF is replaced
with the Gaussian CDF. Furthermore, our framework is eas-
ily adapted to scenarios where the the adversary has a non-
uniform prior over beliefs of the data sharer’s action. We
provide details in Appendix A. In Section 6 we offer further
directions to extend our methods to other queries, such as
mean queries.

Our odds-based explanation methods can also be extended
to other common models of DP, like local DP [46]. When us-
ing local randomizers, one can apply, for instance, the Laplace
Mechanism on a database of size one and use the same ex-
planation methods. Note that most local DP deployments
in practice are on binary/categorical data, meaning that our
specific calculations for binary count queries in the central
model map nicely. Note, however, that local DP algorithms
for binary cases have an even simpler “explanation” for ε,
which is the probability of a coin flip (as explored by Bullek

et al. [9]). However, that probability does not provide informa-
tion about the probability of a bad outcome; rather, it explains
the randomness of the mechanism.

4 Evaluation

We evaluate our explanation methods by conducting online
vignette surveys (n = 963), which are designed to mimic real-
world decision-making behavior [30], where we present re-
spondents with the survey scenario described in Section 3.2.1
and an explanation of ε created using one of our three meth-
ods, as detailed in Section 3.1. Columbia University’s IRB
approved this research.

4.1 Survey Scenario
Survey respondents are told to imagine themselves as the
data sharer (employee) described in Section 3.2.1, either in
the optional or mandatory setting. Respondents who see a
scenario in the optional setting are told that while participation
in their company’s survey is optional, participating means
they will necessarily respond truthfully (they will respond
NO), i.e., if they participate they cannot lie. On the other hand,
respondents who see the mandatory setting are explicitly told
they can either respond truthfully (NO) or untruthfully (YES).
Across settings, scenario details are the same except for slight
differences in wording expressing whether the company’s
survey is mandatory or optional.

Following best practices for vignette studies [71], we de-
signed this scenario to mimic common performance evalua-
tions conducted across workplace and educational settings,
thus increasing the chances that respondents would find the
scenario believable and relatable. To ensure that all respon-
dents read our explanations of privacy guarantees with similar
assumptions about why they would want their data protected
in the hypothetical scenario, we clearly define the negative
consequences that could transpire if the manager were to cor-
rectly guess a negative survey response (“Your manager may
retaliate if they believe you responded NO. For example, they
might give you a negative performance review, assign you
extra work, or try to get you fired.”). We then ask the respon-
dent to imagine that the team’s performance reviews will be
protected using a “privacy protection method” and do not
include the term “differential privacy” anywhere in the survey
to prevent respondents from searching for external materials.

The impact of the privacy-protection mechanism is then
explained using a method described in Section 3, with one
of four privacy loss budgets (ε ∈ {0.1,0.5,2,4}), which
represent a range of privacy protection strengths. There is no
standard for setting ε [19], so we chose these values to repre-
sent what is often recommended in the academic DP literature
(small ε values, like 0.1) and larger values that are more con-
sistent with real-world deployments [16]. Some real-world
applications of central DP use privacy loss budgets much
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larger than our largest value (e.g., the U.S. Census Bureau
set a total privacy budget of 19.61 for the 2020 Census redis-
tricting data [11]), but these budgets refer to ε accumulated
over many queries, whereas our scenario includes just one.

All respondents who receive SAMPLE REPORTS under the
same ε are presented with the same set of random draws.
That is, to maintain consistency in what respondents see, we
make these draws in advance and do not dynamically make
new draws for each respondent. All generated values shown
in SAMPLE REPORTS explanations are available on OSF.4

Values shown in both odds-based explanations are in Table 1.
We tested our questionnaire via cognitive interviews (n =

12), following best practices [69] and using a think-aloud pro-
tocol [83], with potential study respondents to further refine
the scenario for clarity and believability. Based on these inter-
views, we iterated on the introduction to our explanations and
further specified potential negative consequences of informa-
tion disclosure. We additionally tested our questionnaire via
expert reviews (n> 10) by experts in DP, survey methodology,
and visualization.

4.2 Experimental Design

We use a 3×4×2 between-subjects study design where each
respondent sees one explanation, computed using a particular
explanation method (ODDS-TEXT, ODDS-VIS, SAMPLE
REPORTS) and privacy loss budget (ε ∈ {.1, .5,2,4}), in a
given scenario type (optional, mandatory). We also have two
control explanations to which we compare our experimental
explanations: one where there are no privacy protections
(deterministic control) and another that includes a high-level
explanation of DP that does not mention ε, which is adapted
from Xiong et al. [85] (Xiong et al. control).

Deterministic Control: The worst-case situation for a hypo-
thetical employee in our vignette is that no privacy protection
is applied. In this case, the risk of the negative consequence
in the scenario is deterministic (i.e., respondents can expect
deterministic outcomes in their manager’s beliefs): If the re-
spondent participates/answers NO, their manager will believe
they responded NO with probability 1 and if they do the op-
posite, their manager will believe they responded NO with
probability 0. Not only is this “explanation” a worst case, but
prior work [3, 7, 75, 88] on risk communication also suggests
that it will be the simplest for respondents to understand (ob-
jective risk comprehension) and may give them the greatest
self-efficacy because of its determinism, in contrast to our
probabilistic explanations. Hence, we use this deterministic
setting as a control: to do so, we include the same scenario
text as in the experimental conditions but omit the stylized
description of DP and explanation of privacy guarantees.

4OSF link: https://osf.io/w59fv/?view_only=
c42a3d68bf9d4f35abe488aab831e775
For reproducibility, we seeded the mechanism with the date. Our code for
making draws is also on OSF.

Xiong et al. Control: We also compare our experimental
explanations to the current state-of-the-art explanation of DP
from Xiong et al. [85]. Because this explanation does not offer
information about ε, it helps us assess the impact of adding
information about ε on people’s understanding of DP protec-
tions, self-efficacy in data-sharing decisions, and willingness
to share data. To present this control, we include the same
scenario text as in the experimental conditions but replace our
stylized DP description and privacy explanation with a DP
description adapted from Xiong et al. [85] (precise wording
on OSF4). While Xiong et al. propose several descriptions,
we adapt their “DP without names” description since it aligns
best with our scenario, and because their evaluation indicates
that people found it easy-to-understand and that it supported
comprehension on a relevant evaluation question about third-
party viewers of the data.

4.2.1 Evaluation Metrics and Willingness to Share Data

Respondents answered questions to evaluate our explanations
on three metrics: (1) objective risk comprehension, (2) sub-
jective privacy understanding, and (3) self-efficacy. We also
study the relationships between our explanations and (4) re-
spondents’ willingness to share data.
(1) Objective Risk Comprehension: We included two
TRUE/FALSE questions to evaluate whether the explanations
help people understand the risk inherent in the scenario:
whether or not their manager will think they responded NO.
In addition to options for TRUE and FALSE, we also provide
an “I don’t know” option [69] to minimize random guesses
that are correct by chance. Prior work on communicating
DP to people [24, 76, 85] has similarly asked objective-risk-
comprehension questions.

The first question, in the mandatory setting, reads:

My manager is more likely to think I responded
NO (i.e., respond truthfully) if I respond NO on the
survey than if I respond YES (i.e., respond untruth-
fully).

The version shown in the optional setting is nearly identical
but asks about the manager’s beliefs if the person were to
participate/not participate.

Respondents in all experimental conditions and the deter-
ministic control answer this question. Respondents in the
Xiong et al. control do not answer this question, as the ex-
planation does not specify ε; thus ground-truth answers do
not exist.5 For our experimental conditions, the correct an-
swer under all privacy loss budgets we test is TRUE. For the
deterministic control, the correct answer is TRUE.

5Because the Xiong et al. control indicates that DP is used, it can be
argued that there is a correct answer (TRUE) to the first objective-risk-
comprehension question. However, as ε tends toward zero, the difference in
probabilities goes to zero. Hence for large ε the correct answer would clearly
be TRUE, but for small ε values very close to 0, there may be little practical
distinction between the probabilities and FALSE would be approximately
correct.
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The second objective-risk-comprehension question is more
challenging but takes a similar form to the first question (again
we provide options of TRUE, FALSE, and “I don’t know”):

My manager is more than twice as likely to think I
responded NO if I respond NO (i.e., respond truth-
fully) on the survey than if I respond YES (i.e., re-
spond untruthfully).

For the same reason as the first objective-risk-comprehension
question, only respondents in the experimental conditions and
deterministic control see it. For our experimental conditions,
the correct answer is TRUE for ε ∈ {2,4} and FALSE for ε ∈
{0.1,0.5}. For the deterministic control, the correct answer is
TRUE. We create a score ranging from 0–2, which is the total
number of correctly-answered objective-risk-comprehension
questions. “I don’t know” responses are considered incorrect.

(2) Subjective Privacy Understanding: We ask respondents
to rate their confidence that they understand the privacy pro-
tection on a 4-point semantic scale (not at all confident–very
confident). Previous studies explaining DP to people have sim-
ilarly asked questions around subjective privacy understand-
ing of DP [9, 24, 76]. Respondents are also asked to describe
the privacy protection in their own words via an open-text
response. Only respondents in the experimental conditions
and Xiong et al. control see these questions; respondents who
receive the deterministic control are not shown this question
because this control does not describe privacy protections.

(3) Self-Efficacy: To understand how empowered people
feel to make data-sharing decisions based on our explana-
tion types, respondents are asked three questions about confi-
dence in their decision making. First, they are asked to rate
on a 4-point semantic scale their confidence that they have
enough information to decide which action to take (similar to
a question Franzen et al. [24] classify as “Subjective Under-
standing”). Second, they are asked to describe in an open-text
response what further information, if any, they would like to
have to help them with their decision. Third, they are asked
to rate on a 4-point semantic scale their confidence in de-
ciding which action to take. These questions are shown to
respondents in all conditions.

(4) Willingness to Share Data: To assess respondents’ will-
ingness to share data, each respondent was asked whether they
would participate (in the optional condition) or answer truth-
fully (in the mandatory condition) on the survey. They were
then asked to explain their reasoning in an open-text response.
Although respondents could navigate backward through the
survey at any time, their answer to this question was locked
after advancing. All respondents were shown these questions.

The 4-point semantic scales were randomly reversed for
roughly half of respondents in line with best practices [69].
If scales were reversed for a particular respondent, all corre-
sponding scales in their survey were also reversed.

4.2.2 Questionnaire Structure

Survey respondents are first instructed that they will read
a fictional scenario and answer follow-up questions. Next,
they read the first section of the scenario, which introduces
the hypothetical survey about their manager, how they want
to respond NO, and the potential repercussions of doing so.
We then assess whether respondents are indeed concerned
about these consequences by asking them to rate their level of
concern on a 4-point semantic scale (not at all concerned–very
concerned), which we later refer to as “baseline concern” in
Section 5. We also include an easy-to-answer comprehension
check question, and filter out respondents who fail to answer
this question correctly after two attempts.

Respondents in the deterministic control end the scenario
at this point. Respondents in the Xiong et al. control read the
adapted explanation of DP. Respondents in the experimental
conditions are provided with the following abstraction of a
random distribution:

Your company will not report exactly how many
employees on your team responded NO. Instead,
they will generate many potential reports by using
a statistical method to modify the total number of
NO responses. So, each potential report may show a
number somewhat lower or higher than the actual
number of NO responses. Only ONE report will be
randomly sent to your manager.

Then, the respondent is shown one computed explanation.
Subsequently, all respondents answer a series of questions

on willingness to share data, objective risk comprehension,
subjective privacy understanding, and self-efficacy. Finally, re-
spondents answer questions on numeracy skills [50], internet
skills [32], and demographics (gender, age, race, education,
computer science/IT educational/work background, and in-
come). The final question is an open-text question for bot
detection [47]. Respondents may go back to previous pages
of the survey to review any information and are also provided
with links to PDFs with complete descriptions of the scenario
and privacy protections for easy access. The full survey text
is available on OSF4.

4.3 Participant Recruitment
Participants were all recruited on Prolific, based in the U.S.,
and were at least 18 years old. We performed a power analysis
to estimate the appropriate sample size for the survey [12];
963 respondents completed the online survey and 12 com-
pleted cognitive interviews. We paid cognitive interview par-
ticipants $7.50 for 15 minute interviews ($30/hour). Survey
respondents were paid $2.95 in each of the experimental con-
ditions (median completion time: 10.9 minutes; ∼$16/hour)
and $2.30 in each control condition (median completion time:
9.2 minutes; ∼$15/hour). A detailed breakdown of survey
respondents’ demographics can be found on OSF4.
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4.4 Analysis

Our analysis6 aims to study (1) the effect of our explanation
methods on several dependent variables (DVs) and (2) rela-
tionships between these outcomes and sociodemographic at-
tributes, which prior work finds may influence privacy-related
decisions (see, e.g., [29, 33, 51, 54, 64, 66, 67, 70]). To guide
our analysis, we first construct causal directed acyclic graphs
(DAGs) informed by prior work on relationships between
demographic attributes and privacy concerns (e.g., [62]), in-
ternet skills (e.g., [34, 36]), and numeracy skills (e.g., [26]).
These DAGs are on OSF4.

For our primary analysis, we construct a set of regres-
sion models studying the effect of our independent variables
(IVs)—explanation method (categorical, see details below),
scenario setting (binary: optional or not), and privacy loss
budget (ε as a numeric)7—on our DVs: objective risk com-
prehension, subjective privacy understanding, self-efficacy,
and willingness to share data. We construct logistic regression
models for binary DVs (willingness to share data) and ordinal
regression models for ordinal DVs (subjective privacy under-
standing, both self-efficacy measures, and number of correctly-
answered objective-risk-comprehension questions).8

When constructing regression models, we treat the expla-
nation IV as a categorical variable. Depending on the DV in
the model, we use one or both of the control explanations as
the reference (baseline) level for comparison. As described
in Section 4.2.1 not all DVs are applicable for both control
conditions. In cases where both controls are applicable, we
construct multiple models, with each control as the reference
level for the explanation IV, respectively. In order to study rela-
tionships between ε and the IVs, we cannot use either control
condition because there exists no state-of-the-art or control
for presenting information about ε. To compare the efficacy of
our odds-based methods (ODDS-TEXT and ODDS-VIS) with
our concrete-example usability-based method (SAMPLE RE-
PORTS), we also construct models for each DV using SAMPLE
REPORTS as the explanation reference level.

Next, we conduct a secondary analysis on relationships be-
tween our IVs and age (numeric), education (categorical), gen-
der (binary9), baseline concern (ordinal), internet skills (nu-
meric), and numeracy skills (numeric), which prior work finds
may influence respondents’ ability to interpret numerically-
related information such as that presented in our explana-

6Data and analysis code available on OSF.4
7We include ε instead of eε in models because eε artificially compresses

relevant privacy conditions, especially for small values of ε [15].
8We treat number of correctly-answered objective-risk-comprehension

questions as an ordinal variable because there are only three values it can
take ({0,1,2}). Thus, we avoid treating it as a continuous variable.

9We provided respondents four options (man, woman, non-binary, self-
describe) and allowed them to choose multiple [74]. 20 respondents identified
as non-binary and one as fluid gender. Our sample sizes are too small to
draw meaningful conclusions about how each of these groups interprets
our explanations. Thus, for modeling purposes, we code gender as whether
someone identifies as a man (regardless of their other gender identities).

tions [24, 75]. Note that we include baseline concern in this
analysis in line with best practice guidance on vignette sur-
veys and on privacy vignettes in particular [56]. We fit models
with only demographics (age, education, gender) and models
with baseline concern, internet skills, and numeracy skills
adjusted for said demographics.

To support results from the statistical analysis, we quali-
tatively analyze the open-text responses to help contextualize
salient quantitative results. Two of the authors reviewed a sub-
set of about 10% of the respondents’ open-text responses and
together developed a codebook (available on OSF4) capturing
themes from responses that help illustrate findings from the
statistical analysis. One of the authors then coded an addi-
tional subset of about 20% of responses to ensure that we had
captured a majority of general sentiments in our codebook;
no additional codes were identified during this second round
of coding. In total, we coded 283 responses. Because the qual-
itative data are neither quantified via counts nor our primary
research focus, we do not report inter-coder reliability [57].

4.5 Limitations
Our study’s results are limited by multiple factors which ap-
ply to large-scale survey studies. First, our sample may have
failed to capture a representative population. Research has
found that Prolific has relatively high external validity for
questions about beliefs and perceptions related to privacy [79].
However, as is typical for crowdsourced studies, our sample
skews toward younger and more educated individuals, and
thus does not fully represent the U.S. population. Our study is
also conducted on people based in the U.S., which may limit
the applicability of our findings to cultural contexts outside
the U.S. Second, we aimed to make the survey scenario as
realistic and understandable to respondents as possible by
refining it through several cognitive interviews while main-
taining a reasonable survey length. However, it is possible
that in obscuring certain details, the scenario does not re-
flect important aspects of various workplace environments
that may impact how people make decisions about sharing
data. Third, although we aimed to elicit respondents’ actual
responses by following best practices [69] such as providing
“I don’t know” answer choices where applicable, it is possi-
ble that respondents’ answers do not always align with their
actual feelings/decisions they would make in similar real-life
scenarios. Prior work suggests that vignette studies can be
powerful tools for understanding real-life behavior, especially
when respondents are highly engaged. We suspect that the
high level of concern expressed by respondents about the
fictional scenario—over 75% said they were “concerned” or
“very concerned”—suggests a high level of engagement. Fi-
nally, our survey only focused on the data-sharing scenario of
workplace surveys; our findings may not generalize directly to
other settings. Although we examine our explanations within
a single scenario, we note that the explanation methods we
develop for DP are scenario-agnostic, so future work could
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Figure 2: Left two subplots: results from ordinal regression models examining relationships between number of correctly-answered objective comprehension
questions and experimental IVs. In the first subplot, the reference level for the explanation IV is deterministic control, and in the second the reference is SAMPLE
REPORTS. We report odds ratios and corresponding 95% CIs. An OR > 1 indicates an increase in odds, while an OR < 1 indicates a decrease. The dashed red
lines depicts OR = 1—i.e., no difference in odds. Right two subplots: results from ordinal regression models examining relationships between subjective privacy
understanding and IVs. Explanation reference levels are SAMPLE REPORTS and the Xiong et al. control, respectively.

port these explanation methods into new scenarios as needed.

5 Results
Based on our survey results, we seek to evaluate the effective-
ness of our explanations (RQ1) and study how our explana-
tions impact people’s data-sharing decisions (RQ2).

5.1 Effectiveness of Explanations (RQ1)
We evaluate the effectiveness of our explanations, ODDS-
TEXT, ODDS-VIS, and SAMPLE REPORTS, via three metrics:
(1) objective risk comprehension, (2) subjective privacy un-
derstanding, and (3) self-efficacy.

5.1.1 Objective Risk Comprehension (RQ1a)
We construct an ordinal regression model (Figure 2, left)10

where the DV is the total number of correctly-answered
objective-risk-comprehension questions (per respondent) fol-
lowing the methods in Section 4.4. Compared to the deter-
ministic control, we find that ODDS-VIS explanations have
a significant positive effect on objective comprehension of
privacy risks (OR = 2.36, 95% CI = [1.38,4.05]) and SAM-
PLE REPORTS explanations have a significant negative effect
(OR = 0.32, CI = [0.19,0.54]).

We also construct an ordinal regression model with the
same DV, but where the explanation reference level is the
SAMPLE REPORTS explanation method, which allows us to in-
clude ε in the model (as described in Section 4.4). We observe
that increased ε has a slight positive effect on objective risk
comprehension (OR = 1.15, CI = [1.05,1.26]). As ε grows,
the disparity between outcomes we provide (i.e., odds or sam-
ple DP outputs) also grows, which we hypothesize makes

10Tables that include p-values are on OSF.4

comparison easier. In addition, we find significant positive
effects of ODDS-TEXT (OR = 4.68, CI = [3.35,6.54]) and
ODDS-VIS (OR = 7.56, CI = [5.30,10.77]) on objective com-
prehension compared to SAMPLE REPORTS.

Our secondary analysis (Figure 4) reveals that when ad-
justed for age, gender, and education (hereafter referred to
as “demographics”), higher numeracy skills have a signifi-
cant positive effect on objective comprehension (OR = 2.23,
CI = [1.24,3.99]), as does the highest level of baseline con-
cern (OR = 1.96, CI = [1.16,3.32]). We posit this could be
because highly concerned respondents may give more effort
to understanding the presented information [10].

5.1.2 Subjective Privacy Understanding (RQ1b)
Next, we compare people’s subjective privacy understanding
of DP guarantees when presented with our explanations versus
the Xiong et al. control (Figure 2, right), but do not find that
any of our explanation methods have significant effects versus
the control. We construct a second model where SAMPLE
REPORTS is the explanation method reference level. Here we
find that our ODDS-TEXT and ODDS-VIS explanation methods
are associated with increased perceptions of understanding
the privacy protection compared to SAMPLE REPORTS (OR =
1.68, 95% CI = [1.23,2.28]; OR = 1.52, CI = [1.11,2.06]).

In our secondary analysis (Figure 4), we find that the
highest level of education is associated with lower subjective
privacy understanding (OR = 0.66, CI = [0.46,0.94]), while
identifying as a man is associated with higher subjective
understanding (OR = 1.65, CI = [1.29,2.11]). There is
also a small effect of increased age on lower subjective
understanding (OR = 0.99, CI = [0.98,1.00]). Finally,
when adjusting for demographics, we find that increased
internet skills are associated with an increase in subjective
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Figure 3: Ordinal regression models examining self efficacy (“enough info” (Info.) and “confidence deciding” (Conf)). SE = Self Efficacy; S.R.=SAMPLE
REPORTS; Det. = Deterministic; Xiong. = Xiong et al. See Figure 2 for interpretation.

Figure 4: Results from our secondary analysis where we examined relationships between DVs and demographics (age, education, gender (man)) & baseline
concern (“BC”), internet skills, and numeracy skills. SE = Self Efficacy. For interpretation of coefficients, see Figure 2.

understanding (OR = 1.39, CI = [1.19,1.61]). Consistent
with prior work, these findings suggest multiple social
factors mediate people’s perceptions of their understanding
of privacy guarantees. For example, older adults may have
lower confidence in their knowledge about S&P topics [54],
men may report higher self-confidence across a variety of
domains including digital skills and use [13, 35, 53, 63, 73],
and those with higher internet skills may perceive themselves
as having greater understanding of digital concepts [35].

5.1.3 Self-Efficacy (RQ1c)
We measure self-efficacy in terms of (1) the extent to which
respondents feel they have enough information to make these
decisions and (2) the extent to which they feel confident in
making data-sharing decisions (Figure 3).

Enough Information to Decide. We find that SAMPLE RE-

PORTS have a significant negative effect on feelings of having
enough information to decide when compared to the determin-
istic control (OR = 0.48, CI = [0.30,0.78]). We hypothesize
that respondents felt that the information presented in SAM-
PLE REPORTS misaligned with key pieces of information they
needed. For example, one respondent wrote that they “would
like to know the likelihood that the [figure in the] report [the
manager] receives is higher or lower” (than the total number
of NO responses), indicating they may have wanted a sum-
mary of probabilities like in the ODDS-TEXT or ODDS-VIS
explanations. Another respondent wrote: “I would want to
know the chances that my [manager] gets a higher number.”

Compared to the Xiong et al. control group, respondents
who received the ODDS-TEXT explanation were over 75%
more likely to report feeling a point higher in our 4-point
semantic scale for having enough information to decide
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Figure 5: Logistic regression models examining relationships between
willingness to share data and our IVs. Det. = Deterministic; S.R. = SAMPLE
REPORTS; Xiong. = Xiong et al. See Figure 2 for interpretation.

(OR = 1.76, CI = [1.07,2.88]); ODDS-VIS respondents were
over 65% more likely (OR = 1.66, CI = [1.02,2.72]). No
such association was found for SAMPLE REPORTS.

Compared to the SAMPLE REPORTS respondents, we find
that participants who received the ODDS-TEXT and ODDS-
VIS explanation methods were over 65% and 55% more
likely, respectively, to report feeling a point higher on the
scale for having enough information to decide (OR = 1.66,
CI = [1.22,2.26]; OR = 1.57, CI = [1.16,2.12]). We do not
find a significant effect of ε on feelings of having enough infor-
mation to decide. Finally, our secondary analysis (Figure 4) in-
dicates a small effect of increased age on decreased feelings of
enough information to decide (OR = 0.99, CI = [0.98,0.99])
and that identifying as a man is associated with higher such
feelings (OR = 1.35, CI = [1.07,1.70]). When adjusting for
demographics, increased internet skills are also associated
with higher such feelings (OR = 1.28, CI = [1.11,1.47]) and
baseline concern of “concerned” is associated with lower such
feelings (OR = 0.56, CI = [0.33,0.98]).

Confidence Deciding. We do not find significant relation-
ships between our experimental explanations and confidence
deciding when compared to either the deterministic control
or the Xiong et al. control. For the third model where we
hold SAMPLE REPORTS as the explanation reference, we do
not find that ε has a significant effect on confidence deciding.
However, our ODDS-TEXT and ODDS-VIS explanations are
associated with an increase in feelings of confidence decid-
ing compared to the SAMPLE REPORTS method (OR = 1.58,
CI = [1.16,2.15]; OR = 1.50, CI = [1.11,2.04]). Through
our secondary analysis (Figure 4), we find that being a man
is associated with higher feelings of confidence deciding
(OR = 1.32, CI = [1.05,1.67]). We also find and that all three
higher levels of baseline concern (adjusted for demographics)
are associated with lower confidence deciding. We posit that
those more concerned about negative repercussions may feel
more conflicted about which data-sharing decision to make.

Figure 6: Proportion of respondents willing to share data across explanation
methods and ε, shown with 95% binomial CIs. We plot a regression line
(solid gray) between proportion of data sharing across our methods and ε.

5.2 Influence on Data Sharing (RQ2)

To answer RQ2, we investigate the extent to which our experi-
mental explanations influence people’s data-sharing decisions
(Figure 5). Compared to both the deterministic and Xiong et al.
controls, the SAMPLE REPORTS and ODDS-TEXT explanations
have significant relationships with willingness to share data.
Respondents are about 2 times as likely to share their data
when shown the ODDS-TEXT explanation compared to the de-
terministic control (95% CI = [1.14,3.42]), and about 3 times
as likely to share their data when shown SAMPLE REPORTS
compared to the deterministic control (95% CI= [1.73,5.22]),
an interesting finding considering the SAMPLE REPORTS ex-
planation did not seem to well-support respondents in ob-
jective risk comprehension (see Section 5.1.1). Respondents
were over twice as likely to share their data if shown the
ODDS-TEXT explanation (95% CI = [1.41,4.3]) compared
to the Xiong et al. control, nearly two times as likely when
shown the ODDS-VIS explanation (95% CI = [1.12,3.37]),
and nearly four times as likely when shown the SAMPLE
REPORTS explanation (95% CI = [2.14,6.57]).

We additionally construct a logistic regression model to
examine the relationship between the DV, willingness to share
data, and ε. We find that as ε increases, and privacy protec-
tions become weaker, respondents are less likely to share their
data (OR = 0.81, CI = [0.74,0.89]). Figure 6 shows the pro-
portion of respondents who said that they would share their
data, for each explanation method and ε value. Furthermore,
we find that respondents are less likely to share data if given
the ODDS-TEXT or ODDS-VIS explanations than the SAM-
PLE REPORTS explanation (OR = 0.65, CI = [0.45,0.94] and
OR = 0.51, CI = [0.35,0.73]). We hypothesize that this may
be related to differences in feelings of self-efficacy between
the explanations (see Section 5.1.3). In the model with SAM-
PLE REPORTS as reference, we also find that compared to
answering truthfully in the mandatory setting, people are less
likely to share their data in the optional setting (OR = 0.74,
CI = [0.55,0.99])—in the mandatory setting, people may feel
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uncomfortable lying. When asked to explain their decision-
making, many participants explicitly expressed a desire to be
honest. For example, one respondent wrote that they “would
tell the truth regardless because [they] refuse to lie regardless
of the outcome.” Finally, when adjusting for demographics,
the higher three baseline concern levels understandably have
a small decreased effect on sharing data (Figure 4).

The open-text responses provide further context on respon-
dents’ decision-making. Many respondents explicitly rea-
soned about how their behavior would change the odds of
their manager believing they responded NO. For example, one
respondent wrote: “The chance that the manager will believe
I responded no is only slightly higher if I participate than if I
don’t, so I may as well give my opinion.” Others expressed
less concern about privacy and instead focused on the utility
of the collected data. For example, one respondent argued that
participating in the survey was “the right thing to do,” since
it might lead to improved conditions for their coworkers.

5.3 Summary

Below, we summarize salient findings from our results:
• Our ODDS-VIS explanation method improves objective

risk comprehension over our SAMPLE REPORTS method.
Furthermore, both ODDS-VIS and ODDS-TEXT improve
subjective privacy understanding and self-efficacy over
SAMPLE REPORTS.

• ODDS-TEXT and ODDS-VIS improve feelings of having
enough information to make privacy decisions over the
existing state-of-the-art [85].

• All of our explanation methods, which provide infor-
mation about ε, increase willingness to share data over
the existing state-of-the-art [85], which omits ε infor-
mation. However, note that respondents given SAMPLE
REPORTS were more likely to share data compared to
those given either odds-based explanation, despite their
comparatively poor objective risk comprehension.

• Respondents were less likely to be willing to share data
when privacy protections weakened (ε increased).

6 Discussion
We reflect on how methods around communicating DP can be
improved by including utility implications, extended to other
scenarios, and support accountability around DP deployments.
Our results suggest that providing more detail about privacy
protection—even probabilistic information with which people
may struggle—has the potential to improve people’s agency
in data sharing decisions.

Communicating Utility Implications. Our work builds on
prior work illustrating that odds can effectively communi-
cate privacy risk in comparison with a no-privacy or no-data-
collection alternative [24, 44] to show that explanation meth-
ods that communicate odds can help people better understand

probabilistic privacy guarantees. However, our qualitative re-
sults indicate that, in at least some contexts, people may also
be concerned about utility implications of DP. For example,
some respondents felt that it was important for their input to
be faithfully communicated, e.g., to improve their workplace
environment. Higher amounts of DP noise, while affording
stronger privacy protections, reduce the accuracy and “utility”
of released statistics. At face value it may seem that accuracy
concerns are more in the domain of data curators (e.g., the
interfaces described in Section 2), but we suggest that people
may similarly require depictions of accuracy to make effective
judgments about the downstream utility of their data. This in
turn supports people to make informed decisions about data
sharing. In line with prior research illustrating that present-
ing information about both accuracy and privacy improves
ability to predict people’s data-sharing decisions in medical
contexts [44] and prior work aiming to convey accuracy im-
plications of DP to people [86], people may benefit from
reasoning not only about privacy, but also about the accuracy-
privacy trade-off in the DP context. Thus, we emphasize the
need to go “beyond” privacy to consider utility as a key part
of respectful data use [68]. Our results yield insight into how
utility implications may be most effectively communicated to
people. Our ODDS-TEXT and ODDS-VIS explanation methods
demonstrate how to map ε to outcome probabilities. It may
be additionally useful for explanations to provide mappings
from ε to utility-related outcomes. For example, if receiving
a certain number of NO responses will require the manager
to complete additional training, odds-based methods can sim-
ilarly be used to communicate the probability that that thresh-
old value will be met given a person’s response under a given
ε. Such information could help them assess utility of their
response in terms of leading to a tangible outcome.
Toward More Complex Scenarios. Our work contributes a
framework for communicating ε implications to end users;
details about our specific scenario can be changed to apply our
methods to varied applications of DP. For example, to apply
our odds-based explanation methods to other types of queries,
such as mean queries, we suggest computing probabilities
based on a hypothesis testing framework [52]. While our ex-
planation methods for probabilistic DP guarantees may be
easily extended to more complex queries, explaining nuances
in more complex algorithmic settings may pose challenges.
For example, binary counting queries have sensitivity of 1,
which means that every data sharer’s answer changes the func-
tion’s value exactly by the sensitivity. This is not true for many
other queries, and may require future work to resolve addi-
tional explanation-related challenges. Also as future work,
we see promise in creating guidance and tooling that allows
people employing DP to generate explanations consistent
with specifics of their application settings. Such work would
encourage practical use of explanation methods that clarify
the impact of ε.
Public Deliberation Around ε. Dwork et al. [19] have pro-
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posed a registry of ε values (and other implementation details)
used by organizations applying DP. They argue that such a reg-
istry could enable comparisons across differentially-private
systems and increase accountability around the use of DP,
lowering chances of privacy theater. Our explanations can
increase the impact of such a registry by building on work
that aims to translate the implications of ε to a wider audience,
thus helping facilitate public deliberation around privacy loss
budgets. More generally, our explanation methods and other
methods of translating ε can support external audits by mak-
ing implementation decisions like ε more widely interpretable
and easier to discuss among interested parties with a diverse
set of expertise and backgrounds. For example, recent debates
around the U.S. Census Bureau’s use of DP for the 2020
Census demonstrated challenges of effectively discussing as-
pects of DP among several groups (computer scientists, poli-
cymakers, demographers, non-profit organizations, the public,
etc.) [8, 60]. These challenges arose in part because the tech-
nical specifics of DP (such as privacy loss budgets) can be
abstract or counterintuitive, especially when discussed outside
the computer science literature. Explanations of ε effective
for a broad population can close gaps in communication and
encourage public deliberation over privacy policies.
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A Modeling Adversary’s Priors

To make the scenario discussed in this paper more realistic
and flexible, we can account for the fact that the manager may
have a prior belief about how the respondent will respond even
before seeing the privacy-protected report. We can model the
manager’s thought process by specifying their prior belief
and supposing that they perform a Bayesian update to obtain
a posterior belief based on the DP output in the report. We
show that under this model, changing the manager’s prior
is equivalent to shifting the threshold (rthreshold) on the DP
output at which the manager believes that one outcome (i.e.,
the respondent said NO) is more likely than the other (i.e., the
respondent did not say NO).

If the respondent answers NO, the manager will see a sam-
ple drawn from a Laplace distribution centered at 1. Oth-
erwise, the manager sees a sample drawn from a Laplace
distribution centered at 0. Thus, the manager’s task is to guess
whether the DP output r was drawn from Lap(µ = 1,b = 1

ε
)

or Lap(µ = 0,b = 1
ε
)].

We use Bayes’ Theorem to calculate the probability that
the manager finds it more likely that the respondent answered
NO after viewing a DP output r (i.e., the manager’s posterior).

Let fi denote the probability density function for Lap(µ =
i,b = 1

ε
)], and let Pno denote the manager’s prior belief that

the respondent answered NO.
The updated probability that the respondent answered NO

(the posterior probability) is given by:

f1(r)Pno

f1(r)Pno + f0(r)(1−Pno)
=

e−ε|r−1|Pno

e−ε|r−1|Pno + e−ε|r|(1−Pno)

Similarly, the updated probability that the respondent did not
answer NO is given by:

f0(r)(1−Pno)

f1(r)Pno + f0(r)(1−Pno)
=

e−ε|r|(1−Pno)

e−ε|r−1|Pno + e−ε|r|(1−Pno)

We can find the new threshold, rthreshold, by finding the
value of r for which the manager finds it equally likely that
the respondent answered NO or did not answer NO. In other
words, we set the above equations equal to each other and
solve for r to obtain:

rthreshold =
ln(1−Pno)− ln(Pno)

2ε
+

1
2

when max{ 1−Pno
Pno

, Pno
1−Pno

} ≤ eε (i.e., as long as the prior is not
too extreme).

Once this new threshold is obtained, it is straightforward to
apply our explanation methods. We simply need to calculate
the probability that the DP output will be greater than the
threshold, given each choice the individual can make (e.g.,
participate or not participate). Note that in our study we use
0.5 as the threshold. This is the value for rthreshold that one
obtains when Pno = 0.5.
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