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Abstract

Recent advances in binary instrumentation have been focused
on performance. By statically transforming the code to avoid
additional runtime operations, systems such as Egalito and
RetroWrite achieve near zero overheads. The safety of these
static transformations relies on several assumptions: (a) error-
free and complete disassembly, (b) exclusive use of position-
independent code, and (c) code pointer identification that is free
of both false positives and false negatives. Violations of these
assumptions can cause an instrumented program to crash, or
worse, experience delayed failures that corrupt data or compro-
mise security. Many earlier binary instrumentation techniques
(e.g., DynamoRio, Pin, and BinCFI) minimized such assump-
tions, but the price to be paid is a much higher overhead, espe-
cially for indirect-call-intensive (e.g., C++) applications. Thus,
an open research question is whether the safety benefits of the
earlier works can be combined with the performance benefits
of recent works. We answer this question in the affirmative by
presenting a new instrumentation technique that (a) tolerates
the use of position-dependent code and common disassembly
and static analysis errors, and (b) detects assumption violations
at runtime before they can lead to undefined behavior. Our ap-
proach provides a fail-crash primitive for graceful shutdown or
recovery. We achieve safe instrumentation without sacrificing
performance, introducing a low overhead of about∼2%.

1 Introduction

Program instrumentation plays a central role in software secu-
rity, serving as the foundation for exploit mitigation, security
policy enforcement, fuzzing, performance monitoring, and so
on. Binary instrumentation is most widely applicable since it
operates directly on software deployed on end systems. In addi-
tion to proprietary software that may only be available in binary
form, most Linux software is distributed in binary form, thus
making binary instrumentation very attractive even for open-
source software. These factors have prompted a great deal of
research in binary analysis and instrumentation techniques
in recent years [3, 5, 12, 14, 17, 29, 41, 50, 51, 54, 55, 57, 58, 62].

The absence of symbolic information in deployed binaries
makes their instrumentation very challenging. This problem is
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particularly formidable for the ubiquitous x86/x64 architecture
due to its variable length instructions, the indistinguishability
of data from code, and the difficulty of determining (indirect)
control-flow targets. As a result, even the basic step of
disassembly is error-prone: as per a recent survey [36], the
best disassembly techniques have error rates in the range of
0.1% across benchmark suites, with some binaries leading to
error rates in the 1% to 15% range. Instrumentation based on
erroneous disassembly will naturally result in faulty programs.

The second major challenge is accurate code pointer
identification. Note that instrumentation involves the insertion
of code snippets. Existing instructions have to be moved
around to create the space for this new code, and hence code
pointer constants used in the original program will no longer
point to their intended targets. Identifying and “fixing up” these
pointers is an error-prone task because there is no reliable way
to distinguish between integer and pointer-valued constants ap-
pearing in data or code. Modifying an integer value to “fix it up”
— a false positive in code pointer identification — will change
program behavior. Missing a code pointer fix-up — a false
negative — will result in a control transfer to an unintended
target, and hence cause the program to crash or misbehave.

Existing approaches for addressing these challenges fall into
two broad groups: (I) robust, but slow, and (II) efficient but best-
effort. Group I includes dynamic binary instrumentation (DBI)
techniques [6, 7, 32] as well as BinCFI [62] and Multiverse [4]
that prioritize compatibility. In particular, DBI techniques
disassemble basic blocks before their first execution, thus
side-stepping the challenges of static disassembly. Multiverse,
a static binary instrumentation system, introduces superset
assembly, which considers every byte as a possible beginning
of an instruction. All of the recovered instructions are instru-
mented, which ensures that no code is missed. Techniques in
Group I do not require reliable code pointer identification since
they don’t change them at all. Instead, they go through runtime
address translation that maps code locations in the original
code to the corresponding locations in the instrumented code.
Address translation is great for compatibility, but comes at a
high performance cost since it needs to be performed on all
indirect control transfers, including function returns.

Group II includes CCFIR [58] as well as the more recent
Egalito [57], RETROWRITE [17] and SBR [41] that achieve
very good performance but make optimistic assumptions
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about the binary. Specifically, the last three works assume that:

• there is no data interspersed with code,
• the binary is a 64-bit position-independent binary, and
• all jump tables1 in the binary follow one of the expected

patterns that have been programmed into these systems.2

With these assumptions, they statically transform all code
pointers so that they point to their intended new locations in
the instrumented code. Consequently, they can avoid the costly
address translation step, and achieve close to zero overhead.
The above discussion raises the following research question:

Can we combine the benefits of Groups I and II? That is,
can binary instrumentation be very efficient, yet tolerate
disassembly and code pointer identification errors?

We answer this question in the affirmative and present our SAFe
and Efficient binary Rewriter (SAFER) in this paper. Our sys-
tem, along with the datasets and measurement procedures used,
is available at http://seclab.cs.sunysb.edu/soumyakant/safer.
We now outline our approach and summarize its contributions.

1.1 Goals

Our approach operates on stripped binaries lacking symbols
or any other compiler metadata3 and has the following goals:

• Tolerate the most common disassembly and code pointer
identification errors. Tolerance means that these errors
won’t affect the functionality of the instrumented code, but
may add some runtime overhead.

• Detect the remaining disassembly/code pointer errors be-
fore they cause execution divergence. Undetected errors
can propagate, leading to undefined behaviors that can re-
sult in serious damage, e.g., security attacks or data loss.
In contrast, early detection can provide a fail-crash primi-
tive, and/or serve as a trigger that can be used to initiate an
orderly shutdown or recovery.

• Incur low overhead. We aim to achieve performance over-
heads close to 2% on average.

• Be compatible with complex code. Instrumentation should
be transparent, and work with many features of complex
code, including the uses of (a) position-dependent executa-
bles (non-PIEs), (b) data embedded within code, (c) C++
exceptions and stack unwinding.

About 5% of the binaries found on our experimental platform
(Ubuntu 20.04) are non-PIE, with many developer tools (e.g.,

1Jump tables often result from the compilation of switch statements, but
can also be in hand-coded assembly. They involve looking up a code offset
by indexing into a data table and adding this offset to a base address. Such
computed code pointers are particularly hard to reason about.

2CCFIR [58] makes similar asmumptions for x86-32 binaries on Windows.
3Although C++ exception unwinding metadata is not stripped from

deployed binaries, we don’t rely on this metadata for disassembly or
instrumentation. This is because many C++ projects don’t use exceptions
and disable the inclusion of this metadata due to its bulkiness (e.g., Chrome).
Moreover, on platforms other than Linux/x86, this metadata is limited to C++
programs and hence can’t be used for instrumenting C and assembly code.

gcc, llvm, gcov) continuing in this format even in more recent
versions. Non-PIE is the norm for legacy code. It is also more
common for custom/proprietary software to be non-PIE.

While data in the midst of code is unusual, many high-profile
applications (e.g., ssh, apt, gimp, evince and firefox) use at
least one such binary (e.g., libgcrypt.so or libxul.so). Among
the real-world applications considered in our evaluation, most
of the larger ones use one or more such libraries. Security
applications require all code to be instrumented, so handling
such binaries is important.

Finally, the motivation for this paper isn’t based so much
on the relative frequency of non-PIE or data-in-code features,
but on the research question as to whether support for these
features must necessarily come at the cost of high overheads,
or the possibility of arbitrary runtime failures.

1.2 Contributions

To the best of our knowledge, ours is the first binary instru-
mentation work to combine the performance benefits of
rewrite-time code-pointer transformation with the flexibility
and compatibility benefits provided by runtime address
translation. The result is a system that can support binaries
that bring in complexities such as embedded data and
position-dependent code with modest overheads (≈5%) while
incurring low overheads (≈2%) on well-behaved code.

Such a combination is enabled by a new multiplication-
based encoding technique that can (a) distinguish transformed
pointers from untransformed ones, and (b) detect, with high
probability, alterations of a transformed pointer. This latter
ability is crucial for achieving our goal of predictably failing in
the face of pointer identification errors. Our encoding achieves
this while only needing a single unused bit in addresses.

Ours is also the first work to formulate the problem of safe
jump table transformation and to develop a solution. Our ap-
proach avoids the stringent constraints placed by in-place mod-
ification of jump tables, including the need for exact bounds,
and a guarantee that some of the jump table entries aren’t used
as data elsewhere in the binary. In addition, we ensure that any
jump-table related code changes introduced by our instrumen-
tation won’t lead to unintended changes in program behavior.

Generality of approach. Although our implementation
targets 64-bit x86 systems running Linux, our techniques are
broadly applicable to other platforms as well. In particular,
problems of (code) pointer classification and data-in-code arise
across different OSes and architectures. Similarly, our pointer
encoding work relies on features common to modern platforms
such as the availability of fast multiplication operations, a
64-bit address space, etc. Finally, jump table safety concerns
transcend compilers and instruction sets, and hence our safe
transformation techniques are also broadly applicable.

Paper organization. We begin with an overview of our disas-
sembly technique in Sec. 2, followed by pointer classification
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Fig. 1: Our disassembly involves recursive disassembly followed
by a conflict resolution. The impact of false positives (FP) and false
negatives (FN) is displayed on the right.

in Sec. 3. We describe our pointer encoding and safe jump table
transformation techniques in Sec. 4 and 5 respectively. Exper-
imental evaluation is presented in Sec. 6, followed by related
work discussion in Sec. 7 and concluding remarks in Sec. 8.

2 Tolerating Disassembly Errors

Accurate disassembly of x86 binaries has long remained a
challenge. A recent survey by Pang et al. [36] shows that every
state-of-the-art disassembly tool experiences non-zero false
negatives and false positives across all compilers and optimiza-
tion levels. This means that even with the best disassembly
tool, a straightforward application of instrumentation will
break some binaries. Our strategy for tolerating these errors
follows that of previous works in Group I. It is summarized
in Fig. 1 and described further below.

2.1 Tolerating false positives in disassembly

Disassembly false positives can affect instrumentation
correctness in two ways. First, data that is identified as code
may be instrumented, which will cause it to change. When
the instrumented program uses this modified data, its behavior
will be changed. Second, if instrumented execution ever
reaches this data, the result would be unpredictable as well.

Our approach for tolerating both these errors is similar to
that of previous Group I techniques that instrument a second
copy of code, while preserving the original contents in a
read-only section [7, 32, 62]. Thus, any access to this data will
return the exact same values as in the uninstrumented program.
It can be easily seen that the second type of error is not
possible, as a legitimate program will never jump into its data.

Binary stirring [54] and Reins [55] use the same basic strat-
egy of leaving the original code in place, but then modify some
of its contents in order to significantly speed up address trans-
lation over Group I techniques. Specifically, any location in the
original code that is determined to be a possible indirect branch
target by their static analysis is modified this way. As a result,
false positives have the potential to break their approach. For
this reason, we have not included these two works in Group I.

2.2 Fail-safe handling of false negatives

If the code corresponding to false negatives is reached during
the execution of the original program, it is clear that the
behavior of the instrumented program will diverge at that point
since the corresponding instructions are not present in it. So
the best that can be done is to detect this divergence and stop
execution before the jump to the non-existent instruction. We
follow the same approach as previous works (e.g., [54, 55, 62])
in this regard. They observe that any control transfers to
unrecognized code must occur through indirect branches.
Since indirect branches go through the address translation table
and since this table won’t contain locations of unrecognized
instructions (false negatives), this error will be stopped at the
very first instruction that escapes recognized code.

Fail-safe handling prevents delayed and arbitrary failures,
but it still leads to loss of functionality. So, these failures
should be minimized as much as possible, as outlined below.

2.3 Our disassembly algorithm

Linear disassembly can achieve very low false negatives
on most binaries, but has a high error rate on binaries that
contain data within code. For this reason, we rely primarily on
recursive disassembly [8,22,27,44,48] that is augmented with
static analysis (described in Sec. 3) to discover code pointers.

The weakness of recursive disassembly is that it tends to
have significant false negatives. Since false negatives lead
to runtime failures, our disassembler is tuned for minimizing
them at the cost of increased false positives. Specifically, we
restart recursive disassembly at byte offsets where no code has
been found by the initial phase of recursive disassembly. This
step ensures that all bytes in the code section are recognized
as part of some instruction, thus minimizing the chances of
runtime failures. Similar to Multiverse [4], our disassembly
algorithm allows for multiple interpretations of the same byte
of code. The primary differences are that:

• Disassembly of an offset is attempted only if it is directly
reachable from successfully disassembled code, or from
code pointers discovered by the analyses in Sec. 3; and

• A conflict resolution algorithm is used to eliminate unlikely
interpretations. This algorithm relies on several statistical
properties of data and behavioral properties of code to
identify candidates for elimination.

As a result, Multiverse disassembly increases the code size
by about 5 times [4], while our approach experiences only a
small increase. Due to space limitations, we omit the details
of the disassembly algorithm here, but an interested reader can
find them in [42]. Some of the key features of this algorithm
are noted in Fig. 1.

3 Code Pointer Classification

The core of our approach consists of code pointer classification
and code pointer transformation techniques that work together
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Fig. 2: High-level overview of our approach.

as illustrated in Fig. 2. We describe code pointer classification
in this section, followed by transformation techniques for
constant and computed code pointers in Sections 4 and 5.

3.1 Identifying code pointer constants

Examples of code pointer constants include function pointers
and return addresses. They are characterized by the properties
that their values are (a) represented by constants in the code
or initialized data sections, and (b) used without any changes
as the target of an indirect branch during the program run.

For position-independent binaries, pointer constants are
marked for relocation. We flag such constants as tentative code
pointers if their value falls within the binary’s code section.

For position-dependent binaries, we scan the data and
code sections and flag any 64-bit and 32-bit constant falling
within the code section as a tentative code pointer. Similar to
BinCFI [62], these constants can occur at any byte boundary.

For both types of code, PC-relative constants loaded into
registers are marked as tentative code pointers if they fall
within the code region. All return addresses (i.e., locations
following call instructions in the binary) are also marked.

Definite vs possible code pointers. In the next phase, each
tentative pointer is classified either as a definite or possible
code pointer. At instrumentation time, our method transforms
definite code pointers so that they point to their intended target
in the new code region. If this transformation is mistakenly
applied to a non-pointer, the instrumented program’s behavior
will be altered, leading to potential failures down the line. In
particular, integer constants can have values that happen to fall
in the range of the code addresses in a binary. Hence definite
pointers can only include quantities known to be pointers:

• constant values marked for relocation.

• PC-relative addresses created using instructions of the form
lea $offset(%rip),%rxx where rxx represents a register.4

4Compilers generate this instruction when high-level code takes the
address of a function.

• return addresses pushed on the stack.5

(Note that the last two cases are applicable to position-
dependent binaries as well.) Since all candidates for definite
code pointer classification are known to be pointers, Fig. 2
does not need to consider the failure mode of definite pointers
used as non-pointer data.

In the next step, two additional checks are applied to
pointers that pass the above checks.

• the pointer value falls within the range of code addresses
in the binary, and

• the code at the target matches the beginning of a function.

The first of these criteria has been used in many previous
works, and the combination proposed in Uroboros [53]. One
significant difference in our work is that we apply these criteria
to quantities known to be pointers, whereas previous works
have applied them (speculatively) to all constants. Another
key difference is in the implementation of the second criterion.
Specifically, we require the satisfaction of function interface
properties [43]. Optionally, we add a strong version of function
prolog pattern match [5, 8, 44, 48] that includes two or more
push instructions, or one push followed by a decrement of
the stack pointer [42]. The impact of this optional check is
discussed in our evaluation.

Pointers passing the above checks are classified as definite
code pointer constants, while all other tentative code pointers
are classified as possible code pointers.

3.2 Identifying computed code pointers

This analysis is aimed at computing an overapproximation
of all computed code pointers in a binary. We seek a superset
because a missed code pointer will neither be transformed nor
be included in the address translation table. As a result, if an
instrumented program uses such a pointer, it will crash.

Similar to previous works, we assume that computed code

5In our base implementation, return addresses in the original code are
pushed on the stack. This approach is employed among Group I techniques
to ensure compatibility with non-standard uses of return addresses.
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pointers arise from the use of jump tables and that these tables
only target intra-function locations. Hence our approach
examines every indirect jump and analyzes the value flowing
into this instruction. If this value’s computation matches one
of the following patterns, the set of all its possible values is
added to the set of computed code pointer targets.

• Pattern 1: Target=Base+Table[index∗stride]

• Pattern 2: Target=Table[index∗stride]

• Pattern 3: Target=Base+index∗stride

These are more of semantic rather than syntactic patterns
— in particular, Base, Table and stride don’t have to be
constant literals in the binary but may be computed from other
quantities. Our specific requirement is that their values be
computable at instrumentation time using static analysis. In
addition, Table must be located within code or read-only data
sections of the binary.

To compute the list of all possible values of these jump table
expressions, we need to compute the bounds of index. Because
we undertake this possible analysis before disassembly is
complete, we rely on a simpler approach that takes the lower
bound as zero and the higher bound as the end of the binary,
or the beginning of the next jump table. Values of Target for
these index values are computed, and treated as possible code
pointers if they fall within the code section of the binary.

Finally, there may be indirect jumps at which the static
analysis described above fails. In that case, we identify the
closest procedure surrounding this indirect jump and consider
every instruction boundary within it as a valid target. This
ensures that we have covered every possible indirect jump
instruction in the binary and its possible values.

We examine the completeness of these three patterns in
capturing jump table access in Table 1. We used the 64-bit
binaries from Pang et al.’s dataset [36] for this evaluation.
Note that these three patterns capture almost all of the jump
tables. In fact, the first two are sufficient to capture 99.8% of
indirect jumps that access jump tables.

4 Safely Transforming Code Pointer Constants

The baseline for our approach is to leave code pointers
unchanged, similar to Group I techniques. Runtime address
translation is then used to dispatch indirect control flow
transfers to their intended targets. However, this approach
incurs high overheads. To avoid the translation overhead,

Number of indirect
jumps using a jump table Percentage

Groundtruth 60165 100%

Detected
Pattern 1 16102 26.76%
Pattern 2 43957 73.06%
Pattern 3 4 0.01%

Missed by the 3 patterns 102 0.17%

Table 1: Completeness of patterns to identify jump-table related
indirect jumps.

Group II approaches [17, 57, 58] identify and “fix up” all code
pointer constants at rewrite time, so that they reference the
intended location in the instrumented code. This fixup involves
adding an offset representing the distance between a code
location in the original code, and the corresponding location
in the instrumented code. Since instrumentation increases
code length in an unpredictable manner, this “fix-up amount”
differs for each location in the original code, which is why this
kind of fixup can be performed only on constant code pointers.

A false negative in code pointer identification will mean
that it wouldn’t have been fixed up, and hence won’t point
to its intended target. Hence its use can cause a crash or
undefined behavior of instrumented code. A false positive,
on the other hand, may end up modifying an integer or data
pointer value. Since this value differs between the original
and instrumented versions, its use will cause a behavioral
divergence between them, thus negating the functional
correctness of the instrumented program.

Since static analysis techniques cannot guarantee 100%
accuracy in code pointer identification, rewrite-time fix-up is
applicable only to binaries containing relocation information.
In particular, position-independent binaries on x86/Linux
identify all pointer constants appearing within them. To
identify the subset of these that are code pointers, two
additional assumptions are made by Group II techniques:

• There is no data embedded within code. This enables any
pointer constant whose value falls within the binary’s code
section to be marked a code pointer.

• Code pointer constants are never involved in computations6

— since the fixup amount depends on the pointer value, any
arithmetic on the pointer will invalidate it.

We now present a new technique that realizes most of the perfor-
mance benefits of Group II approaches in the handling of code
pointer constants, while relaxing these stringent assumptions.

4.1 Approach Overview

The goals of our approach are to:

• Tolerate all false negatives in definite code pointer classifi-
cation, including:

– unidentified code pointers, and more importantly,
– code pointers derived from data or other code pointers.

This is achieved using the address translation technique
described in Sec. 4.3.

• Provide fail-crash behavior on false positives where a
value identified as a code pointer constant is used to:

– dereference data, possibly after pointer arithmetic, or
– compute a different code pointer.

6This is an assumption since there isn’t an easy way to verify it with static
analysis: pointer constants may be stored in global memory by one function,
and used at an arbitrary time later by another function. It is very difficult for
static analysis to reason about dataflows through global memory in binaries.
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This goal is achieved using a pointer encoding technique
(Sec. 4.2) that can distinguish fixed-up pointers that haven’t
been subsequently altered from all other types of pointers.

The following instrumentation, added at indirect control
transfers, determines whether address translation or pointer
decoding is to be used:

if encoded(target) then
target←decode(target)

else
target←address_translate(target)

end if
Transfer control to target

4.2 Code Pointer Encoding

Pointer encoding has two major goals:

1. determine if an indirect target has already been fixed up;
2. detect modifications of fixed-up pointers.

The first goal is relatively easy to achieve on 64-bit platforms,
where the leading 16 bits of the address are typically unusable.
In particular, we can set the most significant bit (MSB) of a
fixed-up address to be “1,” while untransformed addresses will
have a leading zero-bit. Note that transformed addresses point
to unmapped memory (since the MSB is always zero for valid
user-land addresses), so if they are used for data access, it will
lead to a memory fault. Thus, the use of encoded pointers to
access data will meet the design goal of a fail-crash.

However, the second goal is more difficult. One possibility
is to compute a 15-bit checksum and store it within the leading
16-bits. This checksum can be recomputed in the indirect
branch instrumentation and checked. A mismatch indicates
the pointer has been modified. But this checksum approach
has a few drawbacks:

• Checksum computation takes time, reducing performance.
• A 15-bit checksum means a non-negligible 1 in 32K chance

of failing to catch a modification, and
• Some applications may already be using the leading 16-bits

since they are known to be unused on the platform. This
is a well-known technique that goes by several names such
as pointer-packing, boxing, and pointer tagging. Many
functional programming languages as well as JavaScript
engines use this kind of packing, e.g., V8’s NaN boxing.

We, therefore, present a simple and elegant alternative that can
provide probabilistic detection based on the fact that only a
tiny fraction of the available 48-bit address is actually used
by any program. It does not need any additional bits to hold
a checksum and can simply work with how many ever bits are
actually used for addresses.

Our approach is configurable and takes as input the number
of usable bits n for pointers. We will set the most significant
of these n bits to be a “1” for encoded pointers and a “0” for
unencoded ones. (We continue to assume that this MSB cannot
be a “1” for valid addresses.)

Our encoding relies on a single 64-bit multiplication.
Contemporary Intel and AMD’s processors have very fast
multiplication units that can deliver a throughput of one
multiplication per clock cycle, with a latency of just 3 to 4
cycles [23]. Moreover, a MULX instruction is available that
does not affect CPU flags, and hence can be used without the
added overhead of saving/restoring flags. We leverage these
facts together with the following observation:

Observation 1 (Multiplicative Inverse Modulo 2n) Every
odd number A<2n has a unique multiplicative inverse modulo
2n, i.e., there is a B<2n such that AB≡1mod2n.

Proof: This is a known result, but since the proof is simple and
is also the basis for Observation 3, we present it here. Consider
the following list of numbers, where all multiplications are
performed modulo 2n:

A,3A,5A,...,(2n−1)A

We now show that all these products are distinct. Otherwise,
there must be two odd numbers X ,Y <2n such that

AX≡AY mod2n; in other words A(X−Y )≡0mod2n

Since A,X and Y are all odd, they have no common factors
with 2n. So the only way for A(X−Y )≡ 0 mod 2n to hold is
if X≡Y mod2n. Finally, since X ,Y <2n, this means X =Y .

This means that all the 2n−1 products listed above are
distinct. Moreover, they are all odd because the product of
two odd numbers is always odd. Since there are exactly 2n−1

odd numbers less than 2n, this means that the above list is a
permutation of 1,3,5,...2n−1. Thus, there must be some odd
number B such that AB≡1mod2n.

Extended Euclidean Algorithm [56] can be used to calculate
this multiplicative inverse efficiently. In any case, this
computation is a one-time cost for our algorithm. Now we are
ready to describe our encoding technique:

procedure init
1. Generate an odd random number A

uniformly distributed over 1...2n−1.
2. Compute B such that AB≡1mod2n−1.

function enc(x)=(Ax mod 2n−1) |2n−1

function dec(x)=B·(x&(2n−1−1)) mod 2n−1

Note that x mod 2k can be efficiently computed using a single
bitwise-and operation, specifically, x&(2k−1).

Observation 2 (Encoding Scheme Properties)
• ∀xdec(enc(x))=x.
• ∀y if y = O ·2r where O is odd, then dec(y) is uniformly

random over {2r,3·2r,5·2r,...,(2n−1−r−1)·2r}.

The first point follows from the definition above:

dec(enc(x))≡B(Ax)≡(BA)x≡xmod2n−1
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The condition y=O·2r in the second point corresponds to y be-
ing an address that has r-bits of alignment. When such a y is de-
coded, the product operation will still leave the last r bits as zero.
Using the same logic as in the proof of Observation 1, it can be
shown that there are exactly 2r distinct values of B that will pro-
duce each of the values in the set {2r,3·2r,5·2r,...,(2n−1−r−
1)·2r}.7 In other words, the product B·y is uniformly random
over this set. Based on this we can now show that the encoding
scheme detects alterations to an encoded pointer.

Observation 3 (Correctness of Encoding Scheme) For a
memory address p, let valid(p) denote that p falls within an
executable memory page. Also, let S denote the total number
of bytes mapped for execution within the address space of a
process. Then:

• If y=enc(x) and valid(x) then Pr[valid(dec(y))]=1.
• Otherwise, Pr[valid(dec(y))]=S/2n−1.

Proof: The first part is just a restatement of the first point from
the last observation. To establish that second point, note that if
y=O·2r, then, from the second point of the last observation,
dec(y) can range over 2n−r−1 values. Assuming that (a) the
address space mapped for execution is also uniformly random,
and (b) considering the fact that among S such addresses there
will be S/2r that will have r bits of alignment, the likelihood
that B·y is one of these valid addresses is:

S/2r

2n−r−1 =
S

2n−1

This observation means the following: if the program attempts
an indirect control transfer using a pointer y that was altered
after encoding, then it will lead to a fail-crash (through a mem-
ory fault) with probability 1−S/2n−1. Considering that the
largest binaries are typically under 128MB = 227B, and that
n is at least 48, there is only one in a million chance (or more
precisely, 1 in 220) of failing to detect any arithmetic may have
been performed on an encoded pointer. If all 64 bits of the
pointer are usable, this decreases further to 1 in 64 billion. For
a typical binary of size <8MB, it is 1 in a trillion.

4.3 Address Translation (AT)

As noted before, our approach relies on address translation
to tolerate false negatives in code pointer classification. For
modularity, address translation uses a two-level structure: a
global translation table (GTT) and a per-module local trans-
lation table (LTT). The LTT is constructed at instrumentation
time. In contrast, the GTT is constructed at runtime, with new
entries added as and when a binary is loaded.

Due to ASLR, the absolute values of all code pointers can
only be determined at runtime. So, we store offsets — the
relative distance between a code pointer and the base of the

7Basically, the leading r bits of B don’t affect the lower r-bits of B·O·2r .

code section — in the LTT, since the offsets are fixed for a given
binary. For each possible code pointer P identified by our anal-
ysis in Sec. 3, we add the pair (Oo,On) to the LTT, where Oo is
the offset of P in the original code, and On is the corresponding
offset in the new code. This hash table uses open-addressing
so as to avoid linked lists that can be cache-unfriendly.

At runtime, when a code pointer P is used in an indirect
control transfer by a binary, it is not possible to predict which
other binary P came from. So, the lookup of P always goes
to the GTT. As described in Sec. A, instrumented binaries use
a customized loader that populates the GTT whenever a binary
is loaded. Specifically, an entry is created in the GTT for each
code page of the binary. This entry maps the page address
(leading 52 bits of the address) to the LTT of the binary. The
GTT is also structured as a hash table with open addressing.

4.3.1 Optimization: Avoiding address translation for
returns

Since returns are very frequent, they exacerbate the overhead
of address translation. Using native calls and returns will
relieve this overhead. However, this leads to incompatibilities
with non-standard uses of return addresses, e.g., C++ exception
handling uses return addresses on the stack to determine the
landing pad8 for an exception. Such non-standard uses will
break if the original return addresses are replaced with the
corresponding new locations in the instrumented code.

Other non-standard use of return addresses are (a) as targets
of an indirect call or jump, or (b) to compute data locations.
The second use is only observed on 32-bit x86 processors due
to their lack of support for PC-relative addressing. Since (a)
is already handled in our approach by including all possible
return addresses in the LTT, the only compatibility issue raised
is due to C++ exceptions. We, therefore, implemented an
optimization wherein we update all the exception handling
metadata to reflect the location of the new code. To support
indirect jumps within the exception handling module, we
add these new landing pad pointers to LTT as well. Finally,
to support the uses of return addresses as indirect call/jump
targets, we need to add the new return addresses (rather than
the original ones) to the LTT. With this optimization place, we
can avoid instrumentation for (direct) calls and (all) returns,
leading to substantial reductions in overhead.

5 Safe Jump Table Instrumentation

Most Group I approaches [4, 7, 32, 62] do not try to analyze
or predict the value of a computed code pointer, but simply
route its actual runtime value through the address translation
table. Unfortunately, this approach exacts a high performance
cost when jump tables are used in inner loops. This prompted
efforts to optimize away this address translation step when
possible [62]. Group II approaches essentially apply this
optimization in all cases since there is no address translation

8This is essentially the catch block designated to handle this exception.
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to fall back on. This requires updating the jump table contents
so that it now stores offsets in the instrumented code rather
than the original code. This raises several major challenges
for static analysis as well as instrumentation correctness:

1. Identifying the exact bounds (base and size) of a jump table.
2. Identifying the exact set of index values and target

locations used in a jump table.
3. Jump table is essentially some data used by the program

under instrumentation. Changing its content can thus
amount to data corruption, the result of which could be
a crash or an arbitrary failure.

The first two challenges — which relate to the completeness
of jump table recovery — have been recognized and discussed
in previous works. According to Pang et. al [36], Angr [48],
Dyninst [5], and Ghidra [44] respectively miss about 24%,
1%, and 8% of the jump table targets. Egalito [57] reports 1%
false negatives, but the table bounds were missed at a much
higher 6% rate. There is generally no recourse for these false
negatives — if the instrumented program uses a missed target,
it will cause (unpredictable) failure. Thus, the first goal we
address in this paper is the development of a technique in
Sec. 3.2 that is geared to identify all possible targets.

The third challenge — on instrumentation soundness — has
not received much attention in previous work. If jump table
bounds are not correctly identified, then these techniques can
corrupt adjacent data. If the program uses some of a jump
table’s content as data, the instrumentation would break them.
Previous works [17, 41, 57, 62] are essentially best-effort
solutions in this regard, with correctness contingent on these
factors. In contrast, we formulate the criteria for safe jump table
transformation in Sec 5.1 and present a method to realize it.

5.1 Tolerant jump table transformation

To modify the jump table safely, we need to ensure that its
contents are used solely for jump table access. If there are
other uses of this data, possibly from functions other than the
one using the jump table, then jump table modifications will
affect this use and most likely result in misbehavior of the
instrumented program. One possible approach is to develop
a static analysis to rule out such uses, but this does not seem
promising. In particular, data accesses frequently involve
complex pointer arithmetic that is very hard to reason about,
especially in binaries. Hence, we develop a different approach
that leaves the original jump table intact, thus preserving the
behavior of any code that uses it as data.

Our approach is to make a copy of the jump table and
modify the code that used the original jump table to use this
copy. For instance, the code accessing a jump table using
the expression Base + Table[index] will be transformed
into one that accesses NewBase + NewTable[index], where
NewTable is the new location of the jump table. Contents
of this relocated jump table will be changed so that the
NewBase+NewTable[index] will point to the new location

of the code accessed by Base+Table[index] for each value
of index. Note also that in this transformation, exact bounds
information is not essential for soundness. For instance, if
we overestimate the size of the table, we end up using more
storage, but there is no correctness impact since the entries
beyond the correct bound won’t be accessed by the program.

There are instances where the same jump table is used by
more than one indirect jump. To ensure safety, we analyze
each indirect jump separately and make a separate copy of the
jump table for each of them. Although this may seem wasteful,
multiple uses are infrequent, so this does not have a significant
impact on memory overhead.

5.2 Safe transformability analysis

The above approach makes changes to the code for access-
ing/using the jump table. We need to ensure that these changes
don’t have side effects that can change program behavior. To
do this, note that the changes described above only involve
substituting one set of constant operands (specifically, Base
and Table) with another set. Thus, all possible effects of this
change can be identified by performing a dependence analysis
starting from these instructions.

Specifically, we use a static taint analysis that marks these
new operands as tainted. After propagating this taint through
the current function, the following checks are made:

• Deref: Tainted value should not be used to dereference
memory except (a) the intended memory read, namely, the
instruction that originally read Table[index], and (b) the
indirect jump used by this jump table.

• StoreMem: Tainted value should never be stored in memory.

• CallArgs/RetVal: Tainted value should never escape outside
the current function, e.g., it should not be passed as a
parameter to a callee, or be returned to the caller of the
current function.

If all these checks are satisfied, then it is clear that the new
jump table contents are used solely in computing the indirect
jump target, and that it does not affect anything else. In other
words, it is safe to perform the jump table transformation. If
any of the checks are violated, then we conservatively leave
the jump table as-is, and instrument the indirect jump to use
address translation.

6 Evaluation

Our experiments evaluate SAFER along the following axes:

• functionality, including correct instrumentation of complex
binaries, handling data in code, supporting non-PIEs, and
failing safely when assumptions are violated (Sec. 6.2);

• runtime overhead, effectiveness of SAFER optimizations,
and the impact of compiler optimization levels (Sec. 6.3);

• memory overhead (Sec 6.4); and

• support for security-relevant instrumentation (Sec. B).
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6.1 Experimental setup

Datasets.
• Dataset 1 (473.5 MB): 15 pre-built real-world programs

(Table 2) and the corresponding 572 shared libraries used
by these programs.

• Dataset 2 (47.6 MB): SPEC 2006 benchmark has been
used in most previous works and provides a basis for direct
performance comparisons. It was compiled with gcc, g++
and gfortran at the default optimization level (-O2).

• Dataset 3 (587.2 MB): SPEC 2017 benchmark, a better
stress-test for SAFER due to its much larger size.

• Dataset 4 (30 MB): Custom-compiled coreutils, used to sys-
tematically evaluate SAFER’s ability to instrument binaries
with data embedded in code and its fail-crash design.

Instrumentation settings. Similar to previous works in
static/dynamic binary instrumentation, most of the evaluation
is performed with null instrumentation. This means that no
application-specific instrumentation is added, but all of the
components of SAFER are exercised, including disassembly,
pointer analysis, pointer encoding and decoding, address trans-
lation, and safe jump table transformation. The only exception
is Sec. B which adds CFI and shadow stack instrumentation.

Evaluation platform. All experiments were carried out on a
desktop running a 12th generation Intel Core i7 processor with
16 GB main memory and 500 GB SSD, running Ubuntu 20.04.

6.2 Functionality evaluation

Our functionality evaluation aims to answer these questions:

• Does rewriting preserve functionality? (Sec. 6.2.1)
• Can it correctly rewrite binaries that cannot be handled by

Group II approaches? This includes non-PIE binaries and
binaries containing data within code. (See Sec. 6.2.2.)

• In cases where SAFER’s assumptions are violated, does it
fail safely? (See Sec. 6.2.2.)

6.2.1 Position-independent executables and libraries
We tested SAFER functionality using SPEC 2006 and
2017 benchmark suites, coreutils, and several real-world
applications (Table 2). We transformed the executables and
all the libraries used by these programs. The total size of the
code transformed, including the SPEC binaries, was around
1.1GB. Among SPEC benchmarks, uninstrumented versions
of wrf and gamess in SPEC 2006 and cam4 in SPEC 2017
failed on our experimental platform, so we omitted them from
our evaluation.

The SPEC suite and coreutils come with their own set of
functionality tests. For the real-world applications, we show
the test cases used in Table 2.

Note that even with all optimizations enabled, SAFER
preserves compatibility with C++ exception handling, stack
tracing and longjmp’s. SPEC 2006 omnetpp and povray

Program # of Size Data-in- Test case
libs (MB) code

libs
gimp 279 190 gcrypt

gnutls
avcodec

Create a drawing and save file

ffmpeg 187 175 gcrypt
gnutls

Convert a MP4 video of size
>50MB to MKV

clang
(non-PIE)

15 122 Compile 50+MB program

evince 148 115 gcrypt
gnutls

Open a PDF file, view pages

apt 19 113 gcrypt Run “apt-get upgrade”
gedit 117 81 gcrypt Open a text file, edit and save
vim 20 13 Open a file, edit and save
Python 8 9 Run Pystone benchmark

(non-PIE)
pdflatex 8 8 Compile .tex files with total

size of 100KB
scp 5 5 crypto Copy files of size>100MB
find 7 4.5 Find files in /usr/bin by name
tmux 8 3.5 Open a tmux session, issue

commands to terminal, quit
tar 7 3 Compress a 2+GB directory
enscript 4 3 Convert text file of size

>100MB to PDF
gcc
(non-PIE)

2 3 Compile 50+MB program

make 3 2 Compile a program with
more than 100 source files

Total 572 473.5

Table 2: Functionality testing on real-world applications. Size
indicates the combined size of a binary and all the libraries used by
it. Library names are shown without the lib prefix and .so suffix.

use exception handling at runtime and their instrumented ver-
sion executed without any failure. Perlbench benchmark uses
longjmp and it executes successfully post instrumentation.

6.2.2 Binaries with data-in-code and non-PIEs
Customized coreutils with embedded data To further
evaluate the ability of SAFER to handle binaries that challenge
disassembly and code pointer identification techniques, we
compiled the coreutils package with data embedded in the
middle. We used a custom linker script for this purpose.
Instead of creating a separate section of the program’s
read-only data, this linker script embeds it in the code section
(.text). Note that we did not add any additional data manually.
Instead, the linker script scatters the program’s read-only data
from different object files (.o) across the code section.

We first used this data-in-code dataset to evaluate if SAFER
achieves its fail-crash objective when its disassembly and/or
code pointer identification fails. Table 3 shows the results
of this experiment. Data-in-code causes our disassembly to
misclassify some instructions, but as described in Sec. 2, our in-
strumentation algorithm can tolerate these errors fully. So, we
did not anticipate any instrumentation time or runtime failures
related to incorrect disassembly. We confirmed this by instru-
menting the binaries in full address translation mode, where
none of the pointers are fixed up and the program relied on
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coreutils Rewrite
success

Execution
success

Safe
Failure

runtime AT 105/105 105/105 NA
Instruction boundary 105/105 43/105 62
ABI validation 105/105 74/105 31
Function prologue matching 105/105 105/105 NA

Table 3: Coreutils with data embedded in code.

runtime address translation. The first row (runtime AT) in Ta-
ble 3 summarizes the results. As expected, all the tests passed.
Next, we tested if our objective of predictable failure is met
if code pointers are misclassified. We tried three techniques:

• Instruction boundary based: This technique designates any
pointer that references an instruction boundary for pointer
encoding. This results in multiple misclassifications, and
as a result, about 60% of the test cases failed. We verified
in each case that the failure was due to the dereferencing
of data using an encoded pointer. This is the failure mode
designed into the system, and our experiment shows that it
is achieved. We investigated the error further in gdb, and
found that most errors were due to a string argument pointer
that was passed to a print routine in glibc.

• ABI-based: In this mode, we designate a pointer as a code
pointer if satisfies the ABI-designated properties that all
functions must respect. There can be small data fragments
that disassemble into code that doesn’t violate the ABI, and
hence this test alone is not a reliable indicator of function
pointers. As a result, almost 30% of the test cases fail. As in
the previous case, we verified that the failures happened in
the predicted manner.

• ABI and function prolog matching: With this setting, SAFER
is able to correctly classify code pointers despite the fact
that these binaries contained data within code. As a result,
all tests were passed.

Real-world applications using libraries with data embedded
in code. Observe that nearly 40% of the applications in
Table 2 use a library that contains data embedded within code.
This shows that secure instrumentation of real-world applica-
tions requires the ability to support data in code. Of the three
libraries containing data embedded in code, two of them could
be instrumented successfully with ABI-based code pointer
validation (i.e., function prolog-based validation disabled).
But libgcrypt.so had a data pointer misclassified using this
approach. We could isolate the problem to this module because
of SAFER’s safe-failure (fail-crash) design. We retested by
instrumenting just this library twice: (i) the first time with
function prolog-based validation and (ii) the second time with
full address translation. All the related programs executed
successfully both times. In future work, we plan to leverage
information from the disassembly phase to flag binaries that
have a high likelihood of containing data, and proactively
apply this fall-back mode of instrumentation for such binaries.
Such an approach can minimize the instances where users
encounter crashes and need to initiate reinstrumentation.

Position-dependent (non-PIE) binaries. We first recom-
piled SPEC 2006 into position-dependent code (non-PIE).
Note that Group II approaches such as Egalito [57],
RETROWRITE [17] and SBR [41] cannot handle such binaries.
We verified that SAFER can transform these non-PIEs and
they passed all the tests. Among real-world applications, gcc,
clang and python are non-PIEs.

6.3 Runtime Overhead

In this section, we aim to answer the following questions:

• How do SAFER’s overheads compare with previous works
in Group I and Group II? (Secs. 6.3.1, 6.3.2.)

• Is SAFER efficient across different optimization levels used
to compile a binary? (Sec. 6.3.3.)

• How effective are its design features and optimization tech-
niques in reducing runtime overhead? (Sec. 6.3.4.)

• What is its performance on non-PIEs? (Sec. 6.3.5.)

Our answers to these questions are based on the results shown
in Figs. 3, 4 and Table 4. Fig. 3 shows the performance on
SPEC 2006 binaries compiled with gcc at O2 optimization
level and PIE format. Fig. 4 shows non-PIE versions of the
same programs compiled at the same optimization levels.
Table 4 includes programs from SPEC 2017 benchmarks. For
all of the experiments, we instrumented the whole program,
including all the shared libraries.

6.3.1 Comparison with Group II Techniques
Group II techniques [17, 41, 57] prioritize performance over
compatibility and graceful error-handling, and hence are
applicable only to position-independent binaries without
embedded data. In addition, if jump tables don’t match
one of the patterns supported by the tool, it can lead to
instrumentation or runtime failures. With these assumptions,
they are able to achieve an overhead that is close to zero.
SAFER does not make these assumptions yet comes close in
terms of performance, achieving an overhead of 1.91%.

6.3.2 Comparison with Group I Techniques
Group I techniques require fewer assumptions but incur
significantly higher overheads than Group II techniques.
BinCFI [59] without any additional optimizations incurs
34.33% overhead. The corresponding number reported by
MULTIVERSE authors [4] is 60%. The comparable number
for SAFER is 30.8%, obtained in “full AT” mode. (This mode
uses original code addresses everywhere, including return
addresses, thus requiring address translation for each return
and all indirect calls and jumps.)

Both BinCFI and MULTIVERSE present a few optimizations
similar to ours, e.g., return address (RA) optimization.
However, the configurations are not comparable. For instance,
Multiverse reports RA optimization when the libraries are not
instrumented. Moreover, performance numbers are reported
only for 12 of the 29 SPEC 2006 benchmarks. Still, the best
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Fig. 3: Runtime overhead for SPEC 2006 compiled into position-independent executable (PIE) with different SAFER optimizations enabled. To
improve readability, these results have been grouped into two charts, the left one with lower overhead benchmarks and the right including the rest.
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Fig. 4: Runtime overhead for non-PIE binaries. Only the two highest levels of SAFER optimization are shown.

numbers reported by these works are 8.54% for BinCFI and
8.29% for Multiverse. In comparison, SAFER’s overhead with
all optimizations enabled is 1.91%. This is achieved because
(a) our pointer encoding technique can take advantage of
position-independent binaries to achieve faster performance
while retaining the ability to use address translation for (the
few) libraries that may require it, and (b) our jump table
transformations guarantee safety for all binaries.

6.3.3 Effect of compiler optimization levels
In this section, we evaluate if our approach is effective
consistently across different optimization levels used to
compile the instrumented binaries. We consider both its
runtime overhead and correctness here. We used SPEC 2017
benchmark suite, as it is much larger than SPEC 2006 and
hence can provide a more robust test for instrumentation
systems such as ours. The benchmarks were compiled into
PIEs, the default on our experimental platform.

Table 4 summarizes our results. SAFER correctly instru-
ments all binaries for all optimization levels, passing all
the tests included in the benchmark suite. Recall that the
uninstrumented version of cam4 fails across all optimization
levels and hence is not included in the table. All other SPEC
2017 benchmarks are shown in the table. Uninstrumented
versions of three other applications wrf, bwaves and roms
fail with Ofast optimization, resulting in three “not applicable”
(NA) entries in the table.

Benchmark O0 O1 O2 O3 Ofast Os
perlbench 3.61 25.31 7.05 8 5.92 17.93
gcc 10.97 2.54 3.4 2.27 2.64 1.49
mcf 5.31 6.21 6.25 6.46 7.95 6.34
omnetpp 4.58 11.54 12.05 10.89 11.6 12.23
xalancbmk 1.47 3.64 5.59 5 5.07 5.23
x264 -2.05 -0.42 -1.65 -1.83 -2.69 -0.41
deepsjeng 0.48 -0.4 0.84 0.43 1.3 -0.77
leela -0.1 -0.61 0.63 0.68 0.68 -0.59
exchange2 0.82 3.13 2.7 0 2.8 1.37
xz 0.19 0.14 0.44 0.44 0.44 0.28
bwaves 0 0.13 0 0.13 NA 0
cactuBSSN 0.71 0.64 -1.27 0.63 0.63 0.6
lbm -0.38 0.13 -0.13 -0.38 0 0.13
wrf 0.12 0.88 0.84 0.34 NA 0.46
pop2 -0.41 -1.28 1.09 -0.22 0 0
imagick 0.09 0.21 0 -0.54 -0.34 0
nab 1.93 7.19 2.44 1.22 2.07 4.44
fotonik3d 0.59 0.96 0.66 0.66 0.67 0.99
roms 0.53 1.18 0.95 0.96 NA 0.46
Average 1.5 3.22 2.2 1.85 2.42 2.64

Table 4: Performance overheads for SPEC 2017 benchmarks. All
numbers are in %. Uninstrumented or base version of benchmarks
with NA failed on our experimental platform.

The average overhead on SPEC 2017 across all optimization
levels is 2.3%. With O3 optimization (default for SPEC 2017),
the overhead is 1.85%.
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6.3.4 Effectiveness of SAFER optimizations
In this section, we evaluate the effectiveness of the key
optimizations introduced in this paper. Our evaluation results
are shown in Fig. 3. They use SPEC 2006 because its use eases
comparison with previous works that have all relied on it.

The base version of SAFER uses full address translation
(“full AT”), capturing the behavior of Group I systems. Note
that full transparency is preserved in this case, as all the
(pointer) values stored in memory will correspond to that of
the original code. This ensures the preservation of application
behavior. In this mode, all indirect control transfers, including
all returns, go through address translation. The average
overhead is 30.8% for SPEC 2006.

Code Pointer Encoding. This is the primary optimization
introduced in the paper, and it enables efficient treatment of
definite code pointers to coexist with the transparent treatment
needed for possible pointers to work correctly. Moreover, this
technique underpins the safety of our system, ensuring that
errors in pointer classification will crash predictably before
they can cause more serious failures.

To evaluate the performance benefits of pointer encoding,
we compare the overhead between “full AT” and “full
encoding,” which uses pointer encoding (instead of AT)
selectively for definite pointers. Note that return addresses
pushed on the stack by call instructions are definite code
pointers, so they are encoded as well.9

The use of encoding cuts down the average overhead by
about 3×, bringing it down from 30.8% to 10.6%.

Return Address (RA) Optimization. Returns far outnumber
indirect calls and jumps in most programs and hence
improving their treatment can have an outsize impact on total
overhead. Many previous Group I techniques have hence
proposed an optimization to store the current rather than the
original return address on the stack. Unfortunately, this change
often breaks complex programs that make non-standard uses
of return address, including as a call target, in C++ exception
handling, etc. The key distinction in our approach, described
in Sec. 4.3.1, is that we preserve these non-standard uses, and
hence do not pay a price in terms of compatibility.

The RA optimization reduces the overhead by another 2×,
bringing it down to 4.5%.

Safe Jump Table Transformation. Finally, the “JT Opti-
mization” bars in Fig. 3 reveal the impact of our jump table
optimization described in Sec. 5. Note that the overhead
reduces by approximately another 2× to 1.91%. Further

9For C++ exceptions to work in this configuration, the exception handling
metadata will need to be rewritten to use encoded pointers. But we did not do
this because this configuration is purely for measuring the performance impact
of pointer encoding. Real-world applications will use the higher optimization
levels discussed in the next few paragraphs. As a result of not preserving
exception compatibility, omnetpp and povray fail in this configuration and
were excluded from the average.

33%

9%

55%

Safe
RetVal
StoreMem
Deref
CallArgs

Fig. 5: The “Safe” area shows the percentage of jump tables that are
transformed safely by SAFER in SPEC 2006 binaries (optimization
O2). The rest are classified as unsafe, with the labels corresponding
to the reasons listed in Sec. 5.2.

examination shows that this overhead reduction is modest for
most programs, but has a major impact on perlbench, reducing
its overhead from 53% to 12%.

Fig. 5 shows that about 55% of the jump tables are classified
as “safely transformable” by our static analysis. The remaining
jump tables are deemed unsafe for the reasons listed in Sec. 5.2.
As indicated in red color, the biggest culprit is CallArgs,
where a tainted value (i.e., a value that is modified by the new
jump table computations) is possibly passed as an argument
to a called function. Digging into this further, we found the
following reason: our current analysis treats every argument
register, as per the ABI, to be used by the callee. But in the
vast majority of cases, functions take fewer arguments than the
number of ABI registers. In future work, we plan to extend our
analysis to examine the callee code to obtain a more accurate
estimate of the actual argument register use.

About 9% of jump tables are deemed unsafe because our
static analysis cannot rule out the possibility that a tainted
value escapes to the caller. On further examination, we found
that this mostly happens because the rdx register is considered
a return value register by the ABI, but in most cases, only rax
is used to communicate a return value. An analysis of callers
can improve this accuracy.

6.3.5 Performance on position-dependent code (non-PIE)
Finally,Fig. 4 shows the overhead of our approach for non-PIEs.
We focus on the two highest optimization settings here. The
overheads are generally higher for non-PIEs: in the absence of
relocation information, our analysis classifies most pointers as
possible rather than definite, thus subjecting them to address
translation. As a result, the overhead for the RA optimization
setting increases to 7.2% as compared to 4.5% for PIEs.

The addition of safe jump table optimization brings the
overhead to 5.2%. Note that this is about half the overhead
reported by previous methods that can support non-PIEs such
as BinCFI [62] and Multiverse [4].

6.4 Memory Overhead

Fig. 6 shows the size increase of SPEC 2006 binaries after they
are rewritten by SAFER. Recall that we leave the original code
in place, so that contributes an additional 1× to the size of the
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Fig. 6: New code and hash table size overhead of SPEC binaries as a multiple of original/old code.

instrumented binary. Then the instrumented code is added. Be-
cause we instrument every indirect control transfer and return,
among other things, this increase is noticeable: on average,
the new code is about 1.7× the size of the original binary.

The second major contribution is from the hash tables. Our
possible code pointer analysis is conservative and significantly
overestimates possible code pointers. Moreover, for compat-
ibility reasons, we add return addresses to the translation table.
And finally, for efficiency, we use a load factor of 25% for
the hash tables. As a result of these measures, the average size
of hash tables in binaries is about 0.7× the original binary
size. Additionally, we also recreate jump tables as part of safe
jump table instrumentation. These new jump tables are added
as additional read-only data. However, they do not contribute
much to the overall memory overhead. The average size of
the new jump tables is 0.02× the original binary size.

Altogether, instrumented binaries are about 3.5× the size of
the original binaries. While this is significant, it is far less than
that reported by other Group I techniques. Note that BinCFI
does not report memory overhead, so we cannot compare our re-
sults with it. Multiverse reports an increase between 5.4× and
203× across the subset of SPEC 2006 benchmarks they used,
with a geometric mean of 29×. For larger binaries, they explain
how their average converges to about 10×, which includes a
4× for their array-based implementation of translation table,
and up to 5× for the new code, plus 1× for the original code.
Probabilistic disassembly [33] reduces the code size increase
to about 6× because it can eliminate most of the false positives
of superset, thereby leading the new code to be about as large
as the old code. The 4× increase for the translation table is
unaffected. Note that our 3.5× size is only about half of theirs.

Although the overall size of the new binary is 3.5×, note
that the old code is unlikely to be accessed at runtime. So the
runtime memory footprint is about 2.5× the original.

6.5 Discussion

The goal of SAFER is to maximize performance while avoiding
unsafe failure modes. Naturally, it would be preferable to
avoid failures altogether. The benefit of our approach is that it
can tolerate errors on one side — false positives in disassembly

and false negatives in definite code pointer identification. This
enables our analyses to be tuned to minimize the type of errors
that lead to failures.

The safest approach for handling binaries that lead to failure
is to apply full address translation. This increases the overhead
to over 5% if applied to all binaries. A second option we
have tried successfully on all of our datasets is to require the
stronger function prolog checks for definite code pointers.
This leads to a slightly lower overhead of 3.5%. Since only
a small subset of binaries need this safer treatment, the final
overhead is likely to be closer to 2% rather than 5%.

These safer options can be applied when a transformed
binary fails tests. A better option is to apply them proactively
by leveraging the disassembly phase to flag binaries with a
non-negligible likelihood of data in code. This is a topic of
our ongoing research.

Limitations While our prototype is able to handle many
complex applications, it is still a prototype and faces scalability
challenges (especially in disassembly) on very large binaries.
The largest binary we have been able to handle is about 75MB
(clang). Firefox’s libxul at 160MB causes failures during
disassembly due to resource exhaustion.

Our encoding technique needs one unused bit in pointers.
Programs that repurpose all unused bits of code pointers pose
a challenge. We plan to develop a workaround based on setting
aside a fraction of the address space in the loader.

7 Related Work

Dynamic binary instrumentation systems such as Dy-
namoRIO [7], Pin [32], Valgrind [35] and Strata [46] are not
prone to instrumentation errors but incur heavy performance
penalty on real-world applications. Static binary instrumen-
tation systems are lighter weight in terms of performance cost
but are prone to instrumentation failures because of known
challenges in disassembly and code pointer identification.
Early research [30, 45] established the challenges in correct
disassembly of x86 binaries. Linear disassembly tools such as
objdump perform poorly on binaries containing embedded
data. Recursive disassembly is not affected by embedded data,
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but runs into coverage problems because of the difficulty of
statically predicting the targets of indirect control transfers.

Instrumentation using metadata. Many prior works
[15, 19, 21, 31] rely on additional compiler-generated
information that is unavailable in stripped binaries, such as
the symbol table. Recent works have shown [37, 40] that
exception-handling metadata can be used to accurately identify
functions. Many tools such as GHIDRA [44] and JIMA [2] also
rely on exception-handling metadata. The advantage of this
metadata is that it is unaffected by stripping. Its downside is
that it may not be available for C programs. Some C++ projects
also disable the inclusion of this metadata due to its large size.

Metadata-free instrumentation. Tools such as BIRD [34],
Dyninst [27], and Angr [48] rely on patterns such as function
prologue signature to discover indirectly reached functions to
increase disassembly coverage. Such pattern matching misses
a significant amount of code (≈30% for Dyninst). Other
techniques such as Ddisasm [22] and Ramblr [52] rely on static
analysis to identify and update pointers. However, experiments
conducted by Zhang et al. [63] show that Ddisasm fails to
correctly transform binaries in the presence of embedded data
as it misclassifies data pointers as code pointers. Similarly,
SECRET [60] relies on static analysis to identify virtual
function tables and can suffer from incompleteness. To get
around disassembly errors while remaining metadata agnostic,
techniques such as Secondwrite [49] and PSI [61] use runtime
address translation. Secondwrite leverages LLVM optimiza-
tion to achieve excellent performance cost. However, it has
two main drawbacks: (i) it cannot handle position-independent
code and (ii) it leaves libraries uninstrumented.

In-place instrumentation. BIRD [34] was the first work to
apply binary instrumentation on x86 binaries of significant size.
To avoid having to recognize and fix up pointers, they resort
to in-place patching, which involves the insertion of jumps in
the original code to transfer control to the instrumented code.
Another benefit of patching is that jumps are far more efficient
than hash table lookups, or even our multiplication-based
encoding. As a result, patching has been used by several
researchers [31, 38]. A key challenge with patching is that
jumps require several bytes of space, but there can be instances
where locations very close to each other may need patching.
BIRD shows how to solve this problem in the worst case,
where there is just a single byte of space available, by using
software interrupt (i.e., INT) instructions. But this incurs a
heavy performance cost. Recently, e9Patch [18] developed a
clever approach that finds a way to use jumps, as long as there
are at least two bytes available. This enables their technique to
work in most cases, but the corner case of just one-byte space
remains. This is the reason why most binary instrumentation
systems rely on rewrite-time fix-up or address translation.

Another challenge with patching based approach is that
it cannot tolerate false positives in disassembly. If data is

mistakenly patched, it will change the program semantics.
e9patch is focused on the techniques for patching in the
presence of tight constraints on space but does not concern
itself with the higher-level problems in binary instrumentation,
e.g., deciding the locations that should be patched.

ARMore [16] is recent work that uses a patching-based ap-
proach but is aimed at tolerating false positives in disassembly.
Their method is focused on the ARM instruction set. Since
our approach is implemented only on x86, a side-by-side
performance comparison is not possible. In terms of the
techniques, the fixed size of ARM instructions simplifies the
task of in-place patching as compared to x86. Their approach
for coping with embedded data that may be mistakenly
patched is to mark the code as unreadable. Attempts to read the
data will hence cause a memory fault, which can be handled
by a signal handler that can then obtain the correct original
data value. This approach can work well if embedded data is
accessed infrequently, but if there is an embedded array that
is used in a loop, the performance can suffer greatly. Since the
technique was not evaluated on binaries containing data, this
overhead question remains unanswered.

8 Conclusions

In this paper, we presented SAFER a static binary instrumenta-
tion system that combines good performance with applicability
to a wider range of binaries. A key benefit of our approach is
that it tolerates most forms of disassembly and pointer iden-
tification errors. Our evaluation shows that SAFER has a low
runtime overhead of≈ 2%, and can successfully instrument
a wide range of binaries, including SPEC 2006 and SPEC
2017 benchmarks and many commonly used applications that
together add up to over 1GB of binary code. To the best of our
knowledge, ours is the first binary instrumentation work to
combine the performance benefits of rewrite-time code-pointer
transformation with the flexibility and compatibility benefits
provided by runtime address translation. This combination is
enabled by a combination of analyses for identifying definite
and possible code pointers, a new algorithm for pointer encod-
ing, and a new technique for safe jump table instrumentation.
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A Implementation

SAFER is implemented in C/C++ (about 40K LoC). We outline
some of the key aspects of our implementation in this section.

A.1 Disassembly

As discussed in Section 2.3, we follow a recursive disassembly.
The roots for the recursive disassembly are obtained as illus-
trated in Figure 1. We reused the disassembly implementation
from our concurrent work [42] which relies on capstone to
translate a given sequence of bytes to assembly.

Original code Instrumented code
1200: lea 0xf7(%rip), %rdi L1200: lea L1300(%rip), %rdi
1209: mov -0xefe(%rip), %rbx L1209: mov L310(%rip), %rbx

// load function pointer from location 310
120e: call *%rax L120e: mov %rax, %fs:0x88

mov %rbx, %rax
call translation_routine

1211: lea -0xf18(%rip),%rdi L1211: lea L300(%rip), %rdi
1218: cmp $0x14, %rax L1218: cmp $0x14, %rax
121c: jge 12ff L121c: jge L12ff
121e: add %rdi,%rax L121e: add %rdi,%rax
1221: mov (%rax), %rax L1221: mov (%rax), %rax
1226: add %rax,%rdi L1226: add %rax,%rdi
1229: jmp *%rdi L1229: jmp *%rdi

// Indirect jump using jump table
122a: ··· // code for jmp table entry 1 L122a: . . .
1270: ··· // code for jump table entry 2 L1270: . . .
1298: ··· // code for jump table entry 3 L1298: . . .
12ff: ret L12ff: ret

L1300_tt: mov %fs:0x88,%rax
jmp .L1300

1300: push %rbp L1300: push %rbp
1301: sub $0x20, %rsp L1301: sub $0x20, %rsp

··· ···
Static data: Static data:
// Jump table... // Rewritten jump table
300: 0xf2a L300: .long L122a-L300
304: 0xf70 L304: .long L1270-L300
308: 0xf98 L308: .long L1298-L300
// Pointer constant
310: 0x1300 L310: .8byte 0x1300

Fig. 7: Instrumentation process overview

Static analysis for computed code pointers To obtain
computed code pointers or jump table targets, we perform
analysis discussed in Section 3.2. First, our disassembly
output is lifted to an intermidiate representation, specifically,
gcc’s RTL. This is done using our architecture neutral system
LISC [28]. An intra-function analysis is then performed on
this IR to discover potential jump table targets. The discovered
targets are once again fed into the disassembler to discover new
code, which is analyzed again to find more jump tables. The
process is repeated until no new jump tables are discovered.

A.2 Instrumentation

Figure 7 gives an overview of how SAFER generates a
functional instrumented binary. Below are the steps involved:

Preserving direct control flow: Since instrumentation
changes code location, the direct control flow transfers need
to be adjusted accordingly. We do so by using a technique
similar to BinCFI [62]. As shown in Figure 7, every instruction
is assigned a unique label based on its address in original
binary (e.g., .L1200 for instruction at 1200). The control
flow transfers are then changed to use these labels instead of
constant offsets. For example, the jump instruction at 121c is
modified from jge 12ff to jge .L12ff. Note that this is different
than Symbolization discussed in Uroboros [53]. Uroboros tries
to solve the problem of identifying and fixing up code pointers,
which it refers to as the Symbolization.

Preserving indirect control flow: SAFER either encodes pos-
sible code pointers or leaves them unchanged (Section 4).
Encoding of pointers is done at load time with the help of
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a customized loader (Section A.3). Every indirect control flow
transfer needs to be instrumented to translate the pointers. Fig-
ure 7 shows instrumentation of indirect call at 120e that saves
register rax into a thread local storage (%fs:0x88), moves the
indirect target into rax and jumps into a translation function.
After decoding or performing address translation, this routine
jumps to a trampoline that is specialized for the destination
address. This trampoline restores rax register and then jumps
to the ultimate target (e.g., .L1300_tt for function at 1300).

Recreating jump tables: Our safe jump table analysis
discussed in Section 5 allows us to safely recreate certain jump
tables and avoid instrumentation of the corresponding indirect
jumps. As shown in Figure 7, the jump table at 300 is recreated
using labels of corresponding targets and the corresponding
indirect jump at 1229 is left uninstrumented.

Handling system calls. Some system calls take function
pointers as argument. If the function pointer is encoded, it must
be decoded before it is passed to the kernel. Specifically, we
have implemented this feature for the rt_sigaction system
call. This requires checking the syscall instructions in glibc
and libpthread and instrumenting them.

Reassembling instrumented binary: SAFER generates an
assembly file containing all the aforementioned instrumenta-
tion as well as the ELF headers (e.g., program headers, section
headers, etc). This assembly code is assembled into an object
file using the system assembler. The .text section of this object
file is the ELF image of instrumented binary which is extracted
and used for program execution.

A.3 Customized loader

To support our pointer encoding/decoding and runtime
address look up, we rely on a customized loader. During
instrumentation, the interpreter associated with the binary is
modified to point to this customized loader. (Uninstrumented
binaries continue to use the original system loader.)

We made our customizations on the default loader on
Ubuntu 20.04 (GNU libc-2.31 loader ld.so). Our changes,
implemented in about 1500 LoC, perform the following tasks:
(1) populating the GTT, (2) handling encoded pointers, and (3)
loading instrumented modules. Task (1) was already described
in Sec. 4.3. For (2), the loader’s default relocation process
modifies all pointers by adding a module’s base address to the
pointer offset. Instead, our custom loader encodes these point-
ers. To initiate this, we introduced a new relocation type. When
our customized loader encounters this relocation type, it per-
forms encoding instead of the usual addition of base address.

For Task (3), we changed the loader’s default search process
to always load an instrumented version of a shared library
when requested by an instrumented program.

1 cmp $0 ,% f s : 0 x78
2 jne .push_ra
3 c a l l . i n i t_ sh s t k
4 .push_ra :
5 sub $16 ,% f s : 0 x78
6 push %rax
7 mov %f s : 0 x78 ,%rax
8 push %rbx
9 mov 16(%rsp ) ,%rbx

10 mov %rbx , -8(% rax )
11 l e a 16(%rsp ) ,%rbx
12 mov %rbx , -16(% rax )
13 pop %rbx
14 pop %rax

call instrumentation

1 push %rdx
2 mov %rax ,% f s : 0 x88
3 mov %f s : 0 x78 ,%rax
4 mov %rsp ,%rdx
5 add $8 ,%rdx
6 . l o op :
7 add $16 ,%rax
8 mov %rax ,% f s : 0 x78
9 cmp 0(%rax ) ,%rdx

10 jne . l o op
11 mov 8(%rsp ) ,%rdx
12 cmp 8(%rax ) ,%rdx
13 jne abort
14 pop %rdx
15 mov %f s : 0 x88 ,%rax
16 r e t

return instrumentation
Fig. 8: Shadow stack instrumentation.

B Supporting security-relevant instrumentation

B.1 Shadow stack instrumentation

Code reuse attacks such as return oriented programming
(ROP) [47] rely on executing a chain of code gadgets to achieve
an attacker’s goal. Shadow stack [24, 39] is a well-known
defense to thwart these attacks. The key idea is to maintain
a second copy of return addresses on a shadow stack, and to
compare the two return addresses before executing each return
instruction. Several research efforts have demonstrated that
coarse-grained control-flow integrity is insufficient to defend
against code-reuse attacks [13, 25, 26], and that the precision
of shadow stacks is required [10].

Binary instrumentation for shadow stacks has a long history,
going back to BIRD [34]. Shadow stack based protection
has often been used to demonstrate binary instrumentation
capabilities [4, 61]. Consequently, we chose it as an example
illustration for SAFER.

Shadow stack is known to be incompatible with function-
alities such as exception handling and longjmp that cause
multiple frames to be popped off the stack. This will cause
loss of synchronization between the shadow stack and the
main stack. Several techniques have been proposed to address
this, and we rely on the one proposed by Burow et al. [9] to
push the current stack pointer onto the shadow stack as well.

Our instrumentation for shadow stack is shown in Fig. 8.
We instrument both calls and returns. Our shadow stack
pointer is stored in thread local storage (%fs:0x78). Calls are
instrumented to push both the current stack pointer and return
address onto the shadow stack. Returns are instrumented
to keep incrementing the shadow stack until a match for
the current stack pointer is found. By continuing to pop
the shadow stack until the stack pointer value matches, we
can resynchronize after such non-standard returns. Once
a matching stack pointer is found, the return addresses are
compared. In case of a mismatch, the program is aborted.

The performance of shadow stack is shown in Fig. 9.
Our primary goal was to demonstrate the functionality of
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Fig. 9: Percent runtime overhead of CFI and Shadow stack. On the left, we have binaries with runtime overhead for CFI less than 20% and
on the right we have binaries with overheads higher than that.

SAFER, so we did not focus on optimizing the instrumentation.
Issues such as minimizing the number of register saves
and simplifying the frequently executed path have not been
addressed. Our design choice to store both the stack pointer
and the return address on the shadow stack also extracts some
performance. Consequently, the overhead of shadow stack is
nontrivial at 16.5%. Shadow stack combined with CFI is more
secure and can prevent from exploitation of unintended returns.
This results in an overhead of about 20%. Our shadow stack
overhead is comparable to that implemented by Multiverse [4]
and PSI [61] as part their evaluation. Multiverse’s shadow
stack is incompatible with stack unwinding and works only on
a subset of SPEC binaries (12 out of 27). It has an overhead of
approximately 72%. On the same subset of binaries, SAFER’s
shadow stack has 27% overhead. PSI’s implementation does
not push the current shadow stack pointer on to the shadow
like we do. However, it keeps popping the shadow stack untill
a match is found. PSI’s implementation also works on a subset
of SPEC binaries (15 out of 27) and has an overhead of 18%.
For the same set of binaries, our overhead is 16.2%.

B.2 Coarse-grained forward-edge CFI

Coarse-grained CFI can also provide a limited defense against
code reuse attacks on its own. But more importantly, it provides
a basis to build secure instrumentation [1,20,61]. For instance,
shadow stacks by themselves are not secure, as attackers
can launch a ROP chain that uses only unintended return
instructions. Since there is no instrumentation protecting these
instructions, the attack can succeed. All they need is an initial
control-flow hijack, which can be realized using an indirect call
or a jump, which is unprotected by the shadow stack. However,
by combining a coarse-grained CFI with shadow stack, we can
prevent the use of any unintended instruction, thereby taking
away the attacker’s ability to bypass the shadow stack.

Since we instrument every indirect jump and call, coarse-
grained forward-edge CFI can be easily realized using SAFER.
We consider two flavors of protection, each offering a different
trade-off between security and performance. The most
efficient approach is to rely on the following factors:

• Possible code pointers go through address translation. This
table, in effect, enforces a coarse-grained CFI policy, as
in the case of BinCFI [62].

• Definite code pointers are encoded. Because of the proper-
ties of encoding established in Sec. 4, encoding scatters the
original pointer values across the entire address space. This
means that the attacker has a negligible chance of guessing
the encoded value of her intended target without knowing
the multiplier used for encoding or decoding. By selecting
the multiplier at random at load time and ensuring that it is
stored in the thread-local storage, we can achieve random-
ized protection that is similar to how stack canaries are pro-
tected. Overall, this scheme is similar to PointGuard [11].

• Indirect jumps used in transformed jump tables are not
checked, but note that by virtue of the static analysis
used, we already know that the target is determined by
the contents of the jump table, which resides in read-only
memory. We also know that values derived from the jump
table content are never stored memory (“Deref” property),
so no memory corruption will allow the attacker to control
the target of a transformed jump table jump.

Thus, all forward edges are protected by coarse-grained
CFI even when all of the optimizations are in effect. Thus,
overhead for coarse-grained forward edge CFI protection is
1.9% for SPEC 2006 compiled into PIE, and 5.2% for SPEC
2006 compiled into non-PIE.

The protection provided by encoded pointers may not be
sufficient under some threat models. For instance, if attackers
can access a vulnerability that leaks chosen locations on the
stack or heap, or large numbers of such locations, they can
often find the value of an encoded pointer whose value they
already know. This would allow them to extract the multiplier
used for encoding. Note that this is similar to attacks that infer
the XOR mask used for stack canaries or PointGuard [11].
If protection against such adversaries is desired, there are
two options. One is to implement an additional checking
mechanism on top of pointer encoding. The second is to simply
fall back on the use of address translation for all pointers. We
measured the overhead in this mode, and the results are shown
in Fig. 9. The average overhead across SPEC 2006 is 5.1%.
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