
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Glimpse: On-Demand PoW Light Client
with Constant-Size Storage for DeFi

Giulia Scaffino, TU Wien and Christian Doppler Laboratory Blockchain Technologies
for the Internet of Things; Lukas Aumayr and Zeta Avarikioti, TU Wien;

Matteo Maffei, TU Wien and Christian Doppler Laboratory Blockchain Technologies
for the Internet of Things

https://www.usenix.org/conference/usenixsecurity23/presentation/scaffino

Glimpse: On-Demand PoW Light Client with Constant-Size Storage for DeFi

Giulia Scaffino1,2, Lukas Aumayr1, Zeta Avarikioti1, and Matteo Maffei1,2

1TU Wien, {giulia.scaffino, lukas.aumayr, georgia.avarikioti, matteo.maffei}@tuwien.ac.at
2Christian Doppler Laboratory Blockchain Technologies for the Internet of Things

Abstract
Cross-chain communication is instrumental in unleashing

the full potential of blockchain technologies, as it allows users
and developers to exploit the unique design features and the
profit opportunities of different existing blockchains. The ma-
jority of interoperability solutions are provided by centralized
exchanges and bridge protocols based on a trusted majority,
both introducing undesirable trust assumptions compared to
native blockchain assets. Hence, increasing attention has been
given to decentralized solutions: Light and super-light clients
paved the way for chain relays, which allow verifying on a
blockchain the state of another blockchain by respectively
verifying and storing a linear and logarithmic amount of data.
Unfortunately, relays turn out to be inefficient in terms of
computational costs, storage, or compatibility.

We introduce Glimpse, an on-demand bridge that lever-
ages a novel on-demand light client construction with only
constant on-chain storage, cost, and computational overhead.
Glimpse is expressive, enabling a plethora of DeFi and off-
chain applications such as lending, pegs, proofs of oracle at-
testations, and betting hubs. Glimpse also remains compatible
with blockchains featuring a limited scripting language such
as the Liquid Network (a pegged sidechain of Bitcoin), for
which we present a concrete instantiation. We prove Glimpse
security in the Universal Composability (UC) framework and
further conduct an economic analysis. We evaluate the cost of
Glimpse for Bitcoin-like chains: verifying a simple transac-
tion has at most 700 bytes of on-chain overhead, resulting in
a one-time fee of $3, only twice as much as a standard Bitcoin
transaction.

1 Introduction
The blockchain landscape is fragmented into a plethora of

blockchains presenting different technical features (scripting
languages, consensus mechanisms, etc.) and attracting users
for their unique properties (e.g., Bitcoin for its robust design,
Monero and ZCash for their privacy, Ethereum for the sup-
port of DeFi applications, Algorand for its high throughput).
Blockchain platforms already hold an impressive amount of

investments, users, and developers, who are often reluctant to
migrate their assets and contracts to other chains. By provid-
ing interoperability solutions, centralized exchanges have en-
abled an appealing ecosystem of financial applications, such
as trading different cryptocurrencies, collateral-based lending,
and more. Unfortunately, centralized exchanges need to be
trusted; additionally, they can be hacked, go bankrupt, or be
fraudulent, in which case the users’ money is at risk. The
same holds true for solutions assuming a trusted majority of
validators: e.g., an attacker managed to acquire five of the nine
validation keys used in the Ronin bridge [1], stealing $624M;
attacks on Wormhole ($320M), Nomad ($200M) or Harmony
($100M) and more, totaling over $1.3B of stolen funds in
the first 8 months of 2022 alone [2]. For these reasons, the
design of decentralized interoperability solutions is crucial to
unleashing the full potential of blockchain technologies.

The challenge of blockchain interoperability (or cross-
chain communication) stems from the two functionalities it
has to provide: (i) relaying information from a source ledger
LS to a destination ledger LD, allowing a user of LD to ver-
ify that a transaction TxS has been included in LS without
participating in LS ’s consensus protocol (cross-chain verifi-
cation), and (ii) atomic synchronization of transactions across
different chains, e.g., in an atomic swap, a transaction TxD
on LD succeeds if and only if TxS was previously posted on
LS (cross-chain atomicity).

Related Work. Cross-chain verification is typically achieved
by running either full nodes or light clients with linear storage
overhead in LS’s length. The core idea of light clients, illus-
trated for the first time in Nakamoto’s original paper [3] for
Simplified Payment Verification (SPV), is to store and verify
the block headers alone, as opposed to the whole block, and
to verify which chain carries the most Proof-of-Work (PoW).
The assumption underlying the security of light clients is that
the majority of miners follow the consensus rules; therefore,
the chain with the most PoW represents the honest chain.
SPV-based light clients save storage (a Bitcoin block header
is about 80B in size, whereas a block is about 1MB) but still
require the relaying and processing of a linear amount of

USENIX Association 32nd USENIX Security Symposium 733

information in the chain length, with an overhead of 60MB
for Bitcoin and 4GB for Ethereum. Light clients and SPVs are
the basis of chain relays [4–6], an expressive but expensive
solution to the cross-chain verification problem. Chain relays
verify and store every block header of LS within a smart con-
tract on LD, thereby acting as light clients. The inefficiency
of this construction, associated with the lack of incentives for
relayers and the high maintenance costs, is arguably one of
the reasons why relays are not used in practice.1 Later on,
super-light clients with logarithmic complexity were proposed
(PoPoW [7], FlyClient [8]), but they either require constant
PoW difficulty [7] or an hard fork in Bitcoin [8], and are thus
not backward compatible.

More recently, Xie et al. [9] have introduced an Ethereum-
compatible bridge with constant size storage, where a zk-
SNARK proof guarantees that the blockchain has undergone
a state update (either a single block or a batch of them).
Each verified state update is stored within a stateful con-
tract, and recent block headers of the source chain are re-
layed to and stored within the contract until a zero-knowledge
proof is made available to finalize and verify the state update.
Application-specific contracts can then rely on zkBridge to
perform, e.g., SPV verifications. However, zkBridge still re-
quires a linear amount of information relayed from the source
to the destination chain. As chain relays, zkBridge still incurs
in high maintenance costs and lacks of incentives for relayers,
which continuously compute zk proofs and submit them to
the bridge contract along with block headers. Moreover, zk-
Bridge can only be deployed and used in destination chains
supporting a quasi-Turing complete language, thus excluding
important chains holding hundreds of millions of dollars.

Similarly to zkBridge, all current implementations based
on the aforementioned client solutions require a quasi-Turing
complete scripting language on the destination chain and are
thus not compatible with blockchains with limited scripting
capabilities, such as Bitcoin-based chains. The expressiveness
of the scripting language is indeed one of the features setting
apart different blockchains, with some (e.g., Ethereum) fa-
voring the support of DeFi applications (albeit some smart
contracts can be encoded in the Bitcoin scripting language
too [10]) and others (e.g., Bitcoin) more conservatively ar-
guing for a reduced trust base and easier script verification.
For this reason, supporting blockchains with limited scripting
capabilities is not only theoretically challenging but also a
practically relevant research goal.

A different approach to the realization of bridges with con-
stant size storage is stateless SPV, initially proposed by Prest-
wich [11] and implemented by Summa [12]. Stateless SPV
also emerged within the Ethereum research community [13].
Recently, Barbára et al. [14] implemented, and for the first
time formalized, stateless SPV within the BxTB cross-chain
exchange. Instead of verifying all blockchain headers, the

1For instance, the most popular Bitcoin relay on Ethereum [4] stopped its
development in 2017 and the last transaction is from about 4 years ago.

LC [4–6] SLC [7, 8] zkBridge [9] SSPV [10, 13] Glimpse
Information Relayed: Linear Logarithmic Linear Constant Constant

Storage Overhead: Linear Logarithmic Constant Constant Constant
Backward Compatibility: Yes No Yes Yes Yes

LD q-Turing completeness: Yes Yes Yes Yes No
Upfront Mining Secure: Yes Yes Yes No Yes

Table 1: For light clients (LC), super-light clients (SLC), zk-
Bridge, stateless SPV (SSPV), and Glimpse we show the
amount of information relayed, storage overhead, backward
compatibility, need for quasi-Turing complete scripting lan-
guage on LD, and security w.r.t. upfront mining attacks.

idea is to perform a proof of inclusion on-demand for a spe-
cific transaction: for that, one needs to verify the headers of
a sufficiently long subchain whose first block contains the
transaction of interest. The authors conduct an economical
security analysis, showing that stateless SPV suffices to dis-
courage attacks on the system (i.e., to construct sufficiently
long invalid subchains), as it would be economically more
profitable to invest the mining power to honestly mine blocks.
In this work, we introduce an attack against stateless SPV,
which we call upfront mining attack: By knowing the to-be-
verified transaction upfront, a malicious prover may produce
a forged subchain beforehand, leveraging the fact that users
on LD have no way to ensure that such proof corresponds to
the suffix of the correct chain. Since there is no backward
time constraint on performing an upfront mining attack, the
attacker will eventually succeed in finding enough forged
blocks regardless of their mining power and without needing
to bribe any miners. This attack is not considered in stateless
SPV nor in BxTB, and gives them a strictly weaker security
notion than, e.g., SPV-based light clients, where this cannot
happen due to the honest majority assumption. A summary
comparison of the different clients for cross-chain verification
can be found in Table 1.

Cross-chain atomicity, i.e., the second core functionality of
interoperability, is typically implemented with lock contracts,
such as Hashed TimeLock Contracts (HTLCs) and adaptor
signatures [15]. These secret-based cryptographic techniques
use a statement S that ties the authorization of a transaction
TxD on LD to the leakage of a secret witness s within a trans-
action TxS posted on-chain LS. Lock contracts, however, have
fundamental limitations: (i) they require both parties to moni-
tor and actively participate in both chains (e.g., in the context
of atomic swaps), (ii) their expressiveness is very limited:
they require all transactions to be fully fixed upfront (and
pre-signed by the party giving away the coins) since they
must depend on the same secret, and (iii) they require one
party choosing the secret at the start of the protocol, while the
other party learns it later. As a result, lock contracts cannot
be used in applications like lending or Proofs-of-Burn, where
the same party needs to post transactions on both LS and
LD without the intervention of the other. We expand on this
in Appendix A, where we further discuss the related work.

To summarize, the present research landscape leaves the
following research question open: "Is it possible to design

734 32nd USENIX Security Symposium USENIX Association

a secure solution for cross-chain verification which guaran-
tees cross-chain atomicity, requires constant size storage, and
makes use of limited scripting language on the target chain?".
Our Contributions. In this work, we positively answer the
above question by presenting Glimpse, the first secure on-
demand bridge that achieves atomicity and constant size stor-
age by encoding a novel on-demand PoW light client in the
scripting language of the destination chain.

To achieve constant-size overhead, our light client assumes
knowledge of the current PoW target and is acting on-demand,
verifying only selected transactions. In particular, Glimpse
allows a prover and a verifier to establish a contract enforcing
that if a specific set of transactions TxS are confirmed on
a PoW LS within a given time after the contract is settled
(we call this time frame the contract lifetime), then another
set of transactions TxD can be published on LD. Technically,
Glimpse is a contract living on LD, which receives from the
prover a proof that TxS was included on LS with the desired
number of confirmations, and enables TxD to appear on LD.
Glimpse reconciles the low on-chain costs and simple design
of lock contracts with the expressiveness of chain relays.

Glimpse builds on the notion of stateless SPV, but it refines
and generalizes it in a number of ways. First, we propose a
generic technique to prevent upfront mining, imposing prover
and verifier to agree on a random value to be inserted in the to-
be-verified transaction. Second, we generalize stateless SPV
to support applications in which part of the transaction TxS
is not known a priori but is instead determined at run-time
(e.g., in lending, where for the loan payback transaction, the
input it is not known beforehand, as the lent money can be
used arbitrarily), as well as applications requiring the synchro-
nization of combinations of transactions on LS. In particular,
Glimpse allows to encode that if any set of transactions sat-
isfying a logical formula expressed as Disjunctive Normal
Form2 (DNF), e.g., TxS∨TxS

′, is published on LS, then TxD
can be published on LD. These generalizations allow us to
encode a variety of DeFi applications, such as lending, pegs,
wrapping/unwrapping of tokens, Proofs-of-Burn, verification
of multiple oracle attestations, and layer-2 applications such
as cross-chain virtual channels, payments, and betting hubs.

Third, we provide a construction that, for the first time, does
not require quasi-Turing complete scripting languages on the
destination chain, thus supporting Bitcoin-based blockchains
such as the Liquid Network.3 The new DeFi protocols for
the Liquid Network enabled by Glimpse are de-facto brought
into Bitcoin, by pegged conversion of BTC into L-BTC to-
kens. We further show that only two opcodes are missing to
directly support Glimpse on Bitcoin as a destination chain,

2A disjunctive normal form formula is a logical formula consisting of a
disjunction of conjunctions; it can also be described as an OR of ANDs.

3The Liquid Network [16] is a Bitcoin sidechain supported by Block-
stream [17] and other major Bitcoin stakeholders, that has anticipated all
major upgrades in Bitcoin (SegWit [18], Taproot [19]). The Liquid Network
plays a key role in the Bitcoin ecosystem, e.g., El Salvador’s Bitcoin bonds
are Liquid Network security tokens [20].

HHH
HHLS

LD Bitcoin Bitcoin Cash/SV Litecoin Liquid Ethereum/EVM-chains

Bitcoin - ✗†† ✗† ✓ ✓

Bitcoin Cash/SV ✗† - ✗† ✓ ✓

Litecoin ✗†,∗ ✗††,∗ - ✗∗ ✓

Ethereum PoW ✗†,∗ ✗††,∗ ✗†,∗ ✗∗ ✓

Table 2: Popular Bitcoin-based and EVM-based Glimpse-
compatible source (LS) and destination (LD) chains.†: lack of
string opcodes. ††: lack of Taproot. ∗: lack of crypto opcodes.

which adds a further motivation for their inclusion in the on-
going discussion within the community. Notably, Glimpse has
full compatibility with Bitcoin as source chain, thus enabling,
for the first time, Bitcoin-to-Ethereum cross-chain commu-
nication with constant storage, constant amount of relayed
information, and no maintenance costs.

Table 2 provides a non-exhaustive list of popular chains for
which we show the current compatibility when functioning
as LS or LD for Glimpse.

Our further contributions are summarized below:
• We demonstrate the expressiveness of Glimpse by encoding

a variety of DeFi and off-chain applications (Section 4).

• We formally analyze Glimpse in the UC framework, where
we prove its atomicity properties (Section 5).

• We conduct an economic security analysis to quantify the
costs of forgery attacks (affecting any light client) and
censorship attacks (harming any timelock-based protocol).
Specifically, Glimpse is secure against proof forgeries as
long as the value simultaneously locked on all valid Glimpse
contracts does not exceed a certain threshold (for concrete
numbers, $230M), which is comparable to the total value
currently locked on popular bridges. To enhance security
against censorship attacks on the destination chain, we fur-
ther impose an upper bound on the value held by each
single Glimpse contract, e.g., $1.1M for Glimpse deployed
on Ethereum (Section 6).

• We demonstrate the practicality of Glimpse by evaluating
its on-chain costs in Ethereum- and Bitcoin-like chains,
showing that, e.g., in Bitcoin the overall cost is at most $3,
around twice as much as ordinary transactions. We also
further optimize it with Taproot [21, 22] (Section 7).

2 Background

The UTXO Transaction Model. Each user U is
identified by a pair of digital keys (pkU ,skU) that are
used to prove ownership over coins. A transaction Tx =
(cntrin, inputs,cntrout ,outputs,witnesses) is an atomic up-
date of the blockchain state and is associated to a unique
identifier txid ∈ {0,1}256 defined as the hash H ([Tx]) of the
transaction, where [Tx] := (cntrin, inputs,cntrout ,outputs)is
the body of the transaction. Intuitively, a transaction maps a
non-empty list of inputs to a non-empty list of newly created
outputs, describing a redistribution of funds from the users
identified in the inputs to those identified in the outputs.

USENIX Association 32nd USENIX Security Symposium 735

cntrin,cntrout ∈ N>0 represent the number of elements in
the inputs and outputs lists. Any input ζ in the list of inputs
is an unspent output from an older transaction, defined by the
tuple ζ := (txid,outid), with txid∈ {0,1}256 representing the
hash of the old transaction containing the to-be-spent output,
and outid∈R≥0 the index of such an output within the output
list of the old transaction. These two fields uniquely identify
the to-be-spent output. witnesses ∈ {0,1}∗, also known as
scriptSig or unlocking script, is a list of witnesses ω, i.e.,
the data that only the entity entitled to spend the output can
provide, thereby authenticating and validating the transaction.
Any output θ in the list of outputs is a pair θ := (coins,φ) and
can be consumed by at most one transaction (i.e., no double-
spend). The amount of coins in an output θ is denoted by
coins∈R≥0, whereas the spendability of θ is restricted by the
conditions in φ, also known as the scriptPubKey or locking
script. Such conditions are modeled in the native scripting
language of the blockchain and can vary from single-user
OneSig(pkU) and multi-user MuSig(pkU1,pkU2) ownership,
to time locks, hash locks, and more complex scripts.

Proof-of-Work Consensus. In a PoW blockchain, the
probability that a node is selected as block proposer is pro-
portional to its computational power. This is meant to hin-
der Sybil attacks since computational power is assumed
hard to monopolize. Specifically, incentivized to win the re-
ward in native assets, the nodes compete with each other
to create, validate, and append new blocks to the ledger
by solving a cryptographic puzzle that is hard to compute
and easy to verify. The content of a block is summarized
within a unique and cryptographically secured string that
grants immutability to the blockchain: the block header
header(B) := (ParentHash,MR,Timestamp,nBits,Nonce),
where ParentHash is the hash of the previous block, MR is
the root of the Merkle tree whose leaves are the transactions
in B, Timestamp is the creation time of the block, nBits is a
parameter for the target space, and Nonce a value that can be
arbitrarily iterated to reach the PoW.

In particular, the nodes, called miners, repeatedly change
the Nonce field of the block header until the hash of the header
lies within a target space that is smaller (by several orders of
magnitude) than the output space of the hash function. This
is a necessary condition for the block to be valid. The size of
the target space is parameterized by the total computational
power of the network and is periodically adjusted to keep the
expected block time, i.e., the time it takes to find a valid block,
almost constant. We refer to the target as T , and we say that
a block B is valid when H (header(B))< T . A miner is se-
lected to propose the next block with probability proportional
to the fraction of the network’s hashing power he controls.
PoW blockchains periodically adjust the network difficulty
to maintain an (almost) constant average block creation time,
preventing uncontrolled inflation and network congestion.

3 Glimpse
We introduce Glimpse, a new primitive for cross-chain

communication that allows participants to obtain on-demand
the desired information about the state of a PoW source ledger
LS on a destination ledger LD. Glimpse achieves this with
only a constant amount of data (with respect to the source
chain’s length), and assuming the PoW target is known.

In particular, Glimpse resembles challenge-response proto-
cols: a verifier V challenges a prover P to prove the inclusion
on LS of a specific set of transactions TxS. Depending on
the outcome of the challenge, P and V want to publish on
LD different pre-selected sets of transactions (TxP or TxV).
To encode this, P and V first agree on the Glimpse specifics
and on some consensus parameters of LS, then they deploy a
Glimpse contract on LD. On ledger LS, an issuer I publishes
the transaction set TxS, and an untrusted relayer R provides
P with the necessary data to construct a proof P , proving the
occurrence of TxS on LS. If P submits a valid proof (response)
to the Glimpse contract on LD, he can post TxP on LD. Else,
V can post TxV after time T has elapsed.

3.1 Assumptions and Models
System Model. We assume a source ledger LS operating a
PoW consensus. Glimpse relies on four parties: an issuer I that
publishes TxS on LS, a prover P that proves the inclusion of
TxS on LD, a relayer R (e.g., blockchain explorers, full nodes)
that provides P with the necessary information to construct the
proof P , and a verifier V that guarantees contractual fairness.
Depending on the application, parties can play several of these
roles at once. E.g., in lending, Proofs-of-Burn, and backed
assets (see Section 4.1), P can also play the roles of I and R,
being incentivized to get reliable insights on LS’s state.

We require P and V to each have a key pair (sk, pk) on
LD, and I to have a key pair on LS. The Glimpse contract is
deployed on LD and holds coins either coming from P, V , or
from any other user of LD (this is application-specific). We
assume LD to support the same hash function used by the
consensus of LS, and both LS and LD to allocate the same
domain for the hash function, to avoid oversize preimage at-
tacks [23,24]. Finally, LD needs to support the following func-
tionalities: (i) Merkle proof verification, (ii) hash comparison,
and (iii) block header and transaction body reconstruction.
While (ii) is supported by default in most chains, (i) and (iii)
can also be supported by Bitcoin-based chains by enabling a
concatenation opcode (recently discussed within the Bitcoin
community in the context of Speedy Covenants [25]).
Cryptographic Assumptions. We consider hash functions
modeled as random oracles and digital signature schemes hav-
ing Existential Unforgeability under Chosen Message Attack
(EUF-CMA) security.
Communication Model. We assume there exist authenti-
cated communication channels between the Glimpse parties,
where all messages are delivered within a fixed time delay.

736 32nd USENIX Security Symposium USENIX Association

Cross-chain Communication (CCC) Model. Closely fol-
lowing [23], CCC protocols are usually articulated in three
main phases: Setup, Commit on LS, and Verify & Commit on
LD. The Setup phase parameterizes the involved blockchains,
identifies the protocol participants, defines the timeline for the
CCC protocol execution (if any), and specifies the transactions
TxS and TxD to be synchronized. After a successful setup, in
the Commit on LS phase, a publicly verifiable commitment
to execute the CCC protocol, i.e., TxS, is posted on LS. In
the Verify & Commit on LD phase, the commitment published
on LS is relayed to LD, it is verified, and, upon successful
verification, a publicly verifiable commitment, i.e., TxD, is
posted on LD. An optional Abort phase reverts transaction
TxS on LS in case the verification of the commitment failed
or the commitment on LD is not posted.

A CCC protocol has to provide atomicity guarantees,
which, for Glimpse, we articulate in a weak and a strong
variant. Weak atomicity ensures that TxD appears on LD only
if TxS has been already confirmed on LS. Strong atomicity
ensures that TxD appears on LD if and only if TxS has been
already confirmed on LS.

Let ∆D ∈ N be the wait time parameter of LD, i.e., the
upper bound of the time it takes for a valid transactions to be
included on LD, and let TxS and TxD be (sets of) transactions
for LS and LD, respectively. We refer to n as the number
of confirmation blocks that need to be mined on top of a
block containing a transaction Tx, for Tx to be considered
stable [26] on a PoW ledger.

Definition 1 (Weak Atomicity). A valid TxD is reported stable
by honest players on LD at time t only if honest players of
LS have reported TxS with at least n confirmations at time
t ′ ≤ t−∆D: TxD ∈ LD =⇒ TxS ∈ LS.

Definition 2 (Strong Atomicity). A valid TxD is reported
stable by honest players on LD at time t if and only if honest
players of LS have reported TxS with at least n confirmations
at time t ′ ≤ t−∆D: TxD ∈ LD ⇐⇒ TxS ∈ LS. If either TxS
or TxD is invalid and provided to honest players, then neither
TxS nor TxD is reported stable on LS and LD, respectively.

Adversarial Model. I, R, P, and V are mutually distrust-
ful parties, with at least one between P and V being honest.
We let γ be the fraction of honest miners the blockchain can
tolerate, where the specific value for γ depends on the under-
lying consensus. For this model, we formally prove in the UC
framework that the Glimpse protocol UC-realizes an ideal
functionality FW−Glimpse, and we show that weak atomicity
holds (Section 5).

Then, we extend our model to incorporate rational par-
ticipants or, in other words, participants exhibiting liveness
during the whole duration of the protocol (as defined in
the extended version of this paper [27], Appendix B.2): in
this setting, assuming P has direct access to LS, we show
that the Glimpse protocol UC-realizes an ideal functionality

FS−Glimpse, and strong atomicity holds (Section 5). Finally,
in Section 6 we provide an economic analysis incorporating
rational adversaries.

3.2 Protocol Overview
In the Setup phase, P and V cooperate in the creation of the

Glimpse contract TxG, which hardcodes the PoW difficulty
target TS of LS (consensus parameter), as well as the follow-
ing Glimpse specifics: the hash of the to-be-verified transac-
tion TxS, the contract lifetime T , the number n of confirmation
blocks in the proof, and the funds’ spending conditions.

P and V prepare transactions TxP and TxV, both spending
the contract’s funds, but in different ways; these two transac-
tions are meant to be published by P and V respectively, and
are commitments to how the coins must be distributed in case
P provides a valid proof as a witness for TxP, or V reacts to
the lack of such proof by publishing TxV after time T . P signs
TxV and sends the signature to V , whereas V signs TxP and
gives the signature to P. They exchange signatures over TxG
and publish TxG on LD (if any additional party contributes
funds to TxG, their signature over TxG is also required in
order to publish TxG). Finally, they hand in TxS to I.

In the Commit on LS phase, I publishes TxS on LS.
In the Verify & Commit on LD phase, P queries R about

the inclusion of TxS on LS asking for the necessary data to
construct the proof P n (we describe how P n is constructed
in Section 3.3). P publishes TxP on LD by using P n, V ’s
signature over TxP, and their own signature as witnesses.
After time T , if the funds in TxG are still unspent, V publishes
TxV on LD with P’s signature over TxV as well as their own
as witnesses. The Glimpse instance is now closed and the
funds are distributed as agreed in the Setup phase.

In Section 3.4, we will explore how this approach can be
extended to generalize TxS as a set of transactions repre-
sented by a disjunctive normal form formula. Figure 1 depicts
Glimpse protocol flow.

3.3 Designing the Proof
We show how the Glimpse proof P n is constructed by con-

sidering stateless SPV as a preliminary proposal. We identify
its vulnerabilities to upfront mining attacks and gradually en-
hance the construction to attain the desired security properties,
while also enhancing expressiveness and compatibility.

Stateless SPV. In stateless SPV [13,14], users convince with
a proof P n a quasi-Turing complete smart contract hosted on
a destination chain LD that a transaction Tx has appeared on
a PoW source chain LS. The proof P n consists of the header
of the block containing Tx, the Merkle inclusion proof for the
transaction within such block, and n subsequent confirmation
block headers. The smart contract verifies the Merkle proof,
checks that each of the n+ 1 headers is a valid child of its
parent, and ensures that all headers hold enough PoW, i.e.,
their hashes are smaller than the pre-defined target.

USENIX Association 32nd USENIX Security Symposium 737

P V

R

I

𝖳𝗑𝖱

𝖳𝗑𝖱?

𝖡 + n𝖡 + 1𝖡 . . .
ℒS ℒD

𝖡 + n𝖡 + 1𝖡 . . .

𝖳𝗑𝖦
𝒫n

(1)
(2)

(3)

(4)V

𝖳𝗑P
V

𝖳𝗑V
P

∨
T

Figure 1: (1) Upon agreeing on the Glimpse specifics, P and
V construct TxG, TxP, and TxV. P publishes TxG on LD. (2)
I publishes TxR on LS. (3) P queries R to get the data to
construct the proof P n for TxR. (4) P publishes TxP with P n

as part of the witness. Else, if after T the funds in TxG are
unspent, V publishes TxV.

Various proposals exist for stateless SPV, each with its
specific requirements: some demand the contract to check
certain fields of the to-be-verified transaction, to guarantee
the transaction’s intended behavior; others only require a
timelock T to limit the time window for the submission of
the proof. We show that both requirements are necessary: the
first to ensure the transaction is well formed and is indeed the
one the parties have agreed upon during the Setup, the second
to prevent a late submission of the proof (which would break
security) and to avoid hostage situations where the funds
in the contract are locked indefinitely. We observe that the
number n of confirmation blocks in the proof must increase
linearly with the timelock T , leading to short lived contracts
for practicality.

Upfront Mining Attack. Current stateless SPV designs im-
pose no restriction on Tx, exposing the construction to secu-
rity risks. In particular, let us consider a malicious P (attacker)
wishing to convince the smart contract on LD that Tx has been
included on LS. If the attacker knows Tx beforehand, e.g.,
well before setting up the contract, they could start mining in
advance in order to forge a proof. To illustrate this problem,
we consider Bitcoin as source chain: Bitcoin is extended by
approximately 53k blocks yearly. An attacker with 0.05% of
the mining power of the network is expected to find around 6
blocks in less than three months. This means that the attacker
can start forging such 6-block proof upfront and proceed by
setting up the stateless SPV contract only when the forged
proof is ready, e.g., three months later. In this case, the at-
tacker foregoes any potential reward from honestly mining on
the main chain, but can claim all the money the contract holds
with certainty, regardless of their mining power, and without
the need to bribe miners to forge the proof. Even worse, the
attacker could set up multiple stateless SPV contracts with
different users based on the same transaction Tx (e.g., a bet-
ting application) and use the same, upfront-mined fake proof

in all contracts, thereby cheating multiple users out of their
funds at once.
Randomized Tx. Glimpse prevents P from launching an
upfront mining attack by asking V to randomize the trans-
action Tx. Specifically, in the Setup phase, V samples a uni-
formly random string r $←{0,1}λ (λ is the security parameter)
and plugs it into the body of Tx, producing TxR. This can
be done, e.g., by adding an output of value 0 with spend-
ing condition OP_RETURN(r).4 The hash of the randomized
transaction H ([TxR]) is then hardcoded within TxG. Being
unable to anticipate r, P cannot start forging P n upfront: their
computational effort is now restricted to the time window T .
Additionally, the random value serves as a unique identifier,
preventing proof replay attacks.

We highlight that randomizing the transaction does not
impose any trust assumption, and the verification remains
constant-sized, achieving our design goals. We observe that
security against upfront mining attacks restricts Glimpse to
verifying transactions that will be included on LS “in the fu-
ture”, i.e., only after the contract TxG has been set up. Past
transactions cannot be randomized anymore and are thus vul-
nerable to upfront mining. This is a fundamental difference
between Glimpse and light clients, which can verify any past
transaction instead.
Improving Compatibility. Besides protecting from up-
front mining attacks, we show that the Glimpse construction
also forgoes the need for stateful smart contracts, opposed
to [13, 14] which is designed for quasi-Turing complete con-
tracts. Due to its simplicity, Glimpse can be deployed not only
on quasi-Turing complete chains (e.g., Ethereum) but also
on Bitcoin-based chains such as the Liquid Network. This is
achieved by hardcoding the transaction fields and the verifica-
tion logic in a transaction locking script, which is spendable
by using signatures and P n as witness. We expand on this
in Section 3.5.

3.4 Enhancing Expressiveness
Glimpse cannot yet encode sophisticated applications due

to two shortcomings in expressiveness: First, inputs and out-
puts of TxR must be entirely known a priori, which prevents
from using it in, e.g., cross-chain lending applications. Second,
only single transaction verification is supported, prohibiting
verification of, e.g., attestations from multiple oracles. To
cater to such use cases, we augment Glimpse to verify (i)
parameterized transactions, i.e., transactions which are not
fully known during the initial Setup phase and (ii) arbitrary
combinations of transactions on LS expressed as disjunctive
normal form formulas.
Parameterized Tx. The core idea is that we encode
in the Setup phase the abstract expression of a trans-
action’s spending condition (e.g., a signature) and not

4OP_RETURN is a Bitcoin script opcode that marks a transaction output as
unspendable and can be used to embed up to 80 bytes in a transaction.

738 32nd USENIX Security Symposium USENIX Association

the exact parameters (e.g., “whose” signature). From Sec-
tion 2, recall our definition of transaction body [Tx] :=
(cntrin, inputs,cntrout ,outputs), where inputs and outputs are
tuples (txid,outid) and (coins,φ), respectively. Now, in Fig-
ure 2, we introduce the definition of description Desc of a
transaction, which allows for parameterized inputs and out-
puts. Concretely, following Figure 2, txid,outid, and coins
can either be static values or parameters xi acting as place-
holders. Similarly, to avoid fixing a priori specific parameters
for the locking script, we say that φ can be a function f which
encodes a family of scripts: f takes a fixed number of argu-
ments (or parameters) zi for a known spending condition logic
and returns the desired parameterized locking script for the
to-be-verified transaction. In other words, the parameterized
locking script can be filled with concrete values, e.g., public
key, script hash, after the Setup phase. The spending condi-
tion logic that f encodes must be already defined in the Setup
phase: For instance, if the parties agree on f (z) encoding any
P2PKH (Pay-To-Public-Key-Hash), then the output of f (z)
is a P2PKH with a placeholder z in the place of the public
key hash, and only after the Setup phase it accepts any public
key hash as replacement for z. Further following Figure 2,
inputs and outputs are lists of inputs and outputs as defined
above, and cntrin and cntrout are the number of overall inputs
and outputs, respectively. While the former can be parameter-
ized, the latter must be known from the beginning to avoid
miners interpreting transactions in an unintended way: we
point to the extended version of this work [27] for a detailed
discussion on this.

In the Setup phase, the parties now hardcode within the
contract TxG the description Desc, the target TS, the lifetime
T , and the proof size n. By replacing H ([TxR]) with Desc,
Glimpse can now verify any TxR whose body has the same
static data in Desc and any arbitrary realization (specified in a
later point in time within the proof) of the parameterized ones.
In other words, Desc defines the set of possible transactions
Glimpse can accept, yet only one of them can be verified.
For example, a Glimpse instance with a parameterized input
in Desc, can accept and verify transactions with any input
(i.e., any value for txid and outid), but with all other fields
matching the ones specified in Desc. For security reasons, the
random string sampled by V must always be included in Desc.
With [TxR]←↩Desc, we denote a transaction [TxR] compliant
with a description Desc. Given P n and the hardcoded Desc,
the full transaction body can be reconstructed and hashed by
the script of TxG.

Verification of DNF Formulas. Glimpse can efficiently
verify any DNF formula FS over any k literals Li, which, in
our case, are either transactions or descriptions (see Figure 2).
To accomplish this, instead of a single TxP, P and V create
as many sets of transactions (TxT, TxF, TxP) as the number
of conjunctive terms in the formula - these sets are kept off-
chain. When I publishes on LS a combination of transactions
specified by FS, P queries R, constructs the corresponding

txid := {0,1}256 | x1,
outid := {0,1}32 | x2
coins := {0,1}64 | x3

φ := f (z1, . . . ,zn)
inputs := [(txid,outid)] | inputs∪ [(txid,outid)]
outputs := [(coins,φ)] | outputs∪ [(coins,φ)]

cntrin, cntrout := {0,1}1−9

Desc := (cntrin, inputs,cntrout ,outputs)
Li := Desci | ¬Desci
FS := (L1∧ ...∧Lk)∨ ...∨ (L1∧ ...∧Lk)

∀(x1,...,x3,z1...,zn).(FS⇐⇒ TxD)

Figure 2: Enhanced expressiveness for the verification of
parameterized transactions and DNF formulas.

proofs, and posts on LD the corresponding set TxD:= (TxT,
TxF, TxP) of transactions. If P cheats by publishing an invalid
set, i.e., falsely claiming a transaction was not published on
LS, V can query R, disprove P, and publish TxV. We expand
on this in Appendix B.

3.5 Compatibility
As anticipated in Table 2, PoW chains such as Bitcoin,

Litecoin, Bitcoin Cash, Bitcoin SV, Ethereum PoW, etc., can
be used as the source chain LS for Glimpse. As for which
chains are supported as destination chain LD, we need to
make some distinctions, because the more restrictive is the
scripting language of LD, the fewer LS may be compatible.

In particular, Glimpse requires LD to support the hash func-
tion used in the PoW consensus of LS. This strict requirement
already rules out some combinations, see the lack of cryp-
tographic primitives in Table 2. For instance, Bitcoin-based
chains do not have opcodes for computing Keccak and Scrypt
hash functions which are used in Ethereum PoW and Litecoin,
respectively. As a result, Ethereum PoW and Litecoin can-
not act as source chains for Glimpse contracts deployed on
Bitcoin-based chains. On the other hand, EVM-based chains
(e.g., Ethereum, Polygon, Binance Smart Chain, Avalanche) as
well as chains allowing for a quasi-Turing complete scripting
language, can always act as destination chains for Glimpse,
no matter what the selected source chain is.

Now, we discuss how the particular design of Glimpse
makes it compatible with the Liquid Network, the Bitcoin
sidechain. For extended discussion and examples, we refer to
the full version of this paper [27], Appendix D.

Liquid Network (Full Compatibility). The Liquid Network
inherits its design from Bitcoin, while offering an enriched
scripting language. Specifically, certain opcodes essential to
Glimpse are disabled in Bitcoin but enabled on the Liquid
Network. These include: (i) string concatenation (OP_CAT),
which can be used for Merkle proof verification, block header
reconstruction, and transaction body reconstruction, and (ii)
OP_SUBSTR, which allows splitting strings. This is necessary
for comparing hashes (i.e., compare a block header hash to

USENIX Association 32nd USENIX Security Symposium 739

the PoW target): currently, comparisons can only be made be-
tween 4-byte strings. Furthermore, the Liquid Network incor-
porates Taproot [21]: by leveraging Merkelized Abstract Syn-
tax Trees (MASTs), we can greatly reduce the size and com-
plexity of Glimpse scripts, as shown in Section 7 and exempli-
fied in the extended version of this work [27], Appendix D.

3.6 Extend Compatibility: Required Opcodes
In this section, we show which opcodes are missing in order

to extend the compatibility of Glimpse to destination chains
as Bitcoin, Litecoin, Bitcoin Cash, and Bitcoin SV. Notably,
Bitcoin can be LD for Glimpse, thereby achieving complete
compatibility, with the sole addition of two string opcodes
(OP_CAT, OP_SUBSTR).

Bitcoin and Litecoin (Missing String Opcodes). Bitcoin
and Litecoin adopted Taproot, but they deactivated the pre-
viously mentioned opcodes back in 2010. If these opcodes
for Merkle proof verification (OP_CAT) and hash comparison
(OP_SUBSTR or, alternatively, OP_LESSTHAN being capable of
comparing 32-byte values) were available, they could effec-
tively support Glimpse using the efficiency of Taproot. It is
worth noting that the Bitcoin community has recently en-
gaged in discussions regarding the potential reinstatement of
the string concatenation opcode. This consideration comes
with the proposal of Speedy Covenants [25]. With our work,
we hope to contribute to the ongoing discussion and provide
additional motivation for the future enabling of such opcodes.

Bitcoin Cash and Bitcoin SV (Missing Taproot). Bitcoin
Cash is the result of a Bitcoin hard fork that took place af-
ter Bitcoin moved to SegWit. It has a larger block size and
supports more opcodes. Similarly to the Liquid Network, Bit-
coin Cash has OP_CAT and OP_SPLIT (same as OP_SUBSTR),
but lacks Taproot. When Taproot is not available, one could
unroll the MAST, obtaining a large Glimpse script which
is, for small n (e.g., n < 12), dominated by the opcodes for
the Merkle proof verification. In this case, Glimpse could be
supported by removing the limit for the maximum number
of opcodes allowed in a script (MAX_OPS_PER_SCRIPT), or
extending it up to 300k. The same applies to Bitcoin SV.

4 Glimpse for Lending and Cross-Chain DeFi
DeFi applications thrive on blockchains supporting quasi-

Turing complete smart contracts, but do not exist on Bitcoin-
based blockchains. To fill this gap, we show how to use
Glimpse for designing a lending protocol for Bitcoin-based
chains. We provide pseudocode in Figure 4.

Intuition. We consider a borrower P (also acting as I and R)
and a lender V . P has α coins (collateral) on LD and wants to
take a loan of α′ coins on LS. Having a surplus of coins on
LS, V is willing to grant a loan of α′ coins to P. We assume
α > α′, i.e., the loan is over-collateralized to compensate for
price drops of asset α. The lending protocol comprises two
steps: (1) an atomic swap, where the loan-granting transaction

ℒS ℒD

𝖳𝗑𝖦

𝖳𝗑P

𝒫n
V

V

𝖳𝗑𝖱?

s T3 s T2

𝒫n′￼𝒪 T1
X𝖳𝗑V

P𝖳𝗑L
P

∨

P 𝒪
X𝖳𝗑𝒪

𝖳𝗑Loan

∨ ∨

 has direct
access to
data, e.g., full

node

P
ℒS

Arbitrary many transactions…
…

Figure 3: Sketch for the Glimpse-based lending.

(TxLoan) is published on LS and the Glimpse transaction (TxG)
holding P’s collateral is published on LD, and (2) a Glimpse
protocol, where TxG returns the α coins to P upon the loan
being repaid (TxPayback) on LS.

As for (1), P and V prepare TxG holding the α coins of P,
and they construct it in such a way that it can be published by
revealing a secret s that P knows. P signs TxG and gives the
signature to V . V prepares a transaction TxLoan transferring
α′ coins to P and conditioned on the same secret s. V signs it
and gives TxLoan and their signature to P. Via an atomic swap,
P publishes TxLoan on LS revealing s to V , and V publishes
TxG on LD using the secret s leaked by P.

As for (2), TxG guarantees that if P repays the loan on LS
by publishing TxPayback, P gets back their collateral on LD.
Otherwise, V retains collateral after time T1.

We discuss the liquidation mechanism at the end of this
section, and we expand on (2) below. In Figure 3 we sketch
the lending protocol making use of Glimpse.

Setup. P sends Desc:=(1, [(x)],1, [(α′,OneSig(pkV))]) to V ,
where Desc is the description of TxPayback (note the parame-
terized input x, which leaves P the freedom to choose the input
later on, after having performed arbitrary transactions with the
borrowed money). V samples r← {0,1}λ uniformly at ran-
dom and includes it within the description, returning Desc :=
(1, [(x)],2, [(α′,OneSig(pkV)),(0,OP_RETURN(r))]) to P.

Let θP be an unspent output of P holding α coins, and
ζP be an input pointing to θP. Then, P constructs [TxG] :=
(1, [(ζP)],1, [(α,scriptG(Desc,T1,TS,n,(P,V)))]). The lock-
ing script generated by scriptG5 encodes the following: P
can get back their α coins by submitting a valid proof P n

(witness), which proves the inclusion of [TxPayback]←↩ Desc
on LS; alternatively, V can get the α coins after time T1. We
show the pseudocode for scriptG in Figure 4.

After setting up [TxG], P constructs [TxP] = (1,
[ζG],1, [(α,OneSig(pkP))]) and [TxV] := (1, [ζG],1,
[(α,OneSig(pkV))]), where TxP (TxV) spends the
output of TxG creating a new output that only P

5We show a concrete script example in the extended version of this work
[27], Appendix E.

740 32nd USENIX Security Symposium USENIX Association

(V) can spend. Then, P signs [TxV] producing
σP([TxV]) and sends to V the Glimpse specifics:
(Desc,T1,TS,n,α,scriptG, [TxG], [TxP], [TxV],σP([TxV])).

Upon receiving the message from P, V checks the correct-
ness and well-formedness of the Glimpse specifics and checks
if σP([TxV]) is a valid signature. Upon successful verification,
V signs TxP and sends the signature to P. Upon receiving
σV ([TxP]) from V , P checks the validity of the signature and,
if valid, P signs [TxG] and publishes TxG on LD with witness
ω = σP([TxG]).

Commit on LS. When P wants to pay back the loan on LS,
P posts TxPayback such that [TxPayback]←↩Desc, meaning that
[TxPayback] is equal to Desc apart from x, which in [TxPayback]
is replaced by an arbitrary input controlled by P.

Verify & Commit on LD. P monitors LS checking for
TxPayback inclusion with at least n confirmations. P con-
structs P n by (i) taking the concrete realization xR of
the parameter x, (ii) retrieving the header of the block
B including TxPayback, (iii) constructing the Merkle proof
(MP) of TxPayback inclusion in B, and (iv) fetching the
first n confirmation block headers of B. Formally, P n :=
(xR,MP,header(B),confHeadersn), as shown in the pseu-
docode of Figure 4. P signs [TxP] and gets back their
α coins by publishing TxP on LD with witness ω =
(P n,σP([TxP]),σV ([TxP])).

After T1, if the output of TxG is still unspent, V signs [TxV]
and publishes TxV with witness ω = (σP([TxV]),σV ([TxV])),
claiming the α coins in Glimpse. It is crucial for V to publish
TxV right after time T1, otherwise P could maliciously claim
the funds by publishing TxP after T1. On the contrary, T1
prevents TxV from being valid before T1.

To ease readability, so far, we have omitted the loan interest
rate, which can be easily taken into account in the money
distribution of TxP; for instance, in Figure 4, one can set
outcomeP= 0.95 (thereby leaving the 5% of interest to V).

Liquidation. If the asset price on LS drops below a prede-
fined liquidity threshold,V must be able to claim P’s collateral
before T1. For this, we assume there exists a trusted oracle
O on LD that regularly publishes a transaction TxO with the
real-time price of assets on LS; for instance, O can be a Dis-
creet Log Contract-based [28] or a voting-based [29] oracle.
If O is not trusted, we can consider a set of k independent
oracles, with the promise that if a large enough number of
oracles agree on the same price, the liquidation is granted
by verifying a DNF formula over the oracle transactions’
descriptions. Oracles do not need to cooperate, nor have a
common transaction structure. For simplicity, we discuss the
case of a single trusted O whose TxO is described by, e.g.,
DescO := (1, [ζi],2, [θr,(0,OP_RETURN(real-time-price))]).

We note that θr := (0,OP_RETURN(r)) includes the random-
ness, which now must be taken from LD itself, so that Glimpse
participants can (only for a short time window!) anticipate
it and include it in DescO : for example, r can be the hash of

the transaction (or block) including the last price update pub-
lished by the oracle. It is V ’s responsibility to ensure DescO
embeds the most recent random string.

Setup(Desc,T1,TS,n):

1. P sends Desc:=(1, [(x)],1, [(α′,OneSig(pkV))]) to V .

2. Received Desc, V samples a random r $← {0,1}λ and sends
Desc := (1, [(x)],2, [(α′,OneSig(pkV)),(0,OP_RETURN(r))])
to P.

3. Let α := θP.coins and let ζP point to an unspent output of P.
4. Let [TxG] := (1, [ζP],1, [θG := (α,scriptG(Desc,T1,TS,n,

(P,V)))]).
5. Let ζG point to θG. Let [TxP] :=

(1, [ζG],2, [(α · outcomeP,OneSig(pkP)),(α ·
(1 − outcomeP),OneSig(pkV))]) and [TxV] :=
(1, [ζG],1, [(α,OneSig(pkV))]).

6. P computes σP([TxV]) and sends (Desc,T1,TS,n,α,scriptG,
[TxG], [TxP], [TxV],σP([TxV])) to V .

7. Upon receiving (Desc,T1,TS,n,α,scriptG, [TxG], [TxP],
[TxV],σP([TxV])), V checks the Glimpse parameters. If
they are correct and well-formed, V signs [TxP] and sends
σV ([TxP] to P.

8. P verifies if σV ([TxP]) is a valid signature. Upon successful
verification, P signs [TxG] and posts TxG with witness ω :=
σP([TxG]).

Commit on LS (Desc): P posts TxPayback s.t. [TxPayback]←↩Desc.
Verify & Commit on LD(Desc,T1,n):

1. If TxPayback has n confirmations, P constructs P n (as shown
below) and signs [TxP]. P posts TxP with witness ω :=
(P n,σP([TxP]),σV ([TxP])).

2. After T1, if θG is still unspent, V signs [TxV] and posts TxV
with witness ω := (σP([TxV]),σV ([TxV])).

Construct P n(Desc,n) for TxPayback:

1. Isolate xR
i , i.e., the realization of every parameter xi in Desc.

2. Fetch the header of the block B including TxPayback and com-
pute the Merkle proof MP for TxPayback.

3. Retrieve the first n confirmation headers after B.
4. Return P n := (xR

i ,MP,header(B),confHeadersn).

scriptG(Desc,T1,TS,n,(P,V)) outputs a locking script that:
• Upon receiving ω = (P n,σP([TxP]),σV ([TxP])), does the fol-

lowing:

1. If xR is a valid realization of x, i.e., it matches the expected
format and length, reconstruct [TxPayback]. Else, return ⊥.

2. Compute H ([TxPayback]).
3. Given H ([TxPayback]) and header(B), verify the Merkle

proof MP. If successfully verifies, reconstruct the header of
B. Else, return ⊥.

4. If the hashes of B and of the n confirmation blocks are
smaller than TS, go to the next step. Else, return ⊥.

5. If (σP([TxP]),σV ([TxP])) are valid signatures of P and V
over [TxP], unlock the coins. Else, return ⊥.

• Upon receiving ω = (σP([TxV]),σV ([TxV])), if the current
time t > T1, unlock the coins. Else, return ⊥.

Figure 4: Glimpse pseudocode for cross-chain lending.

USENIX Association 32nd USENIX Security Symposium 741

To include liquidation, scriptG has to additionally incorpo-
rate the following logic: if, before T1, O attests the collateral
price on LS below a predefined liquidity threshold, V can
claim the collateral by publishing a liquidation transaction
TxL := (1, [ζG],1, [(α,OneSig(pkV))]) s.t. [TxL] ←↩ DescO ,
with witness P n′

O , being P n′
O the proof for TxO , i.e., the most

recent oracle attestation. The liquidation transaction is con-
structed in the Setup phase, during which P signs it and gives
their signature to V .

Our construction enables the first form of trustless peer-to-
peer lending on chains having limited scripting capabilities.
We note that in Bitcoin-based chains funds cannot be pooled,
resulting in borrowers having to seek for lenders. To facili-
tate matching the demand and supply, we suggest setting up
dedicated communication channels or platforms.

4.1 Other Applications

Backed Assets. We refer to backed assets as assets issued on
a ledger LD that are backed by a cryptocurrency or another
asset on a ledger LS. This category includes assets that are
issued on sidechains and backed on parent chains, such as
Liquid tokens L-BTC backed by BTC, but also encompasses
wrapped tokens, for example, WBTC in Ethereum backed by
BTC in Bitcoin.

Sidechains are blockchains tightly bound to a pre-existing
parent blockchain with the purpose of enabling or extending
some features. Users can easily move funds from the par-
ent chain to the sidechain (and vice versa) through verifiable
two-way pegs: assets are locked in an address of the parent
chain (sidechain) and are then released on the sidechain (par-
ent chain), ready to be used. Let us remove the liquidation
mechanism from the lending protocol in Section 4 and as-
sume V can create assets on LD: with these two caveats, the
same construction can be used to encode trustless pegs, where
V issues new assets on the sidechain and locks them in the
Glimpse contract (rather than giving a loan), and P can get
them by proving to have sent some assets to the peg address
on the parent chain. Similarly, P can get back the funds on
the parent chain by proving to have returned the coins to the
peg address on the sidechain.

Equivalently, Glimpse can be also used to wrap and unwrap
tokens. Wrapped tokens are digital assets that represent other
underlying assets, typically from a different blockchain. They
are issued (wrapping) on LD when the corresponding original
tokens have been locked on LS, and they are then destroyed
or locked (unwrapping) to release the original ones.

Proofs-of-Burn. Proofs-of-Burn prove that a certain amount
of cryptocurrency or other valuable assets has been burnt, i.e.,
has been sent to an unspendable address or a special smart
contract where they become permanently irretrievable. Proofs-
of-Burn are used, e.g., as a bootstrapping mechanism to get
assets on a new chain. In Proofs-of-Burn Glimpse is used as
for backed assets, with the only difference being that funds

are moved unidirectionally.

Proofs of Oracle Attestations. Let us assume there exist on
LS k different oracles posting information about real-world
events (e.g., real-time prices for currencies). On LD, a user
wants to verify k oracle attestations for a specific event. In
this case, Glimpse can be used to verify the formula FS =
(Desc1 ∧ ·· · ∧Desck), with Desci being the description of
the transaction published by the i-th oracle O1. We note that
oracles do not have to cooperate, nor to operate on the same
chain.

Off-chain Glimpse and its Applications. State chan-
nels [30–32] and generalized channels [15] enable Payment
Channel Networks (PCNs) that offer off-chain the same func-
tionality as the underlying chain. We can thus host Glimpse
on PCNs, thereby remarkably improving its performance
and scalability, and enabling a new range of applications on
layer-2. In particular, instead of posting the contract on LD,
Glimpse can be encoded in a standard channel update, be
kept off-chain, and posted on-chain only to resolve disputes.
In this way, the contract can be iteratively updated off-chain
within subsequent channel updates, allowing for changes of
the Glimpse specifics on the run. For instance, one could
efficiently and securely extend the contract lifetime by up-
dating the randomness in the contract as well as inside the
to-be-verified transaction,6 while accordingly adjusting the
number of confirmation blocks for the proof. E.g., if initially
T = 2 hour and n = 10, one can update the randomness and
extend T by 1 hour minutes only asking for n = 5 confirma-
tion blocks: security is preserved and the proof verification
cost is decreased. Overall, hosting Glimpse contracts on PCNs
dramatically improves its practicality (parameters changed
on the run to accommodate users’ needs) and its cost (no
on-chain transactions in the optimistic case).

Application-wise, payment channel hubs may employ
Glimpse contracts to set up betting hubs, where users con-
nected to the hub bet on a certain TxS being published on-
chain within an absolute time T . If TxS is published, the users
and the hub reflect the correct outcome in a channel update
within time t < T . If any party (user or hub) misbehave, the
counterparty can post the contract on-chain (thereby closing
the channel) and enforce the correct outcome. Glimpse also
provides an out-of-the-box solution for enabling off-chain
applications synchronized to an on-chain event. Examples
include cross-chain payments based on [30,33] or cross-chain
virtual channels based on [34].

5 Security in the UC Framework
We model Glimpse in the synchronous Global Univer-

sal Composability (GUC) framework [35], closely following
prior work [15, 31, 32]. First, we state that according to the

6We note that this can be done only if the particular application for which
Glimpse is used allows for updates of the randomness in the not-yet-posted
transaction to be verified.

742 32nd USENIX Security Symposium USENIX Association

basic assumptions in Section 3.1, Glimpse achieves weak
atomicity. Next, we show that by additionally assuming live-
ness of the parties and direct access to LS for P (and V , in
case of DNF verification), Glimpse achieves strong atomicity.

We use a global clock GClock [35] and authenticated chan-
nels with guaranteed delivery GGDC [32] to model time and
communication. We assume a static corruption model, where
the adversary decides which set of parties to corrupt before the
execution of the protocol. We use the instantiation of the func-
tionality GLedger defined in [36] to model a ledger L , where
the parameters are chosen such that the ledger achieves both
liveness and consistency as defined in [26]. We define two
similar ideal functionalities FW−Glimpse and FS−Glimpse (see
the extendend version of this work [27], Appendix B.1), for-
malizing our desired properties of weak atomicity and strong
atomicity in the general case of DNF verification, respectively.
More concretely, the ideal functionality is parameterized over
two ledgers LS or LD. After P and V parties have registered
to it, the functionality ensures that the respective transactions
are posted on LS or LD, such that weak atomicity or strong
atomicity holds.

We then formally model our Glimpse protocol Π in the UC
framework (see [27], Appendix B.2), and prove that Π real-
izes FW−Glimpse or FS−Glimpse depending on the underlying
assumptions. In a nutshell, this is done by designing an ideal
world adversary (or simulator) S and showing that no prob-
abilistic polynomial time environment can computationally
distinguish between interacting with the real world protocol Π

in the presence of an adversary A and the ideal functionality
in the presence of a simulator S . In other words, S translates
any attack on the protocol into an attack on the ideal func-
tionality, which intuitively means that Π is “as secure”, i.e.,
has the same properties, as FW−Glimpse or FS−Glimpse. This is
formalized in [27], Appendix B. In Appendix C of [27], we
formally prove Theorems 1 and 2, which make use of Defini-
tions 2 to 8 of [27], Appendix B.2. The definitions underlined
in the theorems can be found in [27], Appendix B.2.

Theorem 1. Given the functionalities GClock and GGDC, the
protocol Π is instantiated with two ledger instantiations
GLedger for LS and LD, and has strictly randomized inputs. Let
∆D ∈ N be the wait time of LD and genP a proof generation
function that is T-sound. Then, the protocol Π UC-realizes
the ideal functionality FW−Glimpse.

Theorem 2. Given the functionalities GClock and GGDC, the
protocol Π is instantiated with two ledger instantiations
GLedger for LS and LD, and has strictly randomized inputs
Let ∆D ∈ N be the wait time of LD and genP a proof genera-
tion function that is complete and T-sound. All parties have
direct access to LS and LD, and they exhibit liveness. Then,
the protocol Π UC-realizes the ideal functionality FS−Glimpse.

6 Economic Security Analysis
We now extend our analysis to incorporate rational players.

As for light clients, the security of Glimpse relies on the
assumption that the underlying chains operate under a well-
designed incentive mechanism that ensures an honest majority
of miners, thereby guaranteeing consistency and liveness.

However, introducing cross-chain or cross-layer applica-
tions brings forth new external profit opportunities for miners.
If the total value locked in the application exceeds the amount
of reward offered by the internal incentive mechanism, miners
may stop adhering to the protocol rules with the purpose of
maximizing their profit. This is true for all cross-chain and
cross-layer applications and bridges [37]: atomic swaps [38],
chain relays [6], payment channels [39], bridges [9, 40], etc.
In particular, Glimpse and chain relays equally suffer from
forgery attacks, where miners use their computational power
to forge a fake subchain of blocks (suffix) rather than mining
honestly.

In this section, we study the cost for an adversary bribing
miners to mount a proof forgery attack, thereby compromis-
ing the security of Glimpse. Furthermore, we study the cost
for an adversary bribing miners to mount a censorship attack
towards, e.g., TxP or TxV, thereby compromising the secu-
rity of Glimpse and violating the liveness of the underlying
blockchain. For these attacks, we define the secure parameter
space specific to Glimpse.

6.1 Proof Forgery Attack
In a proof forgery attack a malicious prover (attacker)

bribes the miners of the source chain to convince them forging
a fake proof, i.e., an invalid extension of the longest chain.
With such a fake proof, the attacker can fool the Glimpse
contract and steal the funds in it. This attack, however, is not
limited to Glimpse, but threatens light clients and chain relays
as well. Light clients operate under the assumption that the
majority of the mining power is in the hands of honest miners,
resulting in a good chain quality [26]. If this assumption is
broken, a light client can also be fooled to accept a fake n-
block suffix. This attack becomes profitable if the total value
locked in Glimpse (or in any cross-chain applications relying
on a light client or chain relay)7 is larger than the profit miners
make when mining honestly.

Attack Strategy. Let us consider a powerful attacker consist-
ing of all provers having an active Glimpse contract on the
same LS but (potentially) different LD. The attacker bribes the
miners of LS to forge a proof for all these Glimpse contracts
at once. The bribe consists of the coins held by all the active
Glimpse contracts over the considered LD. The miners fol-
lowing the attack can optimize their computational effort by
forging a single proof for all the contracts: they can create a

7Without creating any fork on the main chain, corrupted miners can create
a fake light client (or chain relay) suffix that will not be part of the blockchain
as, e.g., it contains invalid transactions which are rejected by full nodes.

USENIX Association 32nd USENIX Security Symposium 743

single fake block B f including all the transactions the attacker
wants them to include (the transactions the Glimpse contracts
are conditioned on), and then mine n confirmation blocks on
top of B f in time T , with n and T being averaged over the
active Glimpse instances.

Total Value Locked in Active Glimpse Contracts. To under-
stand when this attack constitutes a real threat, we first need to
know the economic resources the attacker has at their disposal
for bribing the miners. This is given by the total value locked
in all the simultaneously active Glimpse contracts operating
over the same LS. We denote the total value with αT . Note
that αT must also take into account similar active cross-chain
protocols relying on the same proof design [41], i.e., checking
that enough PoW has been done within a fixed time frame.

Computing αT requires monitoring all the destination
chains which support Glimpse, and look for the active
Glimpse contracts (we recall that, for practicality, Glimpse
contracts are meant to be active only for a short time). As this
could be unpractical, we propose possible alternative solu-
tions: honest parties may use a public bulletin board where
they announce their Glimpse contracts (we assume at least
one between P and V is honest, see Section 3.1) or, alterna-
tively, use some heuristics to estimate αT , e.g., computing the
total value for the most used Glimpse destination chain and
multiplying it by the number of compatible chains. For the
analysis that follows, we assume honest parties are able to
compute αT . We leave a more rigorous analysis of how one
can compute αT in the face of such a powerful adversary as
future work.

Model. We require the number n of confirmation blocks for
Glimpse to be at least equal to the minimum number of blocks
for which the probability of a temporary fork (or ordinary
block reorganization) is negligible. With this, we prevent
a malicious P fooling the contract by submitting a proof
taken from an orphaned branch of LS. Finally, we require the
probability of n being larger than the number of honest blocks
mined for LS in T to be negligible. With this, we exclude P
from being unable to construct a proof because n is larger
than the number of blocks honestly appended to LS over the
time window T .

To study the proof forgery attack, we need to consider the
expected gain for honest miners (E[H]) and the expected gain
for corrupted miners mounting the forgery attack (E[F]). The
first represents the money miners would get from following
the protocol rules (block rewards and transaction fees). The
second is the profit from the attack, i.e., the value of the bribe
that miners would get from the attacker if they successfully
forge the proof. The miners’ total profit is therefore given by
E[F]−E[H]. If the total profit is positive, then the attacker
(and cooperating miners) is incentivized to mount the attack.

Expected Gain for Honest Miners. Let R be the block
reward (in USD) on LS, E[B] the number of expected blocks

on LS in T , and µr ≤ 1− γ 8 the attacker’s relative mining
power on LS (which gives the attacker’s probability of finding
a valid block). The expected gain for honest miners is:

E[H] = R ·E[B] ·µr. (1)

Expected Gain for Corrupted Miners. The expected gain
for corrupted miners depends on n, on their mining power,
and on the fluctuation (in USD) of the bribe value during the
time window T of the attack. Let µ be the corrupted miners’
hashing power (in hashes per second); then, the number of
hashes computed in T is given by N := µ ·T . We consider
N repeated, independent, and equally distributed hash eval-
uations, and we let PT be the probability of finding a hash
smaller than a target T . In time T , miners will be able to forge
a proof consisting of n confirmation blocks with (binomial)
probability given by:

Pn,T = 1−
n

∑
k=0

(
N

k

)
Pk

T (1−PT)
N-k. (2)

Let αT be the bribe the attacker offers to miners, and δ be the
total expected percentage price drop (over all different LD) of
the bribe after time T . The expected gain for corrupted miners
is given by:

E[F] = αT ·Pn,T · (1−δ). (3)

We observe that if corrupted miners hold a significant share
of the computational power of the network, this attack be-
comes detectable, undermining users’ trust in the chain.
Secure Parameter Space. Glimpse is economically secure
when it is more profitable for miners to honestly mine blocks
rather than mounting a proof forgery attack. In other words,
Glimpse is secure when the total profit for the attacker (and
cooperating miners) is negative, i.e., when E[F]< E[H]. This
inequality yields the upper bound for the total value αT locked
in simultaneously active Glimpse contracts over the same LS:

αT <
R ·E[B] ·µr

Pn,T · (1−δ)
. (4)

Before opening a new Glimpse contract of value α over LS,
an honest party must first compute the total value αT locked
in all the active Glimpse over LS, and make sure that the
new total value locked, i.e., α+αT , fulfills the inequality in
Equation (4). We stress that αT is the upper bound at each
point in time and that, for practicality, Glimpse contracts are
meant to have a short lifetime. Put differently, Glimpse is a
dynamic and fast protocol that can move large amounts of
money capped by αT at each point in time. The value αT may
considerably fluctuate depending on the underlying chains,
e.g., the block reward of the source chain, and on the market
conditions, e.g., the values (in USD) of the assets involved.

8γ ∈ [0,1] is the fraction of honest miners the blockchain can tolerate.

744 32nd USENIX Security Symposium USENIX Association

Example. Let us assume all active Glimpse contracts have
Bitcoin as LS and the Liquid Network as LD. These contracts
have, on average, n= 5 and T = 1 hour. We consider a Bitcoin
target having 19 leading zeros (the largest in 2022), an attacker
controlling 23% of the total hashing power (largest mining
pool in 2022), and the average prices for BTC and L-BTC
at November 2022. Without price drop, αT ∼ 230 million
USD as of January 2023: this upper bound compares to the
one for other bridges, e.g., Gravity [40, 42]. However, while
in Glimpse funds are locked for a short time and αT is the
maximum at each point in time, other bridges (e.g., Gravity)
have worst performances, as funds are locked for long periods.

6.2 Censorship Attack
Glimpse makes use of a timelock and, as any other protocol

relying on timelocks [38, 39, 43], it suffers from censorship
attacks, i.e., attacks on the liveness of the underlying chains.
We investigate how an attack on the liveness of the destination
chain harms Glimpse, and we estimate the cost of mounting
such an attack.

In a censorship attack, a malicious verifier (attacker) bribes
block proposers (validators in Proof-of-Stake, or miners, in
PoW) to not include a specific transaction (in our case, e.g.,
TxP) on chain. Rational proposers, however, will only censor
LD if they gain something from doing so. Therefore, the
economic security of Glimpse depends on the conditions
making this attack profitable for V (and the proposers).

Closely following [38], we define the bribing game as a
Markov game running in T + 1 sequential stages, where a
stage is the period between two blocks. In each stage, the
block proposer chooses between censoring the transaction
pointed out by V (playing the game), or including the trans-
action in the block (refusing to play the game). The bribing
game is safe if, after eliminating the strictly dominated strate-
gies, the only action left in stage one for each block proposer
is to refuse the bribery and include the transaction.

The analysis stems from these assumptions: (i) block pro-
posers are rational, i.e., they always try to maximize their
profit and, if they can choose, they always follow dominant
strategies; (ii) block proposers do not create forks; (iii) the
probability µr of each player to be selected as block proposer
is publicly known and is constant during the attack; (iv) the
attacker and the victim are not block proposers; (v) all block
proposers can see timelocked transactions that will be valid
in the future; (vi) the Glimpse lifetime T is a timelock ex-
pressed in number of blocks; finally, (vii) block rewards and
fees generated outside the Glimpse protocol are constant and
do not affect the attack.

A weak block proposer as a player whose probability to
be selected as the next block proposer is µr <

f
α

. We let µw
be the sum of the probabilities of all weak block proposers
in the system, f be the fee of the to-be-censored transaction,
and α the value of the bribe, i.e., the economic value hold by
the (single!) Glimpse contract under attack. Let α > f . As

proved in [38], the following theorem holds:

Theorem 3. The bribing game is safe if there is at least one
block proposer such that µr <

f
α

(weak block proposer) and

T >
log f

α

log(1−µw)
. (5)

Secure Parameter Space. Glimpse is secure from censorship
attacks when α < f

µr
and T fulfills Equation (5).

Example. For instance, considering a $2 transaction fee
in Ethereum and the lowest probability to be selected as
block proposer being 1.8 ·10−6 [44], each Glimpse contract in
Ethereum can hold at most 1.1 million USD. With µw = 1.5%
and a quite high fee-to-bribe ratio we have: T > 25 with
f
α
= 0.7, T > 15 with f

α
= 0.8, and T > 7 with f

α
= 0.9.

7 Evaluation

On-chain Costs for EVM Chains. We now consider
Ethereum, but a similar discussion also applies to any EVM-
based chain. In Ethereum, the cost of a transaction is measured
in gas: every computation consumes an amount of gas propor-
tional to its complexity, and the data stored on-chain consume
an amount of gas proportional to its byte length. The com-
putational cost of Glimpse stems from the proof verification,
which consists of a Merkle proof verification, a transaction
body and a block header reconstruction, and hash comparisons
(Figure 4). A Merkle tree with k leaves has a Merkle proof
of size O(log2 k). This leads to Merkle proof verification cost
scaling logarithmically in the number of transactions in a
block, as shown in Table 3. Each of the n confirmation blocks
in P n yields an overhead of 36k gas for the hash comparison.

Besides these computational costs, the Glimpse contract
has to store the PoW target of the source chain as well as the
hash of the to-be-verified transaction(s) - or the transaction
description(s). In Ethereum the data are stored in 32-bytes
slots and for each slot 20k gas are consumed: this leads to
40k gas storage cost for the target and the transaction hash, or
to approximately 188k gas in the case of target and a ∼300-
bytes description. We have implemented an open-source cost
evaluation which can be found in a Github repository [45].

Glimpse has lower on-chain costs compared to optimized
relay solutions, such as Ethrelay [6] and zkRelay [5] (pre-
sented in Appendix A), and zkBridge. With Ethrelay, each
block header submission results in an average cost of 280k
gas, whereas the inclusion of a transaction is verified via SPV
combined with an advanced search algorithm that checks for
main chain membership. For relatively recent blocks, this
leads to a gas consumption of 110k gas. With zkRelay, the
submission of a batch of blocks costs 522k gas, including the
verification of the zero-knowledge proof and the storage costs.
The proof verification alone results in 351k gas. To verify

USENIX Association 32nd USENIX Security Symposium 745

that a transaction has been included in a block on the source
blockchain, users have to provide the relay contract with a
two Merkle proofs: one for verifying the block inclusion in
the batch, and one for verifying the transaction inclusion in
the block. With zkBridge, each zk proof verification alone
already results in 230k gas.

While the costs of relays and zkBridge for verifying transac-
tion inclusion in a block are analogous to the ones of Glimpse,
the crucial difference lies in the maintenance costs. Chain
relays continuously incur in high maintenance costs for re-
laying, verifying, and storing the full list of block headers
of LS; similarly, zkBridge requires relayers to continuously
relay block headers, compute zk proofs, and submit the head-
ers and the corresponding proofs on-chain. Glimpse, on the
other hand, does not have any maintenance cost because of its
on-demand nature. With Glimpse, the verification of a single
fully known transaction via a proof comprising of 5 confir-
mation blocks has an upper bound of 330k gas: we stress that
this is a one-time fee, compared to the continuous 280k gas
for each block header submission of Ethrelay and 522k gas
per batch submission of zkRelay.

On-chain Costs for Bitcoin-based Chains. In Bitcoin-based
chains, transaction fees are usually proportional to the size in
bytes of the transaction. In Bitcoin, for instance, this results
in a few satoshi per byte as of November 2022.

To cope with the limited scripting capabilities, Glimpse
parties can use Taproot, which using Merkelized Abstract
Syntax Trees (MAST) [46] allows to commit to multiple
scripts within a single one, i.e., a Pay-To-Taproot (P2TR)
script which contains the root of the tree. The size of a MAST
for Glimpse depends on (i) the number of undefined inputs
and outputs in Desc, because their well-formedness needs
to be checked with dedicated opcodes, (ii) the number of
confirmation blocks in P n, because their hashes have to be
compared with the PoW target, (iii) the number of transactions
within the block, because it affects the number of levels in
the tree, and (iv) the size of Desc, being the description hard-
coded in the script. For example, for a single to-be-verified
transaction Tx of ∼350 bytes, 6 confirmation blocks, and one
parameterized input or output, the upper bound for the MAST
is 10MB. For DNF formulas, parties need to compute and
exchange the MAST for each literal. For more details, see the
extended version of this work [27].

We theoretically estimate the size of transactions TxG, TxP,
and TxV on the Liquid Network, where Taproot and all nec-
essary string opcodes are available. Assuming TxG has two
P2PKH inputs and one P2TR output, the transaction size is
approximately 350 bytes. Assuming TxP has one P2TR input
and two P2PKH outputs, the size is again roughly 350 bytes.
Instead, assuming TxV has one P2TR input and two P2PKH
outputs, its size is of about 200 bytes. Concretely, in Novem-
ber 2022, users’ fees for TxG and TxP would amount to $1.5
each, whereas for TxV to $0.84. The total cost would be at
most 3$, similar to the costs of standard Bitcoin transactions.

No. Tx in B P n=0 P n=5

26+1 ≤ Tx≤ 27 92k gas 273k gas
27+1 ≤ Tx≤ 28 95k gas 276k gas
28+1 ≤ Tx≤ 29 99k gas 280k gas
29+1 ≤ Tx≤ 210 103k gas 283k gas
210+1 ≤ Tx≤ 211 106k gas 287k gas
211+1 ≤ Tx≤ 212 111k gas 291k gas

Table 3: On-chain
costs for EVM
chains for proof
verification with
n = 0 and n = 5, for
different number of
Tx in B.

Computational Overhead. The computational overhead is
minimal: parties need to create and verify signatures, and con-
struct proofs. If the destination chain is the Liquid Network,
parties also need to construct and verify the MAST. All these
operations can be performed using commodity hardware.

Communication Overhead. We now discuss the communi-
cation overhead for Glimpse. In the Setup phase, parties need
to exchange TxG, TxP and TxV, as well as the descriptions
of the to-be-verified transactions. Verifying a DNF formula
with m literals requires the parties to exchange 4 ·2m transac-
tions and the respective signatures. For Bitcoin-based chains
supporting Taproot, parties also need to exchange the MAST,
which roughly amounts to 10MB.

8 Conclusion
We present Glimpse, an on-demand light client for cross-

chain communication that only requires constant-size storage.
Glimpse enables many applications such as lending, Proofs-
of-Burn, proofs of oracle attestations, and off-chain appli-
cations, while remarkably retaining low on-chain costs and
compatibility with chains having limited scripting capabilities.
The security and atomicity properties of Glimpse are proven
within the UC framework. By conducting an economic anal-
ysis which considers rational players, we provide the secure
parameter space for Glimpse.

Acknowledgments
The work was partially supported by CoBloX Labs, by

the European Research Council (ERC) under the European
Union’s Horizon 2020 research (grant agreement 771527-
BROWSEC), by the Austrian Science Fund (FWF) through
the SpyCode SFB project F8510-N and the project CoRaF
(grant agreement 2020388), by the Austrian Federal Min-
istry for Digital and Economic Affairs, the National Foun-
dation for Research, Technology and Development and the
Christian Doppler Research Association through the Christian
Doppler Laboratory Blockchain Technologies for the Internet
of Things (CDL-BOT), and by the WWTF through the project
10.47379/ICT22045.

References
[1] “Ronin attack shows cross-chain crypto is a ‘bridge’

too far,” 2022. [Online]. Available: https://rb.gy/hvo01

[2] “Hackers have stolen $1.4 billion this year using crypto

746 32nd USENIX Security Symposium USENIX Association

https://rb.gy/hvo01

bridges. Here’s why it’s happening,” 2022, https://
shorturl.at/yGJT3.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” 2009, http://bitcoin.org/bitcoin.pdf.

[4] “BTC Relay,” https://github.com/ethereum/btcrelay.

[5] M. Westerkamp and J. Eberhardt, “zkRelay: Facilitat-
ing sidechains using zkSNARK-based chain-relays,” in
IEEE European Symposium on Security and Privacy
Workshops, 2020.

[6] P. Frauenthaler, M. Sigwart, C. Spanring, M. Sober,
and S. Schulte, “ETHRelay: A cost-efficient relay for
Ethereum-based blockchains,” in IEEE International
Conference on Blockchain. IEEE, 2020.

[7] A. Kiayias, A. Miller, and D. Zindros, “Non-interactive
Proofs of Proof-of-Work,” in Financial Cryptography
and Data Security FC, 2020.

[8] B. Bünz, L. Kiffer, L. Luu, and M. Zamani, “FlyClient:
Super-light clients for cryptocurrencies,” in IEEE Sym-
posium on Security and Privacy, SP, 2020.

[9] T. Xie, J. Zhang, Z. Cheng, F. Zhang, Y. Zhang, Y. Jia,
D. Boneh, and D. Song, “zkBridge: Trustless cross-chain
bridges made practical,” in ACM SIGSAC Conference
on Computer and Communications Security, CCS, 2022.

[10] M. Bartoletti and R. Zunino, “BitML: A calculus for
bitcoin smart contracts,” in ACM SIGSAC Conference
on Computer and Communications Security, CCS, 2018.

[11] “How to validate Bitcoin payments in Ethereum
(for only 700k gas!),” 2018, https://medium.com/
summa-technology/cross-chain-auction-technical-
f16710bfe69f.

[12] “Summa,” https://github.com/summa-tx/bitcoin-spv.

[13] J. Prestwich, “Non-atomic swaps,” 2019,
https://ethresear.ch/t/stateless-spv-proofs-and-
economic-security/5451.

[14] F. Barbàra and C. Schifanella, “BxTB: cross-chain ex-
changes of bitcoins for all Bitcoin wrapped tokens,” in
Fourth International Conference on Blockchain Com-
puting and Applications, BCCA, 2022.

[15] L. Aumayr, O. Ersoy, A. Erwig, S. Faust, K. Hostáková,
M. Maffei, P. Moreno-Sanchez, and S. Riahi, “General-
ized channels from limited blockchain scripts and adap-
tor signatures,” in Asiacrypt, 2021.

[16] “The Liquid Network,” https://blockstream.com/liquid/.

[17] “Blockstream,” https://blockstream.com.

[18] “What the heck is SegWit,” 2020, https://medium.com/
bitbees/what-the-heck-is-segwit-3f58b7352b1c.

[19] “Bitcoin’s Taproot upcoming upgrade and how it mat-
ters to the network,” 2021, https://tokenize.exchange/
blog/article/bitcoin-taproot-upcoming-upgrade.

[20] “Salvador Bitcoin Bonds,” 2021, https://rb.gy/fcku5.

[21] “Taproot: SegWit version 1 spending rules,”
https://github.com/bitcoin/bips/blob/master/bip-
0341.mediawiki, 2020.

[22] “Validation of Taproot scripts,” https://github.com/
bitcoin/bips/blob/master/bip-0342.mediawiki, 2020.

[23] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-
Kogias, P. Moreno-Sanchez, A. Kiayias, and W. J.
Knottenbelt, “SoK: Communication across distributed
ledgers,” in Financial Cryptography and Data Security:
25th International Conference, FC 2021,, 2021.

[24] “BSIP 64: Optional HTLC preimage length and add
hash160 algorithm,” https://github.com/bitshares/bsips/
issues/163.

[25] “Bitcoindev Speedy covenants (OP_CAT2),”
https://lists.linuxfoundation.org/pipermail/bitcoin-
dev/2022-May/020434.html, 2022.

[26] J. A. Garay, A. Kiayias, and N. Leonardos, “The Bit-
coin backbone protocol: Analysis and applications,” in
Advances in Cryptology - EUROCRYPT. Springer,
2015.

[27] G. Scaffino, L. Aumayr, Z. Avarikioti, and M. Maffei,
“Glimpse: On-demand PoW light client with constant-
size storage for DeFi,” Cryptology ePrint Archive, Paper
2022/1721, 2022, https://eprint.iacr.org/2022/1721.

[28] T. Dryja, “Discreet Log Contracts,” https:
//adiabat.github.io/dlc.pdf.

[29] M. Sober, G. Scaffino, C. Spanring, and S. Schulte,
“A voting-based blockchain interoperability oracle,” in
IEEE International Conference on Blockchain, 2021.

[30] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry,
“Sprites and state channels: Payment networks that go
faster than lightning,” in FC 2019: Financial Cryptog-
raphy and Data Security.

[31] S. Dziembowski, S. Faust, and K. Hostáková, “General
State Channel Networks,” in Computer and Communi-
cations Security, CCS, 2018.

[32] S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and
K. Hostáková, “Multi-party Virtual State Channels,” in
Advances in Cryptology - EUROCRYPT, 2019.

USENIX Association 32nd USENIX Security Symposium 747

https://shorturl.at/yGJT3
https://shorturl.at/yGJT3
http://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/btcrelay
https://medium.com/summa-technology/cross-chain-auction-technical-f16710bfe69f
https://medium.com/summa-technology/cross-chain-auction-technical-f16710bfe69f
https://medium.com/summa-technology/cross-chain-auction-technical-f16710bfe69f
https://github.com/summa-tx/bitcoin-spv
https://ethresear.ch/t/stateless-spv-proofs-and-economic-security/5451
https://ethresear.ch/t/stateless-spv-proofs-and-economic-security/5451
https://blockstream.com/liquid/
https://blockstream.com
https://medium.com/bitbees/what-the-heck-is-segwit-3f58b7352b1c
https://medium.com/bitbees/what-the-heck-is-segwit-3f58b7352b1c
https://tokenize.exchange/blog/article/bitcoin-taproot-upcoming-upgrade
https://tokenize.exchange/blog/article/bitcoin-taproot-upcoming-upgrade
https://rb.gy/fcku5
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0342.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0342.mediawiki
https://github.com/bitshares/bsips/issues/163
https://github.com/bitshares/bsips/issues/163
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2022-May/020434.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2022-May/020434.html
https://eprint.iacr.org/2022/1721
https://adiabat.github.io/dlc.pdf
https://adiabat.github.io/dlc.pdf

[33] L. Aumayr, P. Moreno-Sanchez, A. Kate, and M. Maffei,
“Blitz: Secure Multi-Hop Payments Without Two-Phase
Commits,” in USENIX Security Symposium, 2021.

[34] L. Aumayr, P. M. Sanchez, A. Kate, and M. Maffei,
“Breaking and Fixing Virtual Channels: Domino Attack
and Donner,” in NDSS, 2023.

[35] R. Canetti, Y. Dodis, R. Pass, and S. Walfish, “Univer-
sally composable security with global setup,” in Theory
of Cryptography, 2007.

[36] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas,
“Bitcoin as a transaction ledger: A composable treat-
ment,” in Advances in Cryptology – CRYPTO 2017.

[37] “Vitalik Buterin on cross-chain applications,” https://
rb.gy/hvo01, 2022.

[38] T. Nadahalli, M. Khabbazian, and R. Wattenhofer,
“Timelocked bribing,” in Financial Cryptography and
Data Security, N. Borisov and C. Diaz, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2021.

[39] Z. Avarikioti, L. Thyfronitis, and S. Orfeas, “Suborn
channels: Incentives against timelock bribes,” in Fi-
nancial Cryptography and Data Security, I. Eyal and
J. Garay, Eds. Springer International Publishing, 2022.

[40] “Gravity bridge,” https://github.com/Gravity-Bridge/
Gravity-Docs.

[41] “Summa proofs are not composable,” 2019.
[Online]. Available: https://medium.com/@dionyziz/
summa-proofs-are-not-composable-57b87825f428

[42] “Value locked in Ethereum L1 bridges,” 2023, https:
//www.theblock.co/data/scaling-solutions/scaling-
overview/value-locked-of-ethereum-l1-bridges.

[43] I. Tsabary, M. Yechieli, A. Manuskin, and I. Eyal,
“MAD-HTLC: Because HTLC is crazy-cheap to attack,”
in IEEE Symposium on Security and Privacy, SP, 2021.

[44] “Beacon scan,” https://beaconscan.com/statistics.

[45] “Glimpse Github,” https://github.com/Glimpse-
CrossChainPrimitive/Glimpse.

[46] “Merkelized Abstract Syntax Tree (MAST),” https://
bitcoinops.org/en/topics/mast/.

[47] A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais,
and W. Knottenbelt, “XCLAIM: Trustless, interoperable,
cryptocurrency-backed assets,” in 2019 IEEE Sympo-
sium on Security and Privacy (SP), 2019.

[48] TierNolan, “Alt chains and atomic transfers,” 2013.

[49] M. Herlihy, “Atomic cross-chain swaps,” CoRR, 2018.
[Online]. Available: http://arxiv.org/abs/1801.09515

[50] J. Xu, D. Ackerer, and A. Dubovitskaya, “A game-
theoretic analysis of cross-chain atomic swaps with
htlcs,” CoRR, 2020. [Online]. Available: https://
arxiv.org/abs/2011.11325

[51] J. Gugger, “Bitcoin-Monero cross-chain atomic swap,”
Cryptology ePrint Archive, 2020. [Online]. Available:
https://eprint.iacr.org/2020/1126

[52] S. Thyagarajan, G. Malavolta, and P. Moreno-Sanchez,
“Universal atomic swaps: Secure exchange of coins
across all blockchains,” in 2022 IEEE Symposium on
Security and Privacy (SP) (SP), 2022.

[53] P. Hoenisch, S. Mazumdar, P. Moreno-Sanchez, and
S. Ruj, “Lightswap: An atomic swap does not
require timeouts at both blockchains,” Cryptology
ePrint Archive, 2022. [Online]. Available: https:
//eprint.iacr.org/2022/1650

[54] “Submarine swap in Lightning Network,” https:
//wiki.ion.radar.tech/tech/research/submarine-swap,
2021.

[55] “What is atomic swap and how to implement
it,” https://www.axiomadev.com/blog/what-is-atomic-
swap-and-how-to-implement-it/.

[56] M. Westerkamp and M. Diez, “Verilay: A verifiable
Proof of Stake chain relay,” in IEEE International Con-
ference on Blockchain and Cryptocurrency, ICBC, 2022.

[57] T. Bugnet and A. Zamyatin, “XCC: Theft-resilient
and collateral-optimized cryptocurrency-backed assets,”
Cryptology ePrint Archive, 2022.

[58] “Bitcoin Wiki: Payment channels,” 2018, https://
en.bitcoin.it/wiki/Payment_channels.

[59] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind,
A. Kate, and M. Maffei, “Anonymous multi-hop locks
for blockchain scalability and interoperability,” in Net-
work and Distributed System Security Symposium,
NDSS, 2019.

[60] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski,
“Perun: Virtual payment hubs over cryptocurrencies,” in
2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 2019, pp. 106–123.

[61] L. Aumayr, O. Ersoy, A. Erwig, S. Faust, K. Hostáková,
M. Maffei, P. Moreno-Sanchez, and S. Riahi, “Bitcoin-
Compatible Virtual Channels,” in IEEE Symposium on
Security and Privacy, 2021.

748 32nd USENIX Security Symposium USENIX Association

https://rb.gy/hvo01
https://rb.gy/hvo01
https://github.com/Gravity-Bridge/Gravity-Docs
https://github.com/Gravity-Bridge/Gravity-Docs
https://medium.com/@dionyziz/summa-proofs-are-not-composable-57b87825f428
https://medium.com/@dionyziz/summa-proofs-are-not-composable-57b87825f428
https://www.theblock.co/data/scaling-solutions/scaling-overview/value-locked-of-ethereum-l1-bridges
https://www.theblock.co/data/scaling-solutions/scaling-overview/value-locked-of-ethereum-l1-bridges
https://www.theblock.co/data/scaling-solutions/scaling-overview/value-locked-of-ethereum-l1-bridges
https://beaconscan.com/statistics
https://github.com/Glimpse-CrossChainPrimitive/Glimpse
https://github.com/Glimpse-CrossChainPrimitive/Glimpse
https://bitcoinops.org/en/topics/mast/
https://bitcoinops.org/en/topics/mast/
http://arxiv.org/abs/1801.09515
https://arxiv.org/abs/2011.11325
https://arxiv.org/abs/2011.11325
https://eprint.iacr.org/2020/1126
https://eprint.iacr.org/2022/1650
https://eprint.iacr.org/2022/1650
https://wiki.ion.radar.tech/tech/research/submarine-swap
https://wiki.ion.radar.tech/tech/research/submarine-swap
https://www.axiomadev.com/blog/what-is-atomic-swap-and-how-to-implement-it/
https://www.axiomadev.com/blog/what-is-atomic-swap-and-how-to-implement-it/
https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Payment_channels

A Further Related Work
The idea of chain relays first appeared with BTC Relay [4],

realizing a Bitcoin relay on Ethereum. BTC Relay verifies
and stores Bitcoin block headers; the costs the relayers had
to bare for keeping the relay up-to-date are high (linear in
the total number of blocks within the blockchain) and not
compensated by user’s fees.

Westerkamp et al. [5] introduced zkRelay which batches
multiple headers. Their validity is verified off-chain and
proven on-chain via zkSNARKs. zkRelay has constant verifi-
cation costs and releases the target ledger from processing and
storing every single block header of the source blockchain.
Although the on-chain costs are lower than for BTC Relay,
a maintenance overhead for the off-chain computation and
for on-chain storage remain. Furthermore, the users’ costs
for transaction inclusion verification are doubled, as both the
block inclusion in the batch and the transaction inclusion in
the block have to be verified.

Frauenthaler et al. [6] propose Ethrelay, a relay adopting
an optimistic approach: Block headers are optimistically ac-
cepted and only validated on-demand. The computational
costs per header are cut out, but the storage costs persist.

Zamyatin et al. [47] propose XCLAIM, a framework for
trustless and efficient cross-chain exchanges. XCLAIM ex-
hibits functionalities for issuing, transferring, swapping and
redeeming cryptocurrency-backed assets securely on exist-
ing blockchains. To make the protocol non-interactive, the
XCLAIM implementation operating between Bitcoin and
Ethereum makes use of a chain relay on Ethereum, specifi-
cally of the implementation of BTC Relay. The relay costs are
shared among all users of XCLAIM, with decreasing costs
for very active users.

Gravity [40] is a bidirectional bridge solution between
Ethereum and the Cosmos ecosystem. The Gravity bridge
has two main components: a Solidity smart contract deployed
on Ethereum and a Cosmos SDK blockchain module. Users
deposit assets on one side of the bridge (e.g., Cosmos) and a
token representation is minted on the other side of the bridge
(e.g., Ethereum), and vice versa. Gravity relies on 2/3 of a
set of 140 validators to sign transactions attesting on Cosmos
deposits on the Ethereum side and vice versa. To join as a
validator, one has to stake assets, which are slashed upon de-
tected misbehavior. Gravity assumes an honest super majority
of validators.

Another conceptually and technically different solution for
cross-chain communication is atomic swaps, which likely
originated from a forum user TierNolan [48] and was later an-
alyzed by, e.g., Herlihy [49] or Xu et al. [50]. Atomic swaps
allow multiple parties to exchange assets across multiple
blockchains in a distributed and coordinated manner. Differ-
ent constructions have been proposed by [51–53].

Table 4 compares Glimpse to other state-of-the-art cross-
chain solutions. With 1 , 2 , 3 we denote three classes of

Commit on LS Ver.&Comm. on LD Expressiveness
Ass. SR Consensus Ass. SR

Universal Atomic Swap [52] Sync 1 Any Sync 1 Secret-based logic
HTLC-based Swap [49, 54, 55] Sync 1 Any Sync 1 Secret-based logic
Glimpse Sync 1 PoW Sync 2 DNF formulas
Chain relays [4–6, 56] Sync 3 PoW,PoS Sync 3 Arbitrary logic
XCLAIM [47], XCC [57] TTP 1 PoW,PoS Sync 3 Arbitrary logic
Gravity Bridge [40] TTP 3 PoS,BFT TTP 3 Arbitrary logic

Table 4: State-of-the-art CCC protocols w.r.t.: (i) the assump-
tion they make (Trusted Third Party (TTP) or Synchrony),
(ii) their scripting requirements (SR), (iii) the consensus they
operate on, and the expressiveness they achieve.

scripting languages: 1 comprises hash locks, time locks, and
signature locks, 2 includes the operations in 1 along with the
following functionalities for string concatenation and hash
comparison, and 3 finally represents any quasi-Turing com-
plete language.

Lock Contract Limitations. Existing cross-chain commu-
nication solutions not relying on a TTP fall into two main
categories: lock contracts and chain relays. Lock contracts
are an umbrella term for non-custodial locking mechanisms
(e.g., Hashed-Timelocked-Contracts9, adaptor signatures) that
achieve security and atomicity from the hardness of some
cryptographic assumptions. Hash locks and adaptor signa-
tures are, for instance, lock contract schemes broadly used to
encode blockchain applications such as atomic swaps, pay-
ment channels [30, 58], multi-hop payments [33, 59], virtual
channels [32,34,60,61], and discreet log contracts [28]. Lock
contracts use a statement S that ties the authorization of a
transaction Tx2 to the leakage of a secret witness s of some
hard relation (usually leaked within a transaction Tx1 posted
on-chain). Lock contracts can encode a class of asymmetric
problems: The party posting transaction Tx1 cannot be the
same posting transaction Tx2. Intuitively, the party who posts
transaction Tx2 has to gain knowledge of s only after trans-
action Tx1 has been posted. Lock contracts are cheap and
lightweight, and since they require minimal scripting capa-
bilities, they can be leveraged on all existing chains. On the
other hand, they enable a very limited number of (asymmetric)
applications: They cannot be used, e.g., for Proofs-of-Burn,
wrapping and unwrapping of tokens, etc.

B Verifying DNF Formulas with Glimpse
As introduced in Section 3.4, Glimpse can efficiently verify

DNF formulas over descriptions (Figure 2), allowing to syn-
chronize any logical combination of transactions on LS with
corresponding transactions on LD. DNF formulas express
truth tables in terms of disjunctions (OR) of conjunctions
(AND) of one or more descriptions.

We explain how Glimpse achieves this degree of expres-
siveness by showing a concrete example. Let us consider two

9HTLCs are contracts storing a pair (h, t) and ensuring that if the contract
receives the secret s such that h = H (s) before time t, then the ownership of
the asset locked in the contract is transferred to the counter party.

USENIX Association 32nd USENIX Security Symposium 749

oracles, i.e., O1 and O2, operating on LS (they can also operate
on different chains) and regularly posting information about
a real-world event. On LD, prover P and verifier V lock α

2
coins each in a Glimpse contract (TxG) and, e.g., they bet on a
specific outcome for the event: if at least one oracle attests the
desired outcome for the event (1-out-of-2 threshold), P can
claim the α coins by proving to TxG that at least one oracle
has published a transaction attesting the established outcome
for the event; if the coins are still unspent after time T , V can
claim the coins.

We recall that the to-be-verified outcome for the event is
specified in the description Desc of each transaction and is
hardcoded within TxG. We let Desci be the description for the
transaction published by the oracle Oi, and we let

FS =(Desc1∧¬Desc2)∨(¬Desc1∧Desc2)∨(Desc1∧Desc2)

be the DNF formula Glimpse has to verify. Glimpse proceeds
as follows:
Setup. θP and θV are unspent outputs on LD holding α

2
coins each and controlled by P and V , respectively. We denote
with α := θP.coins+ θV .coins the value locked in Glimpse
and with ζP and ζV inputs spending θP and θV , respectively.
The parties construct [TxG] := (2, [ζP,ζV],3, [θα,θε1 ,θε2]),
such that θα :=(α,(MuSig(pkP,pkV))∨(MuSig(pkP,pkV)∧
T3)), θε1 := (ε1,(scriptG(Desc1,T1,TS,n1,P))), and θε2 :=
(ε2,(scriptG(Desc2,T1,TS,n2,P))). We denote with εi the
smallest possible amount of cash. Its value does not matter,
since it is just used to enable the construction.

This means that when Glimpse verifies DNF a formula,
TxG has to have as many outputs (θεi) as the number of
transactions in the formula (in this case, two: θε1 ,θε2),
plus an additional one holding the Glimpse value (θα).
We now require both P and V to sample a random string
and embed it in the transaction descriptions. Beside TxG,
the parties create a set of transactions (TxT,TxF,TxP)i for
each disjunctive term in the formula. In our example, FS
has three terms: (Desc1 ∧¬Desc2), (¬Desc1 ∧Desc2), and
(Desc1 ∧Desc2), therefore we will have three sets of trans-
actions (TxT,TxF,TxP). Figure B.1 shows an example
of transaction set (TxG,(TxT,TxF,TxP)i,TxV) for the term
(Desc1∧¬Desc2) of FS. In general, (TxT,TxF,TxP)i is con-
structed as follows:
• TxT allows P to prove the inclusion of the oracles’ trans-

actions attesting the desired outcome for the event. TxT
spends the outputs θεi for the Desci in the term (but
not for the ¬Desci), and it has a single output θT :=
(ε,OneSig(pkP)).

• TxF allows V to submit a proof for a transaction being
posted on LS, as a reaction to a malicious P falsely claiming
the transaction was not posted. TxF spends the outputs θεi

for the ¬Desci in the term (but not for the Desci), and it has
as many outputs as the number of its inputs, each one of
the form θF,i := (εi,(scriptG(Desci,T2,TS,ni,(V,P)). For
some terms, TxF is not needed at all, e.g., (Desc1∧Desc2).

Figure B.1: Set (TxG,(TxT,TxF,TxP)i,TxV) of transactions
for efficiently verifying the term Desc1∧¬Desc2 of the DNF
formula in the example.

• TxP allows P to claim the α coins if all the outputs of TxF
are still unspent. It spends θT , all the θF,i, and θα.

Finally, the parties create transaction TxV allowing V to spend
the output θα after time T3. We have T1 < T2 < T3.

At this point, P signs [TxV] and sends to V the
Glimpse specifics (Desc1,Desc2,T1,T2,TS,n1,n2,α,scriptG,
[TxG],([TxT], [TxF], [TxP])i,∀i, [TxV],σP([TxV])). V checks
if the Glimpse specifics are well-formed, and verifies the va-
lidity of P’s signature. If everything is correct, V signs [TxG]
and [TxP]i,∀i, and sends the signatures to P. P checks if V ’s
signatures are valid and, if so, posts TxG on LD.
Commit on LS. The oracles publish transactions attesting the
outcome of the real-world event, e.g., O1 publishes Tx1 s.t.
[Tx1]←↩ Desc1 and O2 publishes Tx2 s.t. [Tx2]←↩ Desc ̸=
Desc2. This is, e.g., the case depicted in Figure B.1.
Verify & Commit on LD. P and V monitor LS (or query a
relayer R) checking for the inclusion of transactions matching
descriptions Desc1 and Desc2. P constructs the corresponding
proofs, and claims the coins by posting the corresponding set
(TxT,TxF,TxP)i.

V checks whether the set of transactions published by P
corresponds to the correct term of FS realized by the oracles.
If P does not spend θα,V can publishTxV and get the Glimpse
coins after T3. If P misbehaves, V can react within T2 and
spend one of TxF’s outputs, thereby invalidating TxPi and
claiming the money via TxV.
Remarks. We observe that when verifying DNF formulas
with Glimpse, V needs to be able to query the relayer R (or run
a full node), as he needs to construct and submit proofs in case
P cheats. Although increasing the off-chain communication
overhead, this construction results in up to three on-chain
transactions in the optimistic case, no matter the complexity
of the formula to verify.

750 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Glimpse
	Assumptions and Models
	Protocol Overview
	Designing the Proof
	Enhancing Expressiveness
	Compatibility
	Extend Compatibility: Required Opcodes

	Glimpse for Lending and Cross-Chain DeFi
	Other Applications

	Security in the UC Framework
	Economic Security Analysis
	Proof Forgery Attack
	Censorship Attack

	Evaluation
	Conclusion
	Further Related Work
	Verifying DNF Formulas with Glimpse

