
This paper is included in the Proceedings of the 
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the 
32nd USENIX Security Symposium 

is sponsored by USENIX.

Generative Intrusion Detection and 
Prevention on Data Stream

HyungBin Seo and MyungKeun Yoon, Kookmin University
https://www.usenix.org/conference/usenixsecurity23/presentation/seo



Generative Intrusion Detection and Prevention on Data Stream

HyungBin Seo
Kookmin University

MyungKeun Yoon
Kookmin University

Abstract
Data arrive in a stream, for example, network packets, emails,

or malicious files, and ideally they should be investigated for

cybersecurity. The current best practice would be to check if

each data includes any suspicious signatures, or simply strings,

which were obtained a priori by elaborate manual analysis

in previous cyberattack cases. Unfortunately, unknown at-

tacks, called zero-day attacks, cannot be timely detected in

this way because no signature is available yet. To tackle this

problem, recent studies have presented high-speed methods

that can extract frequent substrings from the data stream and

use them as attack signatures because the frequently-occurred

signatures are often related with attacks; unfortunately, more

benign signatures are extracted than malicious ones, espe-

cially when there is no attack in most of the time. This causes

both a tremendous number of false-positives and extra human

interventions to remove benign signatures. In this paper, we

design a new streaming algorithm that can first identify a

frequent group of signatures appearing together at the same

time from data streams. Using this frequent signature-group
instead of frequently-occurred individual signatures, the new

scheme achieves a high detection accuracy by mitigating the

false-positive problem with only a small fixed amount of

memory and a constant number of hash operations, which has

not been achieved by any previous work. This improvement

comes from a new method for summarizing similar data with

a fixed amount of memory, called a minHashed virtual vector,

which allows us to automatically identify a frequent group

of signatures with each data read only once. We perform ex-

haustive experiments on different private and open datasets,

to verify both the practical effectiveness and the experimental

reproducibility of the new scheme.

1 Introduction

One of the most important tasks in cybersecurity is to collect

and analyze data that come from a range of security products,

networking components, servers, and even user endpoints.

The data can be security events or alerts triggered by moni-

toring devices, network packets, emails, suspicious files, etc.,

which are continuously generated. These data are often col-

lected by a security operations center (SOC) where security

analysts work for real-time monitoring and manual analysis

for critical data [10, 25, 30, 56]. Recent studies reveal that

security alerts overwhelm human resources by their large vol-

umes [10, 16, 25, 30, 45, 56]. For example, more than million

alerts are generated per day while only dozens of people work

for alert analysis at best. Therefore, intelligent and automatic

data analysis tools are essential for this industry.

Attack detection still relies on signature matching after a

signature, a simple string or a regular expression, is manually

written by experts. The problem is that attackers use more

zero-day attacks, vulnerabilities and exploits only known to at-

tackers [61], and the signature-based detection may not effec-

tively mitigate the attacks any longer. This motivates a lot of

machine learning (ML) approaches for anomaly detection in

cybersecurity. However, ML inherently causes false-positives,

non-attacks mistakenly considered as attacks [50]. As the

sheer volume of security data meets ML-based detection, a

tremendous number of false-positives may be generated. We

need a new detection and prevention method that has both

the advantages of the precise detection of signature-based

methods and the zero-day attack detection of ML-based meth-

ods. This motivates us to study a new automatic signature-

generation method to mitigate zero-day attacks.

Existing Solutions. The best practices of cyberattack de-

tection and prevention can be categorized into two types,

misuse-detection and anomaly-detection [50]; in general,

misuse-detection uses known signatures representing spe-

cific attacks while anomaly-detection relies on machine learn-

ing (ML). Therefore, misuse-detection is generally known

to be unable to detect a zero-day attack. Although anomaly-

detection is known to mitigate zero-day attacks promptly

without human intervention, the false detection problem, also

known as false-positive and alert fatigue, still seems chal-

lenging [10, 25, 50, 56]. Besides, because ML models hardly

provide enough explanation or evidence about their decision,

USENIX Association 32nd USENIX Security Symposium    4319



security operators are often reluctant to trust and deploy them

in production settings [17]. We summarize the different types

of intrusion detection and prevention schemes in Table 1;

• Manual rule composition: Detection rules, or signa-

tures, are manually composed by security experts after

new attacks are analyzed with enough time and human

efforts [43, 49, 53]. This is practically adopted by most

security products. Because signatures are specifically de-

fined, detection evidence is also provided. However, this

is not appropriate for detecting zero-day attacks because

no signatures are known yet.

• Signature generation: Signatures are automatically gen-

erated to detect a certain type of zero-day attacks that

are accompanied with a large number of similar data in a

short period of time [9,39,48]. Such attacks may include

worms, distributed denial of service (DDoS) attacks, etc.

This automatic generation is useful, but existing methods

find only the most frequently-occurred substrings from

a dataset. This causes a large number of false-positives

and requires additional human resources.

• Supervised learning: When a dataset includes both at-

tack and normal cases with labels, an ML model can

be trained in a supervised way [19, 52]. The model

can detect not only the attacks seen during the train-

ing phase but also their variants [51]. Because attack

variants can evade signature-based detection, supervised

learning helps to detect simple zero-day attacks to some

degree. However, data labeling requires extra costs and

human resources.

• Unsupervised learning: Even when there are no labels

for the dataset, an ML model can be trained in an un-

supervised way [54, 62]. In general, the training dataset

includes only normal cases without attacks. Then, the

model can identify data somewhat similar to something

previously seen. For a given test data, if the model con-

cludes that the data was not seen a priori, it can be consid-

ered as a new data and potentially a zero-day attack [61].

This inherently raises false-positives [50] and requires

extra efforts to refine the training dataset where no attack

should be included.

In this paper, we present a new detection and prevention

method to mitigate a certain type of zero-day attacks that

include similar data redundantly. The new scheme can identify

a group of similar data from a large volume of data streams

and automatically extract a group of signatures appearing

at the same time over the identified group. The signature-

group, instead of single signature, significantly reduces false-

positives. Because both the identification of similar data group

and the generation of signature group are automatically done

without human intervention over data streams, we call the

new scheme Generative Intrusion detection and Prevention

Table 1: Different Types of Intrusion Detection and Prevention
Type Accuracy Automation Zero-day

Misuse-

detection

(signature)

Manual rule

composition [49, 53]
High Low Low

Signature generation

[9, 48]
Medium Medium High

Signature-group
generation [GIPS] High High High

Anomaly-

detection

(ML)

Supervised

learning [19, 52]
Medium Medium Medium

Unsupervised

learning [54, 62]
Low Medium High

on data Stream (GIPS). The new scheme achieves a high

detection accuracy with a small fixed amount of memory and

a constant number of hash operations, which has not been

achieved by any previous work. This improvement comes

from a new summarizing method for similar data in a fixed

amount of memory, called a minHashed virtual vector, which

allows us to identify a group of similar data with each read

only once. The contribution of this paper can be summarized

as follows:

• We present GIPS to mitigate zero-day attacks of repet-

itive content. Because GIPS uses a signature-group in-

stead of a single signature, the accuracy is much better

than a state-of-the-art (SOTA) [9] and other previous

work [39, 48].

• Motivated by the minHash theory [14], a new data struc-

ture to summarize similar groups from data streams is

designed. This requires only a fixed amount of memory

and a fixed number of hash operations, which runs faster

than clustering algorithms by orders of magnitude.

• A range of data types can be covered by GIPS, for ex-

ample alerts, logs, packets, emails, files, etc. We evalu-

ate GIPS with different datasets, including real network

packets collected from an ISP, and some public datasets

for reproducible experiments.

The rest of the paper is organized as follows. We introduce

the problem and motivation in Section 2. We present the new

scheme in Section 3 and the experimental results in Section 4.

Sections 5 and 6 cover related work and conclusions.

2 Problem and Design Goals

2.1 Problem
We study the challenging detection and prevention problem

of zero-day attacks [61]. We assume that security monitoring

tools or products such as intrusion detection and prevention

system (IDPS) [1], endpoint detection and response (EDR),

security information and event management (SIEM) [56], are

deployed, but the detection signature of the zero-day attack is

not known yet.

4320    32nd USENIX Security Symposium USENIX Association



d3=“httpHf8root121d34admin@”

d1=“httpjhh57^dhgfnmFG”
d2=“httpabroot12admin74”

d0=“Sdh$9DkhttpFm”

d4=“http&dU4rootGyadminA2”
d5=“pdh%dh9*dhg$fhrdO3”

d3=“httpHf8root121d34admin@”

d1=“httpjhh57^dhgfnmFG”
d2=“httpabroot12admin74”

d0=“Sdh$9DkhttpFm”

d4=“http&dU4rootGyadminA2”
d5=“pdh%dh9*dhg$fhrdO3”

d3=“httpHf8root121d34admin@”

d1=“httpjhh57^dhgfnmFG”
d2=“httpabroot12admin74”

d0=“Sdh$9DkhttpFm”

d4=“http&dU4rootGyadminA2”
d5=“pdh%dh9*dhg$fhrdO3”

d3=“httpHf8root121d34admin@”

d1=“httpjhh57^dhgfnmFG”
d2=“httpabroot12admin74”

d0=“Sdh$9DkhttpFm”

d4=“http&dU4rootGyadminA2”
d5=“pdh%dh9*dhg$fhrdO3”

(a) Data stream (b) Manual rule composition (c) Single-signature generation (d) Signature-group generation
... ... ... ...

Figure 1: Manual rule composition [43, 49], single-signature generation [9], and signature-group generation of GIPS.

Persistent zero-day attack: In this paper, we assume that

an attacker attempts a zero-day attack by repeatedly sending

network packets of similar attack commands, emails with the

same phishing links or similar malware files attached, which

we call a persistent zero-day attack. Although the attacker

repeats to send similar data, their amount can be relatively

small, compared with the normal ones. We define an attack

data ratio, ra, to be the ratio of the zero-day attack data to the

all data. For example, if IDPS monitors 10 similar packets

from the zero-day attack and 90 normal packets from benign

sessions at the same time, ra becomes 10/100.

The difference between the persistent zero-day attack and

the existing worm/DDoS-based zero-day attack of previous

work [9,24,35,39,48] is that ra of the latter is close to 1. There-

fore, most data would be associated with the worm/DDoS-

based attack, and therefore a simple detection and prevention

strategy can mitigate the attack [48]. For example, the single-

signature generation strategy of Table 1 works when ra is

close to 1. However, a proper signature cannot be generated

with a small ra. Therefore, we first need to separate a group of

attack-related data of high similarity from normal ones, which

is another challenging problem. In this paper, we present GIPS

to solve the persistent zero-day attack problem.

Data analysis tool: GIPS not only mitigates persistent zero-

day attacks but also can be used as a general data-analysis tool

to identify similar data groups from data streams and to extract

a group of signatures per group. We expect GIPS can process

any datasets such as network packets, emails, malware files,

alerts and logs from security devices. To the best knowledge

of ours, this is the first streaming algorithm for similarity-

based grouping on Jaccard index [58] and signature-group

generation. We expect GIPS can be practically deployed in

the security industry because it can provide manifest signa-

tures as an evidence for cyberattacks. We observe that recent

deep-learning models show good performance metrics at the

laboratory level; however, they are less popularly used in prac-

tice because no clear evidence is provided, called a black box

problem, restricting their usage for cybersecurity [17].

2.2 Design Goals
The design goals of GIPS can be summarized as follows:

• Big-group identification: GIPS should be able to iden-

tify a large group of similar data. When a new data ar-

rives, the number of all previous data that are similar to

the new data should be estimated. For the new data, the

ratio of the number of its similar data to the number of

all data is denoted as rb; if rb is bigger than a predefined

threshold, we call the group of the similar data including

the new data as a big-group.

• Signature-group generation: A group of common sig-

natures instead of a single common signature should be

extracted from a big group. This signature-group reduces

false-positives when used for misuse-detection.

• Streaming algorithm: GIPS should process data

streams as a streaming algorithm with only a small fixed-

size memory and a constant number of hash operations.

• Automatic processing: Because human interventions

cause much higher costs and longer delayed responses,

the new scheme should minimize human interventions.

• Various data types: The evidence of zero-day attacks

can be observed from different datasets, packets, files,

emails, etc., and GIPS can be applied to any data type.

We show the difference between SOTA and GIPS in Fig.

1. We assume that data continuously arrives in a stream as in

Fig. 1 (a). We denote each data as di, here network packets

or IDPS events including suspicious packets, where only d2,

d3, and d4 include similar attack signatures. If the attack is

not a zero-day and its detection signature is already known

as “root12", security operators can configure security devices

to detect and prevent the attack as in Fig. 1 (b). However, if

this is a zero-day attack, the attack cannot be detected despite

the repeated similar contents of d2, d3, and d4. Even with the

known attack signature, d4 evades the detection.

To mitigate this kind of zero-day attacks, automatic

signature-generation schemes have been presented [9, 24, 28,

29, 31, 32, 35, 39, 46, 48, 65]. However, they find only the fre-

quent words or tokens as in Fig. 1 (c). In this case, “http"

is the most frequent word; if this is automatically used as

the attack signature, a huge number of false positives would

occur. Two solutions have been proposed by previous work;

first, the frequent signature should be reviewed again by se-

curity experts. If the signature is benign, it is filtered out like

stop-words in the literature of natural language processing [9].

Second, only attack-related data should be collected heuris-

tically, and the signature is extracted from the collected data

USENIX Association 32nd USENIX Security Symposium    4321



group [29]. For example, if we were able to make a group

of d2, d3, and d4 a priori, the most frequent word would be

“http", “root", and “admin". However, this grouping heuristic

from endless data streams is another challenging problem,

which may require extra human interventions. Both solutions

require extra human resources and delayed processing time,

which may prevent their practical use in SOCs.

In this paper, we present GIPS as a new signature genera-

tion scheme that first automatically makes a group of similar

data from data streams and then generates a group of signa-

tures from the data group as shown in Fig. 1 (d).

3 GIPS: Generative Intrusion Detection and
Prevention on Data Stream

When streaming data continue to arrive, GIPS first identi-

fies a big-group of similar data, and then extracts a group of

signatures from the big-group. There are four components

of GIPS, Minhashed Virtual-Vector (MV2), Jaccard-Index

Grouping (JIG), Signature-Group Generation (SG2), and Au-

tomatic WhiteListing (AWL); the first two components are for

the big-group identification, and the others for the signature

generation. Fig. 2 shows the overall process of GIPS with

four components. Frequently used notations are summarized

in Table 2.

Streaming 
data JIGMV2 SG2 AWL

Big-group identification Signature generation

Figure 2: Overall process of GIPS.

Table 2: Notations

di ith data from a data stream.

CDC(di) Set of chunks derived from di by a CDC algorithm [64].

CDC(di) = di when di is of a set type.

j(di,d j) Jaccard index between CDC(di) and CDC(d j).
Bi[m] Bitmap representing di.

MV [m] Integer array summarizing a data stream.

θJ Threshold for the similarity between two data.

θB Threshold for the big-data identification.

θC,i Threshold for the big-counter of di over MV [m].

3.1 MV2: Minhashed Virtual-Vector
When a new data arrives, a vector is generated to represent it

at the MV2 step. In this paper, we transform each data into

a set. If the original data type is already a set, for example,

a set of ASCII strings excerpted from a malware file [11],

we use the data as it is; otherwise, for example, a network

packet of a byte sequence, usually less than 1,600 bytes at the

transport layer, we first parse it into multiple words or tokens,

1 0 1 0 0 1 00

d2=“httpabroot12admin74” 

CDC(d2)={“ab”, “root”, “12”, “admin”, “74”, “http”}

mod m

mod m

mod m

Figure 3: Bitmap encoding of di = d2 on minHashed virtual

vector where k = 3 bits are turned on.

and the collection becomes a set. If necessary, we apply a

content-defined chunking (CDC) algorithm to transform any

byte sequence into a set [26, 64]1. In this paper, we denote

the ith data from the data stream as di, and its set as CDC(di).
When di is inherently a set, di is equal to CDC(di).

The advantage of MV2 is that each set-type data is encoded

into a bitmap with only k-representative numbers that are

computed by the minHash algorithm [14]. Broder invented

minHash to measure the resemblance of documents as the

Jaccard index [58], which are widely used in data analysis

and internet search [15, 33, 34]. The Jaccard index measures

the similarity between two sets as the ratio of the size of

intersection to the size of union, which ranges from 0 to 1.

We use the minHash with k-hash functions [14], and h j(·) is

the jth hash function, 0 ≤ j ≤ k− 1. We denote the bitmap

of size m for di as Bi[m], initialized as ‘0’, and the rth bit as

Bi[r]. For given di, we compute h j(x) for every x ∈CDC(di)
and select the minimum value for the bitmap encoding of di
and h j(·). This repeats for every hash function; therefore k
bits are turned into ‘1’ for di if there is no hash collision. This

encoding for di can be formally expressed as follows and the

bitmap encoding is shown in Fig. 3:

Bi[(minx∈CDC(di)h j(x)) mod m] := 1, 0 ≤ j ≤ k−1. (1)

We can compute the resemblance of di and d j by comparing

their bitmaps. When m is enough bigger than k, the Jaccard

index between them, j(di,d j) can be estimated as follow [27]:

j(di,d j) =
|CDC(di)∩CDC(d j)|
|CDC(di)∪CDC(d j)| ≈

∑m−1
r=0 (Bi[r]∧B j[r])

∑m−1
r=0 (Bi[r]∨B j[r])

(2)

where ‘∨’ and ‘∧’ are bitwise OR and AND operators.

There are two advantages to encode each data into the MV2

vector. First, any data can be encoded with only k-positions

in the bitmap irrespective of the original set size of the data,

which requires only a small fixed size of memory. In this

1We use the AE chunking algorithm with the default window size of four,

which generates chunks of the average length of 6.88(=4×1.72) bytes [64].

4322    32nd USENIX Security Symposium USENIX Association



paper, we set the default values of m and k to 16,384(=214)

and 64 respectively, which can be adjusted depending on

the operational environment. Actually, we do not need to

use a new bitmap for every data, which is explained in the

next section. We can reuse one bitmap for all the stream

data. Second, similarity between two data can be accurately

estimated by comparing their bitmaps.

Big-group: For di, we define its similar-group, sg(di), as

the collection of di and d j for 0 ≤ j ≤ i−1 where j(di,d j) is

larger than a predefined threshold of θJ :

sg(di) = {d j| j(di,d j)> θJ}∪{di}. (3)

If the ratio of |sg(di)| to i, a big-group-ratio of di, denoted

as br(di), is larger than a predefined threshold of θB, sg(di) is

said to be a big-group in terms of di. Therefore, if inequality

(4) is true, we say that di is a member of a big-group:

br(di) =
|sg(di)|

i
> θB. (4)

If we keep all of the B j[m] bitmaps for 0 ≤ j ≤ i, it is easy

to check if sg(di) is a big-group by pair-wise comparisons of

di and d j. However, its computation requires both the time and

space complexities of O(i) because all the previous data, or

their B j[m] bitmaps at least, should be stored for 0 ≤ j ≤ i−1.

This may be practically impossible for streaming data. A

better approach should be required, and we present jaccard-

index grouping (JIG) in this paper.

3.2 JIG: Jaccard-Index Grouping
We focus on detecting a persistent zero-day attack that repeats

to generate similar attack data during a certain monitoring

period, for example, several minutes, hours, days, or even

weeks. We assume that the monitoring period includes n data

in total, enumerated as [d0, ..., di, ..., dn−1]. Each data can be

processed only once when it arrives. We assume that di just

arrives and its Bi[m] is generated as explained previously.

In this chapter, we present JIG that determines whether

sg(di) is a big-group. If then, di is stored in a separate space

for the next process of SG2. The most important role of JIG

is to keep the summary of the data stream with a small fixed

memory and a limited number of hash operations. This sum-

mary data structure enables us to estimate equation 4 although

we do not know sg(di).
To the best of our knowledge, JIG is the first streaming

algorithm that can identify groups of similar data with a small

fixed memory and a constant number of hash operations, or

both time and space complexities of O(1). The JIG module

consists of two steps, the similarity summarization and the

membership-checking, which are explained in detail.

3.2.1 Similarity Summarization

The idea of JIG is to accumulate all of the B j[m] bitmaps

for 0 ≤ j ≤ i− 1 into a counter array of size m. We denote

this counter array as MV [m] and MV [r] is the value of its rth

counter, which can be formally defined as follows:

MV [r] =
i

∑
j=0

B j[r], 0 ≤ r ≤ m−1. (5)

The role of MV [m] is to summarize the data stream af-

ter each data is represented as MV2. For di, every d j ∈
sg(di), 0 ≤ j ≤ i− 1, shares at least

θJ×(|CDC(di)|+|CDC(d j)|
1+θJ

elements in common with di. Therefore, those counters that

are related with sg(di) must have grown greater than others

especially when j(di,d j) and br(di) are close to one.

Big-counter: For di, we define those counters from MV [m]
to be big-counters that are greater than threshold θC,i. The

other counters are non-big-group counters. We explain later

how θC,i is computed from di and MV [m] that should serve as

a boundary line between big-counters and non-big-counters.

3.2.2 Membership Checking

The main goal of JIG is to determine whether sg(di) is a big-

group, or the membership checking of di to any big-group.

Because this should be repeated for every incoming data, both

the time and space complexities should be small.

When di arrives, we generate Bi[m] with k-bits turned

on, and MV [m] is updated with Bi[m] by equation

5. We know the k-indexes of ‘1’ bits from Bi[m],
{(minx∈CDC(di)h j(x)) mod m | 0 ≤ j ≤ k−1}. The k-counters

of di are denoted as kc(di), which becomes as follows:

kc(di) = {MV [(minx∈CDC(di)h j(x)) mod m] | 0 ≤ j ≤ k−1}.
(6)

We select the big-counters from kc(di) as follows, denoted

as bc(di):

bc(di) = {x|x ∈ kc(di), x > θC,i}. (7)

The idea of JIG is simple; if di is a member of a big-

group and the members of the same big-group have appeared

enough, many counters from kc(di) would be much larger than

other randomly-chosen counters from MV [m]. Especially, if

θJ and θB are close to one, most counters from kc(di) are

much bigger than others, or big-counters.

After MV [m] is updated with di, we compute the ratio of the

number of big-counters from kc(di) to k, denoted as bk(di).
If this ratio is larger than threshold θJ , we assume that di is a

member of a big-group as follows:

bk(di) =
|bc(di)|

k
> θJ . (8)

We emphasize that equation 8 practically plays the role

of equation 4. Because we do not save the previous stream

data, we cannot directly use equation 4. On the contrary,

USENIX Association 32nd USENIX Security Symposium    4323



d0

time

d2

d3

d4

d1

Big-
group

1 2 0 2 0 1 2 1
m=8, k=3, 
=1/3, C=1.5

= 4.90,
MV[1], MV[3] > , 

bk(d5)=2/3 > 

d0 d1

distance = 1- jaccard index

1 1 0 1 0 1 2 0

d0

d2

d3

d4

d5

d1

1 4 1 4 2 1 2 1

d0

d2

d3

d1

1 3 0 3 1 1 2 1

d0 d1 d2 d3 d4 d5

S=[] S=[] S=[] S=[] S=[d4] S=[d4, d5]

0 1 0 0 0 1 1 0

1 0 0 1 0 0 1 0

1 0 1 0 0 1 00
B0[m]

MV[m]

B1 [m]

1 5 1 5 2 1 2 2
= 3.96,

MV[1], MV[3] > , 
bk(d4)=2/3 > 

= 3.10= 2.38= 1.81,
MV[6] > , 

bk(d4)=1/3

Big-
group

Figure 4: Big-group identification of Jaccard-index grouping (JIG) from data streams.

MV [m] keeps the summary of the previous data and their big-

group relations, and therefore we can use equation 8 with the

observed statistics from MV [m] and Bi[m].
Fig. 4 shows how JIG works on a data stream where

m = 8, k = 3, and θJ = 1/3. As time goes, six stream data

arrive from d0 to d5 where d2 ∼ d5 make a big-group with

j(d5,d2) = (d5,d3) = (d5,d4) = 2/3. A big-group is identi-

fied twice when d4 and d5 arrive respectively; two counters

of kc(d4) and kc(d5), MV [1] and MV [3], become greater than

θC,4 and θC,5 respectively. We explain how θC,i is computed

in the next section. Because bk(d4) and bk(d5) are 2/3, larger

than θJ , satisfying inequality 8, we conclude that d4 and d5 are

a member of a big-group. We store members of any big-group

into a special space, S, for the next step of SG2.

3.2.3 IORA: Iterative Outlier Removal Algorithm

When di arrives, distinguishing between big-counters and

non-big-counters is essential for the identification of a big-

group. In this paper, we present a heuristic algorithm, Iterative
Outlier Removal Algorithm (IORA), to find bc(di) for di. We

observe that there are only a small number of big-counters

because the number of big-groups is small, even zero for a

usual monitoring period, and m is larger than k by orders

of magnitude. In IORA, there is an outlier list (OL) to keep

big-counters, which is initialized empty. The list is iteratively

enlarged with new big-counters.

The main idea of IORA is that the distribution of non-big-

counters of MV [m] follows a normal distribution while big-

counters are deviated from that distribution. For simplicity,

we assume that there is only one big-group of the big-group

ratio of θB. When we consider a data that is not included

by the big-group, MV [m] is updated i× (1− θB)× k times

at random indexes. On the contrary, the k-counters are per-

sistently updated by the big-group members. Because we

assume that a majority of the data are not a member of a big-

group and m is greater than k by orders of magnitude, most

counters of MV [m] remain non-big-counters. This implies

that most MV [r] would follow the binomial distribution of

B(n× (1−θB)× k,1/m), which can be approximated as the

following normal distribution:

N(n×(1−θB)×k×1/m,n×(1−θB)×k×1/m×(1−1/m))
(9)

On the contrary, only k-counters of MV [m] would become

big-counters and their values are much greater than those of

the non-big-counters, depending on θB and θJ .

We present a simple and iterative outlier removal strategy

for IORA, which consists of two iterative steps. When di ar-

rives, two steps of IORA are iteratively repeated with OL
expanded; in the first step, we compute the average and vari-

ance of MV [m] except the counters included in OL as follows:

μi =
∑m−1

r=0, mv[r]/∈OL MV [r]

m−|OL|

σ2
i =

∑m−1
r=0, mv[r]/∈OL(MV [r])2 −μ2

i

m−|OL| .

(10)

In the second step, we define the outlier by using μ and σ.

We consider MV [r] as an outlier if MV [r]> μi + c×σi; c is a

tuning parameter, and we set c = 6 as a default value in this

paper, motivated by the six sigma of a standard deviation [60].

We set θC,i to μi + c×σi. If a new outlier is found, we insert

it into OL and repeat the first and second steps; otherwise, we

finish IORA, and the counters in OL become big-counters.

3.3 SG2: Signature-Group Generation
The final goal of GIPS is to automatically generate a group of

signatures. Although researchers have presented some meth-

ods for packets [9, 29, 32, 39, 48], these methods work for

4324    32nd USENIX Security Symposium USENIX Association



only those datasets that consist of very similar contents with

each other, i.e., very high values of θJ and θB. If we use

them for datasets that include not only similar contents but

also dissimilar contents, no meaningful results are obtained.

For example, the SOTA method of [9], called triple-heavy-
hitter (THH), extracts most frequently-occurred substrings as

signatures; however, these signatures often raise only false-

positives without a human intervention, which will be shown

in our experiments in the next section.

On the contrary, GIPS first identifies a big-group of similar

contents with JIG. Therefore, we only need to apply any

SOTA method of signature generation to each of the identified

big-group. Then, a signature-group for each big-group can

be automatically generated. In this paper, we choose THH

because this is based on a streaming algorithm. However, any

other method can be used instead.

The THH method includes three heavy-hitter modules

that can find the most frequently-occurred substrings from

a dataset, here a big-group. Because JIG has already saved

big-group members into S as shown in Fig. 4, we only need

to apply THH to each of the big groups. The first heavy-hitter

module of THH keeps how many times a basic n-gram ap-

pears while the second module counts each of the frequent

variable-sized substrings. They work for data streams with the

time and space complexities of O(1). Readers who want to

know more about THH are referred to [9]. The THH method

is basically designed for string data. Therefore, if di is of the

byte-sequence type, for example, packets or texts, we could

apply THH directly to S. If di is originally of the set type, we

just select those elements that appear the most from S.

Fig. 5 shows the SG2 step where S already includes two

big-groups of [d4,d5,d7] and [d8,d9]. These big-groups were

identified by the previous JIG step. In this example, THH

excerpts a group-signature of {“htt p”,“root”,“admin”} from

the first big-group and {“ST ”,“UVW”} from the second one.

Whenever we find big-group members during the JIG pro-

cess, we put them into a separate space, S, as shown in Fig.

4. If a big-group exists in the data stream, S would include

a number of member data. In this sense, JIG collects some

members of the big-group that are similar to each other. The

size of S does not need to be large; when S includes enough

data, we can immediately run SG2.

In general, S includes only members from the same big-

group. However, more than one big-group can exist as in Fig.

5. In this case, we may apply a clustering algorithm first to S,

which easily separates different big-groups. Because S does

not include a large number of data and the distance among dif-

ferent big-groups tend to be large enough, the clustering runs

fast with only small computing resources. In this paper, we

use DBSCAN because this does not require a hyper-parameter

about the number of clusters. This property is very useful for a

practical tool like GIPS. The default parameters for DBSCAN

are ε=0.4 and min_samples=5 [2]. We use up to the largest

five clusters after SG2 finishes.

6 6 1 6 2 1 6 1

6 6 1 6 2 1 6 1

d4

d8

d4

S=[d4, d5, d7, d8, d9]d5

d9

d5

d8 d9

{“http”, 
“root”, 

“admin”}
THH

THH {“ST”,
“UVW”}

d7

d7

Figure 5: Signature-group generation of GIPS.

3.4 AWL: Automatic WhiteListing
We argue that GIPS can enhance the detection of zero-day

attacks because GIPS automatically identifies big-groups and

then extract signatures from the big-groups. However, a big-

group does not always mean an attack signal. Therefore, we

present an additional automatic filtering step that refines the

signatures one more time. This is a big improvement, com-

pared with the previous work [9, 29], because human inter-

ventions and heuristics are less required in GIPS.

We call this additional automatic filtering step as Automatic

WhiteListing (AWL), which utilizes both GIPS and THH

together. This THH is called a global T HH to distinguish

it from the THH of SG2. We apply GIPS and the global

THH to the same data stream as follows: when di arrives,

JIG determines if this is a member of a big-group. If then,

di is saved into S; otherwise, the global THH processes di.

This enables the global THH to keep frequently-occurred

signatures that do not frequently appear in big-groups. Finally,

after GIPS generates signature-groups from the big-groups

at the SG2 step, we subtract the global THH signatures from

each of the GIPS signature-groups by considering them as

sets. This AWL step removes those signatures that may cause

false-positives without any human intervention.

4 Experiments

We evaluate GIPS through extensive experiments with four

different datasets, one private and three public datasets. We

confirm that GIPS enhances the detection accuracy of per-

sistent zero-day attacks several times higher than previous

schemes of THH [9], Earlybird [48], and Polygraph [39].

4.1 Experimental Setup and Dataset
We use four different datasets, a simulated dataset [7], a

dataset of malicious and benign internet-of-things (IoT) pack-

ets [42], a dataset of intrusion detection evaluation dataset

[47], and a dataset of suspicious packets captured by an inter-

net service provider (ISP). The first three datasets are public

on the Internet. Table 3 summarizes the datasets, and its ex-

tended version is in Appendix A.

Simulated dataset (SIM): We first generate simulated

datasets where each data is a random string of length 600

USENIX Association 32nd USENIX Security Symposium    4325



Figure 6: Precision (P) and Recall (R) of JIG for SIM datasets with different big-group ratios, k, and m.

bytes, and 1,000,000 data are generated in total. Some of the

data are deliberately generated to include the same substring

of length 450 bytes in common, forming a big-group to play

the role of a zero-day attack, which is the Attack column in

Table 3. The other data, the Normal column, include a short

substring of length 50 bytes in common that would cause the

most frequently occurred substring over the whole dataset.

There are nine different datasets for SIM, three with one

big-group (SIM1), three with two big-groups (SIM2), and

three with three big-groups (SIM3). Each subgroup has the

ratio of the attack data of a big-group to the total data, con-

figured with 0.1, 0.01, and 0.001 respectively, as shown from

SIM1-1 to SIM3-3 in Table 3.

Because these SIM datasets do not reflect the real-world

data distribution, we use them only to measure the big-group

identification of GIPS. The data are labeled perfectly dur-

ing the generation time, which enables us to exactly measure

the metrics of precision and recall; the first is the ratio of

the number of true-positives to the sum of the true-positives

and false-positives while the second is the ratio of the num-

ber of true-positives to the sum of true-positives and false-

negatives [59]. We also use F1-Score that is a harmonic mean

of precision and recall. The simulated datasets can be down-

load from [7].

IoT dataset (IoT): A labeled dataset with benign and ma-

licious IoT network traffic is open to anyone and can be

downloaded from the Internet [42], called the IoT23 dataset.

This open dataset is provided with 20 different datasets that

include not only malicious packets but also benign packets.

The datasets are related with Kenjiro, IRCBot, and Mirai bot

attacks. Each dataset is saved as a distinct file; in this paper,

we selected only those files larger than 1 GB in size. Only

eight files were selected, denoted as IoT1∼8 as in Table 3.

We do not use empty packets.

The label of IoT23 is assigned per flow, either attack or

normal 2. The numbers of attack or benign packets for IoT1∼8

are summarized in Tables 3 and 8. In this paper, a packet is

also assigned a label; if a packet belongs to an attack flow,

its label becomes attack; otherwise, the packet label becomes

normal. If any packet from an attack flow is detected, we

consider the attack is detected, or a true-positive; otherwise,

we consider a false-negative occurs. If any packet from a

normal flow is detected, we consider a false-positive occurs;

otherwise, we consider a true-negative occurs.

2Various attack labels such as DDoS, port scan, C&C, etc. [42] are simply

considered as attacks in this paper.

4326    32nd USENIX Security Symposium USENIX Association



Table 3: Summary of Experimental Datasets

No. Dataset Total Normal Attack Ratio

(A) (B) (C) (C/A)

1 SIM1-1 1,000,000 900,000 100,000 0.1000

2 SIM1-2 1,000,000 990,000 10,000 0.0100

3 SIM1-3 1,000,000 999,000 1,000 0.0010

4 SIM2-1 1,000,000 800,000 200,000 0.2000

5 SIM2-2 1,000,000 980,000 20,000 0.0200

6 SIM2-3 1,000,000 998,000 2,000 0.0020

7 SIM3-1 1,000,000 700,000 300,000 0.3000

8 SIM3-2 1,000,000 970,000 30,000 0.0300

9 SIM3-3 1,000,000 997,000 3,000 0.0030

10 IoT1 54,716 54,699 17 0.0003

11 IoT2 4,686 4,658 28 0.0060

12 IoT3 55,412 47,578 7,834 0.0141

13 IoT4 14,845,292 72,776 14,772,516 0.9951

14 IoT5 1,307,003 1,848 1,305,155 0.9986

15 IoT6 10,122 8,938 1,184 0.1170

16 IoT7 11,925 9,485 2,440 0.2046

17 IoT8 4,644 4,554 90 0.0194

18 IDS1 1,302,148 1,294,939 7,209 0.0055

19 IDS2 119,919 118,095 1,824 0.0152

20 IDS3 23,229 23,217 12 0.0005

21 IDS4 3,699,243 3,671,387 27,856 0.0075

22 IDS5 579,004 531,716 47,288 0.0817

23 IDS6 880,347 850,803 29,544 0.0336

24 IDS7 472,750 377,399 95,351 0.2017

25 IDS8 861,441 861,286 155 0.0002

26 ISP1 50,416 39,182 11,234 0.2228

27 ISP2 9,327 1,863 7,464 0.8002

28 ISP3 18,180 55 18,125 0.9970

IDS dataset (IDS): We use the CICIDS2017 dataset [47],

a public dataset for intrusion detection evaluation, which in-

cludes benign/attack packets and flows collected for 5 days.

There are 14 attack types in the dataset; we selected 8 attack

types of 1) Web Attack - Brute Force (bruteforce), 2) Web At-
tack - XSS, 3) Web Attack - SQL injection, 4) FTP-patator, 5)

SSH-patator, 6) Infiltration, 7) DDoS, and 8) Port Scan for our

experiments because they include packets with meaningful

application payloads [47]. We denote them as IDS1∼8; the

time period while each attack occurs is available from [18].

For example, we use all packets for the brute f orce attack

from 9:20 to 10:00 on July 6, 2017 in the dataset where both

normal and attack packets exist.

Although the CICIDS2017 dataset is widely used, there are

two critical issues [20]; first, some flows are incorrectly split,

and the correctly labeled flows are available from [5]. In this

paper, we use the corrected version for experiments. Second,

different data types have different numbers of data, or imbal-

anced distribution. Therefore, different attack types should

not be aggregated when the accuracy-related performance is

measured. In this paper, we separately evaluate each attack

type of IDS1∼8 for the right experiments.

ISP dataset (ISP): This private dataset was provided by an

ISP in South Korea for only academic purposes. The dataset

includes three different subsets, denoted as ISP1∼3 in Table

3. Each dataset was carefully reviewed by security experts,

and each packet is manually labeled as either attack or normal.

Each of ISP1∼3 was collected with packets during a short

period of time when the network-based intrusion prevention

system observed suspicious activities. Therefore, the attack

ratio is higher than that of other datasets as shown in Table 3.

Table 4: Precision and Recall for IoT datasets.

GIPS THH Earlybird Polygraph

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec.

IoT1 0.14 0.50 0.00 0.00 0.00 0.00 0.00 0.00

IoT2 0.06 1.00 0.01 1.00 0.22 1.00 0.00 0.00

IoT3 0.99 0.40 0.40 0.98 0.99 0.40 0.99 0.40

IoT4 1.00 1.00 1.00 1.00 0.00 0.00 n.a. n.a.

IoT5 1.00 0.15 1.00 0.08 0.00 0.00 n.a. n.a.

IoT6 1.00 0.82 0.06 0.94 1.00 0.18 0.00 0.00

IoT7 1.00 0.99 0.87 0.99 0.00 0.00 1.00 0.99

IoT8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rival schemes: We compare GIPS with three rival schemes

of THH [9], Earlybird [48], and Polygraph [39], against each

of the datasets from Table 3. All rival schemes were designed

to extract common string signatures from a given dataset. We

do not include machine learning schemes because they can-

not extract signatures. Both THH and Earlybird are based on

streaming algorithms; however, Polygraph relies on suffix-

tree, which requires more processing power and memory

space than GIPS by orders of magnitude. Although Early-

bird is based on a compact sketch algorithm and a fast hash

table, the number of keys may significantly increase.

Parameter configuration: The parameters of the rival

schemes are configured the same as their papers, THH [9],

Earlybird [48], and Polygraph [39]. We changed only a few

parameters to obtain optimal performance; 1) THH: we set

the minimum n-gram size to 4 instead of 8 to catch even short

strings as well as long ones for signatures [9]; otherwise, THH

could not identify signatures. The number of signatures for

attack detection is an important parameter for THH. When the

number increases, more attack packets can be detected, but

false-positives also increase. In this paper, we use the number

of signatures for THH when the biggest F1 score is obtained.

2) Earlybird: the dispersion threshold is set to 5 instead of

30 to generate signatures even when the number of distinct

source or destination IP addresses related with signatures is

smaller than or equal to 5 [48]; otherwise, Earlybird could

not identify signatures. 3) Polygraph: we tested it many times

with a different K, a repetitive threshold, from 100 to 1,000,

and then we selected the longest substring as a signature. Be-

cause Polygraph becomes slow and consumes lots of memory

with a large dataset, we used this simple selection scheme

that was recommended by the paper [39]. Finally, we use the

default parameters for GIPS as k = 64, m = 214, ε = 0.4, and

the number of largest clusters to be five.

All the software of GIPS and rival schemes were imple-

mented in Python 3.10 and Scikit-learn. All experiments were

conducted on the same machine that has a 3.0 GHz 13th

USENIX Association 32nd USENIX Security Symposium    4327



Figure 7: F1-Score of GIPS, THH [9], Earlybird [48], and Polygraph [39] for IoT datasets.

Gen Intel(R) Core(TM) i9-13900K CPU, 128 GB RAM, and

Windows 11 Enterprise.

4.2 Experimental Results for SIM Dataset

We use the nine simulated datasets, from SIM1-1 to SIM3-3,

for the first set of experiments. Fig. 6 shows the experimental

results as heatmaps to measure the big-group identification

of JIG. In general, as k, m, and br(dn) become larger, both

precision and recall become higher. We confirm that the over-

all performance of JIG is almost perfect unless k and m are

too small. The experimental results show the excellent per-

formance of JIG. However, if k is configured too large, the

minHash computation would take more processing time.

4.3 Experimental Results for IoT Dataset

We use the open IoT23 datasets [42] for the second set of ex-

periments. Because we do not know the ground-truth for big-

group identification, we compare GIPS and its rival schemes

in terms of precision, recall, and F1-score for attack detection.

For a given scheme, each experiment consists of two steps;

we first extract attack signatures with the scheme, and then de-

tect attack data with the signatures. Therefore, for each of the

IoT datasets, attack signatures are generated by each scheme

respectively, and then the same dataset is searched with the

signatures to check if attack data are accurately detected.

Fig. 7 and Table 4 compare GIPS and three rival schemes

where GIPS overwhelms others. We explain interesting re-

sults; first, both the precision and recall of GIPS are signifi-

cantly higher than others except IoT2 and IoT8. When GIPS

works better than others, a meaningful group-signature is of-

ten generated. For example, GIPS excerpted “PONG", “root",

“chmod", etc. as signatures from IoT6. It is interesting that

GIPS and Polygraph successfully excerpted “arch armv7\n"

from IoT7, but this string is too small to be caught by Early-

bird. For IoT8, static and repeated substrings are hardly found,

which prevents all schemes from detecting attacks.

It is interesting that a rival scheme works as good as GIPS

for some cases; first, THH works as good as GIPS for IoT4.

After analyzing the IoT4 dataset, we find that the ratio of

the attack data is abnormally as high as 0.9951, shown in

Table 3. This means that almost all the data are attack, and

THH works as good as GIPS. Second, Earlybird works better

than GIPS for IoT2. We find that a long string repeatedly

appears in IoT2, which can be caught by GIPS, THH, and

Earlybird. However, some shorter strings from normal packets

also appear frequently, which may degrade the performance

of THH. For GIPS, AWL can handle this case.

Actually, the abnormal condition of the extreme high ratio

of the attack data was assumed by all rival schemes of THH,

Earlybird, and Polygraph. When the attack ratio becomes

small, for example less than 0.1, the performance of them

often becomes lower than that of GIPS. This exactly matches

our argument that GIPS is able to not only generate signatures

but also find big-groups. Although the attack ratio seems to

affect the performance of GIPS and its rival schemes, this is

not the only reason for good or bad performance. For example,

some datasets show strong repetitiveness while others do not.

For repetitiveness, some datasets include a string of a long

static sequence while others include a group of short strings.

Next, we show that GIPS can work stably with a different

θJ and ε, which are shown in Figs. 8 and 9, respectively.

4.4 Experimental Results for IDS Dataset

For the third set of experiments, we use the open dataset

of CICIDS2017 [47]. Fig. 10 and Table 5 compare GIPS

and three rival schemes where GIPS overwhelms others.

When GIPS works better than others, a meaningful group-

signature is often generated. For example, GIPS excerpted

“/dv/vulnerabilities" and “Cookie: security=low" as signatures

from IDS2, and “GET / HTTP/1.0\r\n\r\n\r\n" from IDS7.

However, GIPS does not work at all for IDS3, IDS5, and

IDS8; We find that IDS3 includes a small number of attack

packets and IDS5 includes SSH packets that would be en-

crypted. In both cases, GIPS cannot perform well. Polygraph

and Earlybird do not work as good as GIPS. For IDS8, static

and repeated substrings are hardly found, which prevents all

schemes from detecting attacks.

Polygraph outperforms GIPS for IDS2. The dataset analy-

sis reveals that Polygraph finds a long string that coinciden-

tally appears in attack packets; a real attack string was not

identified by Polygraph, but GIPS identified this correctly.

4328    32nd USENIX Security Symposium USENIX Association



Figure 8: GIPS for IoT datasets with different θJ .

Figure 9: GIPS for IoT datasets with different ε.

Although the recall of THH is close to 1 for IDS2, IDS3,

IDS5, and IDS6, its precision is close to 0. This means that

THH just generates signatures that appear in most packets.

Table 5: Precision and Recall for IDS datasets.

GIPS THH Earlybird Polygraph

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec.

IDS1 0.99 0.99 0.00 0.77 n.a. n.a. n.a. n.a.

IDS2 0.08 1.00 0.00 1.00 0.00 0.00 1.00 0.96

IDS3 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

IDS4 0.71 1.00 0.00 0.00 n.a. n.a. n.a. n.a.

IDS5 0.00 0.00 0.08 0.99 n.a. n.a. n.a. n.a.

IDS6 1.00 0.40 0.00 1.00 n.a. n.a. n.a. n.a.

IDS7 0.99 1.00 0.00 0.00 n.a. n.a. n.a. n.a.

IDS8 0.00 0.00 0.00 0.26 n.a. n.a. n.a. n.a.

4.5 Experimental Results for ISP Dataset
Because the ISP dataset was manually analyzed and labeled

by security experts, we know the exact data label for attack

vs normal. The experiments are performed in the same way

as the IoT and IDS datasets.

Fig. 11 and Table 6 compare GIPS and three rival schemes

where GIPS overwhelms others. An interesting observation

is that the performance of THH is as good as that of SG2 in

ISP3. We find that the ratio of the attack data are abnormally

high, 0.9970, as shown in Table 3.

Table 6: Precision and Recall for ISP datasets.

GIPS THH Earlybird Polygraph

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec.

ISP1 0.84 0.90 0.78 0.70 0.00 0.00 1.00 0.09

ISP2 1.00 1.00 1.00 1.00 0.88 0.67 1.00 0.15

ISP3 1.00 1.00 1.00 1.00 1.00 0.19 1.00 0.07

Analyzing the signatures generated by GIPS from the ISP

datasets, we find that all of the three datasets really include at-

tack evidences as shown in Table 7. For ISP1, GIPS identified

two big-groups that include attack signatures respectively as

shown in Table 7; in Spring Cloud Function versions 3.1.6,

3.2.2 and older unsupported versions, a user can provide a

specially crafted routing-expression that may result in remote

code execution and access to local resources [40]. The second

signature is related with a remote code execution vulnerabil-

ity of Huawei HG532 [37]. For the ISP2 dataset, GIPS again

identified a big-group that is related with a CISCO switch

vulnerability [36]. Finally, GIPS identifies a big-group related

with DHDiscover reflection attacks [41].

Table 7: GIPS Signatures and Attacks for ISP Datasets

Dataset Signature Related Attack

ISP1 getRuntime().exec(”touch CVE-2022-22963 [40]

/tmp/test.txt”),/bin/busybox CVE-2017-17215 [37]

ISP2 0002736c0000ff CVE-2010-1574 [36]

ISP3 \x00\x00\x00DHIP\x00... Reflection attack [41]

”Port” : 37777,”RemoteVideo...

4.6 Discussion
Dataset privacy: Four different types of datasets are used for

experiments. Three public datasets of SIM, IoT, and IDS have

no privacy issues. We emphasize that even the private dataset

of ISP also has no privacy issue; the ISP dataset consists of a

limited number of packets from its network-based intrusion

prevention system during a short period of time when the

system detected such suspicious activities as port scanning

or DDoS attacks. No specific IP addresses were targeted or

monitored. Above all, all IP addresses were completely de-

USENIX Association 32nd USENIX Security Symposium    4329



Figure 10: F1-Score of GIPS, THH [9], Earlybird [48], and Polygraph [39] for IDS datasets.

Figure 11: F1-Score of GIPS, THH [9], Earlybird [48], and

Polygraph [39] for ISP datasets.

identified to prevent any privacy risks before the experiments

were performed.

Computing resources: We design GIPS as a streaming

algorithm, and therefore GIPS should work with less com-

puting resources as THH does. Fig. 12 shows the memory

space and processing time for GIPS, THH, Earlybird, and

Polygraph, respectively. Because Polygraph was not designed

as a streaming algorithm, Polygraph requires more computing

resources than others. For example, Polygraph did not finish

its process for the large datasets of IoT5, IDS1, and IDS5,

while using up all the available memory space. We observe

that GIPS requires more memory space than THH because

GIPS stores identified big-group data in S.

Limitations: The advantage of GIPS is to identify big-

groups first and then generate signature-groups as a streaming

algorithm. However, GIPS has some limitations and we dis-

cuss them in details.

First, GIPS cannot work on encrypted data, which is clearly

shown in the experimental result of IDS5 in Fig. 10. Actually,

other rival schemes have the same limitation for any encrypted

data. Because more network traffic is now encrypted [23],

GIPS may need decryption boxes that can obtain plain packets

from encrypted ones [21]. Then, GIPS can work properly

again, but extra costs are required for the boxes. If GIPS is

applied to server-side data such as Web Application Firewall

(WAF) [8,54], Endpoint Detection and Response (EDR), non-

encrypted data would be available to GIPS.

Second, GIPS can mitigate only those persistent zero-day

attacks that have repetitive contents. For example, GIPS works

almost perfect for the ISP datasets where suspicious packets

were collected. If packets have been randomly captured from

backbone lines, GIPS would have not generated useful sig-

natures. However, we emphasize that previous schemes can

catch a simple and long string only when the attack ratio is

close to 1.0 [9, 39, 48]; simple worm attacks can only be miti-

gated. Actually, we show that the previous schemes could not

effectively work for our experimental datasets, but GIPS can

generate group-signatures against a various range of attack

ratios from 0.001 to 0.997. Because security experts need to

detect attacks with a solid ground, or a signature if any, they

are willing to collect datasets for GIPS and to save time and

cost by verifying the GIPS-provided information first instead

of a large volume of raw data.

Third, GIPS and existing anomaly detection tools are com-

plementary to each other; when GIPS cannot process en-

crypted data, anomaly detection tools may detect suspicious

activities. For example, FAIL2BAN can detect repetitive login

trials to a SSH daemon by scanning server-side log files [6].

This anomaly detection tool can also update firewall rules to

reject suspicious IP addresses. Security practitioners want to

use GIPS and FAIL2BAN for different purposes.

Fourth, GIPS cannot generate group-signatures in real time.

There is a time delay from the collection of attack data to

the generation of group-signatures. Generally, the signatures

need to be verified by security experts, and the security de-

vices are configured with the verified signatures. All these

processes delay attack prevention. However, the time delay

would increase by orders of magnitude if GIPS is not used.

5 Related work

Automatic Signature Generation. Automatic signature gen-

eration has been intensively studied since the Internet worm

and DDoS attacks were popularly launched. Most studies

assumed that collecting suspicious data and extracting signa-

tures from homogeneous data of similar contents are separate

tasks [9, 24, 35, 39, 48]. Although THH was designed to pro-

cess network traffic mixed with normal and attack packets,

human interventions are required to reduce false-positives [9].

Seminal work of the automatic signature generation for net-

work packets found only a fixed-length signature [48]. Find-

4330    32nd USENIX Security Symposium USENIX Association



Figure 12: Comparison of processing time and memory usage for GIPS, THH [9], Earlybird [48], and Polygraph [39].

ing variable-length signatures is a more challenging problem;

Kreibich and Crowcroft adopted suffix-tree algorithm and pat-

tern matching to tackle the problem [31]. Although suffix-tree

can process packets to find longest common substrings within

packet payloads at high speed, the space complexity is not

scalable for a large amount of packets. Kim and Karp adopted

a content-based payload partitioning method [38] to extract

variable-length common signatures [29], which is similar to

the CDC algorithm [64] used in GIPS. However, their content-

based method predefined the average signature size, which

reduced the flexibility in generating common signatures. On

the contrary, GIPS can produce a group of signatures where

each signature can be variable-sized.

Afek et al. presented a tool for zero-day attack sig-

nature extraction [9], called THH, which extracts most

frequently-occurred substrings from legitimate traffic and

most frequently-occurred substrings from traffic mixed with

legitimate and attack packets.The authors argued that set in-

tersection would leave attack-related substrings, or signatures,

which can be used to detect attack packets. However, human

interventions are required to keep legitimate traffic datasets

and distinguish between false-positive substrings and true-

positive ones. The difference is that GIPS first identifies big-

groups and then extract common substrings from each of the

big-group. Actually, GIPS uses THH as a substring extraction

module after a big-group is identified.

Reducing False-Positives. A false-positive problem, also

known as alert fatigue, is a challenging problem for security

monitoring during the last decades [13,16,22,25,44]. Writing

precise detection rules for intrusion detection is a very difficult

task, and practical systems prefer general rules that can cover a

range of related threats instead of a specific exploit. However,

general rules may cause a significant number of false-positives

[43,44,49]. Recent threat detection products provide a tuning

method to reduce false-positives [3,4], or SOCs have their own

practice cycles for determining and fixing false-positives [30].

In this paper, we present the first signature-group generation

method that minimizes false-positives while mitigating a zero-

day attack. Signatures that may cause a large number of false-

positives are automatically removed in GIPS.

Network Intrusion Detection and Prevention. A network-

based IDS inspects packets to find cyber attacks and suspi-

cious activities. The IDS has played a pivotal role in cyberse-

curity over the past decades because it can protect multiple

servers and endpoint systems at gateways [43, 49, 53, 55, 63].

An IPS is an active protection system that not only identifies

threats but also blocks or remediates the threat [1]. Both IDS

and IPS are called IDPS in this paper.

Although a network IDPS is still one of the most important

security systems, there are two serious challenges; first, as

more network packets are encrypted, IDPSs cannot look up

attack signatures. To tackle this problem, a decryption box

can be deployed to obtain plain packets [21], or anomaly

detection can also be used for encrypted packets [12, 57].

Second, too many false-positives are generated, resulting alert

fatigue [16, 22, 25]. In this paper, we present GIPS that can

find zero-day attacks from a range of datasets including IDPS

alerts, network packets, emails, etc., with few false-positives.

6 Conclusion

In this paper, we presented a new zero-day attack detection

and prevention method that first identifies big-groups of sim-

ilar contents from data streams and then generate signature-

groups for each of the big-group. To the best of our knowl-

edge, this is the first streaming algorithm that can identify

big-groups based on minHash and then automatically extract

robust signatures, meaning few false-positives.

USENIX Association 32nd USENIX Security Symposium    4331



Acknowledgments

This work was partly supported by National Research Foun-

dation of Korea(NRF) grant funded by the Korea govern-

ment(MSIT) (No.2023R1A2C1004653, Generative Security

for Zero-Day Defense, 80%) and by Institute of Information

& Communications Technology Planning & Evaluation(IITP)

grant funded by the Korea government(MSIT) (No.IITP-2020-

0-01826, ICT Challenge and Advanced Network of Human

Resources Development (HRD) (ICAN), 20%).

References

[1] Intrusion detection system (ids) vs intrusion prevention

system (ips). https://www.checkpoint.com/cyber-
hub/network-security/what-is-an-intrusion-
detection-system-ids/ids-vs-ips/, 2021.

[Online; accessed 5-Feb-2023].

[2] sklearn.cluster.dbscan. https://scikit-
learn.org/stable/modules/generated/
sklearn.cluster.DBSCAN.html, 2021. [Online;

accessed 5-Feb-2023].

[3] Tuning false positives. https://www.ibm.com/docs/
en/qsip/7.4?topic=performance-tuning-false-
positives, 2021. [Online; accessed 5-Feb-2023].

[4] Tuning intrusion policies using rules.

https://www.cisco.com/c/en/us/td/docs/
security/firepower/70/configuration/
guide/fpmc-config-guide-v70/
tuning_intrusion_policies_using_rules.html,

2021. [Online; accessed 5-Feb-2023].

[5] Extended documentation of the wtmc paper.

https://intrusion-detection.distrinet-
research.be/WTMC2021/extended_doc.html, 2022.

[Online; accessed 5-Feb-2023].

[6] Fail2ban. https://www.fail2ban.org/wiki/
index.php/Main_Page, 2023. [Online; accessed

5-Feb-2023].

[7] Sim dataset. https://drive.google.com/file/d/
1ppFEUSiEFCpIojoLgXzk7KrivJpRsTbu/view?usp=
share_link, 2023. [Online; accessed 5-Feb-2023].

[8] Ssl visibility. https://techdocs.broadcom.com/
us/en/symantec-security-software/web-
and-network-security/ssl-visibility/5-
4/sslv_overview.html, 2023. [Online; accessed

5-Feb-2023].

[9] Yehuda Afek, Anat Bremler-Barr, and Shir Landau

Feibish. Zero-day signature extraction for high-volume

attacks. IEEE/ACM Transactions on Networking,

27(2):691–706, 2019.

[10] B. Alahmadi, L. Axon, and I. Martinovic. 99% false pos-

itives: A qualitative study of soc analysts’ perspectives

on security alarms. In USENIX Security Symposium,

2022.

[11] Hyrum S Anderson and Phil Roth. Ember: an open

dataset for training static pe malware machine learning

models. arXiv preprint arXiv:1804.04637, 2018.

[12] E. Areström and N. Carlsson. Early online classification

of encrypted traffic streams using multi-fractal features.

In IEEE INFOCOM 2019 - Workshops (INFOCOM WK-
SHPS), pages 84–89, 2019.

[13] Stefan Axelsson. The base-rate fallacy and its implica-

tions for the difficulty of intrusion detection. In ACM
CCS, 1999.

[14] A. Z. Broder. On the resemblance and containment of

documents. In Proceedings of Compression and Com-
plexity of SEQUENCES 1997 (Cat. No.97TB100171),
pages 21–29, 1997.

[15] Andrei Z Broder, Moses Charikar, Alan M Frieze, and

Michael Mitzenmacher. Min-wise independent permu-

tations. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pages 327–336,

1998.

[16] Kevin Broughton. Automated incident re-

sponse: Respond to every alert. https:
//swimlane.com/blog/automated-incident-
response-respond-every-alert/, 2017. [Online;

accessed 5-Feb-2023].

[17] Anna L Buczak and Erhan Guven. A survey of data

mining and machine learning methods for cyber security

intrusion detection. IEEE Communications surveys &
tutorials, 18(2):1153–1176, 2015.

[18] CIC. Intrusion detection evaluation dataset (cic-

ids2017). https://www.unb.ca/cic/datasets/ids-
2017.html, 2017. [Online; accessed 5-Feb-2023].

[19] Alec F. Diallo and Paul Patras. Adaptive clustering-

based malicious traffic classification at the network edge.

In IEEE INFOCOM 2021 - IEEE Conference on Com-
puter Communications, pages 1–10, 2021.

[20] Gints Engelen, Vera Rimmer, and Wouter Joosen. Trou-

bleshooting an intrusion detection dataset: the ci-

cids2017 case study. In 2021 IEEE Security and Privacy
Workshops (SPW), pages 7–12, 2021.

4332    32nd USENIX Security Symposium USENIX Association



[21] J. Fan, C. Guan, K. Ren, Y. Cui, and C. Qiao. Spabox:

Safeguarding privacy during deep packet inspection at

a middlebox. IEEE/ACM Transactions on Networking,

25(6):3753–3766, 2017.

[22] FireEye. The numbers game: How many alerts is too

many to handle? https://www.fireeye.com/offers/
rpt-idc-numbers-game-special-report.html,

2014. [Online; accessed 5-Feb-2023].

[23] Chuanpu Fu, Qi Li, and Ke Xu. Detecting unknown en-

crypted malicious traffic in real time via flow interaction

graph analysis. In NDSS, 2023.

[24] Kent Griffin, Scott Schneider, Xin Hu, and Tzi-cker Chi-

ueh. Automatic generation of string signatures for mal-

ware detection. In RAID, volume 5758, pages 101–120.

Springer, 2009.

[25] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang

Chen, Kangkook Jee, Zhichun Li, and Adam Bates.

Nodoze: Combatting threat alert fatigue with automated

provenance triage. In NDSS, 2019.

[26] JunNyung Hur, Hahoon Jeon, Hyeon Gy Shon,

Young Jae Kim, and MyungKeun Yoon. Finding critical

files from a packet. IEEE INFOCOM 2021, 2021.

[27] Jiyong Jang, David Brumley, and Shobha Venkataraman.

Bitshred: Feature hashing malware for scalable triage

and semantic analysis. In Proceedings of the 18th ACM
Conference on Computer and Communications Security,

CCS ’11, page 309–320, 2011.

[28] Jeffrey O Kephart. Automatic extraction of computer

virus signatures. In Proc. 4th Virus Bulletin Interna-
tional Conference, Abingdon, England, 1994, pages 178–

184, 1994.

[29] Hyang-Ah Kim and Brad Karp. Autograph: Toward

automated, distributed worm signature detection. In

USENIX security symposium, volume 286. San Diego,

CA, 2004.

[30] Faris Bugra Kokulu, Ananta Soneji, Tiffany Bao, Yan

Shoshitaishvili, Ziming Zhao, Adam Doupé, and Gail-

Joon Ahn. Matched and mismatched socs: A qualitative

study on security operations center issues. In ACM CCS,

2019.

[31] Christian Kreibich and Jon Crowcroft. Honeycomb:

creating intrusion detection signatures using honey-

pots. ACM SIGCOMM computer communication review,

34(1):51–56, 2004.

[32] Suchul Lee, Sungho Kim, Sungil Lee, Jaehyuk Choi,

Hanjun Yoon, Dohoon Lee, and Jun-Rak Lee. Largen:

automatic signature generation for malwares using latent

dirichlet allocation. IEEE Transactions on Dependable
and Secure Computing, 15(5):771–783, 2016.

[33] Ping Li and Christian König. b-bit minwise hashing.

In Proceedings of the 19th international conference on
World wide web, pages 671–680, 2010.

[34] Ping Li, Art Owen, and Cun-Hui Zhang. One permuta-

tion hashing. Advances in Neural Information Process-
ing Systems, 25, 2012.

[35] Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao,

and Brian Chavez. Hamsa: Fast signature generation

for zero-day polymorphic worms with provable attack

resilience. In 2006 IEEE Symposium on Security and
Privacy (S&P’06), pages 15–pp. IEEE, 2006.

[36] MITRE. Cve-2010-1574. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=2010-1574, 2023. [On-

line; accessed 5-Feb-2023].

[37] MITRE. Cve-2017-17215. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2017-17215,

2023. [Online; accessed 5-Feb-2023].

[38] Athicha Muthitacharoen, Benjie Chen, and David Maz-

ières. A low-bandwidth network file system. SIGOPS
Oper. Syst. Rev., 35(5):174–187, oct 2001.

[39] James Newsome, Brad Karp, and Dawn Song. Poly-

graph: Automatically generating signatures for polymor-

phic worms. In 2005 IEEE Symposium on Security and
Privacy (S&P’05), pages 226–241. IEEE, 2005.

[40] NIST. Cve-2022-22963 detail. https:
//nvd.nist.gov/vuln/detail/CVE-2022-22963,

2023. [Online; accessed 5-Feb-2023].

[41] NSFOCUS. Dhdiscover reflection attacks

can magnify nearly 200 times of the attack

1. https://nsfocusglobal.com/dhdiscover-
reflection-attacks-can-magnify-nearly-200-
times-of-the-attack-1/, 2023. [Online; accessed

5-Feb-2023].

[42] A Parmisano, Sebastian Garcia, and Maria Jose

Erquiaga. A labeled dataset with malicious and benign

iot network traffic. Stratosphere Laboratory: Praha,
Czech Republic, 2020.

[43] Vern Paxson. Bro: A system for detecting network

intruders in real-time. Computer Networks, 31:2435–

2463, Dec. 1999.

[44] T. Pietraszek. Using adaptive alert classification to re-

duce false positives in intrusion detection. In RAID,

2004.

USENIX Association 32nd USENIX Security Symposium    4333



[45] Kevin Prince. 9 ways to eliminate siem false

positives. https://www.connectwise.com/blog/
cybersecurity/9-ways-to-eliminate-siem-
false-positives/, 2021. [Online; accessed

5-Feb-2023].

[46] M Zubair Rafique and Juan Caballero. Firma: Mal-

ware clustering and network signature generation with

mixed network behaviors. In Research in Attacks, In-
trusions, and Defenses: 16th International Symposium,
RAID 2013, Rodney Bay, St. Lucia, October 23-25, 2013.
Proceedings 16, pages 144–163. Springer, 2013.

[47] Iman Sharafaldin, Arash Habibi Lashkari, and Ali Ghor-

bani. Toward Generating a New Intrusion Detection

Dataset and Intrusion Traffic Characterization. ICISSP,

1:108–116, 2018.

[48] Sumeet Singh, Cristian Estan, George Varghese, and

Stefan Savage. Automated worm fingerprinting. In

OSDI, volume 4, pages 4–4, 2004.

[49] Snort. Snort - network intrusion detection & preven-

tion system. https://www.snort.org, 2021. [Online;

accessed 5-Feb-2023].

[50] Robin Sommer and Vern Paxson. Outside the closed

world: On using machine learning for network intrusion

detection. In 2010 IEEE symposium on security and
privacy, pages 305–316. IEEE, 2010.

[51] Stuart J. Russell and Peter Norvig. Artificial Intelligence:
A Modern Approach. Prentice Hall, 2020 (4th Ed.).

[52] Jakapan Suaboot, Adil Fahad, Zahir Tari, John Grundy,

Abdun Naser Mahmood, Abdulmohsen Almalawi, Al-

bert Y. Zomaya, and Khalil Drira. A taxonomy of su-

pervised learning for idss in scada environments. ACM
Computing Surveys, 53(2), april 2020.

[53] Suricata. Open source ids / ips / nsm engine. https:
//suricata.io/, 2021. [Online; accessed 5-Feb-2023].

[54] Ruming Tang, Z. Yang, Zeyan Li, Weibin Meng, Haixin

Wang, Q. Li, Yongqian Sun, Dan Pei, Tao Wei, Yan-

fei Xu, and Y. Liu. Zerowall: Detecting zero-day web

attacks through encoder-decoder recurrent neural net-

works. In IEEE INFOCOM, pages 2479–2488, 2020.

[55] Lionel Nganyewou Tidjon, M. Frappier, and Amel Mam-

mar. Intrusion detection systems: A cross-domain

overview. IEEE Communications Surveys & Tutorials,

21:3639–3681, 2019.

[56] Thijs van Ede, Hojjat Aghakhani, Noah Spahn, Riccardo

Bortolameotti, Marco Cova, Andrea Continella, Maarten

van Steen, Andreas Peter, Christopher Kruegel, and Gio-

vanni Vigna. DEEPCASE: Semi-Supervised Contextual

Analysis of Security Events. In IEEE Symposium on
Security and Privacy, May 2022.

[57] Thijs van Ede, Riccardo Bortolameotti, Andrea Con-

tinella, Jingjing Ren, Daniel J. Dubois, Martina Lindor-

fer, David Choffness, Maarten van Steen, and Andreas

Peter. FlowPrint: Semi-Supervised Mobile-App Fin-

gerprinting on Encrypted Network Traffic. In NDSS,

2020.

[58] Wikipedia. Jaccard index. https://
en.wikipedia.org/wiki/Jaccard_index, 2022.

[Online; accessed 5-Feb-2023].

[59] Wikipedia. Precision and recall. https://
en.wikipedia.org/wiki/Precision_and_recall,

2022. [Online; accessed 5-Feb-2023].

[60] Wikipedia. Six sigma. https://en.wikipedia.org/
wiki/Six_Sigma, 2022. [Online; accessed 5-Feb-

2023].

[61] Wikipedia. Zero-day (computing). https://
en.wikipedia.org/wiki/Zero-day_(computing),

2022. [Online; accessed 5-Feb-2023].

[62] Zhen Yang, Xiaodong Liu, Tong Li, Di Wu, Jinjiang

Wang, Yunwei Zhao, and Han Han. A systematic litera-

ture review of methods and datasets for anomaly-based

network intrusion detection. Computers & Security,

116:102675, 2022.

[63] Zeek. An open source network security monitoring

tool. https://zeek.org, 2021. [Online; accessed 5-

Feb-2023].

[64] Y. Zhang, H. Jiang, D. Feng, W. Xia, M. Fu, F. Huang,

and Y. Zhou. Ae: An asymmetric extremum content

defined chunking algorithm for fast and bandwidth-

efficient data deduplication. In IEEE INFOCOM, pages

1337–1345, 2015.

[65] Hanxun Zhou, Yeshuai Hu, Xinlin Yang, Hong Pan, Wei

Guo, and Cliff C Zou. A worm detection system based

on deep learning. IEEE Access, 8:205444–205454,

2020.

4334    32nd USENIX Security Symposium USENIX Association



A Datasets

Table 8: Experimental Datasets

No. Dataset Total (A) Normal (B) Attack (C) Ratio (A/C) Open Comment

1 SIM1-1 1,000,000 900,000 100,000 0.1000 public One big-group with br(dn) = 0.1
2 SIM1-2 1,000,000 990,000 10,000 0.0100 public One big-group with br(dn) = 0.01

3 SIM1-3 1,000,000 999,000 1,000 0.0010 public One big-group with br(dn) = 0.001

4 SIM2-1 1,000,000 800,000 200,000 0.2000 public Two big-groups with br(dn) = 0.1
5 SIM2-2 1,000,000 980,000 20,000 0.0200 public Two big-groups with br(dn) = 0.01

6 SIM2-3 1,000,000 998,000 2,000 0.0020 public Two big-groups with br(dn) = 0.001

7 SIM3-1 1,000,000 700,000 300,000 0.3000 public Three big-groups with br(dn) = 0.1
8 SIM3-2 1,000,000 970,000 30,000 0.0300 public Three big-groups with br(dn) = 0.01

9 SIM3-3 1,000,000 997,000 3,000 0.0030 public Three big-groups with br(dn) = 0.001

10 IoT1 54,716 54,699 17 0.0003 public Original set number 17, Kenjiro

11 IoT2 4,686 4,658 28 0.0060 public Original set number 33, Kenjiro

12 IoT3 55,412 47,578 7,834 0.0141 public Original set number 39, IRCBot

13 IoT4 14,845,292 72,776 14,772,516 0.9951 public Original set number 43, Mirai

14 IoT5 1,307,003 1,848 1,305,155 0.9986 public Original set number 44, Mirai

15 IoT6 10,122 8,938 1,184 0.1170 public Original set number 48, Mirai

16 IoT7 11,925 9,485 2,440 0.2046 public Original set number 49, Mirai

17 IoT8 4,644 4,554 90 0.0194 public Original set number 52, Mirai

18 IDS1 1,302,148 1,294,939 7,209 0.0055 public Web attack - bruteforce

19 IDS2 119,919 118,095 1,824 0.0152 public Web attack - XSS

20 IDS3 23,229 23,217 12 0.0005 public Web attack - SQL Injection

21 IDS4 3,699,243 3,671,387 27,856 0.0075 public FTP-Patator

22 IDS5 579,004 531,716 47,288 0.0817 public SSH-Patator

23 IDS6 880,347 850,803 29,544 0.0336 public Infiltration

24 IDS7 472,750 377,399 95,351 0.2017 public DDoS

25 IDS8 861,441 861,286 155 0.0002 public Port Scan

26 ISP1 50,416 39,182 11,234 0.2228 private Suspicious packets captured by an ISP

27 ISP2 9,327 1,863 7,464 0.8002 private Suspicious packets captured by an ISP

28 ISP3 18,180 55 18,125 0.9970 private Suspicious packets captured by an ISP

USENIX Association 32nd USENIX Security Symposium    4335


