
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

One Size Does Not Fit All: Uncovering and Exploiting
Cross Platform Discrepant APIs in WeChat
Chao Wang, Yue Zhang, and Zhiqiang Lin, The Ohio State University
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-chao

One Size Does Not Fit All:
Uncovering and Exploiting Cross Platform Discrepant APIs in WeChat

Chao Wang
The Ohio State University

wang.15147@osu.edu

Yue Zhang
The Ohio State University

zhang.12047@osu.edu

Zhiqiang Lin
The Ohio State University
zlin@cse.ohio-state.edu

Abstract
The past few years have witnessed a boom of mobile super

apps, which are the apps offering multiple services such as

e-commerce, e-learning, and e-government via miniapps

executed inside. While originally designed for mobile

platforms, super apps such as WeChat have also been made

available on desktop platforms such as Windows. However,

when running on desktop platforms, WeChat experiences

differences in some behaviors, which presents opportunities

for attacks (e.g., platform fingerprinting attacks). This

paper thus aims to systematically identify the potential

discrepancies in the APIs of WeChat across platforms and

demonstrate how these differences can be exploited by re-

mote attackers or local malicious miniapps. To this end, we

present APIDIFF, an automatic tool that generates test cases

for each API and identifies execution discrepancies. With

APIDIFF, we have identified three sets of discrepant APIs

that exhibit existence (109), permission (17), and output (22)

discrepancies across platforms and devices, and provided

concrete examples of their exploitation. We have responsi-

bly disclosed these vulnerabilities to Tencent and received

bug bounties for our findings. These vulnerabilities were

ranked as high-severity and some have already been patched.

1 Introduction

A super app is an app that allows its users to access multiple

services such as online shopping, ride-hailing, and instant

messaging, from a single app. Today, there are many popu-

lar mobile super apps, including China’s WeChat, TikTok,

and AliPay, India’s Paytm, Singapore’s Grab, Indonesia’s

GoTo, Vietnam’s Zalo, and South Korea’s Kakao [8]. In-

creasingly, Whatsapp in India and Brazil is also becoming

super apps [46]. Among these mobile super apps, WeChat
has most of the users (e.g., 1.2 billion monthly users [29]),

and it also offers almost all the services from such as booking

a doctor’s appointment to even filing for a divorce [4].

Certainly, it is impossible for a single super-app company

to provide all the daily services. Therefore, super apps

such as WeChat and also WeCom (the enterprise version

of WeChat) have provided APIs for 3rd-party developers

to develop the apps running inside the super apps. This is

often called the miniapp or app-in-the-app paradigm [39].

Today, it is estimated that there are more than 4.3 million

miniapps [26] running in WeChat. Through offering the

miniapps, it creates a win-win situation for both super app

providers and 3rd-party developers in that more services are

provided (leading to more users using the platform), and a

single miniapp can be executed atop multiple platforms (e.g.,

both Android and iOS) using a single programming lan-

guage (e.g., JavaScript) rather than different languages such

as Objective-C, Java, and C/C++ for different platforms.

Super apps were originally designed for mobile platforms

such as Android and iOS, but we have seen an increasing

number of them, such as WeChat, WeCom, and Alipay,

supporting desktop platforms such as Windows. Among

these, WeChat is more aggressive and allows all of their

miniapps to be executed on desktops as well. However,

when executed on these platforms, the miniapps may exhibit

different behaviors due to differences in the implementation

of the APIs, such as differences in platform-specific protec-

tions. For instance, WeChat running on Windows allows

miniapps to access the microphone (via API wx.record)

without the user’s consent, leaving the door open for

malware to stealthily record audio and compromising the

user’s privacy. Therefore, it is imperative to systematically

identify all potential platform-discrepant APIs in WeChat
(as it is currently the only platform that supports miniapps

on desktop platforms) and provide concrete demonstrations

of how they can be exploited.

To this end, this paper presents APIDIFF, an automatic

tool that identifies discrepancies across different platforms

and devices. A key challenge lies in automatically gener-

ating the API test cases, which APIDIFF solves through a

domain-guided brute-force approach. Particularly, using

APIDIFF, we have discovered three categories of discrepan-

cies in WeChat: (i) API existence, where the API is present

on some platforms but not others; (ii) API permission, where

the API requires certain permissions on some platforms

but not others; and (iii) API output, where the same API

produces different results on different platforms even with

the same inputs.

With these uncovered discrepant APIs, we then develop

concrete attacks. Since there are three different categories

of discrepancies, we correspondingly demonstrate three dif-

ferent attacks. In particular, we demonstrate: (i) Attacks

USENIX Association 32nd USENIX Security Symposium 6629

caused by API existence discrepancies, where some plat-

forms lack security-focused APIs, allowing attackers to ex-

ploit such absence for malicious purposes. For example, we

notice that Android platforms use stronger protections for

some devices such as Bluetooth when compared with Win-

dows and iOS, where an Android device enforces authentica-

tion with the protections from APIs but the other platforms

do not, leading to Man-in-the-Middle (MitM) attacks. (ii)
Attacks caused by API access control discrepancies, where

some platforms lack the necessary checks for APIs when ac-

cessing sensitive resources (e.g., locations, cameras, and au-

dio recorders), leading to potential privacy breaches by ma-

licious miniapps. (iii) Attacks caused by API output discrep-

ancies, where APIs in some platforms expose fingerprinting

vulnerabilities, leading to attacks similar to browser finger-

printing attacks [45, 34, 38]. In such scenarios, a malicious

miniapp can leverage the signatures generated from specific

API outputs to uniquely identify a device.

Contributions. We make the following contributions:

• Novel Findings (§3). We are the first to discover that su-

per apps running on top of different platforms and devices

may have a variety of discrepancies during execution,

some of which can lead to security vulnerabilities.

• Empirical Evaluation (§4 and §5). We have developed

an open source, automatic tool APIDIFF1 to systemati-

cally uncover discrepant APIs across different platforms

and devices. We have tested our tool with WeChat
on three platforms: Android, iOS, and Windows, and

identified 109 APIs with existence discrepancies, 17 APIs

with permission discrepancies, and 22 APIs with output

discrepancies across platforms.

• New Attacks (§6). We develop three categories of attacks

by exploiting these discrepancies. We show that these at-

tacks can cause severe security and privacy consequences

to massive super apps users as well as miniapp developers.

2 Background

2.1 The Evolution of Mobile Super Apps

During the desktop era, web apps were the dominant type

of applications, easily accessible from any platform by typ-

ing their URLs in a browser. However, the open nature of

the web also led to a proliferation of malicious web apps,

such as phishing [19]. In the mobile era, users switched to

downloading vetted mobile apps from app stores such as the

Google Play Store and Apple App Store. While these mobile

apps underwent centralized vetting, they also had limitations

such as the limited storage and the need for downloads and

1The source code of APIDIFF is available at github.com/
OSUSecLab/APIDiff.

Operation System

Render Engine Logic Engine
Notify

Send data

...

API

Miniapps

Host App

System Resources

Super App

Other Apps

Figure 1: A typical architecture of mobile super apps

installations. In addition, developers often had to create sep-

arate versions of their apps for different operating systems.

Having recognized the benefits and limitations of both

web and mobile apps, some social network apps (such

as WeChat [26] and TikTok [33]) began to expand their

services and eventually became “super apps”. Some of these

super apps, such as WeChat, even started to provide APIs

in 2017 for third-party developers to create miniapps that

run within the super app. These miniapps offered a more

enhanced user experience and increased user engagement

with the super app, by relying on web technologies, such

as JavaScript, and integrating the capabilities of native apps

and offering the advantages of both types of apps, such as

cross-platform support and the ability to run without instal-

lation. It is important to note that while the miniapps run

within the super app, the super app itself is also considered a

native app. Although Miniapps have evolved from web apps

and native mobile apps, they are different from both.

Table 1 lists popular super apps from around the world,

ranked by monthly active users. It can be seen that these su-

per apps belong to different categories and offer a wide range

of services, from business to social networking. Although

most support multiple platforms and allow the execution of

mini-apps, only WeChat and also WeCom support the exe-

cution of mini-apps on desktop computers.

2.2 The Architecture of Super Apps

A high-level overview of the architecture of super apps

with miniapp support is presented in Figure 1. We can see

that the super app hosts all the miniapps (which can be

directly fetched from the miniapp market that is hosted in

the back-end of the super app), and provides the miniapps

running environment in a sandbox environment. To offer

native-app alike experiences, the super app also provides a

6630 32nd USENIX Security Symposium USENIX Association

Super App Category Monthly Users Country Busin
ess

Educa
tio

n

Com
munica

tio
n

Finan
ce

Foo
d Deli

ve
ry

Gam
es

Life
sty

le

Ride-h
ail

ing

Shop
ping

Soc
ial

Andro
id

iO
S

W
indow

s

Andro
id

iO
S

W
indow

s

Services Platform Miniapp

WeChat [29] Social 1,200 million + China � � � � � � � � � � � � � � � �
Tiktok [20] Social 1,000 million + China � � � � � � � � � � � � � � � �
Alipay [51] Finance 730 million + China � � � � � � � � � � � � � � � �
Snapchat [50] Social 347 million + U.S. � � � � � � � � � � � � � � � �
WeCom [31] Business 180 million + China � � � � � � � � � � � � � � � �
Paytm [51] Finance 150 million + India � � � � � � � � � � � � � � � �
Go-Jek [27] Finance 100 million + Indonesia � � � � � � � � � � � � � � � �
Zalo [63] Social 52 million + Vietnam � � � � � � � � � � � � � � � �
Kakao [51] Social 45 million + South Korea � � � � � � � � � � � � � � � �
Grab [51] Delivery 25 million + Singapore � � � � � � � � � � � � � � � �

Table 1: Comparison with popular super apps. “Platform” represents the super apps can run atop the specific platform,
and “miniapp” represents the super app have miniapps enabled.

set of in-app APIs for miniapps to access various system

resources (e.g., Bluetooth, NFC, microphone, and camera).

While most APIs are similar across platforms, some differ-

ences exist, such as mobile platforms supporting multiple

sensors but not desktop Windows lack of such support.

For example, NFC APIs are only supported on Android,

and APIs for the gyroscope, compass, and accelerometer

are only available on mobile platforms. Also, similar to

web apps, to enable the cross-platform capabilities, the

miniapps are typically programmed in both script (e.g.,

JavaScript [35]) and markup languages (e.g., WXML [32],

which is an HTML-like language defined by Tencent for UI

design in WeChat), and they rely on the logic engine of the

super app to execute the script and the rendering engine to

display the webview components.

Mini-apps can access both system resources (e.g., Blue-

tooth, NFC) and user data (e.g., phone number, billing ad-

dress). To access these resources, mini-apps need permission

from users on mobile platforms. Users receive a permission

request dialog box that explains why the mini-app needs ac-

cess to a specific resource, and users can grant or deny per-

mission. Once permission is granted, it is recorded for fu-

ture use, so users don’t have to grant access again. Please

note that in this permission model [7], some permissions are

inherited from the Android system, such as the Bluetooth

permission, while others are not, like the scope.werun
permission, which is required when miniapps attempt to ob-

tain WeRun data (the user’s daily steps) from WeChat. When

a user grants permission for WeChat to access a specific type

of resource, it does not mean that WeChat can automati-

cally grant all access to mini-apps. Therefore, WeChat will

prompt the user again to confirm whether they would like

to grant data access to a specific mini-app. For instance,

if the user grants WeChat access to Bluetooth resources

when a mini-app wants to access Bluetooth through WeChat,

WeChat will ask the user a second time to ensure that the user

wants to give Bluetooth access to that specific miniapp.

2.3 The Comparison

Regarding the differences between different apps and

their corresponding host platforms, Table 2 provides a

summary. We can notice that there could be six differences

when comparing miniapps with traditional native apps and

also web apps. First, similar to web apps, miniapps are

installation-free, and users do not need to install them. In-

stead, the users can directly access those miniapps from the

super apps’ markets. Second, unlike native apps, miniapps

cannot be automatically launched. Instead, users must click

on the icon of a miniapp to launch it. The super app will

keep track of the user’s preferences, including their favorite

miniapps. These preferences will be synced across all

devices owned by the user, although the preferred miniapps

will not be automatically downloaded on all devices. Third,

although most miniapps running on the mobile version of

the super app cannot run in the background for longer than

5 minutes [53], some miniapps can by requesting special

approval from super app vendors. It is important to note

that this restriction only applies to mobile super apps, and

miniapps running on the desktop version of the super app

can run in the background without any time limit. Fourth,

similar to mobile apps, miniapps do not have mandatory

back-ends. Fifth, super apps create the runtime environment

for the miniapps, allowing the developer only to implement

one miniapp, and run it everywhere (e.g., in both Android

and iOS). Finally, before the miniapps open to the public,

they must be vetted by the super apps providers to protect

end users from using any malicious miniapp in the market.

3 Overview

Key Observations and Goals. Miniapps that run on various

platforms may encounter different behaviors due to platform

differences such as permissions and threat models. The ob-

USENIX Association 32nd USENIX Security Symposium 6631

Hosts & Supported Apps Mobile OS
(Native Apps)

Web Browsers
(Web Apps)

Super Apps
(Miniapps)

End Users

Install-free? � � �
Auto-Started? � � �
Running at Background? � � �

Developers

Mandatory Backend? � � �
Cross-platforms? � � �
Centralized Vetting? � � �

Table 2: Comparison between different hosts and their
supported apps

jective of this study is to systematically identify these dis-

crepancies at the API level for miniapps and examine their

security implications. This is because the knowledge gained
from testing a single platform does not necessarily apply to
other platforms. At a high level, there are at least three cat-

egories of API discrepancies that could result in security is-

sues. In the following, we dive into the details of the ob-

served root causes and the objectives we aim to accomplish:

• API Existence Discrepancies. The root cause is the
inconsistency in the implementation of security-focused
APIs across platforms. In particular, some APIs are only

available on certain platforms, such as most sensor APIs

(e.g., accelerometer, compass, and gyroscope) which are

only supported on mobile platforms such as Android and

iOS. While most of those API differences may just cause

compatibility issues, some can lead to security attacks.

An example of such API is wx.makeBluetoothPair,

which initiates authentication for Bluetooth devices. Its

absence on platforms such as iOS makes the Bluetooth de-

vice unable to differentiate between trusted and untrusted

devices, leading to Man-in-the-Middle attacks.

• API Permission Discrepancies. The fundamental reason
behind this issue is that certain APIs are created to enable
access to sensitive resources, but the safeguards to protect
sensitive resources are not applied consistently across
platforms. Specifically, miniapps often need to request

user authorization to access sensitive resources such as

audio, video, and contacts. However, we observed that

the Windows platform (note that WeChat for Windows

is not downloaded from the Microsoft Store because the

store version lacks support for miniapps) does not have

any permission protection when it comes to accessing

these resources. This means that miniapps on the Win-

dows platform can potentially access sensitive resources

without requiring any user consent, which could put user

privacy and security at risk.

• API Output Discrepancies. The root cause of this issue
is the varying amounts of device information and config-
uration exposed through super app APIs across different

platforms, leading to the possibility of fingerprinting
attacks. Specifically, it is well known that attackers can

use the browser or mobile APIs to identify specific users

for targeted advertising [45, 34, 38]. Similarly, WeChat
also has APIs that are vulnerable to fingerprinting attacks.

We refer to these types of APIs as “fingerprintable” in

the rest of this paper. Interestingly, we notice that for a

specific API, it can be fingerprintable in some platforms,

but not others. Fingerprintable APIs may also vary

in their accuracy across platforms. For example, the

getScreenBrightness API returns varying levels

of output precision on different platforms. The Windows

version provides precision to two decimal places, whereas

the Android version offers 16 decimal places, allowing

for more accurate differentiation and fingerprinting of

users and devices on the Android platform.

Scope. While we could study all the super apps available

on the market (as listed in Table 1), we focus exclusively on

WeChat for four reasons. First, WeChat has the largest

number of users (with 1.2 billion monthly active users),

and any security vulnerability in this super app can have a

striking impact. Second, WeChat pioneered the concept of

miniapp paradigm, and so far it has more than 4.3 million

miniapps, which is way more than any other platform (e.g.,

Alipay has about 1 million miniapps [55], and Snapchat
has only 62 miniapps). Third, WeChat and WeCom are the

only two super apps that support the execution of miniapps

on three platforms, namely Windows, Android, and iOS.

While miniapps can run on macOS by clicking on a down-

load link, there is no public portal for users to search and

access them, unlike on iOS, Android, and Windows. We be-

lieve that the miniapp environment on macOS is still in de-

velopment. Meanwhile, we conducted tests on macOS and

found that the results were the same to those on iOS. We

attribute this to the adoption of the same sandboxing tech-

niques and runtime on both platforms (iOS and macOS).

Therefore, we have excluded macOS from our analysis to

avoid duplication and only report our findings on iOS, An-

droid, and Windows. Fourth, while we can also analyze We-
Com, we find that it uses the same framework to manage

and execute miniapps, sharing much of the same code base,

as confirmed by both our binary code inspection and Ten-

cent’s official documents [30], which mention that miniapp

developers do not even have to change their code at all to

make their miniapps compatible with WeCom. Therefore,

we just need to focus on WeChat for proof of concept.

Assumptions. Our goal is to find the miniapp APIs that can

be exploited by malicious miniapps due to the discrepant be-

haviors. As such, we make a few assumptions for the mali-

cious miniapps. First, we assume that the attacker is able to

distribute the malicious miniapps onto the user’s mobile, as

in the study by Lu et al. [39]. This is also reasonable, since

miniapps are install-less, and to launch a miniapp is just one-

6632 32nd USENIX Security Symposium USENIX Association

API-Doc

No Parameters

Basic-Type Parameters

Object-Type Parameters

API Existence Discrepancies

API Ou put Discrepancies(I) API Parameter
Resolution

(II) API Dependencies
Resolution

Debug Protocol

Test Case Generator (§ 4.1) Code Executor (§ 4.2) Discrepancies Analyzer (§ 4.3)

API Permission Discrepancies

Figure 2: The Architecture of APIDIFF

click away from the users. Second, we assume the trustwor-

thiness of the code from the OS and the super apps, since we

do not believe that they have any malicious intentions (oth-

erwise, they can trivially launch any layer below attacks to

attack the miniapps). Finally, we also assume the trustwor-

thiness of the super apps’ backends or miniapps’ backends,

since they are typically out of reach of the attackers.

4 APIDIFF Design

This section presents the detailed design of APIDIFF.

As illustrated in Figure 2, APIDIFF consists of three key

components.

• Test Case Generator (§4.1). For each API, APIDIFF

needs to create a test case, with the corresponding parame-

ters properly initialized. If an API’s execution depends on

other APIs, APIDIFF also needs to resolve the dependen-

cies with the right order of executing them. Additionally,

to have high coverage of API execution, it also needs to

mutate the values of the parameters when necessary.

• Code Executor (§4.2). To exercise the discrepancies

across platforms (i.e., Windows, Android, and iOS),

APIDIFF must execute the test cases on these platforms,

to produce the corresponding outputs, from which to

identify discrepancies that may have security concerns.

• Discrepancies Analyzer (§4.3). To identify the dis-

crepant APIs, APIDIFF uses differential analysis with a

set of predefined policies to inspect the error code and

return values, which are the ones observed by miniapps,

of the tested APIs.

Note that manual efforts were only required at the be-

ginning to investigate the workflow, including investigating

the possible error codes that may be observed for each API.

After the tool is built, no further manual analysis is required.

This is because we use function evaluate to execute the

tool-generated JavaScript testing code for all the APIs and

collect the outputs. Discrepancies are then identified based

on the returned error code and outputs. With the discovered

API discrepancies, we then demonstrate how to exploit them

for malicious purposes. Since the attacks will highly depend

on the semantics of the APIs, we will not be able to construct

the attacks automatically. Instead, we develop a few case

studies to demonstrate the consequences of the discrepancies

and the impact of the corresponding attacks (§6).

4.1 Test Case Generator

The goal of our test case generator is to produce a code

snippet that contains the API to be tested. However, this is

challenging since we need to feed the testing API with the

right parameters to trigger the discrepant behaviors. That is,

we need to properly understand the parameters and initialize

with the desired seed values. Meanwhile, since some APIs

may have dependencies on the execution of other APIs, we

have to properly resolve the order the API executions.

Generating values for API parameters. Intuitively, we

would have to go through all the documentation to under-

stand the semantics for each API in order to provide the

right values for its parameters, which is tedious and time

consuming. Interestingly, we notice that the documentation

contains well-formatted descriptions for each parameter and

its type. Therefore, we propose first extracting the parame-

ter type from the documentation and then initializing them

based on the domain knowledge.

The rationale for this approach is that our objective is to

initiate API execution to identify discrepant APIs based on

their input and output. Therefore, initializing APIs with seed

values and mutating them can allow us to uncover the three

types of discrepant APIs we aim to identify, without explor-

ing all their branches. For instance, to determine whether

an API exists or not, an error message is thrown regardless

of its parameters. Second, permission checks are often per-

formed before executing an API, and we can thus easily de-

tect permission discrepancies without providing the correct

values. Finally, fingerprintable APIs are mostly used to ob-

tain hardware information, as long as we have initialized the

environment correctly.

USENIX Association 32nd USENIX Security Symposium 6633

Type Value Example

Any null console.log(<any>)
Array Recursively Resolved wx.foo([1,2,3,4])
Boolean true fs.statSync("", true)
Function (e) => {e} success: (e) => {e}
Null null N/A
Number 1 fs.writeSync(1)
Object Recursively Resolved {fail: (e) => {e}}
String test wx.getStorageSync("test")
Undefined undefined N/A

Table 3: Values Used for Basic Type Parameters

• APIs without Parameters. In total, there are 231 APIs

that do not accept any parameters. They are often used

to obtain the configurations of the execution environment.

For example, API wx.getSystemSetting() returns

the system settings of the devices (e.g., whether the device

has Bluetooth or Wi-Fi enabled). These APIs can be easily

recognized in the documentation.

• APIs with Basic Type Parameters. Miniapps are

developed using JavaScript. Consequently, the parameters

of miniapp APIs use a variety of basic types such as

String, Boolean, Number, and Array defined in

standard JavaScript, to pass information for the execution.

For example, wx.getStorageSync(string
key) fetches data indexed by key, and

wx.removeStorageSync(string key) deletes

the corresponding data. In total, there are 107 APIs that

accept only the basic type parameters. We initialize these

parameters with the default seed values (See Table 3).

• APIs with Composite Type Parameters. The majority of

the APIs (in total 693) take parameters in composite types.

For example, getLocation(Object), which returns

the user’s actual location, accepts an object as its parame-

ter, and this object has multiple fields, and their types are

just basic types (e.g., String, Boolean) or a callback

function of either success, fail, or complete. For-

tunately, since we already have the pre-cooked values for

the basic types, we just initialize these basic types with the

corresponding seed values.

• APIs with a Callback Function Parameter. Based

on our analysis of the documentation, we found that in

total there are three types of callback functions, which

are needed by 364 APIs. These three callbacks are

success (which specifies the follow-up actions when

the API is invoked successfully), fail (which specifies

the follow-up actions when the API invocation is failed)

and complete (which specifies the follow-up actions

regardless of the success or failure of the API). We just

created an implementation of these three callbacks by just

displaying a message showing they are called.

We now discuss the mutation policy we employed. As

depicted in Table 3, there are various types of parameters

used in our experiment, some of which are limited and

1 const uploadTask = wx.uploadFile({
2 url: 'http://example.weixin.qq.com/upload',
3 filePath: tempFilePaths[0],
4 name: 'file',
5 formData:{ 'user': 'test' },
6 success (res){
7 const data = res.data
8 //do something
9 }})

10 uploadTask.onProgressUpdate((res) => {
11 console.log('uploaded:', res.progress)})
12 uploadTask.abort()

Figure 3: Code Example for API uploadFile in
WeChat Official Document

enumerable, such as Boolean parameters. We enumerated

these parameters to collect a wider range of outputs. For

instance, consider the method getLocation(type,
isHighAccuracy, highAccuracyExpireTime).

The second parameter, isHighAccuracy, is a Boolean

value that can take on the values of either true or false. In

our experiment, we tested this parameter with both true and

false values. Similarly, some parameters can only take on

certain string values. For example, the first parameter of

getLocation is a string that can have the value of either

“wg84” (indicating that the API will return GPS location)

or “gcj02” (indicating that the API will use cellular or

other wireless networks to retrieve location data). These

variables are also enumerable, and we obtained the possible

candidate values (such as wg84 and gcj02) by analyzing the

documentation.

However, the third parameter of getLocation,

highAccuracyExpireTime, is a numerical value that

specifies a time window in which the API should return the

output. This parameter is not enumerable, so we mutated

the numerical values to collect more outputs. To mutate

numerical values, we used a range of numbers from -1 to

100, and for non-enumerable strings (The string list we

used is a set of built-in payloads in Burp Suite, which can

be found in [2]), we utilized a list of strings. Obviously,

we were unable to enumerate all possible numerical values

and strings. This is our limitation. Notwithstanding this,

our confidence in the dependability of our findings persists,

since our objective was to pinpoint inconsistencies in

existence, permission, and output, which can typically be

uncovered irrespective of code coverage. For instance,

highAccuracyExpireTime specifies the allowed

time for the API to return the output. As long as we

can obtain the output from the API, the specific value of

highAccuracyExpireTime becomes irrelevant.

Resolving the execution order of dependent APIs. It is

worth noting that many APIs actually have dependencies,

meaning that some APIs must be executed first (we de-

note them dominating APIs), before the execution of oth-

6634 32nd USENIX Security Symposium USENIX Association

ers (we denote them dominated APIs). For example, in

Figure 3, onProgressUpdate requires uploadFile
to be execute first. As such, we need to resolve the

API dependencies. An intuitive approach is to use

regular expression with patterns such as start* (e.g.,

startHEC), get* (e.g., getNFCAdapter), create*
(e.g., createUDPSocket) to identify the dominating

APIs. However, there could be multiple dominating APIs

that do not start with these patterns, as shown in Case II

and III in Table 4), where the execution of the last API

depends on all of its predecessors. Then, another intuitive

approach would be to exhaustively enumerate all possible

combinations. However, given that we have 1,031 APIs in

total, theoretically this brute-force approach would require

factorial(1031) combinations (we need to try all of their

permutations since there could be more than three or four

layer of dependencies ahead of the dominated API, as shown

in Case II and III). Certainly, we have to optimize this ap-

proach further.

To effectively identify and order the APIs, we opted

for a category-guided brute-force approach. A key ob-

servation is that the dominating APIs are usually those

APIs that initialize the hardware and environments for

that specific category. Examples of those dominat-

ing APIs include startHCE, which initializes NFC,

wx.getFileSystemManager, which initializes the file

system manager, and wx.openBluetoothAdapter,

which initializes the Bluetooth devices. As such, if an

API is the dominating API for a specific dominated API,

it will likely be the dominating API for those in the same

category. For example, startHCE is the dominating API

for sendHCEMessage, it is also the dominating API for

wx.onHCEMessage and wx.getHCEState. As such,

we determined that we could effectively reduce the number

of possible combinations by categorizing the APIs and

enumerating them in order within each category. Taking the

NFC category as an example, there are only 6 APIs in total,

and we only need to try factorial(6) (i.e., 6!) at most to

exercise them in the right order. Eventually, we decide to

use this category guided brute-force approach to generate

the desired execution orders.

4.2 Code Executor

Our APIDIFF takes the code fragments (which essentially is

a program) that contains the API to be tested, and executes

the programs in order to collect the results. To this end, an

intuitive approach is to compile the miniapp that contains the

API for testing and then execute the produced miniapps to

observe the outputs. However, since this approach requires

developers to produce multiple miniapps when testing

multiple APIs, it is time consuming. Another possible

approach is to use dynamic code execution to load and

Case # API Sequence

I wx.startHEC
wx.sendHECMessage

II
wx.createBLEPeripheralServer
BLEPeripheralServer.addService
BLEPeripheralServer.removeService

III

wx.createInterstitialAd
InterstitialAd.load
InterstitialAd.onLoad
InterstitialAd.show
InterstitialAd.destory

IV wx.createUDPSocket
UDPSocket.connect

Table 4: Examples of API Sequence (The bold font are
the dominating APIs)

execute the code dynamically. Unfortunately, WeChat has

disabled this feature due to security concerns [53].

Our approach, however, does not rely on compile-and-

then-execute process or JavaScript dynamic code execution.

Instead, we notice that the development tool can directly up-

date the code of the miniapp when running on top of the

testing platforms, and as such, we reverse engineered and

customized the debug protocol of WeChat to allow the API

to execute directly on the targeted platform. Specifically, we

found that whenever the miniapps execute the code through

the debug protocol, they pass their JavaScript to be executed

to the IDE, which then invokes an internal function called

evaluate to ultimately execute the JavaScript code and

return the output. Therefore, we simply feed the code into

evaluate directly and log the output if there is any, in-

cluding error codes, for post-mortem analysis.

Next, we need to run the test cases on multiple platforms

(e.g., Android, iOS, and Windows). A straightforward ap-

proach is to test each API on each platform sequentially, but

this would be time-consuming. Instead, we designed a sim-

ple client-server (CS) mode in which a single server main-

tains a task queue containing the APIs to be tested, and col-

lects and records the outputs. Multiple clients, each of which

executes the code on a specific testing platform, fetch the

tasks from the queue and submit the outputs to the server.

This approach allows the testing code to be deployed on An-

droid, iOS, and Windows simultaneously, enabling the test

results of the APIs to be collected in parallel. To collect re-

sults for both cross-platform and cross-device testing, we run

the test cases on six devices: two Windows, two Android,

and two iOS. This way, we have results for different plat-

forms and devices for the same platform.

Having prepared for the test cases and the devices, we

also have another important problem to solve, namely how

to configure the permissions for each testing API to detect

the missing permissions in the testing platform. An intu-

itive approach is not to assign any permission for the testing

API, and then wait for permission request dialogue to de-

USENIX Association 32nd USENIX Security Symposium 6635

termine whether a particular request requires certain permis-

sion. However, this approach would require parsing the dia-

log window, understanding the output, and meanwhile click-

ing the confirmation button on the screen. Also, note that

if there is no clicking within 5 minutes window, the testing

miniapp will abort and an error message will be logged. If

the permission is configured, then there will be no runtime

permission request, and the miniapp will be executed with-

out any interruption. Therefore, based on these observations,

we propose a simpler approach of directly running the test-

ing miniapps (when testing the specific API) with two sets of

permission configurations without parsing and clicking any

permission request window: one configuration has all per-

mission enabled (the miniapp will be executed quietly), and

the other has all permission disabled (an error message will

be logged if it requires a specific permission). By doing so,

we just parse the logged error message to determine whether

a testing API requires certain permissions.

4.3 Discrepancies Analyzer

With the collected testing results for each API across differ-

ent platforms and devices, we then identify the discrepant

APIs that exhibit the three types of discrepancies we aim to

identify. In the following, we explain the specific policies

we used to detect these APIs.

(I) API Existence Discrepancies. Discrepancies of this

kind can be caused by the missing implementations of the

APIs on the corresponding platforms. To determine whether

an API has been implemented, we then simply inspect the

logged messages on the tested platform: if error code “not
supported” is observed for this particular API, then this

API is classified into non-existing API for this platform.

An API with existence discrepancies is identified if
the API on one platform is executed successfully,
and the API on another one throws errors “not
supported”.

(II) API Permission Discrepancies. Discrepancies of this

kind are caused by the missing permission protections on

the testing platform. To determine whether an API has

been implemented on a specific platform, we again inspect

the logged messages on the tested platform: if error code

“permission errors” is observed for this particular

API, then this API requires permission. If it does not require

permission in other platform(s), then this API is classified

into permission discrepant API.

An API with permission discrepancies is identified if
the API execution does not throw any “permission
errors” in this platform but in others.

(III) API Output Discrepancies. Discrepancies of this kind

are caused due to the discrepancies in device-specific out-

puts and platform-specific outputs. As such, we particularly

inspect the output of the APIs for different platforms as well

as different devices. Whenever we notice any differences in

the output, this API is classified into output discrepant API.

An API with output discrepancies is identified if the
API’s outputs are platform and/or device specific.

5 Evaluation

5.1 Experiment Setup

To study the security issues and impact of our targeted

super app WeChat, we have registered several user ac-

counts, downloaded the corresponding miniapp development

tools and SDKs, followed their official documents to build

miniapps (e.g., some of the attacks need to be launched by

malicious miniapps). In addition, some results from the ex-

periments require us to reverse engineer WeChat, and there-

fore, we used JEB [5] and IDA Pro [23] to inspect the decom-

plied code statically and programmed Frida [25] scripts to

dynamically verify our findings. Again, we run our APIDIFF

on six devices, two Windows-11 desktops, and four smart-

phones (two with Android-13, and two with iOS-16).

Existence
Discrepancies

Permission
Discrepancies

Output
Discrepancies

� �  � �  � � 

� 105 40 16 17 8 12
� 105 69 16 1 8 14

 40 69 17 1 12 14

Table 5: Summary of API Discrepancies

5.2 Experiment Results

Among the tested miniapp APIs, APIDIFF has identified

three sets of APIs that exhibit existence (109), permission

(17), and output (22) discrepancies across platforms and de-

vices, which may be exploited by attackers to launch various

attacks. As shown in Table 5, there are 105 APIs that have

existence discrepancies between Windows and Android, 40

APIs between Windows and iOS, 69 APIs between Android

and iOS. Meanwhile, there are 16 APIs that have permission

discrepancies between Windows and Android, 17 APIs be-

tween Windows and iOS, and only one API (i.e., Bluetooth

API) between Android and iOS. Finally, there are 8 APIs that

have output discrepancies between Windows and Android,

12 APIs between iOS and Windows, and 14 APIs between

Android and iOS.

We present three figures in Figure 4 to illustrate the three

types of discrepancies (existence, permission, and output)

6636 32nd USENIX Security Symposium USENIX Association

(a) Existence Discrepancies (b) Permission Discrepancies (c) Output Discrepancies

Figure 4: Discrepancies Summary. Particularly, each row represents one API. Since output discrepancies exist not only
across platforms but also across devices, we have highlighted all the rows in pink.

between different platforms and devices. Each row rep-

resents a specific API, and each column indicates whether

there are discrepancies between the compared platforms. We

color the cells to indicate discrepancies and leave them blank

otherwise. For instance, there are 109 APIs with existence

discrepancies, with 69 APIs exhibiting existence discrep-

ancies between Android and iOS, 105 APIs between Win-

dows and Android, and 40 APIs between Windows and iOS.

Meanwhile, since output discrepancies exist not only across

platforms but also across devices, we have highlighted all the

rows (i.e., APIs) that exhibit output discrepancies across de-

vices in pink. Next, we zoom in the results to obtain a few

insights regarding the discrepancies in each category.

Results of API Existence Discrepancies. The API exis-

tence discrepancies may allow attackers to mount attacks

against the device with weaker protections. In particular,

we have identified 109 APIs of this kind, and these APIs fall

into 32 categories, as shown in Table 6. Note that there are

overlaps among those APIs, and therefore, the total number

is less than the sum of discrepant APIs while comparing

different platforms. For example, while Android has 69

APIs that are different from those on iOS, almost all of

them are also included in Windows and iOS, resulting in

a total of 109 APIs. We notice that Android and Windows

are significantly different with the existence of the APIs,

followed by Android and iOS. Windows and iOS share

the most similar. Among all the APIs that have existence

discrepancies, we notice that (i) most of those discrepancies

are because of the support of specific hardware. For

example, Windows does not support NFC and Gyroscope at

all. (ii) Many of the discrepancies are caused by the system

implementation discrepancies. For example, both Android

and iOS support the accessibility services by nature, but

Windows does not. As such, Windows does not have the

accessibility services APIs for the miniapps. (iii) There

are also some of the discrepancies that are caused by the

super app’s implementation discrepancies. For example, the

crypto random number generation API is not implemented

on Windows, but implemented on Android and iOS.

Results of API Permission Discrepancies. We have

identified 17 APIs that have permission discrepancies, and

those APIs fall into 10 categories including location. Again,

we notice that Windows and iOS are mostly diversified,

while Android and iOS are quite similar. The experiment

results show that WeChat in Windows does not request

any permissions from users to access privacy-sensitive

resources (as shown in Table 7), and we can thus simply

create a malicious miniapp to exploit this vulnerability. For

instance, with a malicious miniapp, an attacker can directly

open the microphones quietly without the user’s awareness.

We will demonstrate concretely how to exploit permission

discrepancies in §6.2.

Results of API Output Discrepancies. In our experiment,

we closed the super app first and then re-launched it again to

run the experiment a second time. This was done to ensure

that any observed differences were not caused by the run-

ning environment. As a result, we have identified 22 APIs

that have output discrepancies, falling into 8 categories in-

cluding UI, media, and device. Specifically, a fingerprint-

able API is defined by its unique and stable properties. The

uniqueness of an API refers to its ability to generate a unique

identifier for a user. The stability of the API is measured by

its consistency over time, allowing it to be effectively used

for tracking purposes. The uniqueness of an API is deter-

mined by running the API on multiple devices (6 devices in

our experiment), with the APIs that produce different outputs

considered unique. As shown in Table 8, among all the APIs

with output discrepancies, 22 of them have the uniqueness

feature. Among them, we further evaluated their stability.

USENIX Association 32nd USENIX Security Symposium 6637

API
Category Total Platforms

�  % � � % �  %

D
ev

ic
e

Accessibility 1 - - 1 100.00 1 100.00
Bluetooth 13 - - 5 38.46 5 38.46
BLE 15 - - 3 20.00 3 20.00
RandomNumber 1 - - 1 100.00 1 100.00
Gyroscope 3 - - 1 33.33 1 33.33
iBeacon 8 - - 3 37.50 3 37.50
Keyboard 4 - - 1 25.00 1 25.00
Motion 4 - - 2 50.00 2 50.00
Scan 1 - - 1 100.00 1 100.00
Screen 9 - - 1 11.11 1 11.11
Vibrate 2 - - 1 50.00 1 50.00
Wi-Fi 13 - - 1 7.69 1 7.69

File 8 1 12.50 1 12.50 1 12.50

Location 12 - - 2 16.67 2 16.67

M
ed

ia Audio 9 - - 3 33.33 3 33.33
Video 7 - - 2 28.57 2 28.57
VoIP 16 - - 3 18.75 3 18.75

mDNS 10 - - 1 10.00 1 10.00

N
FC

IsoDep 7 7 100.00 7 100.00 - -
MifareClassic 6 6 100.00 6 100.00 - -
MifareUltralight 6 6 100.00 6 100.00 - -
Ndef 7 7 100.00 7 100.00 - -
NfcA 8 8 100.00 8 100.00 - -
NFCAdapter 13 13 100.00 13 100.00 - -
NfcB 6 6 100.00 6 100.00 - -
NfcF 6 6 100.00 6 100.00 - -
NfcV 6 6 100.00 6 100.00 - -

OpenAPI 5 1 20.00 3 60.00 2 40.00

Storage 4 - - 1 25.00 1 25.00

System 12 1 8.33 1 8.33 1 8.33

U
I Interaction 8 - - 2 25.00 2 25.00

Sticky 1 1 100.00 - - 1 100.00

Table 6: Summary of APIs w.r.t Existence Discrepancies.
The API categories are defined by Tencent [53], and we
only list the categories that have discrepancies.

An API is deemed stable when it produces consistent out-

puts on the same device over multiple runs (3 times in our

experiment). For all the APIs with uniqueness, 13 of them

were found to be stable, which become fingerprintable APIs

(as highlighted in the pink color in Table 8).

We then further grouped them into two categories: Input-

Oriented Fingerprintable (IOF) APIs are those that accept

inputs and generate outputs that are uniquely identifiable,

while Fingerprintable (OOF) APIs do not accept input but

produce outputs that are fingerprintable. For example, IOF

API getLocalIPAddress takes an object specifying

callback functions as input and produces a fingerprintable

IP address as output. OOF API getSystemInfo does not

take any inputs and directly returns fingerprintable system

information. Specifically, for input-based IOF fingerprint-

able APIs, they may require specific parameters to be passed.

We test them using the simple mutation method described in

the paper, but we cannot guarantee the completeness of such

APIs. However, this issue does not apply to OOF APIs.

At a high level, there are 9 OOF APIs and 4 IOF APIs. We

found discrepancies across platforms, meaning that APIs that

APIs Permission Scope
Mobile PC

�  �

A P A P A P

getLocation
userLocation

� � � � � �
chooseLocation � � � � � �
startLocationUpdate � � � � � �
SLUBackground* userLocationBackground � � � � � -
startRecord

record
� � � � � �

joinVoIPChat � � � � � -
RecorderManager.start � � � � � �
createCameraContext camera � � � � � �
createVKSession � � � � � -
openBluetoothAdapter bluetooth � - � � � -
BLEPeripheralServer � � � � � -
saveImageToPhotosAlbum writePhotosAlbum � � � � � �
saveVideoToPhotosAlbum � � � � � �
addPhoneContact addPhoneContact � � � � � -
addPhoneRepeatCalendar addPhoneCalendar � � � � � -
addPhoneCalendar � � � � � -
getWeRunData werun � � � � � -

Table 7: Summary of the API permission discrepancies
across platforms. “A” means “available” and “P” means
“permission protected”. “SLUBackground” is short for
startLocationUpdateBackground.

work for fingerprinting on one platform may not work on an-

other. It is worth noting that the precision of an API’s output

can have an impact on the effectiveness of fingerprinting at-

tacks. APIs that provide more precise information can poten-

tially fingerprint more users. For example, on Windows, the

output precision of getScreenBrightness is limited to

two decimal places, whereas on Android, it offers up to 16

decimal places, allowing for a greater differentiation and fin-

gerprinting of users and devices.Considering that brightness

values range from 0 to 1, the API output for Android has only

two decimal places, thereby restricting the maximum num-

ber of identifiable users to 102. However, on Windows, with

an output precision of 16 decimal places, the maximum num-

ber of identifiable users increases significantly to 1016. For

instance, suppose a user sets their screen brightness to 15%.

While the API output value on Windows may be 0.15, on

Android it can be as precise as 0.1512452067894578, which

can enable the identification of more users due to the higher

level of precision.

We would also like to emphasize that some APIs may pro-

duce different outputs over time, as users may change their

settings or devices may be relocated to a different location.

For instance, getLocalIPAddress API returns the IP

address of the device being tested, and its output may vary

if the device is connected to a different network. Similarly,

the getSystemInfo API contains some information that

is specific to the device’s settings (e.g., whether Bluetooth is

turned on), and its output may also change if the user changes

their settings. However, we will not consider these settings

or changes in our analysis, as in traditional fingerprinting, the

features used for fingerprinting, such as font size and time-

zone, may also change over time.

6638 32nd USENIX Security Symposium USENIX Association

6 Exploiting the API Discrepancies

6.1 Exploiting API Existence Discrepancies

(A1) Fake Peripheral Attacks against Centrals. We have

detected existence discrepancies in the Bluetooth pairing

API. Note that Bluetooth resorts to pairing for its security,

where the two Bluetooth-enabled devices to negotiate a com-

munication key. In particular, wx.makeBluetoothPair
is an API that can be invoked by the miniapps to initi-

ate the pairing for the devices. Although WeChat has de-

signed wx.makeBluetoothPair for Bluetooth pairing,

this API is only available on Android, making iOS devices

vulnerable to Bluetooth device impersonation.

We first demonstrate how fake peripheral attacks can be

launched against centrals. Assuming that a miniapp running

on the iOS central is a controller for a peripheral, the at-

tacker waits for a moment when the central and peripheral

(e.g., smart blood pressure monitor) are disconnected but in-

tends to initiate a new session. This moment can be easily

identified, since BLE communication transmits all traffic in

plain text over the air and is sniffable before the connection is

established. The attacker collects the identifier of the blood

pressure monitor (i.e., its Bluetooth MAC address [65]) that

goes over the air and impersonates the blood pressure moni-

tor to establish a connection with the victim’s smartphone. In

a regular scenario, a smartphone is supposed to connect only

one peripheral at a time, and therefore, the smartphone is cur-

rently not available for the blood pressure monitor. When the

miniapp on the smartphone is launched and the victim smart-

phone attempts to start encryption using the key that is nego-

tiated with the blood pressure monitor, the attacker responds

with a PIN OR KEY MISSING error. This is a widely used

trick to attack Bluetooth devices [67, 57]. According to the

current practice, Android OS will delete the key when it re-

ceives the error code. At this point, the peripheral currently

is the attacker and will not initiate the pairing process for

communication security, and for miniapp platforms, they do

not provide APIs for the victim miniapp to start the pairing

either. As a result, the communication continues in plaintext.

Moreover, there is no way for the miniapp to know whether

the link is secure. The attacker can now wait for the pair-

ing request from the central and select plaintext to communi-

cate with the central. However, since the miniapp running on

iOS does not have API wx.makeBluetoothPair to au-

thenticate the fake peripheral, the communication proceeds

normally as usual without notifying users. This could cause

serious consequences for miniapps running on iOS devices.

For example, the attacker may inject false blood pressure

measurements, misguiding doctors. We have discovered that

the function makeBluetoothPair is widely utilized by many

government system mini-applications. One such example is

the water-meter reading system, which may leverage these

mini-apps to monitor household water usage. Unfortunately,

these mini-apps are vulnerable to attackers who may manip-

ulate the measurement readings. Our investigation also re-

vealed that some major Chinese companies, such as Meituan
(a prominent food delivery company [6]) and DiDi (a ride-

hailing service [3]), employ Bluetooth functionality and are

thus susceptible to these attacks.

Practicality. This type of attack is highly practical due

to three reasons. First, low-cost devices such as Bluetooth

sniffers (e.g., 20 dollars [10]) and smartphones can be eas-

ily obtained to carry out the attack. Second, all traffic in

BLE communication is transmitted in plain text before the

connection is established. This enables the attacker to ob-

tain the MAC address needed for impersonation and to de-

termine the ideal moment for the attack. Third, during

the attack, the user of the victim smartphone will not re-

ceive any notifications or warnings. This is because the

API wx.isBluetoothDevicePaired, which is used

to check the pairing status between two devices, is not avail-

able for iOS devices. As a result, the attack can be deployed

stealthily and without the user’s knowledge.

Defense. To defend against A1, developers may need to uti-

lize cryptographic techniques for authentication, as relying

solely on pairing may not be sufficient to defend against a

fake peripheral injecting messages into miniapps. While

these cryptographic techniques are standard, negotiating

a key between the IoT device and the smartphone can be

challenging. A potential solution is to involve the user in

entering the same password on both devices when they are

first connected, allowing the devices to derive the same

cryptographic key.

(A2) Fake Central Attacks against Peripherals. Miniapps

can also operate as software-defined peripherals (SDPs), al-

lowing developers to add services with API addService
for other native apps or miniapps to utilize. Since these ser-

vices may contain sensitive information, the Bluetooth Spec-

ification provides security levels [13] that devices can cus-

tomize to safeguard their services. For instance, if two de-

vices are paired, the security level of the connection meets

the “encryption” level. At this point, the central device can

access services configured with “encryption”. However, if

the two devices are not paired, the security level is lower,

and the central device cannot access the services that neces-

sitate an encrypted link. We found that WeChat has imple-

mented security levels for Android devices but not for iOS.

The absence of a stronger security level makes miniapps on

iOS devices vulnerable to MitM attacks, which can result in

unauthorized data access.

In this attack, we assume that an Android phone runs a

peripheral miniapp and makes the phone to be a SDP, which

provides services. Another device, which attempts to con-

nect the peripheral, is denoted as the victim central. We as-

sume that the attacker is in the range of the two communicat-

USENIX Association 32nd USENIX Security Symposium 6639

APIs Mobile Desktop

�  �

Name Category Type Precision A S U A S U A S U

createAudioContext Media � � � � � � � � � � �
createBufferURL Storage � � � � � � � � � � �
createCameraContext Media � � � � � � � � � � �
createCanvasContext Canvas � � � � � � � � � � �
createIntersectionObserver WXML � � � � � � � � � � �
createLivePusherContext Media � � � � � � � � � � �
createOffscreenCanvas Canvas � � � � � � � � � � �
createSelectorQuery WXML � � � � � � � � � � �
createWebAudioContext Media � � � � � � � � � � �
getAccountInfoSync OpenAPI � � � � � � � � � � �
getAppAuthorizeSetting Base � � � � � � � � � � �
getAppBaseInfo Base � � � � � � � � � � �
getDeviceInfo Base � � � � � � � � � � �
getLocalIPAddress Device � � � � � � � � � � �
getMenuButtonBoundingClientRect UI � � � � � � � � � � �
getPerformance Base � � � � � � � � � � �
getScreenBrightness Device � � � � � � � � � � �
getSystemInfo Base � � � � � � � � � � �
getSystemInfoAsync Base � � � � � � � � � � �
getSystemInfoSync Base � � � � � � � � � � �
getSystemSetting Base � � � � � � � � � � �
getWindowInfo Base � � � � � � � � � � �

Table 8: Summary of APIs w.r.t Output Discrepancies. � represents Input-Oriented and � represents Output-Oriented.
A means “Available”, S means “Stable” and U means “Unique”. An API is fingerprintable if there is at least one platform
in which it is available (A check), stable (S check), and unique (U check). The fingerprintable APIs have been distinctly
marked in pink for easy identification.

ing devices, and selects the moment when the two communi-

cating devices intend to communicate. First, the attacker pre-

tends to be the victim central and connects to the victim SDP.

Then, the attacker initiates a service access request to the pe-

ripheral. When receiving the request, the peripheral should

have the capabilities to check the status of the link to either

approve or reject the request. For example, for a miniapp

running atop Android, the miniapp can set the security level

to readEncryptionRequired through addService,

which will guide the device to only accept the request when

the link is encrypted. However, there is no protection on the

iOS device, and the attacker can access all the services (e.g.,

the services can be the user’s contact list) on the peripheral

without any protection. Indeed, we have found that SDP ser-

vices are commonly utilized by numerous TV controllers,

and smart home devices (such as weight scales, smart lights,

and smart locks), which are sourced from different vendors

such as Alibaba Group [1] and Zhanzhibao [9].

Practicality. This type of attack is also highly practical for

three reasons. First, since the SDP provides services that are

accessible to all other devices or apps, there is no additional

information required (e.g., MAC address) for the attacker

to impersonate a victim central device. Second, the attacker

can easily use his or her smartphone to connect to the SDP

and consume its services without needing any other devices.

Third, the attack can be carried out quietly since SDPs do

not send notifications to the user when other devices or apps

access their services.

Defense. Since the root cause of A2 is the lack of adequate

security levels for the services SDP, developers can address

this issue by implementing different levels of keys based

on the authentication method used by the two devices.

Additionally, they can track the connection status to ensure

that other miniapps or native apps can only access the

services when a specific security level is met. For instance,

the SDP can detect whether a request is coming from a

device that doesn’t share any keys with the SDP, or shares

a common key produced by cryptographic techniques (i.e.,

encryption level).

6.2 Exploiting API Permission Discrepancies

(A3) Information Collection Attack. APIs for access-

ing sensitive resources lack consistent safeguards across

platforms, enabling attackers to steal privacy-sensitive infor-

mation in Windows based on available resource categories.

Specifically, miniapps on Windows can access resources

even when in the background, allowing a malicious app to

run unnoticed for an extended period. In contrast, miniapps

on Android or iOS can only access system resources when

running in the foreground, and if left in the background for

more than 5 minutes, WeChat on Android and iOS will

terminate their execution to free up resources. This gives a

malicious miniapp on Windows more capability to collect

user data surreptitiously. To confirm these observations, we

developed a miniapp with all the identified resources access

APIs to intentionally collect the resources, and it runs as

expected. We assume that the malicious miniapp can be

installed onto the user’s device (e.g., a Windows device). In

6640 32nd USENIX Security Symposium USENIX Association

the following, we show how the permission discrepant APIs

in Windows can be exploited.

• User Tracking Attacks: A malicious miniapp can track

a user’s location by invoking API getLocation, allow-

ing the attacker to know the user’s whereabouts over time.

• Conversation Eavesdropping Attacks: A

miniapp can activate the user’s microphone (using

wx.startRecord) to eavesdrop on conversations,

recording and uploading the audio files to its back-end.

• Stealthy Photo and Video Capture: A miniapp can

use the user’s camera without their knowledge via

wx.createCameraContext, and take photos and

videos using CameraContext.takePhoto and

CameraContext.record, respectively.

• User Information Stealing: A miniapp can extract

sensitive user information, such as gender, username, and

addresses, by invoking getUserInfo, which should

have been adequately protected to prevent abuse.

Practicality. This attack is highly practical for three reasons.

First, since no permission is required to access sensitive

resources, the user will not be notified when a malicious

miniapp accesses them. The malicious app can disguise its

true intentions by providing seemingly harmless services,

such as a game app, and then records the user’s audio and lo-

cation to send the collected sensitive information to a remote

server. Second, the malicious miniapp on Windows can run

in the background without being terminated by super apps,

allowing the attacker to monitor the victim for an extended

period. Finally, these miniapps are difficult to detect because

when they run on mobile platforms, permissions are actually

required. Therefore, from the super app’s perspective, it is

challenging to determine whether the miniapp is intended to

run on mobile devices or on Windows.

Defense. To address the issue of permission discrepancies,

Tencent must first implement missing permission checks on

resource access APIs for the Windows platform. Currently,

Tencent is working on fixing these issues. For instance, we

observed that WeChat on Windows no longer supports ac-

cessing user locations. In addition to considering the threat

models of different OSs, designers must also consider the

threat models of their services. As discussed, users trust and

install WeChat on Windows, and they do not expect install-

less miniapps to access their resources without authorization.

Web browsers have already implemented some best practices

to address this issue. For instance, regardless of the OS, web

apps running on Chrome must explicitly request permission

to use the camera when needed [44]. WeChat needs to have

its own permission system imposed on miniapps, indepen-

dent of the underlying OS, just like Chrome (on all plat-

forms) does for web apps.

6.3 Exploiting API Output Discrepancies

(A4) Fingerprinting Attacks. This attack collects unique

device information, such as app version, screen resolution,

and installed fonts, through fingerprintable APIs. When

combined, this information can create a unique finger-

print that can be used to track a user’s online behavior

across multiple devices and sessions. While there are

many APIs that can be used to fingerprint users, we select

getSystemInfo to demonstrate the attack given that it

can collect up to 27 types of device-specific information

(please refer to Table 9 in our Appendix-§A for the types

of collected information). Specifically, getSystemInfo
is an API that can collect various types of information about

a device, including its hardware and software specifications,

network information, and other system-related data. To use

getSystemInfo for fingerprinting, a developer can create

a miniapp that calls the API and collects the relevant data.

We assume that the malicious miniapp is installed onto the

user’s device.

The workflow of the attack can be described as follows:

the malicious miniapp first invokes the getSystemInfo
to collect a number of device-specific information (e.g.,

system version, device model). Second, the collected data

can be hashed or otherwise processed to create an identifier

for the device. By combining this information, it is possible

to create a relatively fingerprint for a device, which can be

used to track it across different sessions or applications. The

identifier will be saved for future reference. Finally, the next

time when the attacker would like to fingerprint the device,

the attacker invokes getSystemInfo again to calculate

the identifier. If the identifier matches one of the recorded

identifiers, the device is fingerprinted. Fingerprinting attacks

can lead to privacy violations and potential abuses, such as

targeted advertising or even identity theft.

Practicality. This attack is quite practical as the at-

tack can be conducted stealthily. WeChat miniapps

have the ability to access user ID information, such

as phone numbers (i.e.,getPhonenumber) and profiles

(i.e.,getUserInfo). However, accessing this informa-

tion requires specific permissions granted by the user. In

contrast, fingerprintable APIs are more practical for track-

ing users since they do not require explicit permission

from the user. Interestingly, we have already identified

some malicious miniapps that used those fingerprintable

APIs to track the users. For example, Figure 5 shows

a code snippet of miniapp “wx58f310cf31f0d423”,

which generates an identifier for devices with the same

type and settings based on specific device properties, in-

cluding brand, model, pixelRatio, screenWidth,

screenHeight, system, platform. All those infor-

mation is collected by invoking getSystemInfo, which

is one of our identified fingerprintable APIs. Particularly, the

USENIX Association 32nd USENIX Security Symposium 6641

hash function md5 (line 8) is used to provide a simple and ef-

ficient way to compute an identifier for devices with the same

type and settings. As shown in Table 9 of Appendix-§A,

getSystemInfo can identify certain classes of devices

based on the platform information it returns (such as An-

droid, Windows, iOS, or Mac). Indeed, getSystemInfo
returns not only system information (e.g., platform and

brand) but also user-specific settings information such as

font size and language, which can increase the fingerprinting

capabilities.

It is also surprising to notice that even for this single

API, some returned values differ across different platforms.

While most of the returned values are supported by both An-

droid and iOS, some values are only available in Android or

iOS. For instance, benchmarkLevel indicates the hard-

ware condition of a specific device and is defined by Ten-

cent, ranging from -2 to 50. The higher the value, the better

the device’s performance. Therefore, an extra value is avail-

able for fingerprinting Android devices. Another example

is getScreenBrightness. As discussed, in contrast to

Windows, the getScreenBrightness function on An-

droid provides a greater output precision of up to 16 deci-

mal places (instead of two), which enables a more detailed

differentiation and fingerprinting of both users and devices.

These findings further highlight the close relationship be-

tween cross-platform nature and our results.

Cross-platform information can be leveraged to enhance

the existing fingerprinting techniques. current fingerprinting

techniques typically do not take cross-platform differences

into account, or simply use platform information as one fea-

ture among others to improve their performance. However,

in a cross-platform context, an attacker can leverage knowl-

edge about which APIs are effective on which platforms to

enhance their fingerprinting accuracy. For example, if mal-

ware detects that the running environment is Android, it can

use benchmarkLevel as a feature to produce a fingerprint

(as this API does not work on iOS). Similarly, if the mal-

ware detects that the running environment is Android, it can

use the 16 decimal place output of getScreenBrightness to

fingerprint more users.

Defense. Fingerprinting attacks are difficult to defend

against because they use unique device properties that are

hard to hide without affecting legitimate functionality. In the

web domain, browser extensions and tools can generate false

fingerprint data to mask actual device or browser properties.

Similarly, as the host of miniapps, WeChat could adopt a

similar strategy. If a miniapp requests device-specific infor-

mation too frequently or in an unexpected way (e.g., collect-

ing multiple device-specific information at the same time),

the super app can return randomized data to prevent track-

ing. It can also alert the user if it detects such behaviors to

inform them of potential tracking attempts.

1 function a(t) {
2 var o = ["brand", "model", "pixelRatio",

"screenWidth", "screenHeight", "system",
"platform"];

↪→
↪→

3 // t = [{key: "brand", value: "samsung"}, {key:
"model", value: "SM-S901U1"}, {key: "pixelRatio",
value: 3}, {key: "screenWidth", value: "360"},
{key: "screenHeight", value: "765"}, {key:
"system", value: "Android 13"}, {key: "platform",
value: "android"}] (from wx.getSystemInfo)

↪→
↪→
↪→
↪→
↪→

4 var n = t.reduce(function(e, t) {
5 return o.indexOf(t.key) > -1 ? e + t.value +

"," : e + "";↪→
6 }, "");
7 // n = "samsung,SM-S901U1,3,360,765,Android

13,android"↪→
8 _ = f.hex_md5(n.substring(0, n.length - 1)),

l.setCookie({↪→
9 data: {

10 shshshfp: {
11 value: _,
12 maxAge: 3153e3
13 }
14 }
15 });
16 }

Figure 5: Code snippet of a real world miniapp used fin-
gerprintable API

7 Discussion

Lessons Learned. Our findings differ from existing works

(e.g., lack of permissions, fingerprinting) due to security

issues arising from differences in API implementation

across various platforms. As a super app, WeChat should

ensure uniform implementation or protection of APIs for

security purposes. Although some platforms have imple-

mented security functions and are aware of the problem,

their designers may not be aware of the risk (e.g., missing

permissions on essential resources). Despite differing threat

models for underlying systems, WeChat should assume

responsibility for ensuring consistent security guarantees.

Ethics and Responsible Disclosure. We followed commu-

nity practice by analyzing and launching attacks in a con-

trolled environment using our own accounts and machines.

We developed attack code and malware to demonstrate the

attacks, but kept them private to prevent harm to users,

miniapp developers, and platform providers. We reported

our findings to Tencent and they acknowledged them by

awarding us bug bounties. Tencent’s security engineers have

actively worked with us over the past year, meeting online

multiple times to discuss vulnerabilities and corresponding

fixes, some of which have already been applied. For ex-

ample, for (A3), Tencent has taken action on the Windows

version by completely removing sensitive information ac-

cess APIs: invoking wx.getLocation results in a mes-

sage stating that the API is not supported.

6642 32nd USENIX Security Symposium USENIX Association

8 Related Work

Super App Security. Super apps, despite their popularity

and convenience, are not immune to security vulnerabili-

ties. Lu et al. [39] identified a resource management flaw

that allows attackers to acquire sensitive data without re-

quiring permissions and highlighted the potential for phish-

ing attacks. Meanwhile, Zhang et al. [64] discovered iden-

tity confusion vulnerabilities that could lead to severe con-

sequences, including malware installation. While our study

also focuses on super app security, we specifically address

how to automatically detect and exploit discrepancies in API

execution across different platforms. Zhang et al. devel-

oped MiniCrawler [66], a tool for analyzing security prac-

tices in miniapps. It focuses on aspects such as obfuscation

usage and security-related API invocations. Yang et al. [61]

conducted research on the security check vulnerabilities that

are missing in cross-miniapp channels of miniapps found

on popular platforms such as WeChat and Baidu. Wang et
al. [16] presented TaintMini, a comprehensive framework

aimed at detecting collusion attacks and data leakages among

miniapps through taint analysis. Zhang et al. [68] exam-

ined the misuse and consequences of cryptographic keys

within miniapps, shedding light on the potential risks associ-

ated with improper key handling. Wang et al. [17] revealed

undisclosed APIs in super apps, drawing attention to their

exploitable nature. Additionally, they systematically iden-

tified inconsistencies and derived vulnerabilities in WeChat

APIs across different platforms, offering a comprehensive

overview of potential weaknesses.

Super apps evolved from web browsers, and previous re-

search on browser security, such as web extensions [59,

49, 18, 56], is closely related to our study. For instance,

SABRE [21] tracks in-browser information flow to detect

malicious browser extensions that leak sensitive information,

while Hulk [36] dynamically detects malicious browser ex-

tensions by monitoring their execution. Expector [59] iden-

tifies browser extensions that involve advertisements and de-

tects malicious ones. However, unlike these works, our study

is the first to uncover discrepancies in super apps that can be

exploited for attacks.

Cross Platform App Studies. There are also efforts study-

ing the platform differences on app’s development, security

and privacy. For instance, Han et al. [28] investigated both

Android and iOS apps and examine their difference in the

usage of their security sensitive APIs. Dhillon et al. [22] de-

veloped a framework for evaluating cross-platform develop-

ment tools. Xanthopoulos et al. [58] studied cross-platform

mobile app development approaches. Different from those

works, we studied how the implementation discrepancies af-

fect the security of super apps.

Fingerprinting Attacks. Browser fingerprinting attacks

have been widely discussed in recent years, where the con-

figuration information and hardware information of the user

devices is exposed through JavaScript APIs [15, 41, 54, 40,

41, 14] or HTTP headers [43, 42, 37]. Those attacks can also

be used for various malicious purposes such as breaking re-

CAPTCHA [48, 11] and web authentication [47, 62]. Mean-

while, the topic of detecting fingerprinting attacks on An-

droid has been extensively discussed in the literature, utiliz-

ing both static techniques [24, 12] and dynamic approaches

[60, 52]. When compared with those attacks, our work is

different from at least two aspects: First, our work explores

the attack surface in a novel domain, where the miniapps run

atop super apps (not the web apps running atop browsers).

Second, in addition to the fingerprinting attacks, we also

identified a few types of novel attacks such as info leaks.

9 Conclusion

In this paper, we have shown that there are API discrepancies

for super apps when executed in different platforms and

devices, and such discrepancies can be exploited for various

malicious purposes such as spying and even fingerprinting

users. To automatically uncover these APIs, we have devel-

oped APIDIFF, a tool that is able to automatically generate

and execute the test cases and identify the discrepancies. We

have tested APIDIFF with WeChat, and it has found 109

APIs with existence discrepancies, 17 APIs with permission

discrepancies, and 22 APIs with output discrepancies across

platforms. We have disclosed the vulnerabilities to WeChat,
and some of the vulnerabilities have been patched.

Acknowledgment

We thank our shepherd as well as the anonymous reviewers

for their insightful feedbacks. This research was supported

in part by NSF award 2330264. Any opinions, findings, and

conclusions in this paper are those of the authors only and do

not necessarily reflect the views of NSF.

References

[1] “Alibaba group,” https://en.wikipedia.org/wiki/

Alibaba Group.

[2] “Burb suite fuzz payloads,” https://github.com/1N3/

IntruderPayloads/blob/master/FuzzLists/full fuzz.txt.

[3] “Didi,” https://en.wikipedia.org/wiki/DiDi.

[4] “How facebook, apple, google copied china’s wechat

messaging app,” https://exbulletin.com/tech/274959/.

[5] “Jeb,” https://www.pnfsoftware.com/jeb/android.

[6] “Meituan,” https://en.wikipedia.org/wiki/Meituan.

USENIX Association 32nd USENIX Security Symposium 6643

[7] “Scope list of wechat,” https://developers.weixin.

qq.com/miniprogram/en/dev/framework/open-

ability/authorize.html.

[8] “What is a super app and why haven’t they gone

global?” https://www.cnbc.com/video/2021/07/16/

what-is-a-super-app-and-why-havent-they-gone-

global.html.

[9] “Zhanzhibao,” http://zhanzhibaoqijiandian.mall.

etsstar.com/.

[10] Adafruit , “Adafruit sniffer,” https://learn.adafruit.com/

introducing-the-adafruit-bluefruit-le-sniffer/.

[11] I. Akrout, A. Feriani, and M. Akrout, “Hacking google

recaptcha v3 using reinforcement learning,” arXiv
preprint arXiv:1903.01003, 2019.

[12] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bar-

tel, J. Klein, Y. Le Traon, D. Octeau, and P. Mc-

Daniel, “Flowdroid: Precise context, flow, field, object-

sensitive and lifecycle-aware taint analysis for android

apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–

269, 2014.

[13] S. Bluetooth, “Bluetooth core specification version

5.1,” Specification of the Bluetooth System, 2019.

[14] K. Boda, Á. M. Földes, G. G. Gulyás, and S. Imre,

“User tracking on the web via cross-browser finger-

printing,” in Nordic conference on secure it systems.

Springer, 2011, pp. 31–46.

[15] D. Cameron, “Apple declares war on browser finger-

printing, the sneaky tactic that tracks you in incognito

mode.”

[16] W. Chao, Z. Yue, and L. Zhiqiang, “Taintmini: Detect-

ing flow of sensitive data in mini-programs with static

taint analysis,” in ICSE.

[17] W. Chao, Y. Zhang, and Z. Lin, “Uncovering and ex-

ploiting hidden apis in mobile super apps,” in Proceed-
ings of the 2023 ACM SIGSAC Conference on Com-
puter and Communications Security, 2023.

[18] Q. Chen and A. Kapravelos, “Mystique: Uncovering

information leakage from browser extensions,” in Pro-
ceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp.

1687–1700.

[19] H. Choi, B. B. Zhu, and H. Lee, “Detecting malicious

web links and identifying their attack types.” WebApps,

vol. 11, no. 11, p. 218, 2011.

[20] B. Dean, “Tiktok user statistics (2022),” https://

backlinko.com/tiktok-users.

[21] M. Dhawan and V. Ganapathy, “Analyzing informa-

tion flow in javascript-based browser extensions,” in

2009 Annual Computer Security Applications Confer-
ence. IEEE, 2009, pp. 382–391.

[22] S. Dhillon and Q. H. Mahmoud, “An evaluation

framework for cross-platform mobile application de-

velopment tools,” Software: Practice and Experience,

vol. 45, no. 10, pp. 1331–1357, 2015.

[23] C. Eagle, The IDA pro book. no starch press, 2011.

[24] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun,

L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth,

“Taintdroid: an information-flow tracking system for

realtime privacy monitoring on smartphones,” ACM
Transactions on Computer Systems (TOCS), vol. 32,

no. 2, pp. 1–29, 2014.

[25] Frida, “Firda–dynamic instrumentation toolkit for de-

velopers, reverse-engineers, and security researchers.”

https://frida.re/docs/android/, 2012.

[26] T. GRAZIANI, “What are wechat mini-

programs? a simple introduction - walkthechat,”

https://walkthechat.com/wechat-mini-programs-

simple-introduction/.

[27] G. Group, “Gojek and tokopedia combine to

form goto,” https://newsroom.gojek.com/gojek/

b8zdnwe8rv98aealdlh05i0pf04v4f.

[28] J. Han, Q. Yan, D. Gao, J. Zhou, and R. H. Deng,

“Comparing mobile privacy protection through cross-

platform applications,” 2013.

[29] T. Inc, “55+ wechat statistics - 2022 update,” https://

99firms.com/blog/wechat-statistics/#gref.

[30] ——, “Wechat official documents - wecom pre-

development notes,” https://developers.weixin.qq.com/

miniprogram/dev/dev wxwork/.

[31] ——, “Wecom 2022 annual conference,” https://work.

weixin.qq.com/nl/index/v4Intro.

[32] ——, “WXML,” https://developers.weixin.qq.com/

miniprogram/en/dev/reference/wxml/, 03 2020.

[33] M. IQBAL, “Tiktok revenue and usage statis-

tics (2020),” https://www.businessofapps.com/data/tik-

tok-statistics/, 2020.

[34] U. Iqbal, S. Englehardt, and Z. Shafiq, “Fingerprinting

the fingerprinters: Learning to detect browser finger-

printing behaviors,” in 2021 IEEE Symposium on Secu-
rity and Privacy (SP). IEEE, 2021, pp. 1143–1161.

6644 32nd USENIX Security Symposium USENIX Association

[35] S. H. Jensen, A. Møller, and P. Thiemann, “Type analy-

sis for javascript,” in International Static Analysis Sym-
posium. Springer, 2009, pp. 238–255.

[36] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vi-

gna, and V. Paxson, “Hulk: Eliciting malicious behav-

ior in browser extensions,” in 23rd {USENIX} Security
Symposium ({USENIX} Security 14), 2014, pp. 641–

654.

[37] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty

and the beast: Diverting modern web browsers to build

unique browser fingerprints,” in 2016 IEEE Symposium
on Security and Privacy (SP). IEEE, 2016, pp. 878–

894.

[38] X. Lin, P. Ilia, S. Solanki, and J. Polakis, “Phish in

sheep’s clothing: Exploring the authentication pitfalls

of browser fingerprinting,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 1651–

1668.

[39] H. Lu, L. Xing, Y. Xiao, Y. Zhang, X. Liao, X. Wang,

and X. Wang, “Demystifying resource management

risks in emerging mobile app-in-app ecosystems,” in

Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, 2020, pp.

569–585.

[40] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham,

“Fingerprinting information in javascript implementa-

tions,” Proceedings of W2SP, vol. 2, no. 11, 2011.

[41] M. Mulazzani, P. Reschl, M. Huber, M. Leithner,

S. Schrittwieser, E. Weippl, and F. Wien, “Fast and re-

liable browser identification with javascript engine fin-

gerprinting,” in Web 2.0 Workshop on Security and Pri-
vacy (W2SP), vol. 5. Citeseer, 2013, p. 4.

[42] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,

F. Piessens, and G. Vigna, “Cookieless monster: Ex-

ploring the ecosystem of web-based device fingerprint-

ing,” in 2013 IEEE Symposium on Security and Pri-
vacy. IEEE, 2013, pp. 541–555.

[43] ——, “On the workings and current practices of web-

based device fingerprinting,” IEEE Security & Privacy,

vol. 12, no. 3, pp. 28–36, 2014.

[44] K. Paul and S. Mat, “Capturing an image from

the user,” https://developers.google.com/web/

fundamentals/media/capturing-images.

[45] N. Reitinger and M. L. Mazurek, “Ml-cb: Machine

learning canvas block,” Proceedings on Privacy En-
hancing Technologies, vol. 2021, no. 3, pp. 453–473,

2021.

[46] R. Rodenbaugh, “A breakdown of whatsapp and face-

book’s super-app ambitions,” https://www.techinasia.

com/whatsapp-facebooks-super-app-ambitions.

[47] S. Ruoti, B. Roberts, and K. Seamons, “Authentication

melee: A usability analysis of seven web authentica-

tion systems,” in Proceedings of the 24th international
conference on world wide web, 2015, pp. 916–926.

[48] S. Sivakorn, J. Polakis, and A. D. Keromytis, “I’m not

a human: Breaking the google recaptcha,” Black Hat,
vol. 14, 2016.

[49] D. F. Somé, “Empoweb: Empowering web applications

with browser extensions,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 227–245.

[50] Statista, “Tiktok user statistics (2022),” https:

//www.statista.com/statistics/552671/snapchat-app-

dau-region/.

[51] M. Stiltner, “The top 6 super apps in asia –

and what they reveal about the global trend,”

https://www.rapyd.net/blog/the-top-6-super-apps-

in-asia-and-what-they-reveal-about-a-global-trend/.

[52] K. Tam, A. Fattori, S. Khan, and L. Cavallaro, “Copper-

droid: Automatic reconstruction of android malware

behaviors,” in NDSS Symposium 2015, 2015, pp. 1–15.

[53] Tencent, “WeChat English Documentation,” https:

//developers.weixin.qq.com/miniprogram/en/dev/api/,

06 2020.

[54] R. Upathilake, Y. Li, and A. Matrawy, “A classification

of web browser fingerprinting techniques,” in 2015 7th
International Conference on New Technologies, Mobil-
ity and Security (NTMS). IEEE, 2015, pp. 1–5.

[55] W3C, “Miniapp standardization white paper,” https://

w3c.github.io/miniapp/white-paper/, 2020.

[56] R. Wang, L. Xing, X. Wang, and S. Chen, “Unautho-

rized origin crossing on mobile platforms: Threats and

mitigation,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security,

2013, pp. 635–646.

[57] J. Wu, Y. Nan, V. Kumar, D. J. Tian, A. Bianchi,

M. Payer, and D. Xu, “Blesa: Spoofing attacks against

reconnections in bluetooth low energy.” in WOOT@
USENIX Security Symposium, 2020.

[58] S. Xanthopoulos and S. Xinogalos, “A comparative

analysis of cross-platform development approaches for

mobile applications,” in Proceedings of the 6th Balkan
Conference in Informatics, 2013, pp. 213–220.

USENIX Association 32nd USENIX Security Symposium 6645

[59] X. Xing, W. Meng, B. Lee, U. Weinsberg, A. Sheth,

R. Perdisci, and W. Lee, “Understanding malvertising

through ad-injecting browser extensions,” in Proceed-
ings of the 24th international conference on world wide
web, 2015, pp. 1286–1295.

[60] L.-K. Yan and H. Yin, “Droidscope: seamlessly recon-

structing the os and dalvik semantic views for dynamic

android malware analysis.” in USENIX security sympo-
sium, 2012, pp. 569–584.

[61] Y. Yang, Y. Zhang, and Z. Lin, “Cross miniapp re-

quest forgery: Root causes, attacks, and vulnerability

detection,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, 2022, pp. 3079–3092.

[62] N. Yıldırım and A. Varol, “Android based mobile appli-

cation development for web login authentication using

fingerprint recognition feature,” in 2015 23nd Signal
Processing and Communications Applications Confer-
ence (SIU). IEEE, 2015, pp. 2662–2665.

[63] Zalo, “Zalo: About us,” https://zalo.careers/about.

[64] L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen,

Y. Zhang, G. Yang, and M. Yang, “Identity confusion

in webview-based mobile app-in-app ecosystems,” in

31st {USENIX} Security Symposium ({USENIX} Se-
curity 22), 2022.

[65] Y. Zhang and Z. Lin, “When good becomes evil:

Tracking bluetooth low energy devices via allowlist-

based side channel and its countermeasure,” in

Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS

’22. New York, NY, USA: Association for Computing

Machinery, 2022, p. 3181–3194. [Online]. Available:

https://doi.org/10.1145/3548606.3559372

[66] Y. Zhang, B. Turkistani, A. Y. Yang, C. Zuo, and Z. Lin,

“A measurement study of wechat mini-apps,” in Pro-
ceedings of the 2021 ACM SIGMETRICS/International
Conference on Measurement and Modeling of Com-
puter Systems, 2021.

[67] Y. Zhang, J. Weng, R. Dey, Y. Jin, Z. Lin, and X. Fu,

“Breaking secure pairing of bluetooth low energy using

downgrade attacks,” in 29th {USENIX} Security Sym-
posium ({USENIX} Security 20), 2020, pp. 37–54.

[68] Y. Zhang, Y. Yang, and Z. Lin, “Don’t leak your

keys: Understanding, measuring, and exploiting the

appsecret leaks in mini-programs.” in Proceedings of
the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023.

Property Type Description

brand string Device brand
model string Device model
pixelRatio number Device’s pixel ratio
screenWidth number Screen width in px
screenHeight number Screen height in px
windowWidth number Available window width in px
windowHeight number Available window height in px
statusBarHeight number Status bar height in px
language string Language set in WeChat
version string WeChat version
system string Operating system and version
platform string Client platform
fontSizeSetting number User’s font size in px.

SDKVersion string
Base library version for the
WeChat app

benchmarkLevel number
The device performance grade
(only for Miniapps on Android).

albumAuthorized boolean
The switch that allows WeChat
to use Photos (only for iOS)

cameraAuthorized boolean
The switch that allows WeChat
to use the camera

locationAuthorized boolean
The switch that allows WeChat
to use the location function

microphoneAuthorized boolean
The switch that allows WeChat
to use the microphone

notificationAuthorized boolean
The switch that allows WeChat
to send notifications

notificationAlertAuthorized boolean
The switch that allows WeChat
to send notifications with reminders
(only for iOS)

notificationBadgeAuthorized boolean
The switch that allows WeChat
to send notifications with flags
(only for iOS)

notificationSoundAuthorized boolean
The switch that allows WeChat
to send notifications with sound
(only for iOS).

bluetoothEnabled boolean The system switch for Bluetooth

locationEnabled boolean
The system switch
for the GPS function

wifiEnabled boolean The system switch for Wi-Fi

safeArea Object
Safe area when the screen
is in vertical orientation

Table 9: The information can be collected through
getSystemInfo

A A Fingerprintable API getSystemInfo

As shown in Table 9, getSystemInfo has the ability

to gather 27 types of information, enhancing its effective-

ness in fingerprinting users. It is noteworthy that some

returned values of this API vary across different platforms.

Although most of the returned values are supported by

both Android and iOS, a few values are exclusive to

either platform. We found some malicious miniapps that

tracked users by using this API. For example, miniapp

“wx58f310cf31f0d423” used the getSystemInfo
API to collect device properties such as brand, model,

pixelRatio, screenWidth, screenHeight,

system, and platform to generate a device identifier us-

ing the md5 hash function (line 8 in Figure 5). This allowed

the miniapp to track devices with the same settings and type.

6646 32nd USENIX Security Symposium USENIX Association

