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Abstract
Memory corruption vulnerabilities are often exploited to cor-
rupt sensitive objects and launch attacks. An efficient way
to mitigate such threats is identifying and protecting such
sensitive objects against corruption. However, it is still an
open question that what objects are security sensitive and how
sensitive they are. In this paper, we present the first expert
system based solution AlphaEXP to identify security sensi-
tive objects, in a specific and important target – the Linux
kernel. It works by simulating an adversary to assess whether
an object could be abused to get unintended capabilities and
contribute to exploitation, and marks it as sensitive if so.
Specifically, AlphaEXP first constructs a knowledge graph to
represent the facts of the kernel, including objects, functions,
and their relationships etc. Then, it explores the knowledge
graph to infer potential attack paths for given vulnerabilities,
and marks objects used in the attack paths as sensitive. Lastly,
it evaluates the feasibility of the attack paths in a customized
emulating system, and classifies the sensitivity of objects
accordingly. We have built a prototype of AlphaEXP and
evaluated it on 84 synthesized representative vulnerabilities
and 19 real world vulnerabilities to identify sensitive kernel
objects. AlphaEXP successfully generates attack paths for
most of these vulnerabilities, and finds 50 objects that could
be abused to get writing capability, 81 objects with reading
capability, and 112 objects with execution capability, then
classifies them into 12 levels of sensitivity.

1 Introduction

Memory corruption vulnerabilities are one of the major
threats to software. Adversaries often exploit such vulnerabil-
ities to corrupt sensitive objects and launch attacks, including
information leakage, privilege escalation, and control flow
hijacking. To mitigate threats of memory corruption vul-
nerabilities, there are three types of solutions proposed and
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†Part of the work was done during the visit at Tsinghua University.

deployed in practice: vulnerability patching, software and
system hardening, and object-specific protections.

Patching is the most straightforward and cost-effective so-
lution to mitigate vulnerabilities. However, it cannot mitigate
unknown 0-day vulnerabilities, and requires huge engineering
efforts due to rapidly growing number of programs and vulner-
abilities. On the other hand, software and system hardening
is a promising solution to mitigate vulnerabilities including
unknown ones. Such solutions in general check security in-
variants (e.g., control flow integrity [1]) or set roadblocks
(e.g., DEP [2], ASLR [35]) along the attack paths of vul-
nerability exploitation and are not specific to vulnerabilities.
However, such solutions would introduce performance costs
to the system no matter the system is vulnerable or not.

Another solution that has a good balance between security
and performance is object-specific protection. It works by
hardening a limited number of sensitive objects (e.g., by iso-
lating them on a separate stack, CPI [29]) or checking their
integrity (e.g., by signing pointers with ARM PA [45]) to stop
adversaries to corrupt them to launch attacks. For example,
the iOS system utilizes ARM PA to protect the integrity of
certain pointers abused by known exploits. However, the
list of objects to protect [6] has to grow with the number of
exposed exploits. To name a few, iOS 14.2 starts to protect
pipes data pointers after the exploit [51], and iOS 14.5 signs
ISA pointers after the iMessage exploit [20] is exposed.

Object-specific protection can effectively mitigate a set of
exploits with low overheads, and thus is attractive to vendors.
However, identifying sensitive objects to protect is an open
question. There are three types of solutions: (1) Analyzing
publicly exposed exploits to find out data that are abused.
However, this solution heavily relies on the human experi-
ence, and cannot find sensitive data that have not been abused
yet. (2) Classifying objects based on developers’ intentions
and the program’s semantics. However, its results (i.e., sensi-
tive objects) may deviate from the adversary’s. (3) Analyzing
the target code following specific attack knowledge. For ex-
ample, ELOISE [12] relies on information leak knowledge
to identify elastic objects in kernel to bypass KASLR [17].

USENIX Association 32nd USENIX Security Symposium    4229



static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
{

...
struct tipc_aead_key *skey = NULL;
...
u16 size = msg_data_sz(hdr);
u8 *data = msg_data(hdr);
...
skey = kmalloc(size, GFP_ATOMIC);
...
skey->keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME); 
memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->keylen);
...

}
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struct tipc_aead_key {
char alg_name[TIPC_AEAD_ALG_NAME];
unsigned int keylen;
char key[ ];

};

struct msg_msg {
struct list_head m_list;
long m_type;
size_t m_ts;
struct msg_msgseg *next;
void * security;

};

struct tty_struct {
int magic;
struct kref kref;
struct device *dev;
struct tty_driver *driver;
const struct tty_operations *ops;
int index;
...

};

Packet (from userland):
Header size: X => X*4
Message size: Y
Content:

… dead beef dead beef dead beef dead beef 
ffff ffff …

alg_name

keylen

key

sizeY-X*4 overflow

tty_operations
(function table)

(a) Vulnerable Function (c) Structure Definition

(b) Vulnerability

tty_ioctl

Fake
function table

RIP hijack

key

ops

tty_struct

tty_operations
(function table)

msgrcv

Overread

Leak addr.

key

ops

tty_struct

m_ts

msg_msg

Heap manipulation

(d) Exploitation

Figure 1: An example vulnerability from CVE-2021-43267 [34]. (a) shows the source code of the vulnerability. (b) shows how
userland data triggers the vulnerability (d) shows how the exploit works [21], and (c) shows the definition of related objects.

SLAKE [13] follows heap manipulation knowledge to iden-
tify victim objects and spray objects. However, they are not
generic solutions for identifying sensitive data, and cannot
distinguish the sensitivity of the data.

Therefore, a general solution to identifying and classifying
sensitive objects is highly demanded. To build such a solution,
we have to answer two core questions: what are sensitive
objects and how sensitive are they. First, there are thousands
of objects in the kernel, and protecting all of them would
have overwhelming overheads. Therefore, it is reasonable
to only protect sensitive objects, i.e., which could be abused
by adversaries to get unintended capabilities and exploit
a vulnerability. Second, objects should be classified into
different sensitivity levels, so that defenders could prioritize
objects to protect when given limited resource budgets. We
argue that objects are more sensitive if attack paths that abuse
them to launch attacks have a higher feasibility and impact.

In this paper, we present the first expert system [31] based
solution AlphaEXP to identify sensitive kernel objects. Given
the definition of sensitive objects and sensitivity, AlphaEXP
works by simulating an adversary to assess whether an object
could be abused and the feasibility of abusing it to launch
attacks. Informally, an adversary first analyzes the kernel and
understands its objects and code, then explores the vulnera-
bility’s effect on these objects and hypothetically infers their
further effects, and lastly finds a candidate attack path able to
finish an exploitation. To simulate an adversary, AlphaEXP
first constructs a knowledge graph to represent the facts of
the kernel code, including objects, functions and their rela-
tionships etc. Then, it explores the knowledge graph from
the starting point specified by the given vulnerability to in-
fer potential attack paths1. Objects that are abused in the

1AlphaEXP does not aim at generating exploits, and is not able to do
so. Many engineering efforts are needed to construct exploits from attack
paths. Thus, we ensure our work cannot be abused by adversaries that aim at
generating exploits and mitigate the potential ethic issues.

attack paths will be marked as sensitive. Further, AlphaEXP
evaluates the feasibility of attack paths in a customized envi-
ronment, and classifies the sensitivity of objects accordingly.

We have implemented a prototype of AlphaEXP based on
KINT [48], Syzkaller [19], and Soufflé [28], and evaluated
it on 84 synthesized representative vulnerabilities and 19
real world CVE vulnerabilities. The results showed that,
AlphaEXP could generate working attack paths for most of
them, and finds 50 sensitive objects that could be abused to
get writing capability, 81 with reading capability, and 112
with execution capability. Further, AlphaEXP classifies these
sensitive objects into 12 sensitivity levels.

In summary, this paper makes the following contributions.

• We propose the first expert system AlphaEXP to identify
sensitive kernel objects and classify their sensitivity, able
to help defenders build cost-effective defenses.

• We construct a knowledge graph of the kernel with
358,383 entities and 440,741 relationships.

• We have implemented a prototype of AlphaEXP, and
reported several hundreds of sensitive kernel objects and
classified them into 12 sensitivity levels.

2 The Problem Statement
2.1 Running Example
As shown in Figure 1 (a), the vulnerability locates at line
13, and is triggered when when the value of user-controlled
skey->keylen (line 11) exceeds the size of the buffer
skey->key. Note that, as an elastic object, the size of the
buffer is determined by the user, as shown in line 9 and Fig-
ure 1 (b). Moreover, the content to copy at line 13 is fully
taken from userland. So, this vulnerability allows an adver-
sary to write arbitrary values to out-of-bound memory.

The exploit shown in Figure 1 (d) makes use of structures
msg_msg and tty_struct as victim objects. With elaborate
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Figure 2: The sketchy procedure of exploitation.

heap manipulation, an object of msg_msg could be allocated
following the overflowed object of tipc_aead_key. Then the
field m_ts, which controls the read size of the msgrcv(), can
be tampered by the vulnerability, which will cause an over-
reading to leak information including the address of code and
heap segment in tty_struct, to bypass the KASLR [17].
Similar to this process, an object of tty_struct could be
allocated following tipc_aead_key, so that the vulnerability
could tamper with the field ops, which is a vtable pointer. If
any function in the vtable, e.g., tty_ioctl(), is called, the
program counter (PC) will be hijacked to execute ROP [36]
gadgets after stack pivoting.

2.2 Challenges: Identifying Sensitive Objects

As shown in the running example, objects of the class
msg_msg and tty_struct could be abused in an exploit to
launch attacks, so they should be marked as security sensitive.
But exploits are valuable and rare resources, we cannot rely
on exposed exploits to identify all sensitive objects that would
be abused by an exploit (maybe in the future).

Instead, we need a generic solution to identifying and clas-
sifying potential sensitive objects before they are abused by
adversaries in the future. To this end, we have to answer two
core questions: what are sensitive objects and how sensitive
are they. It is not simple due to the following challenges:

First, heuristics-based solutions may have high false pos-
itives in recognizing sensitive objects. For instance, we
cannot simply mark objects with a specific characteristic
as sensitive, e.g., whether they have pointer fields. There
are thousands of types of objects in the kernel, which have
all kinds of characteristics. For example, the structure
of scsi_request is similar to msg_msg, and the opera-
tion blk_complete_sghdr_rq() has similar functionality as
msgrcv. However, unlike msg_msg, object of scsi_request
are not security sensitive, because we cannot find a time win-
dow to abuse scsi_request object.

Second, there are no quantitative methods to measure the
sensitivity of objects yet. For example, msg_msg is widely
used in exposed exploits [21, 52]. Therefore, it should have a
high sensitivity. But there are no metrics explaining why it is
more sensitive and should be prioritized to protect.
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Figure 3: Illustration of the exploit generation procedure.

2.3 Characterizing Sensitive Objects

To identify sensitive objects, we have thoroughly analyzed
the general procedure of kernel exploitation and how sensi-
tive objects contribute to the procedure, to understand the
characteristics of sensitive objects. As shown in Figure 2, the
general exploitation procedure has two phases, Capability
Upgrade (CU) and Capability Stitching (CS).

After a vulnerability is triggered, the victim program
enters a weird machine [16], where adversaries could get
unintended capabilities, which are the capabilities of
memory manipulation (e.g., reading, writing and even exe-
cuting memory) that are not intended by the program. In
general, the entry capabilities that the adversary gets
at the time of vulnerability triggering, which represents the
consequence of abusing such objects, in general are weak,
i.e., the consequence is superficial. To launch attacks, the
adversary first needs to enter the CU phase to upgrade entry
capabilities to more powerful capabilities, and eventually
to exit capabilities that are powerful enough to fulfill
the requirements for exploitation. Specifically, there are two
typical exit capabilities in kernel exploitation: ① the
combination of reading capability and arbitrary code execu-
tion (ACE) capability; ① the combination of reading capa-
bility and arbitrary address writing (AAW) capability. They
could be utilized to bypass mitigations like KASLR [17] and
accomplish attacks like local privilege escalation.

As shown in Figure 2, unintended capabilities are
upgraded gradually by the CU phase. In general, it utilizes
the weak capability to tamper with certain data/objects, which
will be accessed by legitimate code in the original program.
The latter access will turn into a new functionality that
the program does not intend to provide, and the adversary
gets new and maybe stronger capabilities. Objects that are
tampered in the CU phase are therefore sensitive.

After the entry capability is gradually upgraded to
exit capabilities, the CS stage will try to stitch these
capabilities together to construct a complete exploit, which
could implant shellcode and achieve privilege escalation, etc.
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Figure 4: Overview of our solution AlphaEXP.

2.4 Intuition: Attack Simulation

Since sensitive objects are ones that could contribute to ex-
ploitation, a straightforward solution to identify them is au-
tomated exploit generation [3]. However, it is still an open
challenge to have an end-to-end AEG solution for real world
large applications like the kernel, due to bottlenecks of sym-
bolic execution, automated heap manipulation, etc.

Instead, we take a different approach that follows human
experts to construct synthesized exploits, as shown in Fig-
ure 3. Experts first reverse engineering the target program
to obtain some knowledge (e.g., what is the consequence of
certain inputs), then conceive an input (i.e., attack action se-
lection) in their mind. Next, they will assess the program
state after processing the input, and check whether it matches
the purpose of exploitation (i.e., inference) based on their
exploitation experience. If so, they will repeat this process to
conceive further inputs; Otherwise, they will step back and
try different inputs. This process stops until a working exploit
plan (i.e., attack path) is set up, by then the experts will try to
generate an exploit to test and modify it if necessary.

Following this paradigm, we propose to construct an ex-
pert system, which first builds a knowledge base of the target
program and then explores the knowledge base to generate
synthesized attack paths. If an object is abused in a synthe-
sized attack path, it will be marked as sensitive.

3 Our solution: AlphaEXP

3.1 Threat model & Assumptions

First, we assume the most commonly enabled mitigations in-
cluding SMEP, SMAP [14], KPTI [15], and KASLR [17] are
deployed by Linux kernel. Second, we assume the adversary
only has a single vulnerability, and our approach only iden-
tifies objects that are useful for the exploit of an individual
vulnerability rather than exploits involving multiple vulner-
abilities. Third, we only generate synthesized attack paths
rather than working exploits, and therefore assume the kernel
is in an idle state [53] which is easier to assess, and allows
our system to focus on sensitive object assessment without
considering the reliability of exploitation. Finally, we assume
the adversary has the ability to manipulate the heap layout
required by the attack path.

3.2 Overview

We follow expert experience to identify sensitive objects.
Firstly, experts have to be familiar with the kernel objects, so
as to select sensitive ones from them. Secondly, they infer
which objects are sensitive, according to the characteristics
of the kernel and the experience of exploitation. Finally, they
classify those objects based on the feasibility and impact of
the associated candidate exploits.

Inspiring by knowledge engineering [44], we present Al-
phaEXP to simulate the above process and identify sensitive
kernel objects. As shown in Figure 4, AlphaEXP consists of
three modules: knowledge graph construction, attack path
generation, and sensitive object classification. The knowl-
edge graph construction module gathers information of the
structures and usages of objects in memory, making Alpha-
EXP familiar with kernel objects. The attack path generation
module infers which objects can be applied to exploitation,
so as to determine which objects are sensitive. The sensitive
object classification module classifies sensitive objects based
on the applied conditions to abuse the objects and the effects
achieved of capability upgrades.

3.3 Knowledge Graph Construction

In order to imitate the expert, which has the target program
knowledge, a knowledge base is needed for expert system.
Since kernel data has many types and many relationships,
we choose knowledge graph [37] to store the knowledge.
To construct knowledge graph, there are two major stages:
ontology construction and knowledge extraction.

3.3.1 Ontology Construction

To build the knowledge graph, we need to construct the on-
tology first, which represents heterogeneous knowledge for
kernel code (i.e., the ontology encompasses the categories,
properties, and relations between the kernel objects, kernel
functionalities, and inputs). According to the sensitive object
characteristics described in Section 2.3, the ontology should
reflect the relationship between userland operations (i.e., in-
puts) and kernel functionalities, so we design the entities and
relations in the ontology based on objects and functionalities,
as shown in Figure 5.
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Figure 5: The ontology of knowledge base.

Since objects play an important role in the exploitation,
we have an Object entity in the ontology. An exploit is
often strongly related to the location and layout of the object,
therefore we introduce location- and layout-related entities.
Regarding the location, a kernel object is often allocated
from slab caches, therefore we introduce the Cache entity.
Regarding the layout, objects may have member variables,
among which variables of the Pointer and Integer type are
crucial for exploitation. For instance, variables of the pointer
type may be the parameter of memory release functions, and
integer variables may be the parameter of memory allocation
functions. Therefore, we introduce the Pointer and Integer
entities to the ontology.

For kernel functionalities, we introduce the R_W, Call,
Release and Allocate entities, as shown in Figure 5. Read-
ing/writing and executing are common operations on sensitive
objects, playing an important role in exploitation, therefore
we have the R_W and Call entities. In addition, allocating and
releasing of objects are also crucial to exploitaiton. Therefore,
we introduce corresponding Release and Allocate entities
in the ontology.

Finally, the knowledge graph should record which userland
operations can invoke these kernel functionalities. Because
those userland operations are attack actions we can carry out,
we need to infer the effects of these actions. Userland_OP in
the Figure 5 is the embodiment of the above.

3.3.2 Knowledge Extraction

Knowledge extraction is the process of obtaining knowledge
from the kernel and organizing it according to the ontology
to build the knowledge base. As shown in Figure 6, it con-
sists of two steps: static knowledge extraction and dynamic
knowledge extraction.

Static knowledge extraction In the open source Linux ker-
nel, most knowledge can be obtained through static analysis,
such as the object’s structure and size, and could be fur-
ther used to build entities and relationships in the knowledge
graph, except for those related to Userland_OP.

First, we translate the kernel code into LLVM [30] IR (In-
termediate Representation) and extract information about the
kernel objects and their structure from the IR.

Then, we extract the knowledge about the kernel func-
tionalities. There are many memory management related
APIs [46] provided by the kernel (e.g., copy_from_user(),
copy_to_user(), kmalloc(), kfree()), that are often used
by other functions to implement read, write, allocate and re-
lease functionalities. For allocating APIs, we check whether
the type of the return variables is object and record it in the
knowledge graph if so.

Further, we can determine which objects affect the param-
eters of kernel functionalities by tracing back these use-def
chains of the APIs’ parameters. Unlike the regular use-def
chain tracing, we do not aim to trace back all dependencies
of the parameters. Instead, we focus on identifying whether
arguments come from an object (or its member variables),
and record that object in the knowledge graph if so. We do
not need to search for the original source of the parameter,
but only the nearest source object, since the knowledge graph
contains the relationships between objects which can be in-
dexed to retrieve the original source object. Specifically, for
writing, reading, and releasing APIs, we track the use-def
chains of their parameters and determine the type of each
definition point. If a definition of the object type is found, we
stop and record it, otherwise we further track its definition
source.

Most of these analyses can be done in intra-procedural.
The inter-procedural analysis is only required when
the definition point is at the function parameter (e.g.,
vmw_execbuf_cmdbuf(..., void *kernel_commands)
calls copy_from_user(kernel_commands, ...)), in
which case we trace back to the upper level function.

Aliasing can also impact our analysis and may lead to
false negatives and false positives. For instance, some alias
pointers may point to the same memory pointed by a member
pointer of an object, and operations (e.g., read or write) on
the alias pointers may affect the use-def chains related to the
object, which may make the object sensitive to exploitation.
To reduce such false negatives, we use the AliasAnalysis pass
provided by LLVM to perform alias analysis and recognize
such alias pointers. However, an imprecise alias analysis
may introduce non-alias pointers and cause false positives
to sensitive object identification. So, we only use MustAlias
pointers, rather than PartialAlias or MayAlias ones.

In addition, we focus on every call instructions, which
call function pointers, in LLVM IR (e.g., call i64 %1(i8*
%2, i8* %2)). By tracking the use-def chain of the function
pointer being invoked, we will record it in the knowledge
graph if we find that it originates from an object.

Dynamic knowledge extraction This step is to extract the
relationship between userland operations and kernel function-
alities, and the relationship can be represented as which kernel
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Figure 6: The process of knowledge extraction.

functionalities will be triggered by which userland operation.
The knowledge extracted in this part can fill the UserlandOP
and its related relationships. Since the input construction is
difficult for static methods, we take fuzzing to generate the
input, and analyze it by dynamic analysis.

We first instrument the kernel source code at the APIs of
kernel functionalities to monitor whether they are executed.
Then, we utilize fuzzing to generate test cases, which consist
of userland operations that invoke the target functionalities.
Finally, we save the test cases as UserlandOP entities in the
knowledge graph and build the relationship with the relevant
functionalities, as shown in Figure 6.

3.4 Attack Path Generation
As soon as we collect enough information to represent the
facts of the kernel, we consider exploring the knowledge
graph to infer potential attack paths for given vulnerabilities.

To generate an attack path, AlphaEXP requires three com-
ponents: Attack Action Selection, which selects a userland
operation input to the kernel; Inference, which infers the
effectiveness of the userland operation in the kernel; and
Scheduling, which determines whether the inference result is
as expected, and also decides whether to add an attack action
to the attack path.

3.4.1 Attack Action Selection

Attack actions are the userland operations invoked by the
adversary to achieve unintended capability upgrades. All
of them are UserlandOPs collected in Knowlege Extrac-
tion (Sec 3.3.2).

AlphaEXP cannot determine what the most appropriate
action is at the moment without inference, because the effect
of the attack path is holistic and the choice of attack action
is local. Therefore, AlphaEXP adopts a random selection
of attack action with heuristics that can reduce the selection
range, and leave the task of ensuring the effectiveness of the
attack path to scheduling.

AlphaEXP prioritizes actions based on two factors: kmem-
cache and the current unintended capabilities. First, the
kmem-cache often determines the area where objects are allo-
cated. AlphaEXP prioritizes actions that may yield or affect
objects located in the same kmem-cache as objects allocated

in the existing (partial) attack path. Second, if the current un-
intended capability has already reached its maximum strength,
then AlphaEXP deprioritizes actions that are only relevant to
kernel functionalities with that capability. For example, when
current unintended capabilities allow adversaries to read arbi-
trary addresses, then AlphaEXP stops selecting actions (i.e.,
UserlandOPs) that only involve the "Reading" functionality.

3.4.2 Inference

Given a selected attack action, AlphaEXP then explores the
knowledge graph to infer the effect of the action in kernel.
Specifically, we implement automated reasoning based on
Datalog [8], which could deduce conclusions from facts and
rules. Apart from schemas and rules [41] in our deductive
systems [25], we additionally introduce a framework for in-
ference.

Schemas We have three types of schemas in our Datalog
problem setting: knowledge graph, memory state and unin-
tended capability, as shown in Table 1.

The schemas of knowledge graph are all from the relations
of the knowledge graph. For example, CacheOf describes the
belongsTo relationship between Object and Cache.

The schemas of memory state are designed to infer the
resulting memory state that will arise when kernel executes
userland operations. Our emphasis lies on pointers and mem-
ory, as they provide a comprehensive description of the mem-
ory state. Each pointer and memory possesses its own status,
and there exists an intricate interplay between pointers and
memory. Therefore, we design various schemas including the
PointTo, PointerType, PointerStatus, etc. It is worth
noting that DestroyPointer is a particular schema designed
to distinguish different memory release methods. We define
two types of memory release: with and without vulnerabil-
ity involved. In some cases, the memory release operation
may have an invalid (e.g., dangled) pointer as argument and
involves a vulnerability, and DestroyPointer will not be
reasoned. In the most common cases, the memory release has
no vulnerability, and DestroyPointer can be used to infer
further facts.

The schemas of unintended capability aim to deduce the
unintended capabilities of the current inference state. We
categorize these capabilities into three types: reading, writing,
and execution. Each class of capabilities is described in its
parameters and the way of invoking, with the more special
ones being the arbitrary address read (AAR), arbitrary ad-
dress write (AAW), and arbitrary code execute (ACE). Those
capabilities are more powerful and can already do Arbitrary,
so we only describe the way of invoking.

Rules We design two sets of rules for the categories of
Memory and Capability, as illustrated in Table 1. Memory
rules are developed based on the allocation of kernel memory.
While they do not comprehensively depict the intricate mem-
ory management mechanism of the kernel, we believe they are
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Table 1: List of schemas and rules in the inference engine.

UserlandOP(op: symbol) Performing the userland operation op, and each inference needs to start with a UserlandOP.
CacheOf(obj: symbol,cache: symbol) The kmem-cache of obj is cache.

Knowledge Graph Invoke(op: symbol, func: symbol) The userland operation op can invoke functionality func.
MemberOf(obj:symbol,member:symbol,offset:number) The object obj has the member member at offset offset.
CanWrite(func:symbol,ptr:symbol,size:number) The functionality func can write to the pointer ptr with size size.

... ...
DestroyPointer(ptr: symbol) Destroying the pointer ptr. (e.g., ptr=0;)
PointTo(ptr: symbol, mem: symbol) The pointer ptr point the memory mem.
PointerType(ptr: symbol, obj: symbol) The type of pointer ptr is obj.

Schemas Memory State PointerStatus(ptr: symbol, status: symbol) The status of pointer ptr is status, and status should be alived or dead.
MemStatus(mem: symbol, status: symbol) The status of memory mem is status, and status should be inuse or freed.
Occupy(mem: symbol, obj: symbol) The object obj is allocated to memory mem.

... ...

NewWrite(func:symbol,ptr:symbol,size:number)
Generated new writing capability func, which can write content with length size to pointer ptr,
and it can be directly inferred to produce a new CanWrite.

Unintended Capability AAW(func1:symbol,obj1:symbol,func2:symbol,obj2:symbol)
The Object obj1 can modify the pointer of object obj2 through function func1, enabling arbitrary
address writing through function func2.

... ...
Occupy(M,T) :- MemStatus(M,"freed"),MemCacheOf(M,C),CacheOf(T,C),CanAlloc(Y,T,L,M2,P2),UserlandOP(X),Invoke(X,Y).
PointerStatus(P,"alive") :- CanAlloc(Y,O,S,M,P),UserlandOP(X),Invoke(X,Y).
PointTo(P,M) :- CanAlloc(Y,O,S,M,P),UserlandOP(X),Invoke(X,Y).

Memory PointTo(P,M) :- PointTo(P,M2),Occupy(M2,O),CanAlloc(Y,O,S,M,P),UserlandOP(X),Invoke(X,Y).
Rules MemStatus(M,"inuse") :- CanAlloc(Y,O,S,M,P),UserlandOP(X),Invoke(X,Y).

MemStatus(M,"inuse") :- Occupy(M,T).
... ...

NewWrite(N,NP,Ns) :- CanWrite(N,P,Ns),PointTo(P,M),PointTo(NP,M).
Capability AAW(N1,P1,N2,P2) :- CanWrite(N1,P1,Ns),MemberOf(P1,P2,offset),Ns>offset,CanWrite(N2,P2,Ns).

... ...

adequate for inferring attack paths. As for Capability rules,
they are formulated based on our experiences of exploitation.
For example, when the pointer with the write functionality
is contaminated, then it may cause arbitrary address write,
which is summarized in the practice of exploit.

It is worth mentioning that since we have many rounds of
inference, most of our facts are extensional database (EDB),
and we will input the results of the previous round in the next
round. Therefore, to prevent inference from not converging,
our rules all have such a subgoal, which is UserlandOP or
is inferred from UserlandOP. This way, we ensure that the
inference converges with only one new UserlandOP input.

Framework Our goal is inferring the effect of attack ac-
tions, but directly applying Datalog is not feasible. Data-
log cannot handle contradictory facts, yet this often hap-
pens during reasoning of memory state. For example,
assuming the current status is MemStatus(A,"inuse")
and we enter a UserlandOP that releases A, then we
should infer that MemStatus(A,"freed"). Obviously,
MemStatus(A,"inuse") and MemStatus(A,"freed") are
contradictory, but Datalog cannot handle the situation, lead-
ing to the existence of contradictory facts in the inference
state. In this case, the reasoning of the unintended capability
will be problematic.

Therefore, we design a two-level framework to address this
issue. The first-level engine reasons about the memory state,
and the second-level reasons about the capability. After the
first level of inference, the memory state will get updated or
even become contradictory. Then, we add a fact adjusting
stage between the two engines, which works as follows:

• The status of memory and pointers are based on the
result of the latest operation, overriding previous status.

• Once the pointer state is dead, the associated pointing
relationship is removed.

• If a pointer points to two memory regions, then these
two memory regions must be the same (e.g., a memory is
reallocated after freed). We create a new memory entity
to unify the two memory regions, and make the pointer
point to the new memory entity.

3.4.3 Scheduling

After attack action selection and inference, multiple attack
sub-paths will be generated, and AlphaEXP will evaluate
them and repeat the process until it finds a suitable attack sub-
path that leads to exploitation. AlphaEXP schedules the input
for the attack action selection (i.e., along which attack sub-
path to select) based on the inference results, and generates
the new attack sub-path for scheduling. This cycle continues
until an attack path emerges that satisfies the exploitation.

The workflow is shown in Algorithm 1. Choose_State
selects states based on probability; Cala_CapabilitiesGap
calculates the gap with exit capabilities; Get_Action is the
Attack Action Selection, and Infer_Capability performs
effect inference through the Inference.

Specifically, we set up a state pool to store the result of
each inference state. An inference state contains information
about which attack actions were performed (i.e., attack sub-
path), the current unintended capabilities, and the effects of
these attacks in the kernel.

From the state pool, AlphaEXP will choose one state and
then select a new attack action, inferring its effect for updat-
ing the state. No matter what the effect is, AlphaEXP will
add the new state to the state pool, simulating the extensive
projections in the mind of the exploit expert.

A vital issue in the above process is how to choose the
state. As described in Section 2.3, exploitation should be
done along the direction of capability upgrading. Therefore, it
is preferable to choose the state with the strongest unintended
capabilities, but this may lead to a local optimum. Since
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Algorithm 1: Workflow of Scheduleing
input : Statevul ,Setaction,Captarget
output :Pathattack

1 set Pathattack = /0 ;
2 set Setstate = /0 ;
3 for i = Setaction.begin; i ! = Setaction.end; ++ i do
4 set state = Copy_State(Statevul);
5 append i to state.path;
6 state.Length← 1;
7 state.Cap← Infer_Capability(state.path) ;
8 state.Value← Calc_CapabilitiesGap((Captarget , state.Cap)) ;
9 append state to Setstate;

10 end
11 while True do
12 set CurrentState = Choose_State(Setstate) ;
13 set Actionnew = Get_Action(Setaction);
14 set NewState = Copy_State(CurrentState);
15 append Actionnew to NewState.path;
16 set NewCap = Infer_Capability(NewState) ;
17 if NewCap > NewState.Cap then
18 NewPath.Length← 0;
19 NewState.Value← Calc_CapabilitiesGap((Captarget ,

NewCap)) ;
20 else
21 NewPath.Length ++;
22 NewState.Value← NewState.Value / NewState.Length;
23 end
24 NewState.Cap← NewCap;
25 append NewState to Setpath;
26 if NewCap >= Captarget then
27 PathAttack ← NewState.path;
28 return PathAttack

29 end
30 end

some exploits require multiple actions before the effect can
be shown, the state with the stronger unintended capability in
a single step is not necessarily better than the other state.

Therefore, we set a value for each state to indicate the prob-
ability of being selected, and the value is updated according
to the following principles.

① The initial value indicates the gap between the cur-
rent and the exit capabilities. There are two types of exit
capabilities, both of which require an unintended read capabil-
ity, as well as an AAW or ACE capability. Therefore, the gap
is calculated from two dimensions: one is reading capability,
and the other is writing and execution capability.

AlphaEXP assigns a score of one for each dimension, and
the gap is the distance between the score and the value of two.
The specific scoring is shown in Table 2.

② Larger with increased unintended capability. If the
unintended capability of the state has been upgraded, the
probability of success along this attack path increases. Con-
sequently, the probability of that state being chosen should
also increase.

③ Smaller without increased unintended capability.
Conversely, states without upgraded unintended capability
should have a smaller probability of being selected. But we
should not give up the state either, and once the unintended
ability of the state is subsequently upgraded, its probability
will also be significantly increased.

④ The magnitude of the reduction is proportional to the

length of the attack subpath, where no capacity upgrading
has occurred. Generally, as the exploit process advances,
fewer actions are needed to enhance the unintended capability,
because the difficulty of upgrading the ability will get lower
as the capability gets stronger. Therefore, we believe that as
the length of the attack subpath, where no capacity upgrading
has occurred, increases, we should give it a heavier penalty
when it fails to upgrade unintended capability again.

Table 2: List of values for capabilities.

Type Parameter Value Description

Reading Length (0,1) Any one of the
parameters is controlledReading Pointer

Writing Length
(0,0.125,0.25,
0.375,0.5)

Number of bytes of the
control length parameter*

Writing Pointer (0,1)
The parameter
is controlled

Execution Pointer (0,1)
The parameter
is controlled

*: Length parameter always occupies four bytes (even if it occupies 8 bytes, the
length of 4 bytes of control is enough to complete the goal of the level).

3.5 Sensitive Object Classification
With limited defense resources, objects with high sensitivity
levels should be protected as a priority, so sensitive objects
should be classified into different levels.

The object’s sensitivity depends on how useful it is in
exploitation, and this practicality is reflected in: the difficulty
of its application and the extent of its effect. Therefore, the
sensitive object classification module analyzes many attack
paths and classifies the sensitive object used in paths based
on applied conditions and effect achieved.

The factor of the applied conditions is decisive for the
sensitivity classification. Objects with high requirements for
applied conditions will not be very high in sensitivity, even
if the effect achieved is well. It is difficult to upgrade entry
capabilities to exit capabilities via a single action, due to the
characteristics of sensitive objects and requirement of exit
capabilities (as described in Section 2.3). Instead, whether
it is easy to apply in vulnerability exploitation becomes the
focus.

3.5.1 Applied Conditions Assessment

Applied conditions are divided into three factors: require-
ments for the kmem-cache, requirements for the entry capa-

Table 3: List of classification indicators.

Perspective Factor Description

kmem-cache
Can be applied in the exploitation of different
vulnerability object memory kmem-cache.

Applied Conditions entry capability
Modification of sensitive object requires unintended
writing capability over 0x80 size

vulnerability type
Sensitive object can both be applied in the
exploitation of overflows and UAF

writing capability
Sensitive object can be used to upgrade writing
capability in exploitation

Effect Achieved executing capability
Sensitive object can be used to upgrade executing
capability in exploitation

reading capability
Sensitive object can be used to upgrade reading
capability in exploitation
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bility, and requirements for the type of vulnerability, as shown
in Table 3.

In exploit development, some objects can only be allocated
to a fixed kmem-cache, while some objects can be allocated
to different kmem-cache for their elastic attributes. For exam-
ple, sembuf in do_semtimedop() is allocated with fix size,
so it can only be applied to the scenario when the kmem-
cache of vulnerability object is the same as its. In contrast,
drm_property_blob is allocated with the user-controllable
size, so it can be applied to various scenarios with different
kmem-cache vulnerability objects.

Some objects require a strong entry capability, while oth-
ers are not so demanding. For example, to exploit via
tty_struct, we need to overflow to its 41st member, while
via seq_operations, we only need to overflow to its first
member. Objects with small overflow length requirements
and less pressure on their data faking (only the data above
the target pointer needs to be faked) tend to be more widely
used.

Some objects can only be applied to a fixed type of vul-
nerability, while others can be applied to various types of
vulnerabilities. For example, in the lifecycle of setxattr(),
allocation and writing are continuous and inseparable, so it is
challenging to be corrupted by a buffer overflow vulnerability.
Most of the time, it can only be used for UAF to occupy the
freed memory.

Of these conditions mentioned above, kmem-cache require-
ment is the most important, as it distinctly represents the
range of possible applications for that sensitive object. Entry
capability requirement is second, often determining whether
that object is more beneficial. The last is the vulnerability
type requirement, because even if an object can be widely ap-
plied to a single vulnerability type, it can still be very harmful.
However, even if an object can be applied to both UAF and
overflow with more demand in terms of cache and capability,
its usage is still limited.

3.5.2 Effect Achieved Assessment

The effect achieved is evaluated in factors of the ability to up-
grade reading, writing, and execution unintended capabilities,
as shown in Table 3.

Some objects can help the exploit development to upgrade
both the reading and writing unintended capabilities, such as
msg_msg, so it can achieve better results. In contrast, some
objects can only achieve an effect, and then the object is
limited in exploitation.

In terms of the importance of the three unintended capabil-
ity upgrades, writing unintended capability is most critical,
because writing unintended capabilities can often cause the
birth of other new unintended capabilities, such as modify-
ing virtual tables and modifying read pointers to produce
the reading unintended capability and execution unintended
capability. Execution unintended capability is more impor-
tant than reading unintended capability because execution

unintended capability can complete the exploitation through
hijacking PC, but reading cannot.

4 Evaluation

The evaluation is designed to answer following questions:
• RQ1: How effective is AlphaEXP in sensitive objects

identifying and classifying?
• RQ2: Is AlphaEXP better at identifying sensitive objects

compared to current SOTA techniques?
• RQ3: What is the cost of building a knowledge graph?
• RQ4: How effective is attack path generation?

4.1 Implementation
We implement a prototype of AlphaEXP based on the tech-
nique mentioned above. The Knowledge Graph Construction
is developed based on KINT [48] and Syzkaller [19], and
consists of 4,120 lines of code in C, Python, and Go. The
Attack Path Generation is implemented with Soufflé [28], and
consists of 1,170 lines of code.

Regarding dynamic knowledge extraction, we divided the
kernel into modules and utilized fuzzing to test each mod-
ule separately and collect knowledge accordingly. Specifi-
cally, we extended Syzkaller’s template to cover some missing
syscalls and used it to generate test cases. For each module to
test, we analyzed the call graphs of the functions within the
module, identified all syscalls that might call these functions,
and instructed Syzkaller to use the templates related to these
syscalls to generate test cases. The kernel is instrumented to
monitor memory reading, writing, execution, allocating, and
releasing behaviors. During testing, the dynamic knowledge
regarding the kernel will be recorded.

The prototype system runs on Ubuntu 20.10 with 128G
RAM and Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz.
Our kernel evaluation process is performed on the same host
and evaluates for kernel v4.15 and v5.5.3 with QEMU [5],
which are the same versions as the ones tested by baseline
solutions SLAKE [13] and ELOISE [12].

4.2 Experiments Setup
To evaluate our system, we design two sets of experiments,
one to evaluate synthesized vulnerabilities, and the other to
evaluate real-world vulnerabilities.
Synthesized Vulnerabilities Synthesized vulnerabilities
are injected manually, which are summaries of the real vul-
nerabilities, and are more comprehensive compared to real
vulnerabilities for sensitive object assessment. They have dif-
ferent types, different entry capabilities, and different kmem-
cache hosting vulnerable objects.

In terms of vulnerability causes, synthesized vulnerabilities
include UAF (Use-After-Free) and buffer overflow, which are
the two most common types of memory corruption vulner-
abilities. In terms of entry capability, synthesized vulnera-
bilities include: buffer overflows with overrun sizes of 1, 8,

USENIX Association 32nd USENIX Security Symposium    4237



Table 4: List of the sensitive objects, which are identified through the experiments for artificial vulnerabilities by AlphaEXP.

Sensitive Objects
keyctl_update_key✦, msg_msg✦, add_key✦, ip_options_get_from_user✦, scsi_request, drm_ioctl, __get_filter

hiddev_ioctl_usage, proc_ioctl, kexec_segment, do_ipv6_setsockopt, do_semtimedop, vt_do_kdgkb_ioctl, setxattr
xt_table_info, gss_pipe_downcall, snd_ctl_elem_info, simple_transaction_argresp, ethtool_set_eeprom, sock_filter

proc_do_submiturb, snd_ctl_elem_id, map_lookup_elem, move_addr_to_kernel, compat_agpioc_reserve_wrap
Write drm_syncobj_array_find, fb_sys_write, fb_write, drm_mode_dirtyfb_ioctl, ipv6_txoptions, elf_prpsinfo, sk_buff

usblp_write, drm_crtc, drm_property_blob, drm_i915_gem_object, tty_struct, agpioc_reserve_wrap, create_entry
drm_syncobj_array_wait_timeout, kernfs_fop_write, kexec_segment, map_update_elem, proc_bulk, sendmsg

simple_attr_write, rawv6_seticmpfilter, snd_info_buffer, memfd_create✲, drm_syncobj_timeline_signal_ioctl✲
raw_seticmpfilter✱, cpumask✱

ipv6_opt_hdr★, sock_fprog_kern★, policy_load_memory★, ldt_struct★, ip_options★, cfg80211_wowlan_tcp★
seq_file★, xfrm_policy★, xfrm_algo_aead★, xfrm_algo★, ip_sf_socklist★, proc_dir_entry★, station_info★

cfg80211_pkt_pattern★, user_key_payload★, xfrm_replay_state_esn★, ext4_dir_entry_2★, mon_reader_bin★
sg_header★, tc_cookie★, inotify_event_info★, audit_rule_data★, fb_info★, cfg80211_sched_scan_request★
fb_cmap_user★, cache_request★, fname★, ieee80211_mgd_auth_data★, cfg80211_bss_ies★, cache_reader★

Read mon_reader_text★, tcp_fastopen_context★, request_key_auth★, xfrm_algo_auth★, cfg80211_scan_request★
msg_msg★, tcp_sock✰, user_element, neighbour, pneigh_entry, net_device, netdev_phys_item_id, rchan_buf

netlink_ext_ack, cfg80211_nan_match_params, wiphy, wiphy_iftype_ext_capab, wireless_dev, usb_device, urb
hidraw_report, hid_device, sg_request, usblp, drm_crtc, drm_plane, cfg80211_connect_resp_params, fb_cmap

beacon_data, probe_resp, cfg80211_roam_info, cfg80211_wowlan_wakeup, cfg80211_ssid, drm_master, seq_buf
cfg80211_mgmt_tx_params, ieee80211_mgd_assoc_data, kobj_uevent_env, rpc_pipe_msg, geneve_opt, __kfifo

cfg80211_ft_event_params, fat_ioctl_filldir_callback, key_params, drm_property_blob, tcp_fastopen_cookie
cfg80211_pmsr_ftm_result✲, cfg80211_update_owe_info✲, cfg80211_fils_resp_params✲, sg_scsi_ioctl✱
seq_operations✦, perf_event_context✦, linux_binprm✦, vmap_area✦, tty_struct✦, seq_file✦, avc_node✦

kioctx_table✦, snd_seq_timer✦, tty_ldisc✦, sk_security_struct✦, assoc_array_edit✦, cgroup_namespace✦, file✦
ext4_allocation_context✦, tty_file_private✦, subprocess_info✦, timerfd_ctx✦, ccid✦, ip_options✦, kioctx✦
ip_sf_socklist✦, request_key_auth✦, pid_namespace✦, k_itimer✦, ip_mc_list✦, sock✦, ip_mc_socklist✦✰

key✦✰, packet_sock✰, fsnotify_group✰, blk_plug_cb, blk_stat_callback, snd_timer, hci_dev, snd_pcm_runtime
drm_i915_gem_object, vga_device, nfs_io_completion, snd_pcm, udp_sock, tracer, snd_timer_instance, dio

snd_hwdep, snd_kcontrol, link_master, snd_kctl_ioctl, scsi_cmnd, fbcon_ops, sony_sc, clk_fractional_divider
Exec snd_pcm_hw_rule, snd_seq_device, snd_info_entry, snd_card, snd_jack, net_device, pipe_buffer, shm_file_data

acpi_cpufreq_data, hid_device, ahci_host_priv, snd_seq_client_port, kprobe, sched_domain_topology_level
loop_device, input_polled_dev, hashtab, iommu_group, crypto_ahash, serio, hda_jack_callback, akcipher_instance
ahash_request_priv, crypto_tfm, skcipher_instance, journal_s, input_dev_poller, alps_data, nf_conntrack_expect
crypto_skcipher, aead_instance, crypto_acomp, ubuf_info, psmouse, ml_device, rpc_task, kthread_create_info
proc_inode, proc_dir_entry, fib6_walker, aio_kiocb, simple_attr, inet_connection_sock, nfs_server, ring_buffer

async_entry, filter_pred, nfs_renamedata, nfs_commit_data, nfs_pgio_header, hda_codec, rtnl_link, rpc_rqst
flow_block_cb✲, flow_indr_block_cb✲, tcf_filter_chain_list_item✲, io_wq✲, execute_cb✲, context_barrier_task✲

✦: Identified by SLAKE as well, ★: Identified by ELOISE as well, ✰: Identified by KOOBE as well
✲: Not present in v4.15, ✱: False Positives

and 1024, UAF with both reading and writing functionali-
ties, UAF with reading functionality, and UAF with writing
functionality. These cover almost all potential entry capabil-
ities that adversaries could get. In terms of kmem-cache,
the vulnerable objects of synthesized vulnerabilities are al-
located to 14 different kmem-cache: kmalloc-8, kmalloc-16,
kmalloc-32, kmalloc-64, kmalloc-96, kmalloc-128, kmalloc-
256, kmalloc-512, kmalloc-1024, kmalloc-2048, and some
special kmem-cache (e.g., seq_file_cache).

In total, we have crafted 84 vulnerabilities and inserted

them into crafted vulnerable kernel drivers. Due to the com-
prehensiveness, experiments on synthesized vulnerabilities
can more adequately identify the sensitive object and assist
in classifying and evaluating sensitive objects.

Real-world Vulnerabilities We exhaustively search Linux
kernel vulnerabilities with public exploits in the recent five
years from the CVE security vulnerability database [33]. In
total, we collect 19 vulnerabilities, each of which is either a
UAF or a heap buffer overflow.

The experiments on real-world vulnerabilities aim to calcu-
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Figure 7: Results of object sensitivity classification.

late the recall of sensitive objects identified by experiments
on synthesized vulnerabilities.

4.3 Results of Sensitive Object Assessment

To answer RQ1, we conduct experiments on both synthesized
vulnerabilities and real-world vulnerabilities. During knowl-
edge graph construction, we tested each kernel module (as
described in Section 4.1) for 72 hours to perform dynamic
knowledge extraction.

For synthesized vulnerabilities, we perform attack path
generation for each set of test cases (i.e., proof-of-concept
inputs triggering the vulnerabilities) and extract sensitive
objects from them. We have slightly modified the attack path
generation, in which we remove the state that already has
exit capabilities from the state pool and continue to generate
other attack paths until the time threshold (1 hour) is reached.
The time threshold was determined by our manual validation.
We have also extended the exploration time to 2 hour in
our experiment, but found no more attack paths or sensitive
objects, and all attack paths and sensitive objects found during
the extra time window are repetitive.

Finally, we recognized 50 objects that can be abused to
upgrade writing capability, 81 with reading capability, and
112 with execution capability.

The full list of sensitive objects is shown in Table 4. Most
of them are present in both kernel versions, except for 11
objects are not present in v4.15, indicating that the newer
kernel version could have more sensitive objects and many
sensitive objects exist in most versions.

We classify the sensitive object into 12 levels, as shown
in Figure 7 (The complete list is in Appendix A.1). The
levels are labelled based on both the low requirements of
applied conditions and the high capability of effects achieved.
The applied conditions include kmem-cache (Cache), entry
capability (Cap), and the type of vulnerability (T). The ef-
fects achieved include writing (W), reading (R), and executing
(X) unintended capabilities. Different combinations of these
symbols indicate the applied conditions and effect achieved of

sensitive objects at that level. For example, Cache&Cap&T-WR
means that the sensitive object can be used in the exploita-
tion has low requirements for kmem-cache, entry capability,
and the type of vulnerability, and the sensitive object can
upgrade the unintended capabilities of writing and reading in
the exploit.

4.3.1 False Positives

An object is sensitive if and only if it could be abused in an
attack path and facilitate the exploitation. AlphaEXP reports
sensitive objects without real exploit evidence, and therefore
may have false positives. However, our goal is not generating
working exploits, we therefore have two reasonable assump-
tions: (1) there is a proper vulnerability that could tamper
with the reported object, and (2) a final exploit could be gen-
erated as long as we can tamper with the reported object and
find an attack path. Therefore, we only need to prove that the
reported object could facilitate attack path generation, if it is
tampered with a proper synthesized vulnerability.

To achieve this, we utilize a debugger to modify the object
in the guest kernel that is running in QEMU, which simu-
lates a synthesized vulnerability. The modification is carried
out based on the attack path generated by AlphaEXP . After-
ward, we monitor the kernel to confirm whether the expected
capability upgrades (as indicated by the object’s sensitivity
level) have been met. Since this is a dynamic verification, we
believe it is accurate.

Following this procedure, we have successfully vali-
dated all sensitive objects identified by AlphaEXP, and
only found 3 false positives: (1) the sock object
in raw_seticmpfilter(), (2) the cpumask object in
get_user_cpu_mask(), and (3) the buffer object in
sg_scsi_ioctl().

Regarding the first two false positives, the objects could
be abused to write content into kernel buffers. However,
the content is sanitized by the kernel, so that the intended
unintended capability upgrade fails. Regarding the third false
positives, the object could be abused to read kernel content to
userland. However, the readout content originates from the
userland and is useless for exploitation.

4.3.2 False Negatives

Our prototype may also have false negatives, due to the im-
perfect techniques we take to build the knowledge graph and
search for attack paths, as well as the incomplete list of start-
ing vulnerabilities, which may miss some potential entity or
relationships in the knowledge graph or some attack paths.
However, we do not have the ground truth of all sensitive
objects (could be abused by exploits) and their sensitivity,
which is infeasible to get even by experts or via analyzing
security patches. Instead, we utilize public exploits that will
corrupt sensitive objects to launch attacks as the baseline to
evaluate the false negatives of AlphaEXP .
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Table 5: List of programs and results evaluated with AlphaEXP .

CVE-ID Type Vul. Cap. Sensitive objects abused by the public exploit Partial sensitive objects identified by AlphaEXP

CVE-2022-27666 overflow Overwrite(skcipher_walk,0x1000) msg_msg, user_key_payload msg_msg, drm_property_blob, user_key_payload
CVE-2022-25636 overflow Overwrite(net_device,0x18) msg_msg, net_device setxattr, msg_msg, net_device, sendmsg, create_entry, add_key,

memfd_create
CVE-2022-0995 overflow Overwrite(watch_filter,0x2) msg_msg, sk_buff pipe_buffer, msg_msg, sk_buff, sendmsg, create_entry, proc_bulk
CVE-2022-0185 overflow Overwrite(fs_context,0x40) msg_msg, pipe_buffer pipe_buffer, msg_msg, sendmsg, create_entry, setxattr, tty_struct
CVE-2021-43267 overflow Overwrite(tipc_aead_key,0x20) msg_msg, tty_struct msg_msg, sendmsg, create_entry, setxattr, tty_struct
CVE-2021-42327 overflow Overwrite(wr_buf,0x40) msg_msg, subprocess_info msg_msg, subprocess_info
CVE-2021-42008 overflow Overwrite(sixpack,0x1000) msg_msg, shm_file_data msg_msg, seq_operations, shm_file_data
CVE-2021-41073 UAF UAF(kmalloc-32-obj) setxattr, seq_operations msg_msg, setxattr, sendmsg, seq_operations, shm_file_data
CVE-2021-3573 UAF UAF(hci_dev) setxattr, hci_dev setxattr, add_key, sendmsg
CVE-2021-32606 UAF UAF(isotp_sock) setxattr, sock setxattr, sendmsg, add_key, sock
CVE-2021-33909 overflow Overwrite(seq_file,-0x1000) eBPF ✘
CVE-2021-26708 UAF UAF(virtio_vsock_sock) msg_msg, sk_buff drm_property_blob, msg_msg, sk_buff, pipe_buffer
CVE-2021-22555 UAF UAF(msg_msg) msg_msg, sk_buff, pipe_buffer drm_property_blob, msg_msg, sk_buff, pipe_buffer
CVE-2021-20226 UAF UAF(files_struct) setxattr, map_lookup_elem, map_update_elem drm_property_blob, msg_msg, setxattr, map_lookup_elem,

map_update_elem
CVE-2020-27194 overflow Overwrite(eBPF,0x1000) eBPF ✘
CVE-2020-14381 UAF UAF(super_block) sendmsg, super_block sendmsg, setxattr, super_block
CVE-2019-18683 UAF UAF(vb2_buffer) setxattr, vb2_buffer setxattr, sendmsg, vb2_buffer
CVE-2019-15666 UAF UAF(xfrm_policy) setxattr, xfrm_policy setxattr, add_key, xfrm_policy
CVE-2018-6555 UAF UAF(ias_object) irda_queue, XFRM_socket ✘

Specifically, we first run the public exploits and collect
sensitive objects abused by them as the ground truth. Then,
we run AlphaEXP on these real world vulnerabilities to infer
attack paths and sensitive objects, then calculate the fase neg-
atives. The evaluation result is shown in Table 5. AlphaEXP
can generate 16 attack paths for the 19 CVEs, and miss 3
sensitive objects: eBPF, irda_queue and XFRM_socket.

For CVE-2021-33909 and CVE-2020-27194, AlphaEXP
fails to analyze advanced features like eBPF and thus can-
not recognize the sensitive objects. For CVE-2018-6555,
AlphaEXP fails to generate test cases via fuzzing to trig-
ger functionalities related to the XFRM_socket object, and
irda_queue are not appears in kernel v5.5.3, so AlphaEXP
cannot generate the attack path.

Further, there are two sensitive objects super_block and
vb2_buffer missing in Table 4, but could be identified by Al-
phaEXP in Table 5. It indicates that AlphaEXP may also have
false negatives due to the list of synthesized vulnerabilities to
analyze is incomplete.

4.3.3 Compare with SOTA

To answer RQ2, we choose SLAKE [13], KOOBE [11], and
ELOISE [12], which are state-of-the-art solutions in kernel
sensitive object identification, as the comparison targets.

We can identify all the sensitive objects identified by
SLAKE, KOOBE, and ELOISE, as marked in Table 4, and
we were able to classify sensitivity levels, which SLAKE and
ELOISE did not do.

SLAKE identifies the victim objects and the spray objects.
The victim objects are sensitive objects that can help achieve
arbitrary code execution, which are all listed in the Exec row
of Table 4. The spray objects are sensitive objects that are
allocated to host data written by userland. Such objects are
all listed in the Write row of Table 4. AlphaEXP can identify
more objects in addition to objects that cause execution or
spraying, such as objects that cause arbitrary address writes.

KOOBE mainly focuses on using sensitive objects for ex-
ploitation, rather than identifying them. As a result, the au-
thors manually collected some commonly used objects from
public exploits and also took some objects from SLAKE. 2

ELOISE identifies elastic objects, which are used in the
reading function and can control the size. Such objects are
all listed in the Read row of Table 4. AlphaEXP can identify
more objects including non-elastic objects, e.g., seq_file.

In summary, AlphaEXP is more effective than the state-of-
the-art solutions in identifying kernel sensitive objects and
can also classify the sensitivity of those objects.

4.3.4 Case Studies

We select two high-ranking sensitive objects from the results
to illustrate how they contribute to exploit development and
why they are assigned such a high sensitivity. To express the
generality of AlphaEXP , we only choose sensitive objects
that do not have public exploits to abuse them, rather than
well known objects (e.g., msg_msg [4]).

The first sensitive object we chose is drm_property_blob,
which can abused to complete the functionality of writing
and reading. The function drm_mode_createblob_ioctl()
allocates and writes the content from userland to
drm_property_blob. This object’s size is controlled by the
user, and the userland content could be filled into its data
field. In other words, the object can be allocated to multiple
kmem-cache and can be used as a heap spraying object and
facilitate exploitation for vulnerabilities like UAF. In addi-
tion, the function drm_mode_getblob_ioctl() can read the
content from kernel to userland, while the size and the target
memory are all controlled by this object. In other words,
abusing this object could upgrade the unintended capability
to arbitrary reading.

Another sensitive object we chose is the local object name

2It is confirmed by private correspondence with the authors of KOOBE.
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used in the function memfd_create(), which is similar to
msg_msg. Its allocation length can be controlled by the
user, and its parent function can be called directly with the
syscall __NR_memfd_create, and write the user data to ker-
nel buffer. Therefore, in combination with the userfaultfd
technique [32], this object is valuable for heap spraying and
UAF exploitation.

4.4 Knowledge Graph Construction (RQ3)
The static knowledge extraction process takes 19 minutes
to analyze all kernel code and generate a knowledge graph
comprising 358,383 entities and 440,741 relationships. The
dynamic knowledge extraction process takes 72 hours, mostly
for fuzzing as described in Section 4.1. After this process,
we removed entities (and their attributes) that could not be di-
rectly or indirectly connected to UserlandOP entities, leaving
100,723 entities and 180,204 relationships.

4.5 Attack Path Generation (RQ4)
4.5.1 Ablation Study

AlphaEXP utilizes two heuristics in attack path generation:
one for attack action selection (§ 3.4.1), and another for state
selection in scheduling (§ 3.4.3). To evaluate the effectiveness
of these heuristics, we designed four groups of experiments
for ablation study: (1) the baseline group uses random strate-
gies, (2) the baseline+AS group uses the heuristic for attack
actions selection, (3) the baseline+SS group uses the heuristic
for state selection, and (4) the AlphaEXP group utilizes both
heuristics for attack action and state selection.

We performed 20 experiments for each of the four groups,
to generate attack paths for a UAF vulnerability that can be
exploited using four key actions (as shown in Appendix A.2).
Note that, although we only evaluate this specific UAF vulner-
ability, this scenario is representative and the results should be
consistent. First of all, this scenario is common for most ex-
ploitation involving UAF. Second, this scenario is also similar
to other exploitations, e.g., those involving buffer overflows,
since they in general also rely on proper memory allocation
and memory read/write. Lastly, the length of the attack path
is this scenario is greater than that of most other scenarios.

For each group of experiment, the time consumption of
generating the expected attack action is recorded, as shown
in Figure 8. At the early stage, the action selection heuristic
shows greater improvements to the performance, since there
are only a few states to select from. As the attack path gener-
ation process goes on, the state pool grows significantly, and
the state selection heuristic thus shows great improvements,
because the random strategy can select the appropriate state
with low probabilities.

4.5.2 Patterns of the Generated Attack Paths

We analyzed the attack paths generated by AlphaEXP for
the 84 Synthesized Vulnerabilities, one of which is listed in
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Figure 8: The result of the ablation experiments with heuris-
tics. The vertical axis represents the run time and the horizon-
tal axis represents the key actions in the attack path.

Appendix A.2, and classified their patterns into the following
four categories:

① UAF to AAR. Assuming there is a UAF vulnerability,
where a vulnerable object is freed but still pointed by a dan-
gling pointer, the adversary could follow this type of attack
paths to get the capability of arbitrary address read (AAR). In
the first case, the vulnerable object has a pointer field which
will be read by the UAF. Then, the attack path will guide the
adversary to occupy the memory of the vulnerable object (e.g.,
via heap spraying) with an object with writing functionality.
Lastly, the adversary could abuse the writing functionality to
control the pointer field of the vulnerable object and cause
AAR. In another case, the vulnerable object has no pointer
field to be read by UAF. First, the attack path will guide the
adversary to first occupy the vulnerable memory with an ob-
ject with reading functionality. Then, it frees this object and
reallocates it to an object with writing functionality. Lastly,
the adversary could abuse the writing functionality to control
the object with reading functionality and cause AAR.

② UAF to ACE. This process is similar to the one above.
This type of attack paths guides the adversary to occupy the
vulnerable memory with an object with the executing func-
tionality and another object with the writing functionality.
Then, the adversary can abuse the writing functionality to
control the object with executing functionality (e.g., by tam-
pering with its code pointer field) and cause ACE.

③ UAF to AAW. Similar to UAF to AAR, this category has
two sub-types of attack paths. In the first case, the vulnerable
object has a pointer field which will be write by the UAF.
Then, the attack path will guide the adversary to occupy the
memory of the vulnerable object with an object with writing
functionality. Lastly, the adversary could abuse the writing
functionality to control the pointer field of the vulnerable
object and cause AAW. In the second case, the adversary
could directly occupy the vulnerable memory with an object
with a pointer field to write. Then, it frees this object and
reallocates it to another object with writing functionality. The

USENIX Association 32nd USENIX Security Symposium    4241



adversary could abuse the writing functionality to control the
object with writing pointer and cause AAW.

④ Overflow to reading, execution, and writing capa-
bilities. Assuming there is a buffer overflow vulnerability,
where a vulnerable object is overflowed and following vic-
tim will be overwritten, then the adversary could follow this
type of attack paths to get the capability of memory read-
ing, writing and execution. In general, the attack paths will
guide the adversary to place sensitive objects with reading,
writing or executing capabilities after the vulnerable object.
Then, the adversary could abuse the overflow vulnerability to
overwrite the sensitive objects (e.g., their size field or pointer
fields) to upgrade and get the reading, execution, and writing
capabilities.

4.5.3 Findings

Based on the analysis, we have two interesting findings:
AAW is more challenging to achieve than ACE. In our

experiments, there are more attack paths able to achieve ACE
than to achieve AAW. There are few objects in the kernel
can be used to achieve AAW. Most kernel objects with writ-
ing functionality are allocated to a fixed cache with a non-
controllable length, and their pointer fields are not placed at
the beginning of objects. In order to tamper with such objects
and get AAW, the adversary in general has to either find a
buffer overflow vulnerability able to overwrite a large size
or find a UAF vulnerability that can allocate objects in the
same kmem-cache. On the other hand, kernel objects with
execution functionality scatter all over the kernel and can be
abused to launch ACE.

UAF vulnerabilities are easier to exploit than overflow
vulnerabilities. When generating attack paths, we found
that UAF vulnerabilities are more frequently exploited than
overflow vulnerabilities, with a higher number of success-
ful exploits. Given a UAF vulnerability, an adversary can
have one memory occupied by multiple objects with differ-
ent functionalities. So, writing one occupying object would
cause other occupying objects misbehave and get unintended
capabilities. And many UAF vulnerabilities have pointers,
which are the target of the reading and writing functionality,
thus reducing the difficulty of exploitation. In contrast, an
overflow vulnerability can only be exploited by modifying
the pointer of an adjacent object to complete an unintended
capability upgrade, so it is relatively difficult to exploit.

5 Discussion

Soundness. We tested the sensitive objects identified by
AlphaEXP and found that, depending on their usage in the
attack path, they can facilitate capability upgrades. However,
due to the enormous workload, we were not able to generate
exploits for all attack paths, and therefore cannot fully guar-
antee their effectiveness in real-world exploits. Future work

could address the challenge of automating the evaluation of
the effectiveness of sensitive data in practical exploitation.
Completeness. AlphaEXP relies on target vulnerabilities to
identify sensitive objects. While we have constructed some
synthesized vulnerabilities that cover most of the initial ca-
pabilities adversaries could obtain (to the best of our knowl-
edge), it is unrealistic to collect all potential vulnerabilities
for sensitive object identification. Furthermore, using fuzzing
to obtain Userland_OP entities may not achieve full cover-
age. Additionally, the rules we currently have only focus
on memory allocation and may not fully reflect the complex
memory management mechanism of the kernel (e.g., the list
mechanism [38]), potentially missing some objects that have
a specific usage in the exploit. We leave it as an future work
to design an approach that does not rely on vulnerability in-
put. The fuzzer used by AlphaEXP can also be improved, for
example, by using directed greybox fuzzing to achieve higher
coverage of the target code area obtained from static analysis.
Finally, more complete rules can be designed or implemented
for inference in a real world environment.
Knowledge Graph. We have created a knowledge graph for
the Linux kernel, but the elements are still expandable, such
as whether functionalities are sanitized when they are called.
With these elements, a more detailed and reliable blueprint for
exploitation can be generated. In addition, we can also apply
this idea to other software, such as userland software, to build
a knowledge graph of the vulnerable software and generate a
plan for exploitation, which can significantly reduce manual
work.
Attack Action Selection. Our current selection method can
be adapted to the task at hand, but it does not inherit the expe-
rience of the previous selection each time it is used. Therefore
we can add artificial intelligence algorithms to it in the future
to make the method more efficient and accurate.
Automated Exploit Generation. Although we did not need
to generate exploits to find sensitive objects, our approach
provides a new idea for automated exploit generation (AEG).
In fact, AEG relies on PoC inputs or diverging inputs [49] to
get the required information, but often overlooks the strategy
of experts in exploitation. Experts will first perform a pro-
gram analysis and then generate an exploit plan based on the
vulnerability and their knowledge of the program, which may
only appear in their mind. AEG solutions lack support for
generating exploit plans or provide the raw materials needed
for exploitation. Therefore, we believe it is possible to refer
to our approach and refine its components (e.g., heap manipu-
lations) so that AEG can be better applied in practice.

6 Related work
6.1 Sensitive Kernel Object identification

SLAKE [13] and ELOISE [12] are state-of-the-art solutions
in identifying sensitive kernel objects. SLAKE identifies the
spray object and victim object in the kernel, while ELOISE
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identifies the elastic object in the kernel. The above structures
are all part of the sensitive object and do not further classify
the identified object. There is a lack of systematic effort to
identify and analyze sensitive objects.

6.2 Automated Exploit Generation

AlphaEXP can also be used in AEG (Automated Exploit
Generation), which is still an open challenge. A few number
of solutions have been proposed.

6.2.1 End-to-End AEG System

The APEG [7] is an early attempt at AEG based on the vul-
nerability patch. The AEG [3] solution uses source code as-
sistance to extract the path constraints that trigger the vulner-
ability. Then many end-to-end systems, binary-based, are pre-
sented. Mayhem [9], CRAX [26] and Rex [42] are all based
on symbolic execution. These AEG solutions follow a similar
workflow, collecting symbolic constraints of the execution
trace of PoC by symbolic execution and exploiting based on
the exploit pattern of different vulnerabilities. However, all of
the binary-based end-to-end systems require exploitable PoCs,
which are rare in the real world. Revery [49] attempts to ex-
ploit the vulnerability provided with non-exploitable PoCs. It
proposes a novel layout-oriented fuzzing and a control-flow
stitching solution to explore the exploitable state of the target
program. Tunter [47] improves the efficiency of exploitable
state exploration by using a taint-guide approach.

The above-mentioned work pushed the development of
AEG, but none of them jumped out of two limitations: 1)
no attempt was made to obtain more information needed for
exploit from analysis binary; 2) the conditions needed for
exploit were framed, and the system could only work when
the conditions were all met.

6.2.2 Heap Manipulation in AEG

The exploitation of heap-related vulnerabilities requires the
specific heap layout, which is called heap feng shui [43].
Therefore, several works aiming at automated heap manipu-
lation were proposed. SHRIKE [22] proposed a method of
constructing the input sequence and laying out the heap mem-
ory by analyzing the PHP heap management, Gollum [23]
uses a pure gray box method, which does not require sym-
bolic execution or white-box analysis. Instead, it performs
lightweight fuzzing. SLAKE [13] proposes a technique on
the kernel to manipulate the slab layout. Maze [50] models
the problem as a Linear Diophantine Equation and solves it
deterministically.

6.2.3 Mitigation Bypassing in AEG

Mitigation is a security mechanism to raise the threshold of
exploitation, and have applied in modern operating systems.
Therefore, adversary should bypass the mitigation for exploit

generation. Q [40] is devoted to bypassing DEP [2]. [10, 18,
24, 27, 39] present systematical analysis on CFI bypassing.

6.2.4 Expert System in AEG

Expert system is a possible future direction for AEG. So
far, no related works have been studied on this topic. An
expert system can generate an exploit plan and guide the
exploit. It can help expand the scope of the application of
AEG. We can generate a suitable exploit plan based on the
current knowledge of the target program, rather than first
developing a good pattern of exploitation, and then finding
the suitable programs. Therefore, an expert system that has
knowledge of exploitation, can acquire knowledge of the
target program, and generate the plan, is needed. AlphaEXP
is a preliminary attempt at expert system, which is obviously
not yet so powerful but suggests a possible idea.

7 Conclusion

In this paper, we present the first expert system AlphaEXP
for identifying sensitive kernel objects and classifying their
sensitivity. This system works by following experts to build a
knowledge graph of the kernel and then explores the graph
to build synthesized attack paths for given vulnerabilities.
Results showed that, this system could help identify a large
number of sensitive kernel objects which are worthy to protect.
AlphaEXP also provides a possible future direction for AEG.
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A Appendix

A.1 Sensitivity Classification

A complete sensitivity classification ranking of the sensitive
objects is shown in the Table 6. There are also sensitive
objects that are not included in the table, because they do not
meet the requirements of Cache, Cap and T.

A.2 Case Study of the Generated Attack Path

We choose an attack path generated by AlphaEXP, to show the
process of its generation. Figure 9 illustrates the attack path
of a vulnerability, which is one of synthesized vulnerabilities,
and how to generate the path.

The vulnerability is an UAF vulnerability with reading
functionality, and the vulnerable object will be allocated to
kmalloc-32. Figure 9 (b) illustrates the attack path of the
vulnerability, and Figure 9 (c) illustrates the part of the knowl-
edge graph, which contains the elements required for this
attack path generation. It first invokes OP-21, which causes
sensitive object setxattr-ana-88 to be allocated into the
vulnerable memory, resulting in the two type pointer point to
the same memory, and the writing functionality can tamper
the pointer-v, the reading pointer, to complete the AAR, as
shown in Figure 9 (a). Then, the UAF is triggered again, by
invoking OP-v1, and through invoking OP-328, similar to the
above process, seq_operations will be allocated into the
UAF memory. Next, repeat the above process, using OP-21
to allocate the setxattr-ana-88 into the UAF memory, and
the writing functionality can tamper the function pointer of
seq_operations, as shown in Figure 9 (a). In the above
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Figure 9: Example of attack path generation.

process, new capability ACE are acquired, and capability
upgrades are completed.

In addition, we select a portion of the attack path generation
(as the box marked with an * in Figure 9 (b)) to show how
the inference engine works. When invoking the OP-21, the
engine infer that the functionalities of Alloc-ana-88 and
Write-ana-88, as ❶. Then the engine infer the target of
those functionalities is setxattr-ana-88, as ❷, and find
it can be allocated to Cache-32, which is the kmem-cache
of vulnerable object memory, as ❸ and ❹. Next, memory
allocated can occupy the vulnerable memory due to the UAF,
and there is a reading functionality, invoked by OP-v3 can
readout from the pointer in this memory, as ❺ to ❼. Since the
same memory is pointed to by two pointers, and one contains
a read pointer and the other has a write function, the engine
infers that a new read capability is created.

Table 6: List of object sensitivity classification.

Cache&Cap&T-WR drm_property_blob, msg_msg
Cache&Cap-W sg_scsi_ioctl, keyctl_update_key, sendmsg, gss_pipe_downcall, create_entry, add_key, setxattr, fd_write, proc_bulk, memfd_create
Cache-W xt_table_info, simple_attr_write, proc_do_submiturb, usblp_write, ip_options_get_from_user, ipv6_txoptions, do_ipv6_setsockopt, sk_buff
Cap&T-W do_semtimedop

Cap&T-X

seq_operations, assoc_array_edit, cgroup_namespace, ext4_allocation_context, ip_options_rcu, ip_sf_socklist, pid_namespace, avc_node, tty_ldisc
tty_file_private, file, ccid, blk_plug_cb, snd_timer_instance, link_master, snd_info_entry, hda_jack_callback, hashtab, shm_file_data, crypto_ahash
ahash_request_priv, crypto_tfm, skcipher_instance, akcipher_instance, crypto_skcipher, aead_instance, crypto_acomp, ubuf_info, flow_block_cb, rpc_task
kthread_create_info, tracer, nfs_io_completion, io_wq, simple_attr, input_polled_dev, input_dev_poller, acpi_cpufreq_data, clk_fractional_divider
fbcon_ops, pipe_buffer, ip_mc_socklist

Cap&T-R
user_element, request_key_auth, user_key_payload, seq_buf, pneigh_entry, netdev_phys_item_id, tc_cookie, cfg80211_nan_match_params
wiphy_iftype_ext_capab, cfg80211_connect_resp_params, cfg80211_fils_resp_params, cfg80211_roam_info, cfg80211_ssid, cfg80211_update_owe_info
key_params, cfg80211_pkt_pattern, cache_request, tcp_fastopen_cookie, beacon_data, fat_ioctl_filldir_callback, hidraw_report

Cap-W snd_info_buffer
T-WX tty_struct, ip_options, drm_i915_gem_object
T-W rawv6_seticmpfilter, kernfs_fop_write, fb_sys_write
T-XR seq_file,ip_sf_socklist, net_device, hid_device

T-X

perf_event_context, linux_binprm, vmap_area, kioctx_table, kioctx, ip_mc_list, k_itimer, sk_security_struct, snd_seq_timer, timerfd_ctx, subprocess_info
key, sock, blk_stat_callback, snd_timer, snd_pcm_runtime, snd_pcm, snd_hwdep, snd_kcontrol, snd_kctl_ioctl, snd_pcm_hw_rule, snd_seq_device, snd_card
snd_jack, snd_seq_client_port, hda_codec, kprobe, nf_conntrack_expect, rtnl_link, flow_indr_block_cb, tcf_filter_chain_list_item, fib6_walker
inet_connection_sock, packet_sock, rpc_rqst, hci_dev, udp_sock, sched_domain_topology_level, async_entry, ring_buffer, filter_pred, nfs_renamedata
nfs_server, nfs_pgio_header, nfs_commit_data, proc_inode, proc_dir_entry, aio_kiocb, dio, journal_s, serio, ml_device, alps_data, psmouse, iommu_group
loop_device, sony_sc, ahci_host_priv, scsi_cmnd, nvmem_device, vga_device, context_barrier_task, execute_cb

T-R

ipv6_opt_hdr, sock_fprog_kern, policy_load_memory, ldt_struct, ip_options, xfrm_replay_state_esn, cache_reader, cfg80211_bss_ies, sg_header
inotify_event_info, fb_cmap_user, fname, ieee80211_mgd_auth_data, tcp_fastopen_context, xfrm_algo_auth, cfg80211_wowlan_tcp, xfrm_algo
xfrm_algo_aead, cfg80211_scan_request, mon_reader_bin, cfg80211_sched_scan_request, mon_reader_text, station_info, ext4_dir_entry_2, xfrm_policy
fb_info, audit_rule_data, n_tty_data, proc_dir_entry, kobj_uevent_env, sk_buff, neighbour, netlink_ext_ack, wiphy, wireless_dev, cfg80211_wowlan_wakeup
cfg80211_ft_event_params, cfg80211_pmsr_ftm_result, rpc_pipe_msg, geneve_opt, tcp_sock, probe_resp, cfg80211_mgmt_tx_params, ieee80211_mgd_assoc_data
rchan_buf, sg_request, fb_cmap, usb_device, urb, usblp, drm_crtc, drm_plane, drm_master, console_font
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