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Abstract
Android apps pervasively use third-party libraries (TPL)

to reuse functionalities and improve development efficiency.
The insufficient knowledge of the TPL internal exposes the
developers and users to severe threats of security vulnerabili-
ties. To mitigate such threats, people have proposed diversi-
fied approaches to identifying vulnerable or even malicious
TPLs. However, the rich features of different modern obfus-
cators, including advanced repackaging, dead code removal,
and control-flow randomization, have significantly impeded
the precise detection of the TPLs. In this work, we propose a
general-purpose TPL detection approach, LibScan. We first
fingerprint code features to build the potential class corre-
spondence relations between the app and TPL classes. Then,
we use the method-opcode similarity and call-chain-opcode
similarity to improve the accuracy of detected class correspon-
dences. Moreover, we design early-stop criteria and reuse
intermediate results to improve the efficiency of LibScan. In
experiments, the evaluation with ground truths demonstrated
the effectiveness of LibScan and its detection steps. We also
applied LibScan to detect vulnerable TPLs in the top Google
Play apps and large-scale wild apps, which shows the effi-
ciency and scalability of our approach, as well as the potential
of our approach as an auxiliary tool that helps malware detec-
tion.

1 Introduction

Third-party libraries (TPL) serve as indispensable compo-
nents for modern mobile applications. For example, advertis-
ing, social networking, location services, and in-app payment
add-ons are pervasive to provide helpful functionality in pop-
ular real-world apps. The evolution and maturity of various
third-party libraries have drastically alleviated the develop-
ment efforts for the apps. However, thorough knowledge of
the inner details of TPLs is beyond app developers’ abilities
without the source code of TPLs. The diverse requirements,
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flexible usages, and indeterminate maintenance status of such
external libraries usually introduce many vulnerabilities to
the apps and threaten end-user privacy [29, 31].

Various security evaluations and mitigations towards the
threats caused by third-party libraries have been proposed.
For example, analyzing the security-related updatability of
the libraries, patching the app smoothly with non-intrusive
library updates, or validating the runtime library updates can
remedy the flaws caused by outdated libraries [26, 28, 37].
Isolating the TPLs from the apps is also a kind of popular
mitigation that can be conducted at different granularities.
The TPLs can be run as a new process [49, 59], a separate
sandboxing app [38, 51], or be shared locally between apps
and dynamically loaded in app executions [41]. Enforcing
in-app privilege separations with new permission mechanisms
can keep the apps’ privileges from TPLs [35,48]. Other works
provide integrity verification to the TPLs [36], test the po-
tential vulnerability of TPLs inside apps beyond the reach
of GUI-based testing [23], or validate the security of the in-
app payment process provided by the third-party payment
components [55].

Many of the above protections rely on precise third-party li-
brary detection as a prerequisite. Nevertheless, due to the wide
use of advanced obfuscations, repackaging, code shrinking,
and optimization techniques over the released apps [24, 63],
TPL detection confronts significant difficulty. Typically, popu-
lar code obfuscators or compilers (e.g., ProGuard [32], DashO
[47], Allatori [39], and the R8 compiler [19] of Android Stu-
dio) can obfuscate the host apps and the TPLs, resulting in a
vague boundary between them. The TPLs’ interdependencies
usually get changed by the app’s integration due to develop-
ment management or obfuscation.

The similarity-based TPL detections are the dominant ap-
proaches in recent studies. However, as we observe, the state-
of-the-art similarity-based detections, e.g., [22, 54, 56, 58, 60],
still have some defects in dealing with advanced obfuscations,
repackaging, or optimizations. Specifically, LibScout [22] and
LibPecker [60] depend on the package hierarchy information
to decide if the TPLs’ package matches the app’s specific
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package; thus, both approaches may lose precision when the
app is repackaged. Besides, the modern Android app obfusca-
tor can not only eliminate the useless TPLs’ classes and meth-
ods from the app, but also insert code and spurious control-
flow edges into the used TPLs’ methods. Such control-flow
randomization will cause the offset variation of the original
code relative to the beginning of basic blocks or sliding win-
dows. Therefore, LibID [58] and ATVHunter [56] that hash
the basic blocks inside the methods as units become signifi-
cantly affected by such obfuscation. Beyond the effectiveness
problems of these approaches to advanced obfuscations, de-
tection efficiency is another issue. The similarity-based ap-
proaches tend to require app and TPL classes to be pairwise
matched to decide which part of the app is matchable to the
TPL. If treating methods as nodes and call relations as edges,
the TPL detection can approximate an NP-complete subgraph
isomorphism problem, and a costly solution is required. Due
to our experiences, LibID [58] and LibPecker [60] are both
time-consuming. LibID uses the Binary Integer Programming
models to maximize the dependency matching count effi-
ciently. However, when the app classes and TPL classes are
numerous, pairwise dependency matching is still costly.

It is often challenging to enhance the anti-obfuscation
ability of detection techniques while maintaining low costs.
Therefore, in this work, we propose LibScan, an efficient and
accurate similarity-based TPL detection approach for Android
apps. In the first step, we extract a set of code features to gen-
erate a fingerprint for both app classes and TPL classes, based
on which we build overapproximated class correspondence
relations between app and TPL classes. If most classes of
a TPL have corresponding classes in an app, LibScan deter-
mines that the app uses the TPL. Thus, the accuracy of class
correspondence relations is critical. Given that the class corre-
spondence relations generated in the first step are overapprox-
imated, in the next steps, we determine the method-opcode
similarity and call-chain-opcode similarity between classes to
remove false class correspondence relations, which is resilient
to the advanced obfuscation of repackaging and control-flow
randomization. To accelerate the detection, we measure a con-
fidence score at each detection step for the existence of TPL in
the app. A score lower than a configurable threshold indicates
an absence of TPL in the app, and if it remains above the
threshold in all detection steps, LibScan reports the existence
of the TPL. We summarize our contributions as follows:

1. We propose a 3-step TPL detection approach. The first
step builds signature-based class correspondences that
indicate the matching potentials between app and TPL
classes. The second and third steps determine a method-
opcode similarity and a call-chain-opcode similarity to
remove false class correspondences to improve the over-
all detection accuracy. In experiment, the effect of each
detection step was evaluated.

2. We compare our implementation with the state-of-the-art
TPL detection approaches [22, 54, 58, 60] using ground

truths over the apps built and obfuscated with ProGuard,
DashO, Allatori, or the D8 and R8 compilers. We also
compare LibScan with ATVHunter’s public detection re-
sults [56]. We further investigate LibScan’s effectiveness
against different obfuscation levels of DashO and the
D8/R8 compiler. The results demonstrate that LibScan
outperforms other approaches in effectiveness on most
obfuscation levels.

3. We investigated the existence of 205 vulnerable TPL
versions in the 1,000 most popular apps on Google Play.
The results show that our approach is more efficient than
LibID, LibPecker, and Orlis. Besides, the scalability eval-
uation on 100,000 real-world apps to detect the 205 TPL
versions indicates that 23 out of the 205 TPL versions
are reused 3,949 times in 3,664 apps. We find suspicious
recent usage of some TPLs confirmed to be vulnerable
long ago. Thus, we conducted a proof-of-concept exper-
iment to demonstrate that the existence of vulnerable
TPLs can be used for malware detection.

2 Related Work

Apart from the early whitelist-based package name detec-
tions [25, 31], the TPL detection techniques can be mainly
classified into three categories: clustering-based detections
[42, 44, 50, 53, 61], learning-based detections [43, 45], and
similarity-based detections [22, 30, 52, 54, 56, 58, 60]. Our
approach falls into similarity-based detections. Besides, spe-
cific approaches have been proposed to identify native li-
braries [21] or predict useful TPLs for apps based on collabo-
rative filtering [34].

Similarity-based TPL Detection. LibScout [22] uses class
hierarchy to profile the features of TPLs. The library sig-
natures are derived using a fixed-depth Merkle tree flatten-
ing the package layer and collecting the non-obfuscated par-
tial method signatures. This tree-based signature cannot cap-
ture the cross-package code relocating. LibDetect [30] uses
bytecode, labeled control-flow transfer, non-obfuscated super-
types, and (fuzzy) structural-preserving representation to filter
the library code of apps hierarchically. Orlis [9, 54] uses the
fuzzy method signature as used by [22], constructs a textual
call graph for the method, and measures similarity based on a
similarity digest-based score. LibPecker [60] constructs strict
class signatures from the class dependencies. Its adaptive
class matching conducts a fuzzy weighted similarity match-
ing between library and app classes in case the similarity is
above the adaptive threshold. LibPecker is relatively sensitive
to package flattening or class repackaging because its pack-
age matching relies on the package hierarchy information.
PANDroid [52] incorporates structural and content informa-
tion of TPLs to depict the TPL signatures and investigate
mutations by ProGuard to identify stable invariants during the
mutation. LibID [58] profiles obfuscation-resilient features
and proposes a multi-phase matching. First, LibID matches
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candidate library classes with app classes when each basic
block of an app class can find an identical basic block in a
specific library class. Then the dependency matching finds
the truly matched pairs from the candidates and uses a bi-
nary integer programming model to maximize the number of
matched class pairs. In this phase, uniqueness and hierarchy
constraints are used for scalability, and several constraints
are addressed for accuracy. The library matching confirms
the matched library version by considering the proportion of
matched classes in the matched app package. ATVHunter [56]
proposes a two-phase detection approach to detect TPLs and
their versions. The coarse-grained phase attaches each basic
block in a method with a unique serial number. It converts the
intra-procedural CFG from the adjacency lists into a method
signature based on the assigned serial numbers. The fine-
grained phase of ATVHunter uses fuzzy hashing over the per-
sliding-window opcodes to avoid the localized feature change
caused by obfuscation triggering a significant difference to the
final fingerprint. However, control-flow randomization may
add redundant opcodes, changing the offset of the original op-
codes relative to the sliding windows. In such a case, the app
methods may be missed in the method matching. In contrast,
LibScan’s method-opcode similarity determination focuses
on the set-based inclusion relation of per-method opcodes.
Our call-chain-opcode similarity determination addresses the
set-based inclusion relation of the call-chain opcodes. Such
treatments are resilient to redundant opcodes and control-flow
randomization compared with ATVHunter.

3 Scope of LibScan

New code obfuscation techniques emerge when existing ob-
fuscation techniques can be deobfuscated. Thus, it is imprac-
tical to develop a deobfuscator that can support any kind of
obfuscation technique. The same challenge also applies to the
design of an obfuscation-resistant TPL detection technique.
Therefore, before we elaborate the technical details of Lib-
Scan, we first define the scope of obfuscation techniques and
obfuscation tools that LibScan can support.

LibScan is a code-similarity based TPL detection tool mo-
tivated by the gap of prior work’s capability in addressing
the obfuscation techniques implemented by three popular
obfuscators, including ProGuard [32], DashO [47], and Alla-
tori [39]. In Table 1, we list all known obfuscation techniques
summarized by previous papers [22, 33, 54, 56, 57] and mark
the ones supported by the three obfuscation tools. LibScan
is designed to overcome the obfuscation techniques imple-
mented by the three obfuscators. Moreover, in experiment, we
demonstrated LibScan’s efficacy against the R8 compiler [19]
of the recent Android Studio, even though R8 was not consid-
ered during the design process of LibScan.

At the granularity of obfuscation techniques, LibScan is
effective in resisting the ones marked with (*) in Table 1.
First, LibScan relies on code features irrelevant to the pack-

Table 1: Obfuscation techniques of android obfuscators (Lib-
Scan is robust against techniques marked with (*))

Allatori DashO ProGuard
identifier renaming(*) ✓ ✓ ✓
code addition(*) ✓ ✓ ✓
dead code removal(*) ✓ ✓ ✓
package flattening/repackaging(*) ✓ ✓ ✓
string encryption(*) ✓ ✓ –
control-flow randomization(*) ✓ ✓ –
Manifest transformation (*) – – –
data alignment (*) – – –
app-level Dex encryption – – –
virtualization-based protection – – –
Java reflection – – –
method inlining – – –

age hierarchy, identifiers, or string constant, making LibScan
resilient to repackaging, identifier renaming, and string en-
cryption. Furthermore, LibScan is resilient to control-flow
randomization, because LibScan uses a set-based inclusion
relation to compare opcodes, being able to ignore most of
the reordering, duplication, and trivial insertions of opcodes.
LibScan also has built-in thresholds to tolerate dead code
removals and code addition. Besides, since LibScan analyzes
code only, LibScan has inherent resistance to non-code-based
obfuscations, e.g., Manifest transformation and data realign-
ment mentioned in [33].

However, LibScan is sensitive to the rest of the obfuscation
techniques listed in Table 1. In detail, method inlining could
undermine LibScan’s method-opcode similarity determina-
tion. Java reflections can evade LibScan’s call-chain-opcode
similarity determination, which is demonstrated by our eval-
uation of LibScan against R8-optimized apps. Proxy classes
wrapping existing methods may alter the fingerprinting code
features used by LibScan’s signature-based class correspon-
dence detection. Techniques generating code at runtime, e.g.,
app-level Dex encryption [57] and visualization-based pro-
tection [22, 62], are addressed neither by our approach nor
by most other similarity-based TPL detectors. In Section 6.3,
we will discuss potential mitigation against some of these
techniques.

4 Design of LibScan

4.1 System Workflow
The workflow of LibScan is presented in Figure 1. LibScan
takes as input an APK app with a third-party library (TPL),
and outputs a verdict for the existence of the TPL in the app.
LibScan first decompiles the app and TPL into Java classes.
LibScan then compares each app class with each TPL class
and gives a set of pairwise class correspondence relations.
Based on the class correspondence relations, LibScan com-
putes a confidence score for the existence of the TPL in the
app. If the score is lower than a configurable threshold in
any of LibScan’s detection steps, LibScan detects the TPL’s
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Figure 1: Workflow of LibScan

absence in the app. If the score remains above the threshold
in all the detection steps, LibScan decides that the TPL exists
in the app.

However, the determination of pairwise class correspon-
dence is non-trivial, given that we aim to accommodate ob-
fuscated code. Thus, LibScan takes three steps to give the
final determination. Before the 3-step procedure, LibScan
first extracts the necessary information for every step from
both the app and the TPL, including a set of fingerprinting
code features and the method opcodes of each app and TPL
class. In the first step, LibScan constructs a signature for both
the app class and the TPL class, based on the code features.
Such a signature is not supposed to change even if a class is
obfuscated. Therefore, if two signatures are different, it indi-
cates that the two classes are most likely different. Otherwise,
the two classes could have the correspondence relation. We
call this step signature-based class correspondence detection.
Then, the second step compares the method opcodes in the
two classes and calculates a similarity score for them. If the
similarity score is above a predetermined threshold, LibScan
decides that the two classes are method-wise similar. We call
this step method-opcode similarity determination. To further
improve the accuracy of the class correspondence between
the app class and TPL class, the final step takes into account
the method call chains in the method similarity comparison.
We call this step call-chain-opcode similarity determination.

Next, we provide the details of the 3-step approach to deter-
mining the class correspondence relations in Section 4.2, 4.3,
and 4.4. Then, we explain how to use class correspondence
relations to compute the confidence score of TPL existence
(Section 4.5) with key optimizations that increases the ef-
ficiency of LibScan (Section 4.6). Note that the term “set”
used in the following descriptions refers to the mathematical
definition of set, where elements in a set are deduplicated.

4.2 Signature-Based Class Correspondence De-
tection

Within the scope of LibScan defined in Section 3, we found
some code features that may persist during obfuscation. For
example, keyword class and primitive types used by the TPL
code are not altered in order to preserve the original function-
ality. Such code features form a class fingerprint, which is

Table 2: Class-Level Features for Signature
Class Feature Type smali keyword [5]
∃ Ordinary class class
∃ Interface interface
∃ Abstract class abstract
∃ Enumerate enum
∃ Static inner class static
∃ Non-object parent super

Table 3: Field-Level Features for Signature
Field Feature Type smali keyword static?
No field – N/A
∃Object type Ljava/lang/Object Yes/No
∃String type Ljava/lang/String Yes/No
∃¬Object∧¬String Java standard ref type Ljava/ Yes/No
∃Java primitive type B, S, I, J, F, D, Z, C Yes/No
∃Non-standard ref type – Yes/No
∃Java standard ref array type [Ljava/ Yes/No
∃Java primitive array type [B, [S, [I, [J, [F, [D, [Z, [C Yes/No
∃Non-standard array type – Yes/No

Table 4: Method-Level Features for Signature
Method Return Type smali keyword Parameters

static?

∃Java
std

reftype

∃Java
prim

itive
type

∃array
type

∃N
on-std

reftype

∃Object type Ljava/lang/Object
∃String type Ljava/lang/String
∃¬Object∧¬String Ljava/
Java standard ref type
∃Java primitive type B, S, I, J, F, D, Z, C Y

es/N
o

Y
es/N

o

Y
es/N

o

Y
es/N

o

Y
es/N

o

∃Non-standard ref type –
∃Java standard ref array type [Ljava/
∃Java primitive array type [B, [S, [I, [J,

[F, [D, [Z, [C
∃Non-standard array type –
∃void V

used in the first step to perform a basic class correspondence
detection. If two classes share the same fingerprint, they pro-
ceed to the next steps; otherwise, the class correspondence
determination stops for this pair of classes.

We divide the fingerprinting code features into three cate-
gories: class-level features, field-level features, and method-
level features (listed in Table 2, Table 3, and Table 4). The
class-level features consist of 6 class/interface types. The
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field-level features have 22 types of smali keywords, each
of which can be decorated with or without a static qualifier.
In total, there are 44 (22×2) features. Additionally, we also
create a feature to represent the case where no fields are found
in the class. The method-level features are defined by three
orthogonal feature dimensions: 23 return types in terms of
smali keywords × 2 static/non-static method qualifiers × 16
(24) parameter combinations, totaling 736 features.

The code feature extraction procedure in Figure 1 searches
keywords in the decompiled smali code of the app and the
TPL to decide if each feature is satisfied. As a result, each
feature is abstracted as a Boolean variable, and combining all
features into a vector forms a signature for both app classes
and TPL classes. Then, LibScan performs a pairwise signa-
ture matching between app classes and TPL classes. If the
signature of an app class is identical to the signature of a TPL
class, this class pair is qualified for the next steps of class
correspondence detection.

4.3 Method-Opcode Similarity Determination

The signature-based class correspondence detection may cor-
respond multiple app classes to one TPL class as well as
multiple TPL classes to one app class, indicating that there
can be false class correspondences. Therefore, in the second
step, LibScan compares the method opcodes of two classes to
determine if their correspondence is false. LibScan computes
a similarity score for every pair of app class and TPL class.
If the score is below a predetermined threshold, a false class
correspondence is detected. As a result, this step removes
false class correspondences and reduces the number of app
classes that are corresponded to one TPL class.

Typical control-flow randomization inserts a small number
of redundant opcodes into the TPL methods used by the app,
while the dead code removal eliminates unnecessary methods,
fields, and classes. In general, to guarantee the functionality of
obfuscated TPL methods, TPL obfuscators are conservative
in removing opcodes in the TPL methods that are necessary
for the app. Based on this observation, the TPL method op-
codes are likely to appear in the app if the TPL method is
used. Therefore, LibScan uses the existence of TPL-method
opcodes in the app methods to detect the class correspondence
between an app class and a TPL class.

For an app class c and a TPL class l, let Mc and Ml be the
set of methods of c and l, respectively. For an app method
m ∈Mc, of which the set of opcodes is represented by Sm, and
a TPL method n ∈Ml , of which the set of opcodes is repre-
sented by Sn, we define that m is matched to n, represented by
mMatch(m : Mc,n : Ml), if and only if 1) their method descrip-
tor features defined in Table 4 are consistent and 2) the hash
values of both methods’ opcodes are identical or Sn ⊆ Sm. By
definition, every Dalvik instruction [46] contains two parts:
opcodes and operands. Note that we use only opcodes for
method matching.

Theoretically, each TPL method should be matched by at
most one app method. Thus, if multiple app methods in one
app class are matched to one TPL method, LibScan selects
the best-matched app method as the final match, which is the
one with minimal opcode difference compared to the TPL
method. Suppose the TPL method is n, the set of matched app
methods is defined as MMc = {m ∈Mc |mMatch(m,n)}, and
the best-matched app method is defined as:

b(Mc,n) =

{
argminx∈MMc | Sx−Sn|, if MMc ̸= /0

None, otherwise

Moreover, we write Bc,l for the set of all the method-opcode
best-matched app methods in the app class c against the
TPL class l, which is defined as Bc,l = {m | ∃n ∈ Ml ,m =
b(Mc,n)}.

Then, we define a method-opcode similarity score for a
pair of classes (c, l) as follows:

MOSS(c, l) =
∑m∈Bc,l

msize(m)

∑m∈Mc msize(m)
,

where msize(m) gives the number of opcodes in method m. A
high method-opcode similarity score indicates that the propor-
tion of best-matched app methods to the TPL class methods
dominate the app methods of an app class in size. Therefore,
we configure LibScan with a similarity-score threshold, θ1,
to determine whether two classes are method-wise similar.
In other words, only if MOSS(c, l)≥ θ1, the class correspon-
dence relation between c and l is preserved.

Note that the definition of MOSS has inherently dealt with
many-to-many candidate method matching. b(Mc,n) can find
at most one app method that best matches the TPL method
n. Suppose more than one app method can best match n,
e.g., Sm1 = {op1,op2} and Sm2 = {op1,op3} best match Sn =
{op1}. We would include either m1 or m2 into Bc,l , because
a TPL method can only match one app method within the
scope of the app. On the contrary, one app method can match
multiple TPL methods, e.g., Sm1 also matches Sn2 = {op2}.
In this case, m1 can be considered as the combination of n
and n2 possibly introduced by obfuscation. Hence, m1 should
be counted only once in Bc,l .

4.4 Call-Chain-Opcode Similarity Determina-
tion

Given that two methods may look similar in terms of op-
codes but behave in different ways, using method-opcode
similarity alone could still lead to false class correspondences.
Therefore, we use call chains originating from a method to
abstract the functional behaviors of the method, based on
which LibScan decides the final class correspondences that
will be used for TPL detection. The decisions are made by
comparing the opcodes in the call chains within the app class
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and the TPL class. We call this step call-chain-opcode simi-
larity determination. At a high level, the difference between
method-opcode similarity and call-chain-opcode similarity is
where LibScan collects the set of opcodes for similarity com-
parison. For method-opcode similarity, LibScan considers the
opcodes in the method only. In contrast, LibScan further con-
siders opcodes in the subsequently invoked methods, which
incorporates more information and is more precise.

In detail, for each TPL method n ∈Ml , LibScan takes the
best-matched app method m = b(Mc,n) and n as the respec-
tive entry method and uses depth-first traversal on the program
call graphs bounded by a configurable maximum depth to gen-
erate a respective set of call chains, represented by CCm and
CCn. Note that standard library calls are skipped because
such calls may disturb the sensitivity of the call-chain-opcode
similarity determination. Each call chain is represented by a
set of class methods, and each class method is represented as
a set of opcodes. Hence, we define the call-chain opcode set
for a method x as

CSx = {op | ∃cc ∈ CCx, (m ∈ cc∧op ∈ m)}.

If CSn ⊆ CSm, we say m and n have the call-chain-opcode
inclusion relation. If two methods do not have the call-chain-
opcode inclusion relation, LibScan determines that the two
methods are no longer matched. Thus, we use a predicate
Match(c, l) to denote that a class pair (c, l) has the final class
correspondence, which holds if and only if:

∀m ∈Mc,n ∈Ml ,(m = b(Mc,n) =⇒ CSn ⊆ CSm).

4.5 TPL Detection
With the detected class correspondence relations between the
app and the TPL, LibScan computes a confidence score for the
existence of TPL in the app. The intuition is to compute the
coverage rate of the TPL. Next, we give the formal definition
of the confidence score.

We write X for the set of app classes of an app and Y for the
set of TPL classes of a TPL. As defined in Section 4.4, we use
the predicate Match(x : X ,y : Y ) to represent the class corre-
spondence detection result, which determines for a class pair
(x,y), where x is from the app and y is from the TPL, whether
they have the class correspondence relation. Thus, the set of
TPL classes that have correspondence in the app can be repre-
sented as M(X ,Y ) = {y ∈Y | ∃x ∈ X , Match(x,y)}. Now, we
can formally define the confidence score Confidence(X ,Y ) as
follows:

Confidence(X ,Y ) =
∑y∈M(X ,Y ) csize(y)

∑y∈Y csize(y)
,

where csize(y) gives the number of opcodes in a class. To
yield the final verdict on the existence of TPL in the app,
we configure LibScan with a confidence-score threshold, θ2.
If Confidence(X ,Y )≥ θ2, LibScan determines that the TPL
exists in the app.

4.6 Efficiency Optimization

While the accuracy is increasing for the three steps of class
correspondence determination, the cost of the three steps is
also increasing. If every pair of classes went through all three
steps, LibScan would be unscalable. A key observation for
improving efficiency is that the intermediate class correspon-
dence at each step can be used to early stop the TPL detection.
For example, suppose the signature-based detection step does
not find enough TPL classes in an app to go beyond the confi-
dence score threshold. In that case, we can stop the detection
for the TPL right away since later steps can only reduce the
confidence score of the app and the TPL. In Section 5, we
demonstrate the efficiency improvement with experiments.
For brevity, we elaborate on the details of this design by pre-
senting the TPL detection algorithm in Appendix A.

We depict the feature extraction of the app and TPL in
Figure 1 as a prior step before the three steps of deriving class
correspondences. However, these features are reusable when
determining the confidence score of different app-TPL pairs.
We use a cache mechanism for the features to manage queries
of cached features before extracting new features from apps
or TPLs. The cached features include the signature-related
features (Section 4.2), the opcodes and method invocation
relations of the apps and TPLs for the similarity determina-
tions (Section 4.3 and 4.4). Due to the relatively high cost, the
call chain construction is postponed to the call-chain-opcode
similarity determination instead of being cached. The cache
mechanism is suitable for batch-job feature extraction on a
large number of apps and TPLs; thus, LibScan can be used in
app stores’ vetting.

5 Evaluation

This section evaluates the effectiveness, efficiency, and scal-
ability of LibScan, as well as our efforts in using our TPL
detection to help malware detection. We first explain the
threshold tuning process, after which we compare the effec-
tiveness of LibScan with other approaches and evaluate Lib-
Scan’s effectiveness against different obfuscation levels on
the ground-truth benchmarks. Then, we evaluate the efficiency
of LibScan. To demonstrate the necessity of each detection
step, we compare LibScan’s complete detection with the de-
ployments that disable specific steps on effectiveness and
efficiency. Moreover, we conducted a large-scale experiment
to detect vulnerable TPL versions in real-world apps. We
discovered an emerging phenomenon of reusing vulnerable
TPL versions and were motivated to apply our TPL detection
to malware detection. As a result, we found some undetected
apps by clustering similar apps with the same vulnerable TPLs
to propagate verdicts.
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5.1 Experimental Settings and Datasets

Our experiments are conducted on a laptop with AMD Ryzen
7 5800H with Radeon Graphics@3.2GHz×8 CPU, 16GB
RAM, Linux 5.4.0-42-generic kernel (Ubuntu 18.04 64-bit).
We develop LibScan with Python 3.7. LibScan decompiles the
apps with Androguard 3.4.0 [6] to extract the features used
by our approach. For the TPLs, we use dex2jar 2.0 [16] to
convert the Jar file into a Dex file, then decompile the Dex
file with Androguard to extract the features.

To evaluate our approach, we designed four app datasets
AS1 ∼ AS4 and three related TPL datasets LS1 ∼ LS3. The app
datasets AS1 and AS2 have ground truths regarding the app’s
TPL versions. AS1 consists of 1,049 apps, including 785 apps
released by Orlis [9,54] and 264 released by ATVHunter [15].
AS2 contains 204 apps built by us. In detail, we collected 51
apps’ source code from the 17 categories of [3]; we built each
app with the D8 compiler [17] and three different obfuscation
levels of the R8 compiler [19] of Android Studio v3.5.1. AS3
consists of the 1,000 most popular apps from Google Play’s
35 categories. AS4 consists of 100,000 apps released from Jan.
2012 to Dec. 2021, downloaded from AndroZoo [7, 20]. For
each year, we randomly selected 10,000 apps. All the apps
are strictly deduplicated.

Each app dataset will be evaluated against a TPL dataset.
TPL dataset LS1 consists of 452 TPLs released by Orlis. The
ground-truth TPL existence between LS1 and AS1 is provided
by Orlis. The TPL dataset LS2 consists of 109 TPLs used by
AS2. The ground-truth TPL existence between LS2 and AS2 is
acquired by checking their source code. The TPL dataset
LS3 consists of 192 vulnerable TPL versions released by
ATVHunter [12] and 13 popular vulnerable TPL versions
collected from CVEs (details in Appendix B). In all, each
of the 205 vulnerable TPLs in LS3 has at least one CVE.
We obtained the 205 TPL versions in LS3 from the Maven
repository [2] and used them to work on AS3 and AS4.

To perform a more in-depth evaluation, we categorize the
apps from AS1 and AS2 according to the compilers and obfus-
cation tools used to build the apps. Moreover, there are differ-
ent obfuscation levels for each obfuscator. Thus, we further
differentiate the apps built from the same obfuscator by their
obfuscation levels. As a result, the categorization of apps in
AS1 and AS2 is summarized in Table 5. Of the 785 Orlis bench-
mark apps in AS1, 225 are not obfuscated, and the rest are
obfuscated by DashO, ProGuard, or Allatori. ATVHunter [15]
takes 88 of the 225 non-obfuscated apps and obfuscates these
apps with three DashO options, i.e., control-flow randomiza-
tion (cfr), package flattening+identifier renaming (pf-ir), and
dead code removal (dcr). Besides, 181 of the Orlis benchmark
apps are obfuscated with DashO on all three options enabled
(cfr-pf-ir-dcr). For the 204 apps in AS2, we first built 51 non-
obfuscated apps with D8. Then we configured R8 with three
obfuscation levels to build the rest 51×3 apps. Note that code
shrinking (shrink) and shrinking+optimization (shrink-opt)

Table 5: Ground-Truth App Datasets Categorization
App Dataset Category #apps #Tuning Release Source

AS1

Non-obfs 225 22
Orlis [9]

Allatori 210 22
DashO-cfr 88 9

ATVHunter [15]DashO-pf-ir 88 9
DashO-dcr 88 9

DashO-cfr-pf-ir-dcr 181 22
Orlis [9]

ProGuard 169 17

AS2

D8-non-obfs 51 5

build from
source code

R8-shrink 51 5
R8-shrink-opt 51 5

R8-shrink-orlis 51 5

are standard obfuscation levels of R8. The third level uses
Orlis’s ProGuard policy, enhancing the code shrinking level
with crafted repackaging and renaming rules (shrink-orlis).

The ground-truth datasets AS1 and AS2 were used to eval-
uate LibScan’s effectiveness (Section 5.3). Because AS1’s
DashO-obfuscated apps and AS2 were built on different ob-
fuscation levels, we used these apps to evaluate LibScan’s
efficacy against different obfuscation levels (Section 5.3.3).
We used AS1 and AS3 to demonstrate the detection efficiency
of LibScan (Section 5.4). To further investigate the scalability
of our approach, we applied LibScan to AS4 to detect the vul-
nerable TPL versions in LS3 (Section 5.5). Due to the lack of
ground truths, AS3 and AS4 cannot be used to measure effec-
tiveness. Only a few ground-truth apps (#Tuning in Table 5)
were used in the threshold tuning (Section 5.2).

Our evaluations are designed to answer the following re-
search questions.
- RQ1. How can we establish the optimal thresholds θ1 in

Section 4.3 and θ2 in Section 4.5?
- RQ2. How can each step of LibScan contribute to LibScan’s

overall effectiveness?
- RQ3. Can LibScan reach higher precision, recall, and F1

score compared with the state-of-the-art TPL detectors?
- RQ4. How does LibScan perform on different obfuscation

levels?
- RQ5. What is LibScan’s efficiency compared with the state-

of-the-art TPL detectors? How each step of LibScan con-
tributes to its efficiency?

- RQ6. Can LibScan effectively detect potential vulnerable
TPLs from large-scale real-world apps? Can the detection
results be used to facilitate malware detection?

5.2 Thresholds Tuning (RQ1)

We divide each ground-truth app dataset in Table 5 into a
validation set used in tuning the threshold θ1 and θ2, and a
test set to evaluate the effectiveness of LibScan. For flexibility,
we manually set a proportion for each app category in Table 5
(9.5%-12.0%). The tuning procedure produces the validation
set by randomly selecting a certain number of apps (#Tuning
in Table 5) from each category according to the proportion.
As a result, 110 apps in AS1 and 20 in AS2 are selected for
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thresholds tuning, and the rest ground-truth apps are for the
evaluations. To guarantee the apps used in the evaluation
of Section 5.3.3 have the same ground truths on different
obfuscation levels, we ensure the 9×3 DashO-obfuscated
apps and 5×4 D8/R8-built apps are the same apps at different
obfuscation levels.

Because the value of θ1 and θ2 have a coefficient impact
on the metrics of our evaluation, we conduct a grid search
over different choices of θ1 and θ2 to establish the optimal
value of θ1 and θ2. The metric we use in the grid search is
the F1 score. Therefore, before introducing the grid search
results, we present the metrics used in the effectiveness eval-
uations. The TPL version-level standard metrics used in the
effectiveness evaluations are as follows:

Precision =
T P

T P+FP
Recall =

T P
T P+FN

F1-score =
2×Recall×Precision

Recall +Precision

The true positive (TP) refers to the case that the app contains
a TPL version, and the tool detects the existence of this TPL
version. The false positive (FP) means the tool reports some
TPL version that does not exist in the app. The false negative
(FN) represents that a TPL version contained in an app is
reported absent by the tool.

We have tried to unify the hyperparameters of LibScan and
the related TPL detection tools on AS1 and AS2. However, due
to R8 and D8’s new feature on app compilation and optimiza-
tion, the hyperparameters of all the detection tools have to
be tuned respectively on AS1 and AS2. Specifically, LibScan
needs lower θ1 to tolerate more redundant code insertion and
lower θ2 to tolerate more code removal on the D8/R8-built
apps. Since detecting whether an APK was built with R8,
D8, or the historic compiler DX is straightforward using the
R8 retrace tool [14, 18], retuning hyperparameters for D8/R8
built apps is reasonable.

Because θ1 is only for the method-opcode similarity deter-
mination and θ2’s earliest use is at the end of the signature-
based detection, we reserve the results prior to the earliest
confidence-based TPL detection and iteratively perform the
opcode similarity determination steps on different (θ1,θ2) in-
stances to accelerate the thresholds tuning procedure. This
procedure takes 21∼22 hours on the 110 apps in AS1 to gener-
ate the grid search results in Table 6. We observe that the peak
F1 score is reached at (θ1,θ2)=(0.7, 0.85) for AS1 when the
step length is 0.05. The generalization ability of the optimal θ1
and θ2 supports LibScan’s high effectiveness on the 939 apps
in AS1, efficiency on dataset AS1 and AS3, and scalability on
dataset AS4. Using similar procedure, we tune (θ1,θ2)=(0.2,
0.35) for the D8-built non-obfuscated apps and (θ1,θ2)=(0.15,
0.1) on the three obfuscation levels of R8. More hyperparam-
eter tuning results of related tools are in Appendix C.

Table 6: Grid Search on F1-scores to Establish Optimal
Threshold θ1 and θ2

θ1

0.65 0.7 0.75 0.8 0.85 0.9 0.95

θ2

0.5 0.891 0.894 0.894 0.895 0.894 0.885 0.880
0.55 0.893 0.896 0.896 0.894 0.948 0.939 0.947
0.6 0.894 0.897 0.897 0.894 0.947 0.938 0.944
0.65 0.894 0.897 0.952 0.949 0.947 0.938 0.942
0.7 0.901 0.904 0.958 0.955 0.953 0.944 0.942
0.75 0.899 0.902 0.958 0.955 0.952 0.956 0.933
0.8 0.954 0.956 0.956 0.953 0.950 0.952 0.910
0.85 0.964 0.967 0.966 0.965 0.961 0.932 0.883
0.9 0.944 0.947 0.939 0.921 0.912 0.882 0.805
0.95 0.838 0.832 0.814 0.811 0.808 0.776 0.743

5.3 Effectiveness Evaluation

Following the traditional effectiveness comparisons of the
related works, we evaluate the effectiveness of LibScan at
both the library and the version level. The library-level met-
rics measure different tools’ ability to detect specific TPL in
the app. At the library level, true positive stands for the case
the TPL existed in the app detected by the tool. We use TP0
to represent this library-level true positive and distinguish it
from the version-level true positive defined in Section 5.2.
The library-level false positive (FP0) means the tool-reported
TPL does not exist in the app. The library-level false nega-
tive (FN0) means the TPL in the app is reported absent by
the tool. Based on the library level TP0/FP0/FN0, we define
the library-level metrics Precision0/Recall0/F1-score0. The
library-level metrics can be different from the version-level
metrics. A typical example is that some tool reports the de-
tection of okhttp 4.9.0 in an app, but the TPL version is
indeed okhttp 4.9.1. In such a case, we reach a library-
level true positive but a version-level false negative. For
each detection tool and a specific ground-truth dataset with
ground-truth positive GTP, we have TP+FN=TP0+FN0=GTP
and TP+FP=TP0+FP0 due to the relation of library-level and
version-level detection. Also, we have TP0 ≥TP, FP0 ≤FP,
and FN0 ≤FN.

The effectiveness evaluation is threefold. First, we demon-
strate the necessity of LibScan’s each step by investigating
the metrics of LibScan’s different step combinations. Then
we measure and compare the standard metrics of different
tools at both library and version levels on the app dataset AS1.
Finally, we evaluate LibScan’s effectiveness against different
obfuscation levels of DashO and R8.

5.3.1 Stepwise Contribution to Effectiveness (RQ2)

LibScan’s different detection steps exclude different amounts
of app classes. For example, signature-based detection can
abandon over 99.6% of app classes on dataset AS3, as shown
in Section 5.4. However, the app classes abandoned at dif-
ferent steps show different disturbance effects to the TPL
detection. We demonstrate that the two opcode similarity de-

3392    32nd USENIX Security Symposium USENIX Association



Table 7: Effectiveness Comparison of Different Tools on 939 apps of Dataset AS1 (5,956 Ground-Truth TPL Existences)
Library-level Version-level

Tool TP0 FP0 FN0 Precision0 Recall0 F10 TP FP FN Precision Recall F1
LibID-S 2,209 1,358 3,747 0.6193 0.3709 0.4639 2,192 1,375 3,764 0.6145 0.3680 0.4604
LibID-A 2,098 622 3,858 0.7713 0.3522 0.4836 2,091 629 3,865 0.7688 0.3511 0.4820
LibPecker 4,563 1,798 1,393 0.7173 0.7661 0.7409 4,243 2,118 1,713 0.6670 0.7124 0.6890
Orlis 1,507 45 4,449 0.9710 0.2530 0.4014 730 822 5,226 0.4704 0.1226 0.1945
LibScout 2,679 314 3,277 0.8951 0.4498 0.5987 2,664 329 3,292 0.8901 0.4473 0.5954
LibScanI 5,872 2,211 84 0.7265 0.9859 0.8365 5,846 2,237 110 0.7232 0.9815 0.8328
LibScanI+II 5,812 1,199 144 0.8290 0.9758 0.8964 5,685 1,326 271 0.8109 0.9545 0.8768
LibScan 5,741 326 215 0.9463 0.9639 0.9550 5,659 408 297 0.9328 0.9501 0.9414

termination steps, even abandoning fewer app classes, are
indispensable to LibScan’s detection. In Table 7, LibScanI is
a setup of LibScan with only signature-based class correspon-
dence detection. LibScanI+II is a setup with both signature-
based detection and method-opcode similarity determination.
Adding the opcode similarity determinations as LibScan’s
detection steps generally causes a minor increase in the false
negatives but gains a significant decrease in the false posi-
tives. Although signature-based class correspondence detec-
tion serves as a competitive detection by itself, the opcode
similarity determinations are indispensable in outperforming
other approaches, especially on precision and F1 score.

5.3.2 Effectiveness Comparison with State-of-the-art
TPL Detectors (RQ3)

We compare the effectiveness of LibScan with LibID [58],
LibPecker [60], Orlis [54], and LibScout [22]. Here we only
compare the complete deployment of LibScan. From Table 7,
we know that on the 5,956 ground-truth TPL existences, Lib-
Scan generally outperforms other approaches on both library
and version levels. Orlis reports a higher precision at the
library level but has relatively lower recall. Indeed, the sim-
ilarity digests of Orlis cause low recalls on both obfuscated
and non-obfuscated apps. The fewer false positives of Orlis
and LibScout than LibScan are at the cost of their high false
negatives. Although reporting low recalls in several cases,
Orlis and LibScout are very competitive on precision. This
advantage makes them suitable for the scenario when high
precision is preferred, e.g., constructing exploits relying on
specific TPL. Among these detection tools, only LibPecker
and LibScan can effectively restrict the false negatives on
obfuscated TPLs. More standard metrics comparisons decom-
posed against different obfuscators are in Appendix E.

We have not obtained the implementation of ATVHunter
[56]; thus, we cannot compare LibScan with ATVHunter on
the complete ground-truth app datasets. However, ATVHunter
has released ground truths [11] on a subset of AS1: the 552
ground-truth apps in [11] are a subset of the 785 Orlis bench-
mark apps, including 138 non-obfuscated apps and 138×3
apps obfuscated with DashO, ProGuard, and Allatori, respec-
tively. ATVHunter detects the ground-truth TPL existence
list [10] in these apps. As reported in [11], the 552 apps con-
tain 3,124 ground-truth TPL existences, i.e., TP+FN=3,124,

and ATVHunter reports 2,558 true positives on these apps.
Therefore, the Recall of ATVHunter is 81.88%. We detect the
same TPL existence list on the 552 apps with LibScan. Lib-
Scan finds 3,046 true positives and reports 94 false positives
and 78 false negatives. The recall reaches 97.50%. The false
positives of ATVHunter on the ground truths are unavailable;
thus, the precision is incomparable, but we can confirm that
our F1 score is better than ATVHunter on the apps.

5.3.3 LibScan’s Sensitivity on Obfuscation Levels (RQ4)

We use the 79×4=316 DashO-obfuscated apps in AS1 and
46×3=138 R8-obfuscated apps in AS2 to evaluate Lib-
Scan’s effectiveness against different obfuscation levels of
DashO and the R8 compiler, respectively. Of the 316 DashO-
obfuscated apps, the 79 apps on the cfr-pf-ir-dcr level are
from the 181 Orlis benchmark apps in AS1 to ensure the 316
apps are indeed 79 apps on 4 different obfuscation levels with
the same ground truths. For comparison, the results on the
corresponding non-obfuscated apps are also reported.

Table 8 presents the effectiveness of TPL detectors on dif-
ferent DashO obfuscation levels (more details in Table 17).
LibScout, Orlis, and LibID reach fewer false positives on
these obfuscation levels at the cost of high false negatives,
while LibPecker has moderate false positives and false nega-
tives. LibScan reports more false negatives on the dead code
removal cases than on other obfuscation levels. However, this
sensitivity is remarkable due to the overall high recall. It does
not mean LibScan has worse performance than other tools
for resisting dead code removal. LibScout and LibID take
particular consideration for the precision on obfuscated apps,
introducing more false positives on non-obfuscated apps. In-
terestingly, LibScan, LibScout, and LibID have a better overall
effectiveness (F1 score) against the most rigorous level, i.e.,
cfr-pf-ir-dcr, than against several looser obfuscation levels,
indicating the combination of obfuscation techniques may
suppress the disturbing effect of some specific technique to
these detectors.

Table 9 presents the effectiveness of TPL detectors on
D8’s compilation and R8’s obfuscation levels (more details
in Table 18). The opcodes of D8-built app are optimized
to a certain degree, affecting LibScan’s precision. However,
D8 reserves the package structure of TPL; thus, LibScout
and LibPecker, which use the package hierarchy information,
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Table 8: Effectiveness Comparison of Detection Tools to Different DashO Obfuscation Levels (PR=Precision, RC=Recall)
Detection Obfuscation LibScan LibScout Orlis LibPecker LibID-A

Level Level PR0 RC0 F10 PR0 RC0 F10 PR0 RC0 F10 PR0 RC0 F10 PR0 RC0 F10

Library-
level

Non-obfustated 0.984 1.000 0.992 0.918 0.875 0.896 1.000 0.346 0.515 0.759 0.984 0.857 0.796 0.774 0.785
DashO-cfr 0.984 0.982 0.983 1.000 0.180 0.305 1.000 0.337 0.504 0.723 0.790 0.755 1.000 0.048 0.093
DashO-pf-ir 0.986 0.984 0.985 1.000 0.169 0.289 1.000 0.346 0.515 0.708 0.723 0.715 1.000 0.002 0.005
DashO-dcr 0.997 0.873 0.931 1.000 0.169 0.289 1.000 0.321 0.486 0.708 0.718 0.713 1.000 0.055 0.105
DashO-cfr-pf-ir-dcr 0.986 0.977 0.981 0.936 0.203 0.334 1.000 0.212 0.350 0.527 0.337 0.411 0.870 0.046 0.088

PR RC F1 PR RC F1 PR RC F1 PR RC F1 PR RC F1

Version-
level

Non-obfustated 0.984 1.000 0.992 0.918 0.875 0.896 0.507 0.176 0.261 0.747 0.968 0.843 0.796 0.774 0.785
DashO-cfr 0.954 0.952 0.953 1.000 0.180 0.305 0.493 0.166 0.249 0.641 0.700 0.669 1.000 0.048 0.093
DashO-pf-ir 0.958 0.956 0.957 1.000 0.169 0.289 0.507 0.176 0.261 0.622 0.635 0.629 1.000 0.002 0.005
DashO-dcr 0.963 0.843 0.899 1.000 0.169 0.289 0.482 0.155 0.234 0.622 0.630 0.626 1.000 0.055 0.105
DashO-cfr-pf-ir-dcr 0.956 0.947 0.951 0.936 0.203 0.334 0.446 0.095 0.156 0.516 0.330 0.403 0.870 0.046 0.088

Table 9: Effectiveness Comparison of Detection Tools to Different D8/R8 Obfuscation Levels (PR=Precision, RC=Recall)
Detection Obfuscation LibScan LibScout Orlis LibPecker LibID-A

Level Level PR0 RC0 F10 PR0 RC0 F10 PR0 RC0 F10 PR0 RC0 F10 PR0 RC0 F10

Library-
level

D8-non-obfs 0.783 0.981 0.871 0.818 0.969 0.887 0.579 0.500 0.536 0.786 0.975 0.871 0.821 0.821 0.821
R8-shrink 0.904 0.580 0.707 0.389 0.272 0.320 0.632 0.457 0.530 0.754 0.568 0.648 0.704 0.352 0.469
R8-shrink-orlis 0.903 0.574 0.702 0.488 0.130 0.205 0.630 0.463 0.534 0.739 0.506 0.601 0.585 0.235 0.335
R8-shrink-opt 1.000 0.080 0.149 0.258 0.105 0.149 0.545 0.037 0.069 0.917 0.068 0.126 1.000 0.068 0.127

PR RC F1 PR RC F1 PR RC F1 PR RC F1 PR RC F1

Version-
level

D8-non-obfs 0.719 0.901 0.800 0.818 0.969 0.887 0.336 0.290 0.311 0.716 0.889 0.793 0.753 0.753 0.753
R8-shrink 0.808 0.519 0.632 0.372 0.259 0.305 0.342 0.247 0.287 0.467 0.352 0.401 0.679 0.340 0.453
R8-shrink-orlis 0.796 0.506 0.619 0.488 0.130 0.205 0.361 0.265 0.306 0.441 0.302 0.359 0.569 0.228 0.326
R8-shrink-opt 0.769 0.062 0.114 0.197 0.080 0.114 0.273 0.019 0.035 0.917 0.068 0.126 1.000 0.068 0.127

have good effectiveness on D8-built apps. When the code
shrinking is introduced without R8’s optimization, i.e., on
the levels R8-shrink and R8-shrink-orlis in Table 9, the code
shrinking raises the false negatives of LibScan, but LibScan
can still outperform other detectors. The crafted repackaging
and renaming rules of Orlis’s ProGuard policy have a minor
effect on disturbing LibScan’s detection. R8’s optimization
over the code shrinking, i.e., R8-shrink-opt in Table 9, signifi-
cantly reduces the effectiveness of all the TPL detectors. We
infer the reason is that R8’s optimization intensively removes
dead code and uses both method inlining and reflections, as
discussed in Section 6.3.

5.4 Efficiency Evaluation (RQ5)

We compare the detection time cost of LibScan with other
approaches and evaluate the memory cost of LibScan. We
deploy the tools to the environment in Section 5.1. For each
app in AS1, we record the time cost to detect the 452 TPL
versions in LS1. For the popular Google Play apps in AS3, we
record the time cost to detect the 205 vulnerable TPL ver-
sions in LS3. We also record the memory costs of LibScan in
this procedure. We use four metrics (Q1, mean, median, Q3)
to evaluate the time cost. Q1, median, and Q3 are the three
quartiles that divide the sorted per-app detection times. Mean
stands for the average detection time. The per-app time costs
on AS3 are presented in Table 10. We observed that on AS3,
LibID, LibPecker, and Orlis conduct more feature matching
or digest computation on all the app classes, thus being more
time-consuming. LibScout is the most efficient approach be-

Table 10: Per-App Detection Efficiency of Different Tools on
AS3

LibID-S(s) LibPecker(s) Orlis(s) LibScout(s) LibScan(s)
Q1 47.52 498.23 51.34 3.40 35.12

mean 956.69 797.00 135.66 5.45 45.99
median 151.88 741.01 110.21 5.04 44.10

Q3 654.63 1036.98 219.62 7.14 57.61

Table 11: Per-App Efficiency Benefit from Different LibScan
Detection Steps

T1(s) T2(s) T3(s) T4(s) T5(s) Ttotal(s)
LibScanIII 29.07 – – 780.20 10.54 819.81
LibScanII+III 29.07 – 480.10 0.01 10.02 519.20
LibScan 29.07 6.14 0.01 0.01 10.76 45.99

cause LibScout uses package structures in advance before
the class and method matchings, which significantly short-
ens the detection time but causes LibScout affected by the
repackaging of the apps. The average memory cost of Lib-
Scan on each app of AS3 is 4.88 GB. (More results on AS1
are in Appendix D.)

It is essential to evaluate the necessity of each detection step
of LibScan and the potential efficiency loss when disabling
one or several of these steps. We observed that on AS3, Lib-
Scan’s signature-based detection excludes 99.615% of the app
classes as unmatched for TPL class; the method-opcode simi-
larity determination excludes 0.002% of app classes; the sub-
sequent call-chain-opcode similarity determination excludes
0.232% of app classes. Section 5.3.1 has demonstrated the
necessity of opcode similarity determinations for effective-
ness. Here we investigate the performance benefit of applying
signature-based detection before the costly opcode similarity
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Table 12: Categories of the 3,949 Existences of the Vulnerable
TPL Versions

Vul TPL #exist Version Version #exist
2.2.0 518

retrofit 1,255 2.3.0 524
2.4.0 213

nifi-web-content-access 987 1.1.1 987
2.4 625

commons-io 679 2.5 49
2.6 5

simple-xml 378 2.7.1 378
okhttp 198 3.10.0 198

httpclient 168 4.3 168
log4j 130 1.2.17 130

1.2.7 43
fastjson 50 1.2.22 5

1.2.24 2
bcprov-jdk15 33 1.46 33

commons-collections 31 3.2.1 31
xstream 16 1.4.6 16

jackson-databind 10
2.9.4 6
2.9.7 4

library 6 1.7.3 6
FileDownloader 6 1.7.3 6

groovy 1 2.4.3 1
bcprov-ext-debug-jdk15on 1 1.57 1

determinations as well as the confidence-score based early
stop. Consequently, we deploy two variants of LibScan, i.e.,
LibScanIII and LibScanII+III. LibScanIII is a setup that en-
ables the call-chain-opcode similarity determination while
disabling the first two steps. LibScanII+III deploys the two
opcode similarity determination steps while disabling the
signature-based detection. The monotonic exclusion on the
class correspondences of the three steps makes these cus-
tomizations flexible. We compare the average detection time
of different setups on dataset AS3 and decompose the detec-
tion time by step. In Table 11, T1 is the time for feature ex-
traction and caching. T2 is the time for signature-based class
correspondence detection. T3 and T4 are the time for method-
and call-chain-opcode similarity determination, respectively.
T5 is a cost of the incomplete analysis of some libraries caused
by library dependency (depicted in Section 6.1). Table 11
shows that disabling the earlier steps will expose more app-
TPL class correspondence decisions to the time-consuming
later steps. In summary, LibScan’s multi-step detection bene-
fits the detection effectiveness (Section 5.3.1) and efficiency
(Section 5.4).

5.5 Large-Scale Vulnerable TPL Detection
(RQ6)

This section conducts a large-scale TPL detection on 100,000
real-world apps with LibScan to demonstrate its scalability
in detecting real-world vulnerable TPLs. On app dataset AS4,
we detect the 205 vulnerable TPL versions in LS3. We find
that 3,664 apps in app dataset AS4 are detected to use at
least one of the vulnerable TPL versions. The vulnerable TPL
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Figure 2: Annual Existences of Top Vulnerable TPL Versions

versions have 3,949 existences, and after deduplication, 23 out
of 205 TPL versions are found in the apps. The results validate
our approach over the long-term and large-scale wild apps.
We further investigate the categories of the 3,949 existences
of the TPL versions, as presented in Table 12. Due to the
absence of ground truths, we consulted two independent app
developers to manually confirm the correctness of 5% of the
vulnerable TPL detections in the big categories (#exist > 100).
Of the 190 TPL detections, 186 were manually confirmed,
and four were unknown. We did not try to confirm the TPL
versions manually, since the potential obfuscation made the
task impractical by human effort.

We figure out how the top detected TPL versions are
distributed in the apps released yearly. Following this ev-
idence, the developers may predict and mitigate the po-
tential TPL exploits more effectively. The distributions
of the top 9 TPL versions are shown in Figure 2. We
choose 10,000 apps for each year; thus, these usage distri-
butions also reflect the prospective usage frequencies. We
notice that several TPL versions confirmed to be vulnera-
ble long time ago, e.g., nifi-web-content-access-1.1.1
and retrofit-2.3.0/2.2.0, are still used in a consid-
erable number of recent apps. Especially the usage of
nifi-web-content-access-1.1.1 even increases in 2021.
Such frequent usage of the old TPLs also inspires us to inves-
tigate the app maliciousness potentially correlated with the
vulnerabilities of TPLs.

Even if the existence of vulnerable TPLs alone is insuffi-
cient for confirming the malicousness of an app, we believe
vulnerable TPLs can be used as a feature to help improve mal-
ware detection. Hence, we did a proof-of-concept experiment
to demonstrate this direction. We propose to use the vulner-
able TPL existence to improve the accuracy of fuzzy-hash
similarity based clustering, which can be used for malware
detection. In detail, we put apps into one cluster if two con-
ditions are satisfied: 1) every pair of apps in the cluster have
two Dex files, one from each app, which have an ssdeep [8]
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Table 13: AV Vendor Mark Updates of VirusTotal on Different CooTek App Clusters
Cluster ID 0 0’ 1 2 3

#Vendor reported 27 1 25 25 15 0 0 0 0 0 0 0 7 10 28 1 1 1
#Vendor reanalyzed 30 27 26 26 28 24 21 19 19 18 18 17 10 10 20 8 8 8

similarity score >95%; 2) the apps use the same vulnerable
TPLs. As a result, each cluster shares high code similarity and
depends on the same vulnerable TPLs. Then, we label apps
as benign or malicious according to VirusTotal [1]. We deem
an app malicious as long as there are at least 10 vendors on
VirusTotal detecting the app as malware; otherwise, we say
it is VT-undetected. Then, if a cluster contains one malware,
we propagate the malware verdict to the whole cluster. In this
process, requiring apps sharing the same vulnerable TPLs
increases the confidence of propagating the malware verdict
to VT-undetected apps.

Since our detection approach is to propagate malware ver-
dicts to VT-undetected samples, our detection gives a superset
of what VirusTotal can detect. Therefore, we cannot rely on
VirusTotal to perform a systematic efficacy evaluation of our
detection approach. Instead, we decide to do manual checking
for some outstanding cases. During our manual checking, we
found an interesting methodology to validate our detection re-
sult. That is, anti-virus vendors may flip their verdicts for apps
within a period of time after the first time they saw the app.
However, VirusTotal triggers re-analysis for an app only on
user demand. Thus, the vendor verdicts on VirusTotal could
be outdated. Thanks to this phenomenon, we had a chance to
use outdated verdicts to predict up-to-date verdicts. Specifi-
cally, we do verdict propagation based on outdated verdicts
and we validate our detection results using the verdicts after
we request for re-analyzing the apps.

We conducted clustering-based detection on the 3,664 apps
detected to use the vulnerable TPLs in LS3. We label the apps
using VirusTotal’s reports for these apps, with their report
generation dates between May 2019 and Sep. 2022. We fo-
cused on the clusters whose apps have contradicting verdicts
and found an interesting cluster of four apps. In this clus-
ter, two Graffiti v6.3.22.2019, one Sparkling Purple Heart
v6.3.22.2019, and one Fingerprint Style v6.3.26.2019 are clus-
tered to have highly similar Dex files and use the vulnerable
TPL retrofit-2.4.0 (Cluster 0 in Table 13). They are all
provided by the same app-vendor CooTek. 27 vendors of
VirusTotal reported one Graffiti malicious. Only one vendor
of VirusTotal reported the other Graffiti. 25 vendors of Virus-
Total reported maliciousness for the other two apps. Based on
our verdict propagation strategy, we predicted the one-vendor-
reported Graffiti as malicious. Then, we demanded VirusTotal
to reanalyze the four apps in Feb. 2023. We found the AV
vendor marks were updated from (27, 1, 25, 25) to (30, 27,
26, 26), which validated our detection result.

To further understand the contribution of the vulnerable
TPL existence in our proof-of-concept approach, we collected
around 70 apps from Koodous [40] released by CooTek to

extend our experiment. We re-clustered these CooTek apps
and collected their vendor marks (both outdated and up-to-
date versions) on VirusTotal. Generated clusters are shown
in Table 13. First, 8 more apps were added into the Cluster 0
to form Cluster 0+0’, in which our verdict propagation can
predict the correct maliciousness for the extra 7 apps. Simi-
larly, our approach works for Cluster 1. Then, we discharged
the requirement of sharing the same vulnerable TPLs during
our clustering. As a result, we observed differences in the
clustering result: a Graffiti boy v6.3.23.2019 app (marked
as Cluster 2) was merged into Cluster 0+0’; and three more
apps (i.e., represented as Cluster 3) were added into Cluster 1.
However, the decreasing vendor marks of the Graffiti boy app
may indicate that it could be a false positive of vendors; and
apps in Cluster 3 are not considered as malware by our defini-
tion. Thus, if we did not involve the existence of vulnerable
TPL in the clustering, our verdict propagation would detect
all apps in Cluster 3 as well as the Graffiti boy app, resulting
in 3 false positives and 1 potential false positive. In all, we
conclude that the existence of vulnerable TPL is a prominent
auxiliary feature for malware detection.

6 Discussions

6.1 TPL Dependencies Identification
A TPL may be developed based on other TPLs. For example,
the HTTP library okhttp3 [13] is developed based on the
stream library okio [4]. When the app uses okhttp3, it will
also import the related okio library into the app. The usage
of Maven and Gradle makes dependency management easy.

Our call-chain-opcode similarity determination relies on
the opcode inclusion relation between the app and TPL call
chains. The effectiveness of this fine-grained analysis sig-
nificantly depends on the cohesiveness of the TPLs in the
app. Usually, a TPL method will only call the methods in the
current library. When the TPL is imported into the app, this
characteristic remains in most cases. However, when a TPL
depends on other TPLs, such characteristics will be broken
after these TPLs are imported into the app. Specifically, when
analyzing the library Jar file, a part of the call chain in the
depended TPLs will be missed. On the other hand, when ana-
lyzing the in-app TPL method, because the depended TPLs
are also imported, the call chain in the app will be complete.

We cannot confirm in the app if some callee method be-
longs to a depended TPL. Therefore, we try to recover the
partial call chains missed in the TPL code. Specifically, when
we analyze the class correspondences of an app and the TPL
l1, the features extracted from l1 may indicate that method ml1
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calls a method mcallee, and mcallee is neither a standard API
nor an app method. In this case, we infer mcallee as a potential
method in another library depended by l1. We use mcallee’s
fully qualified name to search to decide mcallee’s existence in
other TPLs. If mcallee is in the TPL l2, we merge the partial
call chain of the method mcallee in l2 into the call chain of
l1. Then, the call-chain-opcode similarity determination in
Section 4.4 can be conducted. In our implementation, if the
depended TPL l2 has not been analyzed and there is no idle
working process available to analyze l2, LibScan will drop
the incomplete analysis of l1 and start analyzing l2. In other
words, the working process for l1 is preempted. Therefore the
time cost T5 in Table 11 comes into being.

6.2 Optimizations on Performance
Although the multi-step detection procedure of LibScan has
reached a reasonable balance between detection effective-
ness and efficiency, we believe LibScan’s performance can
be further improved from the following aspects. First, fea-
ture extraction and caching have considerable overhead, as
illustrated in Table 11. The dimensions of the boolean vec-
tor of the features can be reduced when considering the
application domain of the TPL. For example, some string-
operation TPL may neither have primitive-array nor non-
standard-array return type/parameters. Therefore, the feature
extraction can be accelerated by preparing a shorter feature
vector of domain-specific TPLs and apps. However, LibScan
is a general-purpose TPL detection approach, and we prefer
to address more general code features. Second, the highest
overhead comes from deciding the call-chain-opcode inclu-
sion relation between the call chains of TPL and the app.
To reduce the complexity of the opcodes inclusion decision,
we may truncate the call chains with a smaller length bound.
The truncation can increase the number of methods in the
call-chain-matched TPL method set and change the optimal
thresholds.

6.3 Threats to Validity
The method- and call-chain-opcode similarity determinations
rely on the opcode inclusion relation to catch the similarity of
TPL and app. This approach has a high resistance to repack-
aging. Also, it is intuitively natural to resist the cases when
obfuscators insert redundant code or conduct control-flow
randomization in the used TPL methods.

Table 8 shows that LibScan is more sensitive to dead code
removal. In such cases, particular opcode types would be
removed to make the set-based opcode inclusion decision
difficult. The threshold θ2 can determine LibScan’s sensitiv-
ity on dead code removal. LibScan has good effectiveness if
only a small percentage of the TPL code is removed. Remov-
ing a significant portion of the TPL code would cause a low
confidence score for detecting a TPL, thus leading to false

negatives. However, if the majority of a vulnerable TPL is
removed, its vulnerability could also be removed. Hence, such
false negatives may not cause severe consequences. Consider-
ing the cases where the remaining minority TPL code contains
vulnerability, we admit that library-level detection is insuf-
ficient; we need class/method-level detection. Although our
approach has class/method-level features, we cannot ensure a
precise class-level or method-level detection with LibScan.

Our call-chain-opcode similarity determination is sensitive
to the Java reflection mechanism. Several large-scale stud-
ies [27, 33] have mentioned using reflection techniques for
obfuscation. Reflection is a transformation that converts direct
method invocations into reflective calls using reflection APIs.
This transformation can modify the call chain or remove a
part of the call chain from the original call graph; thus, it
can evade our call-chain-opcode similarity determination that
relies on the correlation between the direct method calls.

When different TPL versions have only minor code differ-
ences, LibScan may be ineffective in distinguishing them. For
example, com.android.support.support-v13.23.1.1
and com.android.support.support-v13.23.1.0 caused
LibScan to raise a false negative by reporting the incorrect
version. However, this should be a common issue for most
code-based TPL detectors. Besides, a TPL may be developed
based on another popular TPL and only introduce a small
amount of new code. This situation causes the high similarity
of the two TPLs; thus, LibScan may build more class
correspondences and raise a false alarm.

LibScan could also be sensitive to traditional optimiza-
tion techniques, e.g., method inlining and method wrapping.
Method inlining affects LibScan’s method-opcode similar-
ity determination, while wrapping TPL methods into proxy
class affects the class- and field-level features of the signature-
based detection. We can disable the signature-based detec-
tion or method-opcode similarity determination to support
detecting these obfuscations, given that all the steps have sim-
ilar input-output interfaces in the work pipeline. However,
disabling these steps would sacrifice efficiency, which is an
effectiveness versus performance tradeoff for LibScan.

7 Conclusion

We proposed LibScan, an accurate third-party library detec-
tion approach for Android apps. LibScan fingerprints code
features to initialize class correspondence relations prior to
the method- and call-chain-opcode similarity determinations
that can reduce the false class correspondences of the over-
all detection. The confidence score decisions are applied on
the monotone-decreasing number of class correspondences
of each detection step to ensure the early stop and efficiency
of the detection. Taking proper threshold settings, LibScan
outperforms most of the state-of-the-art TPL detections on
effectiveness and efficiency and has superior scalability. The
temporal analysis of large-scale apps demonstrates LibScan’s
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ability to predict more threatening TPLs and more security
analysis indicates that LibScan can be used as an auxiliary
tool to help malware detection.
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A TPL Detection Algorithm

We know from Section 4.5 and 4.6 that there are different
Match(X ,Y ) predicates at different steps of LibScan. There-
fore, these predicates decide different TPL class sets for
M(X ,Y ) in Section 4.5, e.g., M1 for the signature-based class
correspondence detection, M2 for the method-opcode similar-
ity determination, and M3 for the call-chain-opcode similarity
determination. Algorithm 1 presents the TPL detection al-
gorithm used at each determination step, as demonstrated in
Section 4.6.

Algorithm 1: TPL Detection Algorithm
input :App X , TPL Y , and the TPL class set

M = M1,M2, or M3
1 conf ← 0;
2 OY ← ∑c∈Y csize(c);
3 matchedOps← 0;
4 forall c ∈M (X ,Y ) do
5 matchedOps← matchedOps+ csize(c);
6 conf ← matchedOps/OY ;
7 if conf < θ2 then
8 return false;
9 else if M = M1 or M2 then

10 return next step trigger
11 else /* M = M3 */
12 return true;

B CVEs of 13 Vulnerable TPL Versions in LS3

Table 14 presents the 13 popular vulnerable TPL versions of
LS3 mentioned in Section 5.1 and the related CVE informa-
tion.

Table 14: CVEs w.r.t. 13 Popular Vulnerable TPLs in LS3

TPL version CVE No.
FileDownloader-1.7.3 CVE-2018-11248

log4j-core-2.12.1 CVE-2021-45105
log4j-core-2.12.3 CVE-2021-44832
log4j-core-2.14.0 CVE-2021-44832

retrofit-2.2.0 CVE-2018-1000850
retrofit-2.3.0 CVE-2018-1000850
retrofit-2.4.0 CVE-2018-1000850

commons-io-2.4 CVE-2021-29425
commons-io-2.5 CVE-2021-29425
commons-io-2.6 CVE-2021-29425
fastjson-1.2.22 CVE-2017-18349
fastjson-1.2.23 CVE-2017-18349
fastjson-1.2.24 CVE-2017-18349
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C Configurations of Related Approaches

To make the effectiveness comparisons fair, we also use the
hyperparameter-tuning apps in datasets AS1 and AS2 to es-
tablish the optimal hyperparameters for the related tools, i.e.,
LibID [58], LibPecker [60], Orlis [54], and LibScout [22].

LibScout. min_partial_matching _score takes the threshold
of 0.8 for the apps in AS1, 0.9 for the D8-built apps (D8-non-
obfs in Table 5), and 0.1 for R8-obfuscated apps (R8-shrink,
R8-shrink-orlis, and R8-shrink-opt in Table 5).

Orlis. Orlis provides the decision of class-level correspon-
dences. To compare Orlis with LibScan on the library level,
we apply LibScan’s library-level decision (Section 4.5) on
Orlis. On AS1, the threshold for the digest functions other
than TLSH takes the default value of 0. For the D8-built apps
in AS2, this threshold takes 50. For the R8-obfuscated apps in
AS2, this threshold takes the default value of 0.

LibPecker. The library similarity threshold takes 0.7, and
the package similarity threshold takes 0.5 for the apps in AS1.
On the D8-built apps, the library similarity threshold takes
0.9, and the package similarity threshold takes 0.5. On the
R8-obfuscated apps, the library similarity threshold takes 0.5,
and the package similarity threshold takes 0.1.

LibID. For LibID-S, the probability_threshold_scalable
(Γ1) takes 0.8, and the shrink_threshold_scalable (Γ2) takes
0.4. For LibID-A, Γ1 takes 0.9, and Γ2 takes 0.8 for the apps
in AS1. For the D8-built apps, LibID-A’s Γ1 takes 0.85, and
Γ2 takes 0.9. For the R8-obfuscated apps, LibID-A’s Γ1 takes
0.4, and Γ2 takes 0.4.

The other parameters of these related tools take their default
values in our settings.

D More Results on Detection Efficiency of Lib-
Scan
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Figure 3: LibScan’s Detection Time Costs on Apps with
Different Sizes

Table 15: Per-App Detection Efficiency of Different Tools on
AS1

LibID-S(s) LibPecker(s) Orlis(s) LibScout(s) LibScan(s)
Q1 10.08 250.29 39.66 1.17 22.08

mean 72.14 307.75 52.98 1.35 24.18
median 64.92 290.54 51.52 1.30 23.56

Q3 103.69 344.62 64.41 1.49 26.74

Fig. 3 presents a comprehensive report based on LibScan’s
evaluation results in Table 10. The size of the apps in app
dataset AS3 varies from 15.7 KB to 553 MB, with an average
size of 17.6 MB. In Fig. 3, we show the average detection time
on different app size ranges of AS3, as well as the quantitative
distribution of the number of apps in different size ranges.
The detection time is not strictly positively correlated with
the app size because the detection efficiency also depends on
the number of potential TPLs and the size of methods (call
graphs) with correspondences.

On the app dataset AS1, the time costs of different detection
tools are in Table 15, and the average memory cost of LibScan
on AS1 is 3.43 GB. Though most of the apps in AS1 are
intentionally obfuscated, they have smaller sizes (2.0 MB on
average); thus, the overall detection cost is lower than the
apps in AS3 (Table 10).

E Effectiveness Comparisons Decomposed
against Different Obfuscators or Obfusca-
tion Levels

To elaborate on the effect of LibScan on different obfusca-
tors, we classify the 939 apps in AS1 into four categories: 1)
the 203 non-obfuscated apps with 1,428 ground-truth TPL
existences, 2) the 188 apps obfuscated by Allatori with 1,376
ground-truth TPL existences, 3) the 396 apps obfuscated by
DashO with 2,330 ground-truth TPL existences, and 4) the
152 apps obfuscated by ProGuard with 822 ground-truth TPL
existences. The results of different TPL detection tools and
LibScan’s step combinations on AS1 against different obfusca-
tors are presented in Table 16. We observe that LibID and Lib-
Scout report considerably low recall on the apps obfuscated
by Allatori and DashO. The low recalls could be caused by the
control-flow randomization over the Allatori-obfuscated and
DashO-obfuscated apps. In contrast, ProGuard does not sup-
port control-flow randomization; thus, LibID and LibScout
behave effectively on recall.

Table 17 presents the effectiveness of TPL detectors in
true positives, false positives, and false negatives on different
DashO obfuscation levels. Table 18 presents the TP/FP/FN of
the TPL detectors on different D8/R8 obfuscation levels.
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Table 16: Effectiveness Comparisons on AS1’s Ground-Truth Apps
App #Ground-Truth Library-level Version-level

Category TPL Existences Tool TP0 FP0 FN0 Precision0 Recall0 F10 TP FP FN Precision Recall F1

Non-Obfs 1,428

LibID-S 1,162 542 266 0.6819 0.8137 0.7420 1,157 547 271 0.6790 0.8102 0.7388
LibID-A 1,161 302 267 0.7936 0.8130 0.8032 1,158 305 270 0.7915 0.8109 0.8011
LibPecker 1,405 440 23 0.7615 0.9839 0.8585 1,358 487 70 0.7360 0.9510 0.8298
Orlis 386 19 1,042 0.9531 0.2703 0.4212 195 210 1,233 0.4815 0.1366 0.2128
LibScout 1,269 163 159 0.8862 0.8887 0.8874 1,260 172 168 0.8799 0.8824 0.8811
LibScanI 1,421 530 7 0.7283 0.9951 0.8411 1,414 537 14 0.7248 0.9902 0.8369
LibScanI+II 1,420 312 8 0.8199 0.9944 0.8987 1,412 320 16 0.8152 0.9888 0.8937
LibScan 1,417 130 11 0.9160 0.9923 0.9526 1,411 136 17 0.9121 0.9881 0.9486

Allatori 1,376

LibID-S 280 355 1,096 0.4409 0.2035 0.2785 272 363 1,104 0.4283 0.1977 0.2705
LibID-A 126 72 1,250 0.6364 0.0916 0.1601 125 73 1,251 0.6313 0.0908 0.1588
LibPecker 982 350 394 0.7372 0.7137 0.7253 862 470 514 0.6471 0.6265 0.6366
Orlis 222 2 1,154 0.9911 0.1613 0.2775 111 113 1,265 0.4955 0.0807 0.1388
LibScout 192 6 1,184 0.9697 0.1395 0.2440 192 6 1,184 0.9697 0.1395 0.2440
LibScanI 1,374 431 2 0.7612 0.9985 0.8639 1,360 445 16 0.7535 0.9884 0.8551
LibScanI+II 1,322 227 54 0.8535 0.9608 0.9039 1,295 254 81 0.8360 0.9411 0.8855
LibScan 1,282 51 94 0.9617 0.9317 0.9465 1,274 59 102 0.9557 0.9259 0.9406

DashO 2,330

LibID-S 138 50 2,192 0.7340 0.0592 0.1096 137 51 2,193 0.7287 0.0588 0.1088
LibID-A 179 22 2,151 0.8905 0.0768 0.1414 179 22 2,151 0.8905 0.0768 0.1414
LibPecker 1,371 680 959 0.6685 0.5884 0.6259 1,246 805 1,084 0.6075 0.5348 0.5688
Orlis 627 9 1,703 0.9858 0.2691 0.4228 297 339 2,033 0.4670 0.1275 0.2003
LibScout 497 18 1,833 0.9650 0.2133 0.3494 495 20 1,835 0.9612 0.2124 0.3480
LibScanI 2,261 860 69 0.7244 0.9704 0.8296 2,260 861 70 0.7241 0.9700 0.8292
LibScanI+II 2,254 436 76 0.8379 0.9674 0.8980 2,167 523 163 0.8056 0.9300 0.8633
LibScan 2,227 63 103 0.9725 0.9558 0.9641 2,164 126 166 0.9450 0.9288 0.9368

ProGuard 822

LibID-S 629 411 193 0.6048 0.7652 0.6756 626 414 196 0.6019 0.7616 0.6724
LibID-A 632 226 190 0.7366 0.7689 0.7524 629 229 193 0.7331 0.7652 0.7488
LibPecker 805 328 17 0.7105 0.9793 0.8235 777 356 45 0.6858 0.9453 0.7949
Orlis 272 15 550 0.9477 0.3309 0.4905 127 160 695 0.4425 0.1545 0.2290
LibScout 721 127 101 0.8502 0.8771 0.8635 717 131 105 0.8455 0.8723 0.8587
LibScanI 816 390 6 0.6766 0.9927 0.8047 812 394 10 0.6733 0.9878 0.8008
LibScanI+II 816 224 6 0.7846 0.9927 0.8765 811 229 11 0.7798 0.9866 0.8711
LibScan 815 82 7 0.9086 0.9915 0.9482 810 87 12 0.9030 0.9854 0.9424

Table 17: TPL Detection Tools Sensitivity to Different DashO Obfuscation Levels in TP/FP/FN
Detection Obfuscation LibScan LibScout Orlis LibPecker LibID-A

Level Level TP0 FP0 FN0 TP0 FP0 FN0 TP0 FP0 FN0 TP0 FP0 FN0 TP0 FP0 FN0

Library-
level

Non-obfustated 433 7 0 379 34 54 150 0 283 426 135 7 335 86 98
DashO-cfr 425 7 8 78 0 355 146 0 287 342 131 91 21 0 412
DashO-pf-ir 426 6 7 73 0 360 150 0 283 313 129 120 1 0 432
DashO-dcr 378 1 55 73 0 360 139 0 294 311 128 122 24 0 409
DashO-cfr-pf-ir-dcr 423 6 10 88 6 345 92 0 341 146 131 287 20 3 413

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

Version-
level

Non-obfustated 433 7 0 379 34 54 76 74 357 419 142 14 335 86 98
DashO-cfr 412 20 21 78 0 355 72 74 361 303 170 130 21 0 412
DashO-pf-ir 414 18 19 73 0 360 76 74 357 275 167 158 1 0 432
DashO-dcr 365 14 68 73 0 360 67 72 366 273 166 160 24 0 409
DashO-cfr-pf-ir-dcr 410 19 23 88 6 345 41 51 392 143 134 290 20 3 413

Table 18: TPL Detection Tools Sensitivity to Different D8/R8 Obfuscation Levels in TP/FP/FN
Detection Obfuscation LibScan LibScout Orlis LibPecker LibID-A

Level Level TP0 FP0 FN0 TP0 FP0 FN0 TP0 FP0 FN0 TP0 FP0 FN0 TP0 FP0 FN0

Library-
level

D8-non-obfs 159 44 3 157 35 5 81 59 81 158 43 4 133 29 29
R8-shrink 94 10 68 44 69 118 74 43 88 92 30 70 57 24 105
R8-shrink-orlis 93 10 69 21 22 141 75 44 87 82 29 80 38 27 124
R8-shrink-opt 13 0 149 17 49 145 6 5 156 11 1 151 11 0 151

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

Version-
level

D8-non-obfs 146 57 16 157 35 5 47 93 115 144 57 18 122 40 40
R8-shrink 84 20 78 42 71 120 40 77 122 57 65 105 55 26 107
R8-shrink-orlis 82 21 80 21 22 141 43 76 119 49 62 113 37 28 125
R8-shrink-opt 10 3 152 13 53 149 3 8 159 11 1 151 11 0 151
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