
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Towards a General Video-based
Keystroke Inference Attack

Zhuolin Yang, Yuxin Chen, and Zain Sarwar, University of Chicago;
Hadleigh Schwartz, Columbia University; Ben Y. Zhao and

Haitao Zheng, University of Chicago
https://www.usenix.org/conference/usenixsecurity23/presentation/yang-zhuolin

Towards a General Video-based Keystroke Inference Attack

Zhuolin Yang²

University of Chicago
Yuxin Chen²

University of Chicago
Zain Sarwar

University of Chicago
Hadleigh Schwartz∗

Columbia University

Ben Y. Zhao
University of Chicago

Haitao Zheng
University of Chicago

Abstract

A large collection of research literature has identified the

privacy risks of keystroke inference attacks that use statis-

tical models to extract content typed onto a keyboard. Yet

existing attacks cannot operate in realistic settings, and rely

on strong assumptions of labeled training data, knowledge

of keyboard layout, carefully placed sensors or data from

other side-channels. This paper describes experiences devel-

oping and evaluating a general, video-based keystroke infer-

ence attack that operates in common public settings using

a single commodity camera phone, with no pretraining, no

keyboard knowledge, no local sensors, and no side-channels.

We show that using a self-supervised approach, noisy finger

tracking data from a video can be processed, labeled and

filtered to train DNN keystroke inference models that oper-

ate accurately on the same video. Using IRB approved user

studies, we validate attack efficacy across a variety of envi-

ronments, keyboards, and content, and users with different

typing behaviors and abilities. Our project website is located

at: https://sandlab.cs.uchicago.edu/keystroke/.

1 Introduction

Jane walks into an airport lounge. With her flight boarding

in an hour, she has just enough time to get online to write a

few emails and pay some bills. Jane has heard stories about

privacy risks of working in public places, e.g. people reading

over shoulders and even stealing passwords with recording

devices. So she finds an empty table in a corner, and before

sitting down, checks the nearby area (e.g. ceiling, under the

table) for sensing devices. Satisfied, she pulls out her iPad

(with a privacy screen cover), and starts working. As Jane

watches some passengers walk by and a few others sitting

with their own mobile devices, she wonders: ªIs it safe for me

to write sensitive content/emails or type passwords? Have I

taken enough precautions to protect myself?º

² Both authors contributed equally to this research.
∗ Work done while studying at the University of Chicago.

In the age of machine learning and remote work, Jane’s

concerns are actually quite realistic (and common). Machine

learning tools have grown increasingly proficient at extracting

keyboard keystrokes from a variety of side channels and sen-

sory data. Meanwhile, accommodations for remote work have

untethered employees from their offices, and work is often

done on the road or in public settings, e.g. airports, coffee

shops, trains and airplanes. For millions of affected work-

ers, a simple question remains: ªAre reasonable precautions

enough to protect them and their data from invasive keystroke

inference attacks in real-world settings?º

Despite extensive prior work on keystroke inference attacks,

the answer to this question remains unclear. This is due in

part to the reliance of existing attacks on novel but restrictive

scenarios where the attacker has access to specific types of

sensor data or side-channel information.

We consider existing keyboard inference attacks in two

broad categories: vision-based attacks, and non-vision attacks

(e.g. everything else). The latter group does not rely on vision

techniques, but instead distinguishes keystrokes using data

(e.g. audio, vibration) gained by placing sensors close to Jane.

For example, audio-based attacks place a microphone next to

Jane to capture key-specific sounds generated from typing on

a mechanical keyboard [65]. RF-based attacks [33, 59] place

WiFi devices close to Jane (e.g. 30cm) to capture subtle signal

variations caused by her one-finger key entries. Other work

explores the use of electromagnetic (EM) or LTE measure-

ments to infer one-finger key entries. To succeed, they require

either placing an EM sniffer right under Jane’s table [28], or

zero movement anywhere within 20 meters of Jane [35].

The other category of attacks is vision-based, and gener-

ally rely on strong assumptions on specific viewing angles,

or other extra information such as precise keyboard layouts

and reflective keyboard surfaces. Some attacks rely on direct

(or birds-eye) views of Jane’s keyboard and fingers, by either

placing a camera above Jane [6] or by capturing a view of the

screen reflected by her eyeballs [43, 54]. To help train infer-

ence models, a recent work produces synthetic data by over-

laying a thumb image on mobile keyboards [34]. In contrast,

USENIX Association 32nd USENIX Security Symposium 141

https://sandlab.cs.uchicago.edu/keystroke/

Victim

Camera hidden

Victim typing onVictim typing

Attacker pretends

a b

Victim typing on

c
to watch a video

inside a building

an iPad keyboard an invisible keyboard

Secretly
records

d

Figure 1: Sample attack scenarios: (a) an indoor lounge scenario where the attacker watches a video while recording the victim typing;

(b) a long-range outdoor scenario where the attacker hides a smartphone with a budget telephoto lens (<$60) inside a building (behind

a window) to record the victim in the courtyard (≈12m away) typing; (c) the victim can type on a physical keyboard (here, an example

of iPad keyboard) or even (d) uses an ªinvisibleº keyboard and types directly on the table.

other attacks operate on ªnormalº frontal views, but require

extra visual cues to locate Jane’s pressing fingertip. Not only

must attackers know the exact keyboard location/size/layout,

they also need added info such as reflections around the press-

ing fingertip, created by a reflective typing surface [57], or

the ground truth location of a key in both the video and the

typed content, i.e., the ªEnterº key on a PIN pad [47].

We note that a privacy-aware user can effectively disable

most, if not all of these attacks. For example, Jane can avoid

RF/EM attacks by looking around her work area for sensing

devices, while the complex motion of her touch typing (using

10 fingers) is much harder to distinguish via RF/EM signals

compared to 1-finger typing targeted by prior attacks. She can

protect herself against existing vision-based attacks by check-

ing for overhead cameras, and her eyes are naturally protected

just by looking down at her device. Matte screens or screen-

covers will disable fingertip reflections while touchscreens

provide reconfigurable keyboard layouts. Finally, audio based

attacks are ineffective on today’s touchscreen keyboards.

A general vision-based keystroke inference attack. In

this paper, we want to understand if today’s computing users

are vulnerable to keystroke inference attacks in general set-

tings, after taking simple precautions such as those mentioned

above. We ask if it is possible to recover text typing, by simply

pointing a single RGB camera at a user’s hands from a dis-

tance. Without external information from side-channels, can

attackers invade a user’s privacy in realistic settings such as

airports, coffee shops, or outdoor courtyards? These represent

the typical mobile typing settings for users on-the-go.

In this more general threat model, the attacker has no in-

formation about Jane, except that she types in English. The

attacker has no knowledge of Jane’s keyboard location, size,

or layout, no videos of Jane typing known text, no knowl-

edge or use of any visual cues, no access to or control of

any sensor, device, and side-channel beyond a single RGB

camera observing Jane at a distance. This threat model is

designed to realistically capture what an attacker can do on

a first encounter with a target. Figure 1 illustrates several

sample scenarios covered by our threat model.

Keyboard inference in this general threat model is ex-

tremely challenging for several reasons. First, human typ-

Apply HandTracking
Tool (MediaPipe)

Video of Target User

Fingertip Positions
per Video Frame

Keystroke Detection
& Clustering

Clusters of Keystrokes

Recognition
via HMM

a
w

e
r t y

u
i o

p

s d

f
g

c
v b

h

l
k

n m

Labeled
Keystrokes

Keystroke Detection DNN &
Keystroke Recognition DNN

Recovered
Typed Text

Filter by
Consistency Check

High Confidence
Labeled Keystrokes

Train

In the age of

machine learning

and remote work,

Jane's concerns

are actually

quite realistic

and common...

Figure 2: Our self-supervised approach to keystroke inference.

We first run unsupervised inference on fingertip data extracted

from each video frame, from which we identify keystrokes with

high confidence labels (this process is marked by thin arrows).

We use these as training data and build DNN models that detect

and recognize keystrokes directly from the video (thick arrow).

ing is a complex process that is user-specific, highly vari-

able, and heavily dependent on content and keyboard struc-

ture/layout [7, 11, 17]. Thus it is impractical to train a

keystroke classifier that generalizes to different targets, de-

vices and environments. Second, observations in a realistic

attack are short, e.g. 15-minutes captures ∼3000 keystrokes,

2 orders of magnitude less than required for general self-

supervised vision tools [4, 18]. Finally, hand tracking tools

try to identify keypress events in videos, but suffer from large

tracking errors due to artifacts in RGB video like depth ambi-

guity, finger occlusion1 and motion jitter.

A self-supervised approach to keystroke inference. In

this work, we propose a new approach to keystroke inference

with no additional input other than video captured from a

distance via commodity phone cameras. The key insight is to

use a two-layer self-supervised system, where noisy results

of hand tracking on the target video are used to run keystroke

1In frontal views, some fingers can be blocked by the fingers in front of

them just enough that hand tracking cannot properly track them.

142 32nd USENIX Security Symposium USENIX Association

detection/clustering, followed by a language-based Hidden

Markov Model (HMM) to recognize keystrokes. These ini-

tial labels are filtered using multiple consistency checks to

produce high confidence labels on video frames, which are

then used to train two 3D-CNN models that detect and rec-

ognize keystrokes from the video. This two-layer process is

illustrated by Figure 2.

We evaluate this attack using IRB-approved user studies

under a variety of conditions, varying the target (user/typing

behavior, keyboard device, content typed, physical environ-

ment) and attacker behaviors (hand tracking tool, attack dis-

tance). The attack is highly effective in nearly all settings,

and performs well across our user study participants, despite

significantly different typing styles and abilities.

Ethics. Our goal is to bring attention to privacy risks from

video-based keystroke inference attack in public settings. Be-

yond careful user study design to minimize participant harm,

we believe our study can increase awareness to protect users,

and lead to further adoption of simple and effective mitigation

awareness, e.g. portable barriers to prevent line-of-sight.

2 Background and Related Work

We begin by discussing human typing, existing keystroke

inference attacks, and vision based hand tracking.

First, typing is a cognitively complex process that relies on

many human factors: language/memory faculties, attention

states, and typing muscle memory [27]. Human typing be-

haviors are not only complex, user-specific, and time-varying,

but also heavily dependent on content, keyboard/input device

and other environmental factors [7, 10, 11, 17, 21]. Different

typing styles and motions are a main reason why there are

no known models that reliably extract multi-finger keystrokes

from human hand/finger behaviors.

2.1 Existing Keystroke Inference Attacks

There are numerous keystroke inference attacks in existing

literature. Given our focus on general keystroke inference, we

do not consider special subcases such as ªinvasiveº attacks

where the attacker has internal control over the user’s device,

and actively controls and/or listens to its sensors [36, 51].

We broadly categorize existing attacks into two categories:

non-vision attacks and vision-based attacks.

Non-vision attacks. The attacker collects data about the

target’s typing by placing sensors near them. Sensors might

include audio microphones or side-channels such as vibration,

electromagnetic (EM) and RF.

Audio. Acoustic-based attacks place a microphone next to

the target’s keyboard to capture key-specific sounds generated

by a mechanical keyboard [65], and its attack range can be

extended to 15m using a bulky parabolic microphone [5].

These attacks work on multi-finger typing, but depend heavily

on keyboard sound quality. They are generally ineffective on

today’s touchscreen keyboards which produce little sound.

Vibration. Keypress events generate subtle vibrations. An

accelerometer within 5cm of a keyboard can pick up vibra-

tions induced by typing [37]. The physical proximity required

by this attack makes it easy to detect in practice.

EM. Recent work identified that typing on a touch-

screen generates EM signals (via coupling), which vary with

keys [28]. This attack only supports 1-finger inputs on a PIN

pad, and requires an EM sniffer placed right under Jane’s table.

The attacker must know the PIN pad layout and position.

RF. By placing WiFi devices close to the target (e.g.

20cm [59]), an attacker could capture the subtle WiFi sig-

nal variation caused by 1-finger key entries. One attack [33]

achieves 1.5m attack distance but requires the target to con-

nect to an AP that the attacker controls. Furthermore, these

attacks all require the exact PIN pad layout/position and user-

specific training data [13, 33, 59]. Another study [1] targets

multi-finger typing, but again requires placing WiFi devices

close to Jane (30cm) and user-specific supervised training.

Cellular LTE signals can also be leveraged to infer 1-finger

typing. A software defined radio within 15m of the target PIN

pad can capture the LTE signal (sent by a LTE base station

within 150m) reflected by Jane [35]. This attack fails if there

is any moderate movement anywhere within 20 meters of

Jane. Again, this attack requires knowledge of the keyboard

layout and user-specific training.

Vision-based attacks. Vision-based attacks also often tar-

get 1-finger typing. We divide them into two groups based on

the angle or ªviewº of the attacker.

Birds-eye view. Many attacks require a direct (bird’s eye)

view of the target’s keyboard and fingers, as if the attacker

is viewing through the target’s eyes. This is done by either

placing a camera above (or just behind) the target, depending

on how the target places or holds the keyboard [6, 34], or by

capturing the screen reflected by their eyeballs2 [43, 54].

Frontal view. Other attacks can use indirect ªfrontalº views,

but require extra visual cues to locate fingertip keypresses.

Aside from knowing the exact keyboard location/size/layout,

the attacker must know the lighting/reflection patterns around

the fingertip (by relying on a reflective typing surface [57,58]),

or the precise location of a specific (frequently used) key in

both record video and the typed content, i.e., the ªEntryº key

on a PIN pad [47]. Finally, it is possible to record the target’s

upper body movement when typing, e.g. during a video chat,

and use them to infer keystrokes [45]. Again, the attacker

must know the exact keyboard layout.

Summary. Existing work has demonstrated the feasibility

of keystroke inference attacks under novel but often restrictive

scenarios where the attacker has access to specific types of

sensor data and/or keyboard information. In this work, we

consider a general (and more realistic) attack scenario, where

2The target holds a phone vertically while thumb typing. Thus their

eyeballs or sunglasses reflect the phone’s screen and the typing finger.

USENIX Association 32nd USENIX Security Symposium 143

the attacker uses only a frontal view of Jane’s typing hands

and nothing else (see the threat model in §3).

2.2 Vision-based Hand Tracking

Given our goal of general keystroke inference without side-

channel data, we have to incorporate current vision tools for

hand tracking. 3D hand tracking (or handpose estimation)

is a long-standing problem in computer vision, and today’s

tools provide good but still noisy results. We describe current

tools here, and later discuss how our system design overcomes

errors generated by tools such as MediaPipe.

There are two types of hand tracking tools available to-

day. Depth-based hand tracking [12] requires a high-precision

depth sensor, which are either bulky (e.g. Microsoft Kinetic)

or limited to short distance (e.g. iPhone’s depth sensor works

within a range of 50cm). In contrast, RGB-based hand track-

ing supports longer range, but is much more challenging due

to occlusion, depth ambiguity, significant variation in camera

viewpoint and appearance condition [41]. Today’s SOTA mod-

els provide cm-level accuracy on known poses [30,32,52,60]

and 5cm mean error on others [41]. To our knowledge, there

is no specialized hand tracking tool for keystroke detection.

Prior work on keystrokes [21] tracks fingers by placing 52

reflective markers on hands and using 8 infrared cameras

recording at 240fps, far from our realistic attack scenarios.

MediaPipe. Several general-purpose hand tracking tools

can extract arbitrary handposes from RGB videos at 30-60fps,

and the most well-known is MediaPipe [9, 61] (Google 2020).

It extracts handposes as 2.5D coordinates of 21 joints per

hand (horizontal, vertical, depth relative to the wrist). The

public release includes only the binary code, without the DNN

model or its training data. Our work uses MediaPipe to extract

handposes from recorded typing videos.

3 Threat Model

In pursuit of a realistic attack in common everyday settings,

we consider users who might be vulnerable while working

in public places like cafes, airport lounges, or outdoors in

courtyards or on park benches. These users use mobile typing,

i.e., typing on iPads or portable keyboards that are designed

for computing users on-the-go. We consider an attacker who

records them typing (with a frontal-view video of their hands)

from a distance using a single RGB camera (e.g. a commodity

camera phone), then processes the video to reconstruct the

typed content. Thus, we make four simple assumptions:

• The attacker knows the language used by the target (English

in this work).

• The attacker has a frontal view of the target’s hands.

• The attacker’s camera remains stationary (placed on a stand

in this work).

• The attacker has access to a hand tracking tool that operates

on the frontal-view video (MediaPipe in this work).

Figure 3: Touchpoints of keystrokes recorded by a touchscreen

keyboard, where each circle is a touch point. The separation

between neighboring keys’ touchpoints is barely 1cm in average.

Our work differs significantly from prior work in that we

do not rely on side-channel data or other assumptions. These

are assumptions that we do not make:

• The attacker has no knowledge of the target’s keyboard lay-

out (keyboard could be customized via third party apps like

Gboard [2]), and may not have a clear view of the keyboard

(e.g. typing on an iPad with a screen protector or a projection-

based virtual keyboard)

• The attacker has no labeled data or prior observations of

the target. This follows our assumption that the attack is

opportunistic and has no prior planning.

• The attacker cannot install, access and manipulate any sensor,

device and channel beyond the single RGB camera at a

distance from the target.

4 Design Alternatives and System Overview

In this section, we consider the challenges of a general

keystroke inference attack, weigh two potential solutions,

and describe their shortcomings. We then present a new self-

supervised approach which when given a video, extracts spe-

cific frames and labeled keystrokes, and uses them to train

customized DNN models that accurately detect and recognize

keystrokes for that video.

4.1 Potential Solutions and Their Limitations

In exploring the feasibility of a general keystroke attack, we

considered a number of possible approaches, all of which pro-

duced less than satisfactory results. We found two challenges

to be the most difficult to overcome. First, users consistently

hit edges of keys as they typed, meaning that for most users,

the separation between positions of their fingers hitting two

neighboring keys, is quite small. Figure 3 confirms this, using

actual recorded positions of how two different users typed

on their iPad keyboards. Second, we found that a reasonable

length video (e.g. 10mins), provided roughly 3000 keystrokes

for moderate speed typists, which is insufficient data for ex-

isting self-supervised tools to train a classifier for 27 keys (26

letters and space bar).

Here we consider in detail two potential attack designs:

(1) training a supervised DNN keystroke inference model

on one set of users, and relying on model transferability to

successfully apply that model to videos of other target users;

(2) using unsupervised inference based on handpose data

extracted from the video (using hand tracking tools), which

is easier to model and interpret compared to a DNN. As we

144 32nd USENIX Security Symposium USENIX Association

discuss below, we find that both faced significant limitations

under our attack scenario.

Transferability-based attacks. An intuitive approach to

general keystroke inference is to perform supervised training

of a DNN keystroke inference model using labeled data col-

lected from a set of users, then apply it to other target users.

This leverages the concept of model transferability, the idea

that models trained for one instance of a task can perform

reasonably well on other instances of that or similar tasks.

In practice, we find that supervised inference models

trained on one set of users fail to generalize when applied

to videos of other users. The implication is that the mapping

from movements to keystrokes is user-specific enough to pre-

vent transferability across users.

To confirm this, we recorded videos of 16 users typing on

the exact same keyboard with the same camera angles. We

applied transfer learning (using a well-known gesture recogni-

tion DNN model) to train keystroke recognition models, and

performed leave-one-out cross validation. In each experiment

we used labeled data from 15 users to train and tested the

model on the 1 left-out user. While the trained models can

correctly decode 99+% of keystrokes from any trained user,

the transferability to the new user is very low ± the mean

character error rate is 48% and the word error rate is 98%

across all the experiments. Note that this is already under

near-optimal conditions where everyone uses the exact same

keyboard.

Unsupervised inference using fingertip data. Without

labeled training data of the target, one practical alternative is

to run unsupervised inference directly on a processed version

of the visual data. Since keystrokes directly result from fin-

gertips touching the keyboard, the attacker can apply a hand

tracking tool on the video to extract, for each frame, the fin-

gertip locations of the ten fingers, and use this data to detect

and distinguish between different keystrokes. Such analysis

can then be combined with language-based models like HMM

to infer the key of each detected keystroke. This is similar to

the methodology used by prior audio-based attacks [65].

While attractive, this solution relies heavily on the accu-

racy of the fingertip data extracted from the RGB video. Since

neighboring keypresses are separated on average by less than

1cm (see Figure 3), the finger tracking precision needs to be

at the level of millimeters. This is unfortunately infeasible

with today’s hand tracking tools. The resulting errors in the

fingertip data propagate into the inference pipeline, and signif-

icantly degrade inference accuracy. Later in §5.5 we present

a detailed study to illustrate its impact using different hand

tracking tools.

Manual attacks. We also attempted a manual attack by

studying the recorded video frame-by-frame and labeling

them with the observed keypresses, if any. While seemingly

easy, identifying/locating a keypress is quite difficult for

human eyes. The combination of depth-ambiguity, finger-

occlusion, and acute viewing (i.e., frontal rather than top-

down view) makes multiple fingers appear equally ªcloseº to

the keyboard. As such, many keypresses were either misla-

beled or not detected at all.

4.2 Key Insights

Curating labeled training data for a target video from its

own fingertip inference result. When we observed that

unsupervised inference on fingertip data is highly susceptible

to hand tracking errors, we noted that its inference result

is quite skewed: some keystrokes are accurately predicted

while others are erroneous and cannot be corrected using post-

analysis tools. If we can identify these accurately predicted

keystrokes, we can use them as labeled training data to train

DNN models that accurately detect and recognize keystrokes

on the same video. Since the DNN models operate on raw

video frames, they are no longer affected by errors introduced

by hand tracking tools.

Identifying high confidence labels using consistency

checks. We propose to identify correctly predicted

keystrokes by checking the consistency between a keystroke’s

inference result (produced by a language model) and its spa-

tial position on the keyboard estimated from its fingertip data.

For all keystrokes assigned for the same key, the points where

they touch the keyboard should form a tight cluster.

4.3 Attack Design: Overview

Following the above insights, we propose a new attack ap-

proach, which applies two layers of data analysis on an attack

video to curate labeled training data and then train DNN mod-

els that detect and recognize the keystrokes from the same

video (see Figure 2). These high-performance DNN models

take as inputs a sequence of raw video frames (rather than

their hand tracking results) and output a sequence of charac-

ters as the recovered content.

Overall, the attack includes the following two steps, one

per layer. We discuss each in detail in the subsequent sections.

Step 1: Unsupervised inference on handpose data (§5).

Given a video on the target, we first apply a hand track tool

(MediaPipe in our current implementation) to extract hand-

pose data from each video frame. We then apply an unsuper-

vised inference pipeline on this sequence of (noisy) handpose

data to detect and cluster keystrokes, followed by an HMM-

based language model to infer the character of each detected

keystroke. This creates an initial label for each keystroke

frame of the video.

Step 2: Self-supervised DNN inference on video data (§6).

Given the initial noisy label of the detected keystrokes, we

apply consistency checks to identify keystrokes with high con-

fidence labels, and use them to curate labeled training data to

train a DNN-based detector of keystrokes and a DNN-based

classifier to recognize the detected keystrokes (i.e., mapping

USENIX Association 32nd USENIX Security Symposium 145

each to a key). We apply multiple noise-aware training meth-

ods to address any residue errors in the curated training data.

5 Unsupervised Inference on Handpose Data

We start from the initial step of unsupervised inference on

handpose data. This is done using a sequential pipeline: first

detecting keystrokes (i.e, when a key is pressed), clustering

keystrokes by their touchpoints, and applying a language-

based analysis to estimate the typed content. While the

method is similar to that of audio-based attacks [65], our

contribution is realizing it in the context of general vision-

based attacks. In the following, we describe the handpose

data used by our pipeline, the three inference components,

followed by a study on the impact of hand tracking noise.

5.1 Handpose Data

Our pipeline operates on the fingertip coordinates per video

frame, identified by the hand tracking tool. This configuration

is carefully chosen to address finger occlusion and depth

ambiguity of the keystroke video.

Camera configuration. To extract handpose data, the cam-

era needs to be positioned such that both hands are visible

and that the hand tracking tool is working properly (i.e., no

frequent flutter, misaligned handposes). When using Medi-

aPipe in our attack, we find that the camera-to-keyboard angle

needs to be determined per target. To do so, we build an on-

line calibration module leveraging the real-time hand tracking

API provided by MediaPipe [40]. For a given camera position,

this module inspects the temporal alignment of the extracted

handposes over 15 seconds (by computing the cosine sim-

ilarity between handposes across video frames), and if the

handposes are sufficiently aligned, the camera position is suit-

able for the attack. In general, we find that the camera needs

to be 10◦ above the keyboard and the calibration is quick (e.g.

15-20 seconds) for an experienced attacker.

2D fingertip data. We focus on fingertips rather than all 21

joints provided by MediaPipe [9], because a keystroke is pro-

duced by a fingertip pressing down on the surface. Figure 4

shows an example of MediaPipe’s hand tracking on video

frame. Inference using fingertip data incurs less complexity

but also less tracking errors. Furthermore, while MediaPipe

provides a 2.5D3 coordinate per fingertip (i.e., the pixel coor-

dinate x,y and a relative depth to the wrist), we find that the

relative depth carries little information but much unwanted

noise as the wrist moves naturally during typing. As such, we

only use the 2D fingertip coordinates per video frame.

Non-thumb data only. In frontal views, it is difficult to

capture all 10 fingers due to finger-on-finger occlusion, es-

pecially when typing with multiple fingers per hand. When

3To the best of our knowledge, there is no tool providing 3D tracking of

keystroking fingers in a frontal-view RGB video.

Figure 4: An example of MediaPipe hand tracking output.

using MediaPipe in real-world attacks, we find that the tar-

get’s thumbs are often blocked by other fingers just enough to

prevent MediaPipe from tracking them properly (e.g. the de-

tected thumbs flutter frequently). Thus, we choose to operate

on the 8 non-thumb fingertip data. Our design can still detect

and recognize thumb-based keystrokes using non-thumb data,

by leveraging natural correlation in finger motions.

Preprocessing. After extracting fingertip data from each

video frame, we perform smoothing to remove potential noise.

Here each fingertip has a sequence of pixel coordinate (x,y),
one per video frame. We apply a standard low-pass butter-

worth filter with a cut-off frequency to smooth each individ-

ual fingertip’s sequence. Since the common typing speed is

around 200-300 keystrokes per minute (3-5Hz), we set the

cut-off frequency to 6Hz.

5.2 Detecting Keystroke Events

Since the attacker has no knowledge (or even visual) of the

keyboard, we propose to detect a keypress by detecting neg-

ative peaks on the fingertip acceleration ± when a finger ac-

tively presses down and hits a key, its motion reduces/stops

abruptly. Not yet knowing which finger touched the keyboard,

we use the maximum value of the fingertip acceleration of all

four non-thumb fingers (per hand) to run the detection. Here

the acceleration is computed by taking the double derivative

on each fingertip’s y-coordinate across frames.

Handling spurious peaks. Interestingly, not every negative

acceleration peak maps to a keypress. The spurious peaks

come from two main sources: (1) the noise in fingertip data,

and (2) the noise in human typing behavior since we often

make unconscious hand movements similar to those of subtle

keystrokes, e.g. when hesitating or thinking about what to

type. As most spurious peaks have small prominence values,

we apply statistical thresholding to filter them out. Rather than

pre-defining a ªmagicº threshold, we compute a threshold for

the current attack video by modeling the peak prominence4

value p as a Gaussian mixture of keypress and no keypress

ones. In this case, the dip between the two hills in the probabil-

ity distribution of p would approximate the threshold required

to produce equal misdetection and false alarm rates.

Can thumb-based keystrokes get detected? Using

only non-thumb fingertip data, our design can still detect

keystrokes made by thumbs. This is because the muscles used

4Peak prominence measures how much a peak stands out from the sur-

rounding signal baseline, and can be computed via a SciPy function [15].

146 32nd USENIX Security Symposium USENIX Association

to move our fingers are inter-connected, and thus the finger

movements naturally correlated. When we press a key using a

thumb, the other 4 fingers on the same hand also move down

with it. Our acceleration based detection can detect thumb-

based keystrokes, often at an accuracy comparable to those

of non-thumb keystrokes.

One would think that since the acceleration of thumb-based

keystrokes is computed from non-thumb fingertips, it should

be weaker than those of non-thumb keystrokes. It is not true

according to our measurements ± the two show similar aver-

age peak prominence, and some non-thumb keystrokes are

weaker than thumb ones (see the peak prominence distribution

in Figure 7 in Appendix). Thus in §5.3, we apply a different

method to separate thumb and non-thumb keystrokes.

5.3 Clustering Detected Keystrokes

Next, we organize the detected keystrokes (a mix of thumb

and non-thumb ones) into clusters. This clustering result is

later used in conjunction with a language model to infer the

typed content (§5.4). We cluster keystrokes by estimating their

touchpoints on the target’s keyboard, which directly relate

to the typed key. The exception is thumb-based keystrokes,

where we can only estimate the ªfakeº touchpoint made by

a non-thumb finger. Thus, we propose to process them sepa-

rately from the non-thumb keystrokes. With this in mind, our

clustering process includes four steps: (i) identify the pressing

fingertip, (ii) apply perspective transformation to convert a

2D fingertip coordinate (obtained via the frontal view) into a

touchpoint on the keyboard (i.e., the birds’ eye view), (iii) sep-

arate the detected keystrokes into 2 groups: non-thumb and

thumb based keystrokes and finally, (iv) cluster keystrokes in

each group based on their estimated touchpoint locations.

Identifying the pressing fingertip. Since finger move-

ments are correlated [55], negative acceleration used in §5.2

can effectively identify the keystroking hand, but not the press-

ing finger. Instead, for each frame, we estimate the vertical

displacement of each non-thumb fingertip from its average

vertical location across the video, and locate the finger with

the largest displacement (to reach the keyboard). We note that

due to depth ambiguity, this identification method is more

effective for keys in the front row since their displacement

estimation is more accurate.

Estimating a keystroke’s touchpoint on the keyboard

via perspective transformation. The pressing finger-

tip’s 2D coordinate (x,y) is from the frontal-view video

frame, and thus a skewed/compressed representation of its

touchpoint on the target’s keyboard. To reduce the effect

of skew/compression, we apply perspective transformation

to map each (x,y) to a touchpoint on the target’s keyboard

(in a birds’ eye view). We first mark the 4 points on the

video to indicate the keyboard’s planar surface5. We then

5It could be 4 corners of the keyboard if the keyboard device is visible or

4 points on the table to indicate the planar surface.

compute a homography matrix H between this planar surface

and the video frame’s perspective, using an OpenCV function

(perspectiveTransform) [19]. By multiplying (x,y) with

H, we estimate its corresponding touchpoint on the keyboard.

Separating non-thumb and thumb keystrokes. We sepa-

rate them by analyzing the standard deviation of the typing

hand’s 4 non-thumb fingers’ displacements. This is because a

thumb keypress would trigger similar motions at the 4 non-

thumb fingers (moving down together). In short, their displace-

ments would be similar, thus the stds are generally smaller

than those of non-thumb keystrokes. We compute the thresh-

old by treating the thumb keystrokes as a single key input,

whose frequency is bounded by 20% [38]. This detection will

introduce errors that depend on the target’s typing behavior

and keyboard layout.

Clustering non-thumb keystrokes. Given the estimated

touchpoints of all non-thumb keystrokes, we run K-Means

with 33 clusters to cover keys that can be inferred by a lan-

guage model and to allow frequently used keys to form mul-

tiple clusters. This is because studies have shown that high

frequency English keys can have more than 5 times amount

of samples compared to low-frequency keys [49].

Clustering thumb keystrokes. We choose to cluster thumb

keystrokes (instead of just separating them by the typing fin-

ger) to help mitigate errors made when separating non-thumb

and thumb keystrokes. We first treat each detected thumb

keystroke as a non-thumb keystroke, and estimate its touch-

point. We compute the distance of each ªfakeº touchpoint to

the closet centroid of the non-thumb clusters (produced in the

above step), and use this distance to cluster the thumb-based

keystrokes. This produces roughly 10-15 clusters (depending

on the attack video).

Identifying the ‘delete’ cluster(s). We declare a cluster as

‘delete’ (or ‘backspace’) if satisfying two conditions: (a) the

cluster is at the very edge of the touchpoint map, and (b) the

cluster instances were pressed multiple times consecutively.

Upon detecting the ‘delete’ keystrokes, we follow its actual

operation to remove their previous keystrokes.

5.4 Inferring Typed Content via HMM

Given a sequence of detected keystrokes and the clusters of

those keystrokes, the attacker can apply a language-based

Hidden Markov Model (HMM) [42] to estimate the typed

content [65]. This is done by exploring the causal link be-

tween the keystrokes (and their hidden states representing

the typed key) and the clusters. This inference requires com-

puting a transitional matrix T and an emission matrix E. T

is a N ×N matrix that defines the transition probabilities be-

tween the N hidden states, where N is the number of keys in

the alphabet. Assuming the target types English, the attacker

can pre-compute T using a large English corpus. For our at-

tack implementation, we randomly select 40,000 sentences

(52,000 unique words) from the CNN/DailyMail dataset [23],

USENIX Association 32nd USENIX Security Symposium 147

and set N = 29 to cover 26 letters, comma, period and space

key. E is a N ×M matrix, where M = # of clusters, M < 50 in

our implementation. It measures the probability distribution

of the N hidden states that produce the M clusters. HMM

estimates E using a special Expectation-Maximization (EM)

algorithm [8] to analyze the cluster data.

Given T and E, the attacker applies the Viterbi algo-

rithm [50] to infer the most likely hidden state sequence (or

typed keys) for the keystroke sequence. Note that unlike [65],

we do not pre-identify the thumb cluster as the ‘space’ key

because we do not make assumption on the target’s typing

behavior. Furthermore, since EM runs local optimization [25],

it can often converge to a local minima. Thus, we run several

randomly initialized iterations of HMMs and select the one

that produces the most high confidence keystroke labels (dis-

cuss in §6.1). We empirically confirm that this also leads to

the lowest character error. Finally, since E is estimated from

the keystroke data, we find that 150-200 words are generally

sufficient under perfect clustering and keystroke detection.

5.5 Impact of Hand Tracking Noise

To examine the impact of hand tracking noise, we invited 2

volunteers (PA and PB) to type a randomly selected set of cor-

porate emails (roughly 500 words, 28 sentences) on an iPad.

This experiment is IRB-approved. We consider three hand

tracking methods to extract fingertip data from the videos.

• Perfect 3D tracking: By tracking all 10 fingertips precisely

in 3D, one should accurately detect when/where a fingertip

touches the keyboard. We emulate this by assuming perfect

keystroke detection and using the actual screen touchpoints

recorded by the iPad as the input to the clustering algorithm.

• Marker-assisted 2D tracking: To emulate a high-

performance 2D hand tracking, we place color markers near

each participant’s fingertips and locate each fingertip by its

assigned marker on the video frame. The 2D tracking er-

ror is around 1cm. We also observe that the thumb tips are

occluded in more than 32% of the video frames. Thus a

practical attack should focus on non-thumb fingertips.

• MediaPipe: We use non-thumb fingertip data provided by

MediaPipe. To avoid bias introduced by color markers, we

ask our participants to type two sessions, one with markers

and one not. We run MediaPipe on the video without.

As discussed earlier, the hand tracking error can affect

keystroke detection, clustering, and HMM-based inference.

Figure 5 plots, for user PB and the three tracking methods, the

estimated touchpoints of the detected non-thumb keystrokes,

which are the input into the clustering algorithm. Here we

color each point by its ground truth key input. For both marker-

tracking and MediaPipe, the tracking error creates overlaps

among different keys, and misdetects some thumb keystrokes

as non-thumb ones (i.e., the points in the very bottom).

Next, Table 1 lists the detailed results, from keystroke de-

tection accuracy, clustering accuracy to content accuracy. For

Figure 5: The estimated touchpoints of the detected non-thumb

keystrokes, using (left) perfect 3D hand tracking, (middle) 2D

hand tracking using marker, and (right) MediaPipe. We mark

each point by a color defined by its ground truth key entry.

Detection Cluster. w/o GSpell w/ GSpell

Miss Extra Acc. CER WER CER WER
(%) (%) (%) (%) (%) (%) (%)

Perfect 3D
PA 0.0 0.0 99.8 3.1 16.2 1.6 7.0
PB 0.0 0.0 99.6 4.2 22.5 1.8 8.9

Marker

Assisted

PA 6.0 5.0 88.9 31.5 78.5 29.0 54.8
PB 6.0 3.0 93.2 26.0 60.4 23.5 39.6

MediaPipe
PA 7.0 5.0 85.4 40.3 84.3 39.4 67.1
PB 10.0 6.0 85.5 55.2 82.6 54.7 71.7

Table 1: Performance of unsupervised inference on handpose

data, using three different hand tracking tools.

a fair evaluation, we also list the content accuracy after ap-

plying a public spell check tool by Google Docs [24] (hereby

referred to as GSpell for brevity). With perfect hand tracking,

clustering is effective but not perfect because pressings near

the key edge (compared to near the center) are harder to sepa-

rate. The content recovery, evaluated as character error rate

(CER) and word error rate (WER) (defined in §7.1), is also not

perfect, mostly due to the error made by the HMM inference.

But a standard spell check like GSpell can correct most of

them. For the other two tracking methods, the tracking noise

leads to 9-16% detection errors and 5-15% clustering errors,

which propagate to the HMM inference component. Even

after applying GSpell, the content accuracy is still low. The

marker-assisted tracking is more accurate than MediaPipe,

thus achieves better inference results. Together, these results

demonstrate the severe impact of hand tracking noise and the

significant difficulty facing a practical attack, which cannot

assume perfect 3D tracking or marked-assisted tracking.

6 Self-supervised Inference on Video Data

After applying unsupervised inference on handpose data, the

attacker obtains a noisy label on individual frames of the

attack video. That is, for each detected keystroke, its cor-

resonding video frame is labeled by its inferred key (‘a’-‘z’,

space, comma, period, as well as ‘backspace’). The rest of

the frames are not labeled (representing no keypress). While

many video frames are wrongly labeled, our design seeks to

identify the ones with high confidence labels and use them to

train DNN inference models that operate on the entire set of

video frames without applying hand tracking.

The key challenges facing this step include (1) how to

148 32nd USENIX Security Symposium USENIX Association

identify high confidence labels, (2) how to train DNN models

with limited training data to detect keystrokes and recognize

their typed keys, and (3) how to suppress the impact of noisy

labels during model training. We discuss them next in details.

6.1 Finding High Confidence Labels

Not knowing the keyboard layout, we filter keystrokes with

high confidence labels using consistency check within each

cluster and across clusters.

HMM label consistency within each cluster. HMM makes

inference on the detected keystrokes by exploring how the

keystroke clusters interact with the language model. Thus

ideally, HMM should map keystroke instances in a cluster to

a single key. But when the keystroke detection, touchpoint

estimation and clustering are noisy, HMM often assigns dif-

ferent labels to keystroke instances in the same cluster to best

match the language statistics. It can either incorrectly predict

a legit and accurately clustered keystroke instance, or cor-

rectly predict a wrongly positioned and clustered keystroke

instance. Considering this uncertainty, we propose to iden-

tify keystrokes with high confidence labels as those whose

label matches the ªmajority labelº of its cluster (i.e., the most

popular label among the keystroke instances in the cluster).

Cross-cluster consistency check. Some detected

keystrokes are false (i.e., no key is pressed) and some are iden-

tified with a far-off pressing finger. Together, these keystrokes

can create multiple ªspuriousº clusters. HMM would wrongly

predict most (if not all) instances in a spurious cluster, which

the above intra-cluster check fails to address. Instead, we de-

tect them using a cross-cluster consistency check, leveraging

the fact that any valid clusters whose majority labels are the

same should be right next to each other on the touchpoint

map. Specifically, we first sort the clusters by size, and start-

ing from the largest cluster, find its majority label, mark this

label as ªclaimedº and move to the next cluster. If the cluster’s

majority label has already been claimed and its touchpoint

area is not close to the cluster who has claimed the label, this

cluster is marked as ‘spurious’ and no instance is selected.

When doing cross-cluster check, we make an exception

for clusters whose majority label is the ‘space’ key. This is

because most users use one or both thumbs to type the space

key. Recall that in §5.3 we apply a separate clustering on

the thumb keystrokes based on their non-thumb touchpoint

(i.e., computing the touchpoint by treating it as a non-thumb

keystroke), which creates multiple clusters. If any of these

clusters are labeled by HMM as ‘space’, it is most likely valid.

6.2 Training DNNs using Limited Data

After identifying keystrokes with high fidelity labels, we use

them to train two DNN models, one to detect keystroke events

and one to classify the key of the detected keystrokes.

Learning finger motion from a block of video frames.

While our unsupervised inference operates on per-frame hand-

pose data (to make the analysis tractable), both DNN models

take as inputs a set of consecutive video frames (16 frames

in our implementation). By operating on this short video seg-

ment, both models seek to discover and use rich finger motion

features to make decisions, leveraging the labeled training

data. Next, we discuss the detailed training process.

DNN-based keystroke detector. We implement the detec-

tion as a binary classifier. Since this detector will run against

the entire attack video (a 10 min video has 360,000 frames),

we choose a light-weight 3D-CNN model (ResNet-10 [22])

and apply transfer learning using a public teacher model,

which is pre-trained using the EgoGesture dataset [64].

To train this binary classifier, we curate both positive and

negative training data, leveraging the keystrokes detected by

the unsupervised inference step without filtering. This is be-

cause the consistency check in §6.1 targets recognition consis-

tency rather than keystroke detection consistency. For each de-

tected keystroke, we find its corresponding video frame i and

form a video segment of 16 frames, using 8 frames before i, i,

and 7 frames after i. As such, the detected keystroke’s frame is

centered in the video segment. This video segment is labeled

as ‘positive.’ To build ‘negative’ video segments, we apply a

length-16 window on the video sequence between two con-

secutive keystroke frames. Finally, since the curated positive

and negative labeled data will contain noise, we apply multi-

ple techniques during the model training to identify/suppress

noisy labels (discussed in §6.3).

At inference time, the trained binary classifier will scan

through the entire video sequence, each time taking 16 con-

secutive frames as the input, and output a probability score.

Thus near a keystroke frame, multiple video segments will

have high probability values for ‘positive’. We use a peak

detection method to identify the video segment where the

keystroke frame is in the center.

DNN-based keystroke classifier. For this multi-class clas-

sifier, we use ResNeXt-101 [53], a well-known 3D-CNN ar-

chitecture for video-based classification tasks. The training

pipeline is similar to that of gesture recognition [29] ± we

apply transfer learning from a public teacher model (ResNeXt-

101 pre-trained on the Jester dataset [39]). Our classifier takes

as input a video sequence of 16 frames, and outputs a label

out of the 29 classes (‘a’-‘z’, space, comma, period).

We build its training dataset using the high confidence la-

beled data (identified by §6.1). For each keystroke with a high

confidence label l, we build a video sequence of 16 frames (8

before and 7 frames after), and label this segment with l. To re-

duce training complexity, we crop each video frame uniformly

to only include the area around the hands/keyboard/table

(56×56 pixels). Like the above, the keystroke frame is in

the center of the video segment.

USENIX Association 32nd USENIX Security Symposium 149

6.3 Noise-aware Model Training

Since the training data for both DNN models can be noisy, we

apply three kinds of noise-aware training techniques [3, 48]

to suppress their impact on the trained models.

Preventing overfitting. We apply Mixup [62, 63] to

mitigate overfitting in our 3D-CNN models, which applies

data augmentation like interpolation to smooth the decision

boundary between classes. Under our input configuration, we

achieve this by linearly interpolating two random training

inputs (i.e., blending each pair of video frames in two video

segments) and their labels (in terms of their one hot vector

representations).

Identifying trusted samples. DNN models are known to

have memorization effect [3, 26, 48, 56], where noisy labels

take longer to learn than clean labels and thus have higher

loss during early training stages. We leverage this effect to

emphasize learning on small-loss training samples (which

are likely to have clean labels), by giving these samples with

larger weights in the overall training loss computation.

Self-correcting noisy samples. The above technique can

identify trusted samples and some untrusted (noisy) sam-

ples. Instead of discarding those noisy samples, we apply

the concept of label refurbishing [44] to correct them using

the knowledge that the current model has learnt. Specifically,

noisy labels are refurbished as a linear combination of their

actual model inference result and their noisy label. Here we

adopt dynamic bootstrapping [3] to adapt the weight of the

combination based on the training loss. As such, noisy labels

receive more supervision from the model while the model

itself learns more from cleaner samples.

In our experiments, we find that all three techniques are

beneficial when training the keystroke detector, while the first

technique is already sufficient to train a high-performance

DNN classifier, possibly because we only use high confidence

labels as its training data.

7 Experimental Evaluation

We evaluate our video based attacks using real-world user

studies under a diverse set of conditions. All studies were

approved by our Institutional Review Board (IRB21-1396).

In this section, we organize our experiments and their results

by four groups:

• Attack performance under different scenarios, including

environments (indoor/outdoor, varying attack distances and

blockages), keyboard devices (visible/invisible keyboards,

varying size/layout, placed on desk vs. on lap), and content

typed (§7.2);

• Attack performance across 16 different users, who have

different typing behaviors and abilities (§7.3);

• Contributions of individual components (§7.4);

• Attack complexity in terms of computing time (§7.5).

7.1 Experiment Setup

Target (or victim) configuration. In each experiment, the

default setting is that one study participant sits in front of a ta-

ble, where a keyboard device is placed on top of the table. The

participants are free to adjust the chair and the keyboard de-

vice so that they can type at a comfortable position. By default,

we ask them to type email sentences (about 500 words) ran-

domly selected from the Enron corporate email dataset [14].

For a fair evaluation, we ask each participant to correct any

typing errors using the backspace key, so that the final content

matches the chosen content. As such, the actual keystroke

data (recorded by the video) covers 26 letters, space, comma,

period, backspace, and any other characters that they wrongly

pressed and later corrected using backspace.

We do not apply any restriction to our participants except

that the table and the keyboard device stay stationary during

the typing session. Our participants are free to move and

leave the seat during the study. In fact, to encourage natural

movements, in our indoor experiments we placed a cart of

snacks nearby, which they need to leave or move the wheeled

chair to reach, and many did so.

Attacker configuration. We consider an attacker who uses

their smartphone camera to record the keystroke video. The

camera (after the initial calibration period) remains stationary

during the typing session. We experiment with three iPhone

models (iPhone X, 13Pro, 13Pro max) where the recorded

video is consistently set to 720p at 60fps. The only exception

is Scenario #4 in §7.2 where the video is set to 1080p at 60fps

to enable outdoor long-range attacks. Both 720p and 1080p

at 60fps are common camera settings for today’s phones.

Since our attack implementation uses MediaPipe to extract

handpose data, the attacker needs to position the camera such

that both hands are visible and that MediaPipe is working.

This is done using the real-time hand tracking API provided

by MediaPipe [40]. We find that the camera generally needs

to be 10◦ above the keyboard. As such, the camera height will

increase gracefully with the attack distance.

The attacker runs spell correction to further polish the re-

covered content. We build a fully automated spell correction

using Google Doc’s built-in function (referred to as GSpell

earlier). While Google does not provide an API for this func-

tionality, we develop a browser automation script using the

Selenium library [46] to access the function. We query it at

different levels of granularity (paragraph, sentence, phrase

and word) to maximize correction effectiveness.

Evaluation metrics. We evaluate the effectiveness of the

attack by comparing the typed and recovered content at the

character, word and semantic levels, and the accuracy of recog-

nizing individual keys (precision/recall). To provide context,

we also include some samples of original and recovered text

in Figure 8 in Appendix, where the CER value varies between

3.8% and 11.8%.

• Character error rate (CER): We compute CER as the

150 32nd USENIX Security Symposium USENIX Association

total Levenshtein Distance between the typed and recovered

content divided by the number of characters in the typed

content. The Levenshtein Distance between two strings [31]

measures the minimum number of character-level operations

(insertions, deletions and substitutions) required to convert

one string into another.

• Word error rate (WER): This is similar to CER except

calculated at the word level. We use a public NLP tool [20]

to compute WER, which applies dynamic string alignment

to match words. We note that WER is a highly strict metric

since one incorrect character is counted as a word error even

when the word is comprehensible given the context.

• Semantic content similarity (Similarity): We evaluate the

semantic similarity between the typed and recovered content

using CopyLeaks [16], a commercial tool for detecting pla-

giarised and paraphrased content. It reports a similarity score

between 0-100% that accounts identical, minor changes and

related meaning between any two documents. The similarity

score is generally higher than 1-WER by capturing semantic

correlation in words/sentences. However, we find that when

WER is high (>50%), CopyLeaks produces a similarity

score (much) smaller than (1-WER).

• Per-key precision and recall: Finally, we also compute the

precision and recall of each character typed by the target to

analyze the recovery rate for each individual key.

In §7.3, we also study the effectiveness of recovering websites

typed during the study, in terms of the top-k accuracy.

7.2 Performance under Different Scenarios

We begin by a set of experiments to understand the feasibility

of launching the proposed attack under different scenarios,

exploring the impact of physical environment, attack distance,

keyboard device/layout/movement, typed content, and attack

observation window. For consistency, we invited a single par-

ticipant for all the experiments.

Scenario #1: indoor lounge, varying attack distance. We

consider typical indoor public spaces like a lounge or cafe,

where the target sits by a table and uses a 12.9-inch iPad’s

on-screen keyboard to type corporate emails (from the Enron

email dataset). We set four iPhone cameras at 0.8, 1.8, 2.4 and

3 meters away from the target. The camera heights are 0.3,

0.64, 0.64 and 1.09 meters above the target’s keyboard. As

mentioned earlier, the camera needs to be 10◦ higher than the

keyboard for MediaPipe to function, thus the height increases

with the attack distance. We use the camera’s built-in optical

zoom-in (1x for 0.8m, 2x for 1.8m and 3x for 2.4 and 3m) to

capture the keystroke videos (60fps, 720p).

Table 2 summarizes the attack performance in terms of

CER, WER and Similarity at the four attack distances, after

the target has typed 28 sentences (501 words, 10.9 minutes).

Across the content recovered from the four attack videos, the

CER is consistently low (0.3-1.1%), while the WER varies

Distance Height CER WER Similarity
(m) (m) (%) (%) (%)

Indoor, visible keyboard (iPad)

0.8 0.3 1.1 6.0 98.8
1.8 0.6 1.1 5.2 98.0
2.4 0.6 0.3 1.8 99.4
3.0 1.1 0.4 2.0 99.4

Indoor, invisible keyboard, no visual cue

1.8 0.6 0.5 2.6 99.6
2.4 0.6 1.1 3.8 98.0
3.0 1.1 1.0 4.0 99.2

Table 2: Attack performance in an indoor environment at differ-

ent attack distances. The camera height (2nd column) refers to

the relative distance above the keyboard.

Human Passing CER WER Similarity
per minute (%) (%) (%)

0 1.1 6.0 98.8
5 5.8 ± 0.3 15.7 ± 1.6 92.9 ± 2.1
10 9.8 ± 0.5 22.1 ± 1.0 84.9 ± 1.5

Table 3: Attack performance when passing pedestrians block

the attacker’s view of the target from time to time.

between 1.8% and 6.0%. This variance is mostly caused by the

difference among the four videos. But more importantly, the

semantic similarity between the typed and recovered content

is consistently high (>98%).

Scenario #2: indoor lounge, invisible keyboard. Next, we

consider a more ªextremeº case where the keyboard device

itself is invisible to the attacker, e.g. the target uses a VR/AR

system to view the keyboard in their own VR world and type

directly on the table surface. We emulate this scenario using

the well-known green screen method ± covering the table

with green cloth, changing the iPad’s screen display to green

hue, recording the attack video, and then keying out green

colors. This allows us to remove the keyboard completely

from the video while preserving the participant’s hands. An

example frame is shown in Figure 1 (d). Table 2 summarizes

the attack performance. The mean CER, WER and similarity

are 0.8 ± 0.3%, 3.4 ± 0.6% and 98.9 ± 0.7% across the three

distances. This result confirms that our attack does not rely

on any knowledge of the keyboard or any visual cue of the

keystrokes on the keyboard.

Scenario #3: indoor, blockage by passing pedestrians. In

public spaces, passing pedestrians can block the attacker’s

view of the target from time to time. Using local measure-

ments, we find that each blockage lasts roughly 0.2s or 12

consecutive video frames. Thus, we emulate on a given video

the effect of P=5 and 10 passing pedestrians per minute, each

blocking 12 consecutive video frames. The blockage instances

are randomly distributed over time. The chosen P values rep-

resent one passing pedestrian every 12 and 6 seconds, respec-

tively, which correspond to very busy environments. Table 3

summarizes the attack performance, in terms of mean and std

for CER, WER, and Similarity, since we run 5 experiments

USENIX Association 32nd USENIX Security Symposium 151

Victim

Camera hidden
inside the building

Victim typing
in the courtyard

Hidden
camera

Figure 6: The experimental setup of our long-range, through-

glass attack. The attacker videotapes the victim’s hands, by

placing a smartphone camera with a budget telephoto lens inside

a nearby building’s 2nd floor, behind the glass.

per P value. We see that while blockage by pedestrians in-

creases CER and WER, our attack can still recover most of

the content at a high semantic similarity.

Scenario #4: outdoor, long-distance, through-glass attack.

We also consider scenarios where the target is working in

an outdoor courtyard, while the attacker records a video at

a distance longer than the indoor scenarios. Specifically, we

position a smartphone inside a nearby building’s second floor,

behind the glass, to record the target’s typing. Here the target

cannot observe the attacker (see Figure 6). The smartphone’s

camera is roughly 12 meters away from the target. We attach

a budget telephoto lens (less than 60 USD) to the camera to

help zoom-in onto the target’s hands. Despite the complex

lighting condition (sunlight, glass reflections and shadows),

our long-range attack is still effective ± recovering 82.4% of

typed words and achieving a high semantic similarity of 87%

(see Table 4). In parallel, we also set up another smartphone

camera in the courtyard (4.5 meters away from the target),

which is able to recover 96.8% of typed words accurately.

Comparing the two videos (of the same typing session), we

find that the 12m/through glass video appears more bland or

dull, which likely affected the overall inference quality.

Attack condition Distance CER WER Similarity
(m) (%) (%) (%)

Outdoor, open space 4.5 0.9 3.2 96.0
Outdoor, through-glass 12.0 5.2 17.6 87.2

Table 4: Attack performance in long-range outdoor scenario.

Scenario #5: varying keyboard type, size, layout. We are

interested in understanding how our attack performs when the

target uses different typing devices, keyboard layouts. We ask

our participant to type on three different portable keyboards:

12.9-inch iPad, 11-inch iPad, and a Bluetooth foldable key-

board purchased from Amazon. The first two are touchscreen

keyboards and the third one is a more compact, rubberish

keyboard. Results in Table 5 show that the attack is highly

effective for all three keyboards.

We also explore the impact of keyboard’s key layout on

the attack. Here we consider the case where the target uses

a secret layout that is significantly different from the default

QWERTY layout. Specifically, we change6 the ‘a’ key in the

QWERTY layout to ‘z’, ‘b’ to ‘a’, ‘c’ to ‘b’, ..., ‘z’ to ‘y’. The

attack result located at the 4th row in Table 5 shows that our

attack is effective against this new, customized layout.

Scenario #6: on-lap keyboard. We are interested in the

attack performance when the target types on an unstationary

keyboard. Specifically, the target types for 15 minutes on

a 12.9 inch iPad that was placed on their lap instead of a

table. In the typing video, we notice small but observable

keyboard movements. The attack result is shown in the last

row of Table 5, which is comparable to the rest of the table.

This shows that our attack can withstand minor keyboard

movements.

Typing Device Dimension CER WER Sim.
(mm) (%) (%) (%)

iPad Pro 12.9 inch 281 x 215 1.1 6.0 98.8
iPad Pro 11 inch 248 x 179 1.8 6.0 95.9
Foldable keyboard 210 x 85 0.9 4.2 98.8
iPad, secret layout 281 x 215 2.4 6.6 96.4
iPad, on lap 281 x 215 1.6 5.6 96.6

Table 5: Attack performance on different typing devices.

Scenario #7: varying content type and length. We exam-

ine attack performance when the target types different types

of content. Beside corporate emails, we also consider ma-

chine learning paper abstracts (numerous technical terms), a

Shakespearean play (Coriolanus) with numerous medieval pe-

riod phrases, and medical patents (numerous medical terms).

Table 6 summarizes, for each experiment, the content type

and length (# of words, # of sentences and video duration).

Our attack remains highly effective across the four very dif-

ferent types of content. Furthermore, even by observing just

10 email sentences (199 words, 4.3 minutes of observation),

our attack can successfully recover 87% of the typed words

and achieve a high similarity score (94.5%).

Content Length Recovered Content

#Words #Sen. Dur. CER WER Sim.
(min) (%) (%) (%)

Paper Abstract 696 37 16.7 2.3 11.4 90.5

Shakespeare’s Play 732 26 14.5 1.8 9.8 92.0

Medical Patent 708 36 18.2 0.7 6.5 97.3

Corporate Emails
654 40 13.9 1.1 5.5 99.1
501 28 10.9 1.1 6.0 98.8
199 10 4.3 2.8 13.1 94.5

Table 6: Attack performance when the target types content of

different kinds and lengths. For corporate emails, the participant

typed 40 sentences. We then shortened the video to match 28

and 10 typed sentences, respectively.

6Since it takes a lot of practice to type well on a new keyboard layout, we

emulate typing on this new layout by the participant typing on the original

QWERTY layout, but modifying the content to be typed to implement the

layout change. For instance, to input word ‘and’ in this secret layout, the

target just needs to press key ‘b’, ‘m’, ‘e’ in the original QWERTY keyboard.

152 32nd USENIX Security Symposium USENIX Association

7.3 Performance across Different Users

Next, we examine our attack performance on different indi-

viduals, exploring the impact of typing styles and behaviors.

We recruited 16 participants (P0-P15) locally (mean age=24.4

years, std=6.4 years; 6 females, 10 males). For consistency,

we use the same 12.9in iPad as the typing device. The camera

is placed roughly 0.8 meters away from the keyboard, 0.25-

0.4 meters above the keyboard. The actual camera placement

is chosen to obtain a stable result in MediaPipe (using its real-

time API), which varies slightly across the 16 participants

since they have different typing gestures. The typed content

is a set of emails chosen from the Enron email dataset [14]

(≈ 500 words). Across the 16 participants, the (active) typing

time is 10.7 ± 2.5 minutes. In addition to the emails, the

participants typed 25 websites randomly extracted from the

top-1000 websites in The Majestic Million7.

Observed typing behaviors. Our 16 typists display differ-

ent typing behaviors. First, the number of fingers used varies ±

13 participants use multiple fingers per hand while 3 use only

two index fingers. The detailed finger usage is in Table 10 in

Appendix. Second, the typing speed varies largely between

169 character-per-minute (CPM) and 415 CPM. Finally, 6

participants exhibit multi-touch behaviors, where they press

the next key without releasing the current one, e.g. while the

index finger is still pressing ‘t’, the pinky presses ‘a’.

Failed MediaPipe cases. We find that MediaPipe func-

tions reasonably with some occasional flickers, except for

2 participants (P14 and P15). For both, MediaPipe failed to

produce consistent results, where the detected fingers shift

largely across frames. This is likely because these two users

have very long, thin fingers. Instead of removing them from

our evaluation, we apply the marker-assisted 2D tracking (see

§5.5) by placing color tapes on their nails (except for the

thumbs) and run our attack.

Overall attack performance. Table 7 summarized the at-

tack results for all 16 participants. Our attack can effectively

recover the typed corporate emails. The mean CER, WER

and similarity are 6.8% ± 5.8%, 20.7% ± 16.2% and 81.6%

± 21.7% between the inferred sentences and the ground truth.

The attack performance does vary largely across the partici-

pants. For 10 out of 16 participants (P0-9), our attack achieves

a low CER (0.7%-8%) and a high semantic similarity (≥ 80%

for 10 participants,≥ 90% for 6 participants). For the two non-

MediaPipe users (P14, P15), the accuracy is also high. We

provide some samples of recovered and original text in Fig-

ure 8 in Appendix, at difference CER values (3.8% ± 11.8%).

Our attack can also effectively recover websites typed dur-

ing the attack window. Given the recovered text, we compute

the edit distance to each website of the top-1000 websites

to compute top-k accuracy. Across all 16 participants and

websites tested, the top-1 accuracy is 89.6% ± 13.7%, and

7The Majestic Million is a list of the top 1 million websites in the world:

https://majestic.com/reports/majestic-million

Email Website

CPM CER WER Sim. Top-1 Top-3
(%) (%) (%) Acc.(%) Acc.(%)

P0 169 0.7 3.4 99.6 100.0 100.0
P1 292 1.1 6.0 98.8 96.0 100.0
P2 284 2.3 8.4 97.2 96.0 100.0
P3 319 3.6 11.2 94.8 50.0 62.5
P4 291 5.0 12.1 93.5 100.0 100.0
P5 329 5.8 16.5 90.4 88.0 96.0
P6 313 5.2 14.9 87.6 92.0 100.0
P7 276 5.1 20.0 84.0 92.0 96.0
P8 342 8.0 25.5 83.4 96.0 100.0
P9 344 6.9 17.8 79.9 96.0 96.0
P10 331 11.6 32.9 71.0 92.0 100.0
P11 379 12.3 44.8 62.8 100.0 100.0
P12 308 13.6 35.5 59.0 68.0 76.0
P13 415 22.8 62.7 14.8 76.0 88.0

P14 198 1.0 3.6 97.4 96.0 100.0
P15 322 3.9 15.2 91.0 96.0 100.0

Table 7: Attack performance for all 16 participants (P0-15). The

CPM column refers to their typing speed.

the top-3 accuracy is 94.7% ± 10.7%.

Three less effective cases: P11-13. Our attack is less effec-

tive on P11, P12 and P13. After a deeper study, we identified

their unique behaviors that affect the attack performance.

• P13: multi-touch, high speed typing ± Typing at a blasting

speed of 415CPM, P13 used multi-touches constantly and

the finger motion was much weaker than others. It is hard to

detect and recognize these very subtle keystrokes.

• P12: fake presses and 2-hand presses ± P12 exhibited fre-

quent hesitation-retraction, i.e., press down towards a key,

hesitate and then retract the finger(s) before hitting the key.

The motion of these ªfakeº keypresses matches that of real

keypresses. Also, P12 often presses keys using both hands

simultaneously (i.e., multi-touch by 2 hands). Our current

attack design does not consider this case.

• P11: subtle thumb presses ± For P11, another high speed

typist at 379CPM, our attack missed ‘space’ keystrokes more

often than other users. This is because P11 typed ‘space’

with a thumb so subtle that there is very little motion at the

non-thumb fingers. This contributed to the fast typing speed

but also misled our attack.

Impact of character frequencies. We examine the infer-

ence accuracy on the character level. We found that characters

which are frequently used in the typed content are more accu-

rately inferred. This is because they appear more often in the

high confidence training data. Table 8 lists the character-level

precision and recall, where we group characters in 6 buck-

ets based on the number of appearances in the typed content

(≥500, ≥200, ≥100, ≥50, ≥25, <25). We report the mean

± std for both precision and recall across the characters in

each bucket. While the frequency does affect the inference re-

sult, we only see visible degradation at the last bucket whose

average frequency is 0.2% and only appeared 5 times in the

content in average.

USENIX Association 32nd USENIX Security Symposium 153

Characters Avg. # Avg. Freq. Precision Recall
appear. (%) (%) (%)

Space 500 16.6 94 ± 5 93 ± 8
e, t 258 8.5 97 ± 3 95 ± 4
a, o, i, n, r, s 173 5.7 96 ± 4 95 ± 4
l, h, d, c, u, m, y, g 76 2.5 93 ± 5 91 ± 10
w, f, p, b, v 38 1.3 91 ± 12 90 ± 9
k, q, x, j, z 5 0.2 92 ± 14 61 ± 26

Table 8: Character-level precision and recall for all participants,

bucketized by # of appearances of the character in the content.

7.4 Contributions of Different Components

To understand how each component contributes to the attack,

we conduct an ablation study on P3 and P9, who display

different performance levels. Table 9 lists P3 and P9’s results.

Both demonstrate the same trend. For a fair comparison, all

the reported results were obtained after running the same

automatic spell correction function.

These results show that the unsupervised inference on hand-

pose data is highly sensitive to hand tracking noise. By select-

ing high confidence labels to train DNN detector and classifier,

our attack reduces the CER from 22.5% to 3.6%, and boosts

the semantic similarity from 9.1% to 94.8% for P3. We can

also clearly see the contribution of individual components.

Unsup. DNN Label DNN Noise CER WER Sim.
Infer Detector Filter Classifier Train (%) (%) (%)

P3 ✓ 22.5 59.4 9.1
✓ ✓ 16.2 46.0 47.4
✓ ✓ ✓ ✓ 5.0 16.1 88.7
✓ ✓ ✓ ✓ 8.3 23.5 78.5
✓ ✓ ✓ ✓ ✓ 3.6 11.2 94.8

P9 ✓ 26.3 67.0 0.0
✓ ✓ 23.7 61.2 18.8
✓ ✓ ✓ ✓ 14.9 45.2 50.1
✓ ✓ ✓ ✓ 10.8 34.6 73.0
✓ ✓ ✓ ✓ ✓ 6.9 17.8 79.9

Table 9: Contribution of each design component in the pipeline,

tested on P3 and P9.

Impact of hand tracking tools. To examine the impact of

hand tracking tools, we test our attack pipeline by replacing

MediaPipe [9, 61] with IntagHand [32], a recently released

hand tracking tool. Given an attack video, we use the hand-

pose data extracted by IntagHand as the input to our system,

replacing those extracted by MediaPipe. The attack result is

worse (13.6% CER, 43.3% WER and 60.4% similarity) than

that using MediaPipe (0.8% CER, 3.4% WER and 98.6% sim-

ilarity). A deeper look at IntagHand’s tracking results shows

that it produced much more frequent tracking errors than

MediaPipe, likely because IntagHand is designed to target

common in-the-air handposes like sign languages and con-

versational gestures. Such frequent tracking errors, despite

having smaller amplitudes, are much harder to recover using

our current design.

7.5 Attack Complexity

We test our attack pipeline on a server with an Intel Xeon

Silver 4214 CPU and a NVIDIA TITAN RTX GPU. For

a 12-min attack video (500 words), it takes 40 minutes to

produce the final spell-corrected content. Specifically, the

unsupervised inference takes 9.8 min (dominated by HMM’s

EM optimization), the DNN detector takes 10.3 min (8.3 min

spent on model training), the DNN classifier takes 10.2 min

(9.8 min spent on model training), and finally the automatic

spell check (GSpell) takes 8.8 min. Here we exclude the

MediaPipe extraction time since it can be done in real-time

while recording the video.

8 Defenses

Our study demonstrates that a general, vision-based keystroke

inference attack can succeed in realistic scenarios. Thus, users

working in public settings should take precautions to pro-

tect their privacy from potential attackers. Beyond checking

nearby areas for suspicious sensors and microphones, users

should consider physical screens that block external line of

sight to their hands while typing. This is likely the easiest and

most effective defense against these attacks.

Another potential defense is to largely limit the amount of

keystroke events, by augmenting keystroke typing with either

predictive text8 or voice-based input.

9 Limitations

We also note limitations and caveats to our work, which can

be goals to be addressed in future work.

Dependency on hand tracking accuracy. Our attack de-

sign operates on today’s hand tracking tools like MediaPipe,

which cannot accurately track typing fingers at mm-level ac-

curacy. Our design addresses this accuracy gap by a two-layer

self-supervised learning pipeline. Future improvements in

hand tracking (e.g. more accurate 3D joint estimation) might

reduce the impact of this challenge and lead to simpler sys-

tems for vision-based keystroke inference. Similarly, our at-

tack is less effective against high-speed typing targets, because

the corresponding hand tracking results are less accurate.

Keyboard/camera movement. Our experiments assume

traditional typing sessions where the keyboard is relatively

stable, i.e., placed on a table or on the target’s lap. Our results

may not hold in active settings, e.g. a moving train or airplane

experiencing turbulence. To mitigate the impact of movement,

the attacker must precisely locate and track both the target’s

keyboard and the attack camera continuously.

Typing on smartphones and laptops. Our attack assumes

access to a frontal view of the target’s hands. When typing on

a smartphone (i.e., holding the phone in mid-air and thumb-

typing) or on a laptop with its screen up, the hands/fingers

8Predictive text is a (mobile) input technology that suggests words a user

may wish to insert. Instead of manually typing all the characters of a word

on a keyboard, the user can choose from a list of suggested words.

154 32nd USENIX Security Symposium USENIX Association

can be blocked by the device. Our current attack might be

less effective under those scenarios. Future work can explore

tracking fingertips from behind to estimate the keystroke lo-

cations. A more advanced hand tracking tool that withstands

occlusion (e.g. palm blocking the fingertips) and object inter-

action (e.g. hands holding the smartphone) is needed for such

attacks.

Infrequent keys. Our self-supervised approach requires

data of valid keystrokes for a particular key to be recognized

by the eventual DNN models. Keys that appear very infre-

quently in the video will have noisier curated training data,

and less accurate recognition. On the other hand, their infre-

quency also means their errors will have lower impact on

overall inference of typed text.

Hybrid inputs. Our attack assumed traditional typing sce-

narios which may not withstand hybrid input methods that

augment keystroke typing with predictive text. However, the

attacker can potentially counter this by obtaining a replica of

the predictive feature and incorporating them into the HMM

and DNN model training. We leave this to future work.

10 Conclusion

This paper describes our experiences developing a general,

vision-based keystroke inference attack, which can infer con-

tent typed by a target using a single RGB camera. Our work

differs significantly from prior work in that we do not rely

on side-channel data or other assumptions beyond having a

frontal view of the target’s typing hands. While today’s pub-

lic hand tracking tools cannot accurately locate keystroking

fingertips, our work proposes a novel 2-layer self-supervised

learning pipeline to infer the typed content without requiring

any prior data/knowledge of the target. Our user study results

show such attacks can succeed in realistic scenarios, raising

the immediate need for users working in public settings to

protect their typing privacy, e.g. setting up a physical screen

that blocks frontal views of their hands.

Acknowledgements

We thank our anonymous reviewers and shepherd for their

insightful feedback. This work is supported in part by NSF

grants CNS-1949650, CNS-1923778, and the DARPA GARD

program. Opinions, findings, and conclusions or recommen-

dations expressed in this material are those of the authors and

do not necessarily reflect the views of any funding agencies.

References

[1] Kamran Ali, Alex X. Liu, Wei Wang, and Muhammad

Shahzad. Keystroke recognition using WiFi signals. In

Proc. of MobiCom, 2015.

[2] Apple Inc. https://apps.apple.com/us/app/

gboard-the-google-keyboard/id1091700242.

[3] Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor,

and Kevin McGuinness. Unsupervised label noise mod-

eling and loss correction. In Proc. of ICML, 2019.

[4] Yuki Markus Asano, Christian Rupprecht, and Andrea

Vedaldi. Self-labelling via simultaneous clustering and

representation learning. In Proc. of ICLR, 2020.

[5] D. Asonov and R. Agrawal. Keyboard acoustic emana-

tions. In Proc. of IEEE S&P, 2004.

[6] Davide Balzarotti, Marco Cova, and Giovanni Vigna.

Clearshot: Eavesdropping on keyboard input from video.

In Proc. of IEEE S&P, 2008.

[7] Salil P Banerjee and Damon L Woodard. Biometric

authentication and identification using keystroke dynam-

ics: A survey. Journal of Pattern Recognition Research,

7(1), 2012.

[8] Leonard E. Baum. An inequality and associated max-

imization technique in statistical estimation for proba-

bilistic functions of Markov processes. In Inequalities

III: Proceedings of the Third Symposium on Inequalities,

1972.

[9] Valentin Bazarevsky and Fan Zhang. On-

device, real-time hand tracking with Medi-

aPipe. https://ai.googleblog.com/2019/08/

on-device-real-time-hand-tracking-with.

html, 2021.

[10] Daniel Buschek, Alexander De Luca, and Florian Alt.

Improving accuracy, applicability and usability of

keystroke biometrics on mobile touchscreen devices.

In Proc. of CHI, 2015.

[11] Arpan Chakraborty, Brent Harrison, Pu Yang, David

Roberts, and Robert St. Amant. Exploring key-level

analytics for computational modeling of typing behavior.

In Proc. of HotSoS, 2014.

[12] Theocharis Chatzis, Andreas Stergioulas, Dimitrios Kon-

stantinidis, Kosmas Dimitropoulos, and Petros Daras. A

comprehensive study on deep learning-based 3d hand

pose estimation methods. Applied Sciences, 10(19),

2020.

[13] Bo Chen, Vivek Yenamandra, and Kannan Srinivasan.

Tracking keystrokes using wireless signals. In Proc. of

MobiSys, 2015.

[14] William W. Cohen. Enron email dataset. https://www.

cs.cmu.edu/~enron/, 2015.

[15] The SciPy community. scipy.signal.peak_prominences.

https://docs.scipy.org/doc/scipy/reference/

generated/scipy.signal.peak_prominences.

html, 2022.

USENIX Association 32nd USENIX Security Symposium 155

https://apps.apple.com/us/app/gboard-the-google-keyboard/id1091700242
https://apps.apple.com/us/app/gboard-the-google-keyboard/id1091700242
https://ai.googleblog.com/2019/08/on-device-real-time-hand-tracking-with.html
https://ai.googleblog.com/2019/08/on-device-real-time-hand-tracking-with.html
https://ai.googleblog.com/2019/08/on-device-real-time-hand-tracking-with.html
https://www.cs.cmu.edu/~enron/
https://www.cs.cmu.edu/~enron/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.peak_prominences.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.peak_prominences.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.peak_prominences.html

[16] CopyLeaks. Plagiarism checker api - integrate ai pow-

ered api, copyleaks. https://api.copyleaks.com/.

[17] Vivek Dhakal. Identification of typing behaviors from

large keystroke dataset. Master Thesis, Aalto University,

2017.

[18] C. Doersch and A. Zisserman. Multi-task self-

supervised visual learning. In Proc. of ICCV, 2017.

[19] EDUCBA. Opencv perspectivetrans-

form. https://www.educba.com/

opencv-perspectivetransform/.

[20] Hugging Face. WER - a hugging face space by

evaluate-metric. https://huggingface.co/spaces/

evaluate-metric/wer.

[21] Anna Maria Feit, Daryl Weir, and Antti Oulasvirta. How

we type: Movement strategies and performance in ev-

eryday typing. In Proc. of CHI, 2016.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

Proc. of CVPR, 2016.

[23] Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-

stette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and

Phil Blunsom. Teaching machines to read and compre-

hend. In Proc. of NIPS, 2015.

[24] Jayakumar Hoskere. Everyday ai: Beyond spell

check, how google docs is smart enough to

correct grammar | google cloud blog. https:

//cloud.google.com/blog/products/g-suite/

everyday-ai-beyond-spell-check-how\

-google-docs-is-smart-enough-to-correct-grammar.

[25] Wolfgang Jank. The em algorithm, its randomized im-

plementation and global optimization: Some challenges

and opportunities for operations research. In Perspec-

tives in operations research. 2006.

[26] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li,

and Li Fei-Fei. Mentornet: Learning data-driven curricu-

lum for very deep neural networks on corrupted labels.

In Proc. of ICML, 2018.

[27] Xinhui Jiang, Jussi P.P. Jokinen, Antti Oulasvirta, and

Xiangshi Ren. Learning to type with mobile keyboards:

Findings with a randomized keyboard. Comput. Hum.

Behav., 126, jan 2022.

[28] Wenqiang Jin, Srinivasan Murali, Huadi Zhu, and Ming

Li. Periscope: A keystroke inference attack using human

coupled electromagnetic emanations. In Proc. of ACM

CCS, 2021.

[29] Okan Köpüklü, Ahmet Gunduz, Neslihan Kose, and Ger-

hard Rigoll. Real-time hand gesture detection and clas-

sification using convolutional neural networks. In Proc.

of IEEE FG 2019.

[30] Dominik Kulon, Riza Alp Guler, Iasonas Kokkinos,

Michael M Bronstein, and Stefanos Zafeiriou. Weakly-

supervised mesh-convolutional hand reconstruction in

the wild. In Proc. of CVPR, 2020.

[31] Vladimir I. Levenshtein. Binary codes capable of

correcting deletions, insertions, and reversals. Soviet

physics. Doklady, 10:707±710, 1965.

[32] Mengcheng Li, Liang An, Hongwen Zhang, Lianpeng

Wu, Feng Chen, Tao Yu, and Yebin Liu. Interacting at-

tention graph for single image two-hand reconstruction.

In Proc. of CVPR, 2022.

[33] Mengyuan Li, Yan Meng, Junyi Liu, Haojin Zhu, Xi-

aohui Liang, Yao Liu, and Na Ruan. When CSI meets

public WiFi: Inferring your mobile phone password via

WiFi signals. In Proc. of ACM CCS, 2016.

[34] John Lim, True Price, Fabian Monrose, and Jan-Michael

Frahm. Revisiting the threat space for vision-based

keystroke inference attacks. In Proc. of ECCV, 2020.

[35] Kang Ling, Yuntang Liu, Ke Sun, Wei Wang, Lei Xie,

and Qing Gu. Spidermon: Towards using cell towers as

illuminating sources for keystroke monitoring. In Proc.

of IEEE INFOCOM, 2020.

[36] Shiqing Luo, Xinyu Hu, and Zhisheng Yan. Hololog-

ger: Keystroke inference on mixed reality head mounted

displays. In Proc. of IEEE VR, 2022.

[37] Philip Marquardt, Arunabh Verma, Henry Carter, and

Patrick Traynor. (Sp)IPhone: Decoding vibrations from

nearby keyboards using mobile phone accelerometers.

In Proc. of ACM CCS, 2011.

[38] SMM Martens, Joris M Mooij, N Jeremy Hill, Jason

Farquhar, and Bernhard Schölkopf. A graphical model

framework for decoding in the visual ERP-Based BCI

speller. Neural Computation, 23(1):160±182, 01 2011.

[39] Joanna Materzynska, Guillaume Berger, Ingo Bax, and

Roland Memisevic. The jester dataset: A large-scale

video dataset of human gestures. In Proc. of IEEE/CVF

ICCVW, 2019.

[40] MediaPipe Hands. Javascript solution api.

https://google.github.io/mediapipe/

solutions/hands#javascript-solution-api.

[41] Franziska Mueller, Florian Bernard, Oleksandr Sotny-

chenko, Dushyant Mehta, Srinath Sridhar, Dan Casas,

156 32nd USENIX Security Symposium USENIX Association

https://api.copyleaks.com/
https://www.educba.com/opencv-perspectivetransform/
https://www.educba.com/opencv-perspectivetransform/
https://huggingface.co/spaces/evaluate-metric/wer
https://huggingface.co/spaces/evaluate-metric/wer
https://cloud.google.com/blog/products/g-suite/everyday-ai-beyond-spell-check-how\-google-docs-is-smart-enough-to-correct-grammar
https://cloud.google.com/blog/products/g-suite/everyday-ai-beyond-spell-check-how\-google-docs-is-smart-enough-to-correct-grammar
https://cloud.google.com/blog/products/g-suite/everyday-ai-beyond-spell-check-how\-google-docs-is-smart-enough-to-correct-grammar
https://cloud.google.com/blog/products/g-suite/everyday-ai-beyond-spell-check-how\-google-docs-is-smart-enough-to-correct-grammar
https://google.github.io/mediapipe/solutions/hands#javascript-solution-api
https://google.github.io/mediapipe/solutions/hands#javascript-solution-api

and Christian Theobalt. Ganerated hands for real-time

3d hand tracking from monocular rgb. In Proc. of CVPR,

2018.

[42] Lawrence Rabiner and Biinghwang Juang. An introduc-

tion to hidden markov models. IEEE Acoustics, Speech,

and Signal Processing magazine, 3(1):4±16, 1986.

[43] Rahul Raguram, Andrew M. White, Dibyendusekhar

Goswami, Fabian Monrose, and Jan-Michael Frahm.

ISpy: Automatic reconstruction of typed input from com-

promising reflections. In Proc. of ACM CCS, 2011.

[44] Scott Reed, Honglak Lee, Dragomir Anguelov, Chris-

tian Szegedy, Dumitru Erhan, and Andrew Rabinovich.

Training deep neural networks on noisy labels with boot-

strapping. arXiv preprint arXiv:1412.6596, 2014.

[45] Mohd Sabra, Anindya Maiti, and Murtuza Jadliwala.

Zoom on the keystrokes: Exploiting video calls for

keystroke inference attacks. CoRR, abs/2010.12078,

2020.

[46] SeleniumHQ. SeleniumHQ/selenium: A browser au-

tomation framework and ecosystem. https://github.

com/SeleniumHQ/selenium.

[47] Diksha Shukla, Rajesh Kumar, Abdul Serwadda, and

Vir V. Phoha. Beware, your hands reveal your secrets!

In Proc. of ACM CCS, 2014.

[48] Hwanjun Song, Minseok Kim, Dongmin Park, and Jae-

Gil Lee. Learning from noisy labels with deep neural

networks: A survey. CoRR, abs/2007.08199, 2020.

[49] University of Notre Dame. The frequency

of the letters of the alphabet in english.

https://www3.nd.edu/~busiforc/handouts/

cryptography/letterfrequencies.html.

[50] Andrew Viterbi. Error bounds for convolutional codes

and an asymptotically optimum decoding algorithm.

IEEE transactions on Information Theory, 13(2):260±

269, 1967.

[51] He Wang, Ted Tsung-Te Lai, and Romit Roy Choudhury.

MoLe: Motion leaks through smartwatch sensors. In

Proc. of MobiCom, 2015.

[52] Jiayi Wang et al. RGB2Hands: Real-time tracking of

3D hand interactions from monocular RGB video. ACM

Trans. Graph., nov 2020.

[53] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen

Tu, and Kaiming He. Aggregated residual transforma-

tions for deep neural networks. CoRR, abs/1611.05431,

2016.

[54] Yi Xu, Jared Heinly, Andrew M White, Fabian Monrose,

and Jan-Michael Frahm. Seeing double: Reconstruct-

ing obscured typed input from repeated compromising

reflections. In Proc. of ACM CCS, 2013.

[55] Xin Yi, Chun Yu, Mingrui Zhang, Sida Gao, Ke Sun,

and Yuanchun Shi. Atk: Enabling ten-finger freehand

typing in air based on 3d hand tracking data. In Proc of

UIST, 2015.

[56] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor

Tsang, and Masashi Sugiyama. How does disagreement

help generalization against label corruption? In Proc. of

ICML, 2019.

[57] Qinggang Yue, Zhen Ling, Xinwen Fu, Benyuan Liu,

Kui Ren, and Wei Zhao. Blind recognition of touched

keys on mobile devices. In Proc. of ACM CCS, 2014.

[58] Qinggang Yue, Zhen Ling, Wei Yu, Benyuan Liu, and

Xinwen Fu. Blind recognition of text input on mobile

devices via natural language processing. In Proc. of

PAMCO, 2015.

[59] Chen Yunfang, Zhu Yihong, Zhou Hao, Chen Wei, and

Zhang Wei. Enhanced keystroke recognition based on

moving distance of keystrokes through WiFi. In Proc.

of NSS, 2018.

[60] Baowen Zhang, Yangang Wang, Xiaoming Deng, Yinda

Zhang, Ping Tan, Cuixia Ma, and Hongan Wang. Inter-

acting two-hand 3D pose and shape reconstruction from

single color image. In Proc. of ICCV, 2021.

[61] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, An-

drei Tkachenka, George Sung, Chuo-Ling Chang, and

Matthias Grundmann. MediaPipe Hands: On-device

real-time hand tracking. CoRR, abs/2006.10214, 2020.

[62] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin,

and David Lopez-Paz. mixup: Beyond empirical risk

minimization. CoRR, abs/1710.09412, 2017.

[63] Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata

Ghorbani, and James Y. Zou. How does mixup help with

robustness and generalization? CoRR, abs/2010.04819,

2020.

[64] Yifan Zhang, Congqi Cao, Jian Cheng, and Hanqing Lu.

Egogesture: A new dataset and benchmark for egocen-

tric hand gesture recognition. IEEE Transactions on

Multimedia, 20(5):1038±1050, 2018.

[65] Li Zhuang, Feng Zhou, and J. Tygar. Keyboard acoustic

emanations revisited. In Proc. of ACM CCS, 2005.

USENIX Association 32nd USENIX Security Symposium 157

https://github.com/SeleniumHQ/selenium
https://github.com/SeleniumHQ/selenium
https://www3.nd.edu/~busiforc/handouts/cryptography/letterfrequencies.html
https://www3.nd.edu/~busiforc/handouts/cryptography/letterfrequencies.html

Appendix

0.0 0.5 1.0 1.5 2.0
Peak Prominence

Thumb
Keystroke

Non-Thumb
Keystroke

Figure 7: Distribution of negative acceleration’s peak prominence

for thumb-based and non-thumb keystrokes.

Left hand Right hand
Multi
Touch

P0 I I No
P1 T, I, M, R, P I, M, R, P No
P2 I I No
P3 I, M, R I, M Yes
P4 I I No
P5 I, M, R T, I, M, R No
P6 I, M, R, P T, I, M, R, P Yes
P7 I, M, R T, I, M, R No
P8 I, M, R, P T, I, M, R, P Yes
P9 I, M, R, P T, I, M, R No
P10 I, M, R I, M, R Yes
P11 T, I, M, R, P I, M, R, P Yes
P12 I, M, R I, M, R No
P13 I, M, R, P T, I, M, R, P Yes
P14 I, M I, M, R No
P15 I, M, R P T, I, M, R No

Table 10: Typing behaviors of our 16 participants (P0-P15). We

refer to individual fingers as Thumb (T), Index (I), Middle (M),

Ring (R) and Pinky (P).

Inferred Text Ground Truth CER (%)

once we know exactly what contracts
we are looking at we can fine tune
the calculation

once we know exactly what
contracts we are looking at we can
fine tune the calculation

0

each trader will be us ed to manage
their individual position and
profitability goals for the
simulation n

each trader will be asked to
manage their individual position
and profitability goals for the
simulation

3.8

traders will be managing their
individual booms and associates
product

traders will be managing their
individual books and associated
products

5.5

the acatt ached draft is fairly
legalistic in tone

the attached draft is fairly
legalistic in tone

6.3

the lle ongoing uncertainty about
our future coupled with the
contestant media scrutiny makes the
situation difficult for all of uw

the ongoing uncertainty about our
future coupled with the constant
media scrutiny makes this
situation difficult for all of us

7.1

hbur message will be scanned an nd
hec ed for viruses prior to
requested release

your message will be scanned and
checked for viruses prior to
requested release

7.6

i attach a letter of intent ent
w ich i hope covers all the
points we discussed this m ing

i attach a letter of intent which
i hope covers all the points we
discussed this morning

9.9

os one of the enhanced sec rit
measur s we have ecentl emppo edm
we will be e ch c ing emp o ee
badges at the entrance to the
ballr o om

as one of the enhanced security
measures we have recently employed
we will b e checking employee
badges at the entrance to the
ballroom

11.8

Figure 8: Examples of final recovered text compared to ground truth.

158 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background and Related Work
	Existing Keystroke Inference Attacks
	Vision-based Hand Tracking

	Threat Model
	Design Alternatives and System Overview
	Potential Solutions and Their Limitations
	Key Insights
	Attack Design: Overview

	Unsupervised Inference on Handpose Data
	Handpose Data
	Detecting Keystroke Events
	Clustering Detected Keystrokes
	Inferring Typed Content via HMM
	Impact of Hand Tracking Noise

	Self-supervised Inference on Video Data
	Finding High Confidence Labels
	Training DNNs using Limited Data
	Noise-aware Model Training

	Experimental Evaluation
	Experiment Setup
	Performance under Different Scenarios
	Performance across Different Users
	Contributions of Different Components
	Attack Complexity

	Defenses
	Limitations
	Conclusion

