
ARTIFACT
EVALUATED

PASSED
A better zip bomb

David Fifield

Abstract
We show how to construct a non-recursive zip bomb that
achieves a high compression ratio by overlapping files in-
side the zip container. “Non-recursive” means that it does
not rely on a decompressor’s recursively unpacking zip files
nested within zip files: it expands fully after a single round
of decompression. The output size increases quadratically in
the input size, reaching a compression ratio of over 28 mil-
lion (10 MB→ 281 TB) at the limits of the zip format. Even
greater expansion is possible using 64-bit extensions. The con-
struction uses only the most common compression algorithm,
DEFLATE, and is compatible with most zip parsers.

1 Introduction

Compression bombs that use the zip format must cope with
the fact that DEFLATE, the compression algorithm most com-
monly supported by zip parsers, cannot achieve a compression
ratio greater than 1032 [23]. For this reason, zip bombs typi-
cally rely on recursive decompression, nesting zip files within
zip files to get an extra factor of 1032 with each layer. But
the trick only works on implementations that unzip recur-
sively, and most do not. The best-known zip bomb, 42.zip [1],
expands to a formidable 4.5 PB if all six of its layers are
recursively unzipped, but a trifling 0.6 MB at the top layer.
Zip quines, like those of Ellingsen [12] and Cox [10], which
contain a copy of themselves and thus expand infinitely if re-
cursively unzipped, are likewise perfectly safe to unzip once.

This article shows how to construct a non-recursive zip
bomb whose compression ratio surpasses the DEFLATE limit
of 1032. It works by overlapping files inside the zip container,
in order to reference a “kernel” of highly compressed data in
multiple files, without making multiple copies of it. The zip
bomb’s output size grows quadratically in the input size; i.e.,
the compression ratio gets better as the bomb gets bigger. The
construction depends on features of both zip and DEFLATE—
it is not directly portable to other file formats or compression
algorithms. It is compatible with most zip parsers, the ex-
ceptions being “streaming” parsers that parse in one pass

without first consulting the zip file’s central directory. We try
to balance two conflicting goals:

• Maximize the compression ratio. We define the com-
pression ratio as the the sum of the sizes of all the files
contained the in the zip file, divided by the size of the zip
file itself. It does not count filenames or other filesystem
metadata, only contents.

• Be compatible. Zip is a tricky format and parsers dif-
fer, especially around edge cases and optional features.
Avoid taking advantage of tricks that only work with cer-
tain parsers. We will remark on certain ways to increase
the efficiency of the zip bomb that come with some loss
of compatibility.

The construction we will develop is tunable for different
sizes. For the sake of comparison and discussion, we will
produce three concrete examples. These examples and others
are compared in Table 1 and Figure 6.

zbsm.zip 42 kB → 5.5 GB Section 5.3
zblg.zip 10 MB→ 281.4 TB Section 5.3
zbxl.zip 46 MB→ 4.5 PB Section 7

2 Structure of a zip file

A zip file consists of a central directory which references files.
Refer to Figure 1.

The central directory is at the end of the zip file. It is a list of
central directory headers. Each central directory header con-
tains metadata for a single file, like its filename and CRC-32
checksum, and a backwards pointer to a local file header.
A central directory header is 46 bytes long, plus the length of
the filename.

A file consists of a local file header followed by com-
pressed file data. The local file header is 30 bytes long, plus
the length of the filename. It contains a redundant copy of
the metadata from the central directory header, and the com-
pressed and uncompressed sizes of the file data that follows.



Zip is a container format, not a compression algorithm. Each
file’s data is compressed using an algorithm specified in the
metadata—usually DEFLATE [11].

This description of the zip format omits many details that
are not needed for understanding the zip bomb. For full infor-
mation, refer to the file format specification [17], particularly
Section 4.3.

3 The first insight: overlapping files

By compressing a long string of repeated bytes, we can pro-
duce a kernel of highly compressed data. By itself, the kernel’s
compression ratio cannot exceed the DEFLATE limit of 1032,
so we want a way to reuse the kernel in many files, without
making a separate copy of it in each file. We can do it by over-
lapping files: making many central directory headers point to
a single file, whose data is the kernel. See Figure 2.

Let’s look at an example to see how this construction affects
the compression ratio. Suppose the kernel is 1000 bytes and
decompresses to 1 MB. Then the first 1 MB of output “costs”
1078 bytes of input: 31 bytes for a local file header (including
a 1-byte filename), 47 bytes for a central directory header
(including a 1-byte filename), and 1000 bytes for the kernel
itself. But every 1 MB of output after the first costs only
47 bytes—we don’t need another local file header or another
copy of the kernel, only an additional central directory header.
So while the first copy of the kernel has a compression ratio
of 1000000/1078≈ 928, each additional copy pulls the ratio
closer to 1000000/47 ≈ 21277. A bigger kernel raises the
ceiling.

The problem with this idea is a lack of compatibility. Be-
cause many central directory headers point to a single local
file header, the metadata—specifically the filename—cannot
match for every file. Some parsers balk at that; see Table 2.
Info-ZIP UnZip [15] (the standard Unix unzip program) ex-
tracts the files, but with warnings:

$ unzip overlap.zip
inflating: A

B: mismatching "local" filename (A),
continuing with "central" filename version

inflating: B
...

And the Python zipfile module [19] throws an exception:

$ python3 -m zipfile -e overlap.zip .
Traceback (most recent call last):
...
__main__.BadZipFile: File name in directory ’B’ \
and header b’A’ differ.

Next we will see how to modify the construction for consis-
tency of filenames, while still retaining most of the advantage
of overlapping files.

4 The second insight:
quoting local file headers

We need to separate the local file headers for each file, while
still reusing a single kernel. Simply concatenating all the local
file headers does not work, because the zip parser will find a
local file header where it expects to find the beginning of a
DEFLATE stream. But the idea will work, with a minor mod-
ification. We’ll use a feature of DEFLATE, non-compressed
blocks, to “quote” local file headers so that they appear to
be part of the same DEFLATE stream that terminates in the
kernel. Every local file header (except the first) will be inter-
preted in two ways: as code (part of the structure of the zip
file) and as data (part of the contents of a file).

A DEFLATE stream is a sequence of blocks [11 §3.2.3],
where each block may be compressed or non-compressed.
Compressed blocks are what we usually think of; for ex-
ample the kernel is one big compressed block. But there
are also non-compressed blocks, which start with a 5-byte
header [11 §3.2.4] that means simply, “output the next n
bytes verbatim.” Decompressing a non-compressed block
means only stripping the 5-byte header. Compressed and non-
compressed blocks may be intermixed freely in a DEFLATE
stream. The output is the concatenation of decompressing all
the blocks in order. The “non-compressed” notion only has
meaning at the DEFLATE layer; the file data still counts as
“compressed” at the zip layer, no matter what kind of blocks
are used.

It is easiest to understand this quoted-overlap construction
from the inside out, beginning with the last file and working
backwards to the first. Refer to Figure 3. Start by inserting
the kernel, which will form the end of file data for every file.
Prepend a local file header LFHN and add a central directory
header CDHN that points to it. Set the “compressed size”
metadata field in LFHN and CDHN to the compressed size of
the kernel. Now, insert before LFHN a 5-byte non-compressed
block header (colored green in the diagram) whose length
field is equal to the size of LFHN . Prepend a second local file
header LFHN−1 and add a central directory header CDHN−1
that points to it. Set the “compressed size” metadata field in
both of the new headers to the compressed size of the kernel,
plus the size of the non-compressed block header (5 bytes),
plus the size of LFHN .

At this point the zip file contains two files, named “Y” and
“Z”. Let’s walk through what a zip parser would see while pars-
ing it. Suppose the compressed size of the kernel is 1000 bytes
and the size of LFHN is 31 bytes. We start at CDHN−1 and
follow the pointer to LFHN−1. The first file’s filename is “Y”
and the compressed size of its file data is 1036 bytes. Inter-
preting the next 1036 bytes as a DEFLATE stream, we first
encounter the 5-byte header of a non-compressed block that
says to copy the next 31 bytes. We write the next 31 bytes,
which are LFHN , as output to the file “Y”. Moving on in the
DEFLATE stream, we find a compressed block (the kernel),



non-recursive recursive
zipped size unzipped size ratio unzipped size ratio

Cox quine [10] 440 440 1.0 ∞ ∞

Ellingsen quine [12] 28809 42569 1.5 ∞ ∞

42.zip [1] 42374* 558432 13.2 4507981343026016 106 billion
zbsm.zip (this method) 42374 5461307620 129 thousand 5461307620 129 thousand
zblg.zip (this method) 9893525 281395456244934 28 million 281395456244934 28 million

zbxl.zip (this method, Zip64) 45876952 4507981427706459 98 million 4507981427706459 98 million

Table 1: Comparison of zip bomb compression ratios.
* There are two versions of 42.zip, an older version of 42374 bytes, and a newer version of 42838 bytes. The difference is

that the newer version requires a password before unzipping. We compare only against the older version.

README
LFH1 file data

Makefile
LFH2 file data

demo.c
LFH3 file data

README
CDH1

Makefile
CDH2

demo.c
CDH3

file 1 file 2 file 3 central directory

Figure 1: A normal zip file (Section 2).

A
LFH1 kernel

A
CDH1

B
CDH2 · · ·

Y
CDHN−1

Z
CDHN

file 1
file 2
· · ·

file N − 1
file N

central directory

Figure 2: Full-overlap zip bomb construction (Section 3). This construction has problems with compatibility, because filenames
do not agree between the central directory headers and the local file headers. The “kernel” is a block of highly compressed data,
reused in every file.

A
LFH1

B
LFH2 · · ·

Y
LFHN−1

Z
LFHN kernel

A
CDH1

B
CDH2 · · ·

Y
CDHN−1

Z
CDHN

file 1
file 2

· · ·
file N − 1

file N

central directory

Figure 3: Quoted-overlap zip bomb construction (Section 4). Each file contains the local file headers of all the files which follow
it, as well as the kernel. The green parts stand for DEFLATE non-compressed blocks that “quote” the next local file header.

https://web.archive.org/web/20120222083624/http://www.unforgettable.dk/
https://web.archive.org/web/20120301154142/http://www.unforgettable.dk/


which we decompress and append to file “Y”. Now we have
reached the end of the compressed data and are done with
file “Y”. Proceeding to the next file, we follow the pointer
from CDHN to LFHN and find a file named “Z” whose com-
pressed size is 1000 bytes. Interpreting those 1000 bytes as a
DEFLATE stream, we immediately encounter a compressed
block (the kernel again) and decompress it to the file “Z”.
Now we have reached the end of the final file and are done.
The output file “Z” contains the decompressed kernel; the
output file “Y” is the same, but additionally prefixed by the
31 bytes of LFHN .

We complete the construction by repeating the quoting
procedure until the zip file contains the desired number of
files. Each new file adds a central directory header, a local file
header, and a non-compressed block to quote the immediately
succeeding local file header. Compressed file data is generally
a chain of DEFLATE non-compressed blocks (the quoted
local file headers) followed by the compressed kernel. Each
byte in the kernel contributes about 1032N to the output size,
because each byte is part of all N files. The output files are
not all the same size: those that appear earlier in the zip file
are larger than those that appear later, because they contain
more quoted local file headers. The contents of the output
files are not particularly meaningful, but no one said they had
to make sense.

This quoted-overlap construction has better compatibility
than the full-overlap construction of Section 3, but the compat-
ibility comes at the expense of the compression ratio. There,
each added file cost only a central directory header; here, it
costs a central directory header, a local file header, and another
5 bytes for the quoting header.

5 Optimization

Now that we have the basic zip bomb construction, we will
try to make it as efficient as possible. We want to answer two
questions:

• For a given zip file size, what is the maximum compres-
sion ratio?

• What is the maximum compression ratio, given the limits
of the zip format?

5.1 Kernel compression
It pays to compress the kernel as densely as possible, because
every decompressed byte gets magnified by a factor of N.
To that end, we use a custom DEFLATE compressor called
bulk_deflate, specialized for compressing a string of repeated
bytes.

All decent DEFLATE compressors will approach a com-
pression ratio of 1032 when given an infinite stream of repeat-
ing bytes, but we care more about specific finite sizes than

bulk_deflate

Zopfli

zlib and Info-ZIP

21700000

21710000

21720000

21730000

21740000

21750000

21070 21075 21080 21085 21090
size of DEFLATE stream

m
ax

im
um

 u
nc

om
pr

es
se

d 
siz

e

Figure 4: Comparison of DEFLATE compressors on a string
of repeated bytes. The axes are chosen to show the neigh-
borhood of the kernel of zbsm.zip, which is developed in
Section 5.3.

asymptotics. Figure 4 shows the maximum amount of out-
put that can result from decompressing a DEFLATE stream
of a given size, for bulk_deflate and other implementations.
bulk_deflate compresses more data into the same space than
the general-purpose compressors: about 26 kB more than
zlib and Info-ZIP, and about 15 kB more than Zopfli [5], a
compressor that trades speed for density.

The price of bulk_deflate’s high compression ratio is a
lack of generality. bulk_deflate can only compress strings
of a single repeated byte, and only those of specific lengths,
namely 517+ 258k for integer k ≥ 0. Besides compressing
densely, bulk_deflate is fast, doing essentially constant work
regardless of the input size, aside from the O(n) work of
actually writing out the compressed string.

5.2 Filenames

For our purposes, filenames are mostly dead weight. While
filenames do contribute something to the output size by virtue
of being part of quoted local file headers, a byte in a filename
does not contribute nearly as much as a byte in the kernel. We
want filenames to be as short as possible, while keeping them
all distinct, and subject to compatibility considerations.

The first compatibility consideration is character encod-
ing. The zip format specification states that filenames are to
be interpreted as CP 437, or UTF-8 if a certain flag bit is
set [17 Appendix D]. But this is a major point of incompat-
ibility across zip parsers, which may interpret filenames as
being in some fixed or locale-specific encoding. So for com-



patibility, we must limit ourselves to characters that have the
same encoding in both CP 437 and UTF-8; namely, the 95
printable characters of US-ASCII.

We are further restricted by filesystem naming limitations.
Some filesystems are case-insensitive, so “a” and “A” do not
count as distinct names. Common filesystems like FAT32
prohibit certain characters like ‘*’ and ‘?’ [21 §Limits].

As a safe but not necessarily optimal compromise, our zip
bomb will use filenames consisting of characters drawn from
a 36-character alphabet that does not rely on case distinctions
or use special characters:

0 1 2 3 4 5 6 7 8 9 A B C D E F G H
I J K L M N O P Q R S T U V W X Y Z

Filenames are generated in the obvious way, cycling each
position through the possible characters and adding a position
on overflow:

“0”, “1”, “2”, . . . , “Z”,
“00”, “01”, “02”, . . . , “0Z”,

. . . ,
“Z0”, “Z1”, “Z2”, . . . , “ZZ”,

“000”, “001”, “002”, . . .

There are 36 filenames of length 1, 362 filenames of length 2,
and so on. The length of the nth filename is blog36((n +
1)/ 36

35 )c+1 = O(logn). Four bytes are enough to represent
1727604 distinct filenames.

Given that the N filenames in the zip file are generally
not all of the same length, which way should we order them,
shortest to longest or longest to shortest? A little reflection
shows that it is better to put the longest names last, because
those names are the most quoted. Ordering filenames longest
last adds over 900 MB of output to the zblg.zip we will see
in Section 5.3, compared to ordering them longest first. It is a
minor optimization, though, as those 900 MB comprise only
0.0003% of the total output size.

5.3 Kernel size
The quoted-overlap construction allows us to place a com-
pressed kernel of data, and then cheaply copy it many times.
For a given zip file size X , how much space should we devote
to storing the kernel, and how much to making copies?

To find the optimum balance, we only have to optimize the
single variable N, the number of files in the zip file. Every
value of N requires a certain amount of overhead for central
directory headers, local file headers, quoting block headers,
and filenames. All the remaining space can be taken up by the
kernel. Because N has to be an integer, and you can only fit
so many files before the kernel size drops to zero, it suffices
to test every possible value of N and select the one that yields
the most output.

Applying the optimization procedure to X = 42374, the
size of 42.zip, finds a maximum at N = 250. Those 250 files

require 21195 bytes of overhead, leaving 21179 bytes for the
kernel. A kernel of that size decompresses to 21841249 bytes
(a ratio of 1031.3). The 250 copies of the decompressed
kernel, plus the little bit extra that comes from the quoted
local file headers, produces an overall unzipped output of
5461307620 bytes and a compression ratio of 128 thousand.
This zip bomb is zbsm.zip—refer to Table 1.

Optimization produced an almost even split between the
space allocated to the kernel and the space allocated to file
headers. It is not a coincidence. Let’s look at a simplified
model of the quoted-overlap construction. In the simplified
model, we ignore filenames, as well as the slight increase in
output file size due to quoting local file headers. Analysis of
the simplified model will show that the optimum split between
kernel and file headers is approximately even, and that the
output size grows quadratically when allocation is optimal.

Define some constants and variables:

X zip file size (take as fixed)
N number of files (variable to optimize)

CDH = 46 size of a central directory header
LFH = 30 size of a local file header

Q = 5 size of a quoting block header
C≈ 1032 compression ratio of the kernel

Let H(N) be the amount of header overhead required for
N files. Refer to Figure 3 to understand where this formula
comes from.

H(N) = N · (CDH+LFH)+(N−1) ·Q

The space remaining for the kernel is X−H(N). The total
unzipped size SX (N) is the size of N copies of the kernel, de-
compressed at ratio C. (In this simplified model we ignore the
minor additional expansion from quoted local file headers.)

SX (N) = (X−H(N))CN

= (X− (N · (CDH+LFH)+(N−1) ·Q))CN

=−(CDH+LFH+Q)CN2 +(X +Q)CN

SX (N) is a polynomial in N, so its maximum must be at a
place where the derivative S′X (N) is zero. Taking the derivative
and finding the zero gives us NOPT, the optimal number of
files.

S′X (NOPT) =−2(CDH+LFH+Q)C NOPT +(X +Q)C
0 =−2(CDH+LFH+Q)C NOPT +(X +Q)C

NOPT =
X +Q

2(CDH+LFH+Q)



H(NOPT) gives the optimal amount of space to allocate for
file headers. It is independent of CDH, LFH, and C, and is
close to X/2.

H(NOPT) = NOPT · (CDH+LFH)+(NOPT−1) ·Q

=
X−Q

2

SX (NOPT) is the total unzipped size when the allocation is
optimal. From this we see that the output size grows quadrati-
cally in the input size.

SX (NOPT) =
(X +Q)2 C

4(CDH+LFH+Q)
(1)

As we make the zip file larger, eventually we run into the
limits of the zip format. A zip file can contain at most 216−1
files, and each file can have an uncompressed size of at most
232− 1 bytes. Worse than that, some implementations (see
Table 2) take the maximum possible values as an indicator of
the presence of 64-bit extensions (Section 7), so our limits are
actually 216−2 and 232−2. It happens that the first limit we
hit is the one on uncompressed file size. At a zip file size of
8319377 bytes, naive optimization would give us a file count
of 47837 and a largest file of 232 +311 bytes.

Accepting that we cannot increase N nor the size of the
kernel without bound, we would like to find the maximum
compression ratio achievable while remaining within the lim-
its of the zip format. The way to proceed is to make the kernel
as large as possible, and have the maximum number of files.
Even though we can no longer maintain the roughly even split
between kernel and file headers, each added file does increase
the compression ratio—just not as fast as it would if we were
able to keep growing the kernel, too. In fact, as we add files
we will need to decrease the size of the kernel to make room
for the maximum file size that gets slightly larger with each
added file.

The plan results in zblg.zip, a zip file that contains 216−2
files and a kernel that decompresses to 232−2178825 bytes.
Refer to Table 1. Files get longer towards the beginning of the
zip file—the first and largest file decompresses to 232− 56
bytes. That is as close as we can get using the coarse output
sizes of bulk_deflate—encoding the final 54 bytes would cost
more bytes than they are worth. (The zip file as a whole
has a compression ratio of 28 million, and the final 54 bytes
would gain at most 54 ·1032 · (216−2)≈ 36.5 million bytes,
so it only helps if the 54 bytes can be encoded in 1 byte—
I could not do it in less than 2.) The output size of this zip
bomb, 281395456244934 bytes, is 99.97% of the theoretical
maximum (232−1) · (216−1). Any major improvements to
the compression ratio can only come from reducing the input
size, not increasing the output size.

6 Efficient CRC-32 computation

Among the metadata in the central directory header and local
file header is a CRC-32 checksum of the uncompressed file
data. This poses a problem, because directly calculating the
CRC-32 of each file requires doing work proportional to the
total unzipped size, which is large by design. (It’s a zip bomb,
after all.) We would prefer to do work that in the worst case
is proportional to the zipped size. Two factors work in our
advantage: all files share a common suffix (the kernel), and
the uncompressed kernel is a string of repeated bytes. We will
represent CRC-32 as a matrix product—this will allow us not
only to compute the checksum of the kernel quickly, but also
to reuse computation across files. The technique described
in this section is a slight extension of the crc32_combine
function in zlib, which Mark Adler has explained [2].

You can model CRC-32 as a state machine that updates a
32-bit state register for each incoming bit. The basic update
operations for a 0 bit and a 1 bit are:

uint32 crc32_update_0(uint32 state) {
// Shift out the least significant bit.
bit b = state & 1;
state = state >> 1;
// If the shifted-out bit was 1, XOR
// with the CRC-32 constant.
if (b == 1)

state = state ^ 0xedb88320;
return state;

}

uint32 crc32_update_1(uint32 state) {
// Do as for a 0 bit, then XOR
// with the CRC-32 constant.
return crc32_update_0(state) ^ 0xedb88320;

}

If you think of the state register as a 32-element binary
vector, and use XOR for addition and AND for multiplication,
then crc32_update_0 is a linear transformation; i.e., it can
be represented as multiplication by a 32×32 binary transfor-
mation matrix. To see why, observe that multiplying a matrix
by a vector is just summing the columns of the matrix, after
multiplying each column by the corresponding element of the
vector. The shift operation state >> 1 is just taking each
bit i of the state vector and multiplying it by a vector that is 0
everywhere except at bit i−1 (numbering the bits from right
to left). The conditional final XOR state ˆ 0xedb88320
that only happens when bit b is 1 can instead be represented
as first multiplying b by 0xedb88320 and then XORing it into
the state.

Furthermore, crc32_update_1 is just crc32_update_0
plus (XOR) a constant. That makes crc32_update_1 an
affine transformation: a matrix multiplication followed by
a translation (i.e., vector addition). We can represent both
the matrix multiplication and the translation in a single step
if we enlarge the dimensions of the transformation matrix



M0 =

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

M1 =

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 5: The 33×33 transformation matrices M0 and M1 that compute the CRC-32 state change effected by a 0 bit and a 1 bit
respectively. Column vectors are stored with the most significant bit at the bottom: reading the first column from bottom to top,
you see the CRC-32 polynomial constant edb8832016 = 111011011011100010000011001000002. The two matrices differ only
in the final column, which represents a translation vector in homogeneous coordinates. In M0 the translation is zero and in M1 it
is edb8832016, the CRC-32 polynomial constant. The 1’s just above the diagonal represent the shift operation state >> 1.

to 33× 33 and append an extra element to the state vector
that is always 1. (This representation is called homogeneous
coordinates.)

Both operations crc32_update_0 and crc32_update_1
can be represented by a 33×33 transformation matrix. The
matrices M0 and M1 are shown in Figure 5. The benefit of
a matrix representation is that matrices compose. Suppose
we want to represent the state change effected by process-
ing the ASCII character ‘a’, whose binary representation is
011000012. We can represent the cumulative CRC-32 state
change of those 8 bits in a single transformation matrix:

Ma = M0 M1 M1 M0 M0 M0 M0 M1

And we can represent the state change of a string of repeated
‘a’s by multiplying many copies of Ma together—matrix ex-
ponentiation. We can do matrix exponentiation quickly using
a square-and-multiply algorithm, which allows us to com-
pute Mn in only about log2 n steps. For example, the matrix
representing the state change of a string of 9 ‘a’s is

(Ma)
9 = Ma Ma Ma Ma Ma Ma Ma Ma Ma

= (Ma Ma Ma Ma)
2 Ma

= ((Ma Ma)
2)2 Ma

= (((Ma)
2)2)2 Ma

The square-and-multiply algorithm is useful for computing
Mkernel, the matrix for the uncompressed kernel, because the
kernel is a string of repeated bytes. To produce a CRC-32
checksum value from a matrix, multiply the matrix by the zero
vector. (The zero vector in homogeneous coordinates, that is:
32 0’s followed by a 1. Here we omit the minor complication
of pre- and post-conditioning the checksum.) To compute
the checksum for every file, we work backwards. Start by
initializing M := Mkernel. The checksum of the kernel is also
the checksum of the final file, file N, so multiply M by the
zero vector and store the resulting checksum in CDHN and
LFHN . The file data of file N−1 is the same as the file data
of file N, but with an added prefix of LFHN . So compute
MLFHN , the state change matrix for LFHN , and update M :=
M MLFHN . Now M represents the cumulative state change
from processing LFHN followed by the kernel. Compute the
checksum for file N−1 by again multiplying M by the zero
vector. Continue the procedure, accumulating state change
matrices into M, until all checksums have been computed.

7 Extension: Zip64

In Section 5.3 we hit a wall on expansion due to limits of the
zip format—it was impossible to produce more than about
281 TB of output, no matter how cleverly packed the zip file.
It is possible to surpass those limits using Zip64, an extension
to the zip format that increases the size of certain header fields



to 64 bits. Support for Zip64 is by no means universal, but
it is one of the more commonly implemented extensions—
see Table 2. As regards the compression ratio, the effect of
Zip64 is to increase the size of a central directory header from
46 bytes to 58 bytes, and the size of a local directory header
from 30 bytes to 50 bytes. Referring to Equation 1, we see
that a zip bomb in Zip64 format still grows quadratically, but
more slowly because of the larger denominator. In exchange
for the loss of compatibility and slower growth, we get the
removal of all practical file size limits. Figure 6 compares
various zip bomb constructions with and without Zip64.

Suppose we want a zip bomb that expands to 4.5 PB, the
same size that 42.zip recursively expands to. How big must
the zip file be? Using binary search, we find that the smallest
zip file whose unzipped size exceeds the unzipped size of
42.zip has a zipped size of 46 MB. See zbxl.zip in Table 1
and Figure 6.

With Zip64, it’s no longer practically interesting to consider
the maximum compression ratio, because we can just keep in-
creasing the zip file size, and the compression ratio along with
it, until even the compressed zip file is prohibitively large. An
interesting threshold, though, is 264 bytes (18 EB or 16 EiB)—
that much data will not fit on most filesystems [21 §Limits].
Binary search finds the smallest zip bomb that produces at
least that much output: it contains 12 million files and has a
compressed kernel of 1.5 GB. The total size of the zip file is
2.9 GB and it unzips to 264 +11727895877 bytes, having a
compression ratio of over 6.2 billion.

8 Extension: bzip2

DEFLATE is the most common compression algorithm used
in the zip format, but it is only one of many options [17 §4.4.5].
bzip2 [20], while not as compatible as DEFLATE (see Ta-
ble 2), is probably the second most commonly supported com-
pression algorithm. Empirically, bzip2 has a maximum com-
pression ratio of about 1.4 million, which allows for denser
packing of the kernel. Ignoring the loss of compatibility, does
bzip2 enable a more efficient zip bomb?

Yes—but only for small files. The problem is that bzip2
does not have anything like the non-compressed blocks of
DEFLATE that we used in Section 4 to quote local file headers.
So it is not possible to overlap files and reuse the kernel—
each file must have its own copy, and therefore the overall
compression ratio is no better than the ratio of any single file.
In Figure 6 we see that no-overlap bzip2 outperforms quoted
DEFLATE only for files under about a megabyte.

There is still hope for using bzip2—an alternative means
of local file header quoting discussed in the next section. Ad-
ditionally, if you happen to know that a certain zip parser
supports bzip2 and tolerates mismatched filenames, then you
can use the full-overlap construction of Section 3, which has
no need for quoting.

no
-ov

erl
ap 

DEFLATE
(Zip6

4)

no
-ov

erl
ap 

bzi
p2

(Zip6
4)

qu
ot

ed
 D

EF
LA

TE
(Z

ip
64

)

ex
tra

-fi
eld

-q
uo

ted
 b

zip
2

(Z
ip

64
)

zbsm.zip

zblg.zip

zbxl.zip

42.zip (non-recursive)

42.zip (recursive)

1 kB

1 MB

1 GB

1 TB

1 PB

1 EB

1 kB 1 MB 1 GB
zipped size

un
zi

pp
ed

 si
ze

Figure 6: Zipped size versus unzipped size for various zip
bomb constructions. Note the log–log scales. Each construc-
tion is shown with and without Zip64. The no-overlap con-
structions have a linear rate of growth, which is visible in the
1:1 slope of the lines. The vertical offset of the bzip2 lines
shows that the compression ratio of bzip2 is about a thousand
times greater than that of DEFLATE. The quoted-DEFLATE
constructions have a quadratic rate of growth, as evidenced
by the 2:1 slope of the lines. The Zip64 variant is slightly less
efficient, but permits output in excess of 281 TB. The lines
for extra-field-quoted bzip2 transition from quadratic to linear
upon reaching either the maximum file size (232−2 bytes), or
the maximum number of files allowed by extra-field quoting.
Labeled dots mark specific instances that appear in Table 1.



Info-ZIP
UnZip 6.0 [15]

Python 3.7
zipfile [19]

Go 1.12
archive/zip [14]

yauzl 2.10.0 [22]
(Node.js)

Nail [7]
examples/zip [8]

Android 9.0.0 r1
libziparchive [6]

sunzip 0.4 [3]
(streaming)

DEFLATE X X X X X X X

Zip64 X X X X 7 7 X

bzip2 X X 7 7 7 7 X

permits mismatched filenames warns 7 X X X 7 X

permits incorrect CRC-32 warns 7 if zero X 7 X 7

permits file size of 232−1 X X X 7 X X X

permits file count of 216−1 X X X 7 X X X

unzips full overlap
(Section 3) warns 7 X X X 7 7

unzips quoted overlap
(zbsm and zblg, Section 4) X X X X X X 7

unzips quoted overlap Zip64
(zbxl, Section 7) X X X X 7 7 7

Table 2: Compatibility of selected zip parsers with various features, edge cases, and zip bomb constructions. The background
colors indicate a scale from less restrictive to more restrictive . For best compatibility, use DEFLATE compression without
Zip64, match names in central directory headers and local file headers, compute correct checksums, and avoid the maximum
values of 16-bit and 32-bit fields.

9 Extension: extra-field quoting

In Section 4 we used a feature of DEFLATE to quote local
file headers, and in Section 8 we saw that the same trick does
not work with bzip2. There is an alternative means of quoting,
somewhat more limited, that only uses features of the zip
format and does not depend on the compression algorithm.

At the end of the local file header structure there is a
variable-length extra field whose purpose is to store in-
formation that doesn’t fit into the ordinary fields of the
header [17 §4.3.7]. The extra information may include, for ex-
ample, a high-resolution timestamp or a Unix uid/gid; Zip64
works by using the extra field. The extra field is a length–
value structure: if we increase the length field without adding
to the value, then it will grow to include whatever comes after
it in the zip file—namely the next local file header. Each local
file header “quotes” the local file headers that follow it by
enclosing them within its own extra field. The benefits of
extra-field quoting over DEFLATE quoting are threefold:

1. Extra-field quoting requires only 4 bytes of overhead,
not 5, leaving more room for the kernel.

2. Extra-field quoting does not increase the size of files,
which leaves more headroom for a bigger kernel when
operating at the limits of the zip format.

3. Extra-field quoting provides a way to combine quoting
with bzip2.

Despite these benefits, extra-field quoting is less flexible
than DEFLATE quoting. It does not chain: each local file

header must enclose not only the immediately next header but
all headers which follow. The extra fields increase in length
as they get closer to the beginning of the zip file. Because
the extra field has a maximum length of 216−1 bytes, it can
only contain up to 1808 local file headers, or 1170 with Zip64,
assuming that filenames are allocated as in Section 5.2. (With
DEFLATE, you can use extra-field quoting for the earliest
local file headers, then switch to DEFLATE quoting for the
remainder.) Another problem is that, in order to conform to
the internal data structure of the extra field, we must select
a 16-bit header ID [17 §4.5] to precede the quoted data. We
want a header ID that will make parsers ignore the quoted
data, not try to interpret it as meaningful metadata. Zip parsers
are supposed to ignore unknown header IDs, so we could
choose one at random, but there is the risk that the ID may be
allocated in the future, breaking compatibility.

Figure 6 illustrates the possibility of combining extra-field
quoting with bzip2, with and without Zip64. Both “extra-
field-quoted bzip2” lines have a knee at which the growth
transitions from quadratic to linear. In the non-Zip64 case, the
knee occurs at the maximum uncompressed file size (232−
2 bytes); after this point, one can only increase the number
of files, not their size. The line stops completely when the
number of files reaches 1809, and we run out of room in the
extra field. In the Zip64 case, the knee occurs at 1171 files,
after which the size of files can be increased, but not their
number. Extra-field quoting may also be used with DEFLATE,
but the improvement is so slight that it has been omitted from
the figure. It increases the compression ratio of zbsm.zip by
1.2%; zblg.zip by 0.019%; and zbxl.zip by 0.0025%.

https://github.com/python/cpython/blob/v3.7.0/Lib/zipfile.py#L57
https://github.com/golang/go/blob/go1.12/src/archive/zip/struct.go#L31
https://github.com/thejoshwolfe/yauzl/blob/2.10.0/index.js#L520-L521
https://github.com/jbangert/nail/blob/4bd9cc29c4092abe7a77f8294aff2337bba02ec5/examples/zip/zip.c#L63
https://android.googlesource.com/platform/system/core/+/refs/tags/android-9.0.0_r1/libziparchive/zip_archive.cc#1059
https://github.com/madler/sunzip/blob/v0.4/sunzip.c#L1256
http://infozip.sourceforge.net/UnZip.html#Release
https://github.com/python/cpython/blob/v3.7.0/Lib/zipfile.py#L186
https://github.com/golang/go/blob/go1.12/src/archive/zip/reader.go#L519
https://github.com/thejoshwolfe/yauzl/tree/2.10.0#limitted-zip64-support
https://github.com/jbangert/nail/blob/4bd9cc29c4092abe7a77f8294aff2337bba02ec5/examples/zip/zip.c#L103-L125
https://android.googlesource.com/platform/system/core/+/refs/tags/android-9.0.0_r1/libziparchive/zip_archive.cc#168
https://github.com/madler/sunzip/blob/v0.4/sunzip.c#L922
http://infozip.sourceforge.net/UnZip.html#Release
https://github.com/python/cpython/blob/v3.7.0/Lib/zipfile.py#L58
https://github.com/golang/go/blob/go1.12/src/archive/zip/struct.go#L28-L32
https://github.com/thejoshwolfe/yauzl/blob/2.10.0/index.js#L517-L525
https://github.com/jbangert/nail/blob/4bd9cc29c4092abe7a77f8294aff2337bba02ec5/examples/zip/zip.c#L86
https://android.googlesource.com/platform/system/core/+/refs/tags/android-9.0.0_r1/libziparchive/zip_archive.cc#1061
https://github.com/madler/sunzip/blob/v0.4/sunzip.c#L1256
https://github.com/python/cpython/blob/v3.7.0/Lib/zipfile.py#L1486-L1489
https://github.com/golang/go/blob/go1.12/src/archive/zip/reader.go#L244
https://github.com/thejoshwolfe/yauzl/tree/2.10.0#local-file-headers-are-ignored
https://github.com/jbangert/nail/blob/4bd9cc29c4092abe7a77f8294aff2337bba02ec5/examples/zip/zip.nail#L49
https://android.googlesource.com/platform/system/core/+/refs/tags/android-9.0.0_r1/libziparchive/zip_archive.cc#594
https://github.com/madler/sunzip/blob/v0.4/sunzip.c#L1268-L1269
https://github.com/python/cpython/blob/v3.7.0/Lib/zipfile.py#L893-L894
https://github.com/golang/go/blob/go1.12/src/archive/zip/reader.go#L219-L224
https://github.com/thejoshwolfe/yauzl/tree/2.10.0#no-crc-32-checking
https://github.com/jbangert/nail/blob/4bd9cc29c4092abe7a77f8294aff2337bba02ec5/examples/zip/zip.nail#L41
https://android.googlesource.com/platform/system/core/+/refs/tags/android-9.0.0_r1/libziparchive/zip_archive.cc#52
https://github.com/madler/sunzip/blob/v0.4/sunzip.c#L1465-L1469
https://github.com/python/cpython/blob/v3.7.0/Lib/zipfile.py#L1311-L1313
https://github.com/golang/go/blob/go1.12/src/archive/zip/reader.go#L406-L414
https://github.com/thejoshwolfe/yauzl/issues/109
https://github.com/jbangert/nail/blob/4bd9cc29c4092abe7a77f8294aff2337bba02ec5/examples/zip/zip.nail#L59
https://android.googlesource.com/platform/system/core/+/refs/tags/android-9.0.0_r1/libziparchive/zip_archive_common.h#95
https://github.com/madler/sunzip/blob/master/sunzip.c#L1275-L1277
https://github.com/python/cpython/blob/v3.7.0/Lib/zipfile.py#L258-L259
https://github.com/golang/go/blob/go1.12/src/archive/zip/reader.go#L502-L511
https://github.com/thejoshwolfe/yauzl/issues/108
https://github.com/jbangert/nail/blob/4bd9cc29c4092abe7a77f8294aff2337bba02ec5/examples/zip/zip.nail#L79
https://android.googlesource.com/platform/system/core/+/refs/tags/android-9.0.0_r1/libziparchive/zip_archive_common.h#51
https://github.com/madler/sunzip/blob/master/sunzip.c#L1139


10 Discussion

In related work, Plötz et al. [18 §4] used overlapping files
to create a near-self-replicating zip file. Gynvael Cold-
wind [9 p. 47] has previously suggested overlapping files
in the style of Section 3. Pellegrino et al. [16] found sys-
tems vulnerable to compression bombs and other resource
exhaustion attacks and listed common pitfalls in specification,
implementation, and configuration.

The quoted-overlap zip bomb is designed for compatibil-
ity, taking into consideration a number of implementation
differences, some of which are shown in Table 2. The result-
ing construction is compatible with zip parsers that work in
the usual back-to-front way, first consulting the central di-
rectory and using it as an index of files. Among these is the
example zip parser included in Nail [7], which is automati-
cally generated from a formal grammar. The construction is
not compatible, however, with “streaming” parsers, those that
parse the zip file from beginning to end in one pass without
first reading the central directory. By their nature, streaming
parsers do not permit any kind of file overlapping. The most
likely outcome is that they will extract only the first file. They
may even raise an error besides, as is the case with sunzip [3],
which parses the central directory at the end and checks it for
consistency with the local file headers it has already seen.

If you need the extracted files to start with a certain prefix
(so that they will be identified as a certain file type, for ex-
ample), you can insert a data-carrying DEFLATE block just
before the block that quotes the next header. Not every file
has to participate in the bomb construction: you can include
ordinary files alongside the bomb files if you need the zip file
to conform to some higher-level format. Many file formats
use zip as a container; examples are Java JAR, Android APK,
and LibreOffice documents.

Detecting the specific class of zip bomb we have developed
in this article is easy: look for overlapping files. Mark Adler
has written a patch for Info-ZIP UnZip that does just that [4].
In general, though, rejecting overlapping files does not by
itself make it safe to handle untrusted zip files. There are zip
bombs that do not rely on overlapping files, and there are
malicious zip files that are not bombs. Furthermore, any such
detection logic must be implemented inside the parser itself,
not as a separate prefilter. One of the details omitted from
Section 2 is that there is no single well-defined algorithm for
locating the central directory in a zip file: two parsers may find
two different central directories and therefore may not even
agree on what files a zip file contains [9 pp. 67–80]. Predicting
the total unzipped size by summing the sizes of all files does
not work, in general, because the sizes stored in metadata may
not match the actual uncompressed sizes [16 §4.2.2]. Robust
protection against zip bombs involves sandboxing the parser
to limit its use of time, memory, and disk space—just as if
you were processing image files, or any other complex file
format prone to parser bugs.

Acknowledgements

I thank Mark Adler, Blake Burkhart, Gynvael Coldwind, Russ
Cox, Brandon Enright, Joran Dirk Greef, Marek Majkowski,
Josh Wolfe, and the WOOT reviewers for comments on a
draft of this article. Caolán McNamara evaluated the security
impact on LibreOffice. Mark Adler wrote a patch for UnZip.
Habr user m1rko translated this article into Russian [13].

Availability

The zip bombs developed in this article, the programs used to
create them, and the source code of the article itself are avail-
able from https://www.bamsoftware.com/hacks/zipbomb/.
The artifacts prepared for WOOT are at https://www.
bamsoftware.com/hacks/zipbomb/zipbomb-woot19.zip.

References

[1] 42.zip, March 2000. https://www.unforgettable.dk/.

[2] Mark Adler. Re: How should/could I combine CRCs?
sci.crypt, September 2008. https://groups.google.com/
d/msg/sci.crypt/SHyr5bp5rtc/UGlf4tK3RPMJ, https://
stackoverflow.com/a/23126768.

[3] Mark Adler. sunzip, July 2016. https://github.com/
madler/sunzip.

[4] Mark Adler. Fork of InfoZIP UnZip 6.0 for new zip
bomb detection patch, June 2019. https://github.com/
madler/unzip/commits/6519bf0f8a896851d9708da11e
1b63c818238c8f.

[5] Jyrki Alakuijala and Lode Vandevenne. Data compres-
sion using Zopfli. Technical report, Google, February
2013. https://web.archive.org/web/20160629205704/
http://zopfli.googlecode.com/files/Data_compression_
using_Zopfli.pdf.

[6] Android Open Source Project. libziparchive, July 2018.
https://android.googlesource.com/platform/system/
core/+/refs/tags/android-9.0.0_r1/libziparchive.

[7] Julian Bangert and Nickolai Zeldovich. Nail: A prac-
tical tool for parsing and generating data formats. In
Operating Systems Design and Implementation (OSDI).
USENIX, 2014. https://www.usenix.org/conference/
osdi14/technical-sessions/presentation/bangert.

[8] Julian Bangert and Nickolai Zeldovich. Nail
examples/zip, August 2015. https://github.com/
jbangert/nail/tree/4bd9cc29c4092abe7a77f8294aff233
7bba02ec5/examples/zip.

https://www.bamsoftware.com/hacks/zipbomb/
https://www.bamsoftware.com/hacks/zipbomb/zipbomb-woot19.zip
https://www.bamsoftware.com/hacks/zipbomb/zipbomb-woot19.zip
https://www.unforgettable.dk/
https://groups.google.com/d/msg/sci.crypt/SHyr5bp5rtc/UGlf4tK3RPMJ
https://groups.google.com/d/msg/sci.crypt/SHyr5bp5rtc/UGlf4tK3RPMJ
https://stackoverflow.com/a/23126768
https://stackoverflow.com/a/23126768
https://github.com/madler/sunzip
https://github.com/madler/sunzip
https://github.com/madler/unzip/commits/6519bf0f8a896851d9708da11e1b63c818238c8f
https://github.com/madler/unzip/commits/6519bf0f8a896851d9708da11e1b63c818238c8f
https://github.com/madler/unzip/commits/6519bf0f8a896851d9708da11e1b63c818238c8f
https://web.archive.org/web/20160629205704/http://zopfli.googlecode.com/files/Data_compression_using_Zopfli.pdf
https://web.archive.org/web/20160629205704/http://zopfli.googlecode.com/files/Data_compression_using_Zopfli.pdf
https://web.archive.org/web/20160629205704/http://zopfli.googlecode.com/files/Data_compression_using_Zopfli.pdf
https://android.googlesource.com/platform/system/core/+/refs/tags/android-9.0.0_r1/libziparchive
https://android.googlesource.com/platform/system/core/+/refs/tags/android-9.0.0_r1/libziparchive
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/bangert
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/bangert
https://github.com/jbangert/nail/tree/4bd9cc29c4092abe7a77f8294aff2337bba02ec5/examples/zip
https://github.com/jbangert/nail/tree/4bd9cc29c4092abe7a77f8294aff2337bba02ec5/examples/zip
https://github.com/jbangert/nail/tree/4bd9cc29c4092abe7a77f8294aff2337bba02ec5/examples/zip


[9] Gynvael Coldwind. Ten thousand security pitfalls: The
ZIP file format, April 2018. https://gynvael.coldwind.
pl/?id=682.

[10] Russ Cox. Zip files all the way down. March 2010.
https://research.swtch.com/zip.

[11] L. Peter Deutsch. RFC 1951. DEFLATE compressed
data format specification version 1.3, May 1996. https:
//tools.ietf.org/html/rfc1951.

[12] Erling Ellingsen. ZIP file quine. Before
2005. https://web.archive.org/web/20160130230432/
http://www.steike.com/code/useless/zip-file-quine/.

[13] David Fifield and m1rko (translator). Ещё лучшая ZIP-
бомба. July 2019. https://habr.com/ru/post/459254/.

[14] Go 1.12. archive/zip, February 2019. https://golang.org/
pkg/archive/zip/.

[15] Info-ZIP. UnZip, August 2011. http://infozip.
sourceforge.net/UnZip.html.

[16] Giancarlo Pellegrino, Davide Balzarotti, Stefan Winter,
and Neeraj Suri. In the compression hornet’s nest: A
security study of data compression in network services.
In USENIX Security Symposium. USENIX, 2015.

https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/pellegrino.

[17] PKWARE Inc. APPNOTE.TXT - .ZIP file format
specification version 6.3.6, April 2019. https://pkware.
cachefly.net/webdocs/casestudies/APPNOTE.TXT.

[18] Henryk Plötz, Martin Stigge, Wolf Müller, and Jens-
Peter Redlich. Self-replication in J2ME MIDlets. Tech-
nical Report SAR-PR-2006-04, Humboldt University
Berlin, March 2006. http://sar.informatik.hu-berlin.de/
research/publications/index.htm#SAR-PR-2006-04.

[19] Python 3.7. zipfile module, July 2019. https://docs.
python.org/3.7/library/zipfile.html.

[20] Julian Seward. bzip2, 2018. https://sourceware.org/
bzip2/.

[21] Wikipedia contributors. Comparison of file systems.
May 2019. https://en.wikipedia.org/w/index.php?title=
Comparison_of_file_systems&oldid=896966260.

[22] Josh Wolfe. yauzl, July 2018. https://github.com/
thejoshwolfe/yauzl.

[23] zlib technical details. May 2006. https://www.zlib.net/
zlib_tech.html.

https://gynvael.coldwind.pl/?id=682
https://gynvael.coldwind.pl/?id=682
https://research.swtch.com/zip
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://web.archive.org/web/20160130230432/http://www.steike.com/code/useless/zip-file-quine/
https://web.archive.org/web/20160130230432/http://www.steike.com/code/useless/zip-file-quine/
https://habr.com/ru/post/459254/
https://golang.org/pkg/archive/zip/
https://golang.org/pkg/archive/zip/
http://infozip.sourceforge.net/UnZip.html
http://infozip.sourceforge.net/UnZip.html
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pellegrino
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pellegrino
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
http://sar.informatik.hu-berlin.de/research/publications/index.htm#SAR-PR-2006-04
http://sar.informatik.hu-berlin.de/research/publications/index.htm#SAR-PR-2006-04
https://docs.python.org/3.7/library/zipfile.html
https://docs.python.org/3.7/library/zipfile.html
https://sourceware.org/bzip2/
https://sourceware.org/bzip2/
https://en.wikipedia.org/w/index.php?title=Comparison_of_file_systems&oldid=896966260
https://en.wikipedia.org/w/index.php?title=Comparison_of_file_systems&oldid=896966260
https://github.com/thejoshwolfe/yauzl
https://github.com/thejoshwolfe/yauzl
https://www.zlib.net/zlib_tech.html
https://www.zlib.net/zlib_tech.html

	Introduction
	Structure of a zip file
	The first insight: overlapping files
	The second insight: quoting local file headers
	Optimization
	Kernel compression
	Filenames
	Kernel size

	Efficient CRC-32 computation
	Extension: Zip64
	Extension: bzip2
	Extension: extra-field quoting
	Discussion

