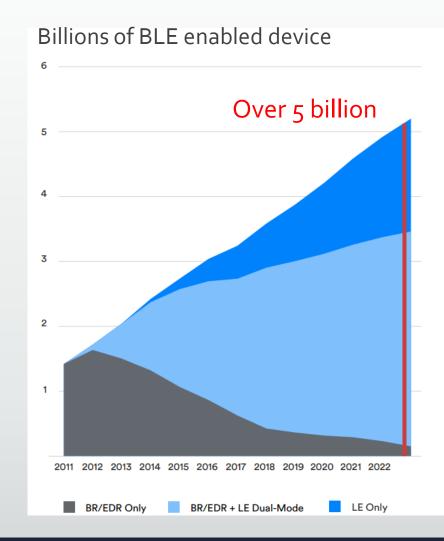
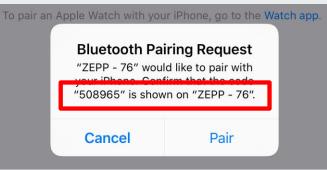
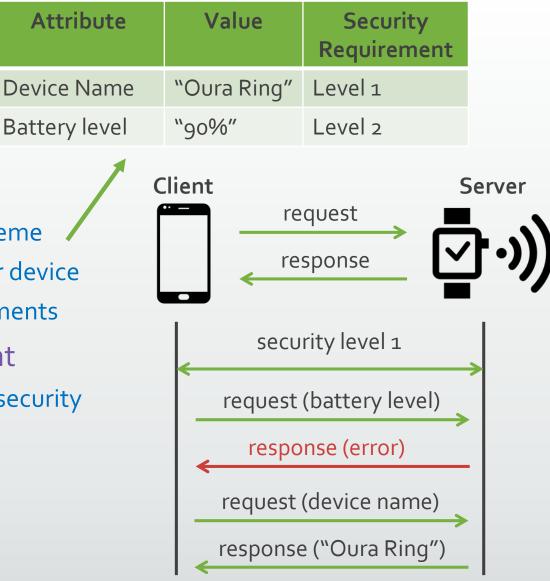
BLESA: Spoofing Attacks against Reconnections in Bluetooth Low Energy

Jianliang Wu¹, Yuhong Nan¹, Vireshwar Kumar¹, Dave (Jing) Tian¹, Antonio Bianchi¹, Mathias Payer², Dongyan Xu¹ ¹ Purdue University ² EPFL

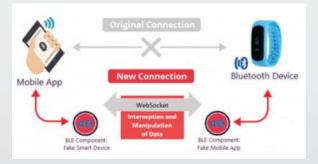

- Bluetooth Low Energy (BLE) devices are ubiquitous
 - Smart home devices
 - O Smart temperature sensor

- Health care devices
 - O Smart glucose monitor

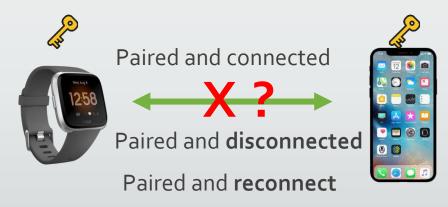

*


- BLE security mechanism
 - Security level
 - O Level 1
 - No security
 - O Level 2
 - Encryption
 - O Level 3 and 4
 - Encryption and authentication
 - Bluetooth pairing
 - No I/O interfaces
 - Level 2 (unauthenticated key)
 - With I/O interfaces
 - Level 3 and 4 (authenticated key)

- BLE security mechanism
 - Server-client architecture
 - BLE uses request and response scheme
 - O Data is stored as attribute on server device
 - Each attribute has security requirements
 - Server-side security enforcement
 - Server checks whether the current security level match the requirement or not



- Attacks on BLE
 - Eavesdropping^[1]
 - Illegal access by compromising client BLE device ^[2]
 - O Reading glucose level
 - O Opening smart lock
 - Man-In-The-Middle Attacks against *unpaired* BLE devices^[3]
 Manipulating user data

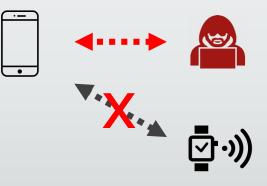

[1]. Mike Ryan. Bluetooth: With low energy comes low security. In proceedings of the USENIX Workshop on Offensive Technologies (WOOT), 2013.

[2]. Pallavi Sivakumaran and Jorge Blasco. A study of the feasibility of co-located app attacks against BLE and a largescale analysis of the current applicationlayer security landscape. In Proceedings of the USENIX Security Symposium (USENIX Security) 2019

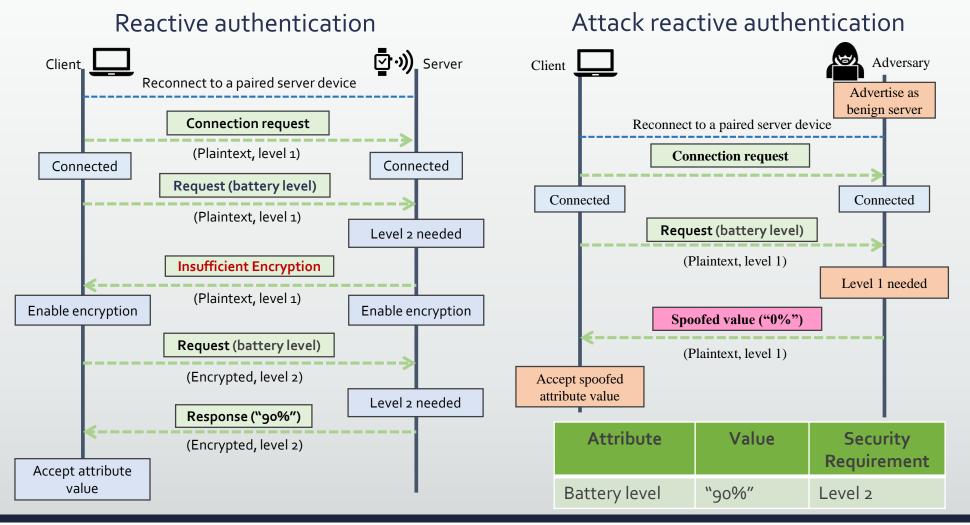
[3]. Tal Melamed. An active man-in-the-middle attack on Bluetooth smart devices. International Journal of Safety and Security Engineering, 8(2), 2018

- Prior attacks on BLE
 - Some attacks target the pairing procedure for first-connection and unpaired devices [WOOT'13, blackhat'16]
 - Some other attacks need additional assistance [NDSS'14, SEC'19, NDSS'19]
 Malicious app on the phone
- Unexplored reconnection procedure

Our Work

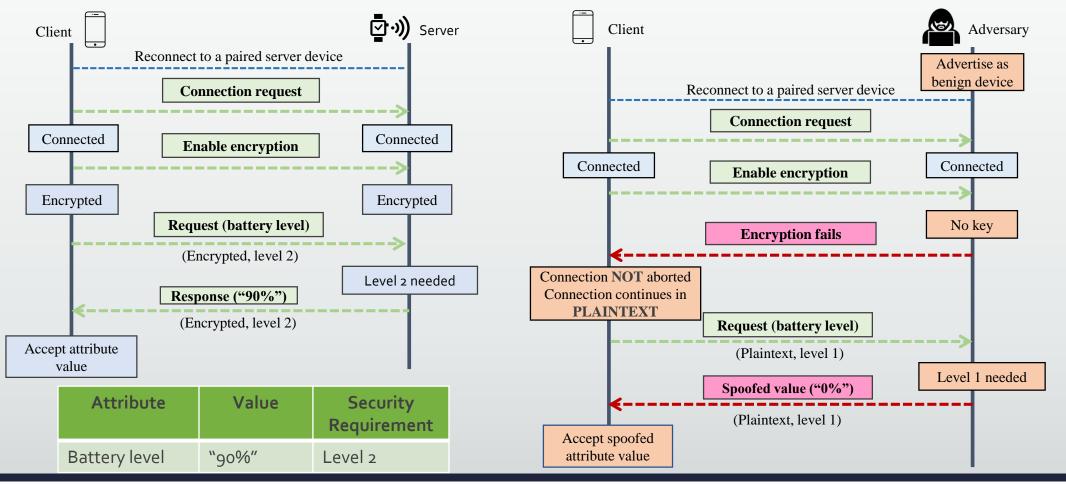

- Formal analysis of BLE *reconnection* procedure
 - Two design weaknesses identified
- BLE Spoofing Attacks (BLESA) against *paired* devices *without* extra assistance
 - Do not need malicious apps
- Evaluation on real-world BLE devices
 - Affecting more than 1 billion real-world BLE devices and 16,000 BLE apps

Formal Analysis and Findings


- Formal model
 - Modeling BLE reconnection procedure using ProVerif
 - Verifying security properties
 - O Confidentiality, Integrity, and Authenticity
- Identified Weaknesses
 - Optional authentication
 - Circumventing authentication
 - Reactive authentication
 - Design issue
 - O Proactive authentication
 - ✤ Implementation issue

BLE Spoofing Attacks (BLESA)

BLESA against Reactive Authentication



BLESA against Proactive Authentication

Proactive authentication

Attack proactive authentication

- Weakness 1 (optional authentication) examination
 - Whether the BLE apps use authentication during reconnection?
 - Whether the real-world server BLE devices use authentication during reconnection?

- Weakness 2 (circumventing authentication) examination
 - Which authentication procedure is during reconnection used by main-stream BLE stacks?
 - Whether the used authentication procedure is vulnerable to BLESA?

- Weakness 1 (optional authentication)
 - Whether the BLE apps use authentication during reconnection?
 - O Analyzing BLE apps
 - 86/127 (67.7%) of analyzed BLE apps do not use authentication during reconnection
 - Whether the real-world server BLE devices use authentication during reconnection?
 - Analyzing real-world server BLE devices
 - 10/12 of analyzed BLE devices **do not** support authentication during reconnection

Device Name	Auth.
Nest Protect Smoke Detector	×
Nest Cam Indoor Camera	×
SensorPush Temperature Sensor	×
Tahmo Tempi Temperature Sensor	×
August Smart Lock	×
Eve Door & Window Sensor	×
Eve Button Remote Control	×
Eve Energy Socket	×
Ilumi Smart Light Bulb	×
Polar H7 Heart Rate Sensor	×
Fitbit Versa Smartwatch	
Oura Smart Ring	

- Weakness 2 (circumventing authentication)
 - Which authentication procedure is used for main-stream BLE stacks?
 - Whether the authentication procedure is vulnerable to BLESA?
 - O Analyzing main-stream BLE stacks

Platform	OS	BLE Stack	Authentication	lssue	Vulnerable
Linux Laptop	Ubuntu 18.04	BlueZ 5.48	Reactive	Design	Yes
Google Pixel XL	Android 8.1, 9, 10	Fluoride	Proactive	Implementation	Yes
iPhone 8	iOS 12.1, 12.4, 13.3.1	iOS BLE stack	Proactive	Implementation	Yes
Thinkpad X1 Yoga	Windows 10 V. 1809	Windows stack	Proactive	None	No

BLESA against Oura Ring Demo

- Impact
 - Affected BLE apps
 - At least 8,000 Android BLE apps with 2.38 billion installations^[1]
 - Similar number may apply to iOS apps
 - Affected server BLE devices
 - More than 1 billion BLE devices^[1]
 - Medeia report
 - Security Boulevard

Bluetooth Reconnection Flaw Could Lead to Spoofing Attacks

A group of researchers at Purdue University's Center for Education and Research in Information Assurance and Security (CERIAS)

[1]. Pallavi Sivakumaran and Jorge Blasco. A study of the feasibility of co-located app attacks against BLE and a largescale analysis of the current application-layer security landscape. In Proceedings of the USENIX Security Symposium (USENIX Security) 2019

- Responsible disclosure
 - Apple Product Security
 O CVE-2020-9770
 - Android Security Team
 - O Reported on April 8, 2019

The Android Security Team believes that this is a duplicate of a report previously submitted by another external researcher on Apr 5, 2019.

The duplicate issue is being tracked by AndroidID-130833727.

Thank you, Android Security Team

Mitigations

- Reactive authentication
 - Updating specification
 - Removing reactive authentication
 - Exchanging attributes' security requirements during pairing
- Proactive authentication
 - Fixing vulnerable implementations
 - o iOS BLE stack
 - Apple issued iOS 13.4 and iPadOS 13.4 to fix the vulnerability
 - Android BLE stack (Fluoride)
 - Linux BLE stack (BlueZ)
 - Changing to proactive authentication

Summary

- Formal analysis of the BLE reconnection procedure
- BLESA against paired BLE devices
- Evaluation on real-world BLE devices

Thank you! Questions?

This work was supported in part by ONR under Grant Nooo14-18-1-2674.

wu1220@purdue.edu

