MIDAS: Minimizing Write Amplification in Log-Structured Systems through Adaptive Group Number and Size Configuration

Authors: 

Seonggyun Oh, Jeeyun Kim, and Soyoung Han, DGIST; Jaeho Kim, Gyeongsang National University; Sungjin Lee, DGIST; Sam H. Noh, Virginia Tech

Abstract: 

Log-structured systems are widely used in various applications because of its high write throughput. However, high garbage collection (GC) cost is widely regarded as the primary obstacle for its wider adoption. There have been numerous attempts to alleviate GC overhead, but with ad-hoc designs. This paper introduces MiDAS that minimizes GC overhead in a systematic and analytic manner. It employs a chain-like structure of multiple groups, automatically segregating data blocks by age. It employs analytical models, Update Interval Distribution (UID) and Markov-Chain-based Analytical Model (MCAM), to dynamically adjust the number of groups as well as their sizes according to the workload I/O patterns, thereby minimizing the movement of data blocks. Furthermore, MiDAS isolates hot blocks into a dedicated HOT group, where the size of HOT is dynamically adjusted according to the workload to minimize overall WAF. Our experiments using simulations and a proof-of-concept prototype for flash-based SSDs show that MiDAS outperforms state-of-the-art GC techniques, offering 25% lower WAF and 54% higher throughput, while consuming less memory and CPU cycles.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {294805,
author = {Seonggyun Oh and Jeeyun Kim and Soyoung Han and Jaeho Kim and Sungjin Lee and Sam H. Noh},
title = {{MIDAS}: Minimizing Write Amplification in {Log-Structured} Systems through Adaptive Group Number and Size Configuration},
booktitle = {22nd USENIX Conference on File and Storage Technologies (FAST 24)},
year = {2024},
isbn = {978-1-939133-38-0},
address = {Santa Clara, CA},
pages = {259--275},
url = {https://www.usenix.org/conference/fast24/presentation/oh},
publisher = {USENIX Association},
month = feb
}

Presentation Video